

Conservation threats from roadkill in the global road network

Article

Accepted Version

Grilo, C., Borda-de-Agua, L., Beja, P., Goolsby, E., Soanes, K., le Roux, A., Koroleva, E., Ferreira, F. Z., Gagne, S. A., Wang, Y. and Gonzalez-Suarez, M. ORCID: https://orcid.org/0000-0001-5069-8900 (2021) Conservation threats from roadkill in the global road network. Global Ecology and Biogeography, 30 (11). pp. 2200-2210. ISSN 1466-8238 doi: https://doi.org/10.1111/geb.13375 Available at https://centaur.reading.ac.uk/100160/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1111/geb.13375

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

CONSERVATION THREATS FROM ROADKILL IN THE GLOBAL ROAD NETWORK

Short running title: CONSERVATION THREATS FROM ROADKILL

Clara Grilo^{1,2*}, Luis Borda-de-Água ^{3,4}, Pedro Beja^{3,4}, Eric Goolsby⁵, Kylie Soanes⁶, Aliza le Roux⁷, Elena Koroleva⁸, Flávio Z. Ferreira¹, Sara A. Gagné⁹, Yun Wang¹⁰, Manuela González-Suaréz¹¹

- ¹Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras (MG), Brazil, CEP 37.200-900
- ²CESAM Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- ³CIBIO/InBIO Research Center in Biodiversity and Genetic Resources, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão R. Padre Armando Quintas 4485-661 Vairão, Portugal
- ⁴CIBIO/InBIO Research Center in Biodiversity and Genetic Resources, Laboratorio Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal

⁵University of Central Florida, Orlando, FL, USA 10

- ⁶Clean Air and Urban Landscapes Hub, National Environmental Science Programme, School of Ecosystem and Forest Science, University of Melbourne, Australia
- ⁷Department of Zoology and Entomology, University of the Free State, Qwaqwa, Private Bag X13, Phuthaditjihaba, 9866 Republic of South Africa
- ⁸Department of Biogeography, Faculty of Geography, Moscow State Lomonosov University, 119991 Moscow, Russia
- ⁹Department of Geography and Earth Sciences, University of North Carolina at Charlotte 9201 University City Blvd., Charlotte, NC 28223, USA
- ¹⁰Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences. 240 Huixinli, Chaoyang District, Beijing, 100029 P.R. China
- ¹¹Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, RG66AS, UK

*Corresponding author

BIOSKETCH

Clara Grilo is particularly interested in applied ecological questions to provide scientific underpinnings for the preservation, management, or restoration of wildlife and landscapes. Over the last years, much of her research focused on the effects of road network on birds and mammals such as behaviour, relative abundance, genetic structure, risk of mortality and population viability. The research interests of this team include road ecology, macroecology, macroevolution, extinction risk and global change biology. The shared interests in these fields were combined to advance our understanding of the impact of roadkill on wildlife populations.

AUTHOR CONTRIBUTIONS

C.G. and P.B. conceived the idea. C.G., K.S., A.R., E.K., F.Z.F, S.A.G. and Y. W. collected the data. C.G, L.B.A. and E.G. designed the methods. C.G and E.G. analyzed the data. M.G.S. prepared the final map. C:G. led the writing of the manuscript and all authors contributed critically to the drafts and gave final approval for publication.

ACKNOWLEDGMENTS

This study was part of the project 'Road Macroecology: analysis tools to assess impacts on biodiversity and landscape structure' funded by CNPq (no. 401171/2014-0). C.G. was supported by CNPq grant (AJT no. 300021/2015-1), F.Z.F. by a CAPES grant (no. 32004010017P3) and Y.W. by NSFC and BRPCLSI grant (no. 51508250 and 20180615). L.B.A. was financed through Portuguese national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Norma Transitória -DL57/2016/CP1440/CT0022. K.S receives funding from the Australian Government's National Environmental Science Program through the Threatened Species Recovery Hub and Clean Air and Urban Landscapes Hub. We thank Michely Reis Coimbra for helping collecting trait data and Tomé Neves to display the final map. Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020), through national funds.

1 CONSERVATION THREATS FROM ROADKILL IN THE GLOBAL ROAD NETWORK

2 Short running title: CONSERVATION THREATS FROM ROADKILL

- 3
- 4

5

ABSTRACT

6 Aim – The road network is increasing globally but the consequences of roadkill on the viability of wildlife 7 populations are largely unknown. We provide a framework that allows us to estimate how risk of extinction of 8 local populations increases due to roadkill and to generate a global assessment that identifies which 9 mammalian species are most vulnerable to roadkill and the areas where they occur.

10 Location - Global

11 **Time period** – 1995 -2015

12 Major taxa studied – Terrestrial mammals

Methods – We introduce a framework to quantify the effect of roadkill on terrestrial mammals worldwide that includes three steps: 1) compilation of roadkill rates to estimate the fraction of a local population killed on the roads, 2) prediction of population risk of extinction based on observed roadkill rates (for a target group of species of conservation concern and non-threatened species with high roadkill rates), and 3) global assessment of vulnerability to roadkill for 4,677 terrestrial mammalian species estimated using phylogenetic regression models that link extinction risk to demographic parameters.

Results – We identified four populations among the 70 species in the target group which could become extinct in 50 years if observed roadkill levels persist in the study areas: maned wolf *Chrysocyon brachyurus* (Brazil), little spotted cat *Leopardus tigrinus* (Brazil), brown hyena *Hyaena brunnea* (Southern Africa) and leopard *Panthera pardus* (North India). The global assessment revealed roadkill as an added risk for 2.7% (n=124) terrestrial mammals, including 83 species Threatened or Near Threatened. We identified regions of concern that concentrate species vulnerable to roadkill and high road densities in areas of South Africa, central and Southeast Asia, and the Andes.

26 Main conclusions – Our framework revealed populations of threatened species that require special

attention and can be incorporated into management and planning strategies informing road managers andconservation agencies.

- 29
- 30 **Keywords:** Mammals; roadkill; life-history; risk of extinction; road mitigation; road network;

31 Main text

32 1. INTRODUCTION

33 There are at least 36 million kilometres of roads in the world currently (CIA, 2020). Roads dominate the 34 landscape in some regions, e.g., 83% of land in the USA (Riitters & Wickham, 2003) and 50% in Europe 35 (Torres et al., 2016) are within 1 and 1.5 km of the nearest road, respectively. An additional 25 million 36 kilometres of roads are expected by 2050, mostly from expanding the road networks of developing countries 37 that contain exceptional biological diversity and highly conserved ecosystems (Laurance, 2018; Meijer et al., 38 2018: Alamiir et al., 2019), Given the potential for roads to negatively affect biodiversity, evaluating the 39 current and future impacts of the global road network on wildlife is critical (van der Ree et al., 2015). Wildlife 40 mortality through collisions with vehicles (hereafter roadkill) is often considered one of the most serious 41 impacts of roads, being a significant source of anthropogenic mortality for some species (Loss et al., 2015; 42 Hill et al., 2019; Morelli et al., 2020). Roadkill impacts have been well documented for a wide range of 43 vertebrates and regions, with estimates of millions of individuals dying annually in roads across Europe (e.g. 44 Erritzoe et al., 2003; Wembridge et al., 2016; Grilo et al., 2020), the Americas (e.g. Loss et al., 2014; Baxter-45 Gilbert et al., 2015; González-Suaréz et al., 2018) and Australia (Ehmann & Cogger, 1985), and roadkill 46 being identified as a problem also in Africa (Collinson et al., 2019; Gandiwa et al., 2020) and Asia (Seo et al., 47 2015; Silva et al., 2020). While numbers killed are high, the actual impact of that added mortality at the 48 population level is poorly understood, but at least for some species it can be high (Benítez-López et al., 49 2010). For instance, roadkill is responsible for 35% of annual deaths in Florida panthers Puma concolor coryi 50 (Taylor et al., 2002) and 49% in badgers Meles meles in Britain (Harris et al., 1992, Harris et al., 1995). Also, 51 roadkill annually removes 10% of the Iberian lynx Lynx pardinus population (Simón et al., 2012), 10% of 52 black bears Ursus americanus in Ocala National Forest (FFWCC, 2012) and may have reduced the density 53 of hedgehogs Erinaceus europaeus in the Netherlands by 30% (Huijser & Bergers, 2000). Overall, it is likely 54 that roadkill can increase the risk of local extinction by reducing effective population size and genetic 55 diversity, and by limiting demographic and genetic rescue (Jackson & Fahrig, 2011). There is, therefore, a 56 critical need to identify the species and regions that are most vulnerable to the rapid expansion of roads and 57 traffic worldwide (Laurance et al., 2014). A challenge to achieve this goal is that wildlife populations do not 58 respond equally to additional mortality, which makes evaluation of roadkill effects on population persistence 59 challenging (Gibbs & Shriver, 2005; Row et al., 2007; Diniz & Brito, 2013, Ceia-Hasse et al., 2017). These 60 effects may vary depending not only on the proportion of the population killed on roads each year (Jaeger et 61 al., 2005; Jacobson et al., 2016) but also on demographic processes (e.g., density dependent fecundity or

2

62 immigration) that affect the ability of the population to offset increased mortality (Purvis et al., 2000; Pearson 63 et al., 2014). Species characteristics can help us predict these variable effects. For example, species with 64 high adult survival and low fecundity, typically have low population growth rates, and are more likely to 65 experience declines with added anthropogenic mortality (Sparkman et al., 2011). The link between species 66 demographic variables and risk of extinction due to additional mortality has been established for some 67 sources of human impacts (Owens & Bennet, 2000; Crooks et al., 2017) but not for roadkill (but see Grilo et 68 al., 2020 that estimated the incidence of roadkill based on species trait-models and estimated population 69 vulnerability in Europe).

70 In this study, we present a framework that allows us to generate the first global assessment of vulnerability to 71 roadkill in mammals (Figure 1). Within this framework we first analysed a unique global dataset of observed 72 roadkill rates using spatially implicit population models to estimate the increase in risk of extinction due to 73 roadkill in multiple local populations. We then use trait data and phylogenetic predictive regressions to identify 74 mammalian species most vulnerable to roadkill and the areas where they occur. Our findings offer insights into 75 the risks that roads pose to wildlife currently and identifies areas where roadkill can lead to loss of mammalian 76 biodiversity. This information can provide initial guidance to prioritize conservation and mitigation efforts to 77 meet sustainable development goals in countries with high biodiversity. More generally, the proposed 78 framework could be integrated into existing risk assessment protocols and expanded to other taxonomic 79 groups.

80

81 2. MATERIAL AND METHODS

Our framework includes three steps which we explain in detail below. In summary, the first step generated estimates of the fraction of a local population killed in vehicle-wildlife collisions; the second step predicted the risk of extinction from that added mortality for target populations; and the third step used identified relationships in the target group to predict vulnerability to roadkill for 4,677 terrestrial mammals.

86

87 Step 1: Roadkill rates and estimated fraction of the population roadkilled per year

88 To estimate roadkill rates, we conducted a systematic literature search and located unpublished data to

compile roadkill counts for mammals collected between 1995 and 2015 in any areas of the world (Figure 1).

90 Peer-reviewed and grey literature were located searching the Web of Knowledge, Science Direct and Google

91 Scholar using combinations of the following search terms: "mammal*" and all related taxonomic orders

92 combined with "roadkill* or "road-kill" or "road mortality" in five languages (Chinese, English, Portuguese, 93 Russian and Spanish). We only compiled roadkill counts from surveys completed before the end of 2015 that 94 surveyed more than 3 km of road for a minimum period of one month (SM1). For each species and study we 95 used these counts (reported number of roadkilled individuals) to calculate annual roadkill rates (roadkilled 96 individuals per km of road surveyed per survey effort in days) using two different approaches to account for 97 the lower detectability and persistence in roads of small sized carcasses (small carcasses do not persist in 98 the road as long as larger ones, Santos et al., 2016). For species with average body size <1 kg, we 99 calculated annual roadkill rates as: (count/km of road sampled /number of surveys)*365 days, where the 100 number of surveys is the total number of days in which surveys were completed. For species with average 101 body size > 1kg we calculated annual roadkill rates as: (count/km of road sampled /total survey period)*365 102 days, where total survey period is the number of days between the first and the last survey day. This 103 assumes that larger mammals killed during the survey period would always be detected, but that some small 104 species could be missed as they could disappear between survey intervals. The two methods are equivalent 105 for daily surveys.

106 For a target group of species for which roadkill rates were available we then estimated the fraction of the 107 population roadkilled in the study areas, selecting estimates from the site with the highest observed roadkill 108 rate if multiple estimates were available. The target group included all mammalian species of conservation 109 concern (i.e., Near Threatened, Vulnerable, Endangered, or Critically Endangered species classified by 110 IUCN Red List 2016) and those species with high roadkill rates: the three small-sized (<1kg) and the three 111 large-sized (>1kg) mammals with the highest roadkill rates in each continent [North America (Canada, USA 112 and Mexico), Central/South America, Europe, Africa, Asia and Oceania]. For each species, we assumed 113 observed roadkill rates were representative of all paved roads (excluding urban areas) in the study site, 114 which was defined by using a buffer around the centroid of the actual surveyed road. The buffer was defined 115 to potential encompass a local population considering species area requirements vary with body size (Jetz et 116 al. 2004). We considered a 5km radius buffer for species with body mass <1kg, and a 50km radius for mass 117 >1kg.

The fraction of a population lost to roadkill was calculated as $F_{Roadkill} = N_{roadkilled}/N_{pop}$, where $N_{roadkilled}$ is the estimated total number of roadkilled individuals of the species in the *study site* (ind/km), calculated by multiplying the observed roadkill rate by the total length of paved roads in the study site. Road length was estimated using Google Earth (Digital Globe 2016. http://www.earth.google.com [2015-2016]. N_{pop} is an estimate of the total population of the species in the *study site* calculated by multiplying observed population

4

- density (ind/km²) by study site area (km²). Population density estimates were obtained from within or near
- 124 the study site when possible; otherwise we used published species-level estimates (see SM2 for
- 125 references). Although we had a single observed roadkill rate for each species in each study site, we often
- 126 found multiple estimates of population density from different sources. We used the minimum and maximum
- 127 estimates of population densities to calculate several F_{Roadkil} values and reflect uncertainty.
- 128

129 Step 2 Risk of extinction from roadkill for the target species

130 We used a spatially implicit age-structured stochastic population model based on Borda-de-Água et al. (2014) 131 to estimate the increased probability of extinction in 50 years (based on 600 simulations) for each selected 132 species in its study site under simulated scenarios of FRoadkill values ranging from 0.01 to 0.9 at 0.01 133 increments (methodological details and code in SM3; Figure 1). Without roadkill all species had stable 134 populations with no risk of extinction within 50 years. These simulations allowed us to estimate the increased 135 probability of extinction given the observed FRoadkill for each selected species. For species with multiple FRoadkill 136 we reported the range based on the minimum and maximum fractions. In addition, we defined a threshold 137 value, F_{RiskExt10}, to represent the proportion of the population that if roadkilled would result in an increase in the 138 probability of extinction of 0.1. FRiskExt10 could be higher or lower than the observed FRoadkill. We propose 139 FRiskExt10 as an indicator of vulnerability to roadkill, with species in which loss of small fractions of a population 140 can result in increased risk of extinction (small FRiskExt10) being more vulnerable and more likely to be 141 threatened by roadkill.

142 The Borda-de-Água et al. (2014) model assumes that population growth is determined by age at first birth, 143 interval between births, litter size, period of recruitment (the average interval in months between two births by 144 an adult female), number of litters per year, natural survival rates for nine variables: newborns/youngest 145 individuals, juveniles, and adults (categories reflect those in the study from which survival data were obtained, 146 see below), and maximum longevity. Estimates for these variables were obtained from available compilations 147 (Jones et al., 2009; Myhrvold et al., 2015; Myers et al., 2016; WildScreen Arkive, 2016; IUCN, 2016) and 148 dedicated literature searches (SM2). For survival rates we used any available data, and in some cases we 149 applied the single estimate available to all age-stages. When data were not available for a species we used 150 the median from all available estimates from closely related taxa/species or from the most closely related 151 species (same genus). A total of 68 cases out of 710 ((population density + nine variables) * 71 populations) 152 were missing data being the majority on survival rates (details in SM2). We used empirical estimates of 153 variance for all variables when available; otherwise we used a 10% variance.

5

154 The Borda-de-Água et al. (2014) model incorporates density dependence using the Beverton-Holt

relationship between the number of births and juveniles (Beverton & Holt, 1957). By applying this model we

assumed that: roadkill rates were constant over time in each study site, the available data reflected

dynamics reasonably well even if obtained from other regions, and the population in the study site was not

158 part of a metapopulation.

159

160 Step 3. Global assessment of mammalian vulnerability to roadkill

161 The population models described above were computationally intensive and to estimate FRiskExt10 for all 162 terrestrial mammals (n=4.677) worldwide we used a phylogenetic predictive model fitted for the target group 163 (see SM4 for further details). First, we identified the demographic variables that best explain F_{RiskExt10} for the 164 target group species (step 1 - n=71) fitting both (non-phylogenetic) generalized least squares regression 165 (GLS) and phylogenetic GLS (PGLS) models (see SM4 for further details). We then applied the phylogenetic 166 imputation method using the demographic variables that better explained FRiskExt10 to predict the missing 167 values of FRiskExt10 for the remaining mammals (see Stearns 1983; Guénard et al. 2011) (SM4). To identify 168 regions of concern, we mapped the overlap between the species most vulnerable to roadkill ($F_{RiskExt10} < 0.2$) 169 and the global road network using a 100-km x 100-km grid cells with a Cylindrical Equal Area projection. 170 Species presence was determined using current native distribution data (IUCN, 2019) selecting polygons 171 classified as presence: Extant, Probably Extant and Possibly Extant; origin: Native, and Reintroduced; and 172 seasonality: Resident, Breeding Season, and Non-breeding Season. To quantify the kilometres of roads in 173 each grid we used data from Meijer et al. (2018) selecting all roads classified as highways and primary 174 roads, and all roads with road surface classified as paved.

175

176 Validation

177 Step 2 generated estimates of risk of extinction from roadkill (anthropogenic mortality) for local populations. 178 Ideally, those estimates could be compared with population trends in those locations for validation, but those 179 data are simply not available. Instead, we conducted a qualitative validation searching the literature for 180 independent evidence from population viability analyses or other modelling approaches showing the effects 181 of anthropogenic mortality on risk of extinction. We considered mortality from roadkill and other human-182 driven sources, as analyses of roadkill impacts are very limited. The comparison focused on evidence from 183 those species identified as most vulnerable in our assessment (F_{RiskExt10} <0.20, n=9) and those identified as 184 least vulnerable (F_{RiskExt10} > 0.90, n=15). For step 3, we validated model estimates of F_{RiskExt10} using leave-

- one-out cross-validation (LOO-CV) (Bruggeman, 2009) as well as 2-fold and 5-fold cross-validation blocked
 by phylogenetic distance (Roberts et al., 2017) (see SM4 for further details).
- 187

188 **3. RESULTS**

189 **3.1** Roadkill rates and population responses to roadkill

We compiled a total of 1,310 roadkill rate records for 392 different mammalian species representing 184 references and personal communications (SM1). We found high inter- and intra-specific variability in roadkill rates (SM1). Roadkill rates varied from fewer than 0.005 ind/km/year (n=16 species) to more than 10 ind/km/year (n=10 species). The large mammal with the highest number of records (moose (*Alces alces*); n=45) had roadkill rates ranging between 0.00015 and 1.17 ind/km/year (SM1), while the small mammal with the highest number of records (guinea pig (*Cavia aperea*); n=9) had roadkill rates ranging between 0.004 and 12.82 ind/km/year.

197

Average roadkill rates were lower for species of conservation concern (0.09 ind/km/year) than for least concern species (0.44 ind/km/year). We obtained roadkill estimates for 61 species of conservation concern (four species in North America, 14 in Central/South America, eight in Europe, six in Africa, 23 in Asia, and six in Oceania; SM1). Thirty-six species were identified as top-roadkilled in the six continents resulting in a selected subset of 97 species. We obtained population density estimates for 70 of these species (SM2). Since we obtained roadkill records of leopard *Panthera pardus* in Africa and Asia, we analysed 71

 $204 \qquad \text{populations of 70 species (SM2)}.$

205

206 Our population models suggest populations of four species in the target group may be at risk of extinction if 207 observed roadkill levels persist on the study sites including the maned wolf Chrysocyon brachyurus in 208 Uberlândia-Uberada (Brazil), little spotted cat Leopardus tigrinus in western Santa Catarina (Brazil), brown 209 hyena Hyaena brunnea in Mapungubwe Transfrontier conservation area (Southern Africa), and leopard 210 Panthera pardus in Rajaji National Park and the Hariwar Conservation area (North India) (Figure 2; details in 211 SM5 and SM6). Among the 71 populations analysed, we classified 10 as most vulnerable to roadkill (F_{RiskExt10} 212 <0.2), 31 had intermediate vulnerability (0.2< F_{RiskExt10}<0.5), 15 had low vulnerability (0.5< F_{RiskExt10}<0.9), and 213 15 had very low vulnerability (F_{RiskExt10}>0.9) (Figure 2, SM6). 214 Results from the qualitative validation largely supported our assessment: while 60% of the nine most

215 vulnerable species (F_{RiskExt10} <0.20) had published studies showing non-natural mortality can increase risk of

extinction for those species, only 13% of the 15 species with very low risk (F_{RiskExt10} >0.90) had published

- 217 studies showing non-natural mortality can pose a threat (SM7).
- 218

219 **3.2** Terrestrial mammals potentially threatened by roadkill

220 Phylogenetic predictive model showed that high reproductive rates, represented by low age of maturity, high 221 numbers of litters per year and large litter sizes, were key predictors of high F_{RiskExt10} (details in SM8). The use 222 of the proposed phylogenetic predictive models was supported during validation, with a strong correlation 223 (R²=0.69) between observed and imputed F_{RiskExt10} risk (SM). Predicted F_{RiskExt10} identified 2.7% of mammals 224 (124 species out of 4,677) as most vulnerable to roadkill (F_{RiskExt10}<0.2) including 83 species Threatened or 225 Near Threatened by other human activities, but also 18 Least Concern species (23 species were not evaluated) 226 (see SM9 for complete list of species vulnerability). Surprisingly, IUCN only considered roadkill as a threat to 227 only 10 out of 5940 mammalian species which, according to our estimates are not among those most 228 vulnerable to roadkill (FRiskExt10 < 0.20). Particularly vulnerable species (FRiskExt10 < 0.10) included: wild yak Bos 229 mutus (listed as Vulnerable by the IUCN), Bohor reedbuck Redunca redunca (Least Concern), Amur tiger 230 Panthera tigris altaica (Endangered), African elephant Loxodonta africana (Vulnerable), sun bear Helarctos 231 malayanus (Vulnerable), African buffalo Syncerus caffer (Near Threatened), Asian elephant Elephas maximus 232 (Endangered) and Sumatran rhinoceros Dicerorhinus sumatrensis (Critically Endangered) (SM8).

233 Mapping richness of species identified as most vulnerable to roadkill and existing road densities together 234 revealed several areas of concern where high numbers of most vulnerable species coincide with high road 235 densities, including parts of South Africa, Ghana, central and Southeast Asia, the Malay archipelago and the 236 Andean region (Figure 3). Parts of Sub-Saharan Africa, Amazon, Mongolian plateau, and the Palearctic tundra 237 concentrate vulnerable species but currently have low densities of paved roads ("future risk zones"). Europe, 238 North America and many areas of central and South America and coastal Australia represent human-239 dominated areas with high road density but low numbers of species particularly vulnerable to roadkill. Finally, 240 deserts and the Artic appear as "untouched" areas with no species particularly vulnerable to roadkill and few 241 paved roads.

242

243 **DISCUSSION**

244 Preventing the impact of roadkill on wildlife requires identifying which species could have increased risk of 245 extinction from the added risk of road mortality. Here, we proposed a framework that produces two key 246 outputs: local evaluations of extinction risk associated with observed roadkill, and a global assessment of 247 vulnerability to roadkill. This framework goes beyond quantifying numbers of roadkill individuals and moves 248 the field of road ecology towards a more comprehensive understanding of the long-term consequences of 249 observed road mortality for multiple species. We show that local high roadkill rates do not necessarily mean 250 that a high fraction of the population will be lost, and that, even with relatively high roadkill rates, populations 251 may be able to persist into the future (Cardillo et al., 2004; Borda-de-Água et al., 2014). However, road 252 projects can pose an additional threat to species of conservation concern that are particularly vulnerable to 253 traffic due to their characteristics and behaviour towards roads (Jacobson et al., 2016; González-Suaréz et 254 al., 2018). Our analyses identified populations of several species of conservation concern (IUCN, 2018) that 255 could become extinct if observed roadkill rates persist in their respective study areas, including the maned 256 wolf and little spotted cat in South America, brown hyena in Africa, and leopard in Asia.

257 Global assessments such as the one presented here provide the opportunity to identify unstudied or 258 undetected species potentially vulnerable to road mortality impacts and generate a priority map that reveal 259 areas where mammalian biodiversity could be negatively affected by existing and future roads. Applying our 260 framework at a global scale, we identified more than 100 mammals as very vulnerable to roadkill and 261 revealed several areas where mammalian biodiversity may be lost due to the impact of existing road 262 infrastructure. While our results emphasize global findings, the proposed framework can inform conservation 263 prioritization and mitigation efforts both at regional and broad scales as it produces output at local scales 264 already and step 3 could be easily adapted to different spatial and taxonomic scales.

265 We found that variation among species in their vulnerability to roadkill was in part associated with 266 reproductive traits. Traits associated with faster, more frequent reproduction predicted population resilience 267 to additional mortality, with less impact for species that mature early and have multiple large litters per year 268 (see also Rytwinsky & Fahrig, 2012). Our model predicts these species will have increased risk of extinction 269 only if there is a very high proportion of individual loss (>0.90), a pattern also suggested by previous studies 270 focused on other sources of non-natural mortality (e.g. Garcia et al., 2008, Hurchings et al., 2012; Wang et 271 al., 2018). This is consistent with the hypothesis that faster life histories can protect species from increased 272 mortality risk, suggesting species with slow reproductive rates, and regions were these species are found, 273 should receive more attention when considering roadkill mitigation strategies (e.g. Ceia-Hasse et al., 2017; 274 Pinto et al., 2018). Combining species vulnerabilities with existing road maps, we identified areas where road

9

infrastructure can result in important loss of biodiversity. In particular, Sub-Saharan Africa and south-eastern Asia are areas of concern, where many species vulnerable to roadkill co-occur. These regions also have a high number of threatened mammalian species with declining population (Ceballos et al., 2017) and are already impacted by widespread deforestation (Kleinschroth et al., 2019), commercial poaching (Steinmetz et al., 2006) and mineral exploitation (Laurance et al., 2015). The added impact of mortality due to roads for many mammalian species reveals the need to include the effect of roadkill on cumulative road impact assessments to biodiversity conservation (e.g. Alamgir et al., 2019; Kleinschroth et al., 2019).

282 Our study presents a new framework for identifying, ranking and predicting species and areas vulnerable to 283 roadkill impacts. This can be a powerful tool to understand risk but there are data and modelling limitations 284 that need to be considered. First, the majority of road surveys only indicated the number of carcasses recorded 285 overall. These estimates can be biased by low carcass detectability and high removal rates (e.g. Santos et al., 286 2016). Several studies have proposed correction indexes for specific taxa based on the time interval between 287 surveys, the taxonomic group and the species body mass (e.g., Santos et al., 2011; Teixeira et al., 2013). 288 However, it is not clear whether these regional corrections can be extrapolated for mammals worldwide. 289 Second, the modelling approach applies the highest observed roadkill rate for a specific surveyed area (one 290 or several roads) to the entire paved road network in our defined study area, which for large body mass 291 mammals could cover over 7,854 km². Currently, there is no scientific consensus regarding how different types 292 of paved roads and associated traffic influence roadkill risk (see Seiler, 2003; Bissonette & Kassar, 2008, Grilo 293 et al, 2015; Sadleir & Linklater, 2016). Further research is needed to determine how varying traffic volume, 294 road widths and types of roadside vegetation influence roadkill rates for a wide range of species. Third, our 295 modelling approach does not consider that roadkill may impact some groups of individuals within a species 296 more than others. Given the same fraction of a population removed by roadkill, population persistence would 297 be different if those removed are primarily reproductive adults vs. older animals. For some species there is a 298 high incidence of mortality of juveniles and sub adults while for other species no distinct vulnerability was found 299 among individuals (Grilo et al., 2009). Fourth, for many mammalian species, non-natural mortality includes 300 sources other than road mortality such as legal hunting and poaching (Hill et al., 2019), but our model only 301 considers road mortality. To better understand overall extinction risk for particular populations and species we 302 need to understand all sources of mortality and explore whether non-natural mortality sources may be 303 compensated. Finally, our approach relied on trait data that was largely obtained from global datasets that do 304 not reflect regional and local variation. One example is population density, which was critical to estimate the 305 fraction of the population roadkilled at the regional level. While we cannot overcome this limitation, our

approach explicitly included this uncertainty by considering both the minimum and maximum densities
 observed, which allowed us to estimate a range of fractions of the population roadkilled and, therefore, a broad spectrum of extinction risks.

Detailed local data are rarely available, but we do acknowledge that population density variation can be important to understand dynamics and extinction risk (González-Suárez & Revilla, 2013; González-Suárez et al., 2015) with the exploration of scenarios for those species we identified as most vulnerable to roadkill impacts. While compiling improved datasets for all species will not be possible, our study offers some guidance for prioritization of data collection: fundamental research for reliable estimation of the size or density of animal populations and survival rates are critical to improve the accuracy of the population model outputs.

315 CONCLUSIONS

Results of this study have implications for mammalian conservation and road mitigation worldwide. Our analyses bring attention to Sub-Saharan Africa and south-eastern Asia as regions where roads can lead to loss of mammalian biodiversity and thus, areas where future road development and road mitigation need to be carefully considered. The positive news is that these areas (as well as Latin America) have been identified as threat refugia for vertebrates where conservation actions are likely to succeed (Allan et al., 2019).

322 The local scale output from our framework provides a first step to highlight populations which might be 323 currently under risk of extirpation and areas where local studies are needed to ultimately make site-specific 324 recommendations for road mitigation. This local scale analysis could be directly used in environmental 325 impact studies applied to target areas and species to provide estimates of risk of extinction and potential 326 scenarios given data uncertainty and alternative management plans (Alamgir et al., 2017; Ceballos et al., 327 2017). "Since IUCN Red List assessments describe ongoing and future threats to each species, our study 328 can directly inform these descriptions by providing information about which species are affected by roadkill 329 and about the severity of that threat. Combining our approach with information on planned infrastructures 330 could additionally identify and quantify the severity of future threats. In addition, the global scale output of our 331 proposed framework could be part of strategic environmental, social and economic assessments by national 332 infrastructure planning agencies, environmental governance agencies, global financing institutions, 333 international NGOs. Projecting risk of extinction across broader areas and taxonomic groups could support 334 decisions towards infrastructure that remains more sustainable throughout its life cycle. Our approach could 335 be directly integrated into existing assessment frameworks, adding a relatively unstudied dimension. For

11

336 example, the World Bank is the largest source of financing for development and has recently updated its 337 Environmental and Social framework (ESA) to minimize the negative impacts of the projects it finances 338 (Morley et al., 2020). Frameworks such as the ESA could incorporate our approach as an additional module 339 to identify vulnerable areas and species and guide strategies to minimize long-term impacts of proposed 340 road projects. In addition, we generate output for mammals that can be valuable. The global list of mammals 341 vulnerable to roadkill generated here may be used by road managers and conservation agencies in the 342 design of surveys, monitoring, and mitigation measures. The global map identifies regions that deserve 343 special attention and can be particularly relevant for large-scale projects, such as the Belt and Road 344 Initiative, providing information to facilitate addressing all impacts before projects begin (Ascensão et al., 345 2018).

Predictions and management implications of our framework can be refined once additional roadkill, population density data and demographic become available. The development of tools for global spatial prioritization and strategic road planning, such as the framework presented here for the impact of mortality, are critical to ensure wildlife protection and achieve sustainable transport infrastructure development and should complement other negative road effects on wildlife.

351 **REFERENCES** 352

- Alamjir, M., Campbell, M. J., Suhardiman, A., Supriatna, J., & Laurance, W. F. (2019). High-risk
 infrastructure projects pose imminent threats to forests in Indonesian Borneo. *Scientific Reports* 9,140.
- Allan, J. R., Watson, J. E. M., Di Marco, M., O'Bryan, C. J., Possingham, H. P., Atkinson, S. C., & Venter O.
 (2019). Hotspots of human impact on threatened terrestrial vertebrates. *PLoS Biol* 17(3): e3000158.
- Ascensão, F., Fahrig, L., Clevenger, A. P., Corlett, R. T., Jaeger, J., ... Pereira H.M. (2018). Environmental
 challenges for the Belt and Road Initiative. *Nature Sustainability*, 1, 206-209.
- Baxter-Gilbert, J. H., Riley, J. L., Neufeld, C. J. H., Litzgus, J. D., & Lesbarrères, D. (2015). Road mortality
 potentially responsible for billions of pollinating insect deaths annually. *Journal of Insect Conservation*,
 19, 1029-1035.
- Benitez-Lopez, A., Alkemade, R., & Verweij, P. A. (2010). The impacts of roads and other infrastructure on
 mammals and bird populations: A meta-analysis. *Biological Conservation*, 143, 1307-1316.
- Beverton, R. J. H., & Holt S. J. (1957). On the Dynamics of Exploited Fish Populations. Fishery
 Investigations Series 2: Sea Fisheries. MAFF, London, UK.
- Bissonette, J. A., & Kassar, C. A. (2008). Locations of deer–vehicle collisions are unrelated to traffic volume
 or posted speed limit. *Human–Wildlife Conflicts*, 2,122-130.
- Borda-de-Água, L., Grilo, C., & Pereira, H. M. (2014). Modeling the impact of road mortality on barn owl (Tyto
 alba) populations using age-structured models. *Ecological Modelling*, 276, 29-37.
- Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J., & Mace, G.M. (2004). Human Population
 Density and Extinction Risk in the World's Carnivores. *PLoS Biol*, 2(7), e197.

- Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction
 signaled by vertebrate population losses and declines. *PNAS*, 114 (30), E6089-E6096.
- Ceia-Hasse, A., Borda-de-Água, L., Grilo, C., & Pereira, H. M. (2017). Global exposure of carnivores to
 roads. *Global Ecology and Biogeography*, 26, 592–600.
- CIA (2020) The World Factbook. Available at: https://www.cia.gov/library/publications/the-world factbook/rankorder/2085rank.html. Last accessed 8 December 2020.
- Collinson, W., Davies-Mostert, H., Roxburgh, L., & van der Ree, R. (2019). Status of Road Ecology
 Research in Africa: Do We Understand the Impacts of Roads, and How to Successfully Mitigate Them? *Frontiers Ecology and Evolution*, 7, 479.
- Crooks, K. R., Burdett, C. L., Theobald, D. M., King, S. R. B., Di Marco, M., ... Boitani L. (2017).
 Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. *PNAS*, 114, 76357640.
- Diniz, M. F., & Brito, D. (2013). Threats to and viability of the giant anteater, *Myrmecophaga tridactyla* (Pilosa: Myrmecophagidae), in a protected Cerrado remnant encroached by urban expansion in central
 Brazil. *Zoologia*, 30, 151–156.
- Biology of Australasian Frogs and Reptiles. Grigg G, Shine R, Ehmann H. Surrey Beatty: Sydney, pp.
 435–447.
- Erritzoe, J., Mazgajski, T.D., & Rejt, L. (2012). Bird Casualties on European Roads A Review. Acta
 Ornithologica, 38, 77-93.
- FFWCC (2012). Florida Fish and Wildlife Conservation Commission. Florida black bear management plan.
 Available at: https://myfwc.com/media/13666/bear-management-plan.pdf. Last accessed 14 February
 2019.
- Gandiwa, E., Mashapa, C., Muboko, N., Chemurab, A., Kuvaoga, P, & Mabikad, C.T. (2020). Wildlife-vehicle
 collisions in Hurungwe Safari Area, northern Zimbabwe. *Scientific Africa*, 9, e00518
- García, V. B., Lucifora, L. O., & Myers, R. A. (2008). The importance of habitat and life history to extinction
 risk in sharks, skates, rays and chimaeras. *Proceedings of the Royal Society B: Biological Sciences*,
 275, 83-89.
- Gibbs, J. P., & Shriver, W. G. (2005). Can road mortality limit populations of pool-breeding amphibians?
 Wetlands Ecology and Management 13, 281-289.
- González-Suaréz, M., & Revilla, E. (2013). Variability in life-history and ecological traits is a buffer against
 extinction in mammals. *Ecology Letters*, 16, 242-251.
- 404 González-Suárez, M., Bacher, S., & Jeschke, J. M. (2015). Intraspecific trait variation is correlated with 405 establishment success of alien mammals. *American Naturalist,* 185, 737-746.
- González-Suaréz, M., Zanchetta Ferreira, F. & Grilo, C. (2018). Spatial and species-level predictions of road
 mortality risk using trait data. *Global Ecology and Biogeography*, 27, 1093-1105.
- Grilo, C., Koroleva, E., Andrášik, R., Bíl, M. & González-Suárez, M. (2020). Roadkill risk and vulnerability in
 European birds and mammals. *Frontiers in Ecology and Environment*, 18, 323-328.
- Grilo, C., Bissonette, J. A., & Santos-Reis, M. (2009). Spatial-Temporal patterns in Mediterranean carnivore
 road casualties: Consequences for Mitigation. *Biological Conservation*, 142, 301-313.
- 412 Grilo, C., Zanchetta Ferreira, F., & Revilla, E. (2015). No evidence of a threshold in traffic volume affecting
- 413 road-kill mortality at a large spatio-temporal scale. *Environmental Impact Assessment Review*, 55,54-58.

- Guénard, G., von der Ohe, P. C., Zwart, D., Legendre, P., & Lek, S. (2011). Using phylogenetic information
 to predict species tolerances to toxic chemicals. *Ecological Applications*, 21, 3178-3190
- Harris, S., Cresswell, W., Reason, P., & Cresswell, P. (1992). An integrated approach to monitoring badger
 (*Meles meles*) population changes in Britain. In: Wildlife 2001: Populations, McCullough, D.R., Barrett,
 R.H. Elsevier Applied Science, London.
- Harris, S., Morris, P., Wray, S. & Yalden, D. (1995). A Review of British Mammals: Population Estimates and
 Conservation Status of British Mammals Other Than Cetaceans. Joint Nature Conservation Committee,
 Peterborough.
- Hill, J., DeVault, T. L., & Belant, J. L. (2019). Cause-specific mortality of the world's terrestrial vertebrates. *Global Ecology and Biogeography*, 28, 680-689.
- Huijser, M. P., & Bergers, P. J. M. (2000). The effect of roads and traffic on hedgehog (*Erinaceus europaeus*) populations. *Biological Conservation*, 95,111-116.
- Hurchings, J. A., Myers, R. A., Garcia, V. B., Lucifora, L. O., & Kuparinen, A. (2012). Life-history correlates
 of extinction risk and recovery potential. *Ecological Applications*, 22, 1061-1067.
- 428 IUCN (2016). The IUCN Red List of Threatened Species Available at: http://www.iucnredlist.org. Last
 429 accessed at 22 January 2016.
- 430 IUCN (2019). The IUCN Red List of Threatened Species. Version 6.2. Available at:
- 431 https://www.iucnredlist.org. Last accessed at 20 March 2019.
- Jackson, N. D., & Fahrig, L. (2011). Relative effects of road mortality and decrease connectivity on
 population genetic diversity. *Biological Conservation*,144, 3143–3148.
- Jacobson, S. L., Bliss-Ketchum, L. L., de Rivera, C. E., & Smith, W. P. (2016). A behavior-based framework
 for assessing barrier effects to wildlife from vehicle traffic volume. *Ecosphere*, 7:e01345.
- Jaeger, J. A. G., Bowman, J., Brennan, J., Fahrig L., Bert, D., Bouchard J., & Toschanowitze K. T. (2005).
 Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. *Ecological Modelling*, 185, 329-348.
- 439 Jetz, W., Carbone, C., Fulford J, & Brown, J. H. (2004). The scaling of animal space use. *Science*, 306, 266268.
- Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O'Dell, J., Orme, C. D. L. ... Purvis, A. (2009). PanTHERIA:
 A species-level database of life history, ecology, and geography of extant and recently extinct
 mammals. *Ecology*, 90, 2648-2648.
- Kleinschroth, F., Laporte, N., Laurance, W.F., Goetz, S., & Ghazoul, J. (2019). Road expansion and
 persistence in forests of the Congo Basin. *Nature Sustainability*, 2, 628-634.
- Laurance, W. F. (2018). If you can't build well, then build nothing at all. *Nature*, 563, 295-295.
- Laurance, W. F., Clements, G. R., Sloan, S., O'Connell, C. S., Mueller, N. D., Goosem, M., ... Arrea I. B.
 (2014). A global strategy for road building. *Nature*, 513, 229-239.
- 449 Laurance, W. F., Peletier-Jellema, A., Geenen B., Koster H., Verweij P., Van Dijck P., ... Kuijk M. V. (2015).
- 450 Reducing the global environmental impacts of rapid infrastructure expansion. *Current Biology*, 25, R259-451 R262
- Loss, S. R., Will, T., & Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. *Annual Review* of Ecology, Evolution and Systematics, 46, 99-120.
- 454 Loss, S. R., Will, T., & Marra, P. P. (2014). Estimation of bird-vehicle collision mortality on U.S. roads. *Journal*
- 455 of Wildlife Management, 78, 763:771.

- Kao, J., Songsasen N., Ferraz, K., Traylor-Holzer, K. (Eds.) (2020). Range-wide Population and Habitat
 Viability Assessment for the Dhole, *Cuon alpinus*. IUCN SSC Conservation Planning Specialist Group,
 Apple Valley, MN, USA.
- Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A.M. (2018). Global patterns of current
 and future road infrastructure. *Environmental Research Letters*, 13: 064006.
- 461 Morelli F., Benedetti Y., & Delgado J. D. (2020). A forecasting map of avian roadkill-risk in Europe: A tool to
 462 identify potential hotspots. *Biological Conservation*, 249, 108729
- Myers, P., Espinosa, R., Parr, C. S., Jones, T., Hammond, G. S., & Dewey, T. A. (2016). The Animal Diversity
 Web Available at: Accessed at http://animaldiversity.org. Last accessed 13 June 2016.
- Myhrvold, N. P., Baldridge, E., Chan, B., Sivam, D., Freeman D. L., & Ernest, S. K. M. (2015). An amniote lifehistory database to perform comparative analyses with birds, mammals, and reptiles. *Ecology*, 96, 3109.
- 467 Owens, I. P. F., & Bennet P. M. (2000). Ecological basis of extinction risk in birds: Habitat loss versus human
 468 persecution and introduced predators. *PNAS*, 97, 12144-12148.
- Pearson, R. G., Stanton, J. C., Shoemaker, K. T., Aiello-Lammens, M., Ersts, P. J., Horning, N.,... Akçakaya
 H. R. (2014). Life history and spatial traits predict extinction risk due to climate change. *Nature Climate Change*, 4, 217-221.
- Pinto, F. A. S., Bager, A., Clevenger, A. P., & Grilo, C. (2018). Giant anteater (*Myrmecophaga tridactyla*)
 conservation in Brazil: Analysing the relative effects of fragmentation and mortality due to roads. *Biological Conservation*, 228, 148-157.
- Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining
 species. *Proceedings of the Royal Society B*, 267, 1947–1952.
- Riitters, K. H., & Wickham, J. D. (2003). How far to the nearest road? *Frontiers in Ecology and Environment*,
 1, 125-129.
- Row, J. R., Blouin-Demers, G., & Weatherhead, P. J. (2007). Demographic effects of road mortality in black
 ratsnakes (*Elaphe obsolete*). *Biological Conservation*, 137,117-124.
- 481 Rytwinsky, T., & Fahrig, L. (2012). Do species life history traits explain population responses to roads? A
 482 meta-analysis. *Biological Conservation*, 147, 87-98.
- Sadleir, R. F. M. S., & Linklater W. L. (2016). Annual and seasonal patterns in wildlife road-kill and their
 relationship with traffic density. *New Zealand Journal of Zoology*, 43, 275-291.
- Santos, S. M., Carvalho, F., & Mira, A. (2011). How long do the dead survive on the road? Carcass persistence
 probability and implications for road-kill monitoring surveys. *PLoS One*, 6(9), e25383.
- 487 Santos, R. A., Santos, S. M., Santos-Reis, M., Picanço de Figueiredo, A., Bager, A., Aguiar, L.M., ...
- 488 Ascensão, F. (2016). Persistence and Detectability: Reducing the Uncertainty Surrounding Wildlife489 Vehicle Collision Surveys. *PloS One*, 11(11), e0165608.
- Seiler, A. (2003). The toll of the automobile: wildlife and roads in Sweden. PhD thesis. Swedish University ofAgricultural Sciences.
- 492 Seo, C., Thorne, J. H., Choi, T., Kwon, H., & Park, C-H. (2015). Disentangling roadkill: the influence of
- 493 landscape and season on cumulative vertebrate mortality in South Korea. Landscape and Ecological
 494 Engineering, 11(1), 87-99.
- Silva, I., Crane, M., & Savini, T. (2020). High roadkill rates in the Dong Phayayen-Khao Yai World Heritage
 Site: conservation implications of a rising threat to wildlife. *Animal Conservation*, 23, 466-478.

- Simón, M. (Ed) (2012). Ten years conserving the Iberian lynx. Seville: Consejería de Agricultura, Pesca y
 Medio Ambiente. Junta de Andalucía: Sevilla.
- Sparkman, A. M., Waits, L. P., & Murray, D. L. (2011). Social and Demographic Effects of Anthropogenic
 Mortality: A Test of the Compensatory Mortality Hypothesis in the Red Wolf. *PLoS One* 6(6):e20868.
- 501 Stearns, S. C. (1983). The influence of size and phylogeny on patterns of covariation among life-history traits 502 in the mammals. *Oikos*, 41, 173-187.
- Steinmetz, R., Chutipong, W., & Seuaturien, N. (2006). Collaborating to conserve large mammals in
 Southeast Asia. *Conservation Biol*ogy, 20, 1391-401.
- Taylor, S. K., Buergelt, C. D., Roelke-Parker, M. E., Homer, B. L., & Rotstein, D.S. (2002). Causes of
 mortality of free-ranging Florida panthers. *Journal of Wildlife Diseases*, 38,107-14 (2002).
- 507 Teixeira F. Z., Coelho, A. V. P., Esperandio, I. B., & Kindel, A. (2013). Vertebrate road mortality estimates:
 508 Effects of sampling methods and carcass removal. *Biological Conservation*, 157, 317-323.
- 509 Torres, A, Jaeger, J. A. G., & Alonso, J. C. (2016). Assessing large-scale wildlife responses to human 510 infrastructure development. *PNAS*, 113, 8472-8477.
- van der Ree, R., Smith, D. J., & Grilo, C. (2015). Handbook of Road Ecology. Chichester, UK: John Wiley &
 Sons.
- Wang, Y., Si, X., Bennett, P.M., Chen C, Zeng, D., Zhao, Y., Wu, Y., & Ding, P. (2018). Ecological correlates
 of extinction risk in Chinese birds. *Ecography*, 41,782-94.
- 515 Wembridge, D. E., Newman, M. R., Bright, P. W. & Morris, P. A. (2016). An estimate of the annual number of 516 hedgehog (*Erinaceus europaeus*) road casualties in Great Britain. *Mammal Communications*, 2, 8-14.
- 517 Wildscreen Arkive (2016). Available at: http://archive.org. Last accessed 23 March 2016.

518 519

FIGURES

Figure 1 – Our proposed framework to quantify roadkill impacts on mammals worldwide. The framework includes three steps: step 1 - roadkill rates and estimated fraction of the population roadkilled per year; step 2 – risk of extinction from roadkill for the selected species, and step 3 -global assessment of mammal species vulnerability to roadkill. The two boxes framed in red are the main outputs.

Figure 2 – Location of the species most vulnerable to roadkill ($F_{RiskExt10} < 0.2$). The scientific names framed in blue are those for which observed roadkill are estimated to lead to higher risk of extinction in 50 years if the observed roadkill persist in the region. Coloured dots are the IUCN status (Endangered – orange; Vulnerable – yellow, Near Threatened – green; Asterisks indicate species with intermediate vulnerability to roadkill ($0.2 < F_{RiskExt10} < 0.5$) (SM1 and SM6). Mammal species silhouettes from PhyloPic (http://phylopic.org).

Figure 3 – Global distribution of the overlap between vulnerable species (mammal species for which roadkill of <20% of their population can lead to an additional 0.1 probability of extinction) and current paved road density (as log₁₀ kilometres of road per 100-km x100-km grid cell). Green areas indicate "hot spots" of risk and exposure, blue areas represent "opportunities" for conservation with species at risk but current low road densities, brown areas are "humanized" with high road densities and few species at risk, light purple areas have both low road densities and no vulnerable species. White colour indicate no threatened species and no roads.

Data accessibility

The full database of roadkill and biological traits, age structured model R scripts and outputs are available as supporting information.

A short title for each numbered item in the supplementary material:

- SM1 List of species with roadkill and references
- SM2 Biological traits for the selected species and references
- SM3 Spatial implicit age-structured stochastic models
- SM4 Identifying species potentially threatened by roadkill
- **SM5** Risk of extinction when the fraction of the population is removed due to observed roadkill for four species' populations
- SM6 Results from the spatially implicit age-structured stochastic models

SM7 - Qualitative validation of results from the spatially-implicit age-structured stochastic models for species predicted to be most ($F_{RiskExt10} < 0.20$) and least vulnerable ($F_{RiskExt10} > 0.90$)

SM8 - Relative importance of each variable from GLS and PGLS model sets and averaged model coefficients with confidence intervals for each variable

SM9 - Vulnerable species to roadkill

Vulnerable species to roadkill Data, results of imputation and validation

Table S9.1 - 124 species in ascending order from $F_{\rm RiskExt10}$ <0.20

Species	F _{RiskExt10}
Bos mutus	0.070
Redunca redunca	0.072
Loxodonta africana	0.075
Loxodonta cyclotis	0.075
Panthera tigris	0.080
Bos grunniens	0.086
Elephas maximus	0.086
Helarctos malayanus	0.087
Syncerus caffer	0.088
Dicerorhinus sumatrensis	0.089
Rhinoceros unicornis	0.105
Pan troglodytes	0.106
Pan paniscus	0.110
Giraffa camelopardalis	0.117
Homo sapiens	0.118
Ceratotherium simum	0.119
Hexaprotodon liberiensis	0.123
Diceros bicornis	0.125
Gorilla beringei	0.128
Pongo abelii	0.128
Pongo pygmaeus	0.128
Ursus maritimus	0.129
Hippopotamus amphibius	0.130
Bison bonasus	0.132
Gorilla gorilla	0.135
Ailuropoda melanoleuca	0.139
Bos sauveli	0.141
Rhinoceros sondaicus	0.141
Bunopithecus hoolock	0.142
Ovibos moschatus	0.143
Equus grevyi	0.146
Panthera onca	0.146
Camelus bactrianus	0.147
Tragelaphus eurycerus	0.147
Hylobates klossii	0.147
Nomascus gabriellae	0.147

Nomascus siki	0.147
Melursus ursinus	0.150
Indri indri	0.151
Capricornis crispus	0.151
Capricornis swinhoei	0.151
Bubalus mindorensis	0.154
Brachyteles arachnoides	0.155
Brachyteles hypoxanthus	0.155
Hylobates agilis	0.157
Hylobates albibarbis	0.157
Hylobates moloch	0.157
Hylobates lar	0.159
Hylobates muelleri	0.159
Ateles geoffroyi	0.161
Redunca arundinum	0.162
Symphalangus syndactylus	0.162
Bos javanicus	0.163
Nomascus leucogenys	0.163
Lagothrix cana	0.165
Lagothrix lagotricha	0.165
Lagothrix lugens	0.165
Lagothrix poeppigii	0.165
Taurotragus derbianus	0.166
Mazama gouazoubira	0.166
Addax nasomaculatus	0.166
Tremarctos ornatus	0.166
Camelus dromedarius	0.167
Nomascus hainanus	0.167
Capra caucasica	0.167
Naemorhedus baileyi	0.169
Naemorhedus caudatus	0.169
Naemorhedus goral	0.169
Naemorhedus griseus	0.169
Hylobates pileatus	0.169
Capra nubiana	0.169
Beatragus hunteri	0.170
Bubalus quarlesi	0.170
Hyaena brunnea	0.170
Macaca silenus	0.170
Panthera leo	0.170
Kobus leche	0.171
Capra walie	0.171
Bos taurus	0.171
Bubalus depressicornis	0.171

Damaliscus korrigum	0.172
Damaliscus lunatus	0.172
Capricornis milneedwardsii	0.173
Capricornis rubidus	0.173
Capricornis sumatraensis	0.173
Capricornis thar	0.173
Bos frontalis	0.174
Nomascus concolor	0.174
Capra ibex	0.176
Equus hemionus	0.177
Tapirus indicus	0.178
Capra sibirica	0.178
Okapia johnstoni	0.178
Equus kiang	0.180
Tragelaphus buxtoni	0.181
Equus zebra	0.181
Connochaetes gnou	0.181
Ursus arctos	0.183
Ateles belzebuth	0.185
Ateles hybridus	0.185
Ateles marginatus	0.185
Hippotragus niger	0.186
Budorcas taxicolor	0.188
Rucervus duvaucelii	0.189
Hemitragus jayakari	0.189
Cebus olivaceus	0.190
Lynx pardinus	0.190
Procapra picticaudata	0.190
Kobus megaceros	0.190
Lophocebus albigena	0.191
Lophocebus aterrimus	0.191
Lophocebus opdenboschi	0.191
Hemitragus jemlahicus	0.192
Ovis nivicola	0.194
Equus burchellii	0.195
Alcelaphus buselaphus	0.195
Alcelaphus caama	0.195
Taurotragus oryx	0.195
Ateles fusciceps	0.195
Ursus americanus	0.196
Kobus ellipsiprymnus	0.196
Rangifer tarandus	0.197
Ovis canadensis	0.199
Cercocebus galeritus	0.199

Imputation LOOCVdata.csv

Complete list of species vulnerability (Imputation LOOCVresults.csv)

At 10.6084/m9.figshare.12993470

Data and results of the imputation of F_{RiskExt10} (mean, lower confidence interval and upper confidence interval for age of maturity, litter size and litter per year and F_{RiskExt10} for all 4677 species).

Validation LOOCVresults.csv

At 10.6084/m9.figshare.12993470 (The DOI becomes active upon publication).

Validation of phylogenetic imputation using Leave-One-Out Cross-Validation (LOO-CV)

Validation of phylogenetic imputation using Cross-Validation

Leave-one-out cross-validation (LOO-CV) was performed in Rphylopars using the methods described by Bruggeman (2009). Briefly, the Rphylopars trait evolutionary model was used to impute $F_{RiskExt10}$ risk for all species on the phylogeny in which this $F_{RiskExt10}$ was not "observed" (i.e. $F_{RiskExt10}$ estimates were unavailable). For LOO-CV, each observed $F_{RiskExt10}$ value was iteratively dropped from the model individually, and the original model parameters were used to impute each suppressed observation. Results from LOO-CV revealed a strong correlation (R²=0.69) between observed $F_{RiskExt10}$ risk and imputed, suggesting phylogeny-wide extrapolation of $F_{RiskExt10}$ risk provides reliable results (Figure S8.1). Average bias (the difference between estimated and observed values) was -0.01%, and the root mean squared error (RMSE) was 15.5%.

To obtain species-level (and clade-level) estimates of expected error and bias, observed model errors and biases were phylogenetically reconstructed in Rphylopars and themselves subjected to LOO-CV. Results suggest species- and clade-level estimates of bias and error are also quite reliable (R^2 =0.73 and R^2 =0.86, respectively) (Figure S8.2 and S8.3). The final estimates of bias and error are presented in columns $F_{RiskExt10}$ bias (adjusted) and $F_{RiskExt10}$ bias (adjusted) (SM10LOOCVresults.csv their slopes and intercepts are corrected based on the relationship between observed and predicted bias and error) from LOO-CV results (raw results and intermediate calculations can be found in SM10LOOCVdata.csv). The species contained within each clade are listed in columns species_in_clade (and species_continued_1 and species_continued_2 when Excel cell length was exceeded).

LOO-CV may potentially underestimate error in the presence of structured data, so we performed 2-fold and 5-fold cross-validation blocked by phylogenetic distance to further validate our results (Roberts et al. 2017). Results were consistent with LOO-CV, with 2-fold and 5-fold cross-validations resulting in mean biases of 1.9% and 0.8% respectively (vs -0.01% for LOO-CV), and RMSE of 15.5% and 14.7% respectively (vs 15.5% for LOO-CV).

Figure S9.1 – Correlation between predicted and observed $\mathbf{F}_{RiskExt10}$.

Figure S9.2 - Correlation between estimated and observed bias.

Figure S9.3 - Correlation between estimated and observed error.

Files used to prepare Figure 3

At 10.6084/m9.figshare.12993470

SHAPEFILES

LandoutlineCEA2 - Outline of the world map

GridCEALand - shapefile with one polygon for each of the terrestrial grids used in the analyses. The unique identified for each cell grid (to match with other files) is PageNumber

GridMammalsCEA - shapefile with data for each of the terrestrial mammals overlapping each terrestrial grid described in GridCEALand. This file was used to calculate grid statistics presented below. CSV FILES

RoadlengthGrid.csv – sum of all paved roads in each cell grid. The unique identified for each cell grid (to match with other files) is PageNumber.

GridStats.csv - summary statistics for each grid cell described in GridCEALand shapefile. Metadata – description of all steps to prepare Figure 3.

REFERENCES

Bruggeman, J., Heringa J. & Brandt B.W. (2009). PhyloPars: estimation of missing parameter values using phylogeny. *Nucleic Acids Research*, 37, W179-W184.

Roberts, D. R., V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J. J. Lahoz-Monfort, B. Schroder, W. Thuiller, D. I. Warton, B. A. Wintle, F. Hartig, and C. F. Dormann. 2017. Crossvalidation strategies for data with temporal, spatial, hierarchical or phylogenetic structure. *Ecography* doi:10.1111/ecog-02881.

Relative importance of each variable from GLS and PGLS model sets and averaged model coefficients with confidence intervals for each variable

Figure S8.1 – Relative importance of each variable (age of maturity, # months - number of months of recruitment, litter size, number of litters per year, survival rates for cubs, juveniles and adults and longevity) calculated as the sum of Akaike weights for GLS and PGLS model sets using the Maximum and Minimum $F_{RiskExt10}$ (GLS MAX FRiskExt10, GLS MIN FRiskExt10, PGLS MAXFRiskExt10 and PGLS MINFRiskExt10).

PGLS

Figure S8.2 - Averaged model coefficients with confidence intervals of each variable for GLS and PGLS model sets with Minimum and Maximum $F_{RiskExt10}$ (example: MaturityMin, MaturityMax, respectively).

GLS

APPENDIX S7

Table S7.1 - Qualitative validation of results from the spatially-implicit age-structured stochastic models for species predicted to be most ($F_{RiskExt10} < 0.20$) and least vulnerable ($F_{RiskExt10} > 0.90$). We searched the literature to identify studies that showed increased risk of extinction from anthropogenic mortality (roadkill or another source). Data includes: species (scientific name), $F_{RiskExt10}$, reference for those species for which we identified evidence of vulnerability towards roadkill or other human-induced mortality.

Species	F _{RiskExt10}	Reference
Most vulnerable		
Panthera pardus	0.03-0.18	Ceia-Hasse et al. 2017
Panthera tigris altaica	0.06-0.12	Tian et al. 2011
Bos mutus Przewalski	0.10-0.11	
Lynx pardinus	0.11-0.46	Ceia-Hasse et al. 2017; Ferreras et al 2001
Melursus ursinus	0.14-0.16	Ceia-Hasse et al. 2017
Panthera leo	0.15-0.25	Snyman et al. 2015
Hyaena brunnea	0.15-0.26	
Macaca silenus	0.17	
Procapra picticaudata	0.19-0.20	
Least vulnerable		
Apodemus sylvaticus	>0.90	
Atelerix albiventris	>0.90	
Cavia aperea	>0.90	
Didelphis virginiana	>0.90	
Microtus mexicanus	>0.90	
Myodes rufocanus	>0.90	
Neofiber alleni	>0.90	
Ondatra zibethicus	>0.90	
Oryctolagus cuniculus	>0.90	
Otomys irroratus	>0.90	
Perameles gunnii	>0.90	Todd et al. 2001*
Perameles nasuta	>0.90	
Sylvilagus bachmani	>0.90	
Vulpes vulpes	>0.90	Ceia-Hasse et al. 2017
Xerus inauris	>0.90	

*not actual mortality but removal for translocations

REFERENCES

Ceia-Hasse, A., Borda-de-Água, L., Grilo, C., & Pereira, H.M. (2017). Global exposure of carnivores to roads. *Global Ecology and Biogeography*, 26, 592–600.

Ferreras, P., Gaona, P., Palomares, F., Delibes, M. (2001). Restore habitat or reduce mortality? Implications from a population viability analysis of the Iberian lynx. Animal Conservation, 4(3), 265-274.

- Snyman, Andrei, Craig R. Jackson, and Paul J. Funston. "The effect of alternative forms of hunting on the social organization of two small populations of lions Panthera leo in southern Africa." Oryx 49.4 (2015): 604-610.
- Tian, Y., Wu, J., Smith, A.T., Wang, T., Kou ,X, Ge, J. (2011). Population viability of the Siberian Tiger in a changing landscape: Going, going and gone? Ecological Modelling, 222, 3166-3180.
- Todd, Charles R., Simone Jenkins, and Andrew R. Bearlin. "Lessons about extinction and translocation: models for eastern barred bandicoots (*Perameles gunnii*) at Woodlands Historic Park, Victoria, Australia. Biological Conservation 106: 211-223.

Table S6.1 Results from the spatially implicit age-structured stochastic models - species, IUCN (IUCN status) F_{roadkill} (fraction of the population roadkilled), reduction (population reduction - %), probability of extinction (%), Time to extinction (years), F_{RiskExt10} (fraction of the population roadkilled that leads to an increase in 10% of risk of extinction - minimum and maximum found for the 12 carrying capacities).

Species	IUCN	F _{roadkill}	Reduction (%)	Probability of extinction (%)	Time to extinction (years)	F _{RiskExt10}
North America						
Microtus mexicanus	VU	0.00002	<1	0	-	>0.90
Bison bison	NT	0.004	<20	0	-	0.25-0.26
Lepus callotis	NT	0.007	4	0	-	0.60-0.63
Procyon lotor	LC	0.01-0.05	4-19	0	-	0.69-0.70
Ondatra zibethicus	LC	0.26	25	0	-	>0.90
Neofiber alleni	LC	0.006	<2	0	-	>0.90
Sylvilagus bachmani	LC	0.09	12	0	-	>0.90
Odocoileus virginianus	LC	0.14	77	0	-	0.29-0.31
Didelphis virginiana	LC	0.234	24	0	-	>0.90
South America						
Leopardus tigrinus	VU	0.20-0.37	66-98	0-75	0-36	0.32-0.33
Myrmecophaga tridactyla	VU	0.023-0.24	22-94	0	-	0.27-0.28
Tapirus terrestris	VU	0.003-0.015	<23	0	-	0.26-0.28
Chrysocyon brachyurus	NT	0.364	94	34	30	0.28-0.29
Leopardus wiedii	NT	0.04-0.19	21-70	0	-	0.36-0.39
Speothos venaticus	NT	0.0115	4	0	-	0.67-0.71
Leopardus braccatus	NT	0.01-0.08	3-25	0	-	0.38-0.39
Cavia aperea	LC	<0.001	<1	0	-	>0.90
Didelphis albiventris	LC	0.25	82	0	-	0.40-0.42
Sciurus granatensis	LC	0.01	3	0	-	0.81-0.85
Hydrochoerus hydrochaeris	LC	0.001-0.005	<1	0	-	0.47-0.48
Cerdocyon thous	LC	0.09	44	0	-	0.4-0.42
Conepatus chinga	LC	0.04	14	0	-	0.59-0.62
Europe						
Mustela lutreola	CR	0.007	<4	0	-	0.43-0.49
Lynx pardinus	EN	0.12	49	0	-	0.11-0.46
Oryctolagus cuniculus	NT	0.0008	5	0	-	>0.90
Lutra lutra	NT	0.09	32	0	-	0.39-0.40
Meles meles	LC	0.09	52	0	-	0.44-0.45
Erinaceus concolor	LC	0.18-0.34	62-87	0	-	0.52-0.53
Apodemus sylvaticus	LC	0.27	27	0	-	>0.90
Vulpes vulpes	LC	0.09	19	0	-	>0.90
Capreolus capreolus	LC	0.16	72	0	-	0.41-0.43
Africa						
Lycaon pictus	EN	0.01	7	0	-	0.33-0.34
Panthera pardus	VU	0.001-0.002	<10	0	-	0.03-0.18
Panthera leo	VU	0.004-0.009	<15	0	-	0.15-0.25
Kobus vardonii	NT	0.00007	<8	0	-	0.26-0.29
Hyaena brunnea	NT	0.06-0.43	40-100	3-100	0-21	0.15-0.26
Lepus saxatilis	LC	0.01	4	0	-	0.69-0.71
Lepus victoriae	LC	0.0009	<0.5	0	-	0.89-0.90

Species	IUCN	F _{roadkill}	Reduction (%)	Probability of extinction (%)	Time to extinction (years)	F _{RiskExt10}
Atelerix albiventris	LC	0.03	10	0	-	>0.90
Ictonyx striatus	LC	0.07	38	0	-	0.48
Xerus inauris	LC	0.0001	<3	0	-	>0.90
Otomys irroratus	LC	0.28	29	0	-	>0.90
Asia						
Panthera tigris altaica	EN	0.004	<15	0	-	0.06-0.12
Nilgiritragus hylocrius	EN	0.0003	0.4	0	-	0.26-0.27
Cuon alpinus	EN	0.0003	<14	0	-	0.20-0.21
Manis crassicaudata	EN	0.001	<5	0	-	0.27-0.28
Macaca silenus	EN	0.001	<8	0	-	0.17
Pantholops hodgsonii	EN	0.0007	<7.6	0	-	0.28-0.29
Equus przewalskii	EN	0.05	27	0	-	0.21-0.23
Trachypithecus johnii	VU	0.00004	<13	0	-	0.33-0.34
Prionailurus rubiginosus	VU	0.0002	<2	0	-	0.65-0.66
Melursus ursinus	VU	0.001	<11	0		0.14-0.16
Hydropotes inermis	VU	0.07	<31	0	-	0.54-0.56
Bos mutus Przewalski	VU	0.0007	<14	0	-	0.10-0.11
Rusa unicolor	VU	0.0014	<8	0	-	0.33-0.34
Panthera pardus	VU	0.194	99	83	33	0.03-0.18
Hyaena hyaena	NT	0.008	6.7	0	-	0.36
Procapra picticaudata	NT	0.006	<0.001	0	-	0.19-0.2
Myodes rufocanus	LC	0.001	<0.9	0	-	>0.90
Prionailurus bengalensis	LC	0.07	33	0	-	0.51-0.52
Nyctereutes procyonoides	LC	0.006	<2	0	-	0.54-0.57
Oceania						
Sarcophilus harrisii	EN	0.0022	<7	0	-	0.29-0.34
Perameles gunnii	NT	0.0001	<2.4	0	-	>0.90
Bettongia gaimardi	NT	0.035	4	0	-	0.76-0.77
Dasyurus viverrinus	NT	0.0003	<3	0	-	0.73-0.75
Dasyurus maculatus	NT	0.0001	9.7	0	-	0.36-0.40
Macropus eugenii	LC	0.23	77	0	-	0.43-0.46
Macropus giganteus	LC	0.014	19	0	-	0.25-0.26
Macropus rufus	LC	0.07	13	0	-	0.59-0.60
Perameles nasuta	LC	0.005	<1	0	-	>0.90
Pseudocheirus peregrinus	LC	0.04	17	0	-	0.59-0.60

Figure S6.1 Location of the populations analysed with spatially implicit age-structured stochastic models.

Risk of extinction when the fraction of the population is removed due to observed roadkill for four species' populations (maned wolf, little spotted cat, brown hyena and leopard).

- **Maned wolf** with an estimated roadkill rate of 0.08 ind/km/year (Carvalho 2014) and a population density of 0.038 ind/km/year has a 34% of risk of extinction.
- Little spotted cat with a road roadkill rate of 0.09 ind./km/year (Marocco et al. 2012) and a population density that can vary between 0.07 and 0.13 ind./km² has a probability of extinction that ranges from 0% to 75%.
- The risk of extinction of **brown hyena** with a roadkill rate of 0.03 ind./km/year (Collinson et al. 2015) and an observed population density that varies between 0.005 and 0.04 ind./km² (Boast et al 2011; Welch et al 2015) is between 3 and 100%.
- **Leopard** with a roadkill rate of 0.052 ind/km/year (Joshi 2012) and a population density of 0.042 (Borah et al. 2014) has an 83% risk of extinction.

Figure S5.1 – Risk of extinction when a fraction f of the population is removed for four species populations (maned wolf, little spotted cat, brown hyena and leopard) under threat with the observed roadkill rates. Dashed lines in grey are the observed fractions of the population. The different colours correspond to simulations of different median sizes of the population before application of road mortality.

REFERENCES

- Boast, L., Molefe, U., Kokole, M. & Klein, R. (2011). Results of a motion camera survey in Jwana game park, Jwaneng, Botswana. Report to the Debswana Mining Company and the Botswana Department of Wildlife and National Parks.
- Borah, J., Sharma, T., Das, D. & Rabha, N. (2014). Abundance and density estimates for common leopard *Panthera pardus* and clouded leopard *Neofelis nebulosa* in Manas National Park, Assam, India. *Oryx*, 48,149-155.

- Carvalho, C.F. (2014). Atropelamento de vertebrados, hotspots de atropelamentos e parâmetros associados, BR-050, trecho Uberlândia-Uberaba. Master thesis, Universidade Federal de Uberlândia, Brasil.
- Collinson, W.J., Parker, D.M., Bernard, R.T.F., Reilly, B.K., Davies-Mostert, H.T. (2015). An inventory of vertebrate roadkill in the greater Mapungubwe Transfrontier conservation area, South Africa. *African Journal of Wildlife Research*, 45, 301-315.
- Joshi, R, & Dixit, A. (2012). Wildlife mortality on national highway 72 and 74 across the Rajaji National Park and the Haridwar conservation area, North India. *International Journal of Conservation Science*, 3(2),127-139.
- Marocco, J.C., Rosset, J.M. & Maestri, R. (2012). Atropelamentos de carnívoros (Carnivora) em um trecho da BR282, oeste do estado de Santa Catarina Etapa I. 6º Congresso Brasileiro de Mastozoologia, Corumbá/MS.
- Welch, R.J., Tambling, C.J., Bissett, C., Gaylard, A., Müller, K., Slater, K., Strauss, W.M. & Parker, D.M. (2015). Brown hyena habitat selection varies among sites in a semi-arid region of southern Africa. Journal of Mammalogy, 97, 473-482.

Identifying species potentially threatened by roadkill

We considered mammalian species potentially threatened by roadkill (those species where removal of <20% of their population may lead to an additional 10% risk of extinction).

We performed this task in four steps:

1 - Relationship between FRiskExt10 and the demographic parameters

We used two approaches to analyse the relationship between F_{RiskExt10} (population needed to be roadkilled to increase in 10% the risk extinction) and the demographic parameters:

1) non-phylogenetic least square regression (GLS) which assumes all species values are independent;

2) phylogenetic GLS (PGLS) which controls for lack of independence due to evolutionary relationships among species.

F_{RiskExt10} (SM7) was the variable response and the predictor variables were: age of maturity (Myhrvold et al. 2015), number of months of recruitment, litter size, number of litters per year, survival rates in cubs, juveniles and adults, and longevity (SM4). We ran four models with the minimum and maximum values of F_{RiskExt10} for GLS and PGLS analysis (MIN F_{RiskExt10} and MAX F_{RiskExt10} for GLS and PGLS) (SM6).

Firstly, we investigated correlations among demographic parameters (r>0.7; Zuur et al. 2009) and variable inflation factors (VIF) for all parameters (VIF>3; Zuur et al. 2009). Parameters were standardized and fitted to a global GLS model. We ran all possible combinations of demographic parameters. We also fitted a global PGLS and ran all combinations with the same demographic parameters to account for interdependence between species resulting from common evolutionary history. We used a phylogenetic tree of the mammal species obtained from the time tree (http://www.timetree.org). We measured the strength of phylogenetic signal in each variable by estimating the phylogenetic correlation between species based on Pagel's λ (Pagel 1999). Values of λ can vary continuously from 0 (indicating demographic parameters are independent of phylogeny) to 1 (indicating demographic parameters of species evolved under the Brownian motion model). We found that values λ for the parameters ranged from 0.41 to 0.80, thus indicating accounting for phylogeny is warranted (Revell 2010). We therefore controlled for the degree of phylogenetic nonindependence in our analysis. We analysed the relative importance of each variable calculated as the sum of Akaike weights for GLS and PGLS models. All analysis were performed with R 3.4 (R development Core team 2014-2016). Phylogenetic analysis was conducted with the ape, phytools (Revell 2012) and geiger (Harmon et al. 2008) R packages. For six species not included in the phylogenetic tree (Didelphis albiventris, Kobus vardonii, Lepus microtis, Manis crassicuadata, Nilgiritragus hylocrius and Prcapra picticaudata) we substituted other species of the same genus (Didelphis imperfects, Kobus kob, Lepus europaeus, Manis javanica, Hemitragus jayakari and Procapra przewalskii), respectively.

2 - Key demographic parameters that explain F_{RiskExt10}

We selected the key demographic variables that provided a very high contribution to explain the $F_{RiskExt10}$ for both GLS and PGLS models and for minimum and maximum $F_{RiskExt10}$ and were also well documented in the life traits database for 4664 mammal species (Myhrvold et al. 2015) to impute the fraction of the population removed due to roadkill needed to lead to 10% risk of local extinction for mammal species worldwide.

3 – Imputation of the F_{RiskExt10} for mammal species worldwide using the key demographic parameters

We used age of maturity and number of litters per year (both variables were concordant for GLS and PGLS analysis) plus litter size (important variable in PGLS analysis) to impute the $F_{RiskExt10}$ (SM6). In the life traits database 40% of species had age of maturity data, 71% had litter size and 43% had

litter per year. We imputed 4664 unique species that matched traits (Myhrvold et al. 2015), phylogeny (Fritz et al. 2009) and IUCN species range maps (SM9).

We used the phylogenetic tree for the world mammal species (Fritz et al. 2009) for which the number of species matched to IUCN species range maps (downloaded from the IUCN Red List web site (http://www.iucnredlist.org/) and the *Rphylopars* R package (Goosbly et al. 2017) to estimate maximum likelihood trait covariance in light of phylogenetic relatedness assuming a Brownian motion model of trait evolution. The selected demographic parameters were log-transformed and F_{RiskExt10} was logit-transformed prior to analyses. Branches for eight taxa (*Bos mutus, Equus przewalskii, Hydrochoerus hydrochaeris, Kobus vardonii, Panthera tigris altaica, Nilgiritragus hylocrius,* and *Lepus microtis*) were manually added as sister taxa to the most closely represented members of the phylogeny. Using the maximum likelihood trait covariance and expected species covariance due to shared ancestry, missing values for all variables were phylogenetically imputed, and the resulting imputations and 95% confidence intervals were de-transformed back to their original scale (SM8).

4 – Validation of phylogenetic imputation using Leave-One-Out Cross-Validation (LOO-CV)

Leave-one-out cross-validation (LOO-CV) as well as 2-fold and 5-fold cross-validation blocked by phylogenetic distance was performed to evaluate the reliability of $F_{RiskExt10}$ imputation results (Bruggeman 2009; Roberts et al. 2017). For LOO-CV, average bias was -0.01% and the root mean squared error (RMSE) was 15.5%. In other words, for any given imputation, we can expect our estimates to be off, on average, about +/- 15.5%, and our estimates appear to be unbiased (see SM10 for further details). We recovered similar results using 2-fold and 5-fold phylogenetically blocked cross-validation yielding mean bias of 1.9% and 0.8% and RMSE of 15.5% and 14.7%, respectively. See SM9 for further details.

REFERENCES

- Bruggeman, Jorn, Jaap Heringa & Bernd W. Brandt (2009). PhyloPars: estimation of missing parameter values using phylogeny." Nucleic acids research 37: W179-W184.
- Fritz, S.A., Bininda-Emonds, O.R.P. & Purvis A (2009). Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters 12:538-5482009.
- Goolsby, E. W., J. Bruggeman & C Ané (2017). Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods in Ecology and Evolution 8, 1: 22-27.
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & ChallengerW. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-31
- Myhrvold, N.P., Baldridge, E., Chan, B., Sivam, D., Freeman, D.L. & Ernest, S.K.M. (2015). An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96:3109
- Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401(6756):877-84.
- Revell, L.J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1, 4: 319-329.
- Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
- Roberts, D. R., V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J. J. Lahoz-Monfort, B. Schroder, W. Thuiller, D. I. Warton, B. A. Wintle, F. Hartig, and C. F. Dormann. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical or phylogenetic structure. *Ecography* doi:10.1111/ecog-02881.
- Zuur, A.F., Saveliev, A.A., Ieno, E.N., Smith, G.M. & Walker, N. (2009). Mixed Effects Models and Extensions in Ecology With R. New York, Springer.

Spatially implicit age-structured stochastic models

We modelled each of the selected species and *study site* with a spatially implicit age-structured stochastic model based on Borda-de-Água et al. (2014) in order to calculate the probability of local extinction risk in a period of 50 years given the fraction of the individuals removed from the population due to road mortality. This model considers age at maturity, interval between births, litter size, period of recruitment, number of litters per year and mortality rates (Borda-de-Água et al. 2014). Mortality, Z_a , consists of natural mortality, M_a , and road mortality, C_a ; that is, $Z_a = M_a + C_a$. The subscript *a* was included to indicate that both forms of mortality can be age specific. A population is divided into *n* age classes (starting at 0, corresponding to animals in their first year, up to *n*-1, the last year a cohort survives). Each age class is further divided into 12 months. Thus, a population has *n*x12 cohorts whose information is kept in a matrix with 12 columns and *n* rows. An iteration corresponds to a month, and in each iteration the number of individuals in the population is updated according to the mortality rate of its age group. Thus, if the cohort of age *a* at month *m* has $N_{a,m}$ individuals at time t_1 , at time $t_2 = t_1 + 1$ the number of individuals is calculated as

$$N_{a,m}(t_2) = N_{a,m}(t_1)e^{-Z_a},$$

assuming that mortality has time units of "month".

For those cohorts that are mature, in some months of the year and with a given periodicity, females can give birth. The number of females that give birth is determined according to the input parameters, as well as the number of offspring per female. The total number of recruits, *R*, that enter the population is related to the total number of animals born, *B*, through the Beverton-Holt relationship,

$$R = \frac{\alpha B}{\beta + B}$$

where α and β are parameters to be estimated. The recruits enter the population then at position $N_{0,1}$ and will start involving as the remaining of the population in the next iteration. Notice that it is the Beverton-Holt relationship that introduces density dependence in the model. For simplicity, we have assumed $\alpha = \beta$. In order to determine the parameter α we use an iterative process until the population attains the expected average number of individuals without road mortality. We used empirical estimates of variance for demographic parameters if available or assumed a 10% variance when no estimates were provided. We run the model using 600 simulations for each species: (50 replicates *12 carrying capacities).

After the model is initiated with an arbitrary starting population size there is a period of transient dynamics. We found population size converged very rapidly (usually < 50 years, 600 iterations) to a dynamic equilibrium state. We run this equilibrium state for 170 years (8500 iterations) to generate baseline dynamics without road mortality (Za=Ma). Finally, we ran the model for another 50 years with added roadkill mortality (Za=Ma+Ca). We calculated the probability of extinction as the proportion of computer runs relative to their total number in which the population went extinct at the end of those 50 years.

This approach assumes that (i) roadkill rates would be constant over the time in the defined area; (ii) the demographic parameters obtained from populations from other regions are appropriate; and (iii) the population is not distributed in a source-sink or metapopulation configuration.

The present code allows modelling populations with a wide range of parameters, and with further small changes new features can be introduced in order to introduce more realism. The main limitation of the model is that it is space implicit. The development of such code is outside the scope of the present work and will be the object of future work (the code with an example at 10.6084/m9.figshare.12993470 - *the DOI becomes active upon publication*).

REFERENCE

Borda-de-Água, L., Grilo, C. & Pereira, H.M. (2004). Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models. Ecological Modeling 276:29-37.

Table S2.1 - Biological traits for the selected species and references

	IUCN	Population density Ind./km2	Age of first birth (days)	Month of recruitment	Interval between births (days)	Litter size	Litter per year	Maximum longevity (m)	Survival rate of cubs	Survival rate of juveniles	Survival rate of adults	
NORTH AMERICA												
Bison bison	NT	0.28	1095	March-June	399	0.98	1	396	0.467	0.50	0.99	
		Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Fuller et al. 2007	Meagl	Meagher 1973	
Lepus callotis	NT	3.83	365	June-October	42	2.48	3	89	0.5	F(0.1) M(0.41)	0.43	
		Jones et al. 2009	Jones et al. 2009 for L americanus	Best & Henry 1993	Estimated from Myers et al. 2016 and Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Median from <i>Lepus</i> Jones et al. 2009	Rioja et al. 2011 for L. flavigularis	Farias 2004 f	or L. flavigularis	
Microtus mexicanus	VU	1483.67	45	Oct-Feb	30	2.33	4.5	18	0.823	0.823	0.823	
		Jones et al. 2009	http://www.nsrl.tt u.edu/tmot1/micr mexi.htm	Hilton 1992	Arizona Game and Fish Department 2003	Jones et al. 2009	Estimated from www.nsrl.tt u.edu	Atanasov 2012		Conley 1976		
Procyon lotor	LC	55.6-250	427	March-Nov	365	3.06	1	252	0.585	0.93	0.681	
		Smith & Engeman (2003); Twichel and Dill (1949)	Johnson 1970	Troyer et al. 2014	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Gehrt & Fritzell 199	99	
Ondatra zibethicus	LC	75.85	365	March-May	30	6.55	2.45	120	0.750	0.12	0.38	
		Messier et al 1990 Twichel and Dill (1949)	Jones et al. 2009	Errington 1943	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Virgl & Messier 1997	Ahlers et al 2010	Virgl & Messier 2000	
Neofiber alleni	LC	14516	95	All year	42.5	2.33	4.5	120	0.195	0.195	0.195	
		Jones et al. 2009	Birkenholz 1963	Myers et al. 2016	Birkenholz 1963	Jones et al. 2009	Jones et al. 2009	=Ondatra zibethicus	=juvenile	Lefebvre 1982	=juvenile	
Svlvilagus bachmani	LC	568	154	Jan-June	29.5	3 35	45	72	0.825	0.825	0.2	
			101	ounouno	2010	0.00	4.0		0.020	0.025	0.2	
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Lord 1961	= juvenil	Williams et al 2008	Bond et al 2001	
Odocoileus virginianus	LC	Jones et al. 2009 50	Myers et al. 2016 463	Myers et al. 2016 May-July	Jones et al. 2009 304	Jones et al. 2009 1.57	Jones et al. 2009	Lord 1961 276	= juvenil	Williams et al 2008	0.2 Bond et al 2001 0.72*#	
Odocoileus virginianus	LC	Jones et al. 2009 50 Lankester & Peterson 1996	Myers et al. 2016 463 Jones et al. 2009	Myers et al. 2016 May-July Myers et al. 2016	Jones et al. 2009 304 Jones et al. 2009	Jones et al. 2009 1.57 Jones et al. 2009	Jones et al. 2009 1 Myers et al. 2016	Lord 1961 276 Jones et al. 2009	= juvenil 0.47** Carstensen et al. 2009	Williams et al 2008 0.75*** Grovenburg et al 2012	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011	
Odocoileus virginianus Didelphis virginiana	LC	Jones et al. 2009 50 Lankester & Peterson 1996 8.52	Myers et al. 2016 463 Jones et al. 2009 186	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept	Jones et al. 2009 304 Jones et al. 2009 136.87	Jones et al. 2009 1.57 Jones et al. 2009 8.62	Jones et al. 2009 1 Myers et al. 2016 2	Lord 1961 276 Jones et al. 2009 60	= juvenil 0.47** Carstensen et al. 2009 0.76	Williams et al 2008 0.75*** Grovenburg et al 2012 0.23	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28	
Odocoileus virginianus Didelphis virginiana	LC	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009	= juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990	0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. m	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA	LC	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009	= juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990	0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. m	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus	LC LC NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180	= juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990	0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. m 0.8	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus	LC	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009	= juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990	Villiams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. m 0.8 Paula et al. 2008	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus Leopardus wiedii	LC LC NT NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007 0.05-0.25	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008 730	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016 All year	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016 365	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009 1	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016 1	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009	= juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990 0.4	Villiams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. m 0.8 Paula et al. 2008 0.87	Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9 F(0.825);M(0.75)	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus Leopardus wiedii	LC LC NT NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007 0.05-0.25 Oliveira et al. 2010 Oliveira 2011	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008 730 Green 1991; Leyhausen 1990	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016 All year Myers et al. 2016	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016 365 Myers et al. 2016 similar to other cats	Jones et al. Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009 1 Oliveira 1998	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016 1 Klyers et al. 2016 1 Myers et al. 2016	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009 156 Myers et al. 2016		0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. rr 0.8 Paula et al. 2008 0.87 Haines2006 for L. par	0.2 Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9 F(0.825);M(0.75) dalis)	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus Leopardus wiedii Speothos venaticus	LC LC NT NT NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007 0.05-0.25 Oliveira et al. 2010 Oliveira 2011 0.01	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008 730 Green 1991; Leyhausen 1990 364	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016 All year Myers et al. 2016 2 months/year	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016 365 Myers et al. 2016 similar to other cats 240	Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009 1 Oliveira 1998 4	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016 1 Klyers et al. 2016 1 Myers et al. 2016 1 Lot 2016	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009 156 Myers et al. 2016 123	c.220 = juvenil 0.47** Carstensen et al. 2009 0.76 *Julien- Laferriere & Atramentowicz 1990 0.4 0.4 0.68 0.68	0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. rr 0.8 Paula et al. 2008 0.87 Haines2006 for <i>L. par</i> 0.2	0.12 Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9 F(0.825);M(0.75) dalis) 0.38	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus Leopardus wiedii Speothos venaticus	LC LC NT NT NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007 0.05-0.25 Oliveira et al. 2010 Oliveira 2011 0.01 DeMatteo & Loiselle 2008	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008 730 Green 1991; Leyhausen 1990 364 Myers et al. 2016	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016 All year Myers et al. 2016 2 months/year DeMatteo et al. 2006	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016 365 Myers et al. 2016 similar to other cats 240 Jones et al. 2009	Jones et al. Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009 1 Oliveira 1998 4 http://genomic into/	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016 1 Myers et al. 2016 1 Myers et al. 2016 1 Korres et al. 2016 1 Eol 2016	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009 156 Myers et al. 2016 123 Myers et al. 2016		0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. rr 0.8 Paula et al. 2008 0.87 Haines2006 for L. par 0.2 = Vulpes Vulpes	0.12 Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9 F(0.825);M(0.75) dalis) 0.38	
Odocoileus virginianus Didelphis virginiana SOUTH AMERICA Chrysocyon brachyurus Leopardus wiedli Speothos venaticus Leopardus braccatus/colocolo	LC LC NT NT NT NT	Jones et al. 2009 50 Lankester & Peterson 1996 8.52 Beatty et al. 2016 0.031 Trolle et al. 2007 0.05-0.25 Oliveira et al. 2010 Oliveira 2011 0.01 DeMatteo & Loiselle 2008 0.1-0.78	Myers et al. 2016 463 Jones et al. 2009 186 Jones et al. 2009 730 Paula et al. 2008 730 Green 1991; Leyhausen 1990 364 Myers et al. 2016 780	Myers et al. 2016 May-July Myers et al. 2016 Feb- Sept Myers et al. 2016 Oct-Dec Myers et al. 2016 All year Myers et al. 2016 2 months/year DeMatteo et al. 2006 April-July	Jones et al. 2009 304 Jones et al. 2009 136.87 Jones et al. 2009 365 Myers et al. 2016 365 Myers et al. 2016 similar to other cats 240 Jones et al. 2009 365	Jones et al. Jones et al. 2009 1.57 Jones et al. 2009 8.62 Jones et al. 2009 2 Jones et al. 2009 1 Oliveira 1998 4 http://genomics. info/ 2	Jones et al. 2009 1 Myers et al. 2016 2 Jones et al. 2009 1 Eol 2016 1 Myers et al. 2016 1 Myers et al. 2016 1 Korres et al. 2016 1 Myers et al. 2016 1 Eol 2016	Lord 1961 276 Jones et al. 2009 60 Jones et al. 2009 180 Jones et al. 2009 156 Myers et al. 2016 123 Myers et al. 2016		0.023 Williams et al 2008 0.75*** Grovenburg et al 2012 0.23 O'Coni for D. rr 0.8 Paula et al. 2008 0.87 Haines2006 for L. par 0.2 = Vulpes Vulpes 0.87	0.12 Bond et al 2001 0.72*# F Grovenburg et al 2011/M Mcdonald et al 2011 0.28 nell 1989 arsupialis 0.9 F(0.825);M(0.75) dalis) 0.38 F(0.825);M(0.75)	

	IUCN	Population density Ind./km2	Age of first birth (days)	Month of recruitment	Interval between births (days)	Litter size	Litter per year	Maximum longevity (m)	Survival rate of cubs	Survival rate of juveniles	Survival rate of adults
Myrmecophaga tridactyla	VU	0.21-2.2	1095	All year	270	1	1	312	0.5	0.9	0.9**
		Fonseca et al. 1994; Miranda 2004	Miranda 2004	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Miranda 2004	Jones et al. 2009		Miranda 2004	
Tapirus terrestris	VU	0.13-0.58	1287	All year	365	1	1	420	0.9	0.85	0.92
		Desbiez 2010; Trolle et al_2008	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009		Gatti et al 2011	
Leopardus tigrinus	VU	0.07-0.13	790	Nov-Feb	365	1.2	1	144	0.68	0.87	F(0.825);M(0.75)
		Oliveira-Santos 2012	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Oliveira & Cassaro 2005	Myers et al. 2016	Myers et al. 2016		Haines2006 for L par	dalis
Cavia aperea	LC	1806	97	Nov-Jun	60	2	4	36	0.58	0.8	0.8
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Asher et al. 2004	
Didelphis albiventris	LC	4	378	July - March	180	7	2	20	0.191	0.52	0.962
		Streilein 1982	Myers et al. 2016	D' Andrea et al.1999	Myers et al. 2016	D' Andrea et al. 1999	Myers et al. 2016	Myers et al. 2016	Fe	erreira et al. 2013 for I	D.autira
Sciurus granatensis	LC	79	455	Feb-Dec	150	1.9	2.5	84	0.745	0.745	0.745
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Wai	uters et al. 1994 for S	. vulgaris
Hydrochoerus hydrochaeris	LC	170-700	690	All year	365	4	1	144	0.32	0.597	0.618
		Garcias & Bager 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Alvarez et al. 2006	Mones & Ojasti 1986	Jones et al. 2009		Moreira et al 2013	3
Cerdocyon thous	LC	3.54	330	Jan-Feb/ Oct-Nov	243	4	2	138	0.42	0.93	0.93
		Ginsberg & Macdonald 1990	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Sillero-Zubiri et al. 2004 for Lycalopex fulvipes		
Conepatus chinga	LC	5	330	April-May	365	3.5	1	72	0.42	0.42	0.42
		IUCN/Cofré and Marquet 1999	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Reis et al.2006	Myers et al. 2016	Gehrt 2005 for M. mephitis		
EUROPE											
Mustela lutreola	CR	0.044	323	April-May	365	4.5	1	60	0.33++-0.35+++	0.33**-0.52***	0.33***0.50****
		Palazon et al 2002	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Mañas et al 2016	Bone N	si et al. 2006 for Neov aran 2003 for relased	rison vison minks
Lynx pardinus	EN	0.12	365	March/April	365	3	0.8	156	0.475	0.4	0.8
		Simon et al. 2012	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Ferreras et al 200	1
Oryctolagus cuniculus	NT	357	121.66	Jan-June	29	5.24	4.5	216	0.32	0.59	0.89
		Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Tablado et al. 201	2
Lutra lutra	NT	0.125	960	Jan-March	365	3	1	144	0.6	0.4	0.3
		Quaglietta et al. 2015	Myers et al. 2016	Beja 1996	Jones et al. 2009	Beja 1996	Jones et al. 2009	Ruiz-Olmo1988		Ruiz-Olmo1998	
Meles meles	LC	0.66	730	Feb-May Aug-Oct	365	2.5	1.	120	0.4	0.76	0.75
		Seiler et al 2005 (pop)	(1992)	Myers et al. 2016	Jones et al. 2009	2004 (1992)	Myers et al. 2016	(1992)		Seiler et al 2004 (19	92)
Erinaceus concolor	LC	32(median)-60 (max)	293	Jun-Nov	180	5.23	1.5	72	0.34	0.34	0.47
		Savarin 2009	Myers et al. 2016 E. europaeus	Myers et al. 2016 E. europaeus	Myers et al. 2016 E. europaeus	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016 E. europaeus	Krist	iansson 1990 for E. e	uropaeus
Apodemus sylvaticus	LC	550	85	March-Dec	41.28	5.16	3.75	52.8	0.60	0.60	0.60
		Unnsteinsdóttir 2014	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Unnsteinsdóttir 20	14
Vulpes vulpes	LC	1.1	354	April-May	365	4.59	1	180	0.8	0.7	0.5
		Jones et al. 2009	Myers et al. 2016	http://www.nfws.org .uk	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009		Sillero-Zubiri et al. 2	004

	IUCN	Population density Ind./km2	Age of first birth (days)	Month of recruitment	Interval between births (days)	Litter size	Litter per year	Maximum longevity (m)	Survival rate of cubs	Survival rate of juveniles	Survival rate of adults	
Capreolus capreolus	LC	1.11	730	April-July	365	1.79	1	204	0.62 M (±0.074); 0.69 F (±0.077)	0.90 M (± 0.06); 0.89 F (±0.066)	0.90 M (±0.058); 0.97 F (0.029)	
		Madsen et al 2002	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009		Cobben et al 2009	9	
AFRICA												
Lycaon pictus	EN	0.015	927	March-Jul	355.7	1.6**	1	132	0.71*	0.691	0.725	
		Creel & Creel 1996	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Woodroffe 2011		
Hyaena brunnea	NT	0.005-0.04	1095	Aug-Nov	532.29	2.3	0.4	204	0.86	0.62	0.47	
		Boast et al. 2011; Welch et al 2015	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Mills 1981	Wagner 2006	Wagner 2006	
Panthera pardus	VU	0.05-0.09	1147	All year-round	476.37	2.14	1	276	0.39	0.86	0.88	
		Rosenblatt et al. 2016	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Swanepoel et al. 20	15	
Panthera leo	VU	0.04-0.10	1047	All year-round	730	2.75	2	360	0.66	0.83	0.89	
		Rosenblatt et al .2014	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Dolrenry 2013		
Kobus vardonii	NT	12.91	630	All year-round	365	1	1	204	0.67*	0.67	0.9(m); 0.95(f)	
		Rduch 2013	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016		Martin 2004		
Lepus saxatilis	LC	18.6	407	All Yeat-ear-round	90	1.52	5.35	30	0.375	0.375	0.37	
		Munoz 2013	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Misiorowska & W	Misiorowska & Wasilewski 2012 for released L.europaeus		
Lepus victoriae	LC	95	277	All year-round	91	1.56	4	144	0.375	0.37	0.37	
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Myers et al. 2016	http://www.awf.org/ wildlife- conservation/africa n-hare	Mis	Misiorowska & Wasilewski 2012		
Atelerix albiventris	LC	31.8	119	Oct-March	182	3.98	1	136.8	0.7	0.7	0.8	
		Smilar to E. erinaceus Jackson 2006	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	http://hedgehogv alley.com/hhogbr eeding.html	Similar to cubs	Warwick et al 2006 for E. erinaceus	
Ictonyx striatus	LC	0.5	304	Sept-Dec	365	2.3	1	160	0.68	0.68	0.49	
		Hendrichs 1972	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Kristians	en et al. 2007 for Mu	stela putorius	
Xerus inauris	LC	0.5	345.5	All year-round	100	2.06	1	156	0.745	0.745	0.745	
		Jakobson 2006	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		=Sciurus vulgaris		
Otomys irroratus	LC	3004	103	All year-round	73	1.65	3.75	36	0.59	0.13	0.13	
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016		Davis 1973		
ASIA	EN			all year avaant 2								
Panthera tigris altaica	EIN	0.03	1460	months	642	1.4	0.3	108	0.5	0.4	0.7	
		Jones et al. 2009		Kerley	/ et al. 2003		2016	Myers et al. 2016	2003	Goodrich	et al 2008	
Nilgiritragus hylocrius	EN	4.23	879 Muoro et el	All year	180	1.5	2 Muoro at al	42	0.48	0.34 Biop at al 4000	0.2	
	F 11	Rice et al 1968	2016	Myers et al. 2016	Myers et al. 2016	2016	2016	nfo/introduction.htm		Rice et al 1988		
Cuon alpinus	EN	0.55	426	Nov-March	365	0.82**	1	192	0.18	0.37	0.37	
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	http://genomic s.senescence .info	Myers et al. 2016	=	Nyctereutes procyon	oides	

	IUCN	Population density Ind./km2	Age of first birth (days)	Month of recruitment	Interval between births (days)	Litter size	Litter per year	Maximum longevity (m)	Survival rate of cubs	Survival rate of juveniles	Survival rate of adults
Manis crassicaudata	EN	1.15	790	All year except May June	365	1	1	162	0.667	0.167	0.125
		Irshad et al. 2015	Dickman 1984	Pattnaik 2008	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Mohapatra & Panda 2014	
Macaca silenus	EN	1.01	1825	All year, except June	365	0.35	1	240	0.87	0.861	0.503
		Jones et al. 2009	Myers et al. 2016	Singh 2006	Myers et al. 2016	Singh 2006	Myers et al. 2016	Myers et al. 2016	Singh 2006	= Cercopithecus m	itis Bronikowski et al 016
Pantholops hodgsonii	EN	0.33	738	Jun-Jul	365	1	1	96	0.50	0.33	0.98
		Liu 2009	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016		Schaller 2006	
Equus przewalskii	EN	0.01	1460	April-May	365	1	1	240	0.75	0.75	0.69
		Wang, 2014	http://library.san diegozoo.org	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Boyd & Hopt 1994	Che	n et al. 2008, Meng et	al 2009
Trachypithecus johnii	VU	71	1690	All year	365	1	1	348	0.48	0.34	0.2
		Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		=Nilgiritragus hylocr	ius
Prionailurus rubiginosus	VU	0.66	365	All year	165	2.2	1	48	0.5	0.5	0.725
		Myers et al. 2016 for Prionailurus bengalensis	Myers et al. 2016	Myers et al. 2016	Similar to Leopard cat	Jones et al. 2009	Myers et al. 2016	=Prionailurus bengalensis		=Prionailurus bengale	nsis
Melursus ursinus	VU	0.13	1293	Nov-Jan	1095	1.5	1.5	480*	0.75	0.75	0.75
		Jones et al. 2009	Myers et al. 2016	Yoganand 2005	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Joshi 2011	
Hydropotes inermis	VU	6.93	363	May-June	365	3	1	144	0.73*?	0.73	0.73*?
		Kim et al 2011	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Chen et al 2015		
Bos mutus Przewalski	VU	0.03	2825	June	730	1	1	300	0.48	0.34	0.205
		Schaller 1996	Myers et al. 2016	Leslie & Schaller 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		 Nilgiritragus hyloci 	rius
Rusa unicolor	VU	4.89	788	Sept-Jan	365	1.5	1	317	0.49	0.79	0.845
		Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009		Leslie et al. 2010	
Panthera pardus	NT	0.042	1034	Year-round	600	2	1	102	0.39±0.1	0.80±0.12(M);0.9 3±0.07 (F)	0.94±0.04(M);0.86 ±0.05 (F)
		Borah et al. 2014	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Swanepoel et al. 20	15
Hyaena hyaena	NT	0.152	890	All year	455	2.44	1	288	0.96	0.89	0.545
		Gupta et al 2009	Myers et al. 2016	http://www.hyaenid ae.org/	Myers et al. 2016	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Bothma & Walker 1999	Wagn	er 2006
Procapra picticaudata	NT	0.08	1520	June-July	365	1	1	96	0.48	0.34	0.205
		Bhatnagar et al. 2007	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		= Nilgiritragus hylocr	ius
Myodes rufocanus	LC	465.17	110	All year	32.6	5.01	3	24	0.52	0.42	0.53
		Boonstra & Krebs 2012	Jones et al. 2009	Eol 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016for M. rutilus	aver	age estimated for all c	ricetidae
Prionailurus bengalensis	LC	9.6	612	All year	165	2.5	1	48	0.5	0.5	0.725
		Mohamed et al. 2013	Myers et al. 2016	Myers et al. 2016	Jones et al. 2009	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Haines et al 2004	
Nyctereutes procyonoides	LC	86	361	March-May	365	6.33	1	90	0.18	0.37	0.37
		Myers et al. 2016/ Kauhala, et al. 1993	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016	Myers et al. 2016		Kowalczyk et al 200	09
OCEANIA											
Sarcophilus harrisii	ËN	5.9	730	April	365	2.88	1	72	0.45*	0.45	0.55
		Jones et al. 2009	Jackson 2007	Jackson 2007	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al 2008		Lachish et al 2007	, ,

	IUCN	Population density Ind./km2	Age of first birth (days)	Month of recruitment	Interval between births (days)	Litter size	Litter per year	Maximum longevity (m)	Survival rate of cubs	Survival rate of juveniles	Survival rate of adults	
Perameles gunnii	NT	35	107.64	January (all)	65	2.31	3.8	66	0.53	0.74	0.76	
		Mallick et al. 2000	Jones et al. 2009	Mallick et al. 2000	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Todd et al. 2002		
Bettongia gaimardi	NT	19	272	All year round	106.5	1	3	141.6	0.6	0.6	0.6	
		Jones et al. 2009	Jones et al. 2009	Jackson 2007	Jones et al. 2009	Jones et al. 2009	Rose 1987	Jones et al. 2009		Wayne et al. 2016	5	
Dasyurus viverrinus	NT	19	355	May	365	4.7	1	81.6	0.6**	0.6	0.4	
		Jones et al. 2009	Myers et al. 2016	Jackson 2007	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Glen and Dickman 2	013	
Dasyurus maculatus	NT	0.3	720	June	365	4.47	1	60	0.6	0.6	0.4	
		Glen 2008	van Dyck & Strahan 2008	Jackson 2007	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Glen and Dickman 2013		
Macropus eugenii	LC	73.86	319	January-March	365	1.01	1	168	0.65*	0.65	0.74	
		Jones et al. 2009	Jones et al. 2009	Tyndale-Biscoe & Renfree 1987	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Chambers & Bencini 2	2008	
Macropus giganteus	LC	41.95	813	Oct-Jan	362.79	1	1	288	0.27	0.54	0.95	
		Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Arnold 1991	Coulson et al 2004	Arnold 1991	
Macropus rufus	LC	3.14	547.5	All year	238.5	1	1.5	360	0.27	0.54	0.95	
		Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Myers et al. 2016	Jones et al. 2009		Coulson et al 2014	1	
Perameles nasuta	LC	89.99	121.66	All year	53	2.43	2	24	0.53	0.74	0.76	
		Jones et al. 2009	Jones et al. 2009	Scott et al 1999 Jackson 2007	Jones et al. 2009	Jones et al. 2009	Jackson 2007	Jackson 2007		Todd et al. 2002		
Pseudocheirus peregrinus	LC	654.82	365	May-Jan	251.6	1.89	1.5	96	0.357	0.357	0.501	
		Jones et al. 2009	Jones et al. 2009	Munks 1995/ Myers et al. 2016	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009	Jones et al. 2009		Pahl 1987		

REFERENCES

- Ahlers, A.A., Schooley, R.L., Heske, E.J., Mitchell, M.A. (2010). Effects of flooding and riparian buffers on survival of muskrats (*Ondatra zibethicus*) across a flashiness gradient. Canandian Journal of Zoology, 88, 1011-1020.
- Alvarez, M. R., Kravetz, F. O. (2006). Reproductive performance of capybaras (*Hydrochoerus hydrochaeris*) in captivity under different management systems in Argentina. Animal Research, 55:153–164.
- Arizona Game and Fish Department (2003). *Microtus mexicanus navaho*. Unpublished abstract compiled and edited by the Heritage Data Management System. Arizona Game and Fish Department, Phoenix, Arizona.
- Arnold, G., Grassia, A., Steven, D., Weeldenburg, J. (1991). Population ecology of western grey kangaroos in a remnant of wandoo woodland at Baker's Hill, southern Western Australia. *Wildlife Research*, 18, 561-575.
- Asher, M., Oliveira, E.S. & Sachse N (2004). Social System and Spatial Organization of Wild Guinea Pigs (*Cavia aperea*) in a Natural Population. *Journal of Mammalogy*, 85, 4, 788–796.
- Atanasov, A., (2012). Allometric scaling of total metabolic energy per lifespan in living organisms. *Trakia Journal of Sciences*, 10, 1–14.
- Beatty, W.S., Beasley, JC, Olson, Z.C. & Rhodes O.E. (2016). Influence of habitat attributes on density of *Virginia opossums* in agricultural ecosystems. *Canadian Journal of Zoology*, 94, 6, 411-419.
- Beja, P (1996). Temporal and spatial patterns of rest-site use by four female otters *Lutra lutra* along the South-West coast of Portugal. Journal of Zoology, 239, 741-753.

Best, T.L. & Henry, T.H. (1993). Lepus callotis. Mammalian Species 442, 1–6.

Bhatnagar, Y.V., Seth, C.M., Takpa, J., Ul-haq, S., Namgail, T., Bagchi, S. & Mishra, C. (2007). A Strategy for Conservation of the Tibetan Gazelle Procapra picticaudata in Ladakh. *Conservation & Society*, 5, 2, 262-276.

Birkenholz, D. (1963). A study of the life history and ecology of the round-tailed muskrat, Neofiber alleni (True) in north-central Florida. *Ecological Monographs*, 33, 255-280.

Boast, L., Molefe, U., Kokole, M. & Klein, R., (2011). *Results of a motion camera survey in Jwana game park, Jwaneng, Botswana*. Report to the Debswana Mining Company and the Botswana Department of Wildlife and National Parks, pp. 21.

- Bond, B.T., Burger Jr., L.W., Leopold, B.D. & Godwin, K.D. (2001). Survival of cottontail rabbits (*Sylvilagus floridanus*) in Mississippi and an examination of latitudinal variation. *American Midland Naturalist Journal*, 145, 127-136.
- Bonesi, L., Harrington, L.A., Maran, T., Sidorovich, V.E. & Macdonald, D.W. (2006). Demography of three populations of American mink *Mustela vison* in Europe. *Mammal Review*, 36, 1, 98–106.
- Boonstra, R. & Krebs, C.J. (2012). Population dynamics of red-backed voles (Myodes) in North America. Oecologia, 168, 601–620.
- Borah, J., Sharma, T., Das, D., Rabha, N., Kakati, N., Basumatary, A., ...Vattakaven, J. (2014). Abundance and density estimates for common leopard Panthera pardus and clouded leopard Neofelis nebulosa in Manas National Park, Assam, India. *Oryx*, 48(01):149-155.
- Bothma, J.P. & Walker, C. (1999). Larger Carnivores of the African Savannas. Springer-Verlag Berlin Heidelberg.
- Boyd L, Houpt KA. (1994). Przewalski's horse: The History and Biology of an Endangered Species. State university of New York Press; Albany:
- Bronikowski, A., Cords, M., Alberts, S. et al. (2016). Female and male life tables for seven wild primate species. Scientific Data, 3, 160006.
- Carstensen, M., Delgiudice, G.D., Sampson, B.A., Kuehn, D.W., 2009. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. *Journal of Wildlife Management*, 73, 175–183.
- Chambers, B. & Bencini, R. (2010). Road mortality reduces survival and population growth rates of tammar wallabies on Garden Island, Western Australia. *Wildlife Research*, 37, 588-596.
- Chen, M., Pu, A., He, X., Zhang, E-D, Ding, Y-Z., Wang, T-H., Cai, Y-M., Pei, E. & Xiao, Y. (2015). Chinese Water Deer (*Hydropotes inermis*) Reintroduction in Nanhui, Shanghai, China. *Pakistan Journal of Zoology*, 47, 1499-1501.
- Chen, J., Weng, Q., Chao, J., Hu, D. & Taya, K. (2008). Reproduction and Development of the Released Przewalski's Horses (Equus przewalskii) in Xinjiang, China. *Journal of Equine Science*, 19, 1–7.
- Cobben, M M. P., Linnell, JD.C., Solberg, E.J. & Andersen, R. (2009). Who wants to live forever? Roe deer survival in a favourable environment. *Ecological Research*, 24,1197–1205
- Cofré, H. & Marquet, P. A. (1999). Conservation status, rarity, and geographic priorities for conservation of Chilean mammals: an assessment. *Biological Conservation*, 88, 53-68.
- Conley, W., (1976). Competition between Microtus: a behavioral hypothesis. Ecology, 57, 224-237.
- Coulson, G., Cripps, J.K. & Wilson, M.E. (2014). Hopping down the main street: Eastern grey kangaroos at home in an urban matrix. *Animals*, 4, 272-291.
- Creel, S. & Creel, N.M. (1996). Limitation of African wild dogs by competition with larger carnivores. Conservation Biology, 10(2), 526-538.
- D'Andrea, P. S., Gentile, R., Cerqueira, R., Grelle, C. E. V., Horta, C. & Rey, L. (1999). Ecology of small mammals in a Brazilian rural área. Revista Brasileira de Zoologia, 16, 611- 620.
- Davis, R.M. (1973). Ecology and life history of the Vlei Rat, Otomys Irroratus (Brants, 1827), on the Van Riebeeck Nature Reserve, Pretoria. PhD thesis, University of Pretoria.
- DeMatteo, K.E. & Loiselle, B.A. (2008). New data on the status and distribution of the bush dog (Speothos venaticus): evaluating its quality of protection and directing research efforts. *Biological Conservation*, 141, 2494-2505.
- DeMatteo, K.E., Porton, I.J., Kleiman, D.G., & Asa, C.S. (2006). The effect of the male bush dog (*Speothos venaticus*) on the female reproductive cycle. *Journal of Mammology*, 87, 723-732.
- Desbiez, A.L. J. & Medri, I.M. (2010). Density and habitat use by giant anteaters (*Myrmecophaga tridactyla*) and southern tamanduas (*Tamandua tetradactyla*) in the pantanal wetland, Brazil. *Edentata*, 11, 4-10.
- Dickman, C.R. (1984). Anteaters. In: D. Macdonald (Ed.) The encyclopedia of Mammals. Facts on File, New York. Pp.780–781.

- Dolrenry, S. (2013). African lion (Panthera leo) behavior, monitoring, and survival in human-dominated landscapes. PhD thesis, The University of Wisconsin-Madison.
- Eol 2016. Encyclopedia of Life. Available from http://www.eol.org.
- Errington, P.L., (1943). An analysis of mink predation upon muskrats in North-Central United States. Iowa St. College of Agriculture. Research Bulletin, 320, 797–924.
- Ferreira, M. S., Kajina, M., Vieira, M. V., Zangrandi, P. L., Cerqueira, R. & Gentile, R. (2013). Life history of a neotropical marsupial: Evaluating potential contributions of survival and reproduction to population growth rate. *Mammalian Biology*, 78, 406–411.
- Ferreras, P., Gaona, P., Palomares, F., Delibes, M. (2001). Restore habitat or reduce mortality? Implications from a population viability analysis of the Iberian lynx. *Animal Conservation*, 4(3):265-274
- Fonseca (1994). Livro vermelho dos mamíferos brasileiros ameaçados de extinção. Belo Horizonte: Biodiversitas.
- Fuller, J.A., Garrott, R.A., White, P.J., Aune, K.E., Roffe, T.J., Rhyan, J.C. (2007). Reproduction and survival of Yellowstone bison. Journal of Wildlife Management, 71, 2365-2372.
- Garcias, FM. & Bager, A. (2009). Estrutura populacional de capivaras na Estação Ecológica do Taim, Brasil, RS. Ciência Rural, 39, 2441-2447
- Gardner, B., Reppucci, J., Lucherini, M., Royle, J.A. (2010). Spatially-explicit inference for open populations: estimating demographic parameters from camera-trap studies. *Ecology*, 91, 3376-3383.
- Gatti, A., Brito, D., Mendes, S. L. (2011). How many lowland tapirs (*Tapirus terrestris*) are needed in Atlantic Forest fragments to ensure long-term persistence? *Studies on Neotropical Fauna and Environment*, 46, 77–84.
- Gehrt, S. (2005). Seasonal survival and cause-specific mortality of urban and rural striped skunks in the absence of rabies. *Journal of Mammalogy*, 86, 1164-1170.
- Gehrt, S.D. & Fritzell, E.K. (1999). Survivorship of a nonharvested raccoon population in South Texas. Journal of Wildlife Management, 63, 889-894.
- Giffney, R.A., Russell, T., Kohen, J.L. (2009). Age of road-killed common bruushtail possums (*Trichosurus vulpecula*) and common ringtail possums (*Pseudocheirus peregrinus*) in an urban environment. *Australian Mammalogy*, 31, 137-142.
- Ginsberg, J.R. & Macdonald D.W. (1990). Foxes, Jacakals and Wolves: An Action Plan for the Conservation of Canids. IUCN. Gland.
- Glen, A. (2008). Population attributes of the spotted-tailed quoll (*Dasyurus maculatus*) in north-eastern New South Wales. *Australian Journal of Zoology*, 56, 137-142.
- Glen, A., & Dickman, C. (2013). Population viability analysis shows spotted-tailed quolls may be vulnerable to competition. *Australian Mammalogy*, 35, 180-183.
- Goodrich, J.M., Kerley, L.L., Smirnov, E.N., Miquelle, E.N., McDonald, L., Quigley, H.B., Hornocker, M.G., McDonald, T. (2008). Survival rates and causes of mortality of Amur Tigers on and near the Sikhote-Alin Biosphere Zapovednik. *Journal of Zoology*, 276(4), 323 329.
- Green, R. (1991). Wild cat species of the world. Basset Publications, Plymouth, United Kingdom.
- Grovenburg, T.W., Klaver, R.W., Jenks, J.A. (2012). Survival of white-tailed deer fawns in the grasslands of the northern Great Plains. Journal of Wildlife Management, 76, 944–956.
- Grovenburg, T.W., Swanson, C.C., Jacques, C.N., DePerno, C.S., Klaver, R.W., Jenks, J.A. (2011). Female white-tailed deer survival across ecoregions in Minnesota and South Dakota. American Midland Naturalist, 165, 426–435.
- Gupta, S., Mondal, K., Sankar, K., & Qureshi, Q. (2009). Estimation of striped hyena *Hyaena hyaena* population using camera traps in Sariska Tiger Reserve, Rajasthan, India. *Journal of the Bombay Natural History Society*, 106, :284-288.
- Haines, A.M., Grassman, L.I. & Tewes, M.E. (2004). Survival of radiocollared adult leopard cats Prionailurus bengalensis in Thailand. Acta Theriologica, 49, 349-356.
- Haines, A.M., Tewes, M.E., Laack, L.L., Horne, J. S. & Young, J.H. (2006). A habitat-based population viability analysis for ocelots (*Leopardus pardalis*) in the United States. *Biological Conservation*, 132:424–436.
- Hendrichs, H. (1972). Beobachtungen und Untersuchungen zur Ökologie und Ethologie, insbesondere zur sozialen Organisation ostafrikanischer Säugetiere. Zeitschrift für Tierpsychologie, 30: 146-189.
- Hilton, B.L (1992). Reproduction in the Mexican vole, Microtus mexicanus. Journal of Mammalogy, 73, 586-590.

Hobday, A.J., Minstrell, M.L. (2008). Distribution and abundance of roadkill on Tasmanian highways: human management options. *Wildlife Research*, 35, 712-726.

Irshad, N., Mahmood, T., Hussain, R., Nadeem, M.S. (2015). Distribution, abundance and diet of the Indian pangolin (Manis crassicaudata). *Animal Biology*, 65, 57–71.

Mohamed, A., Sollmann, R., Bernard, H., Ambu, L.N., Lagan, P., Mannan, S., Hofer, H. and Wilting, A. (2013). Density and habitat use of the leopard cat (*Prionailurus bengalensis*) in three commercial forest reserves in Sabah, Malaysian Borneo. *Journal of Mammalogy*, 94, 82-89.

IUCN (2016). The IUCN Red List of threatened species. Version 2016-3. http://www.iucnredlist.org. Downloaded on 22 November 2016.

- Jackson, D.B. (2006). The breeding biology of introduced hedgehogs (*Erinaceus europaeus*) on a Scottish Island: lessons for population control and bird conservation. *Journal of Zoology*, 268, 303-314.
- Jackson, S.M. (2007). Australian mammals: Biology and captive management. CSIRO Publishing, Collingwood.
- Jakobsson, T. (2005). Influence of land use intensity on mammal densities in an African savanna. *Committee of Tropical Ecology, Uppsala University, Minor Field Study.*
- Johnson, A.S. (1970). Biology of the raccoon (*Procyon lotor varius* Nelson and Goldman) in Alabama. *Bulletin 402*. Agricultural Experiment Station, Auburn University, Auburn, Alabama.

Jones, M.E., Cockburn, A., Hamede R., Hawkins, C., Hesterman, H., Lachish, S., Mann, D., McCallum, H., Pemberton, D. (2008). Life-history change in disease-ravaged Tasmanian devil populations. *Proceedings of the National Academy of Sciences* 105, 10023-10027.

Jones KE, et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. *Ecology*, 90, 2648-2648.

Joshi (2011). Sociobiology of the myrmecophagous sloth bear in Nepal. Canadian Journal of Zoology, 77, 1690-1704.

Julien-Laferriere, D., & Atramentowicz, M. (1990). Feeding and Reproduction of Three Didelphid Marsupials in Two Neotropical Forests (French Guiana). *Biotropica*, 22, 404-415.

Kauhala K. (1993). Growth, size, and fat reserves of the raccoon dog in Finland. Acta Theriologica, 38, 139-150.

Kerley, L.L., Goodrich, J.M., Miquelle, D.G., Smirnov, E.N., Quigley, H.B., Hornocker, M.G. (2003). Reproductive parameters of wild female Amur (Siberian) tigers (Panthera tigris altaica). *Journal of Mammalogy*, 84, 288-298.

Kim, B., Oh, D., Chun, S., Lee S-D. (2011). Distribution, density, and habitat use of the Korean water deer (*Hydropotes inermis argyropus*) in Korea. Landscape and Ecological Engineering, 7(2):291-297.

Kowalczyk, R., Zalewski, A., Jędrzejewska, B, Ansorge, H, Bunevich A.N. (2009). Reproduction and Mortality of Invasive Raccoon Dogs (Nyctereutes procyonoides) in the Białowieża Primeval Forest (Eastern Poland). *Annales Zoologici Fennici*, 46, 291-301.

- Kristiansen, L.V., Sunde, P., Nachman, G. & Madsen, A.B. (2007). Mortality and reproductive patterns of wild European polecats *Mustela putorius* in Denmark. *Acta Theriologica*, *52*, 371-378.
- Kristiansson, H. (1990). Population variables and causes of mortality in a hedgehog (*Erinaceus europaeus*), population in southern Sweden, *Masters Journal of Zoology*, 220; 391-404.
- Lachish, S., Jones, M., McCallum, H. (2007). The impact of disease on the survival and population growth rate of the Tasmanian devil. *Journal of Animal Ecology*, 76, 926-936.
- Lankester, M.W., Peterson, W.J. (1996). The possible importance of wintering yards in the transmission of *Parelaphostrongylus tenuis* to white-tailed deer and moose. Journal Wildlife Diseases, 32, 31–38.

Lefebvre, L.W. (1982). Population dynamics of the round-tailed muskrat (Neofiber alleni) in Florida sugarcane. Ph.D. thesis. University of Florida, Gainesville, Florida.

Leslie D.M. & Schaller G.B. (2009). Bos grunniens and Bos mutus (Artiodactyla: Bovidae). Mammalian Species, 836:1–17.

Leslie D.M. (2010). Rusa unicolor (Artiodactyla: Cervidae). Mammalian Species, 43, 1-30.

Leyhausen, P. (1990). Cats. In S.P. Parker (Ed). *Grzimek's encyclopedia of mammals*. pp 576-632 McGraw-Hill Publishing Company, New York, NY. Liu, W. (2009). *Tibetan Antelope* (ed China Press). China Forestry Press, Beijing, China.

Lord, Jr., R.D. (1961). Potential lifespan of cottontails. *Journal of Mammalogy*, 42, 99.

Madsen AB, Strandgaard, H, Prang, A. (2002). Factors causing traffic killings of roe deer Capreolus capreolus in Denmark. Wildlife Biology, 8, 55-61.

- Mallick, S.A., Driessen, M.M., Hocking, G.J. (2000). Demography and home range of the eastern barred bandicoot (*Perameles gunnii*) in south-eastern Tasmania. *Wildlife Research*, 27, 103-115.
- Mañas, S., Gómez, A., Asensio, V., Palazón, S., Podra, M., Casal, J., Ruiz-Olmo, J. (2016). Demographic structure of three riparian mustelid species in Spain. *European Journal of Wildlife Research*, 62, 119-129.
- Maran T. (2003). European mink: setting goals for conservation and the Estonian case study. Galemys 15, 1-11.
- Martin, R.B. (2004). Species Report for Reedbuck, Waterbuck, Lechwe and Puku. Namibia Nature Foundation and the World Wildlife Fund LIFE Programme.
- McDonald Jr., J.E., DeStefano, S., Gaughan, C., Mayer, M., Woytek, W.A., Christensen, S. & Fuller, T.K. (2011). Survival and harvest-related mortality of white-tailed deer in Massachusetts. *Wildlife Society Bulletin*, 35, 209-219.
- Meagher, M.M., (1973). The bison of Yellowstone National Park. Scientific Monograph Series Number One. National Park Service, Washington, D.C.
- Messier, F., Virgl, J.A. & Marinelli, L. (1990). Density-dependent habitat selection in muskrats: a test of the ideal free distribution model. *Oecologia* 84, 380–385.
- Mills, M.G.L., (1982). Hyaena brunnea. Mammalian species, 194, 1-5.
- Miranda, G.H.B. (2004). Ecologia e conservação do tamanduá-bandeira (Myrmecophaga tridactyla, Linnaeus, 1758) no Parque Nacional das Emas. PhD thesis. Universidade Federal de Brasília.
- Misiorowska, M. & Wasilewski, M. (2012). Survival and causes of death among released brown hares (Lepus europaeus Pallas, 1778) in Central Poland. Acta theriologica, 57, 305-312.
- Mohapatra, R.K. & Panda, S. (2014). Husbandry, behaviour and conservation breeding of Indian pangolin. Folia Zoologica, 63(2):73-80.
- Mones, A., Ojasti, J. (1986). Hydrochoerus hydrochaeris. Mammalian Species, 264, 1-7.
- Moreira, J.R., Ferraz, K.M.P.M.B., Herrera, E.A., Macdonald, D.W. (Eds.) (2013). Capybara: biology, use and conservation of an exceptional neotropical species. Springer.
- Munks, S.A. & Green, B. (1995). Energy allocation for reproduction in a marsupial arboreal folivore, the common ringtail possum (*Pseudocheirus peregrinus*). *Oecologia* 101, 94-104.
- Muñoz, J., 2013. Mammal densities in the Kalahari, Botswana-impact of seasons and land use. Swedish University of Agricultural Sciences.
- Myers, P., Espinosa, R., Parr, C. S., Jones, T., Hammond, G. S., Dewey, T. A. 2016. The Animal Diversity Web (online). Accessed at https://animaldiversity.org.
- Nowell, K.& Jackson, P. (1996). Wild cats: status survey and conservation action plan. IUCN/SSC Cat Specialist Group. IUCN, Gland, Switzerland. O'Connell, M.A. (1989). Population dynamics of neotropical small mammals in seasonal habitats. *Journal Mammalogy*, 70, 532–548.
- Oliveira, T.G., Tortato, M.A., Silveira, L., Kasper, C.B., Mazim, F.B., Lucherini, M., Jácomo, A.T., Soares, J.B.G., Marques, R.V. & Sunquist M (2010). Ocelot ecology and its effect in the small-felid guild in the lowland Neotropics. In: D.W. Macdonald and A. Loveridge (Eds). *Biology and Conservation of Wild Felids*, pp. 563-584. Oxford University Press, Oxford.
- Oliveira-Santos, L.G.R., Graipel, M.E., Tortato, M.A., Zucco, C.A., Cáceres, N.C. & Goulart, F.V.B. (2012). Abundance changes and activity flexibility of the oncilla, Leopardus tigrinus (Carnivora: Felidae), appear to reflect avoidance of conflict. Zoologia, 29, 115–120.
- Oliveira, T.G. (1998). Leopardus wiedii. *Mammalian Species*. 579:1-6.
- Oliveira, T.G., Tortato, M.A., Silveira, L., Kasper, C.B., Mazim, F.D., Lucherini M., Jácomo A.T., Soares J.B.G., Marques, R.V. & Sunquist, M.E. 2010. Ocelot ecology and its effect on the small-felid guild in the lowland neotropics. In D.W. Macdonald and A.J. Loveridge (Eds). *Biology and Conservation of the Wild Felids.* Oxford University Press, Oxford, pp. 559-580
- Oliveira, T.G. (2011). Ecologia e conservação de pequenos felinos no Brasil e suas implicações para o manejo. PhD thesis, Universidade Federal de Minas Gerais, Brazil.
- Oliveira, T.G. & Cassaro, K. (2005). Guia de Campo dos Felinos do Brasil. São Paulo, Instituto Pró-Carnívoros, Fundação Parque Zoológico de São Paulo, Brazil.
- Pahl, L.I. (1987). Survival, age determination and population age structure of the common ringtail possum, *Pseudocheirus peregrinus*, in a Eucalyptus woodland and a Leptospermum thicket in southern Victoria. *Australian Journal of Zoology*, 35, 625-639.

- Palazón, S. Ceña, J.C., Mañas, S., Ceña, A. & Ruiz-Olmo, J. (2002). Current distribution and status of the European mink (*Mustela lutreola* L, 1761) in Spain. *Small Carnivore Conservation*, 26, 9-11.
- Pattnaik A.K. (2008). Enclosure design and enrichment key to the successful conservation breeding of Indian pangolin (*Manis crassicaudata*) in captivity. *Indian Zoo Year Book V*, 91–102.
- Paula, R.C., Medici, P., Morato, R.G. (2008). Plano de Ação para a Conservação do Lobo-Guará Análise de viabilidade populacional e de habitat. Ibama, Brasília, DF.
- Quaglietta L, Hajkova P., Mira A. & Boitani L. (2015). Eurasian otter (*Lutra lutra*) density estimate based on radio tracking and other data sources. *Mammal Research*, 60, 127-137.
- Rduch, V., (2014). Ecology and population status of the puku antelope (Kobus vardonii LIVINGSTONE, 1857) in Zambia. PhD thesis, Universitäts-und Landesbibliothek Bonn.
- Reis, R.N., Peracchi, A. L., Pedro, W. A. & Lima, I.P (2006). *Mamíferos do Brasil*. 1st edition. Londrina, PR.
- Rice, C.G. (1988). Habitat, Population Dynamics, and Conservation of the Nilgiri tahr, Hemitragus hylocrius. Biological Conservation 44, 137-156.
- Rose, R. (1987). Reproductive biology of the Tasmanian bettong (Bettongia gaimardi: Macropodidae). Journal of Zoology, 212, 59-67.
- Rosenblatt, E., Becker, M.S., Creel, S., Droge, E., Mweetwa, T., Schuette, P.A., Watson, F., Merkle, J. & Mwape, H. (2014). Detecting declines of apex carnivores and evaluating their causes: An example with Zambian lions. *Biological conservation*, *180*, 176-186.
- Ruiz-Olmo, J., Delibes., & Zapata, S.C. (1998). External morphometry, demography and mortality of the otter *Lutra lutra* (Linneo, 1758) in the Iberian Peninsula. *Galemys*, 10, 239–251.
- Schaller, G.B (1996). Distribution, status, and conservation of wild yak Bos grunniens. Biological Conservation, 76, 1-8.
- Schaller G.B., Kang A., Cai X. & Liu Y. (2006). Migratory and calving behavior of Tibetan antelope population. Acta Theriologica, 26:105–113.
- Scott, L.K., Hume, I.D., Dickman, C.R., (1999). Ecology and population biology of long-nosed bandicoots (*Perameles nasuta*) at North Head, Sydney Harbour National Park. *Wildlife Research*, 26, 805-821.
- Seiler A., Helldin J-O, Eckerston T. (2005). Road mortality in Swedish badgers (Meles meles): Effect on population. In: Seiler A. 2003. The toll of the automobile: Wildlife and roads in Sweden. PhD Thesis, Swedish University of Agricultural Sciences.
- Seiler, S., Helldin, J-O. & Seiler, C. (2004). Road mortality in Swedish mammals: results of a drivers' questionnaire. Wildlife Biology, 10, 225-233
- Sillero-Zubiri, C., Hoffmann, M., & McDonald, D. (2004). Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan. IUCN/SSC Canid Specialist Group.
- Singh et al. 2006. Reproductive biology of Lion-tailed macaque (Macaca silenus): An important key to the conservation of an endangered species. Current science 90(25) 804-811.
- Smith, H.T. & Engeman, R.M. (2002). An extraordinary raccoon, *Procyon lotor*, density at an urban park. *Canadian Field-Naturalist*, 116, 636–639.
- Streilein, K.E. (1982). Ecology of small mammals in semiarid Brasilian caatinga. III. Re- productive biology and population ecology. Annals Carnegie Museum, 51, 251- 269.
- Swanepoel, L., Somers, M., Van Hoven, W., Schiess-Meier, M., Owen, C., Snyman, A., ...& Dalerum, F. (2015). Survival rates and causes of mortality of leopards Panthera pardus in southern Africa. *Oryx*, 49, 595–603
- Tablado Z., Revilla E., Palomares F. (2012). Dying like rabbits: general determinants of spatio- temporal variability in survival. *Journal of Animal Ecology*, 81, 150-161.
- Todd, C.R., Jenkins, S., Bearlin, A.R. (2002). Lessons about extinction and translocation: models for eastern barred bandicoots (*Perameles gunnii*) at Woodlands Historic Park, Victoria, Australia. *Biological Conservation*, 106, 211-223.
- Trolle, M., Noss, A. J., Lima, E. De S., Dalponte, J.C. (2007). Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. *Biodiversity and Conservation*, 16,1197–1204.
- Troyer, E.M., Cameron Devitt, S.E., Sunquist, M.E., Goswami, V.R. & Oli, M.K. (2014). Survival, recruitment, and population growth rate of an important mesopredator: the northern raccoon. *PLoS ONE* 9(6), e98535.
- Twichell, A.R. & Dill, H.H. (1949). One hundred raccoons from one hundred and two acres. Journal of Mammalogy, 30, 130–133.
- Tyndale-Biscoe, C.H., & Renfree, M. (1987). Reproductive physiology of marsupials. Cambridge University Press.

- Unnsteinsdóttir E.R (2014). The wood mouse Apodemus sylvaticus in Iceland: population dynamics and limiting factors at the northern edge of the species' range Ester. PhD thesis, University of Iceland.
- Van Dyck, S. & Strahan, R. (2008). The mammals of Australia. New Holland Pub Pty Limited.
- Virgl, J.A. & Messier, F. (1997). Habitat suitability in muskrats: a test of the food limitation hypothesis. *Journal of Zoology*, 243, 237–253.
- Virgl, J.A. & Messier, F. (2000). Assessment of source-sink theory for predicting demographic rates among habitats that exhibit temporal changes in quality. *Canandian Journal of Zoology*, 78, 1483–1493.
- Wagner, A.P. (2006). Behavioral ecology of the striped hyena (Hyaena hyaena). PhD thesis, Montana State University-Bozeman.

Wang, J.J., (2004). Studies on the comparative behavior between stalled and reinroduced Przewalskii horse. Master thesis, Beijing Forestry University.

- Wang, Y., Piao, Z.J., Guan, L., Wang, X.Y., Kong, Y.P. & Chen, J.D. (2013). Road mortalities of vertebrate species on Ring Changbai Mountain Scenic Highway, Jilin Province, China. North-Western. *Journal of Zoology*, 9, 399-409.
- Warwick, H., Morris, P., & Walker, D. (2006). Survival and weight changes of hedgehogs (*Erinaceus europaeus*) translocated from the Hebrides to Mainland Scotland. *Lutra*, 49, 89-102.
- Wauters, L., Matthysen, E. & Dhondt, A.A. (1994). Survival and lifetime reproductive success in dispersing and resident red squirrels. *Behavior Ecology* Sociobiology, 34,197-201.

Wayne, A.F., Maxwell, M.A., Ward, C.G., Vellios, C.V., Williams, M.R. & Pollock, K.H. (2016). The responses of a critically endangered mycophagous marsupial (*Bettongia penicillata*) to timber harvesting in a native eucalypt forest. *Forest Ecology and Management*, 363, 190-199.

- Welch, R.J., Tambling, C.J., Bissett, C., Gaylard, A., Müller, K., Slater, K., Strauss, W.M. & Parker, D.M. (2015). Brown hyena habitat selection varies among sites in a semi-arid region of southern Africa. *Journal of Mammalogy*, 97, 473-482.
- Williams, D.F., Kelly, P.A., Hamilton, L.P., Lloyd, M.R., Williams, E.A. & Youngblom, J.J. (2008). Recovering the endangered riparian brush rabbit (*Sylvilagus bachmani riparius*): reproduction and growth in confinement and survival after translocation. In: Alves, P.C., Ferrand, N., Hackländer, K. (Eds.). *Lagomorph biology: evolution, ecology, and conservation*. Springer, Berlin, pp. 349–361.

Woodroffe, R., (2011). Demography of a recovering African wild dog (Lycaon pictus) population. Journal of Mammalogy, 92(2), 305-315.

Yoganand, K. (2005). Behavioural Ecology of Sloth Bear (*Melursus ursinus*) in Panna National Park, Central India. PhD thesis, Saurashtra University, Rajkot, India.

Roadkill data.csv

At 10.6084/m9.figshare.12993470

List of species with roadkill and references: Region/Continent, Order, Family, Species (scientific name), IUCN (conservation status: NE – Not Evaluated, DD – Data Deficient, LC – Least Concern, NT – Near Threatened, VU – Vulnerable, EN – Endangered, CR – Critically Endangered), No roadkill (number of individuals roadkilled, No surveys (number of surveys), No kms (number of kms surveyed), survey period (days), roadkill rate_survey (ind./km/days of survey*365), roadkill rate_survey period (ind./km/ number of days of the survey period*365), Country, Reference, Select (1 – selected species and records for the age-structured models).

References of roadkill database

- Arslanbekova, F.F. (2011). *Damaging effects on the environment for thermal power plants and vehicles*. PhD Thesis, Russian State Open Agrarian University, Russia.
- Attademo, A.M., Peltzer, P.M., Lajmanovich, R.C., Elberg, G., Junges C., Sanchez, L.C. & Bassó, A. (2011). Wildlife vertebrate mortality in roads from Santa Fe Province. Argentina. *Revista Mexicana de Biodiversidad*, 82, 915-925.
- Bagatini, T. (2006). Evolução dos índices de atropelamento de vertebrados silvestres nas rodovias do entorno da estação ecológica Águas Emendadas, DF, Brasil, e eficácia de medidas mitigadoras. Master thesis, Universidade de Brasília, Brasil.
- Baker, P.J., Dowding C.V., Molony S.E., White P.C.L. & Harris S. (2007). Activity patterns of urban red foxes (*Vulpes vulpes*) reduce the risk of traffic-induced mortality. *Behavioural Ecology*, 18, 716-724.
- Balakrishnan, M. & Afework B. (2008). A road kill of the Ethiopian Genet Genetta abyssinica along the Addis Ababa–Dira Dewa highway, Ethiopia. Small Carnivore Conservation, 39, 37-38.
- Baliauskas, L. & Baliauskien L. (2008). Wildlife-vehicle accidents in Lithuania, 2002–2007. Acta Biologica Universitatis Daugavpiliensis, 8, 89-94.
- Barichivich, D.J. & Dodd Jr, C.K. (2002). The effectiveness of wildlife barriers and underpasses on U.S. Highway 441 across Paynes Prairie State Preserve, Alachua County, Florida. Phase II Post-Construction Final Report, Contract No. BB-854. Florida Department of Transportation, Tallahassee, Florida.
- Barrientos, R., & Bolonio, L. (2009). The presence of rabbits adjacent to roads increases polecat road mortality. *Biodiversity and Conservation*, 18, 405-418.
- Barthelmess, E.L. & Brooks, M.S. (2010). The influence of body-size and diet on road-kill trends in mammals. *Biodiversity and Conservation*, 19,1611–1629.
- Baskaran, N. & Bomminathan D. (2010). Road kill of animals by highway traffic in the tropical forests of Mudumalai Tiger Reserve, southern India. *JoTT Communication*, 2, 753-759.
- Behera, S. & Borah J. (2010). Mammal mortality due to road vehicles in Nagarjunasagar-Srisailam Tiger Reserve, Andhra Pradesh, India. *Mammalia* 74, 427 430.
- Bélanger-Smith, K. (2014). Evaluating the effects of wildlife exclusion fencing on road mortality for medium-sized and small mammals along Quebec's Route 175. Master thesis, Concordia University, Canada.
- Belant, J.L. (1995). Moose collisions with vehicles and trains in northeastern Minnesota. Alces, 31, 45-52.
- Belão, M., Bóçon, R., Christo, S.W., Souza, M.A.M. & Souza Jr, J.L. (2013). Levantamento de mamíferos atropelados na rodovia BR-277. Paraná, Brasil. Anais do II Congresso Brasileiro de Ecologia de Estradas (REB 2011).
- Bissonette, J.A. Kassar, CA & and Cook, L. (2008). Assessment of costs associated with deer–vehicle collisions: human death and injury, vehicle damage, and deer loss. *Human–Wildlife Interactions*, 2 (1) 9.
- Bóçon, R., Belão, M., Brixel, C. (2013). Atropelamento de mamiferos na BR-277. Região Leste do Estado do Paraná. *Anais do II Congresso Brasileiro de Ecologia de Estradas (REB 2011).*

- Bouffard, M., Leblanc, Y., Bédard, Y. & Martel, D. (2012). Impacts de clôtures métalliques et de passages fauniques sur la sécurité routière et le déplacement des orignaux le long de la route 175 au Québec. *Le Naturaliste Canadien*, 136,8-15.
- Bruinderink, G.W.T.A., & Hazebroek, E. (1996). Ungulates traffic collisions in Europe. *Conservation Biology*, 10, 1059-1067.
- Bueno, C. (2013). O atropelamento de capivaras (Hydrochoerus hydrochaeris) e sua relação com a paisagem no entorno da rodovia BR-040. *Anais do II Congresso Brasileiro de Ecologia de Estradas (REB 2011).*
- Bullok, K.L., Malan, G. & Pretorius, D. (2011). Mammal and bird road mortalities on the Upington to Twee Rivieren main road in the southern Kalahari, South Africa. *African Zoology*, 46, 60-71.
- Calvo, R.N. & Silvy, N.J. (1996). Key deer mortality, U.S.1 in the Florida Keys. Proceedings of the Florida Department of Transportation/Federal Highway Administration transportation-related wildlife mortality seminar, Tallahassee, Florida.
- Camargo, C. (2013). Variação sazonal e espacial de vertebrados silvestres atropelados em três rodovias do Bioma Pampa do Sul do Brasil. *Anais do II Congresso Brasileiro de Ecologia de Estradas (REB 2011).*
- Caro, T. (2013). Trends in mortality of mammals on roads in Northern California. *The Southwestern Naturalist*, 58, 440-445.
- Carvalho, C.F. (2014)a. Atropelamento de vertebrados, hotspots de atropelamentos e parâmetros associados, *BR-050, trecho Uberlândia-Uberaba*. Master thesis, Universidade Federal de Uberlândia, Brazil.
- Carvalho, N.C., Bordignon M., Shapiro J. (2014). Fast and furious: a look at the death of animals on the highway MS-080, Southweastern Brazil. *Iheringia, Sériae Zoologia*, 104, 1.
- Casella, J. (2006). Uso de sensoriamento remoto e análise espacial na interpretação de atropelamentos de fauna entre Campo Grande e Aquidauana. MS. *Anais 1º Simposio de Geotecnologias no Pantanal, Campo Grande, Brasil.*
- Castillo-Sánchez, C. (2000). Highways and wildlife conservation in Mexico: the Sonoran pronghorn antelope at the El Pinacate y Gran Desierto de Altar Biosphere Reserve along the Mexico-USA border. Proceedings of the third International Conference on Wildlife Ecology and Transportation. Florida Department of Transportation, Tallahassee, Florida.
- Cebekhulu, C. (2015). A Comparison of Wildlife's Behavioural Responses to Vehicles in Fenced and Unfenced Areas. BSc thesis, University of the Free State, Qwaqwa, South Africa.
- Cervinka, J., Riegert, J., Grill, S., Sálek, M. (2015). Large-scale evaluation of carnivore road mortality: the effect of landscape and local scale characteristics. *Mammal Research*, 60, 233-243.
- Chambers, B. & Bencini, R. (2010). Road mortality reduces survival and population growth rates of tammar wallabies on Garden Island, Western Australia. *Wildlife Research*, 37, 588–596.
- Chhangani, A.K. (2004). Mortality of wild animals in road accidents in Kumbhalgarh wildlife sanctuary, Rajasthan, India. *Journal of the Bombay Natural History Society*, 101, 151-154.
- Choi J., Park HM, Sang-don L. (2015). An Analysis of Wildlife Roadkill Based on Land Cover in South Korea Expressway: In Case of Jungbu Expressway. *Int'l Conference on Waste Management, Ecology and Biological Sciences (WMEBS'15), Kuala Lumpur, Malaysia.*
- Chuikova L.Y. (2010). Assessment of animal deaths on intercity highways of Astrakhan region. Estestvennye nauki, 2(31), 69-75.
- Clevenger, A.P., Chruszcz, B. & Gunson, K.E. (2003). Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. *Biology Conservation*, 109,15-26.
- Clevenger, A.P., Hardy, A., Gunson, K.E. (2007). Limiting effects of road-kill reporting data due to spatial inaccuracy. In J. A. Bissonette (Ed). *Evaluation of the use and effectiveness of wildlife crossings*. (Report NCHRP 25-27., pp. 84-101). Transportation Research Board, Washington, DC.
- Colino-Rabanal, V., Lizana, M. & Peris, S. (2011). Factors influencing wolf *Canis Iupus* roadkills in Northwest Spain. *European Journal of Wildlife Research*, 57, 399-409.
- Collinson, W.J., Parker, D.M., Bernard, R.T.F., Reilly, B.K. & Davies-Mostert, H.T. (2015). An inventory of vertebrate roadkill in the greater Mapungubwe Transfrontier conservation area, South Africa. *African Journal of Wildlife Research*, 45, 301-311.
- Costa R. & Dias L.A. (2013). Mortalidade de vertebrados por atropelamento em um trecho da GO-164, no sudeste Goiano. *Revista de Biotecnologia & Ciência*, 2,2, 58-74.
- Costa, L.S. (2011). Levantamento de mamíferos silvestres de médio e grande porte atropelados na BR-101. entre os municípios de Joinville e Pirraþas. Santa Catarina. *Bioscience Journal*, 27, 3, 666-672.

- Cunha, H., Moreira, F.G.A., Silva, S.S. (2010). Roadkill of wild vertebrates along the GO-060 road between Goiânia and Iporá. Goiás State, Brazil. *Acta Scientarium Biological Sciences, Maringá*, 32,3, 257-263.
- Dean, W.R.J. & Milton, S.J. (2003). The importance of roads and road verges for raptors and crows in the Succulent and Nama-Karoo, South Africa. *Ostrich-Journal of African Ornithology*, 74, 181-186.
- Delgado, C.A. (2007). Muerte de mamíferos por vehículos en la vía del escobero, Envigado (Antioquia), Colombia. *Actualidades Biológicas*, 29, 229-233.
- Domingues, W.M., Latini, J.D., Machado, M.H., Oliveira, A. (2010). *Ecologia de Estradas: Rodovias PR 317 e BR 158 Maringá a Campo Mourão. Report.*
- Dorcas, M.E., Willson J.D., Reed R.N., Snow R.W., Rochford, M.R., Miller, M.A., Meshaka, M.W., Andreadis, P.T., Mazzotti F.J., Romagosa C.M., Har K.M. (2012). Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. *Proceedings of the National Academy of Sciences*, 109, 2418–2422.
- Driessen, M.M., Mallick S.A. & Hocking G.J. (1996). Habitat of the Eastern Barred Bandicoot, *Perameles gunnii*, in Tasmania: an Analysis of Road-kills. *Wildlife Research*, 23, 721-727.
- Dussault, C., Poulin, M., Courtois, R, Oullet, J.P. (2006). Temporal and spatial distribution of moosevehicle accidents in the Laurentides Wildlife Reserve, Quebec, Canada. *Wildlife Biology* 12, 415-425.
- Dutra, F. M.; Silva, R. M.; Oliveira, M. C.; Silva, R. C.; Silva, M. S.; Zammataro, R. R.; Monteiro, P. S. D.; Alves, D. N. M.; Hatano, F. H.; Martins-Hatano, F. (2010). Incidência de Atropelamento da Mastofauna de Carnívoros (Carnivora) nas estradas Raymundo Mascarenhas e Manganês Azul, na Floresta Nacional de Carajás - Pará. XXVIII Congresso Brasileiro de Zoologia, 2010, Belém.
- EDI (2015). Large mammal-vehicle collisions: overview mitigations and analysis of collisions in Yukon. Report MRC-15-02. Government of Yukon, Whitehorse, Yukon, Canada.
- Fudge, D., Freedman, B., Crowell, M, Nett, T. & Power, V. (2007). Road-kill of mammals in Nova Scotia. *The Canadian Field-Naturalist.* 121, 265–273.
- Gagnon, J.F. (2013). *Elk movements associated with a high-traffic highway: Interstate 17.* Report FHWA-AZ-13-647. Arizona Department of Transportation, Phoeniz, Arizona.
- Gaisler, J., Řehák, Z. & Bartonička, T. (2009). Bat casualties by road traffic (Brno-Vienna). Acta Theriologica, 54, 147–155.
- GDF (2013). Diagnóstico e Proposição de Medidas Mitigadoras para Atropelamento de Fauna Projecto Rodofauna. Resumo Executivo, Brasília, Brasil.
- Gibeau, M.L. & Heuer, K. (1996). Effects of transportation corridors on large carnivores in the Bow River Valley, Alberta. Proceedings of the Transportation Related Wildlife Mortality Seminar. Florida Department of Transportation, Tallahassee, Florida. 67-79
- Giffney, R.A., Russell, T. & Kohen, J.L. (2009). Age of road-killed common bruushtail possums (*Trichosurus vulpecula*) and common ringtail possums (*Pseudocheirus peregrinus*) in an urban environment. *Australian Mammalogy*, 31, 137-142.
- Gilbert, T. & Wooding, J. (1996). An overview of black bear roadkills in Florida 1976-1995. Trends in addressing transportation related wildlife mortality: proceedings of the Transportation Related Wildlife Mortality Seminar, 308-322
- Gomes, D.C., Silva, V.C., Faria, A.A., Morais, M.A.V., Sant'Ana, C.E.R., Mendonça, L.G.A. (2013). Registro de atropelamento de animais silvestres entre as cidades de Palmeiras de Goiás e Edealina -GO. *Interdisciplinar: Revista Eletrônica da Univar*, 10,19-34.
- González-Gallina, A., Benítez-Badillo, G., Rojas-Soto, O.R. & Hidalgo-Mihart, M.G. (2013). The small, the forgotten and the dead: highway impact on vertebrates and its implications for mitigation strategies. *Biodiversity and Conservation*, 22, 325–342.
- Green, A.D., Cramer, P.C., Sakaguchi, D.K. & Merrill, N.H. (2012). Using wildlife-vehicle collision data to plan and implement transportation mitigation: case studies from Utah. *Proceedings of the 2011 International Conference on Ecology and Transportation*. Center for Transportation and the Environment, North Carolina.
- Grilo, C. & Santos-Reis, M. (2009). Análise da mortalidade de fauna por atropelamento na rede de autoestradas da Brisa 2002-2008. *Final report CBA/FCUL*.
- Grilo, C., Bissonette, J.A. & Santos-Reis, M. (2009). Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation. *Biological Conservation*, 142, 301-313.
- Gumier-Costa F & Sperber CF (2010). Impacto de atropelamentos de Sylvilagus brasiliensis na Floresta Nacional de Carajás, Pará, Brasil. *Acta Amazonica*, 39, 2, 459-466.

Gumier-Costa, F. & Sperber C.F. (2009). Atropelamentos de vertebrados na Floresta Nacional de Carajás, Pará, Brasil. *Acta Amazonica*, 39, 459-466.

Gunther K.A., Biel, M.J. & Robison, H.L (1998). Factors influencing the frequency of road-killed wildlife in Yellowstone National Park. Proceedings of the International Conference on Wildlife Ecology and Transportation. Federal Highway Administration, Washington, D.C., 32–42.

Haigh, A. (2012). Annual patterns of mammalian mortality on two Irish roads. *Hystrix*, 23, 58–66.

Haule, L. (2014). *Analysis of factors contributing to wildlife highway kills in Mikumi National Park*. BSc Research Report. Sokoine University of Agriculture. Faculty of Forestry and Nature Conservation.

Hobday, A.J. & Minstrell, M.L. (2008). Distribution and abundance of roadkill on Tasmanian highways: human management options. *Wildlife Research*, 35, 712-726.

Hubbard, M.H. (2000). Factors influencing the location of deer-vehicle accidents in Iowa. *Journal Wildlife Management*, 64, 707-712.

Inbar, M. & Mayer, R.T. 1999. Spatio-temporal trends in armadillo diurnal activity and road- kills in central Florida. *Wildlife Society Bulletin*, 27, 865-872.

Jones, M.E. (2000). Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils. *Wildlife Research*, 27, 289-296.

Joshi, R. & Dixit, A. (2012). Wildlife mortality on national highway 72 and 74 across Rajaji National Park and the Hariwar Conservation area, North India. *International Journal of Conservation Science*, 3, 127-139.

Joyce, T.L. & Mahoney, S.P. (2001). Spatial and temporal distributions of moose-vehicle collisions in Newfoundland. *Wildlife Society Bulletin*, 29, 281-291.

Kanda, L.L., Fuller, T.K., Sievert, P.R. (2006). Landscape associations of road-killed Virginia Opossums (*Didelphis virginiana*) in central Massachusetts. *American Midland Naturalist*, 156, 128-134.

Kioko, J., Kiffner C., Jenkins, N. & Collinson, W.J. (2015). Wildlife roadkill patterns on a major highway in northern Tanzania. *African Zoology*, 50, 17-22.

Klar, N., Herrman, M. & Kramer-Schadt, S. (2009). Effects and Mitigation of Road Impacts on Individual Movement Behavior of Wildcats. *Journal of Wildlife Management*, 73, 631-638.

Klöcker, U., Croft D.B. & Ramp, D.B. (2006). Frequency and causes of kangoroo-vehicle collisions on an Australian outback highway. *Wildlife Research*, 33, 5-15.

Koppe, V.C. & Advincula, M.F.A. (2008). Mamíferos atropelados em um trecho da MT 449 em Lucas do Rio Verde MT. *IV Congresso Brasileiro de Mastozoologia, São Lourenço-MG, Brasil.*

Kumara, H.N., Sharma, A.K., Kumar, A.& Singh, M. (2000). Roadkills of wild fauna in Indira Gandhi Wildlife Sanctuary, Western Ghats, India: Implications for management. *Biosphere Conservation*, 3, 41-47.

Lagos, L., Picos, J. & Valero, E. (2012). Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. *European Journal of Wildlife Research*, 58, 661-668.

Lee S.D. (2007). Current status of roadkills in a major Highway in Korea. 13th REAAA Conference.

Lee, T., M. S. Quinn, and D. Duke. (2006). Citizen, science, highways, and wildlife: using a web-based GIS to engage citizens in collecting wildlife information. *Ecology and Society* 11(1): 11.

Lehnert, M.E. (1996). *Mule deer highway mortality in northeastern Utah: an analysis of population-level impacts and a new mitigation system*. MSc. thesis, Utah State University, Logan, Utah, USA.

Leite, R.M.S, Bóçon, R.,Belão, M. & Silva, J.C. (2012). Atropelamentos de mamíferos silvestres de médio e grande porte nas Rodovias PR-407 e PR-508, Planície Costeira do Estado do Paraná, Brasil. In A. Bager A. (Ed.). Ecologia das Estradas: tendências e pesquisa. UFLA, Lavras, Brasil.

Lesiński, G., Sikora, A. & Olszewski, A. (2011). Bat casualties on a road crossing a mosaic landscape. *European Journal of Wildlife Research*, 57, 217-223.

Lima, S.F. & Obara, A.T. (2004). Levantamento de animais silvestres atropelados na BR-277 às margens do Parque Nacional do Iguaçu: subsídio ao programa multidisciplinar de proteção à fauna. http://faunativa.tempsite.ws/downloads/impactos/animais_atropelados_em_rodovias.pdf

Madsen, A.B., Strandgaard, H., & Prang, A. (2002). Factors causing traffic killings of roe deer *Capreolus capreolus* in Denmark. *Wildlife Biology*, 8, 55-61.

Marocco, J.C., Rosset, J.M., Maestri, R. (2012). Atropelamentos de carnívoros (Carnivora) em um trecho da BR-282, oeste do estado de Santa Catarina - Etapa 1. 6º Congresso Brasileiro de Mastozoologia, Corumbá/MS.

Massocato, G.F. (2009). Levantamento dos Vertebrados Atropelados na MS- 270 de Dourados/MS a Cidade Universitária e o Geooreferenciamento dos Fragmentos próximos a rodovia. BSc thesis. Universidade Federal da Grande Dourados.

Medinas, D., Marques, J.T. & Mira, A.(2013). Assessing road effects on bats: the role of landscape, road features, and bat activity on road-kills. *Ecological Research*, 28, 227-237.

Meneguetti, D.U.O., Meneguetti, N.F.S.P., Trevisan, O. (2010). Georreferenciamento e reavaliação da mortalidade por atropelamento de animais silvestres na linha 200 entre os municípios de Ouro Preto do Oeste e Vale do Paraíso - RO. *Revista Científica FAEMA*, 1,1, 58-64.

Mkanda, F.X. & Chansa, W. (2011). Changes in temporal and spatial pattern of road kills along the Lusaka-Mongu (M9) highway, Kafue National Park, Zambia. *South African Journal of Wildlife Research*, 41, 68-78.

Molinari, R.C., Bóçon, R., Umbria, S.C. (2014). Atropelamentos de mamíferos de médio e grande porte nas rodovias PR 508 e PR 407 no estado do Paraná. Anais do Road Ecology Brazil 2014.

Morales-Mávil, J.E., Villa-Cañedo, J.T., Rodríguez, SHA, Morales, L.B. (1997). Mortalidad de vertebrados silvestres en una carretera asfaltada de la región de Los Tuxtlas, Veracruz, México. *La Ciencia y el Hombre*, 27:7-23.

Morelle, K., Lehaire, F. & Lejeune, P. (2013). Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. *Nature Conservation*, 5, 53-73.

Murison, M. (2012). The impact of wildlife road traffic accidents on two road types near Grahamstown in the Eastern Cape, South Africa. BSc thesis. Rhodes University, Grahamstown, South Africa.

Mysterud, A. (2004). Temporal variation in the number of car-killed red deer *Cervus elaphus* in Norway. *Wildlife Biology*, 10, 203-211.

Niemi, M., Tiilikainen, R. & Nummi, P. (2013). Moose–vehicle collisions occur earlier in warm springs. *Acta Theriologica*, 58, 341-347.

Noro, M. 2010. Analysis of deer ecology and landscape features as factors contributing to deer-vehicle collisions in Hokkaido. Transportation Research Board 89th Annual Meeting.

Omena Jr R. ,Pantoja-Lima J., Santos A.L.W., Ribeiro G.A.A. & Aride P.H.R. (2012). Caracterização da fauna de vertebrados atropelada na BR-174. Amazonas. Brasil. *Revista Colombiana de Ciencia Animal*, 4, 291-307.

Orłowski G. & Nowak L. (2004). Road mortality of hedgehogs *Erinaceus* ssp. in farmland in Lower Silesia (south-western Poland). *Polish Journal Ecology*, 52, 369–374.

Pafko, F. & Kovach, B. (1996). Experience with deer reflectors. Proceedings of the Transportation Related Wildlife Mortality Seminar. Florida Department of Transportation, Tallahassee, Florida.

Palazón, S., Melero, Y., Gómez, A., López de Luzuriaga, J., Podra, M., & Gosàlbez, J. (2012). Causes and patterns of human-induced mortality in the Critically Endangered European mink *Mustela lutreola* in Spain. *Oryx*, 46, 614–616

PBA (2009). Relatório semestral de acompanhamento de atividades - Resgate e controle de atropelamento de fauna - Estrada Parque - RJ-163. PBA, Brasil.

Peltier, J. (2012). Incidence et prévention des accidents routiers impliquant la grande faune sur le réseau du ministère des Transports du Québec. *Le Naturaliste Canadien*, 136, 89-94.

Pereira, A.P.F.G., Andrade, F.A.G. & Fernandes, M.E.B. (2006). Dois anos de monitoramento dos atropelamentos de mamíferos na rodovia PA-458. Bragança. Pará. *Boletim do Museu Paraense Emílio Goeldi Ciências Naturais*, 1, 77-83.

Piao, Z., Jin, Y., Li S., Wang, C., Piao, J., Luo, Y., Wang, Z. & Sui, Y. (2012). Mammal mortality caused by highways in the Changbai Mountain National Nature Reserve of Jilin Province, China. *Acta Theriologica Sinica*. 32,124-129.

Pinheiro, B.F. &Turci, L.C.B. (2013). Vertebrados atropelados na estrada da Variante (BR-307). Cruzeiro do Sul. Acre. Brasil. *Natureza online*, 11, 68-78.

Pinowski, J. (2005). Roadkill of Vertebrates in Venezuela. Revista Brasileira de Zoologia, 22, 191-196.

Platt, S. & Snyder, W. (1995). Nine-banded armadillo, Dasypus novemcinctus(Mammalia: Edentata), in South Carolina: additional records and reevaluation of status. *Brimleyana*, 23, 89-93.

Pokorny, B. (2006). Roe deer-vehicle collisions in Slovenia: situation, mitigation strategy and countermeasures. *Veterinarski Arhiv*, 76, S177-S187.

Prada, C.S. (2004). Atropelamento de vertebrados silvestres em uma região fragmentada do nordeste do Estado de São Paulo: quantificação do impacto e análise dos fatores envolvidos. PhD thesis, Universidade Federal de São Carlos. Brasil.

Prado, T.R., Ferreira, A.A., & Guimarães, Z.F.S. (2006). Efeitos da implantação de rodovias no cerrado brasileiro sobre a fauna de vertebrados. Acta Scientiarum Biological Sciences. Maringá, 28, 3, 237-241.

- Ramm, C.B. (2015). Contaminação por metais nas capivaras Hydrochaeris hydrochaeris no Sul do Brasil. Master thesis, Universidade Federal do Rio Grande, Brasil.
- Ramp, D., Caldwell, J., Edwards, K.A., Warton, D. & Croft D.B. (2005). Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. *Biological Conservation* 126, 474-490.
- Rodosol (2014). 26º Relatório do monitoramento de animais atropelados na Rodovia do Sol (ES-60). Concessionária Rodovia do Sol S.A., Vila Velha, Espírito Santo.
- Rodríguez-Morales, B., Díaz-Varela, E.R. & Marey-Pérez, M.F. (2013). Spatiotemporal analysis of vehicle collisions involving wild boar and roe deer in NW Spain. *Accident Analysis & Prevention*, 60, 121–133.
- Roof, J. & Wooding, J. (1996). Evaluation of the S.R. 46 wildlife crossing in Lake County, Florida. Proceedings of the Transportation Related Wildlife Mortality Seminar. Florida Department of Transportation, Tallahassee, Florida pp 329-336.
- Santos, C.M., Fonseca, P.H.M., Marinho, T.S., Cunha, G.C., Santos, E.A., Soares M.H., Cavellani, CL, Ferraz, M.L.F., Custódio, A.E.I., Teixeira, V.P.A. & Martinelli, A.G. (2015). Estudo das espécies vítimas de atropelamento na rodovia BR-262, no trecho Uberaba-Peirópolis (Triângulo Mineiro. MG. Brasil). *Historia Natural*, 4, 2, 53-61.
- Santos, R.A.L., Figueiredo, A.P., Garcia, F.A.C., Gregório, L.S. & Guilan, C.M.(2012). Levantamento de fauna silvestre atropelada no entorno de cinco unidades de conservação do distrito federal. *Anais do II Congresso Brasileiro de Ecologia de Estradas (REB 2011).*
- Seiler, A., Helldin, J-O. & Seiler, C. (2004). Road mortality in Swedish mammals: results of a drivers' questionnaire. *Wildlife Biology*, 10, 225-233.
- Selvan, K.M., Sridharan, N, & John, S. (2011). Roadkill animals on national highways of Karnataka, India. *Journal of Ecology and the Natural Environment*, 4, 363-365.
- Seo, C., Thorne, J.H., Choi, T. & Park C-H. (2015). Disentangling roadkill: the influence of landscape and season on cumulative vertebrate mortality in South Korea. *Landscape Ecological Engineering*, 11, 87-99.
- Sharma R.C. (2013). Mitigation of impact of national highway 58 Indian primate, Hanuman langur (*Presbytis entellus*) in Uttarakhand Himalayas. *Proceedings of the 2013 International Conference on Ecology and Transportation (ICOET 2013)*
- Shevtsov A. S. (2012). *Elimination of vertebrates on the roads of the Central Caucasus*. PhD Thesis, Southern Federal University (Rostov on Don), Russia.
- Silva, D.E., Corrêa, L.L.C., Oliveira, S.F. & Cappellari, L.H. (2013). Monitoramento de vertebrados atropelados em dois trechos de rodovias na região central do Rio Grande do Sul, Brasil. *Revista de Ciências Ambientais*, 7,1, 27-36.
- Silva, M. S., Dutra, F. M.; Zammataro, R. R.; Oliveira, M. C.; Silva, R. M.; Silva, R. C.; Duarte, P. S.; Gettinger, D.; Hatano, F. H.; Martins-Hatano, F. (2010). Estudo dos atropelamentos de *Didelphis marsupialis* na Floresta Nacional de Carajás. Pará.
- Simón M.A. (2012). *Ten years conserving the Iberian lynx*.Consejeria de Agricultura y Medio Ambiente, Junta de Andalucia, Seville.
- Smith, D.J. (2011). Cost effective wildlife crossing structures which minimize the highway barrier effects on wildlife and improve highway safety along US 64, Tyrrell County, NC. Report FHWA/NC/2009-26. North Carolina Department of Transportation, Raleigh, North Carolina.
- Smith, L.L. & Dodd Jr, C.K. (2003). Wildlife mortality on highway US 441 across Paynes Prairie, Alachua County, Florida. *Florida Scientist*, 66,128-140.
- Sousa, M.A.N. & Miranda, P.C. (2010). Mamíferos terrestres encontrados atropelados na rodovia BR-230/PB entre Campina Grande e João Pessoa. *Revista de Biologia e Farmacia, Campina Grande*, 4, 72-82.
- Souza, A.S. (2014). Atropelamento de fauna silvestre entre Marabá e Parauapebas: BR-155 e PA-275. Anais Congresso Nacional de Meio Ambiente de Poços de Caldas, 6, 1.
- Taylor, B.D. & Goldingay, R.L. (2004). Wildlife roadkills on three major roads in north-eastern NSW. *Wildlife Research*, 31, 83-91.
- Tenés A., Cahill, S., Limona F., Molina G (2007). Atropellos de mamíferos y tráfico en la red viaria de un espacio natural en el área metropolitana de Barcelona: quince años de seguimiento en el Parque de Collserola. *Galemys* 19, 169-188.
- Wang, Y., Paio, Z.J., Guan, L., Wang, X.Y., Kong, Y.P., Chen, J. (2013). Road mortalities of vertebrate species on Ring Changbai Mountain Scenic Highway, Jilin Province, China. North-Western Journal of Zoology, 9,399-409.

- Weiss, L.P. & Vianna, V.O. (2012). Levantamento do impacto das rodovias BR-376. BR-373 e BR-277, trecho de Apucarana a Curitiba, Paraná, no atropelamento de animais silvestres. UEPG Ci. *Biologia Saude*, 18, 2, 121-133.
- Winton, B.R. & Takekawa, J.Y. (2001). Transportation impacts to wildlife on State Route 37 in northern San Pablo Bay, California. *Transactions of the Western Section of the Wildlife Society*, 37, 55–60.
- Zhang, F., Hu, D.F., Chen, J.L., Cao, T.T (2008). Locating safe passages for Przewalski's horse. *China Nature*, 3, 14-16.