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Abstract

The thesis consists of three chapters on volatility and variance risk premium. In
second chapter, we analyze volatility-managed strategies in commodity futures
markets. We focus on two kinds of strategy: scaling original portfolio before
and after its formation by volatility information, and three kinds of portfolio:
momentum, basis momentum and carry trade. We find that both two strategies
do not significantly improve the performance of the original portfolio. Exploring
potential reasons behind this result, we find that the accuracy of the forecasting
model, the economic conditions, the choice of the evaluation criteria, as well as
as the method used to construct the portfolio cannot explain our main results.
In third chapter, we investigate the time-series models for volatility risk pre-
mium (V RP) forecasts and their implications for volatility forecasting. We em-
ploy the role of VRP to reduce the bias in the model-free implied volatility
(MFIV) and get an efficient and unbiased forecast of volatility. We study on
commodity-related ETFs and compare the time-series model for volatility fore-

casting, EWMA and MFIV-related forecasts. Using Mincer-Zarnowitz regres-

v



sion and two kinds of loss function, we confirm that MFIV performs better than
EWMA and MFIV is biased. Furthermore, our adjustment for MFIV outper-
forms than pure MFIV and MFIV adjusted by historical averages of VRP. Our
findings are robust to alternative proxies of the realized volatility, different V RP
format and different rolling window of forecast.

In fourth chapter, we study the effects of federal fund rate announcements on
the market price of variance risk. We find that there is a positive relationship be-
tween the change in the variance risk premium and the interest rate shocks and
the response to FOMC surprise declines with increases of maturity. Addition-
ally, we document that the response is mainly driven by the reactions of implied
variance and variance risk premium with short maturity respond more to timing
surprise. Furthermore, we show that investors matter the downside risk and need
more compensation since most of the FOMC announcement effect is from the

expansionary policy, negative surprise and bad variance risk premium.
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Chapter 1

Introduction

1.1 Motivation

This thesis explores various issues related to the accurate modelling of volatility
as well as the impact of important news events on the variance risk premium.
Volatility, which reflects risk, is a kernel aspect of financial economic theory and
practice. It is well-known that volatility forecasting is more manageable than
return forecasting. Many investors select portfolios that seek to gain excess return
and reduce risk. A growing number of studies, e.g. Moreira and Muir (2017)
and |Han et al| (2021), make the case for volatility-managed strategies. The
volatility-managed strategies are widely used to boost portfolio return and adjust
risk exposure by volatility information. The strategies exploit the information of
volatility to adjust the leverage of the strategy. Fleming et al.| (2001}, 2003) show

that volatility management can boost the performance of the original portfolio.
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More recently, Barroso and Santa-Clara; (2015)), Moreira and Muir| (2017)) and [Han
et al.| (2021) all provide evidence that volatility managed portfolios outperform
the original portfolio by larger Sharpe ratio and less downside risk.

However, [Liu et al. (2019) point that the methodology of Moreira and Muir
(2017)) has a look-ahead bias and is impractical. They also analyze another three
volatility-managed strategies and find that they all fail to beat the market. [Bon-
gaerts et al. (2020)) correct the look-ahead bias of the strategy and also find
that the conventional volatility-timing strategy does not consistently increase the
Sharpe ratio and may even incur dramatic drawdowns. A volatility-managed
strategy is usually implemented by using the inverse of portfolio volatility to ad-
just portfolio weights. The strategy is based on the assumption of a negative re-
lationship between volatility and return. Although there exists a broad literature
on volatility-managed strategies in equity markets, there is little understanding
in commodity futures markets, especially for portfolios exploiting the characteris-
tics of commodity futures markets. In Chapter [2| we aim to enrich the literature
on commodity futures markets and investigate whether volatility-management
performs well in this asset class.

There exist several different kinds of volatility-managed strategies, e.g. |Clements
and Silvennoinen, (2013), Moreira and Muir| (2017)) and Bongaerts et al.| (2020).
We focus on the following two strategies. Moskowitz et al. (2012) use the volatil-

ity of each asset to adjust its weight before the formation of a time-series mo-
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mentum portfolio. Barroso and Santa-Clara (2015]) use the volatility of cross-
sectional momentum portfolio to adjust its risk exposure and find that the volatil-
ity management approach almost doubles the Sharpe ratio of the original portfolio
and significantly reduce the tail risk. |[Kim et al. (2016) find that the unscaled
time-series momentum portfolio is inferior to cross-sectional momentum. The
outstanding performance of a scaled time-series momentum portfolio is due to
volatility-managed strategy. To the best of our knowledge, there is little under-
standing in comparison to these strategies. It inspires us to investigate when is the
best timing for volatility-managed strategy. In Chapter [2| we focus on whether
there exists any significant difference between the timing of volatility-managed
strategy before or after portfolio formation.

Volatility forecasting is vital for risk management. There exists extensive re-
search on volatility forecasting, and most of it belongs to two streams. The first
one is using historical information of volatility, and the second one is deriving
the estimates of future volatility from implied volatility. In the second forecast-
ing category, the implied volatility is extracted from traded options prices and
is used to predict the realized volatility. The implicit assumption is that the
difference between implied volatility and realized volatility is zero. However, a
broad literature shows that there exists a significant and time-varying difference
between implied and realized volatility, e.g. |Carr and Wul (2009), Trolle and

Schwartz (2010)) and Prokopczuk et al.| (2017)). This difference between volatility
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under risk-neutral measure and volatility under physical measure is defined as
volatility risk premium.

Poteshman, (2000)) state that embedding volatility risk premium in the Heston
model can reduce the bias of implied volatility forecasting. (Chernov| (2007) points
that the volatility risk premium introduces a bias in volatility forecasting. Thus,
several studies on exploiting the volatility risk premium exist around volatility
forecasting, e.g. DeMiguel et al.| (2013)), |Prokopczuk and Wese Simen)| (2014)) and
Kourtis et al.| (2016). These researches focus on equity market or commodity
markets while the rapidly growing financial investment, Exchange Traded Funds
(ETFs) have received very little attention. Chapter [3| investigates the role of
volatility risk premium in volatility forecasting in commodity-related ETF's.

Bollerslev et al.| (2011) show that volatility risk premium is time-varying and
use an augment AR(1) model to forecast it. [DeMiguel et al.| (2013), Prokopczuk
and Wese Simen (2014) and Kourtis et al| (2016) use the historical average of
volatility risk premium to predict its future value. To the best of our knowledge,
there is a lack of studies on comparisons of time-series forecasting models for
volatility risk premium. In Chapter [3, we present and estimate several time-
series models to capture the dynamics of volatility risk premium and explore
their implications for volatility forecasting.

The variance risk premium is very close to volatility risk premium and is de-

fined as the difference between the variance under the risk-neutral measure and
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the variance under the physical measure. An extensive literature, e.g. |Carr and
Wu (2009) and Trolle and Schwartz (2010), shows that there exists a significant
and time-varying variance risk premium. Naturally, one may wonder what drives
the variance risk premium. In recent years, a growing body of literature inves-
tigates the impact of scheduled macroeconomic news announcements, especially
monetary policy news, on risk premium. [Bernanke and Kuttner| (2005)) find that
an unexpected change of federal fund rate significantly affects the S&P 500 in-
dex. |Lucca and Moench (2015) point that the mean excess return of the S&P
500 stock index on interest rate announcement days is much larger than on other
days. |Avino et al. (2019) study the announcement effect on the term-structure of
the dividend risk premium. They find that the announcement effect is strongest
at the short-end of the term-structure of the dividend risk premium and declines
with the maturity of the dividend asset. However, there is a lack of literature on
the relation between interest rate news and the market price of variance risk. In
Chapter [4] we set out to fill the research gap on whether monetary policy news
significantly affects the term-structure of the variance risk premium.

Bekaert et al.| (2013)) start with the VIX index and analyze the relation between
monetary policy and the components of the VIX, i.e. proxies for risk aversion and
uncertainty[] They document that lowering interest rate decreases risk aversion

and uncertainty. [Feunou et al.| (2018)) and Kilic and Shaliastovich! (2019) compute

1VIX is the volatility index of the S&P 500 Index.
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the good and bad variance risk premium and analyze their relationship with the
equity risk premium. Their study inspires us to dissect the variance risk premium
and analyze different monetary policy stances. In Chapter , we investigate 1)
the reaction of the term-structure of the variance risk premium to unexpected

changes of interest rates and 2) the main channel of announcement effect.

1.2 Overview and Contribution

This thesis sets out to answer the questions in Section [I.1 Overall it investigates
volatility and variance risk premium and offers several empirical findings.
Chapter 2 analyzes volatility-managed strategies in the commodity futures
market. We focus on 22 liquid and actively traded commodity futures data, two
kinds of volatility-managed strategies: scaling original portfolio before and after
its formation by volatility information, and three kinds of portfolios: momentum,
basis momentum, and carry trade. We enrich the literature on the implemen-
tation and investigation of volatility-managed strategies in commodity markets.
The conventional volatility-managed strategies scale the portfolio by its volatility
after its formation. We choose the target level of volatility, 18%, which is close to
our portfolio annual standard deviation. Analyzing the Sharpe ratio, maximum
drawdown and some statistics, we find that the conventional strategy cannot im-
prove the original portfolio performance. Volatility-managed strategies essentially

leverage up the risk exposure when the volatility is low and leverage down the
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risk exposure when the volatility is high. There is a gap in research on the effi-
cient timing of volatility-managed strategies, and we contribute to fill it. We use
the original portfolio as a benchmark and find that volatility-managed strategies,
either scaling portfolio before or after its formation, do not significantly boost
the Sharpe ratio and reduce downside risk. It suggests that there is no significant
difference between the two strategies.

One aim of the volatility-managed strategy is to reduce the downside risk, es-
pecially in economic downturns. We analyze volatility-managed strategies under
different economic conditions. To address the concerns of biases due to the perfor-
mance of the volatility forecasting model, We consider several models, including
the GJR-GARCH model, the HAR model and the historical average. Even the
best estimator, which is calculated by the GJR-GARCH model, cannot help the
strategy work. Additionally, we consider alternative benchmark and alternative
performance evaluation. Overall, volatility management does not significantly
improve the original portfolio performance.

In Chapter 3, we investigate various time-series models for the volatility risk
premium (VRP) and their implications for volatility forecasting. We enrich the
literature on correcting the implied volatility for the VRP. We show that doing
so can significantly reduce the biasedness of volatility forecasts in commodity-
related ETFs. We employ VIX and the other 5 commodity volatility indexes to

investigate the role of VRP in volatility forecasting. We employ the model-free
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implied volatility (MFIV) and the EWMA model as benchmarks. Comparing
the adjusted-MFIV with these two benchmarks, we can generally conclude that
MFIV beats EWMA and adjusted-MFIV beats MFIV. Before our study, there
is little research on the best VRP forecasts. We contribute to compare several
time-series models to capture the time-varying of VRP and aiming for the best
volatility estimators. Thus, we compare the VRP estimator from 1) the historical
average, 2) the AR(1), 3) the EWMA, and 4) the combination of realized volatility
and MFIV, and we find that this latter specification performs best.

To evaluate the accuracy of volatility forecasts, we employ Mincer-Zarnowitz
regressions as well as the Wald test to test the efficiency of estimators. Further-
more, we employ two kinds of loss functions: MSE and QLIKE to assess fore-
casting accuracy, and use the Diebold-Mariano (DM) test and non-parametric
Wilcoxon signed-rank test to assess the significance of the mean and median dif-
ferences respectively. We conclude that VRP estimators for volatility forecasting
from 1) the historical average, 2) the AR(1), and 4) the combination of realized
volatility and MFIV, are not significantly different from one another, and VRP
estimators from 4) performs better. Additionally, we consider alternative prox-
ies of the realized volatility, different VRP format, different rolling window of
forecasts and different benchmark to confirm our results are robust.

In Chapter 4, we analyze the effects of federal fund rate announcements on

the market price of the variance risk. We employ a large dataset of S&P 500



1.2. Overview and Contribution 9

index options and spot data to compute the term-structure of the variance risk
premium. To the best of our knowledge, our study is the first to investigate the
effect of monetary policy on the term-structure of the variance risk premium. We
document that there is a positive relationship between the change in the variance
risk premium and the interest rate shocks and the response of the variance risk
premium to FOMC surprise declines with increases of maturity. Furthermore, we
decompose the variance risk premium find that, for short maturity, the implied
variance reacts more to interest rate shocks than the realized variance. We then
decompose variance risk premium into its good and bad components and note
that most responses are from the bad variance risk premium.

Savor and Wilson| (2013) point that components of VIX react more strongly to
expansionary monetary policy by the VAR model. We consider the monetary pol-
icy stance, and our finding supports their conclusion. We also analyze the positive
and negative changes of interest rate and find that most of the announcement ef-
fect can be traced back to the negative interest rate shocks. Moreover, we conduct
several robustness checks and confirm the consistency of our findings.

The rest of this thesis is organized as follows. Chapter 2 focuses on volatility-
managed strategies in commodity markets. Chapter 3 studies the time-series
models for the volatility risk premium in commodity-related ETFs. Chapter 4
analyzes the reaction of the term structures of the variance risk premium to mon-

etary policy. Chapter 5 summarizes the thesis and discusses several suggestions
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for further research.
We make each chapter self-contained. As such, we (re)introduce variables
and abbreviations in each chapter. We endeavour to use consistent notations

throughout this thesis for a better reading experience.



Chapter 2

Volatility-managed Strategy in

the Commodity Markets

2.1 Introduction

It is widely acknowledged that return forecasting is much more difficult than
volatility forecasting. However, the relationship between volatility and return
helps us improve the performance of the portfolio by the information of volatil-
ity. Early studies, e.g. [Fleming et al|(2003), employ daily volatility information
to estimate volatility and find that volatility-managed portfolios outperform the
original optimal portfolio. They support that volatility management can increase
the economic value of the portfolio. Recently, a growing stream of the litera-

ture, e.g. Barroso and Santa-Clara (2015) and Moreira and Muir| (2017)), uses

11



2.1. Introduction 12

the predicted portfolio volatility to scale the original portfolio and improve the
performance of the portfolio. These studies confirms the success and importance
of volatility-managed strategy.

Most studies focus on equity markets and employ the volatility scaling af-
ter the formation of the original portfolio. We are interested in the following
questions. Whether the conventional volatility-managed strategy really improves
the performance of the original portfolio in commodity markets? Is there an al-
ternative volatility-managed strategy that can improve the performance? How
about scaling the portfolio before its formation? Whether the volatility-managed
strategies can have better performance by improving the accuracy of the volatility
estimate?

In this paper, we use daily settlement prices for 22 commodity futures to inves-
tigate the performance of volatility-managed strategies and focus on the timing
of risk-managed. We analyze several prominent commodity trading strategies:
momentum, basis momentum, and carry trading strategies. We study two kinds
of volatility-managed strategies: scaling the portfolio after its formation and scal-
ing the portfolio before its formation. The scaling weight is proportional to the
volatility estimate. We set the target volatility of the scaled portfolio as 18% per
year, which is close to the volatility of the original portfolio.

We document several findings. First, analyzing the Sharpe ratio, we find

that the conventional volatility-managed strategy does not significantly improve
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the performance of the original portfolio. |Liu et al.| (2019) and |Bongaerts et al.
(2020)) show that volatility-scaling after portfolio formation cannot consistently
outperform the original portfolio, and our conclusion is consistent with them. |Liu
et al.| (2019) study the equity market and show that volatility-managed strategies
cannot reduce the downside risk. We employ maximum drawdown to support
their findings.

Second, volatility-managed strategy scaled after portfolio formation has no
significant improvements of the original portfolio. Furthermore, there is no sta-
tistical difference between the strategy scaled before and after the portfolio for-
mation. Our results contribute to the problem that volatility-scaling timing is
not the critical point of improving the scaled portfolio. It suggests that only
taking the information of volatility estimate cannot certainly improve original
performance.

Third, we classify months into recession and expansion periods and investigate
the performance of scaled and unscaled portfolios. |Grundy and Martin (2001)
document that in equity market momentum has time-varying factor exposures
and it has a significant negative beta following a bear market. It suggests that
momentum strategy can be managed by market states. |Daniel and Moskowitz
(2016) confirm that momentum has a time-varying beta and show that it easily
occurs momentum crashes when the bear market with high volatility rebounds.

Not surprisingly, we find that all the portfolios perform badly under recession
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to expansion condition and all the portfolios outperform under expansion to re-
cession condition. Moreover, our results present that there are no statistically
significant improvements of scaled portfolios under different economic condition.

Fourth, we notice that the failure of volatility-managed strategies in our sam-
ple is not due to biased volatility estimates. We use more sophisticated volatility
forecasting models to get more accurate volatility estimates and then employ them
to construct the volatility-managed portfolio. Although the GJR-GARCH model
provides the least biased estimate, the improvements of scaled portfolios are still
not statistically significant. Again, results suggest that volatility-managed strate-
gies fail in our study and volatility information is not enough to ensure better
performance.

We conduct several additional tests. We choose the different weight of assets
by their ranking rather than equal weights. Unscaled portfolio of momentum and
basis momentum both have a larger mean of excess return than the equal-weighted
unscaled portfolio. For scaled portfolio, the Sharpe ratios of basis momentum
increase while those of momentum and carry decrease. Collectively, our main
finding, the difference of performance between scaled and unscaled portfolio are
insignificant, maintains. We follow [Fleming et al. (2003)) to study the economic
value of the scaled portfolio by performance fee. Consistent with the statistics
of performance, economic value of scaled portfolio is not statistically significant

unequal to 0.
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The structure of Chapter [2]is as follows: Section describes some related
studies. Section [2.3]introduces our data and methodology. Section [2.4]reports our
results and findings. Section presents some potential explanations. Finally,

Section 2.6] concludes.

2.2 Literature Review

Our work enriches the study of volatility-managed strategy especially in com-
modity future market. Barroso and Santa-Claral (2015) confirm that volatility-
managed strategy which scales the portfolio after its formation by the inverse of
portfolio volatility can reduce downside risk and improve Sharpe ratios. Mor-
eira and Muir| (2017)) apply a similar method to many market factors, including
momentum and currency carry, and document scaled portfolios outperform the
original ones. |Harvey et al. (2018) study more than 60 assets and point that
volatility-managed strategy reduces downside risk and increase Sharpe ratios for
risk assets. However, |Liu et al. (2019) and |Bongaerts et al.| (2020)) state that con-
ventional volatility-managed strategy cannot consistently succeed and improve-
ments from the strategies in [Moreira and Muir| (2017) and Harvey et al| (2018)
are driven by look-ahead bias.

Marshall et al.| (2008) point that commodity futures have lower transaction
costs, and it is easier to take short positions. Therefore, investors can manipulate

a variety of strategies in the commodity futures market. Daniel and Moskowitz
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(2016)) investigate many kinds of markets, including the commodity futures mar-
ket, and show that adjusted momentum strategy by the forecast of portfolio mean
and variance can significantly improve the strategy performance. Besides momen-
tum, Boons and Prado (2019) explore the character of the futures term structure
and put forward a basis-momentum strategy. Kang and Kwon| (2021) investigate
the performance of [Moreira and Muir| (2017) methodology in momentum and
basis-momentum in commodity futures markets[]] We contribute to the debate
about the efficiency of volatility-managed strategy in commodity futures markets
and add to the literature on the efficiency in different portfolio strategies.
Moskowitz et al. (2012) use volatility-managed strategy to scale time-series
momentum before its formation and find that scaled portfolio outperforms cross-
sectional momentum. |Kim et al.| (2016) claim that volatility-managed strat-
egy makes scaled time-series momentum outstanding, and the unscaled portfolio
has no significant difference with a buy-and-hold portfolio. The intuition of a
volatility-managed strategy reduces the risk exposure when volatility is high and
leverages up risk exposure when volatility is low. There is a gap in the literature
that which timing of managing the risk exposure, before or after the portfolio

formation, is more efficient. We fill it in this study.

!Compared with the parallel and independent study of Kang and Kwon| (2021)), our study
differs from it in following aspects. First, our study focuses on the difference in managing
timing. Second, we choose a different scaled methodology to alleviate the potential look-ahead
bias, which is explained by [Liu et al| (2019). Third, we provide a comprehensive analysis of
performance and focus on the improvement of methodology to explain the failure of volatility
management.
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Barroso and Santa-Clara| (2015) point that there exists a negative relation
between the volatility and return of momentum portfolio, so the return can be
improved by adjusting volatility. However, Barroso and Maio| (2019) present that
most other factors have a positive volatility-return relation. |Bongaerts et al.
(2020) claim that the weakly negative relation between volatility and return can
explain the poor performance of the conventional volatility-managed strategy.
They find that the negative relation usually happens in extreme volatility states.
Kang and Kwon| (2021)) use the simulation analysis to confirm the negative risk-
return relation and explain the failure of volatility-managed strategy. Our study
adds to the empirical literature on negative volatility-return relation.

Our work is related to the broad literature on the bias of volatility forecast-
ing and volatility estimates. Moreira and Muir| (2017) point that the efficiency
of volatility-managed strategy is affected by the accuracy of volatility estimates.
Han et al| (2021)) state that bias of volatility forecasting in volatility-managed
strategy may increase the volatility of the portfolio. |[Barroso and Santa-Claral
(2015) use the average of historical volatility information over the past 6 months
to estimate the volatility in the next month. Daniel and Moskowitz| (2016) employ
the GJR-GARCH model to forecast volatility in the next period. Bollerslev et al.
(2018) compare several forecasting models and find that inaccurate volatility esti-
mate makes the volatility of portfolio depart from the constant target level. They

conclude that the more accurate the volatility forecasting is, the more efficient
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the scaled portfolio is.

2.3 Data and Methodology

2.3.1 Data

We obtain daily settlement prices for 22 commodity futures from the Commodity
Research Bureau (CRB). Data are available for different contracts with different
sample periods, and our sample period starts from January 1986 to February
2015. For every month, the number of available contracts ranges from 19 to 22.
These 22 futures contracts are all liquid commodities and actively traded. These
futures markets represent 7 different commodity sectors: energy (Brent oil, WTI
oil, heating oil, natural gas), grains (corn, oats, rice, wheat), industrials (cotton,
lumber), meats (live cattle, lean hogs), metals (gold, copper, silver), oilseeds (soy
oil, soybeans, soy meal) and softs (cocoa, orange, coffee, sugar). Table reports
the details of these 22 contracts, such as contract names, contract tickers, futures
exchanges and maturity for each commodity futures market.

Following Szymanowska et al.| (2014]), the rollover day is the last trading day
of the month before the expiration month. This rollover practice helps us avoid
the occurrence of unusual price behaviour when the contracts are close to expi-
ration. Similar to Boons and Prado (2019), our studies focus on the first- and

second-nearby contracts which are more liquid and stable. Thus the second-
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nearby futures contract becomes the first-nearby contract after the rollover day.
In order to get the time-series of excess returns of a specific nearby, we com-
pute the returns based on its time-series prices after rollover. That means the
calculation of the returns which is the ratio of the current price over the same
order nearby contract or the next order nearby depends on whether it is the day
just after a rollover. For every commodity futures, we calculate the excess daily
returns on a fully collateralized futures position which is the common practice in

the commodity studies (e.g. Boons and Prado, 2019 and [Paschke et al., 2020):

F(m,l)

, Ft(fn{” — 1, if the day t is not the rollover day
R =q" (2.3.1)
Ft(ZLfi) h .
RO 1, otherwise

where R,Eff) is the simple excess return of the commodity m i*" futures contracts
realized at ¢ + 1 day. Ft(fl’i) denotes the price of the commodity m i* futures
contracts at t + 1 day. Similarly, Ft(fl’i) denotes the price of the commodity m
(i + 1) futures contracts at ¢t + 1 day.

By adopting the methods, we get the daily time-series excess returns of every
commodity first- and second-nearby futures contracts. Since our strategies focus
on the performance of monthly returns, we use the prices of the last trading day
of that month to get the monthly returns. Table presents the percentage of
annualized mean and standard deviations of the first and second nearby contracts

excess returns for each commodity markets. We can see that the volatility of the
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first nearby futures contracts ranges from 13.70 to 39.34 while that of the second
nearby futures contracts ranges from 11.72 to 34.93. It confirms that commodity

markets are very heterogeneous.

2.3.2 Methodology

Trading Strategy

Momentum Following Miffre and Rallis (2007), we employ the cross-sectional
momentum strategy and consider the first nearby futures contracts for every com-
modity. Our study only analyzes the momentum strategy with a ranking period
of 12 months and a holding period of 1 month without skipping. We rebalance our
momentum strategy at the end of each month | Following [Jegadeesh and Titman
(1993), we compute the compound return of the first nearby of each commodity
futures market over the previous 12 months to proxy its performance. At the end
of each month, we rank the first nearby of each futures markets in ascending or-
der of their performance to obtain the trading signal for the momentum strategy.
Considering the small observations in the cross-section of our commodity sample,
we form our momentum strategy by buying the top 5 commodities (winners) and

selling the bottom 5 commodities (losers)ﬁ Our approach narrows the difference

’In Kenneth R. French data library, the daily momentum return is obtained by the daily
rebalanced strategy. However, Daniel and Moskowitz (2016) study the monthly and daily
momentum strategies that are rebalanced at the end of each month. Our empirical approach is
similar in spirit.

3Miffre and Rallis (2007) study momentum strategies based on a cross-section of 31 com-
modity futures markets with the number of available contracts ranging from 22 to 27 at each
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between the performance of long and short futures contracts by taking half of
commodity futures markets into account. However, we also diversify the system
risk by adding more futures to our momentum strategyﬁ The realized excess
return of the momentum strategy is as follows:

2,1 i,1 7,1
Rxs—momi+1 = Wg(s) MOMt §+1) WXS MOMt §+1) (2.3.2)

i=1

where

Ws vrone = 0.2, if rank(—=M"V) <5

Wi won = 0.2, if rank(M, Oy <5

t
M = T (1 + RY) -1

s=t—11

Rxs_nonm+1 1s the excess return of momentum strategy at the end of month
t+1, wgé)_ Moy 18 the weight of long positions in the commodity futures market
¢ in our momentum strategy, wggél monr 18 the weight of short positions in the
commodity futures market j, R&l) and R( /1 is the monthly excess return of the

first nearby futures contracts of market ¢ or j. The futures contracts in top and

bottom 5 are equally weighted. The weights in long positions and short positions

point in time. They form the strategy by trading the top and bottom quintiles to alleviate the
small size of the sample. Similarly, |[Bakshi et al.| (2019) choose 5 commodities for the long or
short side to form the momentum strategy.

‘In section we also check our results in the momentum benchmark with different
weights.
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both add up to 1 each. rank(-) is the rank operator in ascending orders. Mt(m’l) is

the average compound return of the first nearby of commodity futures market m

at the end of time ¢ over the past 12 months and —Mt(m’l) is the opposite number

of Mt(m’l).

Basis Momentum Following |Boons and Prado (2019)), we also employ the
difference between the momentum returns of the first- and second-nearby futures
as the basis of performance for our basis momentum strategy. At the end of
every month, we sort all the differences between the first- and second-nearby
futures contracts momentum returns in ascending orders and then get the trading
signal for the basis momentum strategy in the next month. Consistent with the
previous momentum strategy, we also consider the momentum returns based on
the past 12 months and hold for one month. Similarly, the long and short sides are
both chosen from the top and bottom 5 orders based on their basis-momentum

performance. The excess return of the basis momentum strategy is as follows:

5

5
J— (7'71) (7‘1 (j 1)
Rpasvom,t1 = E :wBASMOMt t+1 E BASMOMt t+1 (2.3.3)
i=1 =
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where

ng)SMOM’t = 0.2, if rank(—BM"") <5

ngngOM’t =0.2, if mnk’(BMt(j’l)) <5

t t
BrM™ = [ a+RmY)— [ (1 +R™)

s=t—11 s=t—11

Rpasmonri+1 is the excess return of basis momentum strategy at the end of month
t+1, Wgﬁ)sMo ay and ng?gMo w18 the weight of long and short positions in the
commodity futures market ¢ and 7, respectively, for the basis momentum strategy.
BMt(m’l) is the difference between the momentum returns of the first and second
nearby futures contracts. RV and R is the monthly excess return of the

first and second nearby futures contract for the commodity market m at the end

of month s, respectively. All other variables are defined as previously.

Carry The carry strategy is based on the difference between the spot and fu-
tures prices. It profits from the shape of the forward curve. Following the popular
methods in commodity futures studies, we employ the nearest-to-maturity futures
prices rather than the spot price since the commodity spot markets are illiquid.
Bakshi et al.| (2019)) use the ratio of the price of first over second nearby futures
contract to determine the trading signals of carry strategy. However, there ex-
ist seasonal fluctuations in the prices of many commodity futures contracts, e.g.

Sorensen| (2002) and |Hevia et al. (2018)). Following [Paschke et al. (2020]), we
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employ the ratio of the price of the first nearby futures contract over the price
of a futures contract with an expiration of 12 months after the expiration of the
first nearby contract as our carry signal. For every commodity futures contract,
we take advantages of all the prices information about the time-to-maturity of
each nearby futures contract. We then use linear interpolation to obtain the price
of the futures contract with an expiration of 12 months after the expiration of
the first nearby contract. We get the carry trading signal by sorting the ratio
performance in ascending order. Next, the top and bottom 5 commodities are
chosen and equally weighted to form the carry strategy. The excess return of the

carry strategy is as follows:

5

i,1) ,1 1) 1
RXS—CRYJH ng(s CRYt t+1) - ng(s CRYtRz(til) (2-3-4)
j=1

where

wgz;) crys = 0.2, if rank(—C’RYt(i’l)) <5

ng’sl)—CRY,t = 0.2, if rank(CRY,"") < 5

(m,1),s
R;

(m,1) _
CRY; - Rm om,s+12

Rxs_cry+1 1s the excess return of carry strategy at the end of month ¢ + 1,

w; ;) cry and wg( S) cry, are the weights of long and short positions in the com-

modity futures market 7 and j, respectively, for our carry strategy. C’RYt(m’l) is
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the ratio of the price of first nearby futures contract over the price of the contract
with expiration of next 12 months. R!"™** is the monthly excess return of the
first nearby futures contracts market m at the end of month ¢ and its expiration
time is at month s. R/"**'? is the excess return of the futures contracts market
m at the end of month ¢ expiring at month s+ 12. All other variables are defined

as previously.

Volatility-Managed Strategies

We construct two types of volatility-managed portfolios. We scale the excess
return rather than the total return for focusing on the risk by filtering the time

value of money.

Scaled by Portfolio Volatility The first scaling strategy consists of scaling
the portfolio after the formation of the strategy. Barroso and Santa-Clara| (2015)
apply the volatility-managed strategy to the momentum portfolio in the equity
market and present that it significantly enhances the performance of momen-
tum returns, especially during periods where momentum crashes. They scale the
excess return of the momentum portfolio by the conditional volatility and then
require the managed portfolio to have the constant and target risk over time.
Moreira and Muir| (2017) also employ the inverse of conditional volatility of the
portfolio to scale the excess return and then use a constant to maintain the un-

conditional volatility is the same as the original portfolio. However, the choice of
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the constant is determined by all the sample information, and it is challenging to
implement the forecasting process.

We follow Barroso and Santa-Clara (2015) and also use the average of histor-
ical daily volatility over the past 6 months to forecast the volatility for the next
monthﬂ To be more specific, the volatility-managed strategy (henceforth, we call

“BS strategy”) is as follows:

(IBS
Ry = =299 xRy, (2.3.5)

~

Okt

where

125 p2
PR
Gpy = 21—012’2‘1“ x 21 (2.3.6)

R{its is the monthly excess return of the strategy &k (in our study, it can relate
to momentum, basis momentum or carry strategy) scaled by BS strategy at the
end of month ¢, Ry, represents the original monthly excess return of the strategy
k at the end of month ¢ and o0444er is a constant target volatility. 6y, is the
monthly forecasting volatility of the strategy k for month ¢ estimated at the
end of month ¢t — 1. Ryg4, ,—; represents the daily excess return of strategy k
on the day d;_; — ¢ and d;_; is the date of last day on month ¢ — 1. In BS
strategy, the portfolios keep self-financing by the scaling which simultaneously

and equally changes the weights of long and short legs. Moreover, the mean

5Tn section we discuss the alternative volatility forecasts and study the effect of the
accuracy of volatility forecasts on our main results.
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and volatility of the scaled portfolio both change proportionally to the scaling.
Barroso and Santa-Clara (2015) and Moreira and Muir| (2017) point that the
choice of 0t4rger has no effect on the Sharpe ratio of the portfolio. Barroso and
Santa-Clara (2015) choose an annualized volatility of 12% as the target level.
Considering the summary statistics of the commodity futures contracts, we pick
the target level of annualized volatility of 18%, which is marginally higher and
closer to that of the original portfolio. The target level makes it more convenient

to compare with the benchmark portfolio.

Scaled by Commodity Volatility The second scaling strategy is scaling the
excess return of each commodity market by its volatility and then constructing the
portfolios for the interested strategy. Moskowitz et al. (2012)) scale every asset by
the inverse of its volatility forecast and employ the scaled asset to form the time-
series momentum portfolio. Kim et al.| (2016)) document the good performance
of time-series momentum is due to volatility-managed portfolios rather than the
trend of time-series momentum. They find that there is no significant difference
between the performance of the unscaled time-series momentum portfolio and a
buy-and-hold portfolio. Inspiring by these studies, we study the performance of
the volatility-scaling portfolios before the formation of the strategy. The managed

portfolio (henceforth, we call “MOP strategy”) is as follows:

5 5
i,1) ZL,t i1 1) %St i1
RO = aiols (Zwé,t% x RV =3 w2 < RY >) (23.7)

0; o
i—1 it =1 Jit
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R%OP is the monthly excess return of the strategy k scaled by MOP strategy at

the end of month . z1; (zs:) is the scaling coefficient to make sure the summation
of weights on long (short) positions is 1. w,(;;’l) is the original weight of commodity
¢ in the strategy k for the month ¢. &, represents the monthly volatility forecast
of commodity ¢ for month ¢ estimated at the end of month ¢ — 1. Consistent
with the BS strategy, we use the Equation to forecast the volatility of
the commodity ¢ by the information of daily excess return over past 6 months.
Rﬁi’l) is the monthly return of the commodity . [Moskowitz et al. (2012) point
that the choice of the target level is inconsequential since this method is scaling
each position. They choose an annualized volatility of 40% as the target level so
that the annualized volatility of the scaled equal-weighted time-series momentum
portfolio is 12%, which is comparable with the volatility of other factors. Our

interested original strategies are all long-short strategy and self-financing. We

scale the original portfolio and keep the summation of long or short positions

MOP

is 1. Thus the target level Trarget

in our study cannot change the shape of the
distribution of scaled portfolios and helps us adjust the level of the annualized
volatility. Considering the different summary statistics of the three strategies we

study, we choose the target level, O'%Togz, 3.6% to make the statistics of results

comparable.
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2.4 Main Results

This section shows the comparison of the performance of these strategies. Some
studies, e.g. Moreira and Muir| (2017) and Han et al. (2021), show that the BS
volatility-managed strategy performs better than the original strategy. However,
there is very little literature comparing the performance of MOP and BS strategy.
We study whether the BS strategy still works in the commodity markets and

whether the MOP strategy can provide better performance.

2.4.1 Performance Statistics

Table presents the statistics of the performance of these three different port-
folios: original portfolio (R},), the portfolio scaled by BS strategy (RZ®) and the
portfolio scaled by MOP strategy (RY9F). We also show the Sharpe ratio and
maximum drawdown to reflect the return compared to the risk of the portfolio
and the downside risk, respectively.ﬂ We follow |Cederburg et al.| (2020) and em-
ploy JK-statistic to check whether the difference of Sharpe ratio is statistically

significant or not [’

SLiu et al.| (2019) claim that alpha is a less informative measure than Sharpe ratio, which
can reflect the investment value.
TCederburg et al.| (2020) calculate the test statistics as:

Ojli = Tifly L, 2 2 Loz 12,2 Kl
5 7 where T ( 0i0j = 20i0j0ij T SH;0f T S50 0,007

2]
p; and p; are the mean of excess return for portfolio 4 and j, respectively. o; and o; are the
standard deviation of excess return for portfolio 7 and j,respectively. o;; is the covariance
between the excess returns of portfolio 7 and j, the statistic z asymptotically follows a standard
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Momentum Panel A reports the performance of strategies for the momentum
portfolio. We analyze the portfolio (Long-Short) at first. The skewness of the
original momentum portfolio in commodity markets is positive, and the kurtosis
is mild. By Jarque—Bera test, we can statistically reject the null hypothesis that
the excess return is normally distributed (p-stat=0.35%). Moreover, we can also
statistically reject at null hypothesis for the distributions of scaled portfolios
REB3 oy and RY¥9P o1 (p-stat=0.00% and p-stat=0.79%). Comparing the
performance of these portfolios, we can notice that the BS and MOP strategy both
reduce standard deviations and maximum drawdown, although the improvement
by MOP is very weak. For the mean of excess return, the overall ranking is:
RMOP o> Rxs—aron and REL 4,50, in decreasing order. Not surprisingly, BS
and MOP strategy both improve Sharpe ratios, although we cannot statistically
reject the null hypothesis that the Sharpe ratios are equal (z-stat=1.130 and z-
stat=1.018). Turning to the performance of long and short legs, we notice that
the excess returns of momentum portfolios are all mainly from long legs. BS and
MOP strategy both change the distributions of long and short legs marginally

and maintain their positive skewness.

Basis Momentum Panel B presents the performance of strategies for the ba-
sis momentum portfolio. The skewness of the original basis momentum portfolio

is negative, suggesting the left tail is longer. BS and MOP strategy change the

normal distribution. The null hypothesis is that the Sharpe ratios of portfolio ¢ and j are equal.
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skewness of excess return more negative and increase the kurtosis. The ranking of
absolute value of maximum drawdown is: RY¥QE ./, Rpasvowm and RES ¢\ 00
in decreasing order. It suggests that the BS strategy slightly decreases the down-
side risk while the MOP strategy increases it. The means and Sharpe ratios of
RES <oy and RYOE - are both higher than that of Rpasyon. However, we
still cannot statistically reject the null hypothesis that the Sharpe ratios are equal
(z-stat=0.363 and z-stat=0.739). Again, BS and MOP strategy both change the

distributions of long and short legs slightly.

Carry Focusing on the performance of strategies for carry portfolio, Panel C
shows that BS and MOP strategy both increase the tail risk and downside risk
by more negative skewness and maximum drawdown. Moreover, the ranking
of mean is: Rxs_cry, RE% cpy and RYST py in decreasing order. BS and
MOP strategy both decrease Sharpe ratios, but the difference of Sharpe ratios
are not statistically significant (z-stat=-0.677 and z-stat=-1.425). In detail, the
two scaled strategies both decrease the means of excess returns in long and short
legs.

Overall, BS and MOP strategy do not significantly improve the performance
of momentum, basis momentum and carry portfolios in commodity markets. The
performance of BS cannot be improved by MOP strategy. Barroso and Santa-
Clara; (2015) show that BS strategy can significantly improve the equity momen-

tum performance and alter its distribution which has a very large kurtosis and a
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significant negative skewness. |Cederburg et al.| (2020) and [Bongaerts et al. (2020)
point that BS strategy cannot provide consistently better performance than the
original portfolios. Our results support the conclusion of |Cederburg et al.| (2020)
and Bongaerts et al. (2020). Furthermore, we show that there is no significant
difference between the volatility-managed portfolio scaled by the volatility of the
original portfolio after the formation of the portfolio and the volatility-managed
portfolio scaled by the volatility of each commodity before the formation of the

portfolio.

2.4.2 Performance under Economic Conditions

The excess returns of original portfolios are affected by the market states and
easily experience drawdowns in bear markets. One aim of the volatility-managed
strategy is to reduce the downside risk, especially in economic downturns. |Barroso
and Santa-Claral (2015) and Moreira and Muir| (2017 state that the volatility-
managed portfolio decreases risk and maintains stable performance in recessions.
Moreover, momentum crashes in market turning points and the BS strategy can
almost eliminate the crash of the original portfolio. Although the two kinds
of volatility-managed portfolios have no significant better performance than the
original portfolio, it is meaningful to investigate whether BS and MOP strategy
could help the portfolios hedge the risk in different economic conditions.

We classify months into three states: non-turning, recession to expansion and
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expansion to recession, using the data from Federal Reserve Bank of St. Loius
WebsiteE] presents the performance statistics of the original portfolio, portfolio
scaled by BS strategy and portfolio scaled by MOP strategy during different eco-
nomic states. Panel A reports the performance of momentum portfolios, Panel B
presents the performance of basis momentum portfolios, and Panel C reports the
results of carry portfolios. Overall, we notice that the original portfolios perform
the best when the market in the turning point, from expansion to recession. In
contrast, the original portfolios perform the worst when the market in the turn-
ing point, from recession to expansion. In detail, the excess returns of original
portfolios are all negative in turning point recession to expansion, while those are
all positive in turning point expansion to recession. Moreover, the excess return
of the portfolio arises mainly from the long leg. For the risk, there exists little
difference of standard deviations of original portfolios for momentum and carry
strategy. For basis momentum, the risk in turning point expansion to recession is
more than twice of that in turning point recession to expansion. Not surprisingly,
the skewness of portfolios are all positive in turning point expansion to recession,
while most of them are negative in turning point recession to expansion.

Turning to the performance of scaled portfolios, RPS and RMOF we can see

8We employ the data from the file named as “OECD based Recession Indicators for the
United States from the Peak through the Trough” to identify the months states. See https:
//fred.stlouisfed.org/series/USARECM. We define month as the recession to expansion
state when the indicator on that month changes from 1 to 0, month as the expansion to recession
state when the indicator on that month changes from 0 to 1 and the other months as the non-
turning state.


https://fred.stlouisfed.org/series/USARECM
https://fred.stlouisfed.org/series/USARECM
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that under the different economic condition, the BS and MOP strategy do not
significantly improve upon the original portfolios. Consistent with the original

portfolio, most of the mean of RZS and RMOF

comes from the portfolio in turning
point expansion to recession and the excess return is mainly from the long leg.
We employ the JK-statistics to formally evaluate the difference of the Sharpe
ratios under different economic conditions. We cannot reject the null hypotheses
that the Sharpe ratios scaled by BS or MOP strategy is equal to the original
portfolio. We keep the summation of long and short positions equal, so it is not
surprising to note that the scaled long or short legs are both not significantly
different from the original long or short legs, respectively. Statistically, original

portfolio, portfolio scaled by BS strategy and portfolio scaled by MOP strategy,

these strategies have no significant difference under different economic conditions.

2.5 Potential Explanations

2.5.1 Alternative Volatility Forecasting

Until now, we forecast the volatility of the strategy and commodity itself by
the historical average of the daily volatility over past 6 months. However, the
poor forecasting performance of this model may materially affect our conclusions.
Moreira and Muir| (2017) point out that more sophisticated volatility forecasting

models can improve the performance of the volatility managed portfolio. |Boller-



2.5. Potential Explanations 35

slev et al.| (2018)) show that the more accurate the volatility forecast is, the better
the volatility-managed strategy performs. To shed light on whether the poor
performance of BS and MOP strategy is due to the performance of the volatil-
ity estimates, we repeat our study with the volatility forecasts from alternative

forecasting models.

GJR-GARCH model Considering that shocks with different signs have asym-
metric effects on volatility and volatility is clustering, we employ the GJR-GARCH
model proposed by |Glosten et al.| (1993). |Daniel and Moskowitz| (2016) use the
GJR-GARCH model to forecast the volatility of the momentum portfolio and
improve the performance of the conventional momentum portfolio when applying
the volatility forecast to dynamic weighting strategy. The GJR-GARCH model
is defined as:

Ty = W+ € € ~ N(OaOéJR,t);
(2.5.1)

JéJR,t =w+(a+ ’VI{et_1<0})€§—1 + BU?}JR,t—l

where 7; is the daily return of the strategy portfolio or commodity futures con-
tracts at date t, p is the mean of the return series, ¢; is the residuals and also
represents the price innovations following a normal distribution with mean zero
and variance 0g;p,. Ife,_ <0} is an indicator function which equals 1 (0) when
the previous residual €;_; is negative (positive). Lamoureux and Lastrapes| (1993)

find that the estimation for parameters of GARCH model by the recursive window
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has a better performance than that by the rolling window. Consistent with the
previous historical average method, we estimate the parameters by the recursive

window from 126 observations[]

HAR model We consider Heterogeneous Autoregressive (HAR) model which
proposed by (Corsi (2009) and is a simple but efficient forecasting model. The
original HAR model is based on the high-frequency data to obtain the past re-
alized volatilities over different horizons. However, |Bollerslev et al.| (2018) point
that daily data can be used in HAR model. The HAR model in our study is

defined as:

UJ%IAR,t = o + 5D01:2—1,D + 6Wsz2—1,W + 5M01:2—1,M + & (2.5.2)
where

2 _ p2
O¢1,D = Rdt,l

4
1
2 _ 2
O w = g E :Rdt_ri
i=0
20

1
‘7152—1,M ~ 9] Z Ri_l—i

1=0

9In Table of in Section Appendix, we provide the results based on the rolling window
with 126 observations.
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o2 ARy 18 the monthly forecasting volatility of the strategy or commodity, R, _,
is the daily excess return of the corresponding strategy or commodity and d;_; is
the date of last day on month ¢ — 1. Consistently, we use the recursive window
from 126 observations to estimate the parameters of HAR modelm

To compare the accuracy of the forecasts by different models, we employ two
loss functions: the mean squared error (MSE) and the quasi-likelihood (QLIKE)
to assess the performance of these competing forecasts. Following Patton|(2011b),
these two loss functions are robust to the noise in the proxy of the realized volatil-

ityE The two loss functions are defined as follows:

n

1

MSE = ~ ;(th — f,)? (2.5.3)

QLIKE = %i [log(ft) + %} (2.5.4)
t=1 ¢

where n is the total number of the forecast, RV, is the monthly realized volatility
of the strategy or commodity at month ¢, and f; is the corresponding forecasts
estimated by previous forecasting models for the month ¢.

Table reports the difference of volatility forecasting errors. It shows that

10Tn Table we also provide the results produced by the rolling window with 126 observa-
tions.

Ulntuitively, the object of interest, i.e. the realized volatility, is not directly observable. As
a result, it can only be computed empirically, thus introducing measurement errors. The MSE
and QLIKE loss functions are robust to this noise (Patton) 2011b).
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by recursive window GJR-GARCH model provides the smallest forecasting errors,
and HAR model performs better than the forecasts by the benchmark historical
volatility over the past 6 months in both MSE and QLIKE criterion.

We further analyze whether the performance of scaled portfolios is improved
by the more accurate volatility forecasting. Table presents the performance
statistics of scaled portfolios. Overall, the results are consistent with our main
finding that BS and MOP strategies do not significantly improve the performances
of the original portfolios in our study. Interestingly, the Sharpe ratios of portfolios
scaled by volatility forecasting from GJR-GARCH model are generally the lowest
among portfolios scaled by volatility forecasting from HAR and average models.
It seems that portfolios scaled by more accurate volatility forecasting have lower
standard deviations and lower excess returns. Our results suggest that the failure

of BS and MOP strategy is not due to poor volatility forecasts[”]

2.5.2 Construction of Benchmark Portfolios

Our main analysis focuses on the equal-weighted portfolio and our volatility-
managed strategy is also based on an equal-weighted portfolio. As previously
mentioned, an equal-weighted portfolio with half of commodity futures narrows
the difference between the long legs and short legs. We employ alternative weight

by ranking for the original portfolio to enlarge the long-short difference. The

12Tn Table the results are consistent with our main findings, and the accuracy of volatility
forecasting is not the reason for the failure of volatility-managed portfolios.
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portfolio is formed as described in Section and we just change the weight

to:

w,(;;f) =0.3 — (rank(—Kt(i’l)) —1) x 0.05, if rcmk(—Kt(i’l)) <5

wl = 0.3+ (rank(KPV) — 1) x 0.05, if rank(KV) <5

where w,iif) is the weight of long positions in the commodity futures market 7

in our K strategy (momentum, basis momentum or carry), w,(j’;l) is the weight
of short positions in the commodity futures market i, Kt(i’l) represents Mt(i’t),
BMt(i’t), or C’RYt(i’t). All other variables are defined as previously.

Table reports the performance of conventional and scaled portfolios by
the alternative benchmark. By putting more weight on the asset with a high or
low ranking, we observe that means of excess returns of momentum and basis
momentum are larger than the equal-weighted portfolios while that of carry is
smaller than the equal-weighted portfolio. Accordingly, the scaled portfolios of
momentum and basis momentum with alternative weight are larger than the
scaled portfolios with equal-weighted portfolios. Yet, the results are consistent

with our main finding that BS and MOP do not statistically significantly improve

the performance of the original portfolio.
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2.5.3 Alternative Performance Evaluations

So far, we consider the performance statistics of volatility-managed portfolios but

ignore the measurement of economic value.

Performance Fee

The volatility-managed strategy is motivated by the problem of the mean-variance
trade-off. In the mean-variance framework, we follow |[Fleming et al. (2003) to
calculate the performance fee (A) that investors are willing to pay for switching
between two investment strategies. We assume an investor has a mean-variance
utility function:

i i v i
U( k,t) = Iy — §Var( k,t) (2.5.5)

where R};,t is the excess return of the portfolio £ by scaled strategy ¢ and ~ is the

risk aversion level of the investor. Thus the performance fee is calculated as:

7Var(R 2] (2.5.6)

Mq

1 o 1
TZ[( Z,t—A)——Va'f’

t=1 t=1

where 7' is the number of periods, Var(R},) = (Ri, — R})?, R, is the mean of
};}t over periods [0,T]. We use the t-test to test the null hypothesis that the
performance fee is equal to zero.

Panel A in Table [2.7 reports the performance fee. Investors with all levels of

risk aversion are mostly willing to pay extra fees for switching from the original
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portfolio to the BS or MOP scaled portfolio except for carry portfolios. The
results are consistent with our main finding that scaled carry portfolios both
have a smaller Sharpe ratio than the original portfolio. Moreover, for R2% 4,01/
investors with very high risk aversion levels need to get some benefits for switching
from the original portfolio. Considering the performance statistics, we notice
that R5S5 4,700 15 the only scaled portfolio that has a larger standard deviation
than the original portfolio. Our utility function penalizes the risk heavily and
most of the scaled portfolios reduce the risk, so the performance fee increases
with the increasing risk aversion levels. Consistently, the performance fees are
not statistically significant except for RE2 5, when investors have a high risk
aversion level. The information on economic values generally supports our main

findings.

Turnover

Although the performance of BS and MOP strategy is not statistically significant

better than the original portfolio, we still wonder whether the scaled portfolios

have lower turnover ratio and reduce the transaction costs of scaled portfolios.
We calculate the turnover ratio as follows:
1 N

Turnover = T Z Z(| Wjt1 — Wiy |) (2.5.7)

t=1 j=1
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where w;; is the actual weight of commodity j at time ¢, 7" is the number of
periods and N is the total number of commodities in portfolio.

Panel B of Table reports turnover ratios. The turnover ratios of BS and
MOP scaled portfolios are all larger than the turnover ratio of the original portfo-
lio except for REZ ,,5,- Moreover, MOP scaled portfolios have larger turnover
ratios than BS scaled portfolios. It confirms that the volatility-managed portfolio

does not outperform the original portfolio.

2.6 Conclusion

We study volatility-managed volatility strategy in commodity futures markets.
Consistent with a growing literature, we document that the conventional volatility-
managed strategy fails in commodity markets. Furthermore, we analyze the tim-
ing of volatility-managed and find that the volatility-managed strategy which
scales the portfolio before its formation has no significant difference with conven-
tional volatility-managed strategy. We consider different potential reasons and
find that, alone, economic conditions, alternative volatility, forecasting models,
and alternative methods to compute the portfolio cannot explain the performance
of the volatility timing strategies.

Our results state that scaling portfolios before or after their formation both
fail to improve the performance of the original portfolio in commodity markets.

In short, our results suggest that volatility scaling does not lead to consistent
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improvement in the performance of the conventional commodity strategies. In
future works, it would be interesting to extend our analysis to other asset classes,

e.g. international equity futures.

2.7 Tables and Appendices
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Table 2.3: Strategy Comparison: Performance under Economic Conditions

This table reports statistics of portfolios performance. The portfolio formation is pre-
sented in Section [2.3.2] Columns under “Mean(%)”, “SD(%)”, “Skew”, “Kurt” report
the mean of monthly excess return of portfolio in percentage, monthly standard de-
viation in percentage, skewness and kurtosis, respectively. “MDD” is the maximum
drawdown. “SR” is the Sharpe ratio and “ASR” is the difference between the Sharpe
ratio of the scaled portfolio and the Sharpe ratio of the unscaled portfolio. “JK Stat”
is the statistic value calculated as described in footnote 6 and follows a standard nor-
mal distribution. If we choose 5% significant level, the corresponding value of the “JK
Stat” should be 1.96. The economic condition: recession and expansion is defined by
the NBER recession variable obtained from Federal Reserve Bank of St. Loius website.

(a) Panel A: Performance of Momentum

VARIABLES Mean(%) SD(%) Skew Kurt Sharpe ASR JK-stat
Non-turning
Long 0.828 5640 0.129 5.177  0.147
RXSfMOM ShOI‘t -0.517 4.977 0.526 4.862 -0.104
Long-Short 1.345  6.330 -0.019 3.946  0.212
Long 0.747  4.879 0.433 5994 0.153 0.006  0.602
RE% \;om  Short -0.503  4.231 0.247 3.860 -0.119 -0.015  -1.264
Long-Short 1.250  5.527 0.195 4.591  0.226 0.014  1.201
Long 0.831 5526 0.028 5.007 0.150 0.004  0.297
RYEP .o  Short -0.556  4.993 0.541 4.652 -0.111 -0.007  -0.756
Long-Short 1.387  6.212 -0.037 3.839  0.223 0.011  0.788
Recession to Expansion
Long -0.810  7.012 -0.208 2.010 -0.116
Rxs—_monm  Short 2.011 3.074 0.956 2.558  0.654
Long-Short -2.820 5958 0417 2174 -0.473
Long 0.178  7.036 -0.037 2.238  0.025 0.141  2.057
RS o Short 2.334 3357 0.944 2540 0.695 0.041  2.371
Long-Short -2.155  6.184 0.556 2.221 -0.348 0.125  1.469
Long -0.967  6.883 -0.477 1.965 -0.140 -0.025 -0.321
RY&P o Short 1.287  2.000 -0.619 1.715  0.644 -0.011  -0.028
Long-Short -2.254  5.657 -0.603 2.474 -0.398 0.075  0.436
Expansion to Recession
Long 2213  7.798 1.375 3.081  0.284
Rxs—_monm  Short -0.356  1.260 1.114 2.777 -0.283
Long-Short 2.569  6.701 1.260 2.921  0.383
Long 1.339  5.823 1.316 3.006 0.230 -0.054 -1.973
RES 0 Short -0.359  0.950 1.260 2.904 -0.378 -0.095  -1.552
Long-Short 1.698  4.990 1.171 2.828  0.340 -0.043  -1.451
Long 2484  6.908 1.390 3.098 0.360 0.076  2.703
RYEE o0 Short -0.656  1.944 0312 1.823 -0.337 -0.055  -0.261
Long-Short 3.141 5576 1.121 2730 0.563 0.180  1.540
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Table 2.3: Strategy Comparison: Performance under Economic Conditions

(b) Panel B: Performance of Basis Momentum

VARIABLES Mean(%) SD(%) Skew Kurt Sharpe ASR JK-stat
Non-turning
Long 0.906  4.850 -0.404 4911  0.187
Rpasmon  Short -0.453  4.800 1.457 15.04 -0.094
Long-Short 1.359  5.669 -0.579 6.705  0.240
Long 0.926  4.826 -0.086 4.267  0.192 0.005 0.423
RES < vonr  Short -0.491 4893 1.717 17.55 -0.100 -0.006  -0.570
Long-Short 1.417  5.739 -0.695 7.478  0.247 0.007 0.567
Long 0.959  4.722 -0.460 5.562  0.203 0.016 1.317
RMOE 00 Short -0.452  4.694 1.975 21.17 -0.096 -0.002  -0.131
Long-Short 1.411  5.584 -0.878 8.694  0.253 0.013 0.808
Recession to Expansion
Long -3.957  3.729 -1.453 3.188 -1.061
Rpasmon  Short 0.312 2,602 0.766 2.252  0.120
Long-Short -4.269  3.451 -0.153 1.450 -1.237
Long -4.167  3.002 -1.127 2.868 -1.388 -0.327  -1.778
RES < von Short 0.836 3.164 0.937 2410 0.264 0.144 2.300
Long-Short -5.003  3.779 -0.007 1.732 -1.324 -0.087  -0.315
Long -4.422  3.781 -1.373 3.068 -1.170 -0.108  -0.838
RYMOB v Short 0.565  2.637 0.907 2227  0.214 0.094 0.978
Long-Short -4.987  3.399 -0.294 1.742 -1.467 -0.230 -1.738
Expansion to Recession
Long 1.727  4.184 -0.234 1.560  0.413
Rpasyon  Short -0.222  6.034 0.135 1.774 -0.037
Long-Short 1.950 8.096 0.661 1.717  0.241
Long 1.838  4.553 -0.027 1.622  0.404 -0.009  -0.187
RE% svon Short -0.333  6.397 -0.085 1.818 -0.052 -0.015 -0.334
Long-Short 2171 9.069 0.818 2.048  0.239 -0.001  -0.030
Long 1.862  4.006 -0.112 2.112  0.465 0.052 0.428
RMOP oy Short -0.688  5.165 -0.230 1.415 -0.133 -0.096  -0.641
Long-Short 2550 7981 0.636 1.829  0.320 0.079 1.156
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Table 2.3: Strategy Comparison: Performance under Economic Conditions

(c) Panel C: Performance of Carry

VARIABLES Mean(%) SD(%) Skew Kurt Sharpe ASR JK-stat
Non-turning
Long 0.422 5408 0212 5074  0.078
Rxs_cry Short 0264  5.095 0.751 6.449 -0.052
Long-Short 0.686  6.133 -0.093 5.618  0.112
Long 0.395 5121 0275 5201  0.077 -0.001  -0.094
RES opy  Short -0.237  4.899 1.069 8.505 -0.048 0.003  0.309
Long-Short 0.632 5.884 -0.354 6.560  0.107 -0.004  -0.406
Long 0.359 5226 0.013 4292  0.069 -0.009 -0.810
RY&T 1y Short -0.197 5172 1.063 8.737 -0.038 0.014  1.245
Long-Short 0.557  6.034 -0.602 6.562  0.092 -0.020  -1.400
Recession to Expansion
Long -2.332  5.504 -1.268 2.950 -0.424
Rxs_cry Short 0.126  4.480 -1.181 2.874  0.028
Long-Short 2457  7.013 -0.047 2.347 -0.350
Long 1734 4795 -0.983 2.644 -0.362 0.062  0.918
REY opy  Short 1.003  3.619 -0.844 2423 0277 0249 2238
Long-Short 2737 5362 0.018 2.193 -0.510 -0.160  -2.494
Long 2,149 6.024 -1.177 2.795 -0.357 0.067  0.720
RY&T 1y Short 0.362  5.538 -1.216 2.928  0.065 0.037  1.847
Long-Short 2511 8144 0.157 2446 -0.308 0.042  0.620
Expansion to Recession
Long 2.349 6475 1406 3.125  0.363
Rxs_cry Short 0.462  1.626 -0.151 1.459  0.284
Long-Short 1.887  6.037 1.042 2.743 0.313
Long 1.537 5177 1.266 2.948  0.297 -0.066 -1.288
RES opy  Short 0.658 1.792 0.350 1.851  0.367 0.083  0.601
Long-Short 0.879 5337 0.532 2479  0.165 -0.148  -1.556
Long 2.298 5.214 1311 2986 0441 0.078  1.551
RY9T 1y Short 0.535 2456 0.285 1.599  0.218 -0.066  -0.644
Long-Short 1.763 5114 0.238 2420 0345 0.032  0.252
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Table 2.4: Difference of Forecasting Errors

This table presents results of forecasting errors from competing forecasts for
SPX, USO, GLD, SLV, GDX and XLE sectors and each panel corresponds to
a different sector. Column ”Method” reports forecasting methods: average of
historical volatility over past 6 months (Average), GJR-GARCH model (GJR)
and HAR model (HAR). MSE and Qlike denote the forecasting errors in the
corresponding criterion. For BS strategy, we forecast the volatility of strategy:
Momentum, Basis Momentum and Carry. For MOP strategy, we forecast the
volatility of each commodity. The forecast horizon is one month, 21 trading days
in our study. We use a recursive window starting with 126 observations to get
the forecasts.

Method MSE QLIKE
Average 2.363 2.782
Momentum GJR 1.176 2.772
HAR 1.537 2.778
Average 1.379 2.613
Basis Momentum GJR 0.842 2.606
HAR 1.016 2.609
Average 2.333 2.676
Carry GJR 0.988 2.664
HAR 1.365 2.670
Average 4.578 2.903
Commodity GJR 2.000 2.890

HAR 2.231 2.893
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2.7.1 Appendix

Table A1l: Difference of Forecasting Errors (Rolling Window)

This table presents results of forecasting errors from competing forecasts. Column
“Method” reports forecasting methods: GJR-GARCH model (GJR) and HAR
model (HAR). MSE and QLIKE denote the forecasting errors in the corresponding
criterion. For BS strategy, we forecast the volatility of the strategy: [name in row]
Momentum, Basis Momentum and Carry. For MOP strategy, we forecast the
volatility of each commodity. The forecast horizon is one month, 21 trading days
in our study. We use a rolling window of 126 observations to get the forecasts.

Method MSE QLIKE

N . GJR 1.912 2777
omentum HAR 3.007 2.792

) GJR 1.098 2.607
Basis Momentum HAR 1.789 2.624
c GJR 1.960 2.671
arry HAR 3.057 2.689
o dit GJR 3.835 2.895
ommodity HAR 5.549 2.924




55

2.7. Tables and Appendices

¢GL 1= 9¢0°0- 180°0 crry- 000 08C'S  FEE0- 6.8'G 9LY0  MOUS-SuoTg

00T FI00  CGE0'0-  L09°T- 000 6€5L F0S0 €€0°C LLTO- 101G
[CeT-  810°0- 8S0°0  886'¢- 100 ¢€eF SO0 981G 6630 suop  AYD SNy
2600 T000 S0T'0  CPLF- 000 ¥609 ¢SO~ PILC €690 MOyS-Suor]
€99°0-  800°0- LS0°0- CZFI- 000 1G98 €L6°0 GOSF €30 1107
96e°0-  F00°0- 100 66F9- 000 €9TF 0100 636F T1CE0 Suop  AYO~SXyy

19T°0 €000 L3g0 984T~ 000 L6CL 089°0- 0€G'G 8ST'T  110UG-FUOT]

061°0 €000 680°0- LL9°T- 0000 00F'ST SOLT LSS¥ LOVO- }0Yg
TLV0 L0000 TI8T'0  600€- 000 928G  €LV0- €ILT ¢S80 Suorp OISV
120  F000 8gZ0  G08F- 0000 OTTL ¥I90- 038G 62T 30YS-8uor
0500  T000 T160°0- 999°T- 000 08591 €.L9T G¥6¥ 0SH0- }0Yg
LT6'0  TT00  98T°0  TISPe- 0920 LL8'E€  FST'0- 98LF 6180 Suop WONSYEA

¥2¢4 0 8000 €TZ0  0T9F- GL0 0¥V8E€ 6200- €819 6I€T H0UYS-Suo

LIL0-  800°0- CO0T'0- 669 000 CIOS 1260 L68F FIG0- 110YS
L20°0- 0000 SPT'0  €SFF- 000 €00 9F0'0  6SSE GOS0 Suop WO SXar
GI6'0 1100 9120  60LT- 100 OST¥ ¥FO0 TIGP'S 6LT°T  110yS-suor
9¢G°0-  L00°0- €0T°0- 9€9'C- TO0 T66'C €50 FITE 98 0- }10YS
€260 0100 GST'0  SP6'I- 000  CSOF 0250 98LF €FL0 Suory TON=SXar
yeis M ¥YSv  odreys AN dr 0 MDY MYS (S URSN  SO[RLIBA

Uro v peued

‘SUOIRAISSUO Q7 JO MOPUIM SUI[[OI © SUISN POYRIIISS [pOW YV H o) Uo paseq orjojjrod
poSeuew A[IIR[0A 9} 0) poxUI] SHNSoI oY} sp10dol ¢ [oueJ "SUOIIRAIISQO 9Z JO MOpPUIM SFUI[[OI Ul [opoWl HOYVO-H[ L) oY} Uo
poseq orjojirod padeurt A[IIR]OA 97} 03 PANUI[ $) NSl oY} s)10dol Y [PuRJ 96'T @9 pinoys Ie1S [, o3 Jo anfea Surpuodsoriod
OU[1 ‘[9AS] JURDYIUSIS %G 9SO0UD oM J] “UOINLIISIP [RULIOU PIRPURIS ® SMO[[O] PUR  9J0U00] Ul PACLIOSIP SB POR[NO[RD Ol RA
o1)S1IR)S 9YY ST IRIS [, "OI0J310d paredsun o] Jo orjyel adreyg o1} pue orjoj)rod paeds o) Jo olpel odIeyS 97} U0OMII( dIUSIIPIP
oy} ST SV, pue oner odieyg oyl st MG, UMOPMRIP WNWIXeW 9} ST  (T([]N, UOIIMJLIISIP [RULIOU SI WINJOI SSOOX0 oY) 1e()
1501 13 Jo adejuaoiod ur onfea-d eiog-onbre oty syrodor  (9)€[, A[PAIIOdSOI ‘SISOLIMY PUe SSOUMONS ‘OFejuadiod Ul UOIyRIADD
pIepue)s Aqjuowt ‘e8ejusdied ur orjojirod Jo wINjal ssedxa ATUIUoW Jo uesw oY) proder AInd, ¢ MoNS, . (%)dS, ‘.(%)uedA,,
Iopun suwmio)) [g'¢gl uoroeg ur pejueserd st uoryeurioj orjojprod oy, -eoueuriojrod sorjojirod jo somsiye)s sprodal o[qe) SIYJ,

(mopurpp Sur[oy) 3urisessdo] AN[IIR[OA SAIJRUIS)[Y :SOIISIJRIS SoURULIOLIS] :ZV 9[qRl



56

2.7. Tables and Appendices

TLGT-  8T00- 6L0°0  SET9- 000 S€T9 6660~ TS6'G GLYO  210yS-Suor
96T 9100 €800~ 62ST- 000 2€8'8 S00T  ¥80°¢ 99T°0- 110YUg
€L6'0- 9100~ 0900  I¥CS- 000 9¢¢F L600- TIST'G 6080 Suop A0 SXar
POF'0-  G00°0- TOT'0  2STe 000 6.09 ¥ICO- ST6'GC F090 H10yS-8uorg
PGS0 L0000 THO0-  68€T- 000 ¥TT8 6660 96T 90T 0- 110YUS
0600 00000 900  SIS9- 000 T96F €€E0 9€CC S6£0 Suop  AYOTEXay
L2€°0 L0000 T€C0 2Tl 000 LVE'S €I80- 869°C¢ 6IST  Hoys-Suorg
090°0-  TO00- €60°0- TIST- 000 8907 268 T 989F% ¥&F0- 110YUg
060  TI00 G8T'0  ¥€6'C- 0000 TLOG TSP0- 88LF G880 Suop NONSVEAS
V62T~  ST00- L2020  L69°G 000 €IFL 6880~ TP09 (0SZT  210yS-suor
00€°0  F00°0 880°0- G09'T- 000 TTIT €€9T 9v0'C ¥HPO- 110YUS
FR0'T-  STO°0- 6ST°0  8L8C 000 T9F'C G600 €L0°C 9080 Suorp TVONSYEY
6S7°0 8000 €120  910C- 190 TG8E €£00 9LT9 SILT  310yS-suorg
G6£°0-  C00°0- T0T'0- ¥9LZ- 000 0SSF 150 688F S6%°0- }10UQ
9¢z’0  F000 6FT0  066'T- 000 I.6F L200 €TSS €780 Suorp WON SXar
€ce’T 9100 1220 080C- 000 L€¥VS ¥HC0 829G 9PZT  310yS-Suor
668°0-  TI0°0- S0T'0- 6892 L00 €06€ The0 S0TH GCH0- 110YS
¢Z6'0  T100 9GT°0  88¢'Z- 0000 FILL TLE0 0S0°GC 06L0 Suop VONTSXAr
sy ¥Sv  odreys QAN drf MY Mo (S UBON  SO[RLIBA

HVH 4 [Pued

(mopurpy Surfjoy)3urisesaioq AN[IIR[OA SAIJRUISIY :SI1ISIJe)S 90URULIOLID :ZV O[qel,



Chapter 3

Volatility Risk Premium and
Volatility Forecasting In

Commodity-related ETF's

3.1 Introduction

Volatility plays a central role in finance. Understandably, voluminous literature
focuses on the accurate modelling of volatility. Generally, these studies belong
to two streams. The first one uses historical information to generate volatility
forecasts. The most popular representatives by using past information in litera-
ture are Exponentially Weighted Moving Average (EWMA), Autoregressive Mov-

ing Average (ARMA), (Generalized) Autoregressive Conditional Heteroscedastic-

27



3.1. Introduction 58

ity (ARCH/GARCH), Heterogeneous Autoregressive model of Realized Volatility
(HAR-RV).

The second approach extracts market estimates of future volatility from traded
option prices, and implied volatility is referred to realized volatility. Intuitively,
this method is based on the assumption that the volatility expected under the risk-
neutral measure is equal to the volatility under the physical measure. However,
Carr and Wu| (2008), Trolle and Schwartz| (2010) and [Prokopczuk et al. (2017)
show that there exists a significant difference between the implied variance ob-
tained under the risk-neutral measure () and the realized variance observed under
the physical measure P. As a result, there is a significant bias if we directly use
implied variance to proxy realized variance. Therefore, if one is interested in using
the implied volatility to predict the future volatility, it is important to adjust the
implied volatility by considering the market price of volatility risk. Since we refer
to the square root of the variance to volatility, it is necessary to take the market
price of volatility risk into account and employ it to adjust the implied volatility.

Prokopczuk and Wese Simen| (2014)) use the historical average of relative vari-
ance risk premium to adjust the model-free implied volatility (MFIV) on three
energy markets. Kourtis et al.| (2016) also employ the historical average of rel-
ative variance risk premium to adjust the MFIV and check the performance in
international equity indices. They all conclude that the MFIV adjusted by the

historical average of the relative variance risk premium is superior to the MFIV
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and GARCH-type models. Prokopczuk and Wese Simen| (2014), |[Kourtis et al.
(2016) and a growing literature prove the necessity of correcting the implied
volatility, and their suggestion is simple but effective. This paper aims to inves-
tigate whether more elaborated methods can help reduce the bias in the implied
volatility.

By definition, we know that the volatility risk premium (VRP)D is the differ-
ence between implied volatility and realized volatility. Thus, we can get a better
volatility forecast if we can get a more accurate V RP forecast. To the best of
our knowledge, we are the first to specifically investigate the time-series models
for V RP forecasts and their implications for volatility forecasting. We make sev-
eral contributions to the literature. First, we propose different models for the
(log) VRP and assess their empirical performance. To do this, we use implied
volatility indices computed by the Chicago Board Options Exchange (CBOE).
Since ETF's are rapidly growing financial investment products, we focus on ETFs
by which investors can take the risk of a relative physical good or stock index.
Given that commodities are good diversifiers for traditional equity investments

and a hedge against inflation, we analyze commodity-related ETF. These include

Wolatility risk premium reflects the difference between implied and realized volatility while
variance risk premium is defined as the difference between implied and realized variance. Ab-
solutely, they can both measure the difference between risk-neutral and physical measure. In
Chapter 3, we focus on volatility, which is more popular for investors to measure the risk and
volatility risk premium is the relative term. We following DeMiguel (2013) and Prokopczuk and
Wese Simen (2014) to employ volatility risk premium to adjust implied volatility. In Section
we also consider the format of variance risk premium. By comparison of equation
and equation , volatility risk premium is more simple and straightforward in our sample.
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United States Oil Fund (USO), SPDR Gold Shares (GLD), iShares Silver Trust
(SLV), VanEck Vectors Gold Miners ETF (GDX), Energy Select Sector SPDR
Fund (XLE) and S&P 500 Index (SPX).

We then analyze the implications of different forecasting models for volatility
forecasting. Consistent with our insights, we present some evidence to suggest
that a better model of the VRP helps improve the accuracy of volatility fore-
casts. Indeed, We find that AMFIV* delivers in-sample volatility forecasts that
are superior to those of its competitors, which include the MFIV and its adjusted
version following Prokopczuk and Wese Simen| (2014). Out-of-sample, the mean
squared errors (MSE) and the QLIKE loss functions indicated that this adjust-
ment (AMFIV™) delivers more accurate volatility forecasts than its rivals. We
implement several additional tests to evaluate the robustness of our main find-
ings. We first choose alternative proxies of the realized volatility. Second, we
employ different VRP functional forms rather logarithm to repeat our analysis
and compare the performance of forecasts by competing models. In addition, we
consider the forecasts RMFIV as|Prokopczuk and Wese Simen| (2014)) and Kourtis
et al.| (2016)) used to be another benchmark and we find that AMFIV™ is better
than it. Finally, we also consider an estimation window containing 484 trading
days rather than 232 days and our message is the same.

The remainder of the chapter is organized as follows: Section describes

some related studies. Section provides the data and methodology. Section
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reports our findings. Section presents some robustness checks. Finally

Section B.6] concludes.

3.2 Literature Review

3.2.1 Volatility Forecasting

A voluminous literature focuses on forecasting volatility. Most existing studies
can be put into two categories. The first category uses historical data to fore-
cast volatility, while the second category derives the market estimates of future

volatility from traded option prices.

Time-Series Forecasting Model

The time-series models use historical data. It contains the Random Walk model,
the Historical Average method, the Moving Average (MA) method, and the Ex-
ponentially Weighted Moving Average (EWMA) method, which is favoured by
RiskMetrics and places greater weights on the more recent estimates. These meth-
ods are different in the number of observations and weights assigned to them. If
we formulate volatility by past values and error terms, we get the Autoregres-
sive Moving Average (ARMA) model. Another main volatility modelling group
of time series is the Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) model (Bollerslev| (1986))), which extends the ARCH model of Engle

(1982) to capture the clustering of volatility. EWMA is a non-stationary case
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of the GARCH(1,1) model where shocks of prices introduce permanent impacts
on volatility and the persistence parameters sum to 1. Inspired by the success
of GARCH model, Nelson| (1991)) proposes the Exponential GARCH (EGARCH)
to relax the restriction of nonnegative constraints in the linear GARCH model.
GJR-GARCH model proposed by (Glosten et al.| (1993) and Threshold GARCH
(TGARCH) are also models reflecting asymmetric effects of positive and negative
returns. Based on these studies, more GARCH-type models are developed, such
as the integrated GARCH (IGARCH), the Quadratic GARCH (QGARCH), the

regime-switching GARCH (RS-GARCH).

Implied Volatility Forecasting Model

The implied volatility is introduced by Black-Scholes (B&S) model since it can
be easily derived by the standard deviation when option traded price is observ-
able, and the other parameters are known. [Latane and Rendleman Jr| (1976))
use the weighted average of implied volatility in B&S call options and show that
the volatility forecasts from weighted implied standard deviations are superior
to those from the historical model. In subsequent studies, Chiras and Manaster
(1978)), [Jorion| (1995)), |Christensen and Prabhala (1998) and Fleming| (1998)) all
extract the implied volatility from the B&S constant volatility option model and
confirm the finding that the implied volatility outperforms historical forecasts. In
contrast, (Canina and Figlewskil (1993) use the binomial model to get the implied

volatility from S&P 100 index option and find that historical forecasts perform
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better. They also show that the implied volatility of near the money options lead
to superior forecasts compared to deep in or out of the money options. (Chris-
tensen and Prabhalal (1998) and [Fleming (1998) forcefully argue that the find-
ings of |Canina and Figlewski (1993)) suffer from overlapping observation biases.
Charoenwong et al.| (2009) use high-frequency data to report that implied volatil-
ity forecasts are superior to time-series forecasts, regardless of the trading venue.
Szakmary et al.| (2003) document that at-the-money (ATM) implied volatility
forecasts are superior to forecasts from GARCH and MA models throughout the
maturity of the contract in the commodity market. Contrary to the study of [Sza-
kmary et al.| (2003), Agnolucci| (2009) reach a different conclusion in the crude oil
market. They find that the predictive power of ATM implied volatility is inferior
to that of a set of GARCH-type models. They also show that the forecasts from
models combined GARCH-based and IV-based can be improved, which means
that implied volatility forecasts contain some information that is not contained
in the time series models.

Jiang and Tian| (2005) build on the work of Britten-Jones and Neuberger
(2000) to propose the model-free implied volatility that does not depend on any
specific options pricing model and any particular strike prices. They show that
the model-free implied volatility (MFIV) subsumes the information of the Black
and Scholes ATM IV from the B&S model and historical volatility. However,

Taylor et al.| (2010) report that ATM IV outperform MFIV by analyzing options
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of individual firms. Finally, they show that option forecasts are more informative
than historical forecasts for the month ahead estimation.

Lamoureux and Lastrapes (1993) derive ATM IV from the Hull and White
(1987) model, which assumes that volatility risk is diversifiable and there is no
volatility risk premium. They document that the bias in the IV forecasts may be
due to ignorance of pricing of volatility risk. |Jorion| (1995) and [Fleming (1998)
also find that I'V estimates are upward-biased. However, it is unclear why implied
volatility is biased. Poteshman| (2000) uses the Heston| (1993) model, which takes
a predetermined volatility risk premium into account to estimate IV and report
a lower bias. He presents that high-frequency futures data and consideration of
volatility risk premium are helpful for bias reduction. |Chernov| (2007) models
the volatility risk premium as an affine function of the latent spot volatility, and
reports that volatility risk premium leads to the bias of volatility estimates in
theoretically and empirically. Kang et al. (2010) use investor risk preferences and
higher-order risk-neutral moments to estimate the disparity based on the presence
of volatility risk premium. Based on the assumption that volatility risk premium
is proportional to the latent spot volatility, [DeMiguel et al. (2013) adjust the
MFTV estimates by the ratio of the average MFIV and realized volatility over the
past year. [Prokopczuk and Wese Simen| (2014) employ a similar adjustment which
uses the MFIV divided by the average of the relative volatility risk premium in

the energy sector. They find that the adjusted MFIV is superior to other models,
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including raw MFIV. Kourtis et al.| (2016) use the adjustment of Prokopczuk and
Wese Simen| (2014)) and provide a comprehensive performance of adjusted MFIV
in different equity markets. They report that the HAR-RV model outperforms
others at the daily horizon, and the adjusted MFIV performs best at the monthly

horizon.

3.2.2 Volatility Risk Premium

Volatility risk premium (VRP) is the difference between risk-neutral and physical
volatility. Regarding the model of the volatility risk premium, there are a few
papers to investigate the forecasting. Bollerslev et al. (2011]) show that VRP is
time-varying and employ an augmented AR(1) process to predict the VRP. They
document that a set of five macro-finance variables contribute to time-variations
of the volatility risk premium of the S&P 500 index after testing 29 macro-finance
variables and prove that VRP is driven by realized volatility, Moody AAA bond
spread, Housing start, S&P500 P/E ratio, industrial production, producer price
index and payroll employment. (Chabi-Yo| (2012) demonstrate that investor’s risk
aversion has a positive effect on the value of price of market variance risk and
then has a positive effect on the volatility risk premium. Garg and Vipul| (2015)
use daily data to study VRP forecast on Indian options market and use AR(3) to
predict VRP. They gradually increase the numbers of lag VRP and present after

AR(3) the residuals have no serial correlation. |Chen et al. (2016) use investor
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sentiment, which is measured by the bull-bear spread to explain the sign of VRP.

Some studies focus on the variance risk premium (V RP?). Since variance
risk premium is defined as the difference between the risk-neutral and physical
variance, the VRP is a nonlinear transformation of VRP? and we also analyze
some findings on VRP? forecast. Bollerslev et al. (2009) use a general equilib-
rium model to show that the variance risk premium is related to the volatility of
volatility of the consumption growth process. Bekaert et al.| (2013)) decompose the
squared VIX into a proxy for risk aversion, which is the variance risk premium
and a measure of economic uncertainty, which is the physical variance. They
find that lax monetary policy affects these two components and more strongly for
variance risk premium. [Konstantinidi and Skiadopoulos (2016|) investigate the
variance risk premium of the S&P 500 index in four specification predictive mod-
els: variation in the volatility of the S&P 500 returns, stock market conditions,
economic conditions and trading activity. They find that the trading activity

model performs best among them.

3.3 Data and Methodology

3.3.1 Data

Chicago Board Options Exchange (CBOE) applied its volatility index methodol-

ogy to different markets and assets to compute the 30-day volatility implied. In
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this paper, we focus on the S&P 500 index volatility index (VIX) for S&P 500
Index (SPX), the crude oil volatility index (OVX) for United States Oil Fund
(USO), the gold volatility index (GVZ) for SPDR Gold Shares (GLD), the silver
volatility index (VXSLV) for iShares Silver Trust (SLV), the VXGDX for VanEck
Vectors Gold Miners ETF (GDX), the VXXLE for Energy Select Sector SPDR
Fund (XLE) ] Since 2003, the CBOE uses the model-free method to construct a
new and more robust VIX, and we choose the time period of VIX from 2004/01/01
to 2018/09/30[f] The dataset is available from 2007/05/10 and 2008/06/03 for
the OVX and GVZ, respectively. As VXSLV, VXGDX and VXXLE have been
calculated and published from March 2011, the implied volatility index samples
for these three sectors are all from 2011/03/16 to 2018/09/30. All implied volatil-
ity indexes data are based on daily closing data from CBOE. All the underlying
prices are dividend-adjusted closing data obtained from the Bloomberg database.

The sample periods of the underlying assets are aligned with those of implied

2They all use the VIX methodology to measure the implied volatility.

3In 1993, CBOE create the old VIX, which is the expected implied volatility for the next
30 days by the option prices of the at-the-money S&P 100 index (OEX Index). The old VIX
calculation is based on an average of implied volatility calculated from the Black and Scholes
model. This implied volatility is based on eight near-the-money options of the two nearest
maturities. From September 22, 2003, the CBOE changed to a new methodology to calculate
VIX based on model-free implied volatility, which relaxes the need for options with near-the-
money strikes and contains more options with a wide range of strike prices. Another change of
VIX is that the new VIX refers to the S&P 500 index instead of the S&P 100 index.

4Although Chapter 3 focuses on commodity-related ETFs, our study includes SPY as a
benchmark. Kourtis et al.| (2016) show that adjusted VIX outperforms the time-series forecast-
ing model in the monthly forecast horizon. In Table we can find that the summary statistics
of SPY is close to those of commodity-related ETFs. Since SPY is very popular and has an
influence on commodity-related ETFs, it is interesting to see whether our conclusions work in
SPY. We use daily data to compute the realized volatility while Kourtis et al.| (2016)) use 5-min
data. It means that SPY in our study can also test whether the success of adjusted VIX is due
to high frequency.
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volatility data. We complement this dataset with the opening, daily high and
daily low prices of the underlying assets from Bloomberg.

Table reports the summary statistics of SPX and ETFs. It reports the
Newey-West t-statistics on the significance of the mean volatility risk premiums
computed with 2 lags. Overall, the sample averages of volatility risk premium
are all positive, and most of them are statistically significant. Our results are
consistent with Tee and Ting (2017)) which confirms that there exists a significant
difference between physical and risk-neutral measure in the commodity ETF's
market. Moreover, the averages of lag 1 autocorrelations of SPX, USO, and GDX
are all larger than 0.18, and it shows that future VRP can be partly reflected by

its past.

3.3.2 Realized Volatility, Implied Volatility and Volatility
Risk Premium

Realized Volatility Since it is widely known that volatility itself cannot be
observed, a popular way to proxy volatility is obtained by the square root of
the sum of daily squared returns. |Andersen and Bollerslev| (1998)) convincingly
argue that realized volatility calculated using intraday data is a more efficient
proxy of the realized variance. Barndorff-Nielsen and Shephard| (2002) show that
when the sampling frequency increases to infinity, the sum of squared intraday

returns asymptotically converges to the truly realized variance under some ideal
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conditions such as continuous and frictionless prices. The choice of data frequency
involves a careful analysis of the microstructure noise induced by factors such as
nonsynchronous trading and bid-ask bounce. A thorough review of the effect of
microstructures on realized volatility can be found in the paper by [McAleer and
Medeiros (2008)).

Throughout this paper, we focus on the monthly forecasting horizon. Since
we collect daily returns, we employ daily returns to get monthly realized variance
which means the realized volatility computed over a horizon of 21 trading days.
Following |Jorion| (1995) and |[Prokopczuk and Wese Simen| (2014), we use the
square root of the sum of daily log returns to calculate the realized volatility over
21-day post windows. It means that the realized volatility between ¢ and ¢ + 7 ,

RV, 41, is measured:

259 t+7 R 9
RV s = T[;ﬂ (100 x log P“) ] (3.3.1)

where P; is the closing price of the underlying asset on trading day ¢ and 7 is 21

trading days in our analysis.

Model-Free Implied Volatility Building on the work of |Britten-Jones and
Neuberger| (2000), Jiang and Tian| (2005) show how to compute the model-free
implied variance, which does not depend on any specific option pricing model

and any particular strike prices. They extend the work of |Britten-Jones and
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Neuberger| (2000)) to asset price processes with jumps and they demonstrate that:

2e(T=0) | rFur p(¢ K, T) O K T)
EF (Vi) = MFIV = T—t [/0 TR i
t, T

(3.3.2)
where E?(VfT) and M FIV%, denote the risk-neutral expectation of variance and
model-free implied variance between t and T', respectively. r, is risk-free rate and
F, 1 refer to the time ¢ futures contract expiring at 7. P(¢t, K,T) and C(t, K,T)
refer to the put and call European options price at time t and expiring at T with
strike price K.

CBOE created the old version of VIX in 1993 and based on the B&S model
and get the average of implied volatility by each of 8 options which are near-
the-money. In 2003, CBOE uses the model-free method, which is similar to the
Equation to calculate the new VIX. They truncate the two integrals at
the lowest and highest strike prices for a given maturity and then employ the
out-the-money call and put options to get the implied volatility of the S&P 500
index. In recent years, the CBOE has applied the VIX methodology to compute
the volatility indices of different securities. In this paper, we directly use the
following implied volatility indexes: VIX, OVX, GVZ, VXSLV, VXGDX and

VXXLE, from CBOE as model-free implied volatility for our study.
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Volatility Risk Premium According to Della Corte et al. (2016) and |Fan

et al.| (2016)), we define the volatility risk premium as:

VRP 1y = EQ(W,HT) - EP(W,HT) (3.3.3)

where VRP, 4, denotes the volatility risk premium between ¢ and ¢ 4 7 and we
use the one month horizon. ]EQ(V;HT) is the ex ante expectation of volatility
under risk-neutral measure and EX (Vie4r) is the ex ante expectation of volatility
under the physical measure.ﬂ Following [Bollerslev et al.| (2009), we use the VIX
index and the other implied volatility index to proxy for the M FIV,, .. Follow-
ing |Prokopczuk and Wese Simen| (2014)), we use the annualized volatility of the
underlying asset daily log returns over 21-day post window as realized volatility
to proxy RV, .y, which is the measurement of EF (Vitsr). Then we can get the

formula of measuring VRP, 4, asﬂ

VRP, 1 r = MFIViyir — RV 4y (3.3.4)

5Empirical studies on quantifying the VRP usually belong to three methods. The first is
calculated by deriving volatility from a pricing model. The model-free method is developed
to measure the VRP to overcome these gaps. Thus, the measurement of VRP reduces to
quantifying realized volatility and risk-neutral volatility, which can be calculated by the model-
free method.

6Since VIX is the annualized 100 times monthly implied volatility of the S&P 500 index, we
also annualize and multiply by 100 the monthly realized volatility accordingly. See CBOE VIX
White Paper for more details.
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where M FIV;r is the annualized 30-day implied volatility which is proxied by
VIX, OVX, GVZ, VXSLV, VXGDX or VXXLE. RV, r is the ex post annualized
realized volatility of the next month, computed using Equation (3.3.1). By an-
alyzing Equation (3.3.4]), we can infer that the MFIV is a good and unbiased
proxy for the future realized volatility if the VRP is zero. However, if the VRP is
time-varying, it confounds the information content of the MFIV. Chernov| (2007)
shows that VRP is a main bias for the realized volatility estimator. |Carr and
Wu (2008) and Bollerslev et al. (2011]) present that the VRP is non-zero and
time-varying, supporting MFIV is a biased estimator. Inspired by them, we need
to have a model for the time-varying future VRP in order to purge the MFIV

from these time variations.

3.3.3 Volatility Forecasting Models

Our aim is to reduce the bias in the implied volatility by the expectation of
volatility risk premium. Thus the adjusted implied volatility can be used to
predict the realized volatility. Clearly, predicting VRP is a key point to estimating

physical volatility by the method deriving from future implied volatility.

Forecasts by Model Free Implied Volatility Forecasts (MFIV)

By the definition of VRP, its forecast is added to the implied volatility forecast
to obtain the realized volatility forecast. In this part, we check whether the

adjusted implied volatility has a good performance in commodity sectors. We
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focus on the role of the volatility risk premium and its implication for realized
volatility forecasting.

Chernov| (2007)) indicates that the volatility risk premium is the primary bias of
volatility forecast. Intuitively, the difference between the implied volatility for the
next period and the volatility risk premium forecast yields the realized volatility
forecast. Since the forecast of volatility under risk-neutral is proxied by implied

volatility indexes from CBOE, expected realized volatility can be expressed as:

E(RVi1r) = MFIV,r —E(VRP ;) (3.3.5)

where M F'IV, .. is the annualized next 30-day expected implied volatility which

is proxied by VIX, OVX, GVZ, VXSLV, VXGDX or VXXLE in this study;
E(V RP, +4.) is the volatility risk premium forecast for the next period and E(RVt?t )
is the realized volatility forecast.

Carr and Wul (2008)) indicate that the distribution of log variance risk pre-
mium is closer to normality and more suitable for ordinary least squares (OLS)
regression. Inspired by them, we use the log volatility risk premium format to
compare the performance of different estimating models.

The log volatility risk premium is defined as:

LVRP iy =ImE?(Viyy,) — InEP (V40 r) (3.3.6)
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where ]EQ(%HT) is the ex ante expectation of volatility under the risk-neutral
measure and E” (V. ) is the ex ante expectation of volatility under the physical
measure. The adjusted implied volatility by log volatility risk premium which can

proxy the realized volatility forecast and is denoted as AMFIV, ;. is as follow:
AMFIV, i, = exp (In(MFIVi4yr) —E(LVRP,44r)) (3.3.7)

If we take V RP into account to get a decent realized volatility forecast, predicting
V RP is a crucial point to estimating physical volatility by the method deriving
from future implied volatility.

In this study, we focus on different time series models to forecast VRP. By
employing different V RP forecasts, we compare their impact for volatility fore-

casting.

LV RP Forecasts by Historical Averages |Prokopczuk and Wese Simen|(2014)
and [Kourtis et al.| (2016)) show that model-free implied volatility adjusted by his-

torical relative volatility risk premium, which is the average values over one past

year, outperforms many other volatility forecasting models at the monthly hori-

zon. We employ the historical average as the LV RP forecast and is expressed

as:

1 t—T1
g O LVRPi (3.3.8)

1=t—252

HLVRP, g4, =

where HLV RP,_952;—, is the average log volatility risk premium between ¢ — 252
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and t — 7; 7 denotes the forecasting horizon which is one month, 21 trading
days in this study. We applied the simple time series method for forecasting
log volatility risk premium and the forecast is proxied by HLV RP;_952¢—,. The
adjusted implied volatility by historical averages AM F'I Vtht 4, for the period ¢ to

t+ 7 is:

AMFIV], = exp (n(MFIV,y,) — HLVRP, o5, ) (3.3.9)

LV RP Forecasts by AR(1) |Garg and Vipul (2015) employ an AR(3) time-
series specification to model daily VRP. We use the AR(1) model to capture the
persistence of the LVRP and forecast the log volatility risk premium for the next

period[] Our specification is as follows:

LVRPt_T7t =+ ﬁ * LVRH_QTJ_T + € (3310)

Given information set ]t = {LVRPt_2527t_252+7—, LVRPt_2517t_251+7—, ceey LVRB_T,t},

the forecast by autoregressive model is:

ALVRPt7t+T = E(LVRPt7t+T|It) =+ /8 * LVRPt,T,t (3311)

TProkopczuk and Wese Simen| (2014) employ an ARMA(1,1) model as a robustness check
to predict VRP in commodity futures market. However, we use ARMA(1,1) model and get
an insignificant coefficient for moving average term. This is not necessarily inconsistent with
the results of them. They analyze options on commodity futures, whereas we study options on
ETFs. It indicates that ARMA(1,1) is not suitable for commodity ETFs indexes.
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where o and 3 are obtained from the past one year information of LV RP by
the Equation (13.3.10)), 7 denotes the forecasting horizon which is one month, 21
trading days in this study.

We estimate the above model using a rolling window of 232 observations. Then
we apply the a and  from Equation to Equation . After knowing
the forecasts of log volatility risk premium by AR(1), we can get the adjusted

implied volatility AM FIV/, which is calculated by the following equation.

AMFIVE, = exp (In(MFIV,;,,) — ALVRP, ) (3.3.12)

LV RP Forecasts by EWMA The historical model in Equation [3.3.8| assigns
equal weight to past data. One may argue that more recent data should receive
more weight. As a result, we use the exponentially weighted moving average
forecast is a weighted average (EWMA). Consistent with the forecasting window
of previous models, we estimate the weighted parameter on a rolling window
of 232 observations. We choose the smoothing parameter by minimizing the
mean squared forecast errors and then combine past information by exponentially
decreasing weights to indicate the forecast for the next 21 trading days. The

forecasts of LV RP by EWMA is:

252—T1
ELVRPy - =X Y (1=XN'LVRP i+ (1 - \)'LVRP, (3.3.13)

1=0
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t—7

1
LVRPy = o > LVRP. (3.3.14)

j=t—252
where LV RP,_; is the log volatility risk premium for the period t —¢7 — 7 to t — 1,
LV RPF, is the average log volatility risk premium between ¢t — 252 and t — 7 where
7 is 21 trading days in our study. A which is the smoothing parameter to minimize
the mean squared forecast errors satisfies the following equation:

t—1

min > (LVRP,_j_rs—x — ELVRP,_j_ry_1)? (3.3.15)

0<A<1

where ELV RP,_j_;; ) is calculated in Equation ﬂ We always employ
a rolling sample of the latest 232 observations, which means that we use the
information of LV RP of past 232 trading days to get the A. After that, we use
the Equation (3.3.13)) step by step to forecast LV RP for next 21 trading days.
Equipped with the EWMA forecasts of log variance risk premium, we compute

the adjusted implied volatility AMFIV)S,  as follows.

AMFIVY,,, = exp (I(MFIV,y,) — ELV RP,4y) (3.3.16)

8In our sample, the mean of A for SPX over the whole period, 0.9371. X fluctuates from
0.6897 to 0.9998. The standard deviation of A for SPX is 0.0630. The means of A for USO,
GLD, SLV, GDX and XLE are 0.9884, 0.9922, 0.9947, 0.9509 and 0.9723, respectively. The
A for USO varies from 0.8301 to 0.9998, A\ for GLD changes from 0.8439 to 0.9998 and that
for SLV varies from 0.8392 to 0.9998. The standard deviation of A for USO, GLD and SLV
are 0.0238, 0.0216 and 0.0200. X for GDX oscillates from 0.5423 to 0.9998 and the standard
deviation is as high as 0.1196. A for XLE fluctuates from 0.7425 to 0.9998 and the standard
deviation is 0.0606.
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LV RP Forecasts by RV and MFIV We adopt a richer model that includes

the implied volatility and the lagged realized volatility to forecast LV RP:

LVRPt_TJg = Oy + 51 * lnMFIV;_T,t + 52 * lnRVt_gT,t_T + € (3317)

Given the information set

My ={RVi_a524—9504+, RVi—o51 125147, -, RVie 7,

MFIVi 95347 1—250427, MFIV, 951171 951427, .- MFIVt,tJrT};

the forecast is:

IRLVRP, 47 = E(LVRP, 11| M) = ajr + f1 * INMFIV,4ir + Bo % InRV,_1y
(3.3.18)
where «;,., 51 and 5 are obtained from Equation given information set
M; and 7 is the forecasting horizon, 21 trading days. In comparison with other
models, we employ the above model by a rolling window of 232 observations.
After knowing the forecasts of log volatility risk premium by RV and M FIV, we

obtain the adjusted implied volatility AMFIV}}, is as follows.

AMFIV}, = exp (IW(MFIV,4y,) — IRLVRP,, ) (3.3.19)



3.3. Data and Methodology 79

Forecasts From Realized Volatility by EWMA (ERV)

Ding and Meade| (2010)) indicate that EWMA performs better than GARCH
in most cases and GARCH outperforms stochastic volatility (SV) in different
volatility scenarios. Following them, we use EWMA to predict realized volatility

and the forecasts for the next period which we denoted as ERV; ;- is:ﬂ

252—T1
ERVipr = A > (1= A)' RViciryi + (1= \)'RV (3.3.20)
=0
1 t—T
RVy = ——— RV jir 3.3.21
0= 959 — 7 j:;52 Jg+ ( )

where the RV} is the average volatility of the past 232 trading days in our analysis,
RV,_;_+4_; are the historical realized volatility and A, is the smoothing parameter.
Riskmetrics| (1996) recommend to set A = 0.94 while Mina et al| (2001)) choose
A = 0.97. In this study, we use the smoothing parameter that minimizes the in

sample sum-of-squared forecast errors in our analysis. It means that we choose

9We choose EWMA as our benchmark in several reasons. First, EWMA is a very simple
but efficient way to forecast volatility. We also consider HAR model as another benchmark
in Section as a robustness test. Second, Ding and Meade| (2010) point that EWMA
outperforms when data comes from a high volatility of volatility scenarios. Part of our data
covers 2008 financial crisis during which assets prices fluctuate. Third, their conclusions that
EWMA is superior work in many different markets including commodity markets. We point
that commodity ETF's track commodity prices in Section [3.4] so EWMA may perform well in
commodity-related ETFs.
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the parameter to satisfy the following equation:

t—1

min (RViihrik — ERVi gt )? (3.3.22)

0<A-<1

where ERV,_j_,,_ is calculated in Equation [3.3.20] We use the volatility of the
past 232 trading days to get the A\, and then use Equation (3.3.20) to forecast

the next-period volatility['’) We use this model as our benchmark.

3.4 Empirical Results

3.4.1 In-Sample Analysis

In this section, we evaluate the in-sample performance of our forecasting mod-
els: ERV, MFIV, AMFIV" AMFIVY AMFIV® and AMFIV™. Mincer-
Zarnowitz regressions are OLS regressions, and they are simple and typical meth-
ods to evaluate the biases of forecasts. They usually work by testing the joint
hypothesis that the intercept is 0 and the slope is 1. A large number of stud-
ies, e.g. |Andersen and Bollerslev| (1998), |Prokopczuk and Wese Simen| (2014)
and Kourtis et al. (2016)), employ Mincer-Zarnowitz regression to examine bias
in forecasts. Following them, we use Mincer-Zarnowitz regressions to evaluate

the information content of volatility forecasts. We regress the monthly realized

10Tn our study, the mean of A, over the whole period is 0.9818 and ), ranges from 0.6661 to
0.9998. The standard deviation is 0.0376.
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volatility on our volatility forecasts from the different models:

RVir=a+Bfir+er (3.4.1)

where RV, is the monthly ex-post realized volatility from ¢ to 7', f;r is either
one monthly volatility forecast or a vector of competing forecasts at time ¢ and
er is the error term. We employ Newey-West standard errors with 2 lags for all
t-statistics and other tests. A forecast is unbiased and efficient if it has errors
that are unforecastable on the basis of all available information at the time of the
forecast. For univariate regressions, we use a Wald test to test the null hypothesis,
which assumes that the values of a and (8 are jointly equal to zero and one,
respectively. For encompassing regressions, we restrict the slope of alternative
forecasts to zero to test whether the alternative one is more efficient than the

baseline one.

Univariate Regressions The results of in-sample regressions are reported in
Table 3.2] If the forecast is informative about future volatility, the slope will be
statistically different from zero, and we will reject the null hypothesis. The table
presents the coefficient estimates () along with the corresponding Newey-West
t-statistics computed using 2 lags. We find that all slope coefficient estimates
are positive and statistically significant, which means that these forecasts contain

information about next month’s volatility. We analyze the adjusted R-square
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which indicates the performance of the model so that we can evaluate the ex-
planatory power of forecasts. We can observe that the slopes of forecasts from
some implied variance related models are closer to one. In order to formally test
the unbiasedness of forecasts, we employ the Wald test, which restricts the value
of a and ( jointly to zero and one, respectively. The corresponding p-values are
presented below the Wald values, and p-values in bold show a rejection of the null
hypothesis at 5% significant level, reporting that forecasts are biased.

In the S&P 500 market, we see that the slope of forecast from MFIV is 0.97
and gets very close to expected number 1 while the slope of EWMA is only 0.77.
The results of the Wald test suggest that the MFIV forecasts are less biased than
the benchmark model. This finding is consistent with Jiang and Tian (2005)
and Kourtis et al.| (2016), suggesting that it is quite necessary to adjust MFIV.
We turn to check the performance of AM EFIV" forecast proposed by Prokopczuk
and Wese Simen| (2014) and Kourtis et al| (2016). We notice that AMEFIV"
cannot reject the null hypothesis at 5% significant level by Wald test, and the
explanatory power is equal to 0.59, indicating that the MFIV is a good predictor
for next month volatility. Comparing AMFIV®™, AMFIV® and AMFIV®™, we
find that AM FIV® and AM FIV* are biased while AM FIV is not as evidenced
by p-values of Wald test at 5% significant level. Furthermore, AM FIV® provides
the highest adjusted R-square value 0.67 among all the forecasts while AM F 1V *"

has the lowest value of 0.54. It is fairly to infer that AM FIV™ is the best forecast.
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For the US oil market, we focus on USO, which is a commodity ETF reflecting
prices of light and sweetcrude oil and trades like stocks. The value of USO is
calculated on the price of near-month West Texas Intermediate (WTI) crude oil
futures contracts traded on the New York Mercantile Exchange (NYMEX), and
OVX is based on the options on USO. |Agnolucci (2009) use options on futures
on WTI and note that forecasts from GARCH-type models outperform implied
volatility from the B&S model. However, |[Prokopczuk and Wese Simen| (2014)
indicate that in the crude oil and heating oil markets, MFIV and MFIV-adjusted
forecasts are both perform better than time-series forecasts and also MFIV-based
forecasts are less biased than time-series forecasts. In our results of this sector,
the benchmark forecast, EWMA, performs worse than MFIV as shown by the
smaller adjusted R-squared and smaller § than 1, suggesting that the time-series
forecast is inferior to MFIV. We notice that in explanatory power, all the MFIV-
related forecasts are better than EWMA, and for the Wald test, the values of
MFIV-adjusted forecasts are much smaller than that of MFIV. These findings
are consistent with Prokopczuk and Wese Simen| (2014) and confirm that MFIV
needs to be adjusted. We observe that the p-values of the Wald tests associated
with AMFIVY AMFIV® and AMFIV® are all larger than 5% , confirming the
unbiasedness of these forecasts. Moreover, AMFIV® has the largest adjusted
R-square value among all the forecasts, indicating AM FIV is superior to that

of other forecasts.
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We use gold ETF, SPDR Gold Shares, which invests in physical gold and
almost keep track of the price of gold, to calculate the realized volatility. Its
implied volatility index, GVZ, is based on the options on it. Compared with
MFIV, EWMA performs worse, as evidenced by the smaller adjusted R-square.
This finding is consistent with Szakmary et al.| (2003). Not surprisingly, the
MFIV is biased, and we cannot reject the unbiased null hypothesis by the Wald
test. AMPFIV" not only displays a high slope coefficient, but its forecast is
also unbiased. As for AMFIV® and AMFIV*®, their performance are worse
than AMFIV". However, AMFIV™ is with the smaller intercept and larger
coefficient of the slope than AM FIV" which reduces Wald value and maintains
the rejection of the unbiased null hypothesis. Furthermore, AM FIV" has a larger
explanatory power than AM FIV". We can conclude that AM FIV outperforms
all other forecasts.

We turn to the silver sector. SLV is short for ishares Silver Trust, which is
silver ETF and invests in physical silver, so it almost follows the price of silver.
Similar to the results in the previous sectors, EWMA is inferior to the MFIV.
Although the explanatory power of AMFIV" is smaller than that of the MFIV
that we cannot reject the unbiased null hypothesis. For MFIV-adjusted forecasts
we propose, we find that AM FIV™ performs much better than AMFIV". The
adjusted R-square of AMFIV is as high as 0.41, and the p-value of the Wald

test is 0.40, which suggests it is an unbiased forecast. Our results support that
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the AMFIV® performs best.

GDX is VanEck Vectors Gold Miners ETF which helps investors to gain ex-
posure to gold miners. Since GDX invest shares in gold miners, it tracks the
performance of the NYSE ARCA Gold Miners Index. In the gold miners sector,
we see that EWMA is still inferior to MFIV, but MFIV is an unbiased forecast.
Moreover, we cannot reject the null hypothesis, which is the value of o and (3 are
jointly equal to zero and one, of AMFIV" and AMFIV®. AMFIV® performs
worst among all the forecasts with the lowest adjusted R-square and highest Wald
value. Consistent with the finding in previous sectors, AM F IV has the highest
explanatory power and lowest Wald value, indicating that it is superior to all
other forecasts.

Turning to the energy sector, XLE, which tracks the performance of the S&P
Energy Select Sector Index. The index contains companies from the following
industries: oil, gas and consumable fuels, and energy equipment and services. We
notice that the MFIV improves upon the predictive performance of EWMA, and
both of them are biased forecasts. The results that times-series forecast is biased
and MFIV-related forecasts perform better in energy sector are in line with those
of Szakmary et al.| (2003) and Prokopczuk and Wese Simen (2014). Analyzing the
adjusted-MFIV forecasts, we find that AMFIV® is unbiased with 0.55 p-value
of Wald test and has 0.47 adjusted R-square. We can conclude that AMEFIV

has the best performance among all the forecasts.
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Taken together, we draw three conclusions from these univariate regressions.
First, MFIV beats EWMA in all sectors, although both of them are biased.
Second, in general, the MFIV-based forecasts yield more accurate forecasts than
EWMA. Third, among adjusted MFIV models, we can conclude that AMFIV*®
performs worst and AM FIV? dominates others. AMFIV" and AMFIV™ yield

unbiased forecasts in every market.

Encompassing regressions We focus on encompassing regressions. We can
conclude that one forecast provides information beyond another if its slope is
statistically significant in encompassing regressions. In addition, we restrict the
slope of EWMA to be equal to zero to further investigate if it adds any infor-
mation relative to the other models. If the p-value is higher than 5%, we cannot
reject the null hypothesis, which indicates that EWMA does not add any further
information relative to the MFIV or its adjusted counterparts. Table presents
the results.

In SPX, the adjusted R-square ranges from 0.59 to 0.67 for univariate regres-
sion, while multivariate regression ranges from 0.60 to 0.67. All the coefficients
of MFIV-related forecasts are significant from 0 and larger than that of EWMA
except for AMFIV ¢, suggesting that the forecasting performance is almost from
baseline forecasts and the appropriate adjustment of MFIV is essential. Further-
more, the test statistics are generally larger than 5%, indicating that EWMA is

statistically not more efficient than MFIV-adjusted forecasts. We can infer that
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EWMA does not appear to incorporate any information beyond that of MFIV-
related forecasts. For USO, adjusted R-square is almost not increased by EWMA,
and the coefficients of the baseline forecast are all larger than that of EWMA.
In addition, the slope of the baseline forecast is significant while that of EWMA
is not. We check the values of Wald tests, and the null hypothesis cannot be
rejected, strengthening the conclusion that the time-series forecast is less infor-
mative than MFIV-related forecasts. We turn to the study of relative efficiency
in the gold and silver market, and their results are pretty similar. For GLD and
SLV, the adjusted R-square is almost unchanged in encompassing regressions.
The coefficients of MFIV AMFIV" and AMFIV® are all significant, and that
of their alternative forecast, EWMA, is not. It is easy to conclude that MFIV
AMPFIV" and AMFIV?" are more informational than EWMA, especially when
we take their Wald test statistics which are all larger than 5% into account. In
GDX, there is also no increase in explanatory power. The coefficients of MFIV,
AMFEIV" AMFIV®, and AMFIV™ are all significantly different from 0 and
larger than that of the alternative forecast, EWMA. Apart from previous sectors,
through the Wald test, only the result of AM FIV cannot reject the null hypoth-
esis and contains more information than EWMA. In XLE, the explanatory power
is still not improved by adding an alternative forecast. The coefficients of MFIV
AMFEIV" AMFIV®™ and AMFIV®™ are all significant, while that of EWMA

are not. By the Wald test statistic, we get that the null hypothesis cannot be
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rejected in all encompassing regressions suggesting that all baseline forecasts are
more informational than EWMA.

Overall, these results confirm that AMFIV" subsumes the information in
EWMA forecasts in all sectors. Furthermore, it generally provides the highest
predictive power. Taking the results of our univariate and multivariate regressions

together, we conclude that AM FIV? outperforms all other forecasts.

3.4.2 Forecasting Accuracy

Until now, we have focused on the information content of volatility forecasts, in-
sample performance. It is also important to assess the out-of-sample forecasting
accuracy by using statistical loss functions to formally evaluate the competing
models. As the realized volatility is not directly observable and our realized
volatility is daily data. Following [Patton| (2011al), we employ two loss functions,
MSE and QLIKE, to make our inference robust to the noise in the volatility series.

The two loss functions are defined as follows:

n

MSE = %Z(RV;,T — fir)? (3.4.2)

t=1

n

QLIKE =+~ |los(fur) +

t=1

RVir
fer

(3.4.3)
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where n is the number of forecasts, RV, is the realized volatility and f;r is
the corresponding forecasts, ERV, MFIV, AMFIV" AMFIV¢, AMFIV® and
AMPFIV™ from forecasting model in Section . Thus the forecast horizon
T —t is 21 trading days and we use a rolling window of 232 observations to get
the out-of-sample forecastsﬂ Since loss function measures the forecast error, it
is obvious that the smaller the value of the loss function, the better performance
of the forecasting model.

After analyzing the forecasting accuracy of the competing models, we assess
whether the differences of forecast errors between competing volatility models are
statistically significant. We calculate the differences between the forecast errors
of model [name in row] and those of model [name in column|. In order to test
whether the difference is significant, we employ Diebold-Mariano (DM) predictive
accuracy test and non-parametric Wilcoxon signed rank test to assess the mean
and median differences, respectively. Concerned with possible autocorrelation in
overlapping forecast periods, we employ Newey-West estimators with 2 lags to
calculate DM statistics. The figures in bold refer to statistical significance at 5%
significant level.

All forecast errors measured by the two loss functions are reported in Table
3.5l We find that the rankings of models performance are consistent with our

in-sample results. Starting with the MSE, we notice that the MSE of the EWMA

HTn Section we also consider a different rolling window as a robustness check.
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is larger than that of the MFIV in most sectors. Generally, it is easy to infer that
MFIV provides a more accurate forecast than the time-series model, EWMA.
Consistent with Prokopczuk and Wese Simen| (2014)), the MSE of the AM FIV"
is often smaller than that of the MFIV. Comparing all the forecasts in MSE
criterion, AMFIV" is the second-best forecast in all areas except for GDX in
which MFIV ranks second on accuracy order. AMEFIV® is the best forecast in
all sectors.

Comparing EWMA and MFIV, we find that in all sectors, MFIV provides
a smaller QLIKE than EWMA. Moreover, we can see that AMFIV" is more
accurate than MFIV, confirming the study of |[Prokopczuk and Wese Simen (2014)).
Similarly, among MFIV-related forecasts, AMFIV™ beats AMFIV". Overall,
AMPFIV?™ yields the best forecast. This is true for both the MSE and QLIKE
criteria. These findings show that although it is necessary to adjust MFIV to
forecast realized volatility, a decent model to forecast VRP is important and
meaningful.

From previous tests, we observe that MFIV beats EWMA, AMFIV™ is supe-
rior to any other forecast. Now we turn to report whether these estimators from
competing models have significant differences, and the test results are presented
in Table [3.6, We can generally get several conclusions as follows. First, the dif-
ferences between EWMA and MFIV are not statistically significant. Second, the

AMPFIV" indeed provides a more accurate forecast than MFIV, and the differ-
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ences are statistically significant in most sectors. Third, the difference between

AMFIV™ and AMFIV" not statistically significant.

3.5 Robustness Checks

In this section, we investigate the robustness of our findings by conducting several
additional tests. First, we check whether our findings are robust when we use a
more efficient estimator of realized volatility. Second, we study the robustness
of our core results using the different functional forms of volatility risk premium
rather than the log format. Third, we check whether our findings persist when

we expand the length of our rolling window.

3.5.1 Alternative Estimator of Realized Volatility

Andersen and Bollerslev) (1998)) point out that it is quite important to pick a
proper ex post evaluation criteria to assess variance forecasts. In multiple studies,
including Bollerslev et al.| (2009)) and Bekaert and Hoerova| (2014), it is standard
to use 5-minute high frequency data to compute the realized variance to get a
better estimator of variance. We follow |Prokopczuk and Wese Simen| (2014)) and

employ the range estimator developed by |Garman and Klass| (1980) and refined
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by Yang and Zhang| (2000):

T
252 1
RV = T E (log Oy —log Cy-1)* + 5(10g H, —log Ly)? — (21og 2 — 1)(log C;

t=1

(3.5.1)
where O,, H; and L; denote the opening, the daily high, and the daily low prices
of the underlying on trading day t, respectively. C;_; and C} refer to the previous
and current closing prices, respectively. The estimator includes the daily highest
and daily lowest price information and also capture the overnight price. We repeat
all the analyses with this more efficient estimator as a robustness check.

Table 3.7 shows the univariate regression findings. It presents results that are
consistent with Table It can be seen that MFIV performs better than EWMA
in all sectors, although MFIV is a biased forecast. Among the MFIV-adjusted
forecasts we propose in this study, we find that AMFIV" consistently has the
highest explanatory power in all the sectors, and the Wald test associated with
the AM FIV? does not lead to a rejection of the null hypothesis a = 0 and 8 = 1
at 5% significant level. We thus conclude that the AMFIV™ is unbiased and
performs the best.

Table presents the values of the loss functions. Generally, MFIV beats
EWMA, although the difference is small. After adjusting for the VRP, AMFIV™",
AMFIV and AMFIV?™ are more accurate predictors of the future volatility
than the MFIV. Among them, AMFIV" yields the smallest errors in MSE and

QLIKE criterion and performs best. In Table [3.9] we show the results of the

— log O)?



3.5. Robustness Checks 93

statistical significance test of forecasting errors based on range estimator. Briefly,
the values of the tests support the results that AMFIV™ is significantly bet-
ter than EWMA, MFIV and AMFIV*® and differences between AMFIV" and

AMFIV® are not significant.

3.5.2 Different Functional Form of the Volatility Risk Pre-
mium

Our study uses the format of log volatility risk premium, which is a nonlin-
ear transformation of the volatility risk premium, and one may argue that the
transformation may affect the statistical characteristics of VRP and introduce an
upward bias. Since [Chernov (2007) indicates that the volatility risk premium is
the primary bias of volatility forecast, we use the level volatility risk premium
directly to adjust the MFIV. However, volatility is less volatile than a variance.
We repeat all the previous tests on level volatility risk premium and level variance
risk premium in this robustness check sector. The adjusted-MFIV by level VRP

format model is as follow:

AMFIVZL. = max(MF1V;zyr — E(VRP,44,),0) (3.5.2)

where E(VRP,;4.) is the forecast of VRP at time ¢ with forecasting horizon 7,

and it can be estimated as discussed in Section by equations (3.3.8)), (3.3.11)),
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(3.3.13) and (3.3.18) with the level VRP rather than LV RP. The adjusted-MFIV

by level V RP? format model is as follow:

AMPFIVYEP? —

tt+T1

;

\/min<RV;€2—252,t> if ]E(VRIDtQ,H-T) < mm<RVtQ—252,t>

N\

\/ma’X(MF]‘/t?t+T —E(VRP},.),0) if mm<RVtQ—252,t> < E(VRPtZ,t+T> < max(RVf_%Q’t)

\/max(RV?—%Zt) if E(VRPE,HT) > max(RV?—QE;Q,t)
\

(3.5.3)

where min(RV}? 55, ,) and maz(RV;? y5,,) are the maximum and minimum real-
ized variance over past 252 trading days respectively. E(VRPEt +-) is the forecast

of VRP? at time t with forecasting horizon 7, and it can be estimated as models

in Section by Equations (3.3.8)), (3.3.11)), (3.3.13]) and (3.3.18]) with the level

V RP? format rather than LV RP.

Prokopczuk and Wese Simen| (2014)) choose relative variance risk premium to
decrease the dependence on the level of variance and show that the MFIV adjusted
by the average relative variance risk premium is superior to the forecasts based
on the GIR-GARCH forecast, ATM IV forecast, and MFIV. Kourtis et al.| (2016)
present that at the monthly horizon, the MFIV adjusted by the average relative
variance risk premium is the best among HAR forecast, GJR-GARCH forecast,
lagged realized volatility and MFIV. Inspired by them, we choose the MFIV

adjusted by the average relative variance risk premium as one of the benchmarks
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to compare with other forecasts and the forecast is as follows:

MFIV,,
RMFIV; .y, = Vier (3.5.4)
\JARVRP?,
where
1 L MFIV?
ARVRP?, = Y 5.
RV R 252 — T RV? (3:5.5)

i=t—252 bitT

We report the univariate regression results in the Table 3.10] It is easy to
conclude that our main findings are consistent with a different format of volatil-
ity risk premium. In Table for univariate regressions, the explanatory power
of forecasts are quite similar with them in Table |3.2] indicating that the format
of VRP has little effect on the performance of forecast. In line with previous
findings, MFIV performs better than EWMA. AMFIV" can maintain the pre-
diction power as MFIV and significantly reduce the Wald test values to make
the forecast unbiased. AMFIV®™ is the best among the other forecasts in an
alternative format. It is also better than RM FIV in all the sectors. In the
Wald test, we can see that AMFIVvhir and AMFIVVEP%ir ohviously decrease
the Wald values compared with EWMA and MFIV. In most cases, AM FIVvobir
and AMFIVVEP%ir have the lowest Wald values in relative format, confirming
AMPFIV™ is less biased.

Table shows the forecast errors, and the results are of the same magnitude

as those of Table@ AMPFEIVLr and AM FIVVRP?T offer the smallest errors in
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all the sectors under MSE and QLIKE criteria in corresponding format forecasts.
The difference of the forecasts from the same model in a different format is small.
Table and Table report the difference of forecasting errors for forecasts
obtained by level VRP format and V RP? format, respectively. In all the sectors
under both criteria, the mean errors between AM FIV¢ and other forecasts in
an upper triangle are all negative, while those between AMFIV® and other
forecasts are all positive for the two formats. In general, the forecasting error
differences between AM FIV" and others are significant, suggesting AM F IV vebir
and AM FIVVEP%ir ggatistically dominate the other competing forecasts. Overall,

we find that AM FIV beats its competitors.

3.5.3 Different Rolling Windows

So far, we use a rolling window of 232 trading days to estimate the value of LV RP
for the next period. Since the choice of 232 trading days may bring contingent
findings, we expand our rolling windows to 484 trading days. We repeat all

the tests by the alternative estimation periods and report the results in Table

13.14][3.15) and |[3.16} Generally, the performance of the MFIV is superior to that

of EWMA suggesting that the time-series forecast is inferior to the model-free
implied volatility. In line with [Prokopczuk and Wese Simen| (2014)) and Kourtis
et al.|(2016), MFIV is biased and AM FIV" is unbiased. Our core conclusion that

AMPFIV?™ is better than EWMA and any other MFIV-based forecasts are not
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driven by the choice of a specific rolling window, indicating that our adjustment

is the best and robust.

3.5.4 Alternative benchmark

Kourtis et al.| (2016) show that forecast by HAR model is superior than adjusted
MFIV at the daily horizon. Although HAR model proposed by |Corsi| (2009)
needs high-frequency data, Bollerslev et al|(2018)) show that HAR model can be

adjusted to daily data. The HAR model in our study is defined as:
RVt{ffﬁ = Bo+ BpRVi—i,p + BwRViciw + BuRVici v + € (3.5.6)

where

RV 1p= /B2,

1 4
RV, 1w = \5 ZO Ry, -

20
1 2

RV, 1 y=.|= R ,
t l,M \ 21 pa di—1—1

P 2
R, = (100 x log =)
di—1—1

RV/{2% is the monthly forecasting volatility for next period 7. RV;_1 p,RV,_1w
and RV;_1 ar are realized volatility over different horizons. d;_; is the date of last

day on month ¢t — 1. All other variables are defined as previously. Consistently,
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we use the rolling window of 232 trading days to estimate the parameters of HAR
model. We forecast realized volatility by HAR model and report the results in
Table [3.17 Comparing Table with Table [3.2] and 3.5, we can conclude that
the performance of the forecast by HAR is generally inferior to that by EWMA
and confirm that time-series forecast is inferior to the model-free implied volatility.
Our core conclusion, that AMFIV' is better than time-series forecasts and any

other MFIV-based forecasts, keeps.

3.6 Conclusions

This chapter investigates how to model the volatility risk premium to correct the
model-free implied volatility to forecast realized volatility. Many studies show
that the gap between the implied volatility and realized volatility is informative
about the bias for implied volatility forecast, and our study confirms this point.
We employ four different kinds of time-series models to predict VRP and then
use the VRP forecast to adjust MFIV to reduce the bias. Our analysis is carried
out for 6 kinds of the index and show consistent findings. In general, MFIV beats
EWMA confirming the view that this time-series forecast is inferior to the model-
free implied volatility. MFIV-based forecasts subsume EWMA information. The
performance of AMFIV® significantly dominates that of any other competitor,
indicating that our adjustment of the MFIV improves the forecasting accuracy of

the model-free implied volatility.
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Table 3.1: Summary Statistics

This table reports summary statistics of RV (realized volatility), IV (implied
volatility) and VRP (volatility risk premium) and each panel corresponds to a
different sector (SPX, USO, GLD, SLV, GDX and XLE sectors).Columns under
Obs, Mean, SD(%), Skew, Kurt, Autol, Auto2 report the sample observations,
average, standard deviation in percentage, skewness, and kurtosis, lagl autocor-
relation, lag2 autocorrelation, respectively. Columns under t report the Newey-
West t-statistics of the mean risk premiums computed with 2 lags.

Var  Obs Mean SD(%) Skew Kurt Autol Auto2 t-stats

SPX
RV 166 14.92 10.57  3.17 1713 0.74 0.57 11.84
v 166 18.64 8.42 217 874 0.85 0.71 17.80
VRP 166 3.73  6.63 -3.19  21.20 0.27 0.04 6.16

USO
RV 126  30.88 14.62 141 544 0.79 0.66 15.03
1AY 126 36.19 1387 133 521 091 0.79 17.70
VRP 126 5.30 7.51 -0.73 3.81 0.18 0.06 6.99

GLD
RV 113 14.86 5.84 1.53 6.08 0.42 0.36 20.14
1AY 113 18.05 4.92 0.80 4.18 0.76 0.60 25.09
VRP 113 3.18 4.86 -248 1649 -0.04  0.07 6.98

SLV
Rv 79 2191 834 .71 7.06 0.39 0.44 17.36
1Y 79  27.09 6.64 045 259 0.79 0.67 22.95
VRP 79 517 7.14 -2.47 1580 -0.09  0.22 6.35

GDX
RV 79 3588 14.22 052 249 0.69 0.53 14.87
IV 79 36.93 9.57 0.29 225 0.82 0.64 21.62
VRP 79 1.06  9.65 -1.30  5.26  0.22 0.06 0.84

XLE
RV 79 18.19 7.42 .13 3.90 0.61 0.48 14.90
IV 79  21.35 5.09 1.07  3.97 0.72 0.55 24.42
VRP 79 316 544 -1.27 5.06 0.13 0.12 4.61
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Table 3.3: Encompassing Regressions for Realized Volatility

This table presents results from encompassing regressions of realized volatility on com-
peting forecasts for SPX, USO, GLD, SLV, GDX and XLE sectors and each panel corre-
sponds to a different sector. Columns report regression results for a particular forecast
in the sector. EWMA and IV denote the slope coefficient of the forecast EWMA and
the other MFIV-related forecast as reported in the column, respectively. a denote the
intercept and in brackets we present the Newey-West test statistic computed with 2
lags. Wald reports the Wald test statistics and p_wald reports the corresponding p-value
of Wald test in which we restrict the slope of EWMA to be equal to zero. DW and Obs
denote the Durbin-Watson test statistic and the number of observations, respectively.

Var EWMA+MFIV EWMA+AMFIV? EWMA+AMFIV® EWMA+AMFIVe EWMA+AMFIV™
SPX

EWMA 0.37% 0.41% 0.25 0.59 0.16*

(1.68) (2.07) (1.09) (1.60) (1.97)

v 0.55%%* 0.48%%% 0.44% 0.24 0.74%%*

(2.81) (2.89) (2.10) (0.63) (7.00)

o -0.89 1.86%* 4.44%%% 2.80%+* 1.81%

(-0.83) (2.02) (5.53) (3.85) (1.68)

Adj. R? 0.63 0.62 0.65 0.60 0.67

Wald 2.81 4.27 1.19 2.57 3.90

pwald 0.10 0.04 0.28 0.11 0.05

DW 1.82 1.84 2.34 2.04 1.62

Obs 166 166 166 166 166
USO

EWMA -0.07 -0.06 0.26 0.16 0.07

(-0.55) (-0.49) (157) (151) (0.66)

v 0.97#%% 0.97%% 0.50%+* 0.75%%* 0.847%*

(7.23) (8.10) (2.94) (6.66) (8.63)

o -2.30 3.14% 7.36%+* 3.01% 3.05%

(-1.16) (1.74) (4.14) (1.66) (2.11)

Adj. R? 0.74 0.73 0.66 0.72 0.77

fald 0.30 0.24 2.46 2.29 0.44

pwald 0.59 0.62 0.12 0.13 0.51

DW 1.56 1.53 2.42 1.64 1.60

Obs 126 126 126 126 126
GLD

EWMA -0.02 0.08 0.20 0.26%+* 0.08

(-0.27) (1.00) (0.91) (2.83) (0.73)

v 0.747%% 0.69%%* 0.19 0.50%%* 0.73%%*

(6.41) (5.40) (1.02) (4.28) (4.85)

a 1.93 3,72+ 9.03%+* 3,047 3.07

(1.23) (2.33) (5.42) (2.71) (2.20)

Adj. R? 0.35 0.30 0.20 0.27 0.33

Wald 0.07 1.00 0.84 8.00 0.53

pwald 0.79 0.32 0.36 0.01 0.47

DW 1.98 1.96 2.29 1.98 1.86

Obs 113 113 113 113 113
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Table 3.3: Encompassing Regressions for Realized Volatility

Var EWMA+MFIV EWMA+AMFEIV" EWMA+AMFIV™ EWMA+AMFIVe EWMA+AMFEIVT
SLV

EWMA 0.02 0.03 0.02 -0.02 0.05

(-0.68) (0.11) (1.01) (2.17) (0.41)

v 0.77F** 0.73%** 0.16 0.55%** (0.88***

(5.35) (4.26) (0.90) (4.83) (5.11)

o 2.61 6.27* 14.58*** 6.10* 1.98

(0.79) (1.81) (4.59) (1.96) (0.74)

Adj. R? 0.31 0.24 0.11 0.24 0.40

Wald 0.47 0.01 1.03 4.72 0.17

p-wald 0.50 0.91 0.31 0.03 0.68

DW 1.99 1.88 2.20 1.79 1.59

Obs 79 79 79 79 79
GDX

EWMA 0.28%* (0.38%** 0.49** 0.37%%* 0.11

(2.34) (2.74) (2.26) (2.66) (0.92)

v (.73%** (0.48%*** 0.20 0.45%** ().82%**

(3.69) (2.94) (0.99) (2.79) (6.44)

o -1.14 5.67* 11.01%%* 6.86** 3.41

(-0.24) (1.77) (3.82) (2.09) (1.38)

Adj. R? 0.55 0.53 0.51 0.53 0.59

Wald 5.49 7.49 5.09 7.06 0.85

p_wald 0.02 0.01 0.03 0.01 0.36

DW 1.88 1.87 2.30 1.94 1.71

Obs 79 79 79 79 79
XLE

EWMA 0.10 0.11 0.46* 0.15 0.11

(0.63) (0.67) (1.79) (0.84) (0.68)

I\ ().88*** 0.86*** 0.15 0.71%%* (0.82%**

(4.60) (4.15) (0.77) (3.58) (4.05)

o -2.38 1.44 T.27FFk 2.97 1.71

(-1.00) (0.75) (3.89) (1.66) (0.95)

Adj. R? 0.45 0.44 0.34 0.43 0.47

Wald 0.39 0.45 3.22 0.71 0.46

p_wald 0.53 0.50 0.08 0.40 0.50

DW 1.74 1.68 2.13 1.79 1.67

Obs 79 79 79 79 79
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Table 3.5: Forecasting Errors

This table presents results of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors and each panel corresponds to a different
sector. MSE and QLIKE denote the forecasting loss functions. Obs denotes the
number of observations. The forecast horizon is one month, 21 trading days in
our study. We use a rolling window of 232 observations to get the out-of-sample

forecasts.

Var EWMA MFIV  AMFIV"  AMFIV®™ AMFIVe AMFIV™
SPX

MSE 50.69 57.50 45.50 52.84 69.02 37.91

QLIKE 3.64 3.63 3.61 3.62 3.64 3.60

Obs 166 166 166 166 166 166
USsoO

MSE 87.98 84.13 57.83 62.27 94.23 51.29

QLIKE 4.38 4.37 4.36 4.36 4.38 4.36

Obs 126 126 126 126 126 126
GLD

MSE 35.92 33.56 24.52 27.28 62.80 22.96

QLIKE 3.71 3.69 3.68 3.69 3.72 3.67

Obs 113 113 113 113 113 113
SLV

MSE 84.68 77.05 53.91 57.98 118.89 40.43

QLIKE 4.11 4.09 4.08 4.09 4.12 4.06

Obs 79 79 79 79 79 79
GDX

MSE 112.32 93.07 99.79 102.20 167.48 81.07

QLIKE 4.55 4.54 4.54 4.54 4.56 4.53

Obs 79 79 79 79 79 79
XLE

MSE 41.56 39.15 30.54 31.50 58.33 28.59

QLIKE 3.89 3.88 3.87 3.87 3.89 3.86

Obs 79 79 79 79 79 79
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Table 3.6: Difference of Forecasting Errors

This table presents differences of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors under MSE and QLIKE criterion, respectively.
Each panel corresponds to a different sector. We calculate the differences between the
loss functions of model [name in row] and those of model [name in column]. The
upper triangular matrices and lower triangular matrices report the mean and median
difference of forecasting errors, respectively. For the upper triangular matrices, the
values in bold indicate that the mean differences are statistically significant at the 5%
level in the Diebold-Mariano (DM) test. Similarly, values in bold in lower triangular
matrices indicate that the median differences are statistically significant at 5% level in
the non-parametric Wilcoxon signed rank test.

Panel A: MSE

EWMA MFIV AMFIV*M AMFIVY AMFIVe AMFIV

SPX
EWMA -6.81 5.19 -2.15 -18.32 12.78
MFIV 15.53 12.00 4.66 -11.52 19.59
AMFIV" -2.82 -18.34 -7.34 -23.52 7.59
AMFIVer -2.65 -18.18 0.17 -16.18 14.93
AMFIV® 2.57 -12.96 5.39 5.22 31.11
AMFEIV -4.20 -19.73 -1.39 -1.55 -6.77

USoO
EWMA 3.85 30.15 25.72 -6.25 36.69
MFIV 8.87 26.30 21.86 -10.10 32.84
AMFEIVH -11.82 -20.69 -4.44 -36.40 6.54
AMFIVer -8.53 -17.40 3.29 -31.97 10.98
AMFIV® 0.38 -8.50 12.19 8.90 42.94
AMFIV?r -14.41 -23.28 -2.59 -5.88 -14.79

GLD
EWMA 2.36 11.40 8.64 -26.87 12.96
MFIV 4.25 9.04 6.28 -29.24 10.60
AMFIVH -5.70 -9.95 -2.76 -38.27 1.56
AMFEIVe -5.77 -10.02 -0.08 -35.52 4.31
AMFIVe -2.15 -6.40 3.55 3.63 39.83
AMFTIV?T -6.69 -10.94 -0.99 -0.92 -4.54

SLV
EWMA 7.62 30.77 26.70 -34.21 44.25
MFIV 8.24 23.15 19.07 -41.84 36.62
AMFIV" -9.67 -17.92 -4.07 -64.98 13.48
AMFIVer -8.16 -16.40 1.51 -60.91 17.55
AMFIV® 8.39 0.15 18.06 16.55 78.46
AMFIV -9.76 -18.00 -0.08 -1.60 -18.15

GDX
EWMA 19.25 12.53 10.12 -55.16 31.25
MFIV -12.05 -6.72 -9.13 -74.41 12.00
AMFIV" -21.38 -9.33 -2.41 -67.69 18.72
AMFIVer -23.20 -11.15 -1.82 -65.28 21.13
AMFIV® -13.38 -1.33 7.99 9.81 86.41
AMFEIV?r -34.40 -22.35 -13.02 -11.20 -21.02

XLE
EWMA 241 11.02 10.06 -16.77 12.97
MFIV 6.46 8.61 7.65 -19.18 10.56
AMFEFIVH -7.69 -14.16 -0.96 -27.79 1.95
AMFIVer -6.02 -12.48 1.67 -26.83 2.91
AMFIVe -1.88 -8.34 5.82 4.15 29.74

AMFIV?r -8.07 -14.53 -0.37 -2.05 -6.19
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Table 3.6: Difference of Forecasting Errors
Panel B: QLIKE
EWMA MFIV AMFIV"M AMFIV®™ AMFIV¢ AMFIV™
SPX
EWMA 0.00 0.03 0.02 -0.01 0.03
MFIV 0.07 0.02 0.02 -0.01 0.03
AMFIVh -0.02 -0.09 -0.01 -0.03 0.01
AMFEIVer -0.03 -0.10 -0.01 -0.03 0.01
AMFIV® 0.01  -0.06 0.03 0.04 0.04
AMFIVT -0.02 -0.09 0.00 0.01 -0.03
USoO
EWMA 0.00 0.01 0.01 -0.01 0.02
MFIV -0.01 0.01 0.01 -0.01 0.01
AMFIVh 0.00 0.00 0.00 -0.02 0.00
AMFIV -0.02 -0.01 -0.02 -0.02 0.01
AMFIVe 0.01 0.02 0.02 0.03 0.03
AMFEIV® -0.01 -0.01 -0.01 0.01 -0.02
GLD
EWMA 0.02 0.02 0.02 -0.01 0.03
MFIV 0.00 0.01 0.00 -0.03 0.02
AMFIVh -0.03 -0.03 -0.01 -0.04 0.01
AMFEIVe -0.03 -0.03 0.00 -0.03 0.02
AMFIVe -0.02  -0.02 0.01 0.01 0.05
AMFEIVT -0.03 -0.03 0.00 0.00 -0.01
SLV
EWMA 0.02 0.03 0.02 -0.02 0.05
MFIV 0.02 0.01 0.00 -0.04 0.03
AMFIVh -0.01 -0.04 -0.01 -0.05 0.02
AMFEIVer -0.01 -0.04 0.00 -0.04 0.03
AMFIV® 0.01 -0.01 0.02 0.02 0.06
AMFIVT -0.01 -0.04 0.00 0.00 -0.02
GDX
EWMA 0.01 0.00 0.00 -0.01 0.01
MFIV 0.00 0.00 -0.02 0.01
AMFIVh 0.01 0.02 0.00 -0.02 0.01
AMFIV" 0.00 0.01 -0.01 -0.01 0.01
AMFIV® 0.00 0.01 0.00 0.01 0.03
AMFEIV -0.01 0.00 -0.01 0.00 -0.01
XLE
EWMA 0.01 0.03 0.02 0.00 0.03
MFIV 0.01 0.01 0.01 -0.02 0.02
AMFIV" -0.01 -0.02 0.00 -0.03 0.00
AMFEIVe -0.01 -0.02 0.00 -0.03 0.00
AMFIVe 0.00 -0.01 0.02 0.02 0.03
AMFEIV -0.01 -0.02 0.00 0.00 -0.02
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Table 3.8: Forecasting Errors: Alternative Realized Volatility

This table presents results of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors and each panel corresponds to a different
sector. Realized volatility is calculated by Equation Columns report regression
results for a particular forecast in the sector. MSE and QLIKE denote the forecasting

loss functions.

Obs denote the number of observations.

The forecast horizon is one

month, 21 trading days in our study. We use a rolling window of 232 observations to

get the out-of-sample forecasts.

Variables EWMA MFIV AMFTV" AMFTV®™ AMFTV® AMFTV™
SPX

MSE 69.88  30.80 24.16 26.81 37.66 19.85

QLIKE ~ 3.50 344 343 3.43 3.44 3.42

Obs 166 166 166 166 166 166
USO

MSE 6226  61.31 43.15 46.77 71.00 37.74

QLIKE ~ 4.39 438  4.38 4.38 4.39 4.38

Obs 126 126 126 126 126 126
GLD

MSE 25.17  18.37 14.65 17.09 35.47 12.87

QLIKE  3.70 370 3.69 3.69 3.71 3.68

Obs 113 113 113 113 113 113
SLV

MSE 4373 3574 2744 30.34 59.80 21.69

QLIKE 414 414 413 413 415 412

Obs 79 79 79 79 79 79
GDX

MSE 61.55  62.46 55.17 53.25 87.14 47.86

QLIKE 448 448  4.48 447 448 4.47

Obs 79 79 79 79 79 79
XLE

MSE 3247 3420 26.87 26.72 53.16 23.95

QLIKE  3.91 391 3.90 3.90 3.92 3.90

Obs 79 79 79 79 79 79
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Table 3.9: Difference of Forecasting Errors: Alternative Realized Volatility

This table presents differences of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors under MSE and QLIKE criterion, respectively.
Realized volatility is calculated based on Equation . Each panel corresponds to
a different sector. We calculate the differences between the loss functions of model
[name in row| and those of model [name in column|. The upper triangular matrices
and lower triangular matrices report the mean and median difference of forecasting
errors, respectively. For the upper triangular matrices, the values in bold indicate
that the mean differences are statistically significant at the 5% level in the Diebold-
Mariano (DM) test. Similarly, values in bold in lower triangular matrices indicate that
the median differences are statistically significant at 5% level in the non-parametric
Wilcoxon signed rank test.

Panel A: MSE

Variables EWMA MFIV AMFIV" AMFIVY™ AMFIVe AMFIV™

SPX
EWMA -39.08 6.65 3.99 -6.85 10.95
MFIV 35.10 45.73 43.07 32.23 50.03
AMFEIV" 0.03 -35.07 -2.66 -13.50 4.30
AMFIVar -0.22 -35.32 -0.25 -10.84 6.96
AMFIVe 0.17 -34.93 0.14 0.39 17.80
AMFEIVT -0.72 -35.82 -0.75 -0.50 -0.89

USoO
EWMA -0.95 18.16 14.54 -9.70 23.57
MFIV 22.51 19.11 15.48 -8.75 24.52
AMFEIV" -4.31 -26.82 -3.62 -27.86 5.41
AMFIVar -0.96 -23.47 3.35 -24.23 9.04
AMFEIVe® 6.87 -15.64 11.18 7.83 33.27
AMFEIV" -1.79 -24.30 2.52 -0.83 -8.66

GLD
EWMA -6.79 3.72 1.29 -17.09 5.51
MFIV 7.53 10.51 8.08 -10.30 12.30
AMFEIV™ -1.77 -9.30 -2.43 -20.82 1.79
AMFEFIVar -1.80 -9.34 -0.03 -18.38 4.22
AMFEIVe® 1.24 -6.30 3.01 3.04 22.60
AMFETIV -1.85 -9.38 -0.08 -0.05 -3.09

SLV
EWMA -7.98 8.31 5.40 -24.06 14.05
MFIV 5.47 16.29 13.39 -16.08 22.03
AMFEFIV™ -2.48  -7.94 -2.90 -32.36 5.74
AMFIVar -1.49  -6.95 0.99 -29.46 8.65
AMFIVe 1.28 -4.19 3.76 2.77 38.11
AMFIV -7.10 -12.57 -4.63 -5.62 -8.38

GDX
EWMA 0.90 7.29 9.21 -24.68 14.60
MFIV 18.49 6.38 8.31 -25.58 13.69
AMFEFIV" 3.52 -14.96 1.93 -31.97 7.31
AMFIVar 3.66 -14.82 0.14 -33.89 5.39
AMFEIVe® -6.18  -24.66 -9.70 -9.84 39.28
AMFEIVT -5.81 -24.30 -9.34 -9.48 0.36

XLE
EWMA 1.72 7.33 7.48 -18.96 10.25
MFIV 6.95 5.60 5.76 -20.69 8.52
AMFEIV" -3.05 -10.01 0.16 -26.29 2.92
AMFIVay -3.09 -10.05 -0.04 -26.45 2.76
AMFEIVe® 1.37 -5.58 4.43 4.47 29.21

AMFIV?T -3.29 -10.24 -0.24 -0.19 -4.66
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Table 3.9: Difference of Forecasting Errors: Alternative Realized Volatility

Panel B: QLIKE

VARIABLES EWMA MFIV AMFIV"® AMFIV™ AMFIVe AMFIV™

SPX
EWMA -0.06 0.01 0.01 0.00 0.02
MFIV 0.10 0.08 0.07 0.07 0.08
AMFIV" 0.00 -0.10 0.00 -0.01 0.01
AMFIVer -0.01 -0.10 0.00 -0.01 0.01
AMPFIVe 0.01 -0.08 0.02 0.02 0.02
AMFIV™ -0.01 -0.11 -0.01 0.00 -0.02

USO
EWMA 0.00 0.01 0.00 0.00 0.01
MFIV 0.01 0.01 0.01 0.00 0.01
AMFIV" 0.00 -0.01 0.00 -0.01 0.00
AMFIVer 0.00 -0.01 0.00 -0.01 0.00
AMPFIVe 0.00 -0.02 -0.01 0.00 0.01
AMFIV™ -0.01 -0.02 -0.01 -0.01 0.00

GLD
EWMA 0.00 0.01 0.01 -0.01 0.02
MFIV 0.00 0.01 0.01 -0.01 0.02
AMFIV" -0.02 -0.02 0.00 -0.02 0.01
AMFIVer -0.02 -0.02 0.00 -0.02 0.01
AMPFIVe -0.01 0.00 0.02 0.01 0.03
AMFIV™ -0.02 -0.02 0.00 0.00 -0.02

SLV
EWMA 0.00 0.00 0.00 -0.01 0.01
MFIV 0.01 0.01 0.00 -0.01 0.01
AMFIV" 0.00 -0.02 0.00 -0.02 0.01
AMFIVer -0.01 -0.02 0.00 -0.01 0.01
AMFIVe 0.01 0.00 0.01 0.02 0.02
AMFIV™ 0.00 -0.02 0.00 0.00 -0.01

GDX
EWMA 0.00 0.00 0.00 -0.01 0.01
MFIV 0.02 0.00 0.00 0.00 0.01
AMFIV" 0.02 0.00 0.00 -0.01 0.00
AMFIVe 0.01 -0.01 -0.01 -0.01 0.00
AMFIVe 0.00 -0.02 -0.02 -0.01 0.01
AMFIV™ 0.01 -0.01 -0.01 0.00 0.01

XLE
EWMA 0.00 0.01 0.01 0.00 0.01
MFIV 0.01 0.01 0.00 0.01
AMFIV" 0.00 -0.01 0.00 -0.01 0.00
AMFIVer 0.00 -0.01 0.00 -0.01 0.00
AMFIVe 0.03 0.01 0.03 0.03 0.01

AMFIVT 0.00 -0.01 0.00 0.00 -0.03
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Table 3.12: Difference of Forecasting Errors:

Level VRP Format

This table presents differences of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors under MSE and QLIKE criterion, respectively.
We forecast VRP in level VRP format. Each panel corresponds to a different loss func-
tion. We calculate the differences between the loss functions of model [name in row] and
those of model [name in column]. The upper triangular matrices and lower triangular
matrices report the mean and median difference of forecasting errors, respectively. For
the upper triangular matrices, the values in bold indicate that the mean differences are
statistically significant at the 5% level in the Diebold-Mariano (DM) test. Similarly,
values in bold in lower triangular matrices indicate that the median differences are
statistically significant at 5% level in the non-parametric Wilcoxon signed rank test.

Panel A: MSE

EWMA MFIV RMFIV AMFIV" AMFIVY AMFEFIVC AMFIV™
SPX
EWMA -6.81 4.35 4.38 -12.83 -5.80 20.33
MFIV 15.53 11.16 11.19 -6.02 1.00 27.14
RMFIV -4.78 -20.31 0.03 -17.18 -10.15 15.98
AMFEIVH? -1.82 -17.35 2.96 -17.22 -10.19 15.94
AMFIVr -1.82 -17.35 2.96 0.00 7.03 33.16
AMFIV® 6.36 -9.17 11.14 8.18 8.18 26.13
AMFIV™ -2.51 -18.04 2.27 -0.68 -0.68 -8.87
USoO
EWMA 3.85 27.34 29.87 24.10 -5.82 38.05
MFIV 8.87 23.48 26.02 20.24 -9.67 34.20
RMFIV -18.63 -27.50 2.54 -3.24 -33.16 10.71
AMFIV" -14.76 -23.63 3.87 -5.78 -35.70 8.17
AMFIVr -7.44 -16.31 11.18 7.31 -29.92 13.95
AMFIV® 5.87 -3.00 24.49 20.62 13.31 43.87
AMFIV®™ -17.29 -26.16 1.34 -2.53 -9.84 -23.15
GLD
EWMA 2.36 10.59 9.30 4.81 -11.63 12.57
MFIV 4.25 8.22 6.94 2.44 -13.99 10.21
RMFIV -5.88 -10.14 -1.28 -5.78 -22.21 1.98
AMFIVh -4.55 -8.80 1.33 -4.50 -20.93 3.27
AMFIVer -4.96 -9.21 0.93 -0.41 -16.43 7.76
AMFIV® -1.22 -5.48 4.66 3.33 3.73 24.20
AMFEIVT -6.10 -10.35 -0.21 -1.54 -1.14 -4.87
SLV
EWMA 7.62 28.35 27.96 16.57 -18.57 39.37
MFIV 8.24 20.73 20.34 8.94 -26.20 31.75
RMFIV -7.80 -16.04 -0.39 -11.79 -46.93 11.02
AMFEIVH? -5.34 -13.58 2.45 -11.40 -46.54 11.41
AMFIV" -3.59 -11.83 4.20 1.75 -35.14 22.80
AMFIVe 7.78 -0.47 15.57 13.12 11.37 57.95
AMFEIV -8.72 -16.96 -0.93 -3.38 -5.13 -16.50
GDX
EWMA 19.25 7.46 13.06 10.72 -28.44 38.33
MFIV -12.05 -11.80 -6.19 -8.53 -47.69 19.08
RMFIV -29.05 -17.00 5.61 3.27 -35.89 30.87
AMFIVh -24.95 -12.90 4.10 -2.34 -41.50 25.27
AMFIVr -24.58 -12.53 4.47 0.36 -39.16 27.61
AMFIV® -13.79 -1.75 15.26 11.15 10.79 66.77
AMFIV®™ -24.25 -12.20 4.80 0.70 0.34 -10.45
XLE
EWMA 2.41 7.82 12.62 11.24 -10.53 14.31
MFIV 6.46 5.41 10.21 8.83 -12.94 11.90
RMFIV -7.80 -14.26 4.80 3.43 -18.35 6.49
AMFIVh -7.49 -13.95 0.32 -1.38 -23.15 1.69
AMFIVe -7.36 -13.83 0.44 0.12 -21.77 3.07
AMFIV® -0.28 -6.74 7.53 7.21 7.09 24.84
AMFIV®™ -8.21 -14.67 -0.41 -0.73 -0.85 -7.94
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Table 3.12: Difference of Forecasting Errors: level VRP format
Panel B: QLIKE

EWMA MFIV RMFIV AMFIV" AMFIVY AMFIV¢ AMFIV®™

SPX
EWMA 0.00 0.02 0.03 0.02 -0.03 0.04
MFIV 0.07 0.02 0.02 0.02 -0.03 0.04
RMFIV -0.02 -0.09 0.00 0.00 -0.05 0.02
AMFIV" -0.01 -0.08 0.01 -0.01 -0.06 0.01
AMFIVe -0.01 -0.08 0.01 0.00 -0.05 0.02
AMFIVe 0.06 -0.01 0.09 0.07 0.07 0.07
AMFEIVET -0.01 -0.08 0.02 0.01 0.01 -0.07

Uuso
EWMA 0.00 0.01 0.01 0.01 -0.02 0.02
MFIV 0.01 0.01 0.01 -0.03 0.01
RMFIV 0.01 0.01 0.00 0.00 -0.03 0.00
AMFIV" -0.01 0.00 -0.01 0.00 -0.03 0.00
AMFEIVe -0.01 -0.01 -0.02 0.00 -0.03 0.01
AMFIV® 0.03 0.04 0.03 0.04 0.04 0.04
AMFIVT -0.03 -0.02 -0.03 -0.02 -0.01 -0.06

GLD
EWMA 0.02 0.02 0.02 -0.20 -0.04 0.03
MFIV 0.00 0.00 0.00 -0.22 -0.06 0.02
RMFIV -0.03 -0.03 0.00 -0.22 -0.06 0.01
AMFIVh -0.02 -0.02 0.01 -0.22 -0.06 0.02
AMFEIVe -0.02 -0.02 0.01 0.00 0.16 0.24
AMFIVe 0.01 0.00 0.03 0.02 0.02 0.07
AMFIV -0.03 -0.03 0.00 -0.01 -0.02 -0.04

SLV
EWMA 0.02 0.03 0.02 -7.44 -0.05 0.04
MFIV 0.02 0.01 0.00 -7.45 -0.07 0.03
RMFIV -0.01 -0.04 -0.01 -7.46 -0.07 0.02
AMFIV" 0.00 -0.03 0.01 -7.46 -0.07 0.02
AMFIVe -0.01 -0.04 0.00 -0.01 7.39 7.48
AMFIVe 0.01 -0.01 0.02 0.01 0.02 0.09
AMFIV -0.01 -0.04 0.00 -0.01 0.00 -0.02

GDX
EWMA 0.01 0.00 0.00 0.00 -0.01 0.02
MFIV -0.01 -0.01 0.00 -0.01 -0.02 0.01
RMFIV 0.00 0.01 0.00 0.00 -0.02 0.01
AMFIV" 0.01 0.02 0.01 0.00 -0.02 0.01
AMFEIV 0.00 0.01 0.00 0.00 -0.02 0.02
AMFIV® 0.01 0.01 0.00 0.00 0.00 0.03
AMFIVT 0.00 0.01 0.00 -0.01 -0.01 -0.01

XLE
EWMA 0.01 0.02 0.03 0.03 -0.01 0.03
MFIV 0.01 0.01 0.01 0.01 -0.03 0.02
RMFIV -0.01 -0.02 0.01 0.01 -0.03 0.01
AMFIV" 0.00 -0.01 0.01 0.00 -0.04 0.00
AMFEIVe 0.00 -0.01 0.01 0.00 -0.04 0.00
AMFIVe 0.02 0.01 0.02 0.01 0.01 0.04
AMFIV -0.01 -0.02 0.00 -0.01 -0.01 -0.02
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Table 3.13: Difference of Forecasting Errors:

V RP? Format

This table presents differences of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors under MSE and QLIKE criterion, respectively.
We forecast VRP in V RP? format. Each panel corresponds to a different loss function.
We calculate the differences between the loss functions of model [name in row| and
those of model [name in column]. The upper triangular matrices and lower triangular
matrices report the mean and median difference of forecasting errors, respectively. For
the upper triangular matrices, the values in bold indicate that the mean differences are
statistically significant at the 5% level in the Diebold-Mariano (DM) test. Similarly,
values in bold in lower triangular matrices indicate that the median differences are
statistically significant at 5% level in the non-parametric Wilcoxon signed rank test.

Panel A: MSE

EWMA MFIV RMFIV AMFIV" AMFIVY AMFEFIVC AMFIV™
SPX
EWMA -6.81 4.35 -1.16 -13.97 -1.52 17.84
MFIV 15.53 11.16 5.65 -7.16 5.29 24.65
RMFIV -4.78 -20.31 -5.51 -18.32 -5.87 13.49
AMFEIVH? 0.27 -15.26 5.05 -12.81 -0.36 19.00
AMFIVe" -0.82 -16.35 3.96 -1.09 12.44 31.81
AMFIVe® 7.87 -7.66 12.65 7.60 8.70 19.37
AMFEIV -2.29 -17.82 2.49 -2.56 -1.47 -10.16
USoO
EWMA 3.85 27.34 26.87 21.04 -0.50 35.87
MFIV 8.87 23.48 23.01 17.19 -4.35 32.02
RMFIV 18.63 -27.50 -0.47 -6.29 -27.84 8.53
AMFIV" 13.29 -22.16 5.34 -5.82 -27.37 9.00
AMFIVer -3.01 -11.88 15.62 10.28 -21.55 14.83
AMFIV® 6.33 -2.54 24.95 19.62 9.34 36.37
AMFIV®™ 14.98 -23.86 3.64 -1.69 -11.97 -21.31
GLD
EWMA 2.36 10.59 6.40 4.36 -1.72 11.83
MFIV 4.25 8.22 4.04 1.99 -4.08 9.46
RMFIV -5.88 -10.14 -4.19 -6.23 -12.31 1.24
AMFIVh -2.41 -6.66 3.47 -2.04 -8.12 5.43
AMFIVer -3.67 -7.92 2.22 -1.26 -6.08 7.47
AMFIV® -3.06 -7.31 2.82 -0.65 0.61 13.55
AMFEIVT -5.79 -10.04 0.10 -3.38 -2.12 -2.72
SLV
EWMA 7.62 28.35 21.23 13.22 -3.73 32.91
MFIV 8.24 20.73 13.61 5.60 -11.36 25.29
RMFIV -7.80 -16.04 -7.12 -15.13 -32.09 4.55
AMFEIVH® -0.07 -8.31 7.73 -8.00 -24.96 11.68
AMFIV" 1.57 -6.67 9.37 1.64 -16.96 19.68
AMFIVe 12.69 4.45 20.49 12.76 11.12 36.64
AMFEIV -5.42 -13.67 2.37 -5.36 -6.99 -18.12
GDX
EWMA 19.25 7.46 9.96 8.15 -13.47 39.91
MFIV -12.05 -11.80 -9.30 -11.11 -32.73 20.66
RMFIV -29.05 -17.00 2.50 0.69 -20.93 32.46
AMFIVh -23.56  -11.51 5.49 -1.81 -23.43 29.96
AMFIVr -21.35 -9.30 7.70 2.21 -21.62 31.77
AMFIVe -14.08 -2.04 14.97 9.47 7.26 53.39
AMFIV®™ 24.71 -12.66 4.34 -1.15 -3.36 -10.62
XLE
EWMA 2.41 7.82 11.49 10.65 -7.81 13.77
MFIV 6.46 5.41 9.08 8.23 -10.22 11.36
RMFIV -7.80 -14.26 3.67 2.83 -15.63 5.95
AMFIVh -6.75 -13.21 1.05 -0.84 -19.30 2.28
AMFIVe" -7.06 -13.52 0.74 -0.31 -18.46 3.12
AMFIV® 5.15 -1.31 12.95 11.90 12.21 21.58
AMFIVT -6.86 -13.32 0.94 -0.11 0.20 -12.01
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Table 3.13: Difference of Forecasting Errors: VRP? Format
Panel B: QLIKE

EWMA MFIV RMFIV AMFIV" AMFIVY AMFIV¢ AMFIV®™

SPX
EWMA 0.00 0.02 0.00 0.00 -0.06 0.04
MFIV 0.02 0.00 -0.01 -0.06 0.04
RMFIV -0.02 -0.09 -0.02 -0.02 -0.08 0.02
AMFIV" 0.05 -0.02 0.08 0.00 -0.06 0.04
AMFIVe 0.05 -0.02 0.07 -0.01 -0.05 0.04
AMFIVe 0.09 0.02 0.11 0.03 0.04 0.10
AMFEIVET 0.02 -0.05 0.05 -0.03 -0.03 -0.07

Uuso
EWMA 0.00 0.01 0.00 0.00 -0.01 0.01
MFIV -0.01 0.01 0.00 0.00 -0.02 0.01
RMFIV 0.01 0.01 -0.01 -0.01 -0.02 0.00
AMFIVh 0.01 0.01 0.00 0.00 -0.02 0.01
AMFEIVe 0.00 0.01 -0.01 -0.01 -0.02 0.01
AMFIV® 0.02 0.03 0.02 0.02 0.02 0.03
AMFIVT -0.03 -0.02 -0.03 -0.04 -0.03 -0.05

GLD
EWMA 0.02 0.02 0.00 0.00 -0.02 0.04
MFIV 0.00 0.00 -0.01 -0.02 -0.03 0.02
RMFIV -0.03 -0.03 -0.02 -0.02 -0.04 0.01
AMFIVh 0.00 0.00 0.03 -0.01 -0.02 0.03
AMFEIVe -0.01 -0.01 0.02 -0.01 -0.01 0.04
AMFIVe 0.03 0.03 0.06 0.03 0.04 0.05
AMFIV -0.01 -0.01 0.02 -0.01 0.00 -0.04

SLV
EWMA 0.02 0.03 0.00 -0.01 -0.02 0.04
MFIV 0.02 0.01 -0.01 -0.03 -0.04 0.02
RMFIV -0.01 -0.04 -0.02 -0.03 -0.05 0.01
AMFIV" 0.01 -0.01 0.03 -0.01 -0.03 0.03
AMFIVe 0.01 -0.02 0.02 0.00 -0.01 0.05
AMFIVe 0.03 0.01 0.04 0.02 0.02 0.06
AMFIV -0.01 -0.03 0.01 -0.02 -0.02 -0.04

GDX
EWMA 0.01 0.00 0.00 0.00 -0.01 0.02
MFIV -0.01 -0.01 -0.01 -0.01 -0.02 0.01
RMFIV 0.00 0.01 0.00 0.00 -0.02 0.02
AMFIV" 0.01 0.02 0.01 0.00 -0.01 0.02
AMFEIV 0.01 0.02 0.01 0.00 -0.01 0.02
AMFIV® 0.01 0.01 0.00 0.00 0.00 0.03
AMFIVT 0.01 0.01 0.00 0.00 0.00 0.00

XLE
EWMA 0.01 0.02 0.02 0.02 -0.03 0.03
MFIV 0.01 0.01 0.01 0.01 -0.04 0.02
RMFIV -0.01 -0.02 0.00 0.00 -0.05 0.01
AMFIV" 0.00 -0.01 0.01 0.00 -0.05 0.01
AMFEIVe 0.00 -0.01 0.01 0.00 -0.05 0.01
AMFIVe 0.03 0.01 0.03 0.02 0.03 0.06
AMFIV -0.01 -0.02 0.00 -0.01 -0.01 -0.03
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Table 3.15: Forecasting Errors: Alternative Estimation Periods

This table presents results of forecasting errors from competing forecasts for
SPX, USO, GLD, SLV, GDX and XLE sectors and each panel corresponds to a
different sector. We use a rolling window of 484 trading days to estimate the value
of LVRP for next period. MSE and QLIKE denote the forecasting errors in the
corresponding criterion. Obs denotes the number of observations. The forecast
horizon is one month, i.e. 21 trading days in our study.

Variables EWMA MFIV AMFTV" AMFTV®™ AMFTV¢ AMFTV®™

SPX

MSE 60.72 53.85 4947 50.60 73.25 42.93

QLIKE 3.66 3.66 3.64 3.64 3.67 3.63

Obs 154 154 154 154 154 154
USO

MSE 83.43 77.03  54.89 54.65 93.08 50.50

QLIKE  4.31 4.31 4.30 4.30 4.32 4.29

Obs 114 114 114 114 114 114
GLD

MSE 33.91 37.84  24.44 25.28 69.31 23.99

QLIKE  3.67 3.69 3.66 3.66 3.71 3.65

Obs 101 101 101 101 101 101
SLV

MSE 75.71 94.10  53.62 53.80 133.98 51.56

QLIKE  4.08 4.10 4.06 4.06 4.12 4.06

Obs 68 68 68 68 68 68
GDX

MSE 101.44 12231 103.79 100.23 184.31 96.35

QLIKE  4.56 4.57 4.56 4.56 4.58 4.56

Obs 68 68 68 68 68 68
XLE

MSE 39.31 46.05  35.55 36.67 65.97 34.02

QLIKE  3.88 3.90 3.87 3.87 3.90 3.87

Obs 68 68 68 68 68 68
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Table 3.16: Difference Forecasting Errors: Alternative Estimation Periods

This table presents differences of forecasting errors from competing forecasts for SPX,
USO, GLD, SLV, GDX and XLE sectors under MSE and QLIKE criterion, respectively.
We use a rolling window of 484 trading days to estimate the value of LVRP for next
period. Each panel corresponds to a different loss function. We calculate the differ-
ences between the loss functions of model [name in row| and those of model [name in
column]. The upper triangular matrices and lower triangular matrices report the mean
and median difference of forecasting errors, respectively. For the upper triangular ma-
trices, the values in bold indicate that the mean differences are statistically significant
at the 5% level in the Diebold-Mariano (DM) test. Similarly, values in bold in lower
triangular matrices indicate that the median differences are statistically significant at
5% level in the non-parametric Wilcoxon signed rank test.

Panel A: MSE

EWMA MFIV  AMFIV" AMFIV® AMFIVe AMFIV™

SPX
EWMA -6.87 4.39 3.25 -19.40 10.92
MFIV 19.44 11.26 10.12 -12.53 17.79
AMFEFIVh -2.04 -21.48 -1.14 -23.79 6.53
AMFIVer -2.48 -21.92 -0.43 -22.65 7.67
AMFIVe 4.24 -15.20 6.28 6.72 30.32
AMFIV -3.18 -22.62 -1.13 -0.70 -7.42

UsoO
EWMA -6.39 22.14 22.39 -16.05 26.53
MFIV 12.07 28.54 28.78 -9.65 32.92
AMFIV" -12.74 -24.81 0.25 -38.19 4.39
AMFIV*  -14.38 -26.45 -1.64 -38.44 4.14
AMFIVe 2.02 -10.04 14.76 16.41 42.58
AMFIV™  -13.53 -25.60 -0.79 0.85 -15.56

GLD
EWMA 3.93 13.40 12.56 -31.46 14.25
MFIV 2.72 9.47 8.63 -35.40 10.32
AMFIV! -6.11 -8.83 -0.84 -44.87 0.85
AMFIVer -6.03 -8.75 0.08 -44.03 1.69
AMFIVe® -2.15 -4.87 3.96 3.88 45.72
AMFIV -6.53 -9.25 -0.42 -0.50 -4.38

SLV
EWMA 18.39 40.48 40.30 -39.89 42.54
MFIV 2.87 22.09 21.91 -58.28 24.15
AMFIV" -13.01 -15.88 -0.18 -80.37 2.06
AMFIVe  -12.92 -15.78 0.09 -80.18 2.24
AMFEFIVe 7.39 4.52 20.40 20.31 82.42
AMPFPIVT™  -11.16 -14.03 1.85 1.75 -18.55

GDX
EWMA 20.87 18.53 22.08 -62.00 25.96
MFIV -7.15 -2.35 1.21 -82.87 5.09
AMFIV" -8.46 -1.31 3.56 -80.53 7.43
AMFEFIVer -14.50 -7.35 -6.04 -84.08 3.88
AMFIVe -14.34 -7.19 -5.88 0.16 87.96
AMFIV™  -28.88 -21.73 -20.42 -14.38 -14.54

XLE
EWMA 6.74 10.49 9.37 -19.92 12.03
MFIV 3.49 3.76 2.64 -26.66 5.29
AMFIV! -9.56 -13.05 -1.12 -30.42 1.53
AMFIVaer -9.02 -12.51 0.54 -29.30 2.65
AMFIVe® -1.23 -4.72 8.33 7.79 31.95

AMFIV®™ -11.03 -14.52 -1.47 -2.01 -9.80
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Table 3.16: Difference Forecasting Errors: Alternative Estimation Periods

Panel B: QLIKE

EWMA MFIV AMFIVh AMFIVY AMFIVe AMFEIV

SPX
EWMA 0.00 0.03 0.02 -0.01 0.03
MFIV 0.06 0.02 0.02 -0.01 0.02
AMFEIVH 0.00 -0.06 0.00 -0.03 0.00
AMFIV® 0.00 -0.07 -0.01 -0.03 0.01
AMFIVe 0.03 -0.04 0.02 0.03 0.03
AMFIV 0.00 -0.07 -0.01 0.00 -0.03

USsoO
EWMA 0.00 0.01 0.01 -0.01 0.02
MFIV 0.00 0.01 0.01 -0.01 0.01
AMFIV" -0.01 -0.01 0.00 -0.02 0.00
AMFIVer -0.02 -0.02 0.00 -0.02 0.00
AMFIVe 0.01 0.01 0.02 0.02 0.03
AMFIV -0.02 -0.02 0.00 0.00 -0.03

GLD
EWMA 0.02 0.03 0.03 -0.02 0.04
MFIV 0.00 0.01 0.01 -0.04 0.02
AMPFIVh -0.01 -0.01 0.00 -0.05 0.00
AMFIV® -0.01 -0.01 0.00 -0.05 0.00
AMFIVe 0.00 0.00 0.01 0.01 0.05
AMFIV™ -0.01 -0.01 0.00 0.00 -0.01

SLV
EWMA 0.03 0.04 0.04 -0.02 0.04
MFIV 0.00 0.01 0.01 -0.05 0.02
AMFEIVH -0.03 -0.03 0.00 -0.06 0.00
AMFIVer -0.03 -0.03 0.00 -0.06 0.00
AMFIVe -0.01  -0.01 0.02 0.02 0.06
AMFIV -0.04 -0.03 -0.01 -0.01 -0.03

GDX
EWMA 0.01 0.00 0.00 -0.01 0.01
MFIV -0.01 0.00 0.00 -0.02 0.00
AMFIVh -0.01 0.00 0.00 -0.02 0.00
AMFIV® -0.01 0.00 0.00 -0.02 0.00
AMFIV® -0.01 0.01 0.01 0.01 0.02
AMFIV™ -0.02  -0.01 -0.01 -0.01 -0.01

XLE
EWMA 0.02 0.03 0.02 0.00 0.03
MFIV -0.01 0.01 0.00 -0.02 0.01
AMFEIVH -0.03 -0.02 0.00 -0.03 0.00
AMFIV® -0.03 -0.02 0.00 -0.03 0.00
AMFIVe 0.00 0.01 0.03 0.03 0.03

AMFEIV'™T -0.04 -0.03 -0.01 -0.01 -0.04
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Table 3.17: Alternative benchmark: HAR model

The table reports results of forecasts by HAR model for SPX, USO, GLD, SLV, GDX
and XLE sectors. Panel A presents results from univariate regressions of realized volatil-
ity by HAR model. a and 3 denote the intercept and the slope coefficients, respectively.
We present in brackets the Newey-West test statistic computed with 2 lags. Wald re-
ports the Wald test statistics and p_wald reports the corresponding p-value of Wald
test in testing the null hypothesis that o and S are jointly equal to zero and one,
respectively. DW and Obs denote the Durbin-Watson test statistic and the number
of observations, respectively. Panel B presents results of forecasting errors from HAR
forecast. MSE and QLIKE denote the forecasting loss functions. The forecast horizon
is one month, 21 trading days in our study. We use a rolling window of 232 observations
to get the out-of-sample forecasts.

SPX USO GLD SLV GDX XLE
Panel A: Univariate Regression for Realized Volatility
a 4.63 536 7.29 15.73 5.82 4.91

4.26 244 288 4.86 1.72 1.74
Ié] 0.70 0.79 049 0.27 0.82 0.71

13.16 1097 341 2.29 9.55 5.13
Adj. R?  0.42 0.56  0.08 0.03 0.43 0.26
Wald 16.21 4.09 9.04 21.94 2.14 2.66
p-Wald 0.00 0.02 0.00 0.00 0.12 0.08
DW 1.60 1.56  1.43 1.20 1.42 1.39
Obs 166 126 113 79 79 79

Panel B: Forecasting Errors
MSE 73.71 106.33 35.94 89.87 117.22 42.71
Qlike 3.64 4.36  3.68 4.08 4.54 3.89




Chapter 4

Implied Variance Term Structure

and Monetary Policy

4.1 Introduction

A large literature, e.g. |Bernanke and Kuttner| (2005) and Lucca and Moench
(2015)), studies the response of the equity index market to monetary policy news.
While the literature has documented several interesting findings about the im-
pact of federal fund rate announcements on the equity risk premium, we know
surprising very little about how interest rate news affects the market price of
variance risk. Given that the monetary policy is a key factor for pricing assets
and interest rate announcements significantly affect equity prices (e.g. |[Thor-

becke| (1997) and Kaminska and Roberts-Sklar| (2018)), we are interested in the
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effect of monetary policy on variance swaps. |Chulia et al.| (2010) study the in-
fluence of interest rate news on S&P100 stock volatility. Bekaert et al. (2013)
and [Fernandez-Perez et al.| (2017)) analyze the effect of monetary policy on VIX
which represents implied volatility of S&P500 index. Since variance swap reflects
the difference between realized variance and implied variance, we investigate how
monetary policy affects the difference which is the variance risk premium in our
study. Does interest rate news affect the variance risk premium? If so, what is
the sign of the announcement response? How does the strength of the announce-
ment response evolve with the maturity? What is the channel through which the
announcement effect arises? These are some of the questions that we set out to
answer.

Using a large dataset of S&P 500 index options and spot data, we compute the
term-structure of the variance risk premium. Equipped with this term-structure,
we set out to study the impact of interest rate news. We document several find-
ings. First, the dynamics of the variance risk premium observed on announcement
days are significantly different from those observed on other days. This result sug-
gests that FOMC days are special for the pricing of the variance risk premium.

Second, interest rate announcement surprises have a significantly positive im-
pact on the variance risk premium. Economically, the positive announcement
effect suggests that investors dislike positive interest rate shocks and require a

higher variance risk premium. Interestingly, the announcement effect is strongest
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at the short-end of the term-structure and decreases with the maturity of the
variance risk premium.

Third, we decompose the term-structure of the variance risk premium into
the term-structures of the (i) implied and (ii) realized variance, respectively. Our
analysis reveals that both term-structures react positively to positive interest
rate surprises. This finding reveals that positive interest rate shocks herald risky
times. Comparing the announcement responses of the two term-structures, we
find that the short-maturity implied variance generally reacts more strongly than
the realized variance of equivalent maturity. Analyzing longer maturities, we find
very little to distinguish between the two variance series. This set of results helps
understand the declining pattern of announcement responses along the term-
structure of the variance risk premium.

Fourth, we dissect the variance risk premium into good and bad variance risk
premia. Intuitively, the good variance risk premium captures the compensation
for the variance of positive returns. Conversely, the bad variance risk premium
reflects the compensation for the variance of the negative returns. By comparing
the response of these two components, we are able to shed light on the determi-
nants of the announcement effect. We establish that most of the announcement
effect arises from the response of the bad variance risk premium. The results of
the 7-day variance risk premium perfectly illustrate this result. A unit shock to

the interest rate announcement surprise moves the 7-day variance risk premium



4.1. Introduction 127

by 1.45% (t-stat=2.04). The response of the bad variance risk premium (1.29%,
t-stat=2.26) completely dwarfs that of the good variance risk premium (0.15%,
t-stat=0.92).

We conduct several additional tests. To begin with, we explore whether the
reactions to the announcement surprise is state dependent. We find that con-
tractionary policy has no significant impact on the term-structure of the variance
risk premium while expansionary policy has a significantly negative impact on
it. It strongly suggests that the decrease of target federal fund target rate nar-
rows the changes in market price of variance risk. Then, we investigate whether
positive and negative announcement surprises have a differential impact on the
term-structure of the variance risk premium. We find that positive announcement
surprises have a small and insignificant impact on the variance risk premium. In
contrast, negative announcement surprises significantly move the market price of
variance risk. Furthermore, we analyze the impact of timing and level surprise
on variance risk premium. We find that timing surprise has a significantly posi-
tive effect on the variance risk premium of short maturity. Additionally, we also
employ an alternative measure of implied variance and an alternative definition
of variance risk premium to check our main results and find that they are gener-
ally robust to different measure of implied variance and variance risk premium.
Moreover, we use the averages of professional forecasters to measure the interest

shocks and analyze the reactions of variance risk premium to them. Again, our
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main findings are robust to the measurement of shocks.

The remainder of this capter proceeds as follows: Section describes some
related studies. Section introduces our data and methodology. Section
reports our results and findings. Section presents some additional analyses.

Finally, Section [4.6] concludes.

4.2 Literature Review

Our work is related to the broader literature on the impact of federal fund rate
news on the equity risk premium. Bernanke and Kuttner| (2005)), Savor and Wil-
son| (2013), [Lucca and Moench! (2015), and [Law et al.| (2018)) study the response
of the S&P 500 index to interest rate news. Bernanke and Kuttner (2005]) inves-
tigate the effect of the federal fund rate on the S&P 500 index and find that only
the unexpected change of rate statistically significantly affects the S&P 500 index.
Savor and Wilson! (2013)) focus on FOMC interest rate, CPI, PPI and employ-
ment data. Their results support that most of the average excess returns accrue
on announcement days. |[Lucca and Moench (2015) focus on FOMC news and
find that excess return of S&P 500 stock index on pre-FOMC day increases and
becomes significant. They also present that mean of excess return on FOMC days
is much larger than other days. Law et al.| (2018) study the response of the S&P
500 index to interest rate news and find that the reactions of the stock market

to macroeconomic announcement depends on economic conditions. More recent
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studies, e.g. |Avino et al.| (2019)) use synthetic dividend strip data to analyze the
term-structure of announcement response. They document that the announce-
ment effect is strongest at the short-end of the term-structure of the dividend
risk premium and declines with the maturity of the dividend asset. Inspired by
them, we focus on the impact of the unexpected changes of federal fund rate and
then explore whether the impact on variance risk premium is state dependent.
Different from these studies, we focus on the the term-structure of the variance
risk premium rather than that of the equity risk premium.

Our research is connected to studies on the term-structure of the variance
risk premium. Bormetti et al. (2016) employ multi-component GARCH model
to generate the realistic shape of variance risk premium from very short to long
maturity. They document a valley-shaped variance risk premium which decreases
sharply with short maturity and then increases slowly with increasing maturity.
Exploiting the information embedded in the term structure of variance swaps,
Egloff et al.| (2010) study the problem of asset allocation and optimal investments
in variance-related securities. Konstantinidi and Skiadopoulos (2016) find that
trading activity variables can provide best forecasting performance among all
alternative predictive models for variance risk premium with different investment
horizon. |Ait-Sahalia et al.| (2020) propose an elaborated model to capture the
dynamics of the equity and variance risk premia and they find that variance risk

premium with different maturity have difference reactions to various economic
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indicators. We complement these studies by studying the impact of interest rate
news on the term-structure of variance risk premia. To the best of our knowledge,
we are the first to undertake this analysis.

We also relates to the literature on the impact of interest rate news on the im-
plied and/or realized variance. |(Chulia et al.|(2010)) support that surprise of federal
fund rate is highly significant for stock returns while the expected interest rate
changes are insignificant. They document the impact of FOMC announcement
surprises on the volatility of individual stock returns and find different reactions
of them to positive and negative surprises. |Gospodinov and Jamali (2012) study
the effect of federal fund rate news on the changes of the realized and implied
volatility of the S&P 500 index returns and confirm that only surprise change
has an significant impact. Similar to us, they document a significant positive re-
lation between interest rate announcement surprises and changes in the realized
and implied volatility. [Bekaert et al.| (2013)) use a structural vector-autoregressive
method to analyze the relation between monetary policy and the VIX and its
components. [Fernandez-Perez et al.| (2017) focus on the reactions of VIX to mon-
etary policy in intraday level. Our work improves on these studies along several
dimensions. To begin with, our main focus is on the variance risk premium rather
than its components, i.e. implied and/or realized variance. Furthermore, we an-
alyze the term-structure dimension. By doing so, we can shed light on which

maturity responds the most to interest rate shocks.
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We contribute to the growing literature on good and bad variance and the
associated risk premia. Barndorff-Nielsen et al.| (2008)) formally show how to de-
compose the realized variance into good and bad semi-variance. |Segal et al.| (2015)
show that good variance is associated with a booming economy while bad variance
predicts low economic growth. They also study how the good and bad variance
affects the market price of risk. Bekaert and Engstrom (2017)) consider the posi-
tive and negative Gamma shocks to extend the model of Campbell and Cochrane
model (2000) and find that the adjusted model can match several empirical asset
pricing puzzles. [Feunou et al.| (2018) and Kilic and Shaliastovich (2019) compute
the good and bad variance risk premia and analyze their relationship with the
equity risk premium. Consistently, they find that bad variance risk premium is
the main component and the good and bad component of variance risk premium
play an asymmetric role in price of risk. We leverage their methodology to study

how the good and bad components of the variables react to FOMC surprises.

4.3 Data and Methodology

We begin this section by introducing the data used for our main analysis. Next,

we present our main research methodology.
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4.3.1 Data

Options Data We obtain the data related to the S&P 500 equity index option
market between January 01, 1996 and March 11, 2019 from IvyDB OptionMetrics.
We supplement this dataset with the Zero Coupon Yield Curve, which we use to
proxy for the term-structure of interest rates.

The option dataset contains information related to the trading date, the expi-
ration date of each option, the daily best bid and offer prices, the open interest,
the option dividends, and the Black and Scholes| (1973) implied volatility. We
keep all the available options with all the maturities on each specific day. Our
data cleaning steps follow |Oikonomou et al.| (2019). Specifically, we remove ob-
servations with zero bid or ask prices. Additionally, we discard observations with
missing |Black and Scholes (1973)) implied volatility. We also expunge observa-
tions that violate standard no-arbitrage conditions. We discard all the data for
the period that precedes March 5, 2008. Prior to that date, OptionMetrics re-
ports the option prices recorded at 16:15 Chicago Time (CT), whereas the latest
index spot price is recorded at 16:00 CT. Clearly, this difference in observation
times introduces an error in any analysis that requires synchronous observations
of both the option and spot index prices. Since March 5, 2008, OptionMetrics
records the spot and option prices at 16:00 CT, making the data well-suited for

our analysis.
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Return Data We obtain the time-series of the daily underlying index price
as well as the corresponding dividends from the Center for Research in Security
Prices (CRSP). In order to compute the realized variance and semi-variance se-
ries, we use regularly-sampled data observed at the 5-minute frequency. This
data comes from the Oxford-Man Institute Realized Library of the University of

Oxford [

Federal Fund Rate Announcements We collect all the data related to the
scheduled Federal Open Market Committee (FOMC) interest rate announcements
from Bloomberg. There are usually eight meetings per year, each of which is asso-
ciated with an announcement of the target federal fund rate. The dataset includes
the announcement date, the announced interest rate, as well as the expectations
of professional forecasters. Given our data requirements for the computation of
the variance risk premium, our sample includes 85 monetary policy announce-
ments. Every FOMC meeting is an event in our study. The prices of 30-day
federal fund futures contracts are all from Bloomberg.

Following Kuttner| (2001)), we compute the interest rate announcement surprise

!The data is available at the following address: https://realized.oxford-man.ox.ac.uk/
data/download.
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asf]

D

ARl = === (fi~ fi) (4.3.1)

where Ai denotes the time-¢ surprise of the federal fund rate. D is the number
of calendar days in the announcement month. d is the number of days already
elapsed during that month. f; is the federal fund rate on day ¢ implied from the
30-day federal fund futures price.ﬂ As is standard in the literature, we standardize

the interest rate announcement surprise using the full sample standard deviationﬁ

4.3.2 Methodology

Excess Return We compute the annualized excess return on the stock index

as follows¥l

Sy — Si—1 + Dy
St

ery = 252 x ( ) —rf,52 (4.3.2)

2An alternative approach consists in taking the difference between the announced interest
rate figure and the mean estimate of professional forecasters. Similar to the extant literature,
e.g. Bernanke and Kuttner| (2005)) and |Avino et al.[ (2019)), we prefer to implement the method-
ology of [Kuttner| (2001) to estimate the interest rate shock. In so doing, we ensure that our
results are more comparable with those of the literature. As a further analysis, we consider the
surprise after the current FOMC meeting which implies the near-term path of monetary policy.
Following |Girkaynak et al.| (2007) we decompose the surprise into timing and level component,
we discuss these results in Section Another popular measure of announcement surprise
is the methodology of [Balduzzi et al. (2001), which is based on professional forecasters. We
employ this method and discuss these findings in Section

3Following |Kurov]| (2010), if the announcement occurs during the last 7 days of the month,
the change of the federal rate is unscaled and we use the difference between next month’s futures
rate and the current month rate. If the change happens in the first day of the month, the change
of rate is proxied by f; — fBl, where fBl is the future rate of the last day in the previous month.

4Note that the standardization does not affect the statistical significance of our results.

5Throughout this paper, we annualize the excess return, the variance risk premium and the
related quantities. By taking this step, we make our analysis comparable to that of existing
studies, e.g. Bollerslev et al.| (2009)).
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where er; denotes the annualized excess return of the S&P 500 index on day t. S;
and S;_; denote the price of the S&P 500 index on days ¢t and ¢t — 1, respectively.
Dy is the daily dividends paid by the S&P 500 index firms on day t. rf, is the
annualized 1-month Treasury bill rate observed on day ¢. The riskless rate data
come from Kenneth French’s website[f] Part A of Table 4.1 shows the descriptive

statistics of the excess return of S&P 500 index.

Variance Risk Premium [Bollerslev et al.| (2009) define the variance risk pre-

mium as follows:

VRPpir = E2(Visr) — EF (Visr) (4.3.3)

where V RP, ;. indicates the variance risk premium between ¢ and t+7. ]EtQ (Vigsr)
denotes the time-t expectation of variance under the risk-neutral (QQ) measure.
Ef (Vii4r) is the time-t expectation of variance under the physical measure.
Carr and Wu (2009)) propose to use the model-free implied variance to estimate
the risk-neutral expectation of the variance. Furthermore, the authors use the
ex-post realized variance to proxy for the physical expectation of the realized

variance, thus leading to the following result{]

VRPt,t—I-T = Ivt,t—i-T - RVt,t-H‘ (434)

6See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html.

‘Bollerslev et al.| (2009) assume that the realized variance has a unit autocorrelation and use
Ef (Vit4r) = RVy_r . We repeat our analysis by this measurement of variance risk premium
and discuss the results in Section [£.5.5]


https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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where IV 4y, and RV, are the model-free implied variance and realized vari-
ance at time t over horizons of 7 days, respectively.

Andersen et al.| (2007) and Lee and Mykland| (2008) show that the S&P 500
index jumps around macroeconomic announcements. Following |Oikonomou et al.
(2019), we use the Bakshi et al| (2003)) estimator, which is argued to be robust
to jumps, to compute the model-free implied Variance:ﬁ

360 | [% 2(1+In L) ©2(1—Inf)
[Vt,tJm- - T [/{; TKPt(ﬂ K)dK +L TSCt(ﬂ K)dK

(4.3.5)

360

=2 serves to annualize the implied variance estimate. F;(7, K') and Cy(7, K) indi-
cate the time-t out-of-the-money (OTM) put and call option prices with maturity
7 and strike price K, respectively.

Our implementation broadly follows that of |Chang et al. (2012). To fix ideas,
we define the moneyness as the ratio of the strike price (K) over the spot price
(S). For each maturity date observed on a given day, we require at least two
OTM call and put options. Consequently, we discard days when these require-
ments are not met. Next, we employ the cubic spline to interpolate the implied
volatility across the moneyness levels available in the market. For the moneyness

levels greater or lower than the available moneyness levels in the market, we use

the implied volatility corresponding to available maximum or minimum money-

8The estimator of Britten-Jones and Neuberger| (2000) is also a widely-used estimator of
implied variance, we replace implied variance with this estimator as a further analysis. We
discuss these results in Section [£.5.4]
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ness levels, respectively. By implementing the above interpolation-extrapolation
method, we obtain a fine grid of 1,000 implied volatilities between a moneyness
level of 1% and 300%. Next, we use the Black and Scholes (1973)) formula to map
the implied volatilities into the corresponding OTM option prices. Finally, we
use the trapezoidal rule to numerically estimate the integrals. We repeat these
steps for each maturity observed on that day, thus obtaining the term structure
of implied variance. From this term structure, we linearly interpolate the implied
variance of constant maturity of interest. In our empirical estimation, we sepa-
rately estimate the (annualized) implied variance of maturity 7, 30, 60, 90, 180,
270, and 360 days.

The risk free rate used in our application of the Black and Scholes| (1973])
formula is processed as follows. We employ cubic spline interpolation method to
get the risk free rate with different maturity on each trading day and then match
them with options with corresponding expiration days on that trading day. As
for the rate that need to be extrapolated, we choose the nearest cubic spline curve
parameters and extend the line to get the risk free rate with the corresponding

expiration day.

Realized Variance Following Bollerslev et al.| (2009) and Bekaert and Hoerova

(2014)), we use 5-minute data to compute the realized variance:

252

RVyyyr =

2 (4.3.6)
7j=1 =0
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where RV}, denotes the time-t annualized realized variance over the next 7
days. N/ is the number of trading days between ¢ and ¢t + 7. H indicates the
number of intraday observations on a given day. 7.,; is the intraday return

observed at time ¢ of day t + j.

4.4 Main Results

This section presents our main empirical results. We first compare the distribution
of the equity and variance risk premia on announcement and non-announcement
days. Then, we analyze the impact of federal fund rate announcement surprises
on the risk premia. Next, we decompose the variance risk premia into good and
bad variance risk premia and study their responses to interest rate announcement
shocks.

Before turning to our main empirical results, it is instructive to look at the
summary statistics of our main variables. In doing so, we check whether our
computation of the key variable yields results that are comparable to those of
the literature. Table shows that the equity risk premium is positive on av-
erage with an annualized value of 6.74% per annum. This estimate is generally
in-line with the empirical results of existing studies. Turning to the variance risk
premium estimates, we observe a positive average estimate across the whole ma-
turity spectrum. We notice that the variance risk premium with 7 days maturity

is higher than that with 30 days maturity. Not surprisingly, the variance risk
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premium with 7 days maturity is with the highest standard deviation and kurto-
sis, indicating that it is much more volatile than others. In addition, its AR(1)
coefficient is the lowest, suggesting low persistence. Generally, the term structure
of the variance risk premium is upward sloping. This finding is consistent with
that of |Egloff et al.| (2010) and Li and Zinna (2018). Our estimates of the average
variance risk premium are generally consistent with those of the literature, e.g.
Oikonomou et al.| (2019). The coefficient of autoregression reveals a high persis-
tence in the time-series of the daily variance risk premium. This is not surprising
given the large overlap between two consecutive daily observations. In light of
this finding, we model the change in the variance risk premium (AV RP) rather

than the level of the variance risk premium.

4.4.1 Distribution on Announcement vs. Non-Announcement
Days

The previous discussion focuses on the unconditional distribution of the variables
of interest. Although interesting, that analysis does not distinguish between an-
nouncement and non-announcement days. We now present the summary statis-
tics for each of those types of dates, separately. In doing so, we are able to shed
light on whether FOMC announcement days are special in that the distribution

observed on those days is different from that of non-announcement days.



4.4. Main Results 140

Equity Risk Premium Table reports the mean and standard deviation
of the annualized er on FOMC days and non-FOMC days. We can see that
the mean equity risk premium is significantly larger on FOMC days than on
non-FOMC days (p-value=0.01). Interestingly, the difference in the standard de-
viation observed on announcement and non-announcement days is not significant
(p-value=0.32). This result is consistent with the finding of |[Lucca and Moench
(2015) who document that a large part of the equity risk premium is earned on
FOMC announcement days. We also implement the Kolmogorov-Smirnov testing
procedure to test if the distributions of the excess returns observed on announce-
ment and non-announcement days are equal. Our null hypothesis is that the
equity risk premium on FOMC announcement days and the value on other days
have the same distribution. We find that we cannot statistically reject the null
hypothesis (p-value=0.11) and there is no significant difference between the two

distributions.

Change in the Variance Risk Premium We now focus on the distributions
of the change in the variance risk premium observed on announcement and non-
announcement days. Table reveals an interesting contrast across these two
days. While the AV RP is very negative on announcement days, it is generally
positive on non-announcement days. The difference between the two mean es-
timates is generally statistically significant. Interestingly, the absolute values of

AV RP on announcement days generally decreases with increases of maturity. We
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implement a formal test to compare the two distributions and conclude that there
is a statistically significant difference for several maturities. Especially, the signif-
icant difference is for AV RP with 7, 30 and 60 maturity days. Collectively, these
results suggest that the FOMC announcement days have a significant impact on

the distribution of the AV RP of short maturity.

4.4.2 The Impact of FOMC Surprises on

We now explore the impact of announcement surprises on er and AV RP.

y=a+ 0 x A +¢ (4.4.1)

where y; is the variable of interest on FOMC announcement day ¢. This variable
is either er or AVRP. « is the intercept. [ sheds light on the impact of the
FOMC announcement surprise on the variable of interest y. Az}’ is the FOMC
announcement surprise at time t. ¢; is the residual at time t. Throughout this

paper, we use [White (1980)-corrected standard errors.

The Equity Risk Premium

Table[d.3|reports the regression results linked to the equity risk premium. We first
notice the low explanatory power (Adj R*=0.7%) of the regression model. We can
also see that the slope estimate (0.44) is positive but not statistically significant

(t-ratio=0.96). This result echoes that of Lucca and Moench (2015) and |Avino
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et al.| (2019)), who also study a recent sample. We can also see that the intercept
has a value (0.89) that is very close to the mean excess return observed on FOMC
days (0.90). This result suggests that the high mean er on announcement days

is not due to the interest rate announcement surprise.

The Change in the Variance Risk Premium

Findings We now analyze the impact of the announcement surprise on AV RP.
Several results are worth discussing. To begin with, the explanatory power of the
model rises from 7.45% at the 7-day horizon to 16.70% at the 60-day horizon.
Clearly, this result suggests that FOMC announcement surprises can help explain
AV RP better than the er. Furthermore, the slope estimate is positive and sig-
nificant for the short-term maturities. Economically, the positive slope estimates
indicate that an unexpected shock in the federal fund rate is associated with a
positive AV RP. The magnitude of the slope estimates is revealing too. We can
see a declining pattern of announcement response across the maturity spectrum.
This evidence points to a declining term-structure of announcement responses:
the short-term AV RP is more responsive to FOMC news than its long-term
counterpart.

In order to better understand the pattern of announcement responses, we

decompose AV RP into two components, namely AIV and ARV

AVRPtﬂH_T - A]Vt,t-i-’r - Ath,t-‘rT (442)
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We then regress each of these two components on a constant and the announce-
ment surprise. Table documents that the explanatory power for ARV is much
larger than that of AIV. We can see that both AIV and ARV respond posi-
tively to interest rate news. This result echoes that of (Gospodinov and Jamali
(2012), who document a similar pattern for the monthly maturity. The positive
slope estimates of AI'V and ARV both decrease across the maturity spectrum,
indicating the declining responses to FOMC news. It is also worth noting that,
for short maturities, AI'V reacts more to FOMC news than ARV. Economically,
this finding suggests that increases in interest rates make the stock market more
volatile. Over long horizons, there is very little to distinguish between the two
sets of estimates. Collectively, these results help explain the downward-sloping
term structure of announcement responses of AV RP. Based on the slope esti-
mates, we conclude that the interest rate news mostly affects AIV and changes
of implied variance is the main channel of response of the AV RP to the changes

of interest rates.

Digging Deeper: Good vs. Bad Variance Risk Premia Following Kilic

and Shaliastovich (2019), we decompose the model-free implied variance into good
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and bad model-free implied variance:

Ivt,t+7- — IV”;]H_T—FIVLLH_T (443)
360 © 2(1 —In&
IV, = / %C’tﬁ K)dK] (4.4.4)
T Sy
St 2(1+1
e, = 320 / %Pm K)dK] (4.4.5)
L 0

where IV{,, and I Vgt - denote the good and bad implied variance for the period
starting at ¢ and ending at ¢ 4+ 7. Intuitively, the good (bad) model-free implied
variance is defined as the implied variance of positive (negative) returns.
Barndorff-Nielsen et al.|(2008) also define the concept of realized semi-variances.
Briefly, the good and bad realized variance capture the variation of the positive

and negative returns, respectively:

RV,y, = RV?HT—i—RVtHT (4.4.6)
252
RViy . = 17 l(resq > 0) (4.4.7)
7j=1 =0
252
RVip, = mﬂ (Feyjs < 0) (4.4.8)
7j=1 =0

where RV, and RVi’,t 4. are the annualized good and bad realized variance at

time ¢ over horizons of 7 days, respectively.
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We can then calculate the good and bad variance risk premia:

VRP?,t'i‘T = IV?,t—i—T - RV?,H—T (449)

VRPIt),t—i—T = IV?,t-’-T - RV?H-T (4410)

where VRP{,,, is the good variance risk premium for the period t to t + 7.
VRPf;t - denotes the bad variance risk premium for the period starting at ¢ and
ending at t + 7.

We study the response of the good and bad variance risk premia to monetary
policy shocks. Table presents the results. We can see that the good variance
risk premium does not significantly respond to monetary policy news. In contrast,
the bad variance risk premium displays a positive and strong response to interest
rate announcement surprises. The strength of the announcement response de-
clines with the horizon. This finding mirrors that of Table .3 Examining the
magnitude of the announcement response, we can see that the slope estimates
associated with the bad variance risk premia are very similar to those of the total
variance risk premium. The results of the 7-day horizon perfectly illustrate this
pattern. The total variance risk premium displays a slope estimate of 1.45%. This
estimate is very similar to that of the bad variance risk premia 1.29%. We thus
conclude that most of the announcement responses of the variance risk premium

documented in Table stems from the bad variance risk premia. Intuitively,
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investors are keen on positive stock returns and want to hedge against bad compo-
nents. We infer that investors worry more about the variance of negative returns
since investors are risk-averse.

We move to analyze the impact of announcement surprise on the good and bad
component of implied variance and realized variance. We observe several findings.
First, the good and bad implied variance both react more strongly than good and
bad realized variance, respectively. Table |4.3| already showed that the implied
variance reacts more than realized variance and this finding helps understand it.
Second, the bad implied variance reacts more than the good implied variance

while good realized variance reacts more than bad realized variance.

4.5 What About...

4.5.1 Contractionary vs. Expansionary Policy?

When the FOMC follows a contractionary monetary policy, the federal fund target
rate will increase and the overheating economic condition is reduced. When
the FOMC stimulates the economy and implements an expansionary policy, the
federal fund target rate will decrease. In this analysis, we explore whether the
reactions to FOMC announcement news depends the policy stance. We estimate

the following regression:

Y = Qo + (Oél -+ ﬁl X Al?)D;_ + (Oég + /82 X AZ?)D; + €& (451)
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D; is the dummy variable that takes value 1 for contractionary policy on day ¢
and dummy variable D; is equal to 1 for expansionary policy on day ¢. «, aq,
and as denote the intercept on days when the there is no announcement, increase
of target rate and decrease of target rate, respectively. The coefficients §; and
(o estimate the response to increase of target rate and decrease of target rate,
respectively.

Table [4.5| presents the regression results. Not surprisingly, we notice that
contractionary policy has no significant effect on er while it reacts significantly
positively to expansionary policy. Economically, it confirms that the expansion-
ary policy stimulate the economy and the boom of stock market is a channel. We
move to the analysis on the reactions of AV RP. First, the presence of contrac-
tionary policy gernerally has a positive but insignificant effect on AV RP while
the presence of expansionary policy has a negative and significantly effect. More-
over, the strength of AV RP reactions to the presence of expansionary policy
decreases with maturity. It suggests that the reaction to the interest rate shock
is state dependent and expansionary policy has a stronger impact on the market
than contractionary policy. Second, the magnitude of increase of target rate gen-
erally has a positive but insignificant effect on AV RP. However, the magnitude
of decrease of target rate has a significantly positive effect on AV RP with short
maturities reacts and the strength of the policy stance response, proxied by the

magnitude of the parameter estimates, decreases with maturity. Overall, it sug-
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gests that expansionary policy decreases the compensation for variance risk and
market participants can bear more variance risk. Not surprisingly, the more de-
crease of the target rate, the less decrease of the change in variance compensation.
It supports the declining impact of magnitude of monetary policy.

Turning to the reactions of AI'V and ARV to interest rate news, we get several
results. First, we can see that reactions of AI'V dominate and AIV reacts more
than ARV in both contractionary policy and expansionary policy. It is consistent
with findings in Table 1.2l Moreover, the term-structure of reactions of AIV is
almost similar with those of AV RP. Second, both AIV and ARV respond more
strongly to expansionary policy than contractionary policy. Overall, expansionary
policy diminishes the volatile in stock market and the impact of magnitude of
decrease in target rate declines over the maturity.

Pursuing the analysis of the impact of announcement surprise on good and bad
components, Table presents the following findings. First, both good and bad
component of AVRP, AIV and ARV react more to expansionary policy than
contractionary policy. Second, consistent with the finding in Table 4.4, bad com-
ponent of AVRP and AIV respond more strongly to both expansionary policy
and contractionary policy than good component. However, expansionary policy
has a stronger impact on good component of AI'V than bad component. Third,
good and bad component of AI'V both generally react more to both expansionary

policy and contractionary policy than ARV.
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4.5.2 Positive vs. Negative Surprises?

Up to this point, we have analyzed the impact of announcement surprises on the
variables of our interest. However, this analysis does not distinguish between pos-
itive and negative announcement surprises. Naturally, one may wonder whether
positive and negative announcement surprises have the same impact on the vari-
ables of interest. This analysis is particularly important given the low interest
rate regime that prevails over a significant part of our sample period.

To shed light on this, we estimate the following regression: the regression
(#.5.1). D; is the dummy variable that takes value 1 for positive surprises of
federal fund rate on day ¢ and dummy variable D, is equal to 1 for negative
surprises of federal fund rate on day t. «, a1, and as denote the intercept on
days when the announcement surprise is zero, positive, and negative, respectively.
The coefficients 5; and (5 estimate the response to positive and negative surprise,
respectively.

Table presents the regression results. Starting with er, we can see that it
does not react significantly to the positive or negative announcement surprises.
Turning to AV RP, several points are worth highlighting. First, the strength of
the announcement response, which we proxy by the magnitude of the parameter
estimates, decreases with maturity. This is true irrespective of whether we look
at positive and negative announcement surprises. Second, the positive announce-

ment surprise has a negative, though insignificant, effect on AV RP while the
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negative surprise has a positive and often significant effect, especially for short
maturities. This result is particularly striking for maturities up to 90 days. To-
gether, these results suggest that most of our main findings (see Table may be
driven by the periods of negative interest shocks. They are intuitive too. When
the central bank negatively surprises the market, markets become more volatile
and investors become more risk-averse and therefore require a higher compensa-
tion for variance risk. Table reports reactions of good and bad components
to positive and negative interest rate shocks. Consistently, we notice that most
of the reactions of variance risk premium to announcement is from bad compo-
nents. Not surprisingly, both the good and bad components react more strongly
to negative interest shocks, suggesting that investors need more compensation for

the negative surprise.

4.5.3 Timing vs. Level surprise

Gurkaynak et al.| (2007) decompose the federal fund rate surprise of Kuttner
(2001)) into two parts: timing surprise and the level surprise. The level surprise
is defined as the change in interest rate which still works after the next FOMC
meeting. Following |Giirkaynak et al.| (2007), we compute the level surprise, At
as follows:

D,

Ai?’l = ﬂ[(ftl - ftl—l) - _AZ?] (4-5-2)

where d; is the number of days of the next FOMC meeting and D; is the number
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of days in the month on which the next FOMC meeting is held, f; is the federal
fund rate from 3-month futures contract for the month containing the occurrence
of the next FOMC meeting and Ai} is defined as Equation (4.3.1). The timing
surprise, Ail'| is defined as the change of the interest rate only for the next
meeting. (Giirkaynak et al| (2007) estimate that Ai¥ = A" + Aif"". Following
them, we can get the Ai". Instead of Ai¥, we use Ail' and Ai™" to augment
the regression in Equation and repeat our main analysis.

Table presents the regression results. We begin with er and notice that
both the timing and level surprise have no significant effect on the er. Our re-
sult is consistent with our main finding that er does not react significantly to
the interest shocks, neither timing nor level surprise. Moving to AV RP, we find
that the change in variance risk premium responds strongly to the timing surprise
compared to the level surprise for maturities up to 60 days. Level surprise has
an insignificant effect on the variance risk premium with maturity longer than
60 days. It is not surprise. (Gurkaynak (2005) present that the impact of timing
surprise on Treasury yields decreases with horizon. Since the definition of timing
surprise is based on the change of the interest rate for the next FOMC meeting,
timing surprise matters for the variance risk premium with short maturities. Ad-
ditionally, both timing and level surprise has a decreasing effect on the variance

risk premium with the increases of maturity. Table [4.10] shows the reactions of

good and bad components to timing and level surprise. The finding is consistent
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with our main finding.

4.5.4 An Alternative Measure of Implied Variance?

In our main specification, we use the jump-robust method of [Bakshi et al.| (2003)
to estimate the implied variance. Britten-Jones and Neuberger| (2000) nonpara-
metric approach is also popular in implied variance calculation (Carr and Wu,
2009). Du and Kapadia| (2012) point that Britten-Jones and Neuberger (2000)
method is not robust to the underlying asset with jumps. However, the S&P
500 index jumps around macroeconomic announcements, which is presented by
Andersen et al. (2007) and [Lee and Mykland| (2008)). In order to take the role of
jumps in reactions to interest rate shocks into account, we follow Britten-Jones
and Neuberger| (2000) to estimate the implied variance as:

360 St p(r. K > o(r. K
VY, = == x 2 U %d}( + %dl(] (4.5.3)
0 t

where all the variables are defined as before and the implied variance estimate is
also annualized. We repeat our main analysis and present the results of robust test

in Table [4.11H4.14l We find that these results are consistent with our benchmark.

4.5.5 An Alternative Definition of Variance Risk Premium?

The definition of variance risk premium in our previous study is the difference

between the implied variance over [t, ¢+ 7] and the ex post realized variance over
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[t,t+7]. However, the variance risk premium cannot be directly observed at time
t. Following [Bollerslev et al.| (2009), we assume that EF(V;;.,) = RV;_,; which
means that the realized variance has a unit autocorrelation. In this subsection,

the definition of variance risk premium is as:

VRPY =1V iy — RV sy (4.5.4)

where RV, is the realized variance over the [t — 7,¢] time interval. Thus the
realized variance is available at time ¢. We repeat the main analysis by VRP;,
rather than VRP;; . and report the results in Table 4.18,  Generally, our

main findings are robust to the definition of variance risk premium.

4.5.6 The Reactions from Professional Forecasts?

Balduzzi et al. (2001) employ the professional forecasts of macroeconomic an-
nouncements to gauge the shocks of macroeconomic news. The professional fore-
caster is an alternative measure of market expectations of interest rate. Following
Balduzzi et al.| (2001), we compute the interest rate shocks of day ¢ as the differ-
ence between the actual figure and the market’s expectation and then standardize

the surprise:

A —F

g

Al =

(4.5.5)
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where Ai?’f represents the standardized surprise of interest rate shock made on
day t, A; is the actual announcement of target federal fund rate released at time
t, F; denotes the expected announcement made before actual release day ¢t and in
this subsection it is proxied by the mean of all survey forecasts of federal fund rate
from professional forecasters surveyed by Bloomberg. o is the standard deviation
of the interest rate shock series based on the sample of 85 FOMC meetings. We
repeat the main analysis by measurement of interest rate shocks Az’i"f and present
the results in Table [£.19}4.22] Overall, our main results are consistent with the

measurement of interest shocks.

4.6 Conclusion

In this chapter, we study the impact of monetary policy news on the pricing of
equity and variance risk. Consistent with recent studies, we find that the S&P
500 index does not respond to interest rate news. Interestingly, we document a
positive relationship between the change in the variance risk premium and interest
rate news. The magnitude of the announcement effect is strong at the short-end
of the curve and gradually declines. Furthermore, we find that the shape of
reactions of variance risk premium to FOMC announcements is mainly driven by
the reactions of implied variance rather than realized variance.

We explore the channels through which the announcement effect arises. We

report that timing surprise matters for the variance risk premium with short
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maturities. Considering monetary stance, we document that only expansionary
policy has a significant impact on the variance risk premium, suggesting that
the decrease of target rate affects more strongly. Our analysis reveals that most
of the announcement effect can be traced back to the negative surprises of the
federal fund rate as well as the bad variance risk premium. Collectively, this
set of findings suggest that investors view negative interest rate announcement
surprises as signs of bad economic times. Thus, they require a high risk premium

as compensation for the increased downside risk.

4.7 Tables and Appendices
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Table 4.2: Different Dynamics on FOMC days versus on Non-FOMC days

This table provides the mean, standard deviation and distribution of the annualized
er, IV, RV and VRP with different maturities on All days, FOMC days and Other
(non-FOMC) days. pr presents the p-values of t-test for the null hypothesis of mean
equality, pr presents the p-values of F-test for the null hypothesis of standard deviation
equality, px presents the p-values of Kolmogorov Smirnov test for the null hypothesis of
distribution equality. Values in bold indicate that the p-value of the test is statistically
significant at 5% level.

Mean Standard Deviation Dist.
Variable All FOMC Other p All FOMC Other p p

Part A: Excess Return
er 6.74 90.47 3.76 0.01 19.19 20.55 19.11 0.32 0.11

Part B: Variance Risk Premium

AV RP, 0.05 -53.10 1.95 0.33 8.33 4.95 8.43 0.00 0.03
AV RPs, 0.04 -59.60 2.16 0.01 2.17 2.02 2.18 0.36 0.05
AV RPg -0.03 -39.10 1.36 0.00 1.27 1.21 1.27 0.57 0.04
AV RPy, -0.06 -28.30 0.94 0.00 1.06 0.89 1.06 0.04 0.15
AV RPig -0.05 -21.30 0.71 0.01 0.78 0.68 0.78 0.09 0.05
AV RPyrg  0.36 -17.60 1.00 0.01 0.66 0.59 0.66 0.20 0.06
AV RP3s 0.33  -13.00 0.81 0.02 0.64 0.53 0.64 0.03 0.18

Part C: Implied Variance

AIV 7 -0.18  -72.20 239 027 825 5.94 8.32 0.00 0.15
AlV 3 -0.16  -61.70 2.04 0.01 2.3 2.26 2.12 037 0.06
AlVg -0.16  -40.70 1.29 0.00 1.22 1.33 1.21  0.21 0.04
AlVy -0.15  -31.60 0.97 0.00 1.02 0.97 1.02  0.55 0.06

ATV g -0.13  -22.60 0.67 0.01 0.76 0.71 0.76 0.40 0.04
AV 970 -0.14  -18.20 0.51 0.01 0.64 0.60 0.65 0.35 0.04
ATV 340 -0.14  -13.60 0.34 0.05 0.63 0.54 064 0.06 0.09

Part D: Realized Variance

ARV, -0.23  -19.10 045 025 1.33 1.54 1.32 0.03 0.32
ARV 3 -0.20 -2.17  -0.13 0.71  0.51 0.50 0.51 091 0.37
ARV -0.13 -1.61  -0.08 0.46 0.32 0.18 0.32 0.00 0.00
ARV g9 -0.09 -3.29 0.02 0.09 0.22 0.17 0.23 0.00 0.03
ARV 50 -0.09 -1.31  -0.04 0.19 0.13 0.08 0.13 0.00 0.33
ARV 57 -0.50 -0.61  -0.49 0.85 0.07 0.06 0.07 0.01 0.00
ARV 369 -0.48 -0.58 -047 0.84 0.05 0.05 0.05 0.87 0.01
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Table 4.9: Timing v.s. Level Surprise of Federal Fund Rate on er, AIV,
ARV and AVRP

The table reports the regression results of Equation which use Ai"* and Az’ff’l
to analyze the reactions from er (in Part A), AIV, ARV and AVRP (in Part B) to
the FOMC surprise. It provides the intercept («), slope of timing surprise (Aitu’t) ,
slope of level surprise (Ai?’l), R? and adjusted R? and obs represents the number of
observation. All standard errors are adjusted following White| (1980) and robust t-
statistics in parentheses. *, **, *** indicate significance at the 10%, 5%, and 1% level,
respectively.

Part A: Excess Return

Variables Obs a Timing Level R? Adj. R?
er 85 0.8864** 7.3812 8.2108 0.019 -0.00540
(2.28) (0.73) (0.34)
Part B: AVRP, AIV, ARV
Maturity 7 30 60 90 180 270 360
AV RP
a -0.0047  -0.0058***  -0.0039*** -0.0029%**  -0.0022**  -0.0019** -0.0013**
(091)  (270)  (-294)  (2.60)  (-262)  (252)  (-2.04)
Ai?’t 0.2084**%  (.1123** 0.0786* 0.0351 0.0147 -0.0002 0.0011
(2.30)  (2.07) (1.93) (1.13) (0.65)  (-0.01)  (0.06)
Ai?’l 0.0849 0.0691 0.0585 0.0390 0.0200 0.0131 0.0053
(0.63)  (0.70) (0.72) (0.54) (037)  (0.26)  (0.13)
obs 85 85 85 85 85 85 85
R? 0.105 0.152 0.186 0.056 0.017 0.017 0.002
Adj. R? 0.083 0.131 0.166 0.033 -0.007 -0.007 -0.022
ALV
Q -0.0061  -0.0060*** -0.0040*** -0.0032*** -0.0023*** -0.0019** -0.0014**
((105)  (2.68)  (-202)  (2.84)  (270)  (257)  (-2.08)
Ai?’t 0.3629**  0.1611**  0.0970** 0.0527 0.0236 0.0060 0.0061
(256)  (2.53) (2.16) (1.59) (LO1)  (029)  (0.36)
Ai?’l 0.1338 0.1018 0.0673 0.0461 0.0242 0.0167 0.0078
078) (094  (080)  (0.62)  (045)  (0.33)  (0.19)
obs 85 85 85 85 85 85 85
R? 0.228 0.245 0.246 0.118 0.042 0.011 0.004
Adj. R? 0.209 0.226 0.227 0.097 0.018 -0.013 -0.020
ARV
Q -0.0014 -0.0002 -0.0001 -0.0003**  -0.0001* -0.0001 -0.0000

(-137)  (-052)  (-0.99) (235  (-1.82)  (-1.35)  (-1.37)
At 0.1545%%  0.0488%F%  0.0184%F%  0.0177%F  0.0089%**  0.0062%**  0.0050%**

(2.79) (3.20) (3.03) (2.91) (2.85) (317)  (3.00)
A 0.0489  0.0327  0.0088  0.0071 0.0042  0.0037%*  0.0024*

(1.01) (1.18) (1.27) (1.37) (157) (254)  (1.83)
obs 85 85 85 85 85 85 85
R’ 0.646 0.447 0.587 0.612 0.600 0.618 0.579

Adj. R? 0.637 0.433 0.577 0.602 0.590 0.609 0.568
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Table 4.11: Surprise of Federal Fund Rate on AV RP and AIV: BN estimator

The table reports the regression results of Equation (4.4.1)) which analyze the reactions
from AVRP (in Part A) and AIV (in Part B) to the FOMC surprise. It provides the
intercept (), slope (3) and adjusted R? and obs represents the number of observa-
tion. All standard errors are adjusted following [White| (1980) and robust t-statistics in

parentheses. *, ** *** indicate significance at the 10%, 5%, and 1% level, respectively.
Maturity 7 30 60 90 180 270 360
Part A: AVRP
o -0.0056  -0.0056*** -0.0036*** -0.0027*** -0.0020*** -0.0016*** -0.0012***
(L16)  (-3.02)  (-341)  (-323)  (317)  (-3.06)  (-2.76)
5 0.0136**  0.0062**  0.0044**  0.0023* 0.0010 0.0003 0.0002
(200)  (200)  (208)  (L70)  (L1L)  (0.36)  (0.43)
Obs 85 85 85 85 85 85 85
Adj. R? 0.074 0.105 0.157 0.067 0.017 -0.009 -0.008
Part B: AIV
@ -0.0079  -0.0059%** -0.0038*** -0.0031*** -0.0021*** -0.0016*** -0.0013***
(140)  (2.99)  (-338)  (-341)  (329)  (-315)  (-2.89)
5 0.0246**  0.0094**  0.0056**  0.0035** 0.0016 0.0007 0.0006
(210)  (238)  (222)  (206)  (156)  (0.93)  (0.96)
Obs 85 85 85 85 85 85 85

Adj. R? 0.177 0.201 0.218 0.140 0.056 0.007 0.008
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Table 4.13: Surprise of Federal Fund Rate on Contractionary and Expan-
sionary Policy: BN estimator

The table reports the regression results of Equation which analyze the reac-
tions from AV RP (in Part A) and AIV (in Part B) depend on contractionary and
expansionary policy. It provides the intercept, slope and adjusted R-squared and obs
represents for the number of observation. The coefficients «, a; and a9 represent the
effect of no surprises days, contractionary policy presence days and expansionary pol-
icy presence days, respectively. The coefficients 51 and (2 estimate the response to
strength of the contractionary and expansionary policy, respectively. All standard er-
rors are adjusted following |White| (1980)) and robust t-statistics in parentheses. *, **

*** indicate significance at the 10%, 5%, and 1% level, respectively.

Maturity 7 30 60 90 180 270 360
Part A: AVRP
o -0.0013 -0.0038**  -0.0022**  -0.0018**  -0.0014**  -0.0012**  -0.0009**
(-0.25) (-2.01) (-2.33) (-2.39) (-2.47) (-2.58) (-2.22)
o -0.0072 0.0023 0.0006 0.0010 0.0008 0.0008 0.0007
(-1.00) (0.81) (0.34) (0.86) (0.85) (L.12) (0.95)
51 0.0016 -0.0005 0.0002 0.0001 0.0002 0.0001 0.0001
(0.94) (-0.97) (0.56) (0.32) (1.28) (1.19) (0.62)
a -0.0682***  -0.0434***  -0.0328***  -0.0259***  -0.0181*** -0.0148*** _0.0124***
(-3.56) (-12.37) (-8.56) (-3.96) (-3.41) (-2.75) (-3.10)
(2 0.0113***  0.0044***  0.0028*** 0.0007 -0.0003 -0.0010 -0.0008
(3.96) (9.63) (4.94) (0.65) (-0.35) (-1.18) (-1.34)
Obs 85 85 85 85 85 85 85
Adj. R? 0.129 0.302 0.479 0.376 0.291 0.251 0.238
Part B: AIV
a -0.0017 -0.0037*  -0.0022**  -0.0020*%*  -0.0015**  -0.0012**  -0.0009**
(-0.29) (-1.85) (-2.20) (-2.43) (-2.47) (-2.53) (-2.18)
o -0.0045 0.0025 0.0006 0.0011 0.0008 0.0008 0.0007
(-0.62) (0.97) (0.37) (0.85) (0.88) (1.10) (0.94)
51 0.0014 0.0004 0.0003 0.0002 0.0002 0.0002 0.0001
(0.99) (0.88) (0.85) (0.80) (1.16) (1.25) (0.67)
a -0.0948**%  -0.0488*** -0.0356*** -0.0283*** -0.0193*** -0.0153*** -0.0130***
(-2.39) (-11.88) (-23.05) (-6.78) (-4.64) (-3.23) (-3.70)
B 0.0227*** 0.0073***  0.0041*%**  (0.0020*** 0.0004 -0.0005 -0.0004
(3.74) (13.14) (22.53) (3.15) (0.60) (-0.67) (-0.81)
Obs 85 85 85 85 85 85 85

Adj. R? 0.285 0.401 0.542 0.464 0.352 0.282 0.272
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Table 4.14: Asymmetric Reaction to Positive and Negative Surprise: BN
estimator

The table reports the regression results of Equation which analyze the reactions
from AV RP (in Part A) and AIV (in Part B) to positive and negative federal fund rate
surprise. It provides the intercept, slope and adjusted R-squared and obs represents
for the number of observation. The coefficients «, a1 and o represent the effect of
no surprises days, positive surprise days and negative surprise days, respectively. The
coeflicients 1 and (s estimate the response to strength of the positive and negative
surprise, respectively. All standard errors are adjusted following White| (1980) and
robust t-statistics in parentheses. *, ** *** indicate significance at the 10%, 5%, and
1% level, respectively.

Maturity 7 30 60 90 180 270 360
Part A: AVRP
« -0.0094 -0.0053 -0.0024 -0.0020 -0.0014  -0.0012 -0.0011
(-0.76) (-1.10) (-1.11) (-1.20) (-1.18) (-1.28) (-1.34)
ay 0.0062 0.0037 0.0011 0.0009 0.0004 0.0003  0.0006
(0.50) (0.74) (0.46) (0.50) (0.31) (0.30) (0.56)
51 -0.0059 -0.0062 -0.0041 -0.0031 -0.0024  -0.0019 -0.0016
(-0.85) (-1.47) (-1.28) (-1.25) (-1.18)  (-1.15)  (-1.13)
Qo 0.0253 0.0035 0.0007 0.0002 -0.0002 -0.0003  0.0001
(1.49) (0.69) (0.29) (0.08) (-0.12) (-0.20) (0.05)
52 0.0261°***  0.0114™** 0.0079*** 0.0044***  0.0023**  0.0010  0.0009
(11.61) (7.09) (5.91) (3.15) (2.16)  (1.08)  (1.20)
Obs 85 85 85 85 85 85 85
Adj. R? 0.159 0.247 0.363 0.196 0.103 0.0297  0.0266
Part B: AIV
maturity 7 30 60 90 180 270 360
« -0.0115 -0.0060 -0.0027 -0.0023 -0.0015 -0.0012 -0.0011
(-0.85) (-1.15) (-1.15) (-1.27) (-1.19) (-1.28)  (-1.30)
ay 0.0099 0.0050 0.0016 0.0013 0.0005 0.0004  0.0006
(0.72) (0.92) (0.63) (0.63) (0.37) (0.37) (0.57)
51 -0.0092 -0.0053 -0.0042 -0.0034 -0.0025 -0.0019 -0.0016
(-1.01) (-1.17) (-1.23) (-1.23) (-1.17)  (-1.16)  (-1.14)
Qo 0.0319* 0.0051 0.0015 0.0008 0.0001 -0.0001  0.0002
(1.76) (0.95) (0.58) (0.37) (0.07) (-0.05) (0.16)
o 0.0438**F* 0.0157*** 0.0098%** (0.0063*** 0.0032*** 0.0017* 0.0015*
(20.07) (13.80) (8.33) (5.10) (3.31) (1.82) (1.96)
Obs 85 85 85 85 85 85 85
Adj. R? 0.339 0.366 0.451 0.325 0.185 0.0760  0.0741
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Table 4.15: Surprise of Federal Fund Rate on AIV, ARV and AVRP: ex
ante RV

The table reports the regression results of Equation which analyze the reactions
from AVRP (in Part A), AIV (in Part B), ARV (in Part C) to the FOMC surprise.
It provides the intercept (), slope (3) and adjusted R? and obs represents the number
of observation. All standard errors are adjusted following |White| (1980) and robust t-
statistics in parentheses. *, ** *** indicate significance at the 10%, 5%, and 1% level,
respectively.

Maturity 7 30 60 90 180 270 360
Part A: AVRP
a -0.0124*%  -0.0072***  -0.0047*** -0.0036*** -0.0025*** -0.0020*** -0.0014**
(-1.79)  (-3.01) (-3.41) (-3.37) (-3.15) (-2.04)  (-241)
o] 0.0371**  0.0112**  0.0080**  0.0049** 0.0022* 0.0007 0.0007
(2.18) (2.23) (2.21) (2.31) (1.74) (0.80) (0.95)
Obs 85 85 85 85 85 85 85
R? 0.258 0.209 0.283 0.199 0.087 0.014 0.016
Adj. R? 0.249 0.200 0.275 0.190 0.0762 0.00203 0.00456
Part B: AIV
a -0.0079  -0.0065%** -0.0042*%** -0.0032*** -0.0023*** -0.0018*** -0.0014**
(-1.34) (-2.97) (-3.34) (-3.23) (-3.05) (-2.78) (-2.31)
o] 0.0254**  0.0107**  0.0064**  0.0033** 0.0014 0.0002 0.0003
(2.11) (2.42) (2.25) (2.06) (1.34) (0.25) (0.48)
Obs 85 85 85 85 85 85 85
R? 0.182 0.223 0.230 0.117 0.042 0.001 0.004
Adj. R? 0.173 0.214 0.221 0.106 0.0301 -0.0106 -0.00785
Part C: ARV
a 0.0045***  0.0007** 0.0005* 0.0004* 0.0002**  0.0001**  0.0001*
(2.83) (2.21) (1.88) (1.90) (2.14) (2.09) (1.83)
B -0.0117**  -0.0005 -0.0016*  -0.0016**  -0.0008**  -0.0005** -0.0004**
(-2.28) (-0.71) (-1.71) (-2.16) (-2.25) (-2.17) (-2.15)
Obs 85 85 85 85 85 85 85
R? 0.400 0.031 0.323 0.448 0.460 0.454 0.444

Adj. R? 0.393 0.0191 0.315 0.441 0.454 0.447 0.437
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Table 4.17: Surprise of Federal Fund Rate on Contractionary and Expan-
sionary Policy: ex ante RV

The table reports the regression results of Equation which analyze the reac-
tions from AVRP (in Part A) and ARV (in Part B) depend on contractionary and
expansionary policy. It provides the intercept, slope and adjusted R-squared and obs
represents for the number of observation. The coefficients «, a1 and as represent the
effect of no surprises days, contractionary policy presence days and expansionary pol-
icy presence days, respectively. The coefficients 81 and (2 estimate the response to
strength of the contractionary and expansionary policy, respectively. All standard er-

rors are adjusted following White| (1980) and robust t-statistics in parentheses. *, **,
*** indicate significance at the 10%, 5%, and 1% level, respectively.
Maturity 7 30 60 90 180 270 360
Part A: AVRP
Q -0.0043 -0.0045* -0.0027**  -0.0022**  -0.0016**  -0.0014** -0.0010*
(-0.62) (-1.89) (-2.16) (-2.27) (-2.23) (-2.39) (-1.77)
o -0.0057 0.0023 0.0001 0.0010 0.0008 0.0011 0.0011
(-0.61) (0.74) (0.06) (0.69) (0.72) (1.50) (0.98)
51 0.0015 0.0005 0.0004 0.0003 0.0002 0.0002 0.0000
(0.66) (0.74) (0.68) (0.73) (0.98) (1.21) (0.12)
Q9 -0.1045  -0.0525%**  -0.0390*** -0.0337*** -0.0237*** _0.0192*** -0.0162***
(-1.59) (-5.23) (-8.08)  (19.63)  (-5.22) (-2.73) (-3.42)
5 0.0384*** 0.0096***  0.0070***  (0.0032*** 0.0008 -0.0008 -0.0006
(3.79) (6.36) (9.65) (6.08) (1.22) (-0.73) (-0.84)
Obs 85 85 85 85 85 85 85
Adj. R? 0.363 0.375 0.559 0.507 0.371 0.266 0.228
Part B: ARV
Q 0.0026* 0.0006* 0.0003 0.0001 0.0000 0.0000 0.0000
(1.96) (1.75) (1.58) (0.59) (0.46) (0.66) (0.25)
Q1 0.0010 0.0004 0.0001 0.0002 0.0002 0.0001 0.0001
(0.29) (0.50) (0.33) (0.73) (1.01) (0.76) (0.91)
B -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0000 -0.0000
(-0.03) (-0.07) (-0.01) (-0.66) (-0.39) (-0.53) (-0.35)
Qs 0.0116 0.0009 0.0003 0.0026 0.0020 0.0010 0.0008
(0.51) (0.21) (0.06) (0.74) (1.63) (1.08) (1.17)
B2 -0.0144%** -0.0008 -0.0022*%*%  -0.0018***  -0.0009*** -0.0006*** -0.0004***
(-4.03) (-1.26) (-2.45) (-3.20) (-4.58) (-3.72) (-3.92)
Obs 85 85 85 85 85 85 85

Adj. R? 0.525 0.0344 0.424 0.582 0.689 0.644 0.647
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Chapter 5

Conclusions and Further

Research

5.1 Summary of the Findings

This thesis investigates volatility and variance risk premium. In Chapter 2, we
study volatility-managed strategies in commodity markets. We find that con-
ventional volatility-managed strategies, which consist in scaling a portfolio by its
volatility after its formation, cannot boost the performance of the original portfo-
lio. We consider the strategy which scales portfolio by the volatility of each asset
before its formation, and we find the strategy does not work in our study. It sug-
gests that there is no significant difference between the two strategies. In details,

these strategies fail either in recession economic condition or in expansion condi-

178



5.1. Summary of the Findings 179

tion. We explore several mechanisms that may explain our results. We consider
different potential reasons and find that, alone, economic conditions, alternative
volatility, forecasting models, and alternative methods to compute the portfolio
cannot explain the performance of the volatility timing strategies.

Chapter 3 focuses on the role of the volatility risk premium estimator for
volatility forecasting when using the option implied volatility. We compare raw
model-free implied volatility (MFIV), estimator directly from EWMA by histor-
ical realized volatility and several adjusted MFIV. We find that the ranking of
performance in ascending orders is rough: adjusted MFIV, MFIV and EWMA.
Comparing the adjusted MFIV, we find that there is no significant differences
among volatility risk premium estimators based on the historical average, AR(1),
and a combination of realized volatility and MFIV. Among them, estimators from
the combination perform best in volatility forecasting inconsistently. Collectively,
our results confirm that adjustment for MFIV improves the prediction of volatility
and the choice of volatility risk premium plays a vital role.

Chapter 4 analyzes the impact of monetary policy news on the pricing of equity
and variance risk. We document that interest rate shocks have no impact on S&P
500 index while the change in the variance risk premium responds positively to
interest rate news. In detail, the response to interest rate news decreases along
with the term structure curve. By dissecting the variance risk premium, we find

that implied variance reacts more than realized variance at the short-end of the
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curve. Moreover, most reactions are from bad variance risk premium, and variance
risk premium reacts stronger to negative interest rate shocks than positive ones.
These findings confirm that investors need more compensation for risk premium

for the increased downside risk.

5.2 Suggestions for Future Research

In the following, we discuss further researches that is based on our findings and

previous literature.

Volatility-managed Strategy Chapter 2 concludes that scaling the original
portfolio before or after its formation by volatility-managed strategies cannot
consistently and significantly improve the performance. One may compare these
two strategies in other asset classes and apply them to more trading strategies.
Another interesting question is why these strategies fail and how to remediate
these issues. The volatility-managed strategy is based on the negative relation
between return and volatility. The failure of strategy suggests that the relation-
ship does not hold in the commodity market. |Cederburg et al.| (2020) point that
in the equity market, when the volatility of the portfolio is in an extreme state,
the relation between future return and volatility is more likely to be negative, and
the volatility autocorrelation is higher. We analyze the performance of strategies

in different economic conditions. One may explore the strategies that perform in
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different volatility states. In that way, one could understand more the relation

between return and volatility and the pricing of the commodity.

Variance risk premium Chapter 3 focus on the prediction of volatility risk
premium, which is close to variance risk premium. Chapter 4 investigates the
impact of monetary policy news on variance risk premium. It would be natural
to extend the analysis to other macroeconomic news. [Bollerslev et al. (2011)
view the variance risk premium as a measure of investor’s risk aversion and test
the explanatory power of 29 macro-finance indicators. They show that realized
volatility, AAA bond spread, housing starts, P/E ratio, industrial production,
producer price index (PPI) and payroll employment jointly explain the variance
risk premium. Thus one may analyze the impact of this macro news on the
price of the variance risk. Another extension is focusing on the term-structure of
variance risk premium. In our study, we notice that the term-structure of variance
risk premium is a humped shape. It is worth testing the Expectation Hypothesis
in the variance risk premium and trying to compute the forward variance risk

premium. So far, there is a lack of research on forwarding variance risk premium.
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