
A simple model for interpreting 
temperature variability and its higher-order
changes 
Article 

Published Version 

Open access 

Tamarin-Brodsky, T., Hodges, K. ORCID: 
https://orcid.org/0000-0003-0894-229X, Hoskins, B. J. and 
Shepherd, T. G. ORCID: https://orcid.org/0000-0002-6631-
9968 (2022) A simple model for interpreting temperature 
variability and its higher-order changes. Journal of Climate, 35 
(1). pp. 387-403. ISSN 1520-0442 doi: 
https://doi.org/10.1175/JCLI-D-21-0310.1 Available at 
https://centaur.reading.ac.uk/100667/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/JCLI-D-21-0310.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



A Simple Model for Interpreting Temperature Variability and Its Higher-Order Changes

TALIA TAMARIN-BRODSKY,a,b KEVIN HODGES,a,c BRIAN J. HOSKINS,a AND THEODORE G. SHEPHERD
a

aDepartment of Meteorology, University of Reading, Reading, United Kingdom
bDepartment of Geophysics, Tel-Aviv University, Tel Aviv, Israel

cNational Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

(Manuscript received 18 April 2021, in final form 5 October 2021)

ABSTRACT: Atmospheric temperature distributions are often identified with their variance, while the higher-order

moments receive less attention. This can be especially misleading for extremes, which are associated with the tails of the

probability density functions (PDFs), and thus depend strongly on the higher-order moments. For example, skewness is

related to the asymmetry between positive and negative anomalies, while kurtosis is indicative of the ‘‘extremity’’ of the

tails. Here we show that for near-surface atmospheric temperature, an approximate linear relationship exists between

kurtosis and skewness squared.We present a simplemodel describing this relationship, where the total PDF is written as the

sum of threeGaussians, representing small deviations from the climatological mean together with the larger-amplitude cold

and warm temperature anomalies associated with synoptic systems. This model recovers the PDF structure in different

regions of the world, as well as its projected response to climate change, giving a simple physical interpretation of the higher-

order temperature variability changes. The kurtosis changes are found to be largely predicted by the skewness changes.

Building a deeper understanding of what controls the higher-order moments of the temperature variability is crucial for

understanding extreme temperature events and how they respond to climate change.
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1. Introduction

Extreme temperature events such as heat waves and cold

spells can present a serious threat to humans, livestock, and

agricultural production (Bindoff et al. 2013; Field et al. 2012).

Assessing the impact of a changing climate on temperature

extremes remains a key challenge, and much work is still

needed in order to provide reliable predictions of changes in

their frequency, intensity, and persistence. While climate

models robustly agree that the mean surface temperature is

projected to increase due to anthropogenic warming, the

higher-order temperature variability changes are less certain

(e.g., Tamarin-Brodsky et al. 2020). The latter are especially

important for temperature extremes, which lie in the tails of

the probability density functions (PDFs).

Much effort in recent years has been directed to studying the

mean temperature and temperature variance response to cli-

mate change (Schär et al. 2004; Screen 2014; Fischer and Schär
2009; Volodin and Yurova 2013; Parey et al. 2013; Kodra and

Ganguly 2014; Schneider et al. 2015; Gao et al. 2015; Holmes

et al. 2016; Bathiany et al. 2018; Dai and Deng 2021; Xu et al.

2020). It is now generally acknowledged that the temperature

variance is projected to decrease in the Northern Hemisphere

(NH) during winter under greenhouse gas warming, due to the

excess warming of the Arctic region and associated decrease in

the meridional (equator-to-pole) temperature gradient (Screen

2014; Schneider et al. 2015; Tamarin-Brodsky et al. 2020). The

basic idea behind the variance decrease, proposed by Screen

(2014) and then formulated by Schneider et al. (2015), can be

understood by relating the temperature fluctuations, through

linear meridional advection, to the meridional background

temperature gradient. For example, if the meridional back-

ground temperature is uniformeverywhere (zero gradient), then

no temperature perturbation is generated by advection of air

between the tropics and the pole. Similarly, a weakening of the

meridional temperature gradient will be associated with a

weakening of the temperature anomalies (and thus a decrease in

the temperature variance), all else being equal.

Recently, there has been a growing interest in under-

standing the higher-order moments of the temperature vari-

ability, due to their importance for temperature extremes.

Specifically, many recent studies have highlighted the impor-

tance of skewness [S5T 03/(T 02)
3/2
, the third-order moment of

the temperature PDF], which relates to the asymmetry be-

tween the cold and warm temperature anomalies, for capturing

correctly the temperature distributions and their response

to climate change (Petoukhov et al. 2008; Fischer and Schär
2009; Ruff and Neelin 2012; Perron and Sura 2013; Kodra

and Ganguly 2014; Sardeshmukh et al. 2015; Garfinkel and

Harnik 2017; Linz et al. 2018; Loikith and Neelin 2019;

Tamarin-Brodsky et al. 2019; Linz et al. 2020; Tamarin-

Brodsky et al. 2020). A zero skewness implies that the posi-

tive and negative tails are symmetric around the mean (e.g.,

Figs. 1a,b), while a positive skewness implies that the positive

tail is longer than the negative tail (e.g., Figs. 1c,d) (with the
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opposite for negative skewness). Two main mechanisms have

been proposed to understand how temperature skewness can

be generated dynamically, through meridional advection.

The first involves nonlinear meridional advection of tem-

perature anomalies by anomalous cyclone–anticyclone pairs

that are responsible for the equatorward (poleward) move-

ment of the cold (warm) temperature anomalies (Garfinkel

and Harnik 2017; Linz et al. 2018; Tamarin-Brodsky et al.

2019). This gives rise to the dipole skewness structure seen in

the midlatitude storm track regions, which is most pro-

nounced in the Southern Hemisphere (SH) storm tracks (see

Fig. 2a). The second mechanism involves linear meridional

advection of temperature anomalies generated by spatially

asymmetric background temperature gradients (Tamarin-

Brodsky et al. 2020) and is mostly important in the NH due to

the abundance of continents that create strong temperature

gradients. There is strong evidence that a positive skewness

change is projected to occur over most of the NH during

winter (Gao et al. 2015; Tamarin-Brodsky et al. 2020), indi-

cating that the cold anomalies weaken more strongly than the

warm anomalies (relative to the already warmer mean tem-

peratures). This occurs because the largest gradient de-

creases, which are due to Arctic amplification, occur closer to

the pole. Hence, cold anomalies advected from the Arctic

weaken significantly more than warm anomalies advected

from the tropics (Tamarin-Brodsky et al. 2020).

Kurtosis, on the other hand, has been studied much less.

Kurtosis [K5T 04/(T 02)
2
, the fourth-order moment of the tem-

perature PDF] is indicative of the ‘‘extremity’’ of the tails, and is

therefore especially important for extremes. The kurtosis of a

FIG. 1. An illustration of PDFs with different kurtosis and skewness values. A PDF with

(a) positive excess kurtosis (K2 3. 0) and zero skewness (S5 0) (black), (b) negative excess

kurtosis (K2 3, 0) and zero skewness (S5 0) (black), (c) positive excess kurtosis (K2 3. 0)

and positive skewness (S. 0) (black), and (d) negative excess kurtosis (K2 3, 0) and positive

skewness (S . 0) (black). In all panels, a Gaussian PDF (S 5 0 and K 5 3) is shown in red for

reference.

FIG. 2. The 850-hPa temperature (a) skewness and (b) excess kurtosis, based on ERA-Interim data averaged over the years 1980–2015

during December–February (DJF). (c) The estimated excess kurtosis (see text for details). Regions where the skewness and excess

kurtosis values are statistically significant are stippled.

Fig(s). 1,2 live 4/C
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Gaussian distribution is exactly 3 (Fig. 1, red), which is why it is

often convenient to consider the excess kurtosis (K 2 3).

Positive excess kurtosis (K . 3) generally implies that more of

the PDF lies around themean and at the extreme tails, while less

of the PDF is in the midrange (Fig. 1a). In such a PDF, extreme

events occur more frequently than in a Gaussian distribution.

Similarly, negative excess kurtosis (K, 3) implies that extreme

events occur less frequently than in a Gaussian distribution

(Fig. 1b). Note however that this is not necessarily true for both

tails if skewness is nonzero. Figure 1c shows an example where

both skewness and excess kurtosis are positive but only the

positive tail is longer than a Gaussian, while the negative tail is

shorter than a Gaussian. The opposite would be true for a neg-

ative skewness and positive excess kurtosis. In Fig. 1d, skewness

is positive and excess kurtosis is negative, andwhile both tails are

shorter than a Gaussian in this case, it is clear that the negative

tail is significantly shorter. Hence, care must be taken with re-

gards to extremes and preconceptions about kurtosis, when

skewness is nonzero.

While some studies have included an analysis of temperature

kurtosis (Perron and Sura 2013; McKinnon et al. 2016), no

deeper investigation of temperature kurtosis and its projected

changes has been performed, to our knowledge. The observed

kurtosis structure of near-surface temperature based on re-

analysis data was presented in Perron and Sura (2013), who

noted that regions of large skewness values tend to collocate

with large kurtosis values, but did not examine it further.

McKinnon et al. (2016) analyzed observed data from weather

stations to estimate the temperature distribution changes during

summer, and suggested that most of the PDF changes can be

explained by a shift in the mean, while the changes in the re-

maining variability were small. Several previous studies have

found an interesting parabolic relationship between kurtosis and

skewness for variables such as sea surface temperature (SST)

(Sura and Sardeshmukh 2008), sea surface height (Sura and

Gille 2010), vorticity and sea level in ocean jets (Hughes et al.

2010; David et al. 2017), and plasma fluids (Krommes 2008;

Guszejnov et al. 2013). This remarkable parabolic relation be-

tween kurtosis and skewness is not a fundamental statistical

result (i.e., it does not follow directly from the definitions of

skewness and kurtosis) but has been shown to hold in several

complex systems (Schopflocher and Sullivan 2005; Sattin et al.

2009; Cristelli et al. 2012).

For SSTs, Sura and Sardeshmukh (2008) have shown how a

linear mixed layer model for SST with a mixture of additive

(SST-independent) and multiplicative (SST-dependent) noise

can account for the skewness–kurtosis parabolic relation, by

writing a Fokker–Planck type equation for the stationary PDFof

the SST anomalies. Alternatively, Hughes et al. (2010) explored

the statistics of vorticity and sea level height in ocean jets and

developed a simple model that captures the squared relation-

ship. They considered a sharp jet, which may be approximated

as a step in vorticity. At the center of the jet, there is a flip from

negative to positive vorticity anomalies, as the mixing barrier

meanders due to passing Rossby waves. The model describes

the statistics as the sum of two Gaussians, accounting for the

positive and negative anomalies, and noise is then represented

by the width of the Gaussians. Despite its simplicity, the model

captures the key features such as the squared relationship be-

tween skewness and kurtosis, and explains why strong jets acting

asmixing barriers tend to be associatedwith zero skewness and a

low kurtosis.

In this paper we extend the model proposed by Hughes et al.

(2010). We apply it to low-level atmospheric temperature to

explain the squared relationship between temperature skew-

ness and kurtosis, and further explore how it can be used to

better understand the future temperature variability changes.

The two-Gaussian model used in Hughes et al. (2010) is ap-

propriate for jets in a staircase model of two distinct well-

homogenized fluids with a strong mixing barrier. Hence, we

cannot expect it to work well for temperature, whose hori-

zontal distribution in the atmosphere is not generally well

represented as a staircase of homogenized temperatures. In the

proposed model, the temperature PDF is written as the sum of

three (rather than two) Gaussians, with two Gaussians repre-

senting the cold and warm anomalies, and another near-zero

Gaussian representing small departures from the mean tem-

perature (i.e., a Gaussian mixture model, with the choice of

three Gaussians motivated by a physical rather than a statis-

tical perspective). Note that if one assumes Gaussianity of the

temperature PDF (e.g., Schneider et al. 2015), then only one

Gaussian is considered around the mean. Hence, our model

can be thought of as an extension of the single Gaussian, to

include the effect of long-range advection associated with co-

herent motions (represented by the warm and cold Gaussians),

as opposed to random noise (represented by the Gaussian

around the mean). A similar three-Gaussian model was used in

David et al. (2017) to study the statistics of turbulent baro-

tropic ocean jets, but the analytical solutions of the three-

Gaussian PDF were not explicitly written or investigated

further there.

The three-Gaussian model also extends our results from a

previous study (Tamarin-Brodsky et al. 2020), where simple

equations were derived for temperature variance and skewness

in terms of the mean intensity of cold and warm anomalies,

assuming a Bernoulli distribution. The oversimplification of

the Bernoulli distribution used in that study did not allow for a

proper representation of kurtosis. The essential inclusion of

the near-zero anomalies, as well as the introduction of noise by

allowing for deviations around the mean intensities, is enough

to capture the essence of the temperature variability, yet

keeping the simplicity in terms of interpretation.We show how

the three-Gaussian model can be useful for better under-

standing temperature variability and its projected changes, by

relating the PDF variance, skewness, and kurtosis changes to

changes in the intensity and frequency of the cold, near-zero,

and warm anomalies separately.

The paper is organized as follows. The methods and data

used are first described in section 2. Section 3 gives an overview

of the observed temperature skewness and kurtosis and the

parabolic relationship between them. In section 4, we review

previous studies and extend them to develop the three-

Gaussian model. We present interesting limits of the solu-

tions to build intuition of how the model works, and present

idealized examples to demonstrate the role of the different

model parameters. The model is then used in section 5 to
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investigate the latitudinal dependence of the parabolic rela-

tion, and its interpretation for temperature variability in the

SHmidlatitudes is discussed. In section 6, the usefulness of the

model for interpreting future temperature variability changes

is presented. A summary and discussion are given in section 7.

2. Data and methods

In this study we use the 6-hourly 850-hPa temperature field

from the ECMWF interim reanalysis (herein ERAI) dataset

(Dee et al. 2011) covering the period 1980–2014, where the

background climatology is defined for every 6-hourly time

period as its average over the 35 years in order to remove both

the diurnal and the seasonal cycle. We concentrate on the NH

winter season [December–February (DJF)], and on the 850-

hPa level, which is mostly above the boundary layer but still

highly correlated with the surface temperature (Tamarin-

Brodsky et al. 2020), because the focus here is on the dynamical

origin of the temperature anomalies and in winter we expect

temperatures to be mostly governed by large-scale dynam-

ics, whereas in summer other processes (such as local land

surface feedbacks) may be more important (Fischer and

Schär 2009).
For the projected temperature variability changes, we use

the 6-hourly 850-hPa temperature field from 26 CMIP5 models

(see the model list in Table S1 in the online supplemental

material). We analyze the r1i1p1 ensemble member from the

representative concentration pathway 8.5 (RCP8.5) emissions

scenario (Taylor et al. 2012). The data cover a period of

19 years in the historical period (1981–99) and 19 years in the

projected period (2081–99) during DJF. The historical simu-

lations are forced by both the observed anthropogenic and

natural atmospheric forcings, and in the projected simulations

the radiative forcing increases by about 8.5Wm22 by year

2100. Similar to ERAI, for each model the background cli-

matology is defined for every 6-hourly time period as its av-

erage over the 19 years. Perturbations are defined as deviations

from the 6-hourly climatology (for the historical and projected

simulations separately). The skewness and kurtosis are calcu-

lated first for each model separately, and then averaged to-

gether to produce the ensemble means.

3. The observed relationship between temperature
skewness and kurtosis

The spatial structure of the low-level (850 hPa) temperature

skewness from ERAI data (Fig. 2a) has been presented previ-

ously in several studies (e.g., Tamarin-Brodsky et al. 2019), but is

presented here for completeness. Temperature skewness is

generally negative (positive) on the equatorward (poleward)

flank of the midlatitude storm tracks over the oceans in both

hemispheres. This is mainly due to nonlinear meridional tem-

perature advection by anomalous cyclone–anticyclone pairs,

which advect the cold (warm) temperature anomalies equator-

ward (poleward) in regions of strong localized meridional

temperature gradients (Garfinkel and Harnik 2017; Linz et al.

2018; Tamarin-Brodsky et al. 2019). Other processes, such

as linear advection of asymmetric meridional temperature

gradients (Tamarin-Brodsky et al. 2020) and regional land

surface feedbacks or the vicinity to ocean and mountains

(Lutsko et al. 2019; Loikith and Neelin 2019), can also influ-

ence temperature skewness.

The low-level (850 hPa) temperature excess kurtosis in

ERAI (Fig. 2b) was shown in Perron and Sura (2013), but not

investigated further to our knowledge. Temperature kurtosis is

generally high (positive excess kurtosis) in the tropics, and a

clear dipole structure can be seen in the SH midlatitude storm

track region, but with a center that is farther to the south

compared to the skewness dipole. Just by comparing Figs. 2a

and 2b it is hard to see the parabolic relationship between

kurtosis and skewness. This can be more easily seen by ex-

amining scatterplots of kurtosis versus skewness in different

regions, for example, in the SH (Fig. 3a) and in the NH

(Fig. 3b) midlatitudes. In the tropics (Fig. 3c), this relationship

is less pronounced, as points are scatteredmore widely, but still

apparent. Similar plots have been identified in previous studies

for other variables (as discussed above), which indicates that

this might be a fundamental aspect of advective fluid systems

(Schopflocher and Sullivan 2005).

To get a rough idea of the coefficients of this relationship, in

Figs. 3d–f the points are plotted for the same latitudinal bands,

but for kurtosis (K) and skewness squared (S2). We find that

kurtosis can be estimated asK’ aS21 b, with a5 1.6, 1.6, and

2.3 and b 5 2.7, 2.8, and 3.5 for the SH midlatitudes, NH

midlatitudes, and tropics, respectively. Hence, depending on

the value of the skewness S, it is clear that the excess kurtosis

K 2 3 can be either negative or positive in the midlatitudes

(since b is close to 3 and b – 3, 0), while it is mostly positive in

the tropics (since b2 3. 0), as can indeed be seen fromFig. 2b.

The statistical significance of the observed skewness and

excess kurtosis values can be determined using the standard

errors of skewness and kurtosis, given by sS 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
(6/Ni)

p
and

sK 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(24/Ni)

p
5 2sS, respectively, where Ni is the number of

independent degrees of freedom (Brooks and Carruthers

1953). Skewness and excess kurtosis values are then considered

significant at the 95% level if they are larger in magnitude than

2sS and 2sK, respectively (Perron and Sura 2013). We can

estimate Ni 5 450 (90 days for a season multiplied by the

35 years and divided by a typical atmospheric decorrelation

time scale of 7 days), which gives 2sS ’ 0.23 and 2sK ’ 0.46.

Regions where skewness and excess kurtosis values are larger

than these thresholds are stippled in Fig. 2 (and in Fig. 8 for

the historical CMIP5 values) and denote regions where the

PDFs deviate significantly from a Gaussian. It is interesting to

note that temperatures over land are generally more Gaussian

than temperatures over oceans, particularly over Eurasia (Fig. 2).

4. A simple model for temperature variability

In a previous study by the same authors (Tamarin-Brodsky

et al. 2020), simplified expressions were derived for tempera-

ture variance and skewness in terms of the mean intensities of

cold and warm temperature anomalies (see section 2 in the

online supplemental material):

s2 ’T
w
T
c

(1)
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and

S5
(T

w
2T

c
)

s
, (2)

where Tc 5 jT 0
cj and Tw 5 jT 0

wj denote the average absolute in-

tensity of the cold and warm temperature anomalies, respec-

tively. To derive these equations, a Bernoulli distribution was

implicitly assumed, namely that at every time stepwe either get a

warm temperature anomaly of mean intensity Tw with proba-

bility pw 5Tc/(Tw 1Tc) or a cold temperature anomaly of mean

intensityTcwith probabilitypc 5Tw/(Tw 1Tc), such that overall

pw 1 pc 5 1 as needed. For this simple Bernoulli approximation,

it is easy to show (see section 2 in the supplemental material)

that kurtosis is then directly related to skewness by

K5S2 1 1: (3)

This is in fact the lowest possible K for a given S (Pearson

1916). If, for example, this Bernoulli distribution describes an

unbiased coin toss with two states of equal probability, then

S 5 0 and K 5 1, which is the minimum possible kurtosis

(Pearson 1916).

While some of the high kurtosis regions seen in Fig. 2b are

indeed captured by high values of S2 1 1, this relationship is

oversimplified. The excess kurtosis (K2 3) estimated from (3)

(see supplemental Fig. S1) is negative everywhere (because the

skewness squared values are smaller than 2), unlike the actual

excess kurtosis shown in Fig. 2b. Hence, while the simplified

skewness from the Bernoulli distribution given by (2) recovers

well the actual skewness (see Fig. 2 from Tamarin-Brodsky

et al. 2020), the simplified kurtosis given by (3) fails to recover

correctly the actual kurtosis (Fig. 2b). One of the main limi-

tations of this simple approximation for studying kurtosis is the

assumption that only warm or cold anomalies can occur, while

ignoring the weight of the distribution around the mean.

To further study the nature of the relation between skewness

and kurtosis, we consider first a slightly more complicated case

of a modified Bernoulli distribution with three variables: Tw, Tc,

and T0, where the latter represents the mean with probability p0,

such that pw 1 pc 1 p0 5 1 (here T0 5 0 since the T terms are

measured as anomalies relative to the mean). For this system, it is

easy to show (see section 3 in the supplemental material) that the

probabilities are now modified to pw 5Tc(12 p0)/(Tw 1Tc) and

pc 5Tw(12 p0)/(Tw 1Tc), variance is givenbys
25TwTc(12 p0),

skewness by S5 (Tw 2Tc)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TwTc(12 p0)

p
, and kurtosis by

K5S2 1
1

(12p
0
)
. (4)

For p05 0, one recovers the earlier Bernoulli results given in

(3). For large p0 values (approaching one), Eq. (4) predicts high

kurtosis (which can explain the high kurtosis values found in

the tropics). In contrast to Eq. (3), the kurtosis estimated from

Eq. (4) can now have a positive excess kurtosis (depending on

the value of p0). However, the coefficient in front of S2 pre-

dicted from Eq. (4) is still one, while the observed slope of a

best linear fit between K and S2 (Fig. 3) clearly shows that the

coefficient should be larger than one.

a. The three-Gaussian model for temperature variability

We next extend our model to include also noise, which was

done in Hughes et al. (2010) for the two-state Bernoulli

FIG. 3. Scatterplots of temperature kurtosis vs skewness, based onERA-Interim data covering the period 1980–2015 duringDJF. (a)–(c)

Kurtosis vs skewness is plotted for SH midlatitudes (308–708S), NH midlatitudes (308–708N), and the tropics (258S–258N), respectively.

(d)–(f) As in (a)–(c), but for kurtosis vs skewness squared. The black lines in (a)–(c) are the best parabolic fit of the points, while in (d)–(f)

a best linear fit is used.

Fig(s). 3 live 4/C
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problem. Instead of constant Tc, T0 5 0, and Tw, we take

Gaussian distributions with mean values Tc, T0, and Tw, and

with standard deviation ŝ (see Fig. 4). This represents the

random variability that can occur for the cold, near-zero, and

warm temperature variations around their averages. The

Gaussians around Tc and Tw represent the temperature

anomalies associated with synoptic-scale features, while the

Gaussian around T0 represents small departures from the

mean temperature. The width of the three Gaussians ŝ is

chosen equal for simplicity, but in general the width can be

different (and this assumption is probably a poor approxi-

mation in certain regions).

Taking the PDF to be

p5 p
c
N(2T

c
, ŝ)1p

0
N(0, ŝ)1p

w
N(T

w
, ŝ), (5)

where pw 1 pc 1 p0 5 1 and N(m, ŝ) represents a Gaussian

distribution withmeanm and standard deviation ŝ, we find (see

section 4 in the supplemental material for further details)

s2 5 ŝ2 1T
w
T
c
(12p

0
) (6)

and

S5
T

w
T

c
(12p

0
)(T

w
2T

c
)

s3
. (7)

We then further find that the kurtosis can be written as

K5 aS2 1b , (8)

where

a[
ŝ2

T
w
T
c
(12p

0
)
1 1 (9)

and

b[
1

(12 p
0
)

1

a2
2

3

a2
1 3: (10)

The coefficient a5 ŝ2/[TwTc(12 p0)]1 1 essentially mea-

sures the ratio between the noise (given by width of Gaussians

ŝ) and the signal [related to the variance of the modified three-

parameter Bernoulli system, TwTc(1 2 p0)]. The parameter b,

for a given a, is then inversely related to 12 p0. In section 4b we

explore interesting limits of the three-Gaussian model, and in

section 4c we demonstrate how different a and b parameters

give rise to different decompositions of Gaussians, which ul-

timately control the non-Gaussian shape of the total PDF.

Note that the three-Gaussian PDF written in (5) was used in

David et al. (2017) to examine the kurtosis and skewness

structure of idealized barotropic ocean jets (see Fig. 9 in David

et al. 2017), but the analytic expressions were not written ex-

plicitly or investigated further there.

b. Interesting limits of the three-Gaussian model

To explore proper limits of the expressions for a, b, S, and

K achieved from the three-Gaussian model, we first define

b[TwTc/ŝ
2. The parameter b is a dimensionless parameter

describing the signal-to-noise ratio between the two-state

Bernoulli system (with variance TwTc), and the noise given

by the width of the Gaussians, ŝ. For simplicity, we also denote

g [ 1 2 p0. Using these notations, the equations become

s2 5 ŝ2(11bg) , (11)

S5
b3/2g

(11bg)
3/2

S
0
, (12)

and

K5
b2g

(11bg)2
S2
0 1

b2g(12 3g)

(11bg)2
1 3, (13)

where S0 5 (Tw 2Tc)/
ffiffiffiffiffiffiffiffiffiffiffi
TwTc

p
is the skewness of the two-state

Bernoulli distribution, and the parameters a and b are

a5
1

bg
1 1 (14)

and

b5
1

ga2
2

3

a2
1 3: (15)

Writing the equations in this form ensures we get the

proper limits.

1) THE LIMIT b / 0 (SMALL SIGNAL-TO-NOISE RATIO)

If the signal-to-noise ratio is small, TwTc � ŝ2 (i.e., the

width of the PDFs is much larger than the two-state Bernoulli

signal), then the means of the Tw and TcGaussians are effectively

close to each other relative to their distance from the tails (since

the width of the Gaussians is so wide). In this case, from Eqs. (11)

to (15) ŝ2 /s2, S / 0, and K / 3 (consistent with a / ‘,
b/ 3); that is, the PDF asymptotes to a normal distribution at

the origin, and the concentrations atTw andTc become negligible.

2) THE LIMIT b/ ‘ (LARGE SIGNAL-TO-NOISE RATIO)

If the signal-to-noise ratio is large,TwTc � ŝ2 (i.e., the two-state

Bernoulli signal ismuch larger than thewidthof theGaussians), and

then fromEqs. (11) to (15) one finds s2/ TwTcg, S/ (1/
ffiffiffi
g

p
)S0,

FIG. 4. A schematic illustrating the three-Gaussianmodel. In this

model, the total PDF is written in terms of three Gaussians, de-

scribing the cold, near-zero, and warm anomalies. Themean values

of theseGaussians are2Tc,T05 0, andTw; their amplitudes are pc, p0,

and pw, respectively; and their widths are denoted as ŝ (chosen equal

for simplicity; see text). Note that the probabilities pc, p0, and pw are

are not necessarily equal, and satisfy by construction pc1 p01 pw5 1.

Fig(s). 4 live 4/C
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and K/ (1/g)S2
0 1 1/g5S2 1 1/g (consistent with a / 1,

b/ 1/g). These are exactly the results found earlier for the

modified Bernoulli distribution with three variables [see

Eq. (4)], that is, for the case of constant values of Tw, Tc, and

T0 with effectively zero noise.

3) THE LIMIT g / 0 (p0 / 1)

In the limit where the probability concentrates at the origin,

around the T0 Gaussian, the Tw and Tc Gaussians become

negligible (recall that pw 1 pc 5 1 2 p0 5 g / 0). Equations

(11)–(15) then give ŝ2 /s2, S / 0, and K / 3 (and a / ‘,
b / 3); that is, the PDF asymptotes again to a normal distri-

bution at the origin, irrespective of the noise level.

4) THE LIMIT g / 1 (p0 / 1)

In the limit of p0 / 0, where the probability of the

middle Gaussian becomes negligible, the problem reduces

to the two-Gaussian problem studied in Hughes et al.

(2010) (see section 5 in the online supplemental material

for a derivation of the two-Gaussian case). Equations (11)–

(15) now give s2 / ŝ2(11b), S/ [b3/2/(11b)
3/2
]S0, and

K/ [b2/(11b)
2
]S2

0 2 [2b2/(11b)
2
]1 3, corresponding to

a/ (1/b)1 1 and b/2(2/a2)1 3.

These results essentially recover Hughes et al. (2010) (but a

and b were not written explicitly there). Note that in their

notation, A5 pw, B5 pc, P5 pwpc, variance is set to one, and

the width of the Gaussians is denoted s (rather than ŝ as in our

study). In addition, their solutions are written in term of d,

which represents the distance (in units of standard deviations)

between the two Gaussians, so ŝd5Tw 1Tc in our case.

A comparison between the two- and three-Gaussian models is

given in section 5c, where it is demonstrated that the added

complexity in the three-Gaussian model is needed in order to

successfully capture the correct temperature variability.

c. Interpreting the parameters a and b

Sattin et al. (2009) proposed that the parabolic relationship

between kurtosis and skewness can be found in many physical

systems obeying certain constraints. In the simplest case, as-

sume that there is some parameter d that controls the deviation

from Gaussianity of the PDF. Hence, K and S are both func-

tions of d, and it is further assumed that S (d) is smooth and

invertible. This gives d 5 d(S), and therefore K 5 K(S).

ExpandingK in a Taylor series around small values of S (Sattin

et al. 2009), one finds

K ’ K
0
1
S

2

2›2K

›S2
. (16)

Here it was also assumed that the system is invariant with

respect to the sign inversion, so the odd derivatives are zero

since S is an odd function andK an even function with respect

to the inversion operation. Note that the higher-order terms

in this expansion can be neglected to a reasonable extent,

given that the observed temperature skewness values are

typically smaller than one (e.g., Fig. 2a).

From (16), it can therefore be identified that b 5 K0 is the

kurtosis that would exist in the absence of skewness. It is thus

related to the relative frequency of the small (near-mean) and

the extremely strong (in the far tails) anomalies, compared

to anomalies in the middle range, regardless of the sign. Setting

S 5 0 gives K 5 b, which implies that the sign of b 2 3 deter-

mines whether the symmetric PDF would be platykurtic (neg-

ative excess kurtosis) or leptokurtic (positive excess kurtosis).

For the three-Gaussian model, we find that b2 35
1/[(1 2 p0)a

2] 2 3/a2 5 (1/a2)[(3p0 2 2)/(1 2 p0)]. Hence, if

p0 . 2/3, the PDF with zero skewness has positive excess kur-

tosis, whereas if p0 , 2/3 the PDF has a negative excess kurtosis.

This is presented in Figs. 5a–d, which show examples of PDFs

composed of the sum of three Gaussians, where the width of the

total PDF is set to unity (s 5 1) and skewness to zero (S 5 0

implying Tw5 Tc), and we also arbitrarily set a5 1.8. This allows

us to examine the effect of changing b, or effectively p0, through

b5 1/[(12p0)a
2]2 3/a2 1 3, on the PDF structure. For low

values of b (and therefore p0) (Figs. 5a–c), the PDF is indeed

characterized by a negative kurtosis, indicated by the shallower-

than-Gaussian peak and shorter-than-Gaussian tails, whereas for

high values of b (and thus p0) (Fig. 5d) the PDF is characterized

by a positive kurtosis, indicated by the higher-than-Gaussian peak

and longer-than-Gaussian tails. Note that the values of Tw,Tc, pw,

pc, and ŝ in these idealized examples are determined from b (or

p0), a, s, and S (see section 6 in the supplemental material).

As for the parameter a, from (16), it is clear that a[ (1/2)

(›2K/›2S). This also gives (for constant a) a[ ›K/›(S2). Hence,

ameasures the sensitivity of K to changes in the ‘‘intensity’’ of

skewness (i.e., to changes in skewness squared). The larger a is,

the larger kurtosis K can be found for the same S2. Moreover,

for a given nonzero skewness S and a given b, a will determine

if the PDF will have a positive or negative excess kurtosis. If

b. 3 thenK5 aS21 bwill also be larger then 3, regardless of a

(since aS2 . 0). However, if b , 3, the PDF can still have a

positive excess kurtosis if a is large enough.

In the three-Gaussian model a5 [ŝ2 1TwTc(12p0)]/[Tw

Tc(12 p0)]5s2/[TwTc(12p0)], which can therefore be in-

terpreted as the enhancement of the total variance of the three-

Gaussian distribution, s2, compared to the variance of the

modifiedBernoulli distributionwith three variables,TwTc(12 p0).

Alternatively, a5 ŝ2/[TwTc(12p0)]1 1 can be interpreted as

the ratio (plus 1) between the noise in the system, given by

the width ŝ2 of the Gaussians, to the signal, defined here as the

modified Bernoulli distribution with three variables. Hence,

the signal-to-noise ratio is related to how well separated the

Gaussians are compared to their width.

From its definition, it is clear that a $ 1 (with a 5 1 only

achieved for the modified Bernoulli system with three parame-

ters, where ŝ5 0). Figures 5e–h show PDFs composed of the

sum of three Gaussians with varying a, where the total width of

the PDF is again set to unity (s5 1), andwe also set skewness to

S5 0.4 and b5 2.7 (hence b in the case of zero skewness would

give a negative excess kurtosis). For low values of a (Fig. 5e) we

find narrow PDFs that aremore distant from each other, and the

PDF becomes trimodal (which is not what is usually found for

realistic low-level temperature distributions). In this case, the

excess kurtosis is negative (K, 3) because the localization of the

signals effectively make the Gaussian longer in the tails. As a

increases (Figs. 5e–g), the PDFs become wider and closer to

each other (the signal-to-noise ratio decreases) until eventually a
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is large enough (Fig. 5h) such that the overall PDF has a positive

excess kurtosis (K. 3) and the right-skewed tail becomes longer

than aGaussian (see boxes in Figs. 5e–h, which showa zoom into

the region of the right-skewed tail).

Hence, different a and b values can give very different PDF

structures, from trimodal distributions to unimodal PDFs

with a non-Gaussian shape. In the following sections, we esti-

mate the parameters a and b from the linear relationship be-

tween K and S2, first in a longitudinally independent form and

then for different local regions, and explore the resulting PDF

decompositions, their interpretation, and their projected changes.

5. The latitudinal dependence of ~K5 aS2 1 b

For clarity, we henceforth denote the actual kurtosis as K,

while the approximated kurtosis is denoted as ~K5 aS2 1b.

The coefficients a, b of the approximated kurtosis can be es-

timated for each latitude by taking all longitudinal points and

finding a best linear fit between K and S2. The resulting de-

pendence on latitude is shown in Fig. 6 (after applying a cus-

tomary smoothing with respect to latitude using MATLAB’s

‘‘smooth’’ function). Also shown for completeness are the

zonally averaged skewness S(y) (Fig. 6a) and the zonally av-

eraged excess kurtosis K(y) 2 3 (Fig. 6b). Note however that

the zonal averages hide a lot of the regional structure in the

NH. For example, the skewness is generally very small in the

zonal mean, but Fig. 2a shows that this is a result of compen-

sation between strong positive skewness in northern oceans

and strong negative skewness, particularly over the west coast

of North America. Nonetheless, the purpose here is to get the

general latitudinal dependence of the parameters a and b, even

if they might vary longitudinally. Moreover, since we are not

averaging, but rather taking all longitudinal points in a given

latitude, even if K and S vary significantly longitudinally they

might still possess the same relationship in terms of the fit K5
aS2 1 b.

The coefficient a(y) is generally high in the tropics and lower

in the midlatitudes (Fig. 6c). Note that the 850-hPa level in-

tersects topography, and we have thus limited our analysis here

to 758S–758N. The parameter b(y) is also high in the tropics and

achieves the lowest value in the middle of the SH jet (where

skewness is zero) (Fig. 6d). The frequency p0 of the near-zero

anomalies [calculated by plugging a and b in relation (10) and

inverting it to find p0] is generally similar to b (Fig. 6e). The

overall recovered excess kurtosis, ~K2 35 aS2 1b2 3 (Fig. 6f),

is indeed similar to the zonally averaged kurtosis (Fig. 6b) and

captures its main features.

The estimated coefficients a(y) and b(y) can also be used

to plot a spatial map of the estimated excess kurtosis
~K2 35 a(y)S2 1 b(y) (i.e., the same coefficients a and b are

used for every longitude as a function of latitude only, but we

keep the full spatial field of skewness; Fig. 2c). This recovers well

the excess kurtosis structure (a spatial correlation coefficient of

0.85), albeit with somewhat lower values (see Fig. S2). For ex-

ample, it captures the high kurtosis values in the tropics (which

are not achieved for the simplified relation K 5 S2 1 1; see

Fig. S1), and also the high kurtosis values on the poleward flanks

of the midlatitude storm track regions and on the west coast of

North America.

a. The relation between K and S in the SH midlatitudes

The relation between K and S is demonstrated for the SH

midlatitudes. The skewness dipole around the SH midlatitude

jet can be clearly seen in Fig. 6a. In the middle of the SH jet

FIG. 5. Idealized examples of PDFs composed of the sumof threeGaussians, with varying a and b, to explore their influence on the shape

of the total PDF. (a)–(d) a is held constant at a fixed value of a5 1.8, and skewness is set to zero (S5 0 implying Tw 5 Tc). The values of

b—or effectively p0, through b5 1/[(12 p0)a
2]2 3/a21 3—are (a) b5 2.5 (corresponding to p05 0.2), (b) b5 2.6 (corresponding to p05

0.4), (c) b5 2.8 (corresponding to p0 5 0.6), and (d) b5 3.6 (corresponding to p0 5 0.8). (e)–(h) b is held constant at a fixed value of b5
2.7, and skewness is set to S5 0.4. The values of a, which effectively control the signal-to-noise-ratio, are (e) a5 1.1, (f) a5 1.4, (g) a5 1.7,

and (h) a 5 2.3. In all cases, the width of the total PDF is set to unity (s 5 1), and a Gaussian distribution with a unit width is shown for

referencewith a gray line. The resulting kurtosis is given in the upper-left corner of each panel. In (e)–(h), the upper-right box is a zoom-in

into the right positively skewed tail.
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axis, around 458S, skewness is zero and kurtosis achieves its

minimum. From (8), it is clear that ~K’ b since S ’ 0. The

minimum of b (Fig. 6d) is consistent with a minimum in

p0 (Fig. 6e), since b5 [1/(12 p0)]1/a
2 2 3/a2 1 3, and a is roughly

constant in the SH midlatitudes.

The interpretation of these findings is as follows. The center

of the jet roughly describes a jump between cold polar air and

warmer subtropical air. As the jet meanders, the region be-

neath it will always be in either a cold anomaly state or a warm

anomaly state. Close to the jet center, the system will spend a

similar fraction of time in either one of these states (cold or

warm), and the magnitude of cold and warm anomalies is

similar since the meridional background temperature gradient

is roughly symmetric around the jet axis. Hence, in this region,

we can expect S ’ 0, and also pw ’ pc ’p0 ’ 1/3 [as is indeed

found in Fig. 6e, with min(p0)’ 1/3]. Thus, kurtosis is smallest

at the center of the jet both because S is smallest (zero), and

because p0 achieves a minimum there.

Away from the jet center, the system spendsmore time around

its average temperature (p0 increases; Fig. 6e) and an asymmetric

fraction of time in the cold/warm states. Nonlinear meridional

advection results in an equatorward (poleward) movement of

cold (warm) anomalies, and hence stronger magnitudes of cold

(warm) anomalies on the equatorward (poleward) side of the jet.

Correspondingly, a negative (positive) skewness is generated on

the equatorward (poleward) side of the jet. Consistent with this,

kurtosis (which is proportional to S2) increases away from the jet

axis (Fig. 6b). A similar interpretation was given in Hughes et al.

(2010) and in David et al. (2017) for ocean jets.

b. The three-Gaussian interpretation for the SH

midlatitudes

More intuitively, these results can be directly seen by

inspecting the three-Gaussian model decomposition (Fig. 7).

The seven unknowns in the model (ŝ, Tc,T0, Tw, pc, p0, and pw)

can be found as follows. First, from the normalization of the

PDF, we have p0 5 12 pw 2 pc. Next, we set T0 5 0, and from

the first-order moment of the PDF (the mean) we thus also

have Twpw 5 Tcpc. The second- and third-order moments

[given in (6) and (7), respectively] give two more equations for

the known variance and skewness. Last, from the fit between

K and S2 we have two more equations for the estimated coef-

ficients a and b [given in (9) and (10), respectively]. Hence,

inverting these relations (see section 6 in the supplemental

material for full derivation), we can find all the model pa-

rameters. Note that kurtosis is thus not used directly. Rather,

we are using the fitted relationship betweenK and S2 to extract

more information about the system.

The three-Gaussian decomposition is illustrated for three

latitudinal regions in the SHmidlatitudes (308–408, 458, and 558–
758S). The actual PDFs (referred to as ‘‘raw’’ but presented

with a kernel density smoother) are shown in black in the first

row of Fig. 7. For comparison, their corresponding Gaussian

distributions (i.e., same variance but with S 5 0, K 5 3) are

shown in red. Equatorward of the SH jet (308–408S; Fig. 7a), the
positive warm tail is shorter than a Gaussian, while the negative

cold tail is longer than a Gaussian, consistent with the negative

skewness there (S 5 20.2). In addition, kurtosis is larger than

that of a Gaussian (K 5 3.3). The three-Gaussian model de-

composition (Fig. 7c) gives Tw ’ 3.3 and Tc ’ 4.9. Hence,

equatorward of the jet, the mean intensity of cold anomalies is

larger than that of warm anomalies (Tc . Tw) (recall that

anomalies are measured relative to the background field, which

is warm in this region). Consistent with this, the decomposition

also shows that averaged cold anomalies occur less frequently,

pc , pw (pw ’ 0.25 and pc ’ 0.17). This is a simple consequence

of the zero mean of the entire distribution (pwTw 2 pcTc 5 0);

that is, the stronger anomalies must be less frequent in order for

FIG. 6. The latitudinal distribution of the 850-hPa (a) zonally averaged skewness S(y), (b) zonally averaged excess kurtosis, the esti-

mated parameters (c) a(y), (d) b(y), and (e) p0(y), and (f) the recovered excess kurtosis ~K(y)2 35 a(y)S2(y)1b(y)2 3, based on ERA-

Interim data averaged for the period 1980–2015 during DJF. The parameters a(y) and b(y) are estimated by calculating, for each latitude

separately, the coefficients a, b of ~K5 aS2 1b, by fitting a linear relation between K and S2 in all the corresponding longitudinal points.

The parameter p0(y) is then estimated from a(y) and b(y) using the relation b(y)5 f1/[12p0(y)]g[1/a(y)2]2 3/a(y)2 1 3.
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the total time-mean anomaly to be zero. However, note that the

very extreme cold anomalies (left tail in the Gaussian describing

Tc; blue line in Fig. 7c) have a higher probability than very ex-

treme warm anomalies (right tail in the Gaussian describing

Tw, red line in Fig. 7c). Hence, while the averaged cold

anomalies occur less frequently (to conserve zero time-mean

anomaly in total), extremely strong cold anomalies have a

higher probability than extremely strong warm anomalies.

These results are exactly the characteristics of the negative

skewness found in this region. The three-Gaussian model also

reveals that the frequency p0 (p0 ’ 0.58; that is, the frequency

of small departures from the mean) is significantly higher

than either pw or pc. The high p0 together with the nonzero

skewness are what give rise to the positive excess kurtosis

found in this region.

In the center of the SH jet (458S; Fig. 7b), skewness is almost

zero (S ’ 20.02) and kurtosis is low (K ’ 2.4). The three-

Gaussian decomposition now gives (Fig. 7e) Tw ’ 4 and Tc ’
4.2 (hence Tw ’ Tc) and pw ’ pc ’ p0 ’ 1/3. Hence, Tw and Tc

anomalies occur at similar magnitudes, and at similar fre-

quencies asT0. This confirms our previous interpretation of the

underlying dynamics at the center of the jet, discussed in

section 5a.

Poleward of the jet (558–758S; Fig. 7c), we find the opposite

result compared to the equatorward side. In this region the

model predicts stronger warm anomalies, Tw . Tc (Tw ’ 5.8

and Tc ’ 2.5), which occur on average less frequently, pw , pc
(pw ’ 0.1 and pc ’ 0.24), but with a much longer warm tail

overall. In addition, we find higher frequency of near-zero

anomalies (p0 ’ 0.66). These results are consistent with the

high positive skewness (S ’ 0.6) and higher than Gaussian

kurtosis (K ’ 4) found in this region.

In each case shown in Figs. 7d–f, the overall sum of the three

Gaussians (black line) recovers well the actual PDF in the

region (shown in black in Figs. 7a–c and given by the dashed

black line in Figs. 7d–f for ease of comparison). The corre-

sponding correlation coefficient is reported in the upper left

corner of each panel.

FIG. 7. Examples of the three-Gaussian vs the two-Gaussian decomposition for the SH midlatitudes. (a)–(c) The 850-hPa raw tem-

perature PDFs (black line) for anomalies at the latitudinal bands (a) 308–408S, (b) 458S, and (c) 558–758S, based on ERA-Interim data

averaged over the years 1980–2015 during DJF. The red lines show the corresponding Gaussian distributions (the same variance but

setting skewness to 0 and kurtosis to 3). (d)–(f) The approximated PDFs based on the three-Gaussianmodel for the same latitudinal bands,

respectively. The thin blue and red lines are the Gaussians representing the cold and warm anomalies, respectively, while the green

Gaussian represents the near-zero anomalies. The sum of the three Gaussians is shown by the thick black line, which recovers well the

shape of the corresponding raw PDF, shown in dashed black for reference. (g)–(i) The corresponding decomposition but for the two-

Gaussianmodel, calculated in the samemanner but assuming p05 0. The correlation coefficients for thematch between themodel and the

raw PDFs for each case is denoted in the upper-left corner of each panel. The parameters used for finding the three Gaussians are derived

from the variance, skewness, kurtosis, a, and b, calculated for each region of interest separately (see section 6 in the supplemental material

for more details).
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To summarize, the model allows us to truncate the full PDF

(which has an infinite number of moments) into a sum of three

Gaussians. These illustrate directly the main ingredients of the

underlying PDF, namely the mean intensity of cold, near-zero,

and warm anomalies, their frequencies, and width. These re-

cover the variance, skewness, and the parabolic relation be-

tween kurtosis and skewness by construction, but also give a

much simpler interpretation of the temperature variability

characteristic of the region.

c. Comparing the two- versus three-Gaussian model

The two-Gaussianmodel developed inHughes et al. (2010) also

predicts a squared relation betweenkurtosis and skewness, andhas

fewer free parameters than the three-Gaussian model (since p0 5
0). However, the latter gives a much better match to the observed

temperature variability. Specifically, the two-Gaussian model

predicts the relation b522/a2 1 3, which is not what we find

from the data (Fig. S3). Similarly, the predicted excess kurtosis

from the two-Gaussianmodel, namelyK5 a(y)S2 2 2/a(y)
2 1 3,

does a poor job of recovering the actual excess kurtosis, with too

negative values almost everywhere (Fig. S4). No similar com-

parison can be made with the three-Gaussian model because we

are using the estimated kurtosis (or, more directly, a and b) to

estimate the parameters of the three Gaussians (i.e., we have

another free parameter p0 that is unknown, and this parameter is

estimated using a and b).

For further comparison, we repeat the PDF decomposi-

tion analysis shown in Figs. 7d–f for the same SH latitudinal

bands, but for the two-Gaussian model. As can be seen,

while the fit is still good for the two-Gaussian model, the

match is clearly reduced. In all cases, the three-Gaussian

model provides a better match to the full PDF compared to

both a Gaussian distribution and the two-Gaussian model.

Specifically, the latter clearly underrepresents anomalies

around the mean, which can result in a bimodal PDF (which

is not usually found for low-level temperature). Hence, the

three-Gaussian model gives a better fit even if the raw PDF

is a unimodal distribution, allowing us to correctly capture

its non-Gaussian shape.

The discussions above for the latitudinal dependence of

the relation ~K5 aS2 1 b are focused on the SH midlatitudes

during DJF (which are primarily over ocean regions) since

the parameters a and b are estimated for all longitudinal

points in a given latitude, and these estimates are probably

more accurate over nearly zonally homogeneous regions

(such as the SH midlatitudes). Indeed, different parabolic

relationships between skewness and kurtosis (i.e., different

a and b parameters) are found for land versus ocean regions

in the NH with the same latitudinal positions and the same

zonal extent (see Fig. S5). These differences are not cap-

tured in Fig. 6, which takes all longitudinal points in a given

latitude together and fits one value for a(y) and one for b(y).

The motivation for estimating a(y) and b(y) is to produce a

spatial map of the estimated excess kurtosis using S2. Ideally,

a and b should be evaluated at the grid point level, but since

this is not possible we fit it to the longitudinally independent

coefficients. However, the fact thatK2 3 (Fig. 2b) is recovered

relatively well by ~K2 35 a(y)S2 1b(y)2 3 (Fig. 2c; see also

Fig. S2) implies that this is not such a bad approximation, and

that in fact most of the zonal structure in kurtosis is originating

from the structure of S2. Nonetheless, in section 6b we estimate

a and b locally for different regions over the globe, and in-

vestigate their three-Gaussian decompositions and projected

changes.

6. Interpreting future temperature variability changes

We next investigate the projected higher-order temperature

variability changes using an ensemble of 26 CMIP5 models

driven by the RCP8.5 emissions scenario. Specifically, we con-

centrate on the skewness and kurtosis changes (Fig. 8). The first

row shows the historical values (Figs. 8a,b), which are very

similar to the results found for the ERAI data (Figs. 2a,b), and

the second row shows the corresponding projected changes of

skewness (Fig. 8c) and kurtosis (Fig. 8d).

The model developed here can be used to better under-

stand the future temperature variability changes in two dif-

ferent ways. First, from the approximate expression for

kurtosis ~K5 aS2 1 b, we can inspect how each of the changes

in a, b, and S2 influence changes in ~K. Second, using the three-

Gaussian PDF given in (5), we can examine how each one of

the changes in pc, p0, pw, Tc, Tw, and ŝ contributes to the

overall change in the temperature PDF. This enables easier

visualization and understanding of the projected temperature

changes in different regions over the globe.

a. Decomposition of kurtosis changes

From the relation ~K5 aS2 1b, we can decompose the pro-

jected kurtosis changes in terms of changes in a, b, and S2 as

D ~K5S2Da1 aD(S2)1Db . (17)

Each of the terms in (17) can be estimated separately from

the historical and projected simulations. For simplicity, we con-

sider here only the longitudinally independent estimations a(y)

and b(y), but keep the full spatial field of skewness. The actual

projected excess kurtosis change (shown again in Fig. 9a for ease

of comparison) is captured well by the estimated projected excess

kurtosis change D( ~K2 3)5D ~K5D(aS2 1 b) (Fig. 9b), with a

relatively small difference (and a spatial correlation coefficient of

0.76), showing the largest discrepancies in the tropics.

The advantage of examining the estimated kurtosis change is

that we can now decompose it into each of the terms in (17) for

D ~K. The decomposition in Figs. 9d–f shows that the estimated

kurtosis change is dominated by the skewness squared changes,

through the term aD(S2) (Fig. 9e), while the other terms are

considerably smaller (Figs. 9d,f). Even though these are calcu-

lated for a(y) and b(y) only, it is clear from comparing Figs. 9a

and 9b that these are reasonable approximations, and that in-

deed most of the change in kurtosis originates from the changes

in the skewness squared. This implies that kurtosis changes can

be predicted to first order by the skewness squared changes:

D ~K’ aD(S2)5 2aSDS . (18)

It is easy to see from (18) that if skewness changes oppose

the historical skewness [SD(S), 0], then the kurtosis change
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will be negative, while if the skewness change reinforces

the historical skewness [SD(S) . 0] then the kurtosis

change will be positive. In other words, if the change in the

asymmetry between cold and warm anomalies increases,

then kurtosis increases too, since more of the PDF must

lie in one of the tails (and vice versa if the asymmetry

decreases).

In addition, (18) implies that the meridional advection ar-

guments used in previous studies (Garfinkel and Harnik 2017;

Linz et al. 2018; Tamarin-Brodsky et al. 2019; Linz et al. 2020;

Tamarin-Brodsky et al. 2020) to explain skewness changes can

also be used to understand kurtosis changes. For example, it

was suggested that the skewness increase projected over most

of the NH during winter (Fig. 8c) can be understood by linear

advection arguments (Tamarin-Brodsky et al. 2020), since cold

anomalies advected from the Arctic encounter a significantly

reduced background temperature gradient compared to warm

anomalies advected from the tropics (and the cold anomalies

therefore weaken more than the warm anomalies). The posi-

tive skewness change, together with the spatial structure of the

historical skewness (Fig. 8a), are enough to understand the sign

of the projected kurtosis changes (Fig. 8d); these are generally

positive where the sign of DS is the same as S, and negative

where the sign of DS is opposite to that S, as predicted

from (18).

We note however that in some regions, the contributions

from changes in a, and especially b, could be important too (as

seen from Figs. 9d,f) and could reflect changes in extremes that

do not contribute directly to an asymmetry between cold and

warm anomalies (e.g., through changes in ŝ or p0).

b. The three-Gaussian paradigm for interpreting future
temperature changes

The three-Gaussian paradigm can also be useful for

interpreting regional temperature variability and its pro-

jected changes. To show this, we examine several regions

over the globe, chosen because they represent very dis-

tinct temperature responses. The coefficients a and b in
~K5 aS2 1b can be estimated as before, but now locally for

each region of interest. This is done by aggregating S and K

over the specific grid points defining the region and over all

the 26 CMIP5 models, and finding the best linear fit between

K and S2. From these regional parameters of a and b and

from the regionally averaged values of the mean, variance,

and skewness, we then find, separately for the historical and

projected simulations, the parameters describing the three-

Gaussian model (as was done before from the SH midlati-

tudes; see section 6 in the supplemental material), namely

Tw, Tc, pw, pc, p0, and ŝ (recall that by construction T0 5 0).

This allows us to translate the problem from changes in the

higher-order temperature moments such as skewness and

kurtosis, which are generally harder to interpret, to changes

in the amplitude and frequency of cold, warm, and averaged

anomalies. The three-Gaussian paradigm also allows for a

simple visualization of the decomposition of the underlying

PDF and its projected changes.

FIG. 8. The historical (1981–99) ensemble-mean temperature skewness and kurtosis, and their projected changes

(2081–99minus historical), based on 26CMIP5RCP8.5 ensemblemembers. The 850-hPa temperature (a) skewness

and (b) kurtosis during DJF, and (c),(d) the corresponding projected changes. Regions where the skewness and

kurtosis values are statistically significant are stippled. The black boxes highlight regions of interest that are further

explored in Fig. 10.

Fig(s). 8 live 4/C
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As an example, we consider the following regions, highlighted

by the black boxes in Fig. 8: central-east North America (378–
528N, 2588–2858E), the eastern tropical Pacific cold tongue (108–
258S, 2558–2708E), the northern part of South Asia (228–338N,

608–958E), and middle South America (148–288S, 2878–3208E).
These regions have different signs of skewness and kurtosis, and

also experience different combinations of projected skewness

and kurtosis changes. For example, central-east North America

is characterized by negative skewness and excess kurtosis

and experiences a positive skewness and a negative excess

kurtosis change (Figs. 8 and 10a). The eastern tropical Pacific

cold tongue is characterized by positive skewness and excess

kurtosis and experiences a negative skewness and excess kur-

tosis change (Figs. 8 and 10b). The northern part of SouthAsia is

characterized by negative skewness but a slightly positive excess

kurtosis and experiences a negative skewness and a positive

excess kurtosis change (Figs. 8 and 10c). And finally, middle

South America is characterized by negative skewness and a

positive excess kurtosis and experiences a positive skewness

and a negative excess kurtosis change (Figs. 8 and 10d). Thus,

these regions depict very different temperature variability sig-

natures and distinct responses to climate change.

We now show how the three-Gaussian decomposition can aid

the interpretation of the temperature PDF and its projected

changes. For central-east North America (Fig. 10e) in the his-

torical simulations, we findTc5 9.4,Tw5 7, pc5 0.19, pw5 0.25,

and p0 5 0.56. Thus, the averaged magnitude of cold anomalies

Tc is larger than Tw in this region, but they occur less frequently

(i.e., pc , pw, consistent with the constraint pwTw 5 pcTc).

However, as opposed to averaged cold anomalies, the extreme

cold anomalies (in the extreme left tail of the PDFdescribing the

historical cold anomalies; blue solid line in Fig. 10e) have a

higher probability of occurrence compared to extreme warm

anomalies (in the extreme right tail of the PDF describing the

historical warm anomalies; red solid line in Fig. 10e). These

characteristics are exactly consistent with the negative skewness

found in this region in the historical simulations. In the projected

climate, the cold and warm Gaussians become of similar mag-

nitude and frequency, as cold anomalies weaken significantly

and become more frequent (Tc 5 6.7, Tw 5 6.7, pc 5 0.25, and

pw 5 0.25). The decrease of extreme cold anomalies and the

increase in frequency of average cold anomalies is also accom-

panied by a slight decrease in the frequency of the T0 Gaussian

(from p0 5 0.56 in the historical simulations to p0 5 0.51 in the

projected simulations) and a decrease in the width of the

Gaussians (from ŝ5 4:6 to ŝ5 4:2). These changes are consis-

tent with the positive skewness change DS 5 0.19 (as the asym-

metry between cold and warm anomalies decreases), negative

kurtosis change DK520.12 (less frequency of extreme events),

and the variance or standard deviation decrease Ds 520.71 (as

both cold and warm anomalies weaken).

Similarly, the PDF decomposition in the eastern tropical

Pacific cold tongue (Fig. 10f) shows how warm anomalies are

stronger but less frequent on average (Tc 5 1.4 and Tw 5 3.2

with pc 5 0.2, pw 5 0.1), while extreme warm anomalies are

more frequent than extreme cold anomalies, consistent with

the positive skewness there. In the projected climate, there

is a negative skewness change (DS 5 2 0.18) as mean cold

anomalies slightly intensify while warm anomalies slightly

weaken (Tc 5 1.6, Tw 5 3, pc 5 0.25, pw 5 0.5), so the

asymmetry decreases. In addition, the frequency of the T0

Gaussian decreases in the future climate (from p0 5 0.7 to

p0 5 0.6), and the width of the Gaussians slightly increases

(from ŝ5 1 to ŝ5 1:2), consistent with the negative kurtosis

change (DK 5 20.64) and positive variance increase (Ds 5
0.29) there. Note that even though more of the PDF lies at the

FIG. 9. Projected kurtosis change and its decomposition, based on 26 CMIP5 RCP8.5 ensemble members at the 850-hPa level during

DJF. The (a) projected excess kurtosis change D(K – 3), (b) total change in the estimated excess kurtosis D( ~K2 3)5D(aS2 1b), and

(c) their difference, and the decomposition of the approximated kurtosis change into (d) D(a)S2, (e) aD(S2), and (f) D(b). Here the

longitudinally independent estimations a(y) and b(y) are used, while for skewness the full S(x, y) field is used.

Fig(s). 9 live 4/C
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extreme end in the projected climate, the kurtosis change is

overall negative due to the strong decrease in p0.

In the northern part of South Asia (Fig. 10g), there is a

negative skewness in the historical simulations (Tc 5 5.2, Tw 5
3.0, and pc 5 0.09, pw 5 0.17). In the projected climate, the

means of both cold and warm anomalies intensify (but cold

anomalies slightly more) and become less frequent (Tc 5 5.8,

Tw5 3.8, and pc5 0.09, pw5 0.13), consistent with the negative

skewness change (DS 5 20.09). In addition, the frequency of

the T0 Gaussian increases in the future climate (from p0 5 0.72

to p0 5 0.77) and the width of the Gaussians decreases (from

ŝ5 2:4 to ŝ5 2:0), consistent with the positive kurtosis change

(DK5 0.31) and negative variance change (Ds520.16). Even

though the mean intensities of both cold and warm anomalies

intensify, not much overall change is found in the extremes of

the PDF since the width of the Gaussians decreases.

Finally, in middle South America (Fig. 10h), the negative skew-

ness (Tc5 3.7,Tw5 2.7,pc5 0.06,pw5 0.09) becomes less negative

(DS 5 0.16) as mean cold anomalies slightly weaken and mean

warmanomalies intensify (Tc5 3.5,Tw5 3.3, pc5 0.07,pw5 0.07),

so the asymmetry decreases. In addition, the frequency of the

T0 Gaussian slightly decreases (from p05 0.84 to p05 0.8), and the

widthof theGaussians slightly increases (from ŝ5 1:6 to ŝ5 1:78),

consistent with the negative kurtosis change (DK520.19) and the

small variance increase (Ds 5 0.16) found in this region.

The advantage of the three-Gaussian paradigm is that it allows

for a clear visualization of the PDF and its projected changes in

terms of the changes in the cold, near-zero, and warm anomalies,

separately. Such changes in the frequency and magnitude of cold

and warm anomalies are generally easier to interpret and com-

municate than changes in skewness and kurtosis.

7. Summary and discussion

In this work, a simplemodel based onHughes et al. (2010) and

David et al. (2017) is used to capture the essence of atmospheric

temperature variability and its projected changes, including the

higher-order moments (which are often ignored). In this model,

the temperature PDF is represented by three Gaussians, rep-

resenting the cold, near-zero, andwarmanomalies. The cold and

warm Gaussians represent the larger temperature fluctuations

associated with synoptic-scale weather systems, while the near-

zero Gaussian represents small deviations from the mean

temperature. The three-Gaussian model captures the observed

relationship between kurtosis and skewness squared. Moreover,

the coefficients of the relation ~K5 aS2 1 b can be estimated

directly from data. From a, b, and the first three moments de-

scribing the temperature PDF, the parameters describing the

three Gaussians can be found. This allows for a simpler visual-

ization and interpretation of the PDF in different regions.

A number of models with increasing complexity were pre-

sented. First was the simple two-state Bernoulli distribution,

which assumes that anomalies can have a fixed amplitude of either

Tw or Tc. The Bernoulli distribution is helpful for capturing the

observed skewness structure (Tamarin-Brodsky et al. 2020) but

fails to correctly capture the temperature kurtosis. Physically, this

is because none of the distribution is assumed to lie around the

mean, and also because the localization of the signal aroundTc,Tw

FIG. 10. Examples of the three-Gaussian decomposition of temperature PDF and its projected changes for different regions over the

globe. (a)–(d) The historical (solid) and projected (dashed) raw temperature PDF at (a) central-east North America, (b) the eastern

tropical Pacific cold tongue, (c) the northern part of South Asia, and (d) middle South America, based on 26 CMIP5 RCP8.5 ensemble

members at the 850-hPa level during DJF. The associated region-averaged standard deviation, skewness, and kurtosis changes are de-

notedDs,DS, andDK, respectively, and shown in the upper-left corner of each panel. (e)–(h) The approximated PDFs based on the three-

Gaussian model for the same regions, respectively. The thin solid (dashed) blue, green, and red lines are the historical (projected)

Gaussians representing the cold, near-zero, and warm anomalies, respectively. The sum of the three Gaussians for the historical (pro-

jected) simulations is shown by the black solid (dashed) line in each panel, which roughly recovers the shape of the corresponding raw

PDF. The parameters used for finding the three Gaussians are derived from the mean, variance, skewness, a, and b, calculated for each

region of interest separately (see section 6 in the online supplemental material for more details).

Fig(s). 10 live 4/C
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makes the tails short compared to a Gaussian (hence it always

gives negative excess kurtosis). Nonetheless, its simplicity [Eqs.

(2) and (3)] is helpful and can be useful for studying temperature

skewness and variance in different applications (e.g., Tamarin-

Brodsky et al. 2020). A slightly more complex model (referred

to here as themodified three-parameter Bernoulli distribution)

also includes the mean value T0, which gives more realistic

excess kurtosis values because it now also accounts for the

weight of the distribution around the mean. Finally, the modified

three-parameter Bernoulli distribution was extended to include

noise by allowing theTc,T0, andTw anomalies to fluctuate around

their means. This is a much more physically realistic model, re-

ferred to here as the three-Gaussian model, which recovers by

construction not just the first three moments of the temperature

PDF, but also the observed relationship between kurtosis and

skewness squared (and thus also recovers the approximated kur-

tosis by construction). The Gaussians allow the tails of the distri-

butions to be captured as well, and thus kurtosis can also be

accounted for. While the simpler two-Gaussian model of Hughes

et al. (2010) also predicts a squared relationship between kurtosis

and skewness, it is shownhere that it underrepresents kurtosis (and

therefore does notmatch the actual PDFs as well) since it does not

account for the weight of the distribution around the mean.

The three-Gaussian model is also found to be helpful for

gaining a better understanding of future temperature variability

changes. It is shown that kurtosis changes are mainly dominated

by skewness squared changes, which implies that we can un-

derstand most of the projected 850-hPa kurtosis changes during

winter by simple meridional advection arguments (as these

dominate skewness changes). In addition, we show how the

three-Gaussian model can be helpful for gaining a simpler inter-

pretation of future temperature variability changes. Specifically, it

translates changes in skewness and kurtosis, which are less intui-

tive, to changes in the averagedmagnitude and frequency of cold,

near-zero, and warm anomalies relative to the shifted mean,

which can be more easily visualized and communicated.

The relation to extremes can be understood as in the fol-

lowing example. In a region with a positively skewed temper-

ature PDF, the three-Gaussian decomposition shows that the

mean warm anomalies have a greater magnitude, but occur less

frequently than the mean cold anomalies (e.g., Fig. 7f).

Nonetheless, because the warm Gaussian is centered around a

larger mean value, the warm extremes (at the far right tail of

the warmGaussian) will have a higher likelihood than extreme

cold anomalies. In other words, in such a positively skewed

region, the mean warm anomalies are stronger and less fre-

quent than the mean cold anomalies, but extreme warm

anomalies are both more intense and more frequent.

Similarly, we can consider the future changes in temperature

extremes relative to the new mean. For example, if the new

mean warm state becomes of greater magnitude but is less fre-

quent than the new mean cold state, the warm extremes could

nevertheless becomemore frequent. Such a regionwill therefore

exhibit a positive skewness change (e.g., middle South America;

Fig. 10h). This highlights that the response of the mean warm

and cold anomalies can be different from the response of the

extremes, and thus care should be takenwhen considering future

changes in warm and cold temperature anomalies.

The model presented here is arguably a good compromise

between simplicity and accuracy of representation of the full

PDF. It could be made more accurate by allowing the width of

the Gaussians to differ between cold, near-zero, and warm

anomalies, which would involve more complex mathematical

expressions, but could improve the results in terms of recov-

ering the correct PDF shape. While motivated by physical con-

siderations, the simplifying choice T0 5 0 (i.e., that one of the

Gaussians is centered around the mean) is another potential

limitation of the model, as it forces the equality pwTw 5 pcTc,

which clearly dominates the PDF and its future changes (e.g., it

predicts a frequency increase of mean cold anomalies relative to

meanwarm anomalies in regions whereTc/Tw decreases, such as

central-east North America; Fig. 10e). Nonetheless, the re-

markable fit between the idealized and raw PDFs (e.g., in Fig. 7

or Fig. 10), as well as the good agreement between the simulated

and predicted changes in kurtosis, provides confidence that these

are reasonable simplifications. The introduction of additional

degrees of freedom would require identifying additional con-

straints, increasing the danger of overfitting.

Note that some sensitivity to the exact a and b parameters

derived from the K versus S2 scatterplots was found (in some

regions, the a andbparameters did not give reasonable results and

were therefore discarded). Hence, the exact parameters describ-

ing the three Gaussians in each region (i.e., Tw, Tc, pw, pc, p0, and

ŝ) should be taken more qualitatively rather than quantitatively.

Adding more data points (e.g., by using ensembles of GCM

simulations) could improve the estimated a and b, fromwhich the

projected changes in the Gaussians can be derived more accu-

rately. Note also that our results concentrated on DJF, but the

three-Gaussian decomposition should also work in other seasons

(e.g., June–August) as it does not rely on any special assumptions.

As shown in this work, the third and fourth temperature

variability moments (i.e., skewness and kurtosis) are crucial for

gaining a complete picture of the underlying PDF. Similarly,

the higher-order temperature variability changes must be taken

into account for correctly capturing the projected changes in

extremes. Future work should further illustrate the role of dif-

ferent processes, such as advection and regional surface feed-

backs, in generating these important temperature skewness and

kurtosis changes, from which changes in the magnitude and

frequency of temperature anomalies can be understood.
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