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EXISTENCE AND UNIQUENESS FOR VARIATIONAL DATA

ASSIMILATION IN CONTINUOUS TIME

JOCHEN BRÖCKER

Abstract. A variant of the optimal control problem is considered which is
nonstandard in that the performance index contains “stochastic” integrals,

that is, integrals against very irregular functions. The motivation for con-

sidering such performance indices comes from dynamical estimation problems
where observed time series need to be “fitted” with trajectories of dynamical

models. The observations may be contaminated with white noise, which gives

rise to the nonstandard performance indices. Problems of this kind appear
in engineering, physics, and the geosciences where this is referred to as data

assimilation. The fact that typical models in the geosciences do not satisfy

linear growth nor monotonicity conditions represents an additional difficulty.
Pathwise existence of minimisers is obtained, along with a maximum princi-

ple as well as preliminary results in dynamic programming. The results also

extend previous work on the maximum aposteriori estimator of trajectories of
diffusion processes.

1. Introduction and main results

In many branches of science, particularly in physics, the geosciences, and engi-
neering, there appears the problem of “fitting” observed time series with trajectories
of dynamical models; typically these are ordinary or partial differential equations.
The aim might be to identify appropriate models or to estimate model parame-
ters, but there is also considerable interest in the estimated trajectories themselves.
These problems are the main motivation for the results in this paper. In the geo-
sciences, these and related problems are referred to as data assimilation, and we
will use this term here, although there has been relevant research in other commu-
nities which often predates research in the geosciences. We refer to [3, 18, 10, 4]
and references therein for an overview over data assimilation from a geoscientist’s
perspective; [9, 15, 16] discuss similar problems in engineering; [13] contains many
examples of data assimilation problems in biology and other applied sciences.

In the geosciences, the construction of plausible model trajectories which also fit
the observational record is particularly important, for at least two reasons. Firstly,
trajectories of atmospheric models that fit observations over a long temporal win-
dow might hold clues about past weather phenomena which were not directly ob-
served. Examples are large and almost stationary pressure systems over the oceans
which lead to very persistent weather patterns over the continents (blocking events)
but which are not captured by historic instrumentation and thus appear only indi-
rectly in historic weather records. Secondly, the endpoint of such fitted trajectories
might be interpreted as a good guess of the then current state of the atmosphere
and hence can be used as initial condition for predictions into the future.

In the context of data assimilation, “fitting” can mean different things but often
it involves the optimisation of some sort of error criterion or performance index,
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integrated over time, in which case data assimilation essentially becomes a vari-
ational problem. If the observations are considered as a stochastic process, the
performance index and also the fitted solutions might have a probabilistic interpre-
tation. At the same time though, observations which contain white noise give rise,
as we will see, to nonstandard variational problems, because the performance index
will then contain an integral against a very irregular function.

To define the class of problems we want to investigate, we consider an interval
I = [0, T ] with T > 0 and a finite dimensional vector space E with norm |.| and
dual E′. Let f : I × E → E, g : I × E → L(E,E) be two functions and consider
the controlled initial value problem or state equation

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), t ∈ I, (1)

with initial condition ξ ∈ E and control function u : I → E. The function f
typically represents the physically relevant part of the model while g might be
needed to scale the control; in geophysical applications, g is often the unit matrix.
A process with respect to ξ is a pair (x, u) so that u : I → E is measurable,
x : I → E is absolutely continuous, x(0) = ξ, and the state equation (1) is satisfied
for almost every t ∈ I.

We aim to find controls u that strike a balance between two different aims. On the
one hand, u should not be “too large”, in order that the second term g(t, x(t))u(t)
is not “too large”, whence we get that x is not “too far” from being a solution of
the physically relevant part of the model, that is approximately

ẋ(t) ∼= f(t, x(t)), t ∈ I.

But on the other hand, we want x to reproduce the observations, in the following
sense: for some mapping h : I ×E → Rd (which is part of the problem statement),
we aim to find controls u so that h(t, x(t)) is not “too far” from the observation y(t)
for all t ∈ I. The observations are given and thus part of the problem statement,
too. This problem might be approached by optimising an appropriate performance
index with respect to the control which takes these two aims into account.

In this paper, we assume the observations to contain a white noise component,
implying that referring to the observations as a function y of time is only to be un-
derstood heuristically. Any rigorous analysis will have to be based on the cumulative
observations, defined as follows. Let {W (t), t ∈ I} be the standard d–dimensional
Wiener process on some probability space (Ω,B,P). We can assume without loss
of generality that Ω = C(I,Rd), the space of continuous functions on I with values
in Rd, B the Borel sigma algebra generated by the supremum norm topology, P
the standard d–dimensional Wiener measure,and W : Ω× I → Rd;W (t, ω) = ω(t).

Again heuristically, we define our observations as y(t) = ζ̇(t) + r(t) where ζ̇, the
desired signal, is Lebesgue integrable and r is white noise. In our analysis though
we will work with the process η(t) = ζ(t) +W (t) for all t ∈ I, where ζ is a (proba-
bly random) absolutely continuous function. Formally, η can be considered as the

observations in “integrated form”, that is η(t) =“
∫ t
0
y(t) ds”. We stress however

that this connection is really only formal as η will not have a classical derivative
due to the presence of the Wiener process.

In terms of performance indices, quadratic functionals of the form

1

2

∫
I

{
y(t)− h(t, x(t))

}T
R(t)

{
y(t)− h(t, x(t))

}
dt

might be considered. This form is fine if the function y has the appropriate integra-
bility properties (see e.g. [11] for such a case) but is not well defined if y contains
white noise components, as is the case here. Expanding the square however, ommit-
ting the term quadratic in y (which even if it were well defined could be ommitted
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as it does not depend on x or u) and formally replacing with y(t)dt = dη(t) we
obtain

1

2

∫
I

h(t, x(t))TR(t)h(t, x(t)) dt

−
∫
I

h(t, x(t))TR(t) dη(t) +
1

2

∫
I

u(t)TS(t)u(t) dt.

(2)

Here, R and S are suitable functions with values in the nonnegative definite ma-
trices. The approach is then called weakly constrained 4–dimensional variational
assimilation (4D–VAR) in the geosciences, see [3, 18, 10, 4]; this is not an exhaustive
list of references, and most authors use a discrete time framework. In the engineer-
ing community, the approach is known as minimum energy estimator [12, 8, 11], see
also [14]. The approach has been interpreted as maximum aposteriori (MAP) esti-
mation of diffusion trajectories (see e.g. [9]), but this cannot be justified rigorously.
The correct interpretation of the functional (2) in terms of large deviations has been
given by [8]. In [20, 21], it was shown that the MAP estimator is correctly defined
as a minimiser of the Onsager–Machlup functional, which comprises a functional
similar to (2) but with further terms added.

The performance indices we will consider in this paper encompass the minimum
energy functional as well as the Onsager–Machlup functional (as in [21]); given two
functions φ : I×E×E → R and ψ : I×E → L(Rd,R), consider the cost functional

A(x, u) =

∫
I

φ(t, x(t), u(t)) dt+

∫
I

ψ(t, x(t)) dη(t) (3)

with any process (x, u) so that t → φ(t, x(t), u(t)) is integrable and t → ψ(t, x(t))
has finite p-variation for some p < 2 (this ensures that the second integral in (3) is
defined as a Young integral, as we will see later). The functions φ and ψ will be
called the deterministic and the stochastic running costs, respectively, and the first
and second integral in the cost functional (3) we will call the deterministic and the
stochastic costs, respectively.

We will properly define the p–variation and the Young integral in Section 2 and
summarise a few properties central to our analysis in Lemmas 2-5. In particular, we
obtain that for any given observation path η, the integral

∫
I
ψ(t, x(t)) dη(t) is well

defined and finite whenever x is a solution of the state equation (1). In particular,
attempts to calculate this integral using Stratonovič or Itô style partitions will give
the same result. In view of this, we can forget about the stochastic character of the
observations and instead approach data assimilation pathwise for each realisation
of the observations.

We also stress that the control u is not required to be non–anticipating. The
stochastic costs (i.e. the second term in Eqn.3) are well defined nonetheless, as we
will see.

The final ingredient we add to our problem is a control set U ⊂ E, interpreted as
the set of permitted values for our control function u. A control function u : I → E
will be called feasible with respect to ξ (the initial condition for x) if u is measurable,
u(t) ∈ U for almost all t ∈ I and there is a function x so that (x, u) is a process with
respect to ξ. In this case, the pair (x, u) will be called a feasible process with respect
to ξ. A feasible process (x, u) with respect to ξ will be called an admissible process
with respect to ξ if it has finite costs; a control u which is part of an admissible
process will be called an admissible control with respect to ξ. The qualifier “with
respect to ξ” might be omitted if clear from the context.

We are now ready to formulate our problem statement:
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Problem (Variational Data Assimilation—VAR). Minimise the cost functional

A(x, u) =

∫
I

φ(t, x(t), u(t)) dt+

∫
I

ψ(t, x(t)) dη(t)

subject to

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t) for a.a. t ∈ I (4)

u(t) ∈ U for a.a. t ∈ I (5)

x(0) = ξ, (6)

that is, over all admissible processes with respect to ξ.

The remainder of this section will be devoted to presenting our main hypotheses
and results. (In special cases, it is possible to obtain part of these results using
standard methods of optimal control, albeit under substantially stronger conditions
that preclude important applications in the geosciences; see the end of the present
section for more details.) For functions on I, we use the norms

‖u‖r :=

(∫
I

|u(s)|r ds

)1/r

and ‖u‖∞ := sup
s∈I
|u(s)|

For r > 1, we define Ur as the set of all measurable control functions u : I → E
with u(t) ∈ U almost surely and ‖u‖r <∞.

Hypothesis 1. (a) f, g are continuous.
(b) For all R ≥ 0 the stochastic running costs ψ are Hölder on I×{x ∈ E; |x| ≤

R} with constant KR and exponent κ > 1
2 . Further

KR ≤ Cψ(1 +Rα) (7)

for some nonegative constants Cψ, α.
(c) U is closed and convex.
(d) The deterministic running costs φ are continuous on I ×E × U , convex in

u and satisfies a lower bound of the form φ(t, x, u) ≥ Cφ(|u|r − |x|δ) for
constants Cφ > 0, δ > 0 and r > 1.

(e) There exists ξ ∈ E and nonegative constants Cs, Ce, β, γ so that for any
control u ∈ Ur and any local solution x for the state equation (1) with
control u and initial condition ξ we have

‖ẋ‖r ≤ Cs(1 + ‖u‖βr ) (8)

‖x‖∞ ≤ Ce(1 + ‖u‖γr ). (9)

Further, γ(α+ κ− 1
2 ) + β

2 < r, and γδ < r.

Hypothesis 1(b) represents growth and regularity conditions on the stochastic
costs; the estimate (8) quantifies the nonlinearity in the state equation, while esti-
mate (9) might represent an energy estimate. By local solution in Hypothesis 1(e)
we mean that x is a solution of the state equation (1) but possibly only over a
smaller interval [0, T1] with T1 ≤ T . Note that we can assume without loss of
generality that γ ≤ β, since the estimate (8) always implies an energy estimate (9)
with γ = β. We stress that these conditions might be satisfied even if f fails to
exhibit linear growth. To illustrate this, we present a simple

Example (Lorenz’63 system). This example belongs to a wider class of problems,
to be discussed in Section 6 and motivated by data assimilation in geophysical fluid
dynamics, in which the state equation has a characterisic quadratic nonlinearity, so
β = 2, but γ = 1 due to energy conservation, and this will turn out to be crucial.
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Our example is the Lorenz’63 system in the form given in [17]. The vector field has
the form f = f1 + f2, where

f1(x, y, z) =

 −σx+ σy
−σx− y

−bz − b(r + σ)

 ,

f2(x, y, z) =

 0
−xz
xy

 ,

(10)

with σ, r, b positive parameters (see [17] for their interpretation). Typical values
for these parameters are σ = 10, r = 28, and b = 8/3. Note that f2 is quadratic
while f1 is linear and stable. We complement this by setting g = 1 and putting
no further constraints on the control, that is we set U = R3. Further, we consider
a cost functional of the form (2) with h(x, y, z) = x,R = 1, and S = 1 so that
φ(x, y, z, u) = 1

2x
2 + 1

2u
2 and ψ(x, y, z) = −x. With regards to Hypothesis 1, only

item (e) is not obvious. However, since (x, y, z)tf2(x, y, z) = 0 and f1 is stable, the
energy estimate (9) in Hypothesis 1(e) follows with γ = 1 from an application of the
Bellmann–Grönwall Lemma (see [17] and Sec. 6 for more details). Using this bound
on ‖x‖∞ directly in the state equation, we obtain the nonlinearity estimate (8) in
Hypothesis 1(e) with β = 2, due to f being quadratic in leading order, finishing
the discussion of this Example.

As another note on Hypothesis 1, it might seem at first sight that Hypothesis 1(b)
as well as the lower bound on r in Hypothesis 1(e) both become less restrictive for
smaller κ. It has to be kept in mind though that a smaller Hölder exponent κ in
general implies a larger Hölder constant KR and, in our context, a larger α in the
estimate (7).

Our first result ensures that under Hypothesis 1, Problem VAR is well defined.

Lemma 1. Under Hypothesis 1, the following holds:

(a) For any u ∈ Ur, the state equation has a (not necessarily unique) solution
x with x(0) = ξ.

(b) If (x, u) is feasible, the stochastic part of the cost functional is well defined
and finite.

(c) If (x, u) is feasible, the function t → φ(t, x(t), u(t)) is measurable and
bounded below by an integrable function; hence the deterministic costs are
well defined as an element of R ∪ {∞}.

(d) If (x, u) is admissible, then ‖u‖r <∞.

In view of Lemma 1(a), every element u ∈ Ur is feasible with respect to ξ,
and by item (d), every admissible u must lie in Ur. By items (b, c), a feasible
process is admissible if and only if the deterministic costs are finite. In particular,
admissibility does not depend on the particular observation path. The following is
our main existence result:

Theorem 1. Suppose that Hypothesis 1 is in force and that there is an admissible
process (x0, u0) with repect to ξ specified in Hypothesis 1. Then for any observation
path {ηt, t ∈ I}, Problem VAR admits a solution (x∗, u∗). Further, ‖u∗‖r <∞.

Both Lemma 1 and Theorem 1 will be proved in Section 2.
In Section 3, we will prove a Maximum Principle (Thm. 2). For the Maximum

Principle, we need to strengthen our Hypothesis. (In the following, partial deriva-
tives with respect to the k’th argument will be written as Dk, so D2φ for instance
is the partial derivative of φ with respect to the second argument. Further, R≥0
denotes the nonnegative real numbers.)
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Hypothesis 2. Hypothesis 1 and

(a) f, g have continuous partial derivatives with respect to the second argument.
(b) φ has a continuous partial derivative with respect to the second argument.
(c) There exists constants R > 0, c ≥ 0 and an integrable function d : I → R≥0

so that whenever (x, u) is an admissible process and |y − x(t)| ≤ R, then
|D2φ(t, y, u(t))| ≤ c|φ(t, y, u(t))|+ d(t) almost surely.

(d) ψ has a partial derivative with respect to the second variable which is locally
Hölder in (t, x) with exponent larger than 1

2 .

Theorem 2 (Maximum Principle). Assume Hypothesis 2 (including Hypothesis 1
for a certain r > 1), and fix an initial condition ξ as well as an observation η. For
these data, let (x, u) be a global minimiser for Problem VAR. Then for almost all
t ∈ I the control u satisfies the condition

H(t, x(t), λ(t), u(t)) = inf
v∈U

H(t, x(t), λ(t), v) (11)

where the function λ : I → E′ is the unique solution to the integral equation

λ(t) =

∫ T

t

λ(s)
{

D2f(s, x(s)) + D2g(s, x(s))u(s)
}

ds

+

∫ T

t

D2φ(s, x(s), u(s)) ds+

∫ T

t

D2ψ(s, x(s)) dηs (12)

and H : I × E × E′ × U → R is defined through

H(t, x, λ, v) := φ(t, x, λ, v) + λ
(
f(t, x) + g(t, x)v

)
The function λ is referred to as the costate, and E′ denotes the dual space of E.

The third integral in Equation (12) is to be interpreted as the element of E′ given
by the linear function

E → R; z →
∫ T

t

D2ψ(s, x(s))z dηs.

If (x, u) is an optimal pair for problem VAR with respect to initial condition ξ and
if λ is a corresponding costate (in the sense of Thm. 2), then we will refer to (x, u, λ)
as an optimal triple with respect to initial condition ξ.

Note that Hypothesis 2(a) implies uniqueness to solutions of the state equation.
The condition (c) in Hypothesis 2 ensures that the second integral in the definition
of λ is well defined. In fact, for the Maximum Principle it would be sufficient to
know that this condition holds along optimal processes (x, u).

In Sections 4 and 5, two applications of the Maximum Principle will be discussed.
A precise formulation of the results will be given in those sections. The first result,
Theorem 3, shows that under the conditions of the Maximum Principle and if
φ(t, x, u) is strongly convex in u, an optimal control has finite p–variation for any
p > 2. It turns out that the regularity of the controls is limited by the regularity
of the observations, which cannot be improved beyond p–variation with p > 2.
In particular, we do not expect optimal controls to be Lipschitz in general, as is
typically the case in classical optimal control problems.

The second application (in Sec. 5) concerns the value function and its relation to
uniqueness of optimal controls. The costs of any feasible control can be regarded
as a function J(ξ, u) on E × Ur, and the value function is defined as

V (ξ) = inf
u∈Ur

J(ξ, u)

Theorem 5 then shows that (under suitable conditions) an optimal control u is
unique for Problem VAR if and only if the value function has a derivative at ξ.
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Finally, section 6 discusses an application to a typical problem in geophysical
data assimilation. For this example, both a minimum energy cost function (known
as weakly constrained 4d-VAR costfunction in the atmospheric sciences) as well as
an Onsager–Machlup type cost function will be considered. For the latter case,
we obtain the existence of minimisers under substantially weaker assumptions than
in [21].

As has been mentioned already, special cases of Problem VAR can be approached
using classical methods of optimal control, although stronger conditions are required
in order to obtain results comparable to those presented here. Under Hypothesis 1
and if ψ has a continuous derivative with respect to (t, x), the stochastic costs can
be integrated by parts and one obtains a standard control problem with running
costs given by

φ̃(t, x, u) = φ(t, x, u)

−
{

D1ψ(t, x) + D2ψ(t, x) (f(t, x) + g(t, x)u)
}
η(t).

(13)

This approach has been taken in [21, 22]. But in addition to the existence of

the derivatives of ψ, some coercivity property of φ̃ is required to obtain weakly
compact level sets, and even if Hypothesis 1(d) is imposed, further assumptions
such as linear growth of f are needed to make sure that for large u, the second
term in Equation (13) does not override the first one. The approach presented here
however does not require linear growth of f , which is in fact not present in typical
geophysical models (Lorenz’63 being an example; see Sec. 6 for further discussion).
Our approach instead relies on a more careful analysis of the stochastic costs, using
the theory of p–variation and Young integrals.

2. Proof of existence result

Before proving Lemma 1 and the existence result Theorem 1, we will discuss the
notions of p–variation and Young integrals. We will not give proofs as these are
standard facts or easy modifications thereof, and references will be provided below.

Definition 1. Let I ⊂ R be an interval and V,W be finite dimensional vector
spaces, with |.| denoting a generic norm.

(a) Let x ∈ C(I, V ) and p ≥ 1. Then the p–variation of x is defined as

[x]p :=

(
sup

∑
i

|x(ti+1)− x(ti)|p
)1/p

where the sup is taken over all finite dissections D = {0 = t0 < t1 < . . . <
tn = T} of I.

(b) Let x ∈ C(I, L(V,W )) and y ∈ C(I, V ). The Young integral of x against y
is given by ∫

I

x(s) dy(s) := lim
∑
i

x(τi)(y(ti+1)− y(ti))

where the sum runs over a finite dissection of I and τi ∈ [ti, ti+1] for all
i, and the limit is with respect to the resolution |D| := supi|ti+1 − ti| of
the dissections going to zero. It is required that the existence of the limit
and its value does not dependent on the choice of the dissections nor on the
precise placement of the τi.

Lemma 2. Let x ∈ C(I, L(V,W )) and y ∈ C(I, V ), and suppose there are p, q ≥ 1
with θ := 1

p + 1
q > 1 and so that both [x]p and [y]q are finite. Then
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(a) the Young integral of x against y exists and

|
∫
I

x(s) dy(s)− x(0)(y(T )− y(0))| ≤ 1

1− 21−θ
[x]p [y]q ,

(b) the Young integral permits integration by parts:∫
I

x(s) dy(s) = x(T )y(T )− x(0)y(0)−
∫
I

y(s) dx(s).

For the first and second part of this Lemma, see [7], Theorem 6.8 and Exer-
cise 6.14, respectively. In order to make sense of the integration by parts formula,
we note that every element y of V gives rise to a linear mapping ŷ : L(V,W ) →
W,A→ Ay, and the integral on the right hand side of the integration by parts for-
mula is to be understood as

∫
I
ŷ(s) dx(s). With slight abuse of notation however,

we will continue to write y instead of ŷ.

Lemma 3. Let x ∈ C(I, L(V,W )) and y ∈ C(I, V )

(a) Suppose y is absolutely continuous, then [y]p ≤ ‖ẏ‖1 for all p ≥ 1.

(b) If p > q, then [y]p ≤ [y]q.

(c) (Interpolation inequality) If p > q, then

[y]p ≤
(

[y]q

) q
p

(
sup
t,s∈I
|y(t)− y(s)|

)1− qp
.

(d) (Product rule)

[xy]p ≤ [x]p ‖y‖∞ + [y]p ‖x‖∞
(e) (Chain rule) Suppose that the function ψ : I×V →W is Hölder on I×{x ∈

V ; |x| ≤ ‖y‖∞} with exponent κ and constant K, and that κp ≥ 1, then

[ψ(., y(.))]p ≤ K([y]
κ
κp + |I|κ)

The first item follows directly from the definition of p–variation; for a proof of
items (b,c), see [7], Proposition 5.3, Proposition 5.5, respectively; items (d,e) are
easy consequences of the definition of p–variation.

Lemma 4. Let y ∈ C(I, V ) and xn in C(I, L(V,W )) for all n ∈ N, with supn [xn]p
as well as [y]q being finite and 1

p + 1
q > 1. Then xn → x uniformly implies∫ t

0

xn(s) dy(s)→
∫ t

0

x(s) dy(s)

uniformly as a function of the upper limit t.

This is a consequence of Proposition 6.13 in [7].

Lemma 5. For any p > 2, the p–variation of the observations [η]p is a measurable
and almost surely finite random variable.

Proof. We are assuming η = ζ + W , and since ζ is absolutely continuous, it has
finite variation of any order by Lemma 3(a). It is well known that almost any path
of the Wiener process is 1

p–Hölder for any p > 2 on compact intervals, which implies

finite p–variation for p > 2. It follows directly from the definition and Minkowski’s
inequality that p–variation is subadditive, hence [η]p is almost surely finite. �

In view of Lemma 5, we can find a set Ω0 ⊂ Ω with P(Ω0) = 1 so that whenever
ω ∈ Ω0, we have [η]p < ∞ for any p > 2. Without loss of generality, we will
henceforth assume Ω = Ω0. In other words, we can simply assume the observations
to be a continuous function η having finite p-variation for any p > 2. This allows us
to forget about the stochastic character of the observations and instead approach
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data assimilation pathwise for each realisation of the observations. In particular, we
obtain from Lemma 2 that for any given observation path, the integral

∫
I
y(t) dη(t)

is well defined and finite for all functions y which have finite p-variation with p < 2.

Proof of Lemma 1. Item (a) is a basic result in the theory of ODE’s. To prove
item (b) use the remark made just prior to this proof and the fact that t→ ψ(t, x(t))
has bounded 1

κ–variation with κ < 1
2 (as we will show in the proof of Theorem 1).

Item (c) follows from Hypothesis 1(d), the fact that x is continuous and hence
bounded on I, and the fact that a continuous function of measurable functions is
measurable. Item (d) follows because if (x, u) is feasible with ‖u‖r =∞, the lower
bound on φ in Hypothesis 1(d) yields that the deterministic costs are infinite. �

The following Lemma will be essential in the proof of Theorem 1, ensuring the
coercivity of the stochastic costs:

Lemma 6. Suppose that there are nonegative constants r, q, γ1, γ2, C1, C2 with r ≥
1 and 1 ≤ q < 2 so that for any feasible process (x, u) we have

‖ψ(., x(.))‖∞ ≤ C1(1 + ‖u‖γ1r ) (14)

[ψ(., x(.))]q ≤ C2(1 + ‖u‖γ2r ). (15)

If we let

θ1 := min{γ1(1− q

2
) + γ2

q

2
, γ2}

θ2 := max{γ1(1− q

2
) + γ2

q

2
, γ2}

then for any θ with θ1 < θ < θ2 there is a random variable Dθ ≥ 0 depending on θ
and the observations η only so that

|
∫
I

ψ(t, x(t)) dηt| ≤ Dθ

(
1 + ‖u‖θr

)
.

Proof. Fix a θ as stated and set τ so that θ = γ1(1 − τ) + γ2τ . Then q
2 < τ < 1,

and if we define p = q
τ , we obtain q < p < 2, so we can assume that p = 2

1+2ε for

some ε > 0. Put p̂ = 2
1−ε > 2 and observe that 1

p̂ + 1
p = 1−ε

2 + 1+2ε
2 = 1 + ε > 1. In

view of Lemma 5, we can invoke Lemma 2 for [ψ(., x(.))]p and [η]p̂ which gives that

|
∫
I

ψ(t, x(t)) dηt| ≤ Cp
(

1 + [ψ(., x(.))]p

)
for some random variable Cp which depends on the observations η and also on the
choice of p. Next, the interpolation inequality (Lemma 3.c) yields

|
∫
I

ψ(t, x(t)) dηt| ≤ Cp
(

1 + [ψ(., x(.))]
q
p
q ‖ψ(., x(.))‖1−

q
p

∞

)
.

Now use that p = q
τ as well as the estimates (14,15) to complete the proof. �

Note that bounds on the stochastic costs could also be obtained through inte-
gration by parts, as already mentioned in the introduction. This requires ψ to have
a derivative with respect to x to begin with, but even if this derivative is bounded,
then under the assumed conditions the stochastic term is bounded by the nonlin-
earity estimate (8), which can be much worse than the estimates given by Lemma 6.
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let (xn, un), n = 0, 1, . . . be a minimising sequence with ‖un‖r <
∞ for all n and (x0, u0) being the admissible process which exists by assumption.
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We know that the costs A(xn, un) are bounded above (by A(x0, u0) < ∞). Hy-
pothesis 1.(d) implies that for any process

A(x, u) ≥ Cφ
∫
I

(
|u(t)|r − |x(t)|δ

)
dt+

∫
I

ψ(t, x(t)) dηt, (16)

and using the energy estimate (9) and taking into account that γδ < r (Hyp. 1,(e)),
we obtain for the first integral∫

I

(
|u(t)|r − |x(t)|δ

)
dt ≥ C‖u(t)‖r − b (17)

for some C > 0 and b ∈ R.
We aim to control the second integral in Equation (16) using Lemma 6 with

q = 1/κ. By Hypothesis 1,(b) and the chain rule in Lemma 3 we obtain

[ψ(., x(.))]q ≤ K‖x‖∞C
′(1 + [x]

κ
1 )

for some constant C ′. Invoking Lemma 3,(a) as well as the estimates (7,8,9) we
obtain

[ψ(., x(.))]q ≤ C
′′(1 + ‖u‖βκ+γαr ). (18)

Again by Hypothesis 1,(b) and the estimate (7) we get

‖ψ(., x(.))‖∞ ≤ C ′′′(1 + ‖x‖κ+α∞ ),

and invoking the energy estimate (9) once again this becomes

‖ψ(., x(.))‖∞ ≤ C ′′′′(1 + ‖u‖γ(κ+α)r ). (19)

In equations (18,19), we can use Lemma 6 with q := 1/κ, γ1 := γ(κ + α) and

γ2 := βκ + γα. We obtain θ1 = γ(α + κ − 1
2 ) + β

2 and θ2 = βκ + γα (note that
indeed θ1 ≤ θ2 because γ ≤ β as discussed just after Hypothesis 1). Now according
to the lower bound on r in Hypothesis 1,(e), we can find θ so that θ1 < θ = r − ε
for some ε > 0 and therefore by Lemma 6 there exists a constant D only depending
on r − ε and the observations so that

|
∫
I

ψ(t, x(t)) dηt| ≤ D
(
1 + ‖u‖r−εr

)
.

Using this as well as the estimate (17) in Equation (16), we are finally able to find
a constant CA so that

A(x, u) ≥ CA(1 + ‖u‖rr). (20)

Since A(xn, un) is bounded, we obtain from Equation (20) that ‖un‖r must be
bounded. Hypothesis 1.(e) then implies that ‖xn‖∞ and ‖ẋn‖r are bounded.

Since Lr is reflexive, by weak compactness, we can assume (taking subsequences
which we do not relabel) that un → u∗ and ẋn → v∗. The boundedness of ‖ẋn‖r
implies that xn is equicontinuous, so applying Arzela–Ascoli (and again taking
subsequences), we can assume xn → x∗ uniformly as well. (Note that a subsequence
of a minimising sequence is still a minimising sequence.) Further

x∗(t) = ξ +

∫ t

0

v∗(s) ds

so v∗ = ẋ∗.
Since the functions xn are uniformly bounded, we obtain from Hypothesis 1(d)

that the functions t → φ(t, xn(t), un(t)) admit a uniform lower bound φ0. We can
therefore replace φ with max{φ, φ0} on I × E × U without affecting continuity or
convexity. We can now apply the Integral semicontinuity theorem of [2], (Thm. 6.38)
to conclude that∫

I

φ(t, x∗(t), u∗(t)) dt ≤ lim inf

∫
I

φ(t, xn(t), un(t)) dt (21)
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The continuity of ψ together with the uniform convergence of xn implies that
ψ(., xn(.)) → ψ(., x∗(.)) uniformly on I. The boundedness of [ψ(., xn(.))]q follows

from the boundedness of ‖un‖r and the estimate (18). It then follows from Lemma 4
that ∫

I

ψ(t, xn(t)) dη(t)→
∫
I

ψ(t, x∗(t)) dη(t)

This fact together with (21) implies∫
I

φ(t, x∗(t), u∗(t)) dt−
∫
I

ψ(t, x∗(t)) dη(t)

≤ lim inf

∫
I

φ(t, xn(t), un(t)) dt− lim

∫
I

ψ(t, xn(t)) dη(t)

≤ lim inf

{∫
I

φ(t, xn(t), un(t)) dt−
∫
I

ψ(t, xn(t)) dη(t)

}
= inf A(x, u)

where the last inf is over all admissible trajectories with ‖u‖r < ∞ and the last
equality follows because (xn, un) is a minimising sequence. It remains to show that
(x∗, u∗) is a feasible process. The proof is the same as in [2], Theorem 23.11. �

3. A Maximum Principle

The aim of this section is to prove that under suitable conditions, global min-
imisers of Problem VAR satisfy a set of necessary conditions akin to the celebrated
Pontryagin Maximum Principle in optimal control, see for instance [5], Sec.I.6. The
classical Pontryagin Maximum Principle requires the problem to exhibit certain reg-
ularity, in particular f and g need to be more regular than we have assumed so
far. Recently, there has been considerable progress in relaxing these conditions,
at the price of having to use more general notions of derivatives as well as some
heavy nonsmooth analysis machinery, see [1], Sec.III.3.4. and in particular [2], The-
orem 22.26.

Taking one step at a time, we will prove the Maximum Principle under essentially
classical regularity assumptions, but admitting systems bearing the essential fea-
tures of the example in Section 6. Our main problem will again be dealing with the
stochastic part of the costs in an appropriate manner. We note that here again, this
can be attempted by integrating the stochastic costs by parts, which is now permit-
ted in view of Hypothesis 2(d). This results in a classical optimal control problem,
but applying the standard Maximum Principle then requires (among other things)
that the running costs of this problem have one further derivative with respect to
x, which is not guaranteed by our assumptions. The following proof however shows
that the stochastic costs can be dealt with directly.

Proof of Theorem 2. We will focus on the bits relevant for the stochastic costs which
are nonstandard, sketching the more standard parts of the proof. A few technical
details will be left to subsequent Lemmas. As in the proof of Theorem 2.1 in [19],
Chapter 2, and the proof of Theorem 6.3 in [5], Chapter I, we will use a needle
variation. Let s ∈ I \ {T} be a Lebesgue point for u. (Recall that s is a Lebesgue
point for u if limε→0

1
2ε

∫
[−ε,ε] u(s+ t) dt = u(s), and that if u is integrable over I,

almost every s ∈ I is a Lebesgue point of u.) For some v ∈ U and ε > 0 so that
s+ ε ∈ I, define the interval Iε := [s, s+ ε] and the control

uε(t) =

{
v if t ∈ Iε
u(t) else.
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Note that uε ∈ Ur. Let xε be the (unique) solution to the state equation (1) with
u = uε and xε(0) = ζ. To be able to write the state equation in a more compact
form in the following, we introduce the function h(t, x, u) := f(t, x)+g(t, x)u. Using
this abbreviation we can write

ẋε(t) = h(t, xε(t), u(t)) + g(t, xε(t))(v − u(t))1Iε(t).

We now consider a Taylor expansion of the state equation and the costs to first
order in the perturbation t→ g(t, x(t))(v − u(t))1Iε(t). To this end, we define

ζ̇ε(t) = D2h(t, x(t), u(t))ζε(t) + g(t, x(t))(v − u(t))1Iε(t),

ζε(0) = 0.

We make the following claims:

‖xε − x‖∞ = O(ε), (22)

‖xε − x− ζε‖∞ = o(ε), (23)

and

A(xε, uε)−A(x, u)

=

∫
I

D2φ(t, x(t), u(t))ζε(t) dt

+

∫
I

D2ψ(t, x(t))ζε(t) dηt

+

∫
Iε

φ(t, x(t), v)− φ(t, x(t), u(t)) dt+ o(ε).

(24)

The proof of these claims is virtually identical to the proof of Lemma 2.2 in Chap-
ter 2 of [19], with the exception of the stochastic cost contribution to Equation (24),
which will be considered in Lemma 7.

As will be shown in Lemma 8, the costate equation (12) has a unique solution
λ which has finite q–variation for any q > 2. Similar to the classical Maximum
Principle, the functions ζε and λ are in duality, leading to the identity∫

I

λ(t)g(t, x(t))(v − u(t))1Iε(t) dt

=

∫
I

D2φ(t, x(t), u(t))ζε(t) dt+

∫
I

D2ψ(t, x(t))ζε(t) dηt.

This will be proved in Lemma 9. We use this relation as well as the definition of
the Hamiltonian H in Equation (24) and invoke the optimality of u to obtain

0 ≤
∫
I

1Iε(t) {H(t, x(t), λ(t), v)−H(t, x(t), λ(t), u(t))} dt

+ o(ε).

The result now follows if we divide by ε and send ε→ 0, keeping in mind that s is
a Lebesgue point of u �

Lemma 7. With the definitions as in the proof of Theorem 2, we have∫
I

ψ(t, xε(t)) dηt −
∫
I

ψ(t, x(t)) dηt

−
∫
I

D2ψ(t, x(t))ζε(t) dηt

= o(ε).
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Proof. According to Lemma 4, this follows if

1

ε

[
ψ(t, xε(t))− ψ(t, x(t))−D2ψ(t, x(t)) · ζε(t)

]
−→ 0

uniformly in t, and for some q < 2 the q–variation of the left hand side stays
bounded.

By Taylor’s theorem, we can write the left hand side as∫ 1

0

D2ψ
(
t, τxε(t) + (1− τ)x(t)

)
−D2ψ

(
t, x(t)

)
dτ · 1

ε

[
xε(t)− x(t)

]
+ D2ψ

(
t, x(t)

)1

ε

[
xε(t)− x(t)− ζε(t)

]
.

(25)

Now using Equation (22) and the fact that D2ψ is uniformly continuous (by Hy-
pothesis 2(d)), we obtain that the first term goes to zero uniformly. Equation (23)
guarantees that the second term goes to zero uniformly as well.

The proof of Equation (22) reveals, upon closer inspection, that the Lr–norm of
1
ε

d
dt [xε − x] remains bounded, and the same is true for 1

ε
d
dtζε. By Lemma 3(a) this

implies that the q–variation of these functions remains bounded for any q ≥ 1. By
Lemma 3(d) this leaves to show that also the term∫ 1

0

D2ψ
(
t, τxε(t) + (1− τ)x(t)

)
dτ

in expression (25) has q–variation bounded in ε. Define the function yε(τ, t) =
D2ψ

(
t, τxε(t) + (1− τ)x(t)

)
. By Hypothesis 2,(d), the q–variation of t→ yε(τ, t) is

bounded uniformly in ε and τ , for q < 1
2 . But it is easily seen that if [yε(τ, .)]q ≤ C,

then t→
∫ 1

0
yε(τ, t) dτ has q–variation bounded by C as well. We conclude that as

a function of t, the expression in Equation (25) has q–variation bounded in ε. �

Lemma 8. There is a unique solution to the costate equation (12) which has finite
q–variation for q > 2.

Proof. According to Hypothesis 2(c) the function t → D2φ(t, x(t), u(t)) is inte-
grable. Further, from Hypothesis 2(d), along with the absolute continuity of x and
the chain rule in Lemma 3, we can conclude that t→ D2ψ(t, x(t)) has q–variation
for some q < 2. These two facts imply that the second and third integral in the
definition of λ (Eqn. 12) are well defined and continuous as a function of the lower
limit. We can thus write Equation (12) in the form

λ(t) =

∫ T

t

λ(s)M(s) ds+ F (t)

where M(t) := D2f(t, x(t)) + D2g(t, x(t))u(t) and F is continuous with finite q–
variation for q > 2. Noting that |M | is integrable, it follows by standard ODE
arguments that λ is well defined and unique. Further, λ is the sum of an absolutely
continuous part and a part with finite q–variation for q > 2. From this, it is easy
to see that λ itself has finite q–variation for q > 2. �

Lemma 9 (Duality Lemma). Let I = [0, T ] be an interval and V a finite dimen-
sional vector space with norm |.| and dual space V ′. Consider functions a : I → V
and b : I → V ′ so that both [a]p and [b]q are finite, where 1

p + 1
q > 1. Further,

consider a measurable function M : I → L(V, V ) so that the function t→ |M(t)| is



14 JOCHEN BRÖCKER

integrable (here |.| denotes the operator norm). Then the equations

ζ(t) = ζ(0) +

∫ t

0

M(s)ζ(s) ds+ a(t),

λ(t) = λ(T ) +

∫ T

t

λ(s)M(s) ds+ b(t)

have unique solutions, and both [ζ]p and [λ]q are finite. Further, the duality relation

λ(T )ζ(T )− λ(0)ζ(0) =

∫
I

ζ(t) db(t) +

∫
I

λ(t) da(t)

holds.

Proof. The uniqueness of ζ and λ as well as the claims about [ζ]p and [λ]q follow
as in the proof of Lemma 8. A direct calculation gives∫

I

λ(t) dζ(t) =

∫
I

λ(t)M(t)ζ(t) dt+

∫
I

λ(t) da(t)

and similarly ∫
I

ζ(t) dλ(t) = −
∫
I

λ(t)M(t)ζ(t) dt+

∫
I

ζ(t) db(t).

Adding these two relations gives∫
I

ζ(t) dλ(t) +

∫
I

λ(t) dζ(t) =

∫
I

ζ(t) db(t) +

∫
I

λ(t) da(t),

and integrating by parts on the left hand side gives the duality relation. �

4. Regularity of controls

To investigate the regularity of controls, we assume that for every (t, z, µ) ∈
I × E × E′ the function H(t, z, µ, .) has a unique minimiser, that is, there is a
function υ : I × E × E′ → U so that

H(t, z, µ, υ(t, z, µ)) = inf
u∈U

H(t, z, µ, u).

By the characterisation (11) of optimal controls, regularity properties of υ can
be translated into regularity properties of optimal controls. We observe that the
regularity of υ is determined by the Hamiltonian H which neither contains the
stochastic running costs nor the observations.

Definition 2. The deterministic running costs are strongly convex in u if for every
bounded subset C ⊂ I × E × U there is a c > 0 so that whenever (t, z, w1) and
(t, z, w2) are in C, we have

(D3φ(t, z, w1)−D3φ(t, z, w2)) (w1 − w2) ≥ c|w1 − w2|2.

Note that H is strongly convex if ψ is convex, meaning in particular that υ is well
defined in this case (see also [2]).

Theorem 3 (Regularity of controls). Suppose Hypothesis 2 is in force.

(a) If υ is well defined, then an optimal control has a continuous modification.
(b) If ψ is strongly convex, and D3φ as well as g are locally Lipschitz in (t, x),

then an optimal control has a continuous modification that has bounded q–
variation for any q > 2.
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Proof. If (x, u, λ) is an optimal triple for initial condition ξ, then by the definition
of υ we must have

u(t) = υ(t, x(t), λ(t))

for almost all t ∈ I. Hence item a follows if we can show that υ is continuous, while
establishing that υ is locally Lipschitz, together with Lemmas 8 and 3(e) will prove
item b. Our proof of these two properties of υ follows [2], Theorem 23.17.

With w be an arbitrary element of U , we have the estimate

H(t, z, µ, w) ≥ H(t, z, µ, υ(t, z, µ))

≥ Cφ|υ(t, z, µ)|r − |z|δ + µ · [f(t, z) + g(t, z)υ(t, z, µ)] ,

and because f, g are continuous, we can infer that υ is bounded on bounded sets.
Consider a sequence {(tn, zn, µn), n ∈ N} so that (tn, zn, µn) → (t, z, µ). Taking
any subsequence, there is a subsubsequence so that υ(tn, zn, µn)→ w because this
sequence is bounded. Then by definition of υ

H(tn, zn, µn, υ(tn, zn, µn)) ≤ H(tn, zn, µn, υ(t, z, µ))

and taking limits we obtain

H(t, z, µ, w) ≤ H(t, z, µ, υ(t, z, µ))

whence w = υ(t, z, µ), and we can conclude that υ is continuous.
To prove Theorem 3(b), consider (t, z1, µ1) and (s, z2, µ2) in I × E × E′ and

use the shorthands w1 := υ(t, z1, µ1) and w2 := υ(s, z2, µ2). Note that due to the
convexity of H in u and the defintion of the function υ we must have

D4H(t, z1, µ1, w1)(w2 − w1) ≥ 0,

D4H(s, z2, µ2, w2)(w1 − w2) ≥ 0.

The strong convexity condition implies

c|w1 − w2|2

≤ (D4H(t, z1, µ1, w1)−D4H(t, z1, µ1, w2)) (w1 − w2)

= (D4H(t, z1, µ1, w1)−D4H(s, z2, µ2, w2)

+D4H(s, z2, µ2, w2)−D4H(t, z1, µ1, w2)) (w1 − w2)

≤ (D4H(s, z2, µ2, w2)−D4H(t, z1, µ1, w2)) (w1 − w2)

≤ L (|s− t|+ |z2 − z1|+ |µ2 − µ1|) |w1 − w2|.

Hence, υ is Lipschitz, and by Lemma 3(e), together with the fact that x is absolutely
continuous and that λ has q–variation for q > 2, we can conclude that the control
also has q–variation for q > 2. �

5. The value function

In classical optimal control, there are well known relationships between the (gen-
eralised) derivative of the value function and the costate, permitting one to study
the uniqueness of optimal controls, among other things (see for instance [6]). In
this section, we will present a few results in this direction. Crucial to this analysis
is the fact that if (x, u, λ) is an optimal triple for some ξ ∈ E, then (x, λ) satisfy a
Hamiltonian ODE (Eqn. (26) in Thm. 4 below), which is obtained by using the min-
imum condition (11) to eliminate the control u from the state and costate equation.
Further, it is required that solutions to Equation (26) are unique with respect to the
initial condition (x(0), λ(0)). Currently, we are only able to prove this under the
assumption that the function (t, z) → D2ψ(t, z) has continuous partial derivatives
with respect to both arguments which are Lipschitz in z. We conjecture though



16 JOCHEN BRÖCKER

that weaker conditions might be sufficient; this will be investigated in a future pa-
per. Given our incomplete understanding of these equations at this point, we have
to impose these properties as assumptions, and pending a better understanding,
the results in this section have to be regarded as preliminary.

Throughout this section, we fix a ξ0 ∈ E and assume there is an admissible
control for ξ0. Further we impose

Hypothesis 3. Hypothesis 2 and

(a) The mapping υ defined in Section 4 is well defined.
(b) There is a neighbourhood X ⊂ E of ξ0 so that Hypothesis 1(e) is valid for

all ξ ∈ X.

We first show that the necessary conditions in Theorem 2 can be recast as a
Hamiltonian system with stochastic perturbation. Consider the function

m(t, z, µ) := inf
u∈U

H(t, z, µ, u) = H(t, z, µ, υ(t, z, µ))

which is continuous. From the fact that υ is well defined (i.e. H has a unique
minimiser in u) and is bounded on bounded sets, and because H has continuous
derivatives with respect to z, µ, we can conclude that also m has continuous deriva-
tives with respect to z, µ given by

Dm(t, z, µ) = DH(t, z, µ, u)|u=υ(t,z,µ)
where D is the partial derivative with respect to z or µ. The proof of this well
known fact is omitted. We immediately obtain the following theorem:

Theorem 4 (Hamiltonian system). Let (x, u, λ) be an optimal triple for initial
condition ξ. Then the state and costate x, λ satisfy the equation

ẋ(t) = D3m(t, x(t), λ(t))

λ(t) =

∫ T

t

D2m(s, x(s), λ(s)) ds+

∫ T

t

D2ψ(s, x(s)) dηs

x(0) = ξ.

(26)

To define the value function, one usually extends the Problem VAR to a class of
problems by asking for optimal controls on the interval [s, T ] with s ≥ 0 and initial
condition x(s) = ξ, but we will not do this here. To any u ∈ Ur and any ξ ∈ X
there corresponds a unique absolutely continuous function x : I → E so that (x, u)
is a feasible process with respect to ξ. The costs of this process can be regarded as
a function J(ξ, u) on X × Ur. Note that J is well defined but might be infinite.

Definition 3. On X we define the value function as

V (ξ) = inf
u∈Ur

J(ξ, u),

with V (ξ) =∞ if there is no admissible control for ξ.

Regarding J and the value function, we have the following

Lemma 10. (a) There exists a neighbourhood X0 ⊂ X so that J(., u) is bounded
on X0, where u is the admissible control for ξ0.

(b) If ξ ∈ X0 and u ∈ Ur is admissible for ξ, then J(., u) has a partial derivative
at ξ, and

D1J(ξ, u) = λ(0)

where λ is given by Equation (12).
(c) The value function is Lipschitz continuous on bounded subsets of X0.
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Proof. Let (x, u) be the admissible process for ξ0. Then due to Hypothesis 3(b),
there is a neighbourhood X0 ⊂ X of ξ0 so that any solution (y, u) of the state
equation with control u and initial condition ξ ∈ X0 satisfies the bound ‖y−x‖∞ ≤
R, where R is as in Hypothesis 2(c). Further,

J(ξ, u) = J(ξ0, u)

+

∫
I

φ(t, y(t), u(t))− φ(t, x(t), u(t)) dt

+

∫
I

ψ(t, y(t))− ψ(t, x(t)) dηt.

(27)

From the mean value theorem, we get

|φ(t, y(t), u(t))− φ(t, x(t), u(t))| ≤ |D2φ(t, θ(t), u(t))|R

for some function θ : I → E with ‖θ − x‖∞ ≤ R. It can be shown (see [2], proof
of theorem 22.17) that Hypothesis 2(c) implies the apparently stronger statement
that if |z−x(t)| ≤ R, then |D2φ(t, z, u(t))| ≤ c′|φ(t, x(t), u(t))|+d′(t) almost surely,
with c′ ≥ 0 and d′ integrable. This shows that the first integral in Equation (27) is
bounded. The stochastic costs are easily seen to be continuous with respect to vary-
ing the initial condition of the state equation, since this causes the trajectories to
vary continuously in the uniform topology, while the 1-variation remains bounded.
Hence, all terms on the right hand side of Equation (27) remain bounded.

To prove item (b), let λ be the unique solution of Equation (12). We regard x as
a function of time and of the initial condition ξ, and make this explicit by writing
xξ(t) for t ∈ I. Evidently, xξ(0) = ξ. For any v ∈ E we have

D1J(ξ, u)v =

∫ T

0

D2φ(t, xξ(t), u(t)) ζ(t) dt

+

∫ T

0

D2ψ(t, xξ(t)) ζ(t) dηt

(28)

where

d

dt
ζ(t) = D2{f(t, xξ(t)) + g(t, xξ(t))u(t)}ζ(t), ζ(0) = v.

A proof of this runs similar to the proof of the claims (22,23,24). Applying the
Duality Lemma 9 gives that the right hand side of Equation (28) is equal to λ(0)Tv.

To prove item (c), first note that by item (a), there is a control u that is admissible
for any ξ ∈ X0, and J(., u) is bounded over X0 by J0, say. This implies that for any
ξ ∈ X0 there exist an optimal triple (xξ, uξ, λξ), and we need to show that λξ(0) is
bounded for ξ ∈ X0. The estimate (20) shows that ‖uξ‖r is bounded over ξ ∈ X0.
Going back to Hypothesis 3(b) we see that ‖xξ‖∞ and ‖ẋξ‖r are also bounded. We
remember that by the Maximum Principle (Thm. 2), we have

λξ(0) =

∫
I

λ(s)
{

D2f(s, xξ(s)) + D2g(s, xξ(s))uξ(s)
}

ds

+

∫
I

D2φ(s, xξ(s), uξ(s)) ds+

∫
I

D2ψ(s, xξ(s)) dηs. (29)

The function t → D2f(s, xξ(s)) + D2g(s, xξ(s))uξ(s) is bounded in ‖.‖1 thanks to
Hypothesis 2(a) and the boundedness of ‖uξ‖r. The term

∫
I

D2ψ(s, xξ(s)) dηs is
bounded due to Hypothesis 2(d), the boundedness of ‖xξ‖∞ and our estimates of
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the Young integral. Hypothesis 2(c) provides the estimate∫
I

D2φ(s, xξ(s), uξ(s)) ds

≤
∫
I

c|φ(s, xξ(s), uξ(s))| ds+D

≤ cJ0 + c |
∫
I

ψ(s, xξ(s)) dηs|+D,

and the integral is bounded again due to Hypothesis 2(d), the boundedness of
‖xξ‖∞ and our estimates of the Young integral. �

We will from now on restrict attention to X0 which we rename X. Since V is
locally Lipschitz, DV exists on a dense set in X by Rademacher’s theorem. The
reachable gradient of V at ξ ∈ X, denoted by ∂∗V (ξ), is the set of all cluster points
of DV (ξn) when ξn → ξ. Note that ∂∗V (ξ) is nonempty for all ξ ∈ X, and it is
well known (see [6], prop. 2) that V is differentiable at ξ if and only if ∂∗V (ξ) is a
singleton, in which case {DV (ξ)} = ∂∗V (ξ).

Theorem 5. (a) Let ξ ∈ X and suppose that for any control u that is optimal
with respect to ξ, the corresponding pair (x, λ) is the unique solution of the
Hamiltonian system (26) with respect to the initial condition (ξ, λ(0)). Then
if V has a derivative at ξ, the optimal control u for ξ is unique (a.s. wrt
Lebesgue measure), and DV (ξ) = λ(0).

(b) Assume that in addition to the conditions in the first item, solutions to the
Hamiltonian system (26) depend continuously on initial conditions in the
uniform topology. Then if w ∈ ∂∗V (ξ), there exists an optimal state control
pair (x, u) with λ(0) = w. In particular, if u is a unique optimal control
with respect to ξ, then V has a derivative at ξ.

Proof. Let u1 and u2 be optimal controls, with (x1, u1, λ1) and (x2, u2, λ2) being the
corresponding optimal triples. Note that x1(0) = x2(0) = ξ, and both (x1, λ1) and
(x2, λ2) are solutions of the Hamiltonian system (26). Since V (z) ≤ J(z, u1) for z ∈
X, with equality if z = ξ, we can conclude that DV (ξ) = D1J(ξ, u1), in case V has
a derivative at ξ. Since the same is true for u2, we see that λ1(0) = λ2(0) = DV (ξ)
and therefore (x1, λ1) = (x2, λ2) because the Hamiltonian system (26) has unique
solutions with respect to initial conditions. Therefore u1(t) = υ(x1(t), λ1(t)) =
υ(x2(t), λ2(t)) = u2(t), and item (a) is proved.

To prove item (b), let w ∈ ∂∗V (ξ). Take a sequence ξk ∈ X, k ∈ N with
ξk → ξ and so that V is differentiable at ξk; letting λk(0) = DV (ξk), we also
assume λk(0) → w. This is possible owing to the definition of ∂∗V (ξ). For each
k ∈ N, let (xk, λk) be the solution to the Hamiltonian system (26) with initial
condition (ξk, λk(0)). By assumption, (xk, λk) → (x, λ) uniformly, where (x, λ) is
the solution to the Hamiltonian system (26) with initial condition (ξ, w). Putting
uk(t) = υ(xk(t), λk(t)), t ∈ I, we see that uk is the unique optimal control for ξk
for each k ∈ N. Now uk converges uniformly to some control u, and it follows as in
the proof of Theorem 1 that u is optimal for ξ. The remainder of item (b) follows
from the remark just before the Theorem and the fact that if u is the only optimal
control for ξ, then ∂∗V (ξ) must be singleton. �

6. Motivating example from geophysical fluid dynamics

We consider a class of examples with a state equation of the form

ẋ(t) = f1(t, x(t)) + f2(x(t)) + g(t, x(t))u(t) (30)
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on the interval I = [0, T ] with initial condition x(0) = ξ ∈ E. We use E = Rn
for some n and use the standard scalar product and norm on E. We impose the
conditions

(a) f1 is continuous and has a bounded and continuous derivative with respect
to x.

(b) f2 is a bilinear form with the property xTf2(x) = 0.
(c) g is bounded and continuous and has a bounded and continuous derivative

with respect to x.

In the context of geophysical fluid dynamics, f1 represents viscosity, coriolis forces
and other physical effects. The bilinear term f2 is a kinematic term inherited from
the advection term (or “material acceleration”) in the Navier Stokes equations.
The function g need not have any physical interpretation but might be present to
scale the control u or enforce balance conditions. We also assume the presence of a
closed and convex control set U ⊂ E (which might be equal to E); again, this set
might represent balance conditions.

The class of systems described by the conditions (a-c) above contains various
conceptual weather and climate models, such as Lorenz’63, Lorenz’96, and trun-
cation approximations to the Navier Stokes and Barotropic Vorticity models. Of
course, in the original form of these models, there is no g, which is an additional
component coming in with the data assimilation.

We will now demonstrate that the conditions (a-c) above (plus further conditions
on the running costs discussed below) imply Hypotheses 1 and 2. By multiplying
the state equation (30) with xT and integrating from 0 to t we obtain

1

2
x2(t) =

1

2
ξ2 +

∫ t

0

x(s)Tf1(s, x(s)) ds

+

∫ t

0

x(s)Tg(s, x)u(s) ds

≤ C1 + C2

∫ t

0

|x(s)|2 ds+ C3

∫ t

0

|x(s)||u(s)| ds

≤ C ′1 + C ′2

∫ t

0

|x(s)|2 ds+ C ′3

∫ t

0

|u(s)|2 ds

where we have used first the property of f2, next the properties of f1 and g, and
finally Young’s inequality. Applying Grönwall’s inequality, we obtain the energy
estimate (9) with γ = 1 and r = 2. Using the energy estimate directy in the state
equation (30), we obtain the nonlinearity estimate (8) with β = 2 and r = 2.

We introduce an observation function h : I ×E → Rd and impose the condition

(d) The function h satisfies Hypothesis 1(b) for the stochastic running costs ψ
with α = 0 and Hypothesis 2. Further, the derivative of h with respect to
x is bounded.

For the costs, we use the functional (2), where

(e) R,S are continuously differentiable matrix valued functions, and S(t) ≥ s1
for some s > 0.

This implies

φ(t, x, u) =
1

2
h(t, x)TR(t)h(t, x) +

1

2
uTS(t)u.

The cost functional corresponds to a minimum energy estimation or weakly con-
strained 4d–VAR in the geosciences. By our choice of φ, we can conclude that
Hypothesis 1(d) is satisfied with r = 2, δ = 0. Further

ψ(t, x) = −h(t, x)TR(t)
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and hence ψ satisfies Hypothesis 1(b) with κ ≤ 1 and α = 0, and we obtain that

γ(α+ κ− 1
2 ) + β

2 ≤
3
2 which is smaller than r = 2. Theorem 1 is therefore in force

and we obtain that there is an optimal solution to this data assimilation problem
for every observation path, and every optimal solution will satisfy ‖u‖2 <∞.

With regards to the Maximum Principle, we note that Hypothesis 2(b) is satisfied
and φ is strongly convex in u. Further D2φ does not depend on u and is continuous
in (t, x), whence Hypothesis 2(c) is satisfied. Therefore, the Maximum Principle
(Thm. 2) applies, and so does Theorem 4. The Hamiltonian equations (26) in the
present case read as

ẋ = f(t, x(s)) + g(s, x(s))u(s), (31)

and (written in coordinates)

λm =
∑
j

∫ T

t

λj(s){D2f(s, x(s)) + D2g(s, x(s))u(s)}jm ds

+
∑
jk

∫ T

t

∂mhj(s, x(s))Rjk(s){hk(s, x(s)) ds− dηk(s)},
(32)

with u(t) = −S−1g(t, x(t))Tλ(t) and x(0) = ξ. In this case, it follows directly that
the control is continuous and has q–variation for any q > 2.

Primitive conditions that render Theorem 5 applicable will be investigated in a
future paper, but we can already present the following preliminary result: Suppose
that the function h is linear in x and that D2f,D2g are locally Lipschitz continuous
with respect to x. It is then easy to see that solutions to the Hamiltonian system
(Eqns. 31,32 in the present case) for given initial values (ξ, λ(0)) are unique and
depend continuously on these values. Thus in this special but important situation,
we obtain the conclusions of Theorem 5; in particular, optimal controls are unique
if the value function has a derivative at ξ.

As a final note, we discuss the variational problems encountered in [21] in con-
nection with the maximum aposteriori (MAP) estimator of trajectories of diffusion
processes. The conditions (a, b, c) on the state equation 30 are strengthened to

(a’) f1 has bounded and continuous derivatives up to second order with respect
to x.

(b’) same as (b).
(c’) g does not depend on t, and ggT has bounded and continuous derivatives

up to third order with respect to x. Further, 0 < c11 ≤ ggT ≤ c21.

Under these conditions, Γ := (ggT)−1 defines a Riemannian metric, and we write
σ and div for the scalar curvature and the divergence, respectively, associated with
this metric. The conditions on ψ and R remain the same.

In [21] it is shown that under certain conditions (which we do not verify here) a
MAP estimator for trajectories of the diffusion

dx(t) = f̃(t, x(t))dt+ g(x(t)) dB(t)

with respect to observations of the form

dη(t) = h(t, x(t))dt+ ρt dB′(t)
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is a solution of Problem VAR with ψ

ψ(t, x) = −h(t, x)TR(t),

R(t) = (ρ(t)ρ(t)T)−1,

φ(t, x, u) =
1

2
h(t, x)TR(t)h(t, x)

+
1

2
uTΓ(x)u− div f(t, x) +

1

6
σ(x),

and f̃ is related to f through an Itô–Stratonovič conversion (see [21] for details).
The new terms appearing in the cost function are σ, div f1 and div f2. The first
two are bounded with bounded derivatives, while the third is linear in x. Hence
Hypothesis 2 is again satisfied with α, β, γ the same constants as before, only δ = 1
now instead of zero as before. We can thus draw the same conclusions as for the
minimum energy estimator, in particular we can conclude the existence of global
minimisers. Note that in [21] this conclusion is reached, albeit under much stronger
assumptions. In particular, the boundedness of div f is needed for that proof to
work, meaning that state equations with a quadratic nonlinearity as considered
here are not covered in [21].
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