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ABSTRACT
Eddy saturation describes the nonlinear mechanism in geophysical
flows whereby, when average conditions are considered, direct forc-
ing of the zonal flow increases the eddy kinetic energy, while the
energy associated with the zonal flow does not increase. Here, we
present a minimal baroclinic model that exhibits complete eddy sat-
uration. Starting from Phillips’ classical quasi-geostrophic two-level
model on the beta channel of themid-latitudes, we derive a reduced
order model comprising of six ordinary differential equations includ-
ing parameterised eddies. This model features two physically realis-
able steady state solutions, one a purely zonal flow and one where,
additionally, finite eddy motions are present. As the baroclinic forc-
ing in the form of diabatic heating is increased, the zonal solution
loses stability and the eddy solution becomes attracting. After this
bifurcation, the zonal components of the solution are independent
of the baroclinic forcing, and the excess of heat in the low latitudes
is efficiently transported northwards by finite eddies, in the spirit of
baroclinic adjustment.
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1. Introduction

The equilibrium volume transport of the Antarctic Circumpolar Current (ACC) is known
to be balanced by three contributions, namely the input of momentum at the ocean sur-
face by the wind, the downward transport of this momentum by eddies and the bottom
drag as the opposite force to the wind (Munk and Palmén 1951, Nadeau and Ferrari 2015).
Straub (1993) was first to suggest that the ACC volume transport is independent of the
wind stress at the ocean surface although the wind was assumed to be sufficiently strong.
Since then more studies, using resolved turbulent ocean eddies, have confirmed this find-
ing (e.g. Munday et al. 2013, Nadeau and Ferrari 2015). According to those studies, an
increase in wind stress yields an increase of the vertical shear in the channel and the
flow becomes baroclinically unstable, thus generating stronger eddies instead of a higher
volume transport, a process called eddy saturation.

CONTACT Melanie Kobras m.kobras@pgr.reading.ac.uk

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2021.1990912&domain=pdf&date_stamp=2021-11-05
https://orcid.org/0000-0001-8135-6962
https://orcid.org/0000-0002-6051-2249
https://orcid.org/0000-0001-9392-1471
mailto:m.kobras@pgr.reading.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 M. KOBRAS ET AL.

Marshall et al. (2017), inspired by a previous model of variability in atmospheric storm
tracks (Ambaum and Novak 2014), explained the physical principles of eddy saturation
using a simple model with just three ingredients: a zonal momentum budget, a closure
relation between the eddy form stress and eddy energy, and an eddy energy budget. In their
model, both the vertical shear and the volume transport of the ACC are predicted to be
independent of the forcing by the surface wind, but instead controlled by the requirement
of a sufficiently unstable vertical shear to overcome the stabilising role of the eddy energy
dissipation. Moreover, the model explains the increase of eddy energy with wind stress.
Finally, they conclude an analogy to the interaction betweenwave activity and baroclinicity
in the original model of atmospheric storm tracks (Ambaum and Novak 2014).

However, the process driving the variability of storm tracks in the mid-latitude atmo-
sphere differs from the transport in the ocean in several ways. While mechanical stress
dominates the oceanic processes described above, the baroclinic instability in the atmo-
sphere is a result of the horizontal temperature gradient between the equator and poles,
which is primarily due to the presence of a stronger radiative forcing at low rather than
high latitudes. At all levels of the atmosphere, the meridional temperature gradient is pro-
portional to the vertical shear of the mean flow by thermal wind balance and is the source
of available potential energy for the eddies which are associated with the storm tracks. The
corresponding poleward eddy heat fluxes in the storm tracks act to weaken the baroclinic-
ity and therefore the mean flow (e.g. Pedlosky 1979, Holton and Hakim 2013). The latter
process is often referred to as baroclinic adjustment (Stone 1978). The Lorenz energy cycle
provides a comprehensive view of energetics of the climate system that takes into account
forcing, dissipation, and exchange of energy between available potential and kinetic form,
and between energy pertaining to the mean flow and energy pertaining to eddy motions
(Lorenz 1967, Peixoto and Oort 1992, Lucarini et al. 2014).

The heuristic model proposed by Ambaum and Novak (2014) describes this baroclinic
interaction between mean flow and eddy activity. In its steady state, the model predicts a
two-way equilibration of storm tracks to extratropical thermal forcing and eddy friction:
baroclinicity is independent of the thermal forcing but proportional to the eddydissipation,
whereas storm track activity is independent of eddy dissipation but proportional to ther-
mal forcing of large-scale baroclinicity and is therefore reminiscent of the eddy saturation
phenomenon in the ACC (Novak et al. 2018).

Within the Lorenz energy cycle framework, one can see the eddy saturation mecha-
nism as that a forcing acting on the zonal fields results in an increase of eddy energy (in
both kinetic and available potential form), whereas the zonal energy stays largely unaf-
fected. Additionally, one can view the eddy saturation mechanism as an extreme form of
the baroclinic adjustment process (see also the discussion in Lucarini et al. 2007).

The simplest model that can incorporate baroclinic processes together with diabatic
heating and surface friction is Phillips’ two-level quasi-geostrophic model on the β-plane
(Phillips 1956). The present paper uses this model to derive a set of ordinary differential
equations that are able to provide a minimal yet meaningful model of the above described
interaction between mean flow and eddy activity. As discussed below, our model does not
represent direct nonlinear eddy-eddy interactions. The novelty of this work is how the sta-
bility properties of the derived models are determined. In contrast to the usual approach
of normal mode instability analysis (see e.g. Pedlosky 1979, Hoskins and James 2014),
which focuses on studying the stability properties of the zonal flow, we use here methods
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of dynamical systems theory, which allow us to show the existence of a second attracting
steady state instead of growing normal mode baroclinic instabilities. Another novel aspect
is that this second steady state exhibits the above-described eddy saturation properties in
a model with parameterised eddies.

In section 2 we briefly review the two-level model and its reduction which follows
work by Phillips (1956) and by Thompson (1987). In section 3 we introduce the non-
dimensionalisation used to define our reduced model and determine the steady states.
The stability and dependence on relevant parameters thereof is analysed and physically
explained in section 4 and compared to the normal mode baroclinic instability analysis of
Phillips’ two-level model in section 5. In section 6 a quality factor is introduced to describe
the oscillatory behaviour of the model and section 7 summarises the results and discusses
them in comparison to the current literature. Appendices A–D include further information
of possible interest for the reader.

2. Themodel equations

We use the two-level quasi-geostrophic model in pressure coordinates of Phillips (1956),
consisting of two vorticity equations, coupled by a thermodynamic energy equation and
including surface friction and a β-plane approximation, i.e. f = f0 + βy. The equations are(

∂

∂t
+ V1·∇

)
(βy + ∇2ψ1)− f0

ω2

δp
= A∇2∇2ψ1, (1a)

(
∂

∂t
+ V3·∇

)
(βy + ∇2ψ3)+ f0

ω2

δp
= A∇2∇2ψ3 − κ∇2ψ4, (1b)

(
∂

∂t
+ V·∇

)
ψ3 − ψ1

δp
+ RΓ 2

p2f0
ω2 = − R

p2f0cp
J2, (1c)

where ψ is the streamfunction, V = (u, v) the horizontal velocity vector, ω = dp/dt the
vertical velocity and∇ is the horizontal gradient. The pressure is denoted by p, where δp =
500 hPa is the pressure difference between the two vorticity levels as well as the pressure-
thickness of each layer. Subscripts 1, 2, 3 and 4 denote the pressure levels 250, 500, 750, and
1000 hPa respectively. The fields are defined in the spatial domain (x, y) ∈ [0, L] × [0,W],
where L and W are the length and width of the β-plane channel. We remark that, as cus-
tomary, the x coordinate is aligned with the longitude and the y coordinate is aligned with
the latitude. The fields above are defined for non-negative times t ≥ 0 starting from smooth
initial conditions. Clearly, we have that A(0, y, t) = A(L, y, t) ∀ y ∈ [0,W] and ∀ t ≥ 0 for
all fields A.

The parameters A and κ describe the eddy diffusion and the surface friction diffusion.
Additionally, J is the diabatic heating and Γ = RT/pcp − ∂T/∂p the basic state static sta-
bility, where T is the temperature, cp the isobaric specific heat capacity of dry air and R the
specific gas constant for dry air.

The diabatic heating J is given by the sum of radiative and diffusive contributions. The
radiative contribution represents the net local radiative energy gains and losses and is
chosen to vary linearly in y,

Jrad = 2H
(
1 − 2y

W

)
, (2)



4 M. KOBRAS ET AL.

where H is the mean rate of heating per unit mass for y ∈ [0,W/2] (or cooling for y ∈
[W/2,W]). The diffusive contribution represents the effect of lateral eddy diffusion of
temperature at level 2,

Jdiff = cpA∇2T2 = 2f0cpp2
δpR

A∇2ψT . (3)

We remark that the parameters A and κ control the dissipation processes that remove
energy from the system. The parameter H controls the input of energy in the form of
an increase in temperature difference between low and high latitudes, hence fuelling the
Lorenz energy cycle of the system by the production of zonal mean available potential
energy. The competition between dissipation and forcing determines the degree of insta-
bility and turbulence of the system, which, after transients, reaches a statistically steady
state, themodel climate.

Next, we define barotropic and baroclinic potential vorticities qm = ∇2ψm + βy and
qT = (∇2 − λ2R)ψT , where λ2R = 2p2f 20 /(δp

2Γ 2R) is the inverse square of the Rossby
radius of deformation and the barotropic and baroclinic streamfunctions are defined as
ψm = (ψ1 + ψ3)/2 and ψT = (ψ1 − ψ3)/2.

Since we want to obtain evolution equations for the longitudinally averaged or mean
flow (denoted by overbars) and longitudinally varying disturbances or eddies (denoted by
primes) separately, we introduce the zonalmeanA(y, t) = (1/L)

∫ L
0 dx A(x, y, t) and define

the deviation from such mean as A′(x, y, t) = A(x, y, t)− A(y, t) for any field A.
Now the evolution equations for the mean zonal wind and mean thermal wind or shear

are obtained by taking half the sum and the difference of equations (1a,b), where we
introduced the geostrophic assumption of horizontally non-divergent flow, yielding the
geostrophic relation u = −∂ψ/∂y and v = ∂ψ/∂x for the velocities in all terms but the
one containing the Coriolis parameter. Substituting (1c), taking the derivative with respect
to y and applying the definitions and assumptions above, we arrive at

∂um
∂t

− 1
λ2y

∂3

∂y3
v′
mu′

m − 1
λ2y

∂3

∂y3
v′
Tu

′
T = −λ2yAum − κ

2
(um − 2uT), (4a)

∂uT
∂t

− 1
λ2y + λ2R

∂3

∂y3
v′
Tu′

m − 1
λ2y + λ2R

∂3

∂y3
v′
mu′

T − λ2R
λ2y + λ2R

∂2

∂y2
v′
mψ

′
T

= −λ2yAuT + λ2y

λ2y + λ2R

κ

2
(um − 2uT)+ λ2R

λ2y + λ2R

2δpRH
f0p2cpW

, (4b)

where um is themean zonal wind and uT themean thermal wind ormean zonal shear. Here
we additionally assumed a specific meridional shape of the mean wind, namely ∂2u/∂y2 =
−λ2yu where λ2y is an unspecified wavenumber.

Following Thompson (1987), we next restrict the eddy component of the barotropic and
baroclinic streamfunction to be of the form

ψ ′
m,T(x, y, t) = Am,T(t) sin kx sin ly + Bm,T(t) cos kx sin ly, (5)
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where the wavenumber k remains unspecified and l = π/W. We note that ∇2ψ ′
m,T =

−λ2∇ψ ′
m,T with λ2∇ = k2 + l2 = k2 + π2/W2. Using this assumption, all eddy product

terms in equations (4a,b) besides the net poleward eddy temperature flux v′
mψ

′
T cancel.

This amounts to neglecting the effect of direct eddy-eddy interactions and to focusing,
instead, on the interaction between the zonal wind and waves. As discussed in Speranza
and Malguzzi (1988), Malguzzi et al. (1990), and Lucarini et al. (2007), this assumption
allows one to retain the essential ingredients of the process of baroclinic conversion and
of the process of barotropic and baroclinic stabilisation. Further support to our view-
point comes from the fact that the statistical properties of both the general circulation
of barotropic models of the atmosphere (Sawford and Frederiksen 1983) as well as of the
circulation of the actual atmosphere (Schneider 2006) are only weakly affected by the pres-
ence of eddy-eddy nonlinearities. Using the explicit expression (5) for v′

m andψ ′
T we obtain

v′
mψ

′
T = k

2
(AmBT − ATBm) sin2

πy
W

, (6a)

∂2

∂y2
v′
mψ

′
T = π2k

W2 (AmBT − ATBm)
(
cos2

πy
W

− sin2
πy
W

)
, (6b)

so at y = W/2,

∂2

∂y2
v′
mψ

′
T = −2π2

W2 v
′
mψ

′
T . (7)

We see that the net poleward heat transport attains its maximum at y = W/2 and vanishes
at y = 0 and y = W. Indeed, this qualitatively corresponds to what is observed in more
complex versions of the same model (Lucarini et al. 2007) and to what is observed in the
actual climate (Peixoto andOort 1992). Following again Thompson (1987), we assume that
the mean thermal wind uT has the same meridional structure as the net poleward heat
transport, and inspecting equation (4a) we see that the same must be true for the mean
zonal wind um. Additionally, from the assumption about the zonal mean wind, it implies
that λ2y = 2π2/W2. Finally, equations (4a,b) can be substantially simplified to

∂um
∂t

= −λ2yAum − κ

2
(um − 2uT), (8a)

∂uT
∂t

= − λ2yλ
2
R

λ2y + λ2R
v′
mψ

′
T − λ2yAuT + λ2y

λ2y + λ2R

κ

2
(um − 2uT)+ λ2R

λ2y + λ2R

2δpRH
f0p2cpW

,

(8b)

which is now a closed system by an evolution equation for the net poleward temperature
flux.

This equation and evolution equations for three other occurring eddy correlation terms,
namely themeanmeridional kinetic energy v′2

m, the temperature variance v′2
T and the cross-

correlation between temperature and geopotential v′
mv′

T , are derived following to some
extent the technique by Thompson (1987), with the difference that our model includes a
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surface friction term. The poleward temperature flux equations is

∂

∂t
v′
mψ

′
T = λ2R + λ2y − λ2∇

λ2∇ + λ2R
uTv′2

m − λ2R
λ2∇(λ

2
∇ + λ2R)

(
β + λ2yum

)
v′
mv′

T

+ λ2∇ − λ2y

λ2∇
uTv′2

T −
(
2Aλ2∇ + κ(3λ2∇ + λ2R)

2(λ2∇ + λ2R)

)
v′
mψ

′
T . (9)

The evolution equations for the three other eddy correlation terms can be found in
appendix A.

3. The non-dimensional model

Up to this point the meridional wavenumber k of the eddy component of the stream-
functions remained unspecified. In principle, one has that k = 2nπ/L, where n is a
non-vanishing natural number. Now, we let k be a multiple of the longitudinal wavenum-
ber l and we define k = jl = jπ/W where j is a parameter describing the aspect ratio of the
eddies, that is – for simplicity – assumed to be a non-negative number. Indeed, j can only
assume discrete values, but since L � W, they are closely spaced and so the discrete nature
of j is neglected in what follows. Hence, j larger than 1 means that the eddies are elongated
in the meridional direction. If j is smaller than 1 but positive, the eddies are elongated in
the longitudinal direction.

To simplify the notation, we introduce the dimensionless variables

M = λ2R
2β

um, S = λ2R
2β

uT , T = λ5R
23β2

v′
mψ

′
T ,

K = λ4R
22β2

v′2
m, V = λ4R

22β2
v′2
T , X = λ4R

22β2
v′
mv′

T

and define the time variable τ = tβ/λR, so that (8a,b), (9) and (A.1a-c) of appendix A take
the form

dM
dτ

= −aM + αS, (10a)

dS
dτ

= γα

2
M − bS − 4γT + ηH, (10b)

dT
dτ

= μSK − δλ2R
2λ2y

X − δMX − cT + j2 − 1
j2 + 1

SV , (10c)

dK
dτ

= 22j2(j2 − 1)
j2 + 1

λ2y

λ2R
ST − dK + 2αX, (10d)

dV
dτ

= 22j2λ2yμ

λ2R
ST − eV + αζX, (10e)

dX
dτ

= j2δ

(
1 + 2λ2y

λ2R
M

)
T − cX + αV + αζ

2
K, (10f)
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where the dimensionless constants α, γ , δ (B.1a-c), ζ ,μ, η (B.1f-h) and a, b, c, d, e (B.2b-f)
are defined in appendix B.

For a non-zero heating rate H this system exhibits three steady states. The first one is a
zonal steady state where all eddy components are zero:

P0 = (M0, S0, 0, 0, 0, 0) = 2
2ab − γα2

ηH(α, a, 0, 0, 0, 0). (11)

Here, M0 and S0 are always positive because the denominator of the pre-factor and all
parameter values including the heating rate are positive within the considered parameter
space (see appendixC). The second steady state, denoted byP∗ = (M∗, S∗,T∗,K∗,V∗,X∗),
is given by

M∗ = α

a
S∗, S∗ = j2a

A

[(
B2 + 4CD

)1/2 + B
]
, (12a,b)

T∗ = −2ab − γα2

8aγ
S∗ + η

4γ
H, (12c)

where K∗, V∗, X∗ (D.1a-c) and the new parameters B, C and D (D.2a-c), all given in
appendix D. Note that B, C and D are independent of the heating H and therefore the
steady state mean zonal wind and shear are independent of the heating.

The third steady state of the system can be excluded as unphysical since the values of K
and V are negative in the given parameter space despite being non-dimensional variables
for v′2

m and v′2
T , respectively, which being squared real quantities must always be non-

negative. Therefore the system exhibits two physical solutions, in the following referred
to as the zonal (P0) and the eddy steady state (P∗).

4. Physical mechanisms of zonal and eddy saturated steady state

The linear stability of these two solutions is determined by numerically calculating the
eigenvalues of the Jacobian matrix of the system (10a-f) at each steady state. Therefore, the
parameters in table C1 were kept fixed, whereas the surface friction diffusion κ , the eddy
diffusion A, the mean rate of heating H and the parameter j describing the eddy aspect
ratio were varied within the ranges given in table C2.

In the following, the notion of an attracting (stable) and repelling (unstable) steady state
is used to describe the linear stability of the two steady states. Hence, if the eddy steady
state is attracting, the model converges to the steady state with finite eddy contributions.
This state then breaks the zonal symmetry of the zonal state: the phase of the eddies is
not determined but the eddy correlation statistics are fixed in time. On the other hand, an
attracting zonal steady state describes a state of the atmosphere where eddy activity decays
until the flow is purely zonal, and once in that state remains zonal.

The considered parameter space is divided into two opposite stability regions where
either the zonal or the eddy steady state is attracting and the respective other state is
repelling. Keeping κ , A and j fixed but increasing the heating rate H, a transcritical bifur-
cation occurs (see, e.g. Guckenheimer and Holmes 1983) and the system switches stability
from the zonal to the eddy steady state. From equation (11) it is clear that the mean zonal
wind and shear of P0 grow linearly with the heatingH. However, this proportionality is lost
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Figure 1. Contours of themean zonalwind at the top level u1 (left) and the net poleward eddy tempera-
ture flux (right) for the respective attracting steady state; the dashed region is theparameter spacewhere
the zonal steady state P0 is attracting, the non-dashed region where the eddy steady state P∗ is attract-
ing; note that the rangeofH in the right-handfigure is four times the range in the left;κ = 4 × 10−6 s−1,
j = 2.5. (Colour online)

for the eddy steady state, where M∗ and S∗ are independent of the heating rate. This can
be seen directly from (12) and from the left-hand panel of figure 1, where contours of the
mean zonal wind at the top level for the respective attracting steady state are shown. Such
an insensitivity of the mean zonal wind to the forcing by the heating rate closely resembles
the eddy saturation mechanism discussed in the introduction.

In contrast to that, the (non-dimensional) net poleward heat transportT∗ grows linearly
with H (see again (12) and the right-hand panel of figure 1) and is non-negative in its
attracting parameter region only. For values ofH where the zonal steady state is attracting,
T∗ is negative and therefore the net eddy heat transport is equatorward for the eddy state.
This would imply that the system transports heat from cold towards warm regions, which
suggests a condition that is thermodynamically not realisable. This further clarifies that the
eddy steady state is physically irrelevant in its repelling region. Furthermore, it is clear from
(12) that the steady state value of the net poleward heat transport only depends on the shear
and incoming heat but not on the three other eddy correlation variables K∗, V∗ and X∗.
Hence, the dynamics of the system are resembled by the mean zonal shear (proportional
to the mean zonal wind) and the net poleward heat transport, and K∗, V∗ and X∗ do not
need to be considered separately.

The stability switch described above is also dependent on the eddy diffusion parameter
A. This is illustrated in figure 1, where a higher eddy diffusion yields a larger heating rate at
which the zonal steady state loses stability. The relation between eddy diffusion and heating
rate in P0 is determined by (11). Replacing S0 by the mean poleward temperature gradient
at the middle level T2 yields

G(A, κ)

(
−∂T2

∂y

)
= 4λ2R

cpW
(
λ2y + λ2R

)H (13a)

with

G(A, κ) = λ2yA
2λ2yA + (2γ + 1)κ

2λ2yA + κ
. (13b)
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Since in the considered parameter space κ is much smaller than one, the function G is
approximately linear in A. In physical terms, for a fixed equator to pole mean temperature
gradient, a linear increase of the heating rate H can be balanced by a linearly increased
eddy diffusion. In this sense, the stabilisation of the zonal state against heating is always
realised by an eddy heat transport, be it parameterised, as an eddy diffusion, or explicit, as
in eddy heat transport.

It is also clear from (13) that the surface friction κ is not able to balance the heating
and the stability analysis shows that a change in κ does not influence the critical value of
heating for realistic values of κ (see the left-hand panel of figure 3).

These opposed roles of the zonal and eddy steady state describe two physically related
mechanisms of the atmosphere to compensate incoming heat. In the attracting region of
the zonal steady state the relatively low heating can be compensated by the eddy diffusion.
However, this balance is no longer achievable for increasing H and decreasing A so that
in the eddy steady state the eddies have to reach a finite size to perform poleward trans-
port of heat and compensate the atmospheric radiative energy imbalance. In the actual
atmosphere – or in more complex models – this corresponds to the case where the flow
is baroclinically unstable, and baroclinic cyclones grow and decay as manifestation of an
active Lorenz energy cycle and, at the same time, transport heat poleward. Although it is
a similar mechanism, the compensation of the heating does not depend on the friction
diffusion κ . This is explained later in this section.

Another parameter that influences the stability regions of the steady states is the aspect
ratio j ∈ R

+ of the eddy shape. For the previous analysis j = 2.5 was chosen, which cor-
responds to eddies elongated by a factor of 2.5 in the meridional direction. For this aspect
ratio, and even more meridionally elongated eddies, a stability switch always occurs and
the larger j, the smaller is the heating rateH at this switching point. In contrast to that, for
j smaller than one, corresponding to longitudinally elongated eddies, there is no exchange
of stability and the zonal steady state is attracting for the whole parameter space under
consideration.

For an aspect ratio above one, the value of H at which the zonal state loses stability is
additionally dependent on the eddy diffusion parameter. The left-hand panel of figure 2

Figure 2. The value of the heating rate H at which the stability switch occurs (left) and the mean zonal
wind at the top level u1 (right) as a function of the eddy shape aspect ratio j, shown for several values of
the eddy diffusion A in m2 s−1; H = 3.5 × 10−3 KJton−1 s−1 (right); κ = 4 × 10−6 s−1 (both). (Colour
online)
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Figure 3. Contours of the mean zonal wind at the top level u1 for realistic (left) and extremely high
(right) values of the surface friction parameter κ ; the dashed region is the parameter space where the
zonal steady state P0 is attracting, the non-dashed region where the eddy steady state P∗ is attracting;
note that in the left-hand panel the scale for the surface friction is logarithmic; A = 105 m2 s−1, j = 2.5.
(Colour online)

shows the values of H at which the switch occurs as a function of j for several orders of
magnitude ofA. For a vanishing small eddy diffusion (e.g.A on the order of 10m2 s−1) the
eddy steady state is attracting for the whole range ofH and an aspect ratio larger than one.
Increasing A yields an exchange of stability for higher H, which was already seen in figure
1, and additionally an increasing value of j is required for the eddy steady state to become
attracting.

Hence, for meridionally more elongated eddies the eddy steady state becomes attracting
at a lower heating rate. It is indeed well known that, in the full quasi-geostrophic flow,
baroclinic instability is facilitated for these geometrical conditions (Pedlosky 1979). Only
for a very large aspect ratio j above five and for a large eddy diffusion the critical value of
H increases again. As before, besides this behaviour at very high aspect ratios, a change in
the surface friction does not change this critical heating rate.

The right-hand panel of figure 2 shows the mean zonal wind at the top level of the eddy
steady state as a function of the aspect ratio. Eddies close to a circular shape, i.e. j close
to one, yield unrealistically high wind speeds just above 215m s−1. For more meridion-
ally elongated eddies the wind speed decreases for an aspect ratio of up to 5 and thereafter
increases again for very high eddy diffusion values. For j ≥ 2.5 one gets reasonably realis-
tic values for the wind speed. However, before this upward slope, the wind speed neither
depends on the eddy diffusion nor on the surface friction diffusion (the latter not shown).

For the net poleward heat transport the opposite holds: the longer the eddies in the
meridional direction, the higher the heat transport until it drops again for very large j.
Besides for these very high aspect ratios, the surface friction diffusion κ has again no impact
on the values, whereas a very high eddy diffusion A yields a decreased heat transport for
the whole range of j.

As brieflymentioned earlier, the surface friction κ could perhaps be thought to act simi-
larly to the eddy diffusionA, taking out energy from the system and thus compensating for
the heatingH. However, the heating forces a vertical zonal shear by thermal wind balance,
but would not force a zonal wind directly at the surface. The model can develop very low
surface winds but increase its shear by increasing upper level zonal winds. In this sense,
the surface friction does not directly compensate for the incoming heating H.
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However, insofar as the heating induces surface winds, the surface friction would rep-
resent a sink for those surface winds. In that case, one would expect that a higher surface
friction is able to dissipate the incoming energy and therefore moves the stability switch to
higher values of the heating. This frictional adjustment can not be seen for realistic values
of κ (left-hand panel of figure 3) but is observable for extremely high surface friction values
(right-hand panel of figure 3).

Additionally, and in contrast to the eddy diffusion A, an extremely high surface friction
increases the mean zonal wind to unrealistically high values. This behaviour of the mean
flow was also observed by Novak et al. (2018) and Marshall et al. (2017) for the Antarctic
Circumpolar Current.

5. Short and long wavelength cut-off

For sufficiently large eddy diffusion A, the left-hand panel of figure 2 shows a short (large
j) and long wavelength (small j) cut-off of the instability of the zonal solution. In other
words, our model only exhibits finite-size eddies within a certain range of wavelengths and
the zonal flow stabilises for very short and long waves.

A similar result follows from the classical stability analysis of the Phillips model pre-
sented in, for example, Holton and Hakim (2013). This is done for a simpler version of
the two-level model, without surface friction, eddy diffusion or external forcing due to
heating, and is obtained by performing a linear perturbation analysis. Assuming wave-like
solutions for the barotropic and baroclinic development of the streamfunction, they obtain
a dispersion relation for the phase speed of the waves and from this derive conditions for
instability of the zonal flow and the growth of perturbations. The zonal flow is stable for
very short waves because they are inefficient in converting available into potential energy,
and for very long waves, because they are stabilised by the differential rotation of the plane
along latitudes (β-effect). This instability is similar to the repelling regime of the zonal
steady state in our model and the results of Holton and Hakim (2013) are compared to
ours in the following.

The first condition in Holton and Hakim (2013) for instability to occur is

uT > β
/
λ2R. (14)

This is also Phillips’ criterion for baroclinic instability of a two-level model, see
Phillips (1954). Using the values in table C1 we obtain a minimal shear of approximately
3.65m s−1, meaning that for a shear below this value the zonal steady state must always
be attracting. In fact, it can be shown that for values of uT below this level our model is
always in the attracting region of the zonal steady state and as the shear is increased this
state becomes repelling.

According toHolton andHakim (2013), theminimumvalue ofuT forwhichP0 becomes
repelling occurs when k2 = √

2λ2R/2, where k is the meridional wavenumber. Using the
relation k = jπ/W, this condition becomes

j = 2−1/4WλR
/
π ≈ 5.6, (15)

where we used again the values in table C1. Analysing our model yields exactly that
value of j at which the mean zonal shear is minimal. The corresponding minimum is
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uT ≈ 4.1m s−1 and is similar to the value given by Holton and Hakim (2013). This value
of j also yields the wavenumber of maximal instability of the purely zonal flow.

The short wavelength cut-off observed for large eddy diffusion A in the left-hand panel
of figure 2 is given in Holton and Hakim (2013) by the critical wavelength

Lc = 2π
/
λ2R ≈ 3 × 103 km. (16)

For waves shorter than this value, instability can not occur and the zonal steady state
remains attracting. In our model this value corresponds to j>6.6 and matches roughly
the value for which the zonal steady state becomes attracting again if the eddy diffusion is
very high and the heating rate is approximately the standard value given in table C2.

6. Q factor

The quality factorQ is a dimensionless parameter that is used inmechanics and electronics
to describe the oscillatory behaviour of a damped system. In general, theQ-factor is defined
as the ratio between the natural undamped frequency of a dynamical system and its damp-
ing coefficient. Therefore, a high Q-factor indicates a larger number of oscillations before
the system reaches the attracting steady state, in contrast to a low Q-factor indicating that
the damping is more dominant and the attracting steady state is reached after fewer oscil-
lations. AQ-factor below 1/2 corresponds to an overdamped system that does not oscillate
at all when displaced from its steady state, but returns to it by exponential decay.

This concept can be applied to the theory of damped oscillators, which satisfy the linear
equation

ẍ + λẋ + ω2
0x = 0, (17)

where ω2
0 is the frequency of free oscillations and λ the damping coefficient. The general

solution of equation (17) is

x = A exp
(

−λ
2
t
)
exp

[
±i
(
ω2
0 − λ2

4

)1/2
t

]
= A exp

(
pt
)
, (18)

where A is a fixed complex amplitude and p = −λ/2 ± i(ω2
0 − λ2/4)1/2. The generally

accepted definition of the Q-factor for the damped oscillator is

Q = ω0
/
λ. (19)

We now consider a linearised system obeying the differential equation dx/dt = αx. This
is associated with a linear damped oscillator if we take p = α = αr + iαi, where αr < 0
is the real and αi the imaginary part of the eigenvalue. With this identification, we find
αr = −λ/2 and αi = ±(ω2

0 − λ2/4)1/2 and hence the Q-factor of a linearised system can
be expressed as

Q =
(
α2i + α2r

)1/2
−2αr

= |α|
−2αr

. (20)

By construction, Q ≥ 1/2 for eigenvalues with a non-zero imaginary part, which is asso-
ciated with the oscillatory behaviour of the system. For real eigenvalues, the Q-factor is
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Figure 4. LEFT: Contours of the Q-factor in the heating rate H versus eddy diffusion A plane, the dashed
region is the parameter spacewhere the zonal steady state P0 is attracting, the non-dashed regionwhere
theeddy steady stateP∗ is attracting,κ = 4 × 10−6 s−1, j = 2.5; RIGHT:Q-factor as a functionof j for var-
ious values of the eddy diffusion A in m2 s−1, κ = 4 × 10−6 s−1, H = 3.5 × 10−3 KJton−1 s−1. (Colour
online)

exactly 1/2 and the system is said to be critically damped. Similar to an over-damped
system, the steady state is approached without oscillations.

The left-hand panel of figure 4 shows contours of the Q-factor in the heating rate H
versus eddy diffusion A plane. As expected, Q is always greater than 1/2 so the system
oscillates everywhere in the considered parameter space. Furthermore, it can be seen that
an increase of the eddy diffusion parameter A leads to a decrease of the Q-factor. This
corresponds to the fact that the diffusion acts as a damping and stabilising factor of the
system and leads to a reduction of the available energy. Therefore, the higher the diffusion,
the less the initial transient relies on the eddy heat flux to compensate the heat imbalance.
In contrast to that, a larger heating rate H increases the Q-factor since more heat needs to
be transported away from the equator and therefore more oscillatory cycles of the eddies
are needed during the initial transient. The contours ofQ in the heating rate versus surface
friction κ plane are similar (not shown) and can be interpreted in the same way.

On the right-hand panel of figure 4 the Q-factor is shown as a function of the eddy
aspect ratio j for different values of A. The highest Q-factor occurs for the smallest j, i.e.
for the most symmetric eddy shape, and the larger j, the smaller is theQ-factor. Hence, for
eddies that are more elongated in the meridional direction, the system undergoes fewer
oscillatory cycles before it reaches the attracting steady state. In physical terms, meridion-
ally elongated eddies aremore efficient in balancing the heat in the atmosphere than eddies
close to symmetric. This also coincides with the findings in the earlier chapters. Apart from
that, the dependence on the diffusion parameterA is the same as in the contour plot on the
left panel.

7. Discussion and conclusion

WeusedPhillips’ classical two-level quasi-geostrophicmodel on theβ-plane (Phillips 1956)
and performed a model reduction to develop a system of six ordinary differential equa-
tions describing the interaction between the mean flow and shear, and the eddy activity in
the mid-latitude atmosphere. This has been achieved by imposing a specific shape on the
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eddy streamfunction and thus looking at the evolution of the amplitude of the atmospheric
modes considered in our spectral projection. As a result, our model is able to deal with
the interaction between the zonal wind and waves, but neglects, instead, direct wave-wave
interactions. This approximation is well-known to bear value both in terms of representa-
tion of the baroclinic instability of the atmosphere (Speranza and Malguzzi 1988) and in
terms of the representation of its statistical properties (Schneider 2006).

Instead of taking the usual approach of performing a normal mode instability analysis,
we used classical dynamical systems theory and determined two physically possible steady
states, namely a zonal solution, where the flow is purely zonal and has no eddy contribution,
and an eddy solution, where zonal flow and eddies coexist. The considered parameter space
is divided into two separate regionswhere either the zonal or the eddy solution is attracting,
while the alternative solution is unstable and repels nearby initial conditions.

The two competing states are in close correspondence with two possible physical mech-
anisms that allow the atmosphere to reach a steady state in such a way that the imbalance in
the diabatic heating between equator to the poles is compensated. Relatively weak imbal-
ances in the diabatic heating can be balanced by diffusion and no eddies need to develop
to flatten the meridional temperature gradient. Indeed, the flow is, in this case, baroclini-
cally stable. In this state the mean flow increases for stronger forcing by diabatic heating,
because the latter imposes a stronger temperature difference between low and high lati-
tudes. This monotonicity is lost as soon as the heating reaches a certain threshold, where
the eddies start growing to compensate the incoming heat because the damping effect of
the eddy diffusion is no longer sufficient. The zonal flow is then baroclinically unstable so
that eddies grow and reach a finite steady-state amplitude, in such a way that the result-
ing poleward eddy heat flux weakens the baroclinicity and therefore the mean flow. This
process is referred to as baroclinic adjustment (Stone 1978).

In this baroclinically unstable eddy steady state the zonal flow is independent of the
external forcing by the heating. In contrast, the net poleward heat transport by the eddies
and the eddy energy increase with incoming heat, so incoming energy in form of dia-
batic forcing of the zonal mean flow goes directly into the eddies in form of eddy kinetic
energy, where it is dissipated. Therefore, the stability switch from zonal to eddy steady state
describes a transfer of the location of dissipation of incoming energy. In terms of the Lorenz
energy cycle, for sufficiently large heating, the zonal flow can no longer act as the reservoir
for the incoming energy, so a new reservoir needs to develop, namely the eddies. Thus, the
reduced model is exhibiting complete eddy saturation.

In contrast to Munday et al. (2013), stating that eddy-resolving models of the ACC
lead to a much lower sensitivity of the volume transport to increased forcing, Marshall
et al. (2017) suggested the possibility to capture the physics of eddy saturation in models
with parameterised eddies. Thereafter,Mak et al. (2017) used a highly idealisedmodel con-
figuration of the ACCwith parameterised eddies to obtain a near total eddy saturation. For
the atmosphere, Novak et al. (2018) found a model where the mean baroclinicity is nearly
independent of the thermal forcing, whereas the eddy intensity responds more strongly to
the forcing and is independent of the eddy dissipation. In this context, themodel presented
in this work is the first to exhibit complete eddy saturation in a model of the mid-latitude
atmosphere with parameterised eddies.

Another aspect of the eddy saturation mechanism described in Marshall et al. (2017) is
the increase of the volume transport with the bottom drag, and one would expect a similar
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effect of the surface friction in ourmodel, dissipating energy from the system and therefore
compensating for the incoming heat. This would lead to a stability switch at higher values
of the heating and to an increase of the zonal wind speed. However, this effect can only be
seen for unrealistically high values of the surface friction, perhaps indicating a limitation
of our model. Due to the two-level setup the model is able to develop a high wind shear
induced by the incoming heating by increasing the upper level zonal wind but maintaining
a very low surface wind. Hence, the surface friction can not directly compensate for the
incoming heating in the model, although in the atmosphere the heating actually induces
stronger surface winds.

In addition to the zonal wind being independent of the incoming heating and the sur-
face friction (for realistic values) in the baroclinically unstable eddy steady state, the wind
speed is independent of the eddy diffusion as well. Instead, an increased diffusion leads
to a decrease of eddy energy, indicating the damping effect of eddy dissipation which is
known as dissipative control (e.g. Novak et al. 2018), and is in accordance with Marshall et
al. (2017), stating that the equilibrium volume transport is controlled by the ACC requir-
ing sufficiently strong vertical shear induced by external forcing to overcome the stabilising
role of the eddy dissipation.

Despite the simplicity of the model and the limiting assumptions made on the shape
of the eddies, our model exhibits complete eddy saturation, a regime of the mid-latitude
atmosphere that appears to be supported by numerical models. The eddy saturationmech-
anism is explained as a switch of stability from a zonalmean state to amean state with finite
eddy amplitude. This work is of relevance to climate modelling, where the response of the
mid-latitude storm tracks to changes in the diabatic heating is still not fully understood.
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Appendices

Appendix A Additional evolution equations

The evolution equations for the mean meridional kinetic energy v′2
m, the temperature variance v′2

T
and the cross-correlation between temperature and geopotential v′

mv′
T are

∂v′2
m
∂t

= 2k2(λ2∇ − λ2y)

λ2∇
uTv′

mψ
′
T − (2Aλ2∇ + κ)v′2

m + 2κv′
mv′

T , (A.1a)

∂v′2
T
∂t

= 2k2(λ2y + λ2R − λ2∇)
λ2∇ + λ2R

uTv′
mψ

′
T −

(
2Aλ2∇ + 2κλ2∇

λ2∇ + λ2R

)
v′2
T + κλ2∇

λ2∇ + λ2R
v′
mv′

T , (A.1b)

∂

∂t
v′
mv′

T = λ2Rk
2

λ2∇(λ
2
∇ + λ2R)

(
β + λ2yum

)
v′
mψ

′
T −

(
2Aλ2∇ + κ(3λ2∇ + λ2R)

2(λ2∇ + λ2R)

)
v′
mv′

T

+ κv′2
T + κλ2∇

2(λ2∇ + λ2R)
v′2
m. (A.1c)

Appendix B Dimensionless constants of model (10a-f)

The dimensionless constants appearing in (10a-f) are

α = λR

β
κ , γ = λ2y

λ2y + λ2R
, δ = λ2R

ĵ(ĵλ2y + λ2R)
, ε = 3ĵλ2y + λ2R

ĵλ2y + λ2R
, ν = λRλ

2
yA
β

, (B.1a–e)

ζ = ĵλ2y
ĵλ2y + λ2R

, μ = λ2R + (1 − ĵ)λ2y
ĵλ2y + λ2R

η = λ5RR
β2f0cpW(λ2y + λ2R)

, (B.1f–h)

and

ĵ = 1
2
(
j2 + 1

)
, a = ν + 1

2α, b = ν + γα, (B.2a–c)

c = 2ĵν + 1
2αε, d = 2ĵν + α, e = 2ĵν + 2αζ . (B.2d–f)

Appendix C Parameter space

Table C1. Fixed parameter values for stability analysis.

Parameter λ2R λ2y β R f0 cp W

Value 4.39 × 10−12 1.97 × 10−13 1.6 × 10−11 287 10−4 1004 107

Unit m−2 m−2 m−1 s−1 JK−1 kg−1 s−1 JK−1 kg−1 m

Table C2. Varying parameter values for stability analysis.

Parameter κ A H j

Minimum 10−7 1 0 0.1
Standard 4 × 10−6 105 3.5 × 10−3 –
Maximum 8 × 10−6 105 4 × 10−3 6.8
Unit s−1 m2 s−1 KJton−1 s−1 –
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Appendix D Other variables of eddy steady state

The non-dimensional eddy steady state variables of the mean meridional kinetic energy K∗, the
temperature variance V∗ and the cross-correlation between temperature and geopotential X∗ are

K∗ = 22j2(j2 − 1)λ2y
(j2 + 1)dλ2R

S∗T∗ + 2α
d
X∗, V∗ = 22j2μλ2y

eλ2R
S∗T∗ + αζ

e
X∗, (D.1a,b)

X∗ =
(
2j2αλ2yg

aλ2R
S∗ + j2δ

)(
c − αζ

d + e
de

)−1
T∗ (D.1c)

with constants

B = 2αδ(g − f )
(
c − α2ζ

d + e
de

)−1
, C = δ2λ2R

2λ2y

(
c − α2ζ

d + e
de

)−1
+ c, (D.2a,b)

D = 8
λ2y

λ2R

[
2a2μ

(
1 − 1

ĵ

)
d + e
de

+ α2fg
(
c − α2ζ

d + e
de

)−1
]
, (D.2c)

f = 2aμ
d

+
(
1 − 1

ĵ

)
aζ
e

− δ, g = δ + (j2 − 1)aζ
(j2 + 1)d

+ 2aμ
e

. (D.2d,e)

Here, B, C and g are positive for the whole parameter space given by tables C1 and C2, D and f are
non-negative for j larger than 1 and for the positivity ofD additionally κ ≥ 3 × 10−6 s−1 is required.
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