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Abstract
It is well known that, with a particular choice of norm, the classical double-layer
potential operator D has essential norm< 1/2 as an operator on the natural trace space
H1/2(�) whenever � is the boundary of a bounded Lipschitz domain. This implies,
for the standard second-kind boundary integral equations for the interior and exterior
Dirichlet and Neumann problems in potential theory, convergence of the Galerkin
method in H1/2(�) for any sequence of finite-dimensional subspaces (HN )∞N=1 that
is asymptotically dense in H1/2(�). Long-standing open questions are whether the
essential norm is also< 1/2 for D as an operator on L2(�) for all Lipschitz� in 2-d; or
whether, for all Lipschitz � in 2-d and 3-d, or at least for the smaller class of Lipschitz
polyhedra in 3-d, the weaker condition holds that the operators ± 1

2 I + D are compact
perturbations of coercive operators—this a necessary and sufficient condition for the
convergence of the Galerkin method for every sequence of subspaces (HN )∞N=1 that
is asymptotically dense in L2(�). We settle these open questions negatively. We give
examples of 2-d and 3-d Lipschitz domains with Lipschitz constant equal to one for
which the essential norm of D is ≥ 1/2, and examples with Lipschitz constant two
for which the operators ± 1

2 I + D are not coercive plus compact. We also give, for
every C > 0, examples of Lipschitz polyhedra for which the essential norm is ≥ C
and for which λI + D is not a compact perturbation of a coercive operator for any
real or complex λ with |λ| ≤ C . We then, via a new result on the Galerkin method in
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Hilbert spaces, explore the implications of these results for the convergence ofGalerkin
boundary elementmethods in the L2(�) setting. Finally,we resolve negatively a related
open question in the convergence theory for collocationmethods, showing that, for our
polyhedral examples, there is no weighted norm on C(�), equivalent to the standard
supremum norm, for which the essential norm of D on C(�) is < 1/2.

Mathematics Subject Classification 31A10 · 31B10 · 45B05 · 45L05 · 65R20

1 Introduction

Layer potentials and boundary integral equations have long been an important tool
in the mathematics of PDEs (e.g., [56,70–72,91]), and have been, and continue to
be, of equal importance for practical scientific and engineering computation. In par-
ticular, numerical methods based on Galerkin, collocation, or numerical quadrature
discretisation, coupled with fast matrix-vector multiply and compression algorithms,
and iterative solvers such as GMRES, provide spectacularly effective computa-
tional tools for solving a range of linear boundary value problems, for example in
potential theory, elasticity, and acoustic and electromagnetic wave scattering (e.g.,
[9,13,26,47,63,84,96]).

Despite the significant role boundary integral equations (BIEs) play in the anal-
ysis of PDEs, and their importance for numerical computation, there remain many
open problems for analysis and numerical analysis. Second-kind integral equation
formulations, dating back to Gauss and the work of Carl Neumann (see [31,95]), con-
tinue to be hugely popular in computational practice because they lead naturally to
well-conditioned linear systems that can be solved by iterativemethods in a small num-
ber of iterations (see, e.g., [5,13,17,29,38,39,63,81]). However, even for the classical
second-kind integral equations of potential theory there exists no complete conver-
gence theory for Galerkin methods for general Lipschitz domains (or even for general
Lipschitz polyhedra in 3-d), set in the Hilbert space of L2 functions on the boundary
�, carrying out integration against test functions using the natural L2(�) inner prod-
uct, despite the utility of such Galerkin methods for large-scale computations (e.g.,
[9,63,96]). Before giving further details, including details of the open questions that
we tackle in this paper, we introduce some of the notation that we use.

Throughout, �− ⊂ R
d , d = 2, 3, is a bounded Lipschitz domain,1 with boundary

� and outward-pointing unit normal vector n, and �+ := R
d \ �− is the exterior of

�−, also a Lipschitz domain with boundary �. The interior and exterior (in �− and
�+) Dirichlet and Neumann problems for Laplace’s equation can be reformulated as
BIEs involving the operators

1

2
I ± D and

1

2
I ± D′ (1.1)

1 We refer to a subset � ⊂ R
d as a domain if it is open; we do not require additionally that it is connected.

A Lipschitz domain is one for which, in some neighbourhood of each point on the boundary, � can be
written, in some rotated coordinate system, as the graph of a Lipschitz continuous function with the domain
only on one side of � (see, e.g., [70, Definition 3.28] for details).
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(seeTable 1),where thedouble-layer operator D and theadjoint double-layer operator
D′ are defined by

Dφ(x) =
∫

�

∂�(x, y)
∂n(y)

φ(y) ds(y) and D′φ(x) =
∫

�

∂�(x, y)
∂n(x)

φ(y) ds(y), (1.2)

for φ ∈ L2(�) and almost all x ∈ �, where �(x, y) is the fundamental solution for
Laplace’s equation,

�(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

1

2π
log

(
1

|x − y|
)

, d = 2,

1

4π |x − y| , d = 3,
(1.3)

for x, y ∈ R
d with x �= y. Explicitly,

Dφ(x) = 1

cd

∫
�

(x − y) · n(y)
|x − y|d φ(y) ds(y)

and D′φ(x) = 1

cd

∫
�

(y − x) · n(x)
|x − y|d φ(y) ds(y), (1.4)

where cd is the surface measure of the unit sphere in R
d (c2 = 2π , c3 = 4π ).

For general Lipschitz �, the integrals in the definitions of D and D′ are understood
as Cauchy principal values, and D and D′ are bounded on L2(�) by the results on
boundedness of the Cauchy integral on Lipschitz � of Coifman, McIntosh, and Meyer
[27], following earlier work by Calderón [15] on boundedness for � with small Lips-
chitz constant (in the sense of Definition 3.1 below). As shown by Verchota [94] (and
see [36, Appendix A], [73], [19, Thm. 2.25]) the operators in (1.1) are also Fredholm
of index zero on L2(�). Indeed, when � is connected, 1

2 I − D and 1
2 I − D′ are

invertible on L2(�) and 1
2 I + D′ is invertible on L2

0(�), the set of φ ∈ L2(�) with
mean value zero, so that one-rank perturbations of 1

2 I + D′ and 1
2 I + D are invertible

on L2(�) [94]. More generally (see [71, §5.15] and [61,62,73,84,89]), whatever the
topology of �, the interior and exterior Dirichlet problems can be formulated as BIEs
of the form

Aφ = g where A := 1

2
I + D∗, φ, g ∈ L2(�), (1.5)

the operator D∗ is a finite rank or compact perturbation of ±D or ±D′ as indicated
in Table 1, and A : L2(�) → L2(�) is invertible. The same holds for the Neumann
problems provided the Neumann data are square integrable.2

2 For example, when �− is connected, the interior Neumann problem with data g ∈ L2
0(�) can be

formulated as (1.5) with D∗ = D′ + P , where P is orthogonal projection onto the orthogonal complement
of L2

0(�), and A : L2(�) → L2(�) given by (1.5) is invertible (see, e.g., proof of [19, Thm. 2.25]).
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Table 1 The integral operators involved in the standard second-kind integral-equation formulations of the
interior and exterior Dirichlet and Neumann problems for Laplace’s equation

Interior Dirichlet Interior Neumann Exterior Dirichlet Exterior Neumann
problem problem problem problem

Direct 1
2 I − D′ 1

2 I + D 1
2 I + D′ 1

2 I − D

Indirect 1
2 I − D 1

2 I + D′ 1
2 I + D 1

2 I − D′

Direct and indirect have the standard meanings (e.g. [84]): direct formulations are those obtained from a
Green’s representation theorem by taking traces; indirect formulations are those obtained by using a layer
potential as an ansatz and taking traces

The Galerkin method for (1.5) in L2(�) requires first choosing a sequence of finite-
dimensional approximation spaces (HN )∞N=1 in L2(�) that is asymptotically dense in
L2(�), meaning that

inf
φN ∈HN

‖ψ − φN ‖L2(�) → 0 as N → ∞,

for every ψ ∈ L2(�). Then, for each N , we seek an approximation φN ∈ HN such
that

(AφN , ψN )L2(�) = (g, ψN )L2(�) for all ψN ∈ HN . (1.6)

We say that this Galerkin method converges if, for some N0 ∈ N, φN is well-defined
by (1.6) for all N ≥ N0, and all g ∈ L2(�), and φN → φ = A−1g in L2(�) as
N → ∞ for all g ∈ L2(�).

It follows from existing, general results on the Galerkin method in a Hilbert space
setting (Theorem2.3 below) that theGalerkinmethod (1.6) converges for every asymp-
totically dense approximation sequence (HN )∞N=1 ⊂ L2(�) if and only if A can be
written as the sum of a coercive and a compact operator (coercive in the sense of (2.1)
below). In particular, A is coercive plus compact if ‖D‖L2(�),ess < 1/2, where

∥∥D
∥∥

L2(�),ess := inf
K compact

∥∥D − K
∥∥

L2(�)
(1.7)

is the essential norm of D as an operator on L2(�), for then D = D† + K with
‖D†‖L2(�) < 1/2 and K compact, so that 1

2 I + D† is coercive.
Wendland [95] has reviewed the state-of-the-art in numerical analysis of Galerkin

and collocationmethods for solution of (1.5), and the state-of-the-art in related analysis
questions for the double-layer potential operator D, with some emphasis on the case
when � is Lipschitz polyhedral (meaning that �− is a Lipschitz polyhedron). As he
notes, most of the existing proofs of convergence for the Galerkin method (1.6) (all
the proofs in 2-d) rely on establishing that ‖D‖L2(�),ess < 1/2. These comprise the
cases where:

(i) � is C1, when D (and its L2(�) adjoint D′) are compact by [41], so that
‖D‖L2(�),ess = 0;
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(ii) � is a 2-d curvilinear polygon with each side C1,α for some 0 < α < 1 and
with each corner angle in the range (0, 2π); this result was announced in [86],
with details of the proof given in [87], and with the analogous result for polygons
following from the result of [18, §3], (see, e.g., [11, Lemma 1.5]).

Additionally, Wendland suggests that ‖D‖L2(�),ess < 1/2 if the Lipschitz character
of � (in the sense of Definition 3.1) is small enough “due to the results of [74]”.
The results in [74, Lemma 1, Page 392] concern the essential spectral radius but the
arguments can be adapted to prove that ‖D‖L2(�),ess < 1/2 if the Lipschitz character
of � is small enough, and we do this below in Corollary 3.5.

As Wendland notes, the Galerkin method (1.6) has also been studied by Elschner
[35,37], who analyses spline-Galerkin methods when � is Lipschitz polyhedral and
A = 1

2 I − D. Importantly, Elschner’s analysis does not assume that ‖D‖L2(�),ess <

1/2; indeed he announces in [37, Remark 3.4(i)] that, even in the case when �− is a
convex polyhedron, it can hold that ‖D‖L2(�),ess > 1/2. Nevertheless, he is able to
prove convergence, for a certain class of Lipschitz polyhedra, of h- and hp-Galerkin
boundary element methods (in [35] and [37], respectively), with approximation spaces
carefully adapted to the singularities of the solution at corners and edges of the poly-
hedron. His analysis reduces proof of stability and convergence to a requirement
of injectivity of 1

2 I − D either on the spaces L2(�
( j)∗ ) or on the spaces L∞(�

( j)∗ ),

where �
( j)∗ is an infinite cone associated to the j th corner of � but with strips along

the edges of the cone deleted [35, Equation (2.3)]. This requirement is satisfied if
‖D‖L2(�),ess < 1/2, but also if ‖D‖C(�),ess < 1/2, so in particular (see the discussion
below (1.10)) when �− is convex. Convergence of these Galerkin methods would
hold for all Lipschitz polyhedra if we could show that A is coercive plus compact on
L2(�) whenever � is Lipschitz polyhedral.3

1.1 The open questions we address

Wendland [95, §1, §3.2, §4.2] (and see Elschner [36, Remark A.3]) flags the following
long-standing open questions that are the focus of our paper:

Q1. Is ‖D‖L2(�),ess < 1/2 in 2-d whenever � is Lipschitz?
Q2. Does the Galerkin method (1.6) converge for every asymptotically dense sequence

of finite-dimensional approximation spaces (HN )∞N=1 ⊂ L2(�) whenever � is
Lipschitz (d = 2 or 3), in particular whenever � is Lipschitz polyhedral (d = 3)?

As discussed above, as a consequence of Theorem 2.3, Q2 can be rephrased equiv-
alently as:

Q2′. Can the operators 1
2 I ± D and 1

2 I ± D′ be written as the sum of a coercive
operator and a compact operator whenever� is Lipschitz (d = 2 or 3), in particular
whenever � is Lipschitz polyhedral (d = 3)?

3 Additionally, as Elschner makes clear ( [35, Remark 4.4], [37, Remark 3.6]), the injectivity condition [35,
Equation (2.3)] is satisfied if there exists a weight function w ∈ L∞(�) satisfying (1.11) below for some
c− > 0 such that ‖D‖Cw(�),ess < 1/2. Thus a positive answer to either of the open questions Q2 or Q3
below would complete a proof of convergence of Elschner’s Galerkin methods for all Lipschitz polyhedral
�.
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As we have noted above, a positive answer to Q1 implies a positive answer to Q2′,
equivalently a positive answer to Q2.

We address Q2 and Q2′ via a further reformulation of these questions in terms of
Wess(D), the essential numerical range of D (the definitions of the numerical range
and essential numerical range of a linear operator are recalled below in (2.2) and
(2.3)). As a consequence of a general property of bounded linear operators on Hilbert
spaces that we recall in Corollary 2.2, and since D′ is the L2(�) adjoint of D so that
Wess(D′) = Wess(D), Q2 can also be rephrased as follows:

Q2′′. Are the points±1/2 outside the essential numerical range Wess(D) of D on L2(�)

when � is Lipschitz (d = 2 or 3), in particular when � is Lipschitz polyhedral
(d = 3)?

We note that Q2′′ has a positive answer if wess(D) < 1/2, where

wess(D) := sup
z∈Wess(D)

|z|

is the essential numerical radius of D.
There are at least two reasons for anticipating that the above questions might have

positive answers. Firstly, thanks to Steinbach andWendland [90] (and see [35, Remark
A.3]), provided we equip the natural trace space H1/2(�) with the appropriate norm,
D has essential norm < 1/2 as an operator on H1/2(�) for every Lipschitz �. Thus
also theGalerkinmethod (1.6) converges if we replace the L2(�) inner product in (1.6)
by an inner product on H1/2(�). This Galerkin method, using a non-local H1/2(�)

inner product, is less attractive for numerical computation, but these positive answers
to Q1 and Q2 for H1/2(�)might encourage a hope of positive answers also for L2(�).

Secondly, there has been progress on a related long-standing open problem con-
cerning the essential spectrum of D as an operator on L2(�), specL2(�),ess(D), and
specifically the essential spectral radius rL2(�),ess(D) := supz∈specess(D) |z|. This open
problem [56, Problem 3.2.12]4 is to show that

rL2(�),ess(D) <
1

2
for all Lipschitz �. (1.8)

This boundhas been shown to holdwhen�− is convex [40] (and see [25] for extensions
to locally convex domains), for all � with sufficiently small Lipschitz character [74],
and for � Lipschitz polyhedral [36, Theorem 4.1] (and see [45,46,68]). Since

rL2(�),ess(D) ≤ wess(D) ≤ ‖D‖L2(�),ess, (1.9)

the bound (1.8) also holds for the cases cited above where it is known that
‖D‖L2(�),ess < 1/2. One might hope that, at least in some of the cases where it

4 The phrasing in Kenig [56, Problem 3.2.12] is different, namely that [in the case when � is connected] the
spectral radius of D′ as an operator on L2

0(�) is< 1/2. But, recalling that rL2(�),ess(D) = rL2(�),ess(D′),
this is equivalent to (1.8), since any eigenvalues of D′ lie in [−1/2, 1/2] [40, Theorem 1.1], and ± 1

2 I + D′
is known to be Fredholm on L2(�), and also invertible on L2

0(�) as long as � is connected [73, Theorem
4.1].
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is known that rL2(�),ess(D) < 1
2 , it holds also that ‖D‖L2(�),ess < 1/2, or at least that

wess(D) < 1/2, either of these enough to give a positive answer to Q2.
The final long-standing open question that we address, flagged by Wendland [95,

§4.1] (and see [3,49,59,60]), is concerned specificallywith the casewhen� is Lipschitz
polyhedral, in which case D is well-defined also as a bounded operator on C(�). To
explain this conjecture we note the following general relationship, in a Banach space
X equipped with a norm ‖ · ‖X , between the essential spectral radius rX ,ess(A) of
a bounded linear operator A and its essential norm ‖A‖X ,ess. Generalising (1.9) it
trivially holds that rX ,ess(A) ≤ ‖A‖X ,ess. But it can also be shown [44] that, for every
ε > 0 there exists an equivalent norm ‖ · ‖′ on X such that

‖A‖X ′,ess ≤ rX ,ess(A) + ε, (1.10)

where X ′ denotes X equipped with ‖ · ‖′.
We can apply this observation to the case that � is Lipschitz polyhedral. In that

case (see [95]) ‖D‖C(�),ess < 1/2 when�− is convex, but not for all non-convex�−.
However, rC(�),ess(D) < 1/2 (see [78, Theorem 0.1], [80], and cf. [45,46,68]), so that
there must exist a norm ‖.‖′ on C(�), equivalent to the standard maximum norm, for
which the induced essential norm of D is also < 1/2. Motivated by the numerical
analysis of collocation methods for (1.5) in the case D∗ = ±D, Král and Wendland
[59] consider, specifically, weighted norms equivalent to the standardmaximum norm.
Given w ∈ L∞(�) with, for some c− > 0,

c− ≤ w(x) ≤ 1, for almost all x ∈ �, (1.11)

they define the norm ‖ · ‖Cw(�) by

‖ψ‖Cw(�) := ess sup
x∈�

|ψ(x)/w(x)|, ψ ∈ C(�). (1.12)

(Of course ‖ · ‖C1(�) is the standard supremum norm, and ‖ · ‖Cw(�) and ‖ · ‖C1(�) are
equivalent by (1.11).) In [59] they construct examples of Lipschitz (and non-Lipschitz)
polyhedral � and w for which ‖D‖Cw(�),ess < 1/2 (although ‖D‖C1(�),ess > 1/2).
Generalising these examples, Angell et al. [3] and Král and Wendland [60] show
that, whenever �− is a so-called rectangular domain, meaning that each side of �

lies in one of the Cartesian coordinate planes, a piecewise constant weight w can be
constructed so that ‖D‖Cw(�),ess < 1/2. Extending further, Hansen developed in [49]
a procedure for general polyhedral � to systematically generate piecewise constant
weight functions; the class of polyhedral� for which this procedure generates awwith
‖D‖Cw(�),ess < 1/2 is termed Hansen’s class in [95]. As Wendland [95] notes: “It
is still not clear whether Hansen’s procedure always provides a weight function with
‖ 1
2 I + D‖Cw(�),ess < 1 for any arbitrary polyhedral domain. Hence the stability and

convergence of the collocation method for piecewise smooth � is in part open.” This,
and the discussion above of the convergence theory for Elschner’s spline-Galerkin
methods, motivate the final open question that we address in this paper:
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Q3. For every Lipschitz polyhedral �, does there exist a weight function w ∈ L∞(�)

satisfying (1.11) for some c− > 0 such that ‖D‖Cw(�),ess < 1/2?

1.2 Themain results and their implications

Our main results are that we answer, in the negative, questions Q1–Q3, and hence we
also answer Q2′ and Q2′′ negatively. Our first main result addresses Q1 (we recall the
definition of the Lipschitz constant of a Lipschitz domain in Definition 3.1 below).

Theorem 1.1 (Answer to Q1) For every M > 0 there exists, for both d = 2 and 3
(i.e., in both 2-d and 3-d), a bounded Lipschitz domain �M

d , with Lipschitz constant
M, such that if � is the boundary of �M

d then

‖D‖L2(�),ess ≥ M/2.

In particular if � is the boundary of �1
d , which has Lipschitz constant one, then

‖D‖L2(�),ess ≥ 1/2.

Our method of proof is constructive. Indeed, the particular domain �M
d that we use to

prove this result is shown, ford = 2 and M = 1, in Fig. 1, and is specified inDefinitions
4.7 and 4.10, for the 2-d and 3-d cases, respectively. We note that, complementing this
result, we show below in Corollary 3.5 that, for every M0 > 0 and every bounded
Lipschitz domain �− with Lipschitz character M ≤ M0,

‖D‖L2(�),ess ≤ C M,

where the constant C depends only on d and M0 (but must be ≥ 1/2 by the above
theorem), so that ‖D‖L2(�),ess < 1/2 if the Lipschitz character M of �− is small
enough.

The same domains �M
d provide a negative answer to Q2′′, and so also a negative

answer to Q2′ and Q2.

Theorem 1.2 (Answer to Q2, Q2′, Q2′′) For M > 0 and d = 2, 3, if � is the boundary
of �M

d , which has Lipschitz constant M, then

{
λ ∈ C : |λ| ≤ M/4

} ⊂ Wess(D),

so that λI + D and λI + D′ are not coercive plus compact for any λ with |λ| ≤ M/4.
In particular, if � is the boundary of �2

d , which has Lipschitz constant two, then
1
2 I ± D and 1

2 I ± D′ cannot be written as the sum of coercive and compact operators,
so that there exists an asymptotically dense sequence of finite-dimensional spaces
(HN )∞N=1 ⊂ L2(�) such that the Galerkin method (1.6) does not converge.

The domains �M
d that feature in the above results can be thought of as curvilinear

polygons with infinitely many sides when d = 2 and curvilinear polyhedra with
infinitely many sides when d = 3; see Fig. 1 for �1

2, and Figs. 9 and 8 for the key
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ΩM
d

x = 0

Fig. 1 The domain �M
d in 2-d (i.e., d = 2), as specified in Definition 4.7, for Lipschitz constant M = 1

(and β = 0.6). When � = ∂�M
d is the boundary of this domain, ‖D‖L2(�),ess ≥ 1/2 because of the

oscillatory, self-similar geometry locally to the point x = 0 ∈ � indicated by the arrow

Fig. 2 Views from above and below of the open-book polyhedron �θ,n , with n = 4 pages and opening
angle θ = π/2

portions of �2
3. In the 3-d case similar results can be obtained (though without such

an explicit dependence on the Lipschitz constant) for the case when � is Lipschitz
polyhedral. The next result features the family of Lipschitz polyhedra, {�θ,n : 0 <

θ ≤ π, n ∈ {2, 3, ...}}, specified in Definition 5.7, that we term open-book polyhedra;
precisely, we refer to �θ,n as the open-book polyhedron with n pages and opening
angle θ . Figure 2 shows�θ,n for θ = π/2 and n = 4 (and see Fig. 12). In the following
theorem and hereafter, conv(T ) denotes the convex hull of T ⊂ C.

Theorem 1.3 (Answer to Q2, Q2′, Q2′′ for Lipschitz polyhedral �) Suppose that
n ∈ N with n ≥ 2, and that � = �θ,n, the boundary of the Lipschitz polyhedron �θ,n

(the open-book polyhedron with n pages and opening angle θ ) given by Definition 5.7.
Then, for every ε > 0, there exists θ0 ∈ (0, π ] such that

conv
(
[−√

n/2 + ε,
√

n/2 − ε] ∪ {λ ∈ C : |λ| ≤ √
n − 1/2 − ε}

)
⊂ Wess(D) and

‖D‖L2(�),ess ≥ wess(D) ≥ √
n/2 − ε for 0 < θ ≤ θ0.
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Thus, for all sufficiently small θ ∈ (0, π ], 1
2 I ± D and 1

2 I ± D′ cannot be written as the
sum of coercive and compact operators, so that there exists an asymptotically dense
sequence of finite-dimensional spaces (HN )∞N=1 ⊂ L2(�) such that the Galerkin
method (1.6) does not converge.

Our proofs of the above results depend on:

(a) the equivalence of Q2, Q2′, and Q2′′, discussed in a general Hilbert space context
in §2;

(b) localisation results for the essential norm and essential numerical range of D
that we prove as Theorems 3.2 and 3.17, adapting essential spectrum localisation
arguments, in particular those from [74] (and see [25,34,36,40,78]);

(c) the simple observation that, if D† is a restrictionof D from L2(�) to some subspace,
then ‖D‖L2(�) ≥ ‖D†‖L2(�) and the numerical range W (D) ⊃ W (D†) (see
Sect. 2.3);

(d) that if D and D̃ are the double-layer potential operators on surfaces� and �̃ that are
geometrically similar, then D and D̃ are unitarily equivalent, so that ‖D‖L2(�) =
‖D̃‖L2(�̃) and W (D) = W (�̃) (Lemmas 3.12, 3.13, and 4.8);

(e) for Theorems 1.1 and 1.2, lower bounds for the norm and numerical range of D in
the case when� is the graph�M of a particular Lipschitz continuous function with
Lipschitz constant M (see Definition 4.4 and Fig. 5), these lower bounds obtained
by relating D on a subspace of L2(�) to particular infinite Toeplitz matrices with
piecewise continuous symbols, and computing the jumps in those symbols (see
Sect. 4.2.1);

(f) for Theorem 1.3, explicit computations of the asymptotics of particular finite-
dimensional discretisations of D for the open-book polyhedron �θ,n in the
“closing-the-book” limit θ → 0 (see Sect. 5.2).

The implications of Theorems 1.2 and 1.3 for the numerical analysis of the Galerkin
method (1.6) for the standard second-kind integral equations of potential theory are
significant. The negative answers that these results give to Q2′ mean that there is no
longer hope of proving convergence of particular Galerkin methods for all Lipschitz
�, or even for all Lipschitz polyhedral �, by showing that the operators 1

2 I ± D or
1
2 I ± D′ are coercive plus compact on L2(�); this contrasts with the situation for the
same operators on H±1/2(�), and for the situation for the standard first kind integral
equations of potential theory [30,70].

On the other hand the implications for the Galerkin method in computational prac-
tice are at first sight more modest: our proofs, that use the equivalence of Q2, Q2′, and
Q2′′, show initially only that the Galerkin method (1.6) does not converge for every
sequence (HN )∞N=1 ⊂ L2(�). This leaves open the possibility that Galerkin methods
used in practice, notably all Galerkin methods based on boundary element method
discretisation [84,89], are in fact convergent.

Our next main result clarifies that this is not the case. As a corollary of a new general
result for the Galerkin method in Hilbert spaces that we prove as Theorem 2.5 below,
drawing inspiration from arguments of Markus [67] used to prove the equivalence of
Q2 and Q2′, we obtain the following result.
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Theorem 1.4 Suppose that � is one of the geometries in Theorem 1.2 or 1.3 for which
1
2 I ± D and 1

2 I ± D′ cannot be written as the sum of coercive and compact operators,
and that (H∗

N )∞N=1 is a sequence of finite-dimensional subspaces of L2(�) with H∗
1 ⊂

H∗
2 ⊂ ... that is asymptotically dense in L2(�), i.e.

L2(�) = ∪∞
N=1H∗

N .

Then there exists a sequence (HN )∞N=1 of finite-dimensional subspaces of L2(�) with
H1 ⊂ H2 ⊂ ... such that the Galerkin method (1.6) is not convergent but, for each
N ∈ N,

H∗
N ⊂ HN ⊂ H∗

MN
for some MN ∈ N. (1.13)

We can apply this result in the case that (H∗
N )∞N=1 is an asymptotically dense

sequence of boundary element subspaces, in which case (HN )∞N=1, satisfying (1.13),
is also a sequence of boundary element subspaces (since HN ⊂ H∗

MN
) and is also

asymptotically dense (since H∗
N ⊂ HN ). Thus this result implies that there exist

Lipschitz and polyhedral boundaries � for which there are Galerkin methods (1.6)
based on asymptotically dense sequences (HN )∞N=1 of boundary element subspaces
that do not converge.

We present elsewhere [23] alternative second-kind integral equations for the interior
and exterior Laplace Dirichlet problems for general Lipschitz domains. These take the
form Aφ = g, with A coercive on L2(�), so that the Galerkin method (1.6) converges
for every asymptotically dense sequence (HN )∞N=1, indeed the Céa’s lemma estimate
of Theorem 2.3(b) applies. Other convergent methods for general Lipschitz domains
have been developed by Dahlberg and Verchota [32] and by Adolfsson et al. [1], based
onGalerkin solution of second-kind integral equations on the boundaries of a sequence
of smooth domains approximating �.

Our final main result answers Q3 negatively, again using the open-book polyhedra
as counterexamples.

Theorem 1.5 (Answer to Q3) For every n ∈ {2, 3, ...} and ε > 0 there exists θ0 ∈
(0, π/4] such that, if � is the boundary of the open-book Lipschitz polyhedron �θ,n

and 0 < θ ≤ θ0, then

‖D‖Cw(�),ess ≥ 2n − 1

4
− ε,

for every weight function w ∈ L∞(�) satisfying (1.11) for some c− > 0.

Since (2n − 1)/4 ≥ 3/4 > 1/2 for n ≥ 2, this result, applied with any n ≥ 2,
means that Hansen’s class of polyhedra does not include all polyhedra. Related to this
observation, this negative result also closes off the main potential route to completing
convergence proofs, for all polyhedra, of collocation and quadrature methods for (1.5)
(see [78, p. 172], [79, Remark 2.3], [49, §4], [95, §4.1]), and closes off a main potential
route for finalising the proof of convergence for all polyhedra of Elschner’s spline-
Galerkin methods (see [35, Remark 4.4], [37, Remark 3.6] and the discussion above
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in Sect. 1). Our proof of this result depends on a non-trivial extension of a result of
Král and Medková [58] which we prove as Theorem 6.2, showing that the localisation
formula (6.4) for ‖D‖Cw(�),ess that Král andMedková prove for lower semicontinuous
w satisfying (1.11) holds more generally for w ∈ L∞(�) satisfying (1.11).

1.2.1 Implications for other second-kind boundary integral equations and their
Galerkin solution

We have discussed the implications of our results for the boundary integral equations
(1.5) for the Dirichlet and Neumann problems in potential theory and their Galerkin
solution (1.6). Our results also have implications for BIE formulations of other elliptic
boundary value problems.

Transmission problems. The equation Aφ = g, with

A = λI − D′ (1.14)

and λ ∈ C \ {− 1
2 ,

1
2 }, arises in the transmission problem for the Laplace equation

(e.g., [71, §5.12]), which in turn arises as the low-frequency (quasi-static) limit of
transmission problems for the Maxwell system [2]. The case when λ ∈ R with |λ| >

1/2 (e.g., [71, §5.12]), is classical, and A is known to be invertible on L2(�) forλ in this
range [40, Theorem 1.3]. More recently, complex λwith |λ| < 1/2 have been studied,
motivated by applications to nanoparticle plasmonic resonances [2], specifically the
case where the particle has negative permittivity. This application has prompted much
work on computation of the spectrum of D′ on H−1/2(�), L2(�) and other spaces for
particular geometries (e.g., [2,34,50,85]).

Theorems 1.2 and 1.3 make clear that, for any λ ∈ C, there exist Lipschitz polyhe-
dra and 2-d and 3-d Lipschitz domains with Lipschitz constant as small as 4|λ|, such
that A = λI − D′ is not coercive plus compact. Thus, when A is given by (1.14)
with λ ∈ C \ {− 1

2 ,
1
2 }, similar conclusions to those of Theorem 1.4 follow regarding

the non-convergence of the Galerkin method (1.5) for all asymptotically dense subse-
quences (HN )∞N=1, as a corollary of Theorem 2.5. (We note, on the other hand, that,
for the particular sequence of approximating subspaces proposed by Elschner [35], the
Galerkin method (1.6) has been shown to converge [35] for every Lipschitz polyhedral
� for all but finitely many (unknown,�-dependent) values of λwith |λ| ≥ 1/2, indeed
for all λ �= −1/2 with |λ| ≥ 1/2 if �− is a convex polyhedron.)

Helmholtz problems. Theorems 1.2 and 1.3 exhibit geometries for which A = 1
2 I +

D∗ is not coercive plus compactwhenever D∗ is a compact perturbation of±D or±D′.
Second-kind BIEs of the form (1.5) with such D∗ are widely used for computation
of the solution of interior and exterior boundary value problems for the Helmholtz
equation �u + k2u = 0, modelling time-harmonic acoustic and electromagnetic
problems (e.g., [28], [19, §2.5]). In particular, the standard BIEs to solve the exterior
Dirichlet Helmholtz problem, due to Brakhage and Werner [12], Leis [65], Panich
[77], and Burton and Miller [14], take the form (1.5) with

D∗ = Dk − iηkSk or D∗ = D′
k − iηkSk . (1.15)
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Here η > 0 is a positive constant and Sk and Dk are the standard acoustic single- and
double-layer potential operators, defined by

Dkφ(x) =
∫

�

∂�k(x, y)
∂n(y)

φ(y) ds(y) and Skφ(x) =
∫

�

�k(x, y)φ(y) ds(y), x ∈ �,

(1.16)

where �k(x, y) is the Helmholtz fundamental solution, given in 3-d (d = 3) by

�k(x, y) := eik|x−y|

4π |x − y| , x, y ∈ R
d , x �= y. (1.17)

The operator D′
k is the adjoint of Dk with respect to the real L2-inner product, given

by the formula (1.2) for D′ with � replaced by �k .
It is well-known that Dk , D′

k , and Sk are bounded operators on L2(�) (e.g. [92],
[19, Theorem 2.17]). Indeed [92], Dk − D, D′

k − D′, and Sk are integral operators
with weakly singular kernels and so are compact on L2(�). Moreover, if A = 1

2 + D∗
and D∗ is given by (1.15), then A is invertible on L2(�) (for the general Lipschitz
case see [20, Theorem 2.7] or [19, Theorem 2.27]). But A may not be coercive plus
compact. Since D∗ given by (1.15) is a compact perturbation of D or D′, we have the
following corollary of Theorems 1.2 and 1.3.

Corollary 1.6 Suppose that d = 2 or 3 and � is the boundary of �M
d , for some M ≥ 2,

or that d = 3 and � = �θ,n is the boundary of the Lipschitz open-book polyhedron
�θ,n, for some n ≥ 2. Then, provided also that θ > 0 is sufficiently small in the case
� = �θ,n,

A = 1

2
I + D∗,

with D∗ given by (1.15), is not the sum of a coercive and a compact operator for any
k > 0 and η > 0.

Surprisingly, this corollary is relevant to conjectures in the literature regarding the
large-k limit. When �− is Lipschitz and star-shaped (in the sense of Definition 5.9),
e.g. a convex polyhedron, and when � is C∞ and non-trapping (in the sense of [6,
Definition 1.1]), it has been shown [6,22] that ‖A−1‖L2(�) = O(1) as k → ∞ with η

fixed. When �− is C3 and is strictly convex with strictly positive curvature, and with
� piecewise analytic, the stronger result that A is coercive on L2(�), uniformly in k,
has been shown; precisely, by [88, Theorem 1.2], there exist η0, k0, and α0 > 0 such
that

|(Aφ, φ)L2(�)| ≥ α0‖φ‖2L2(�)
, for all φ ∈ L2(�), η ≥ η0, k ≥ k0. (1.18)

This strong result is surprising as the Helmholtz equation is considered a prime
example of an indefinite problem (see the discussion in [75]) for which the most
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one can hope is that the associated operators are compact perturbations of coercive
operators. The bound (1.18) guarantees, as part (ii) of Theorem 2.3 makes clear, that
the Galerkin equations (1.6) are well-posed, moreover with stability constants that
are independent of k for k ≥ k0, and independent of the chosen approximation space
sequence (HN )∞N=1. This is highly attractive for high-frequency numerical solution
methods as discussed in [19,88].

It is natural to speculate whether (1.18) holds for more general classes of �, and
to investigate this by numerical experiment, and this was done via approximate com-
putation of the numerical range of A in [7] (using the equivalence of (a) and (d) in
Lemma 2.1), leading to conjectures that:

(i) The bound (1.18) holds (with the choice η0 = 1) for all non-trapping domains [7,
Conjecture 6.2];

(ii) A is coercive (with the choice η0 = 1) for all positive k > 0 that are not close,
in the sense of [7, Remark 5.2], to resonances of the exterior Helmholtz Dirichlet
problem [7, Conjecture 6.1].

The open-book polyhedra are star-shaped with respect to a ball (Definition 5.9), and
so certainly non-trapping in the sense of [7]. Thus Corollary 1.6, which shows that
there exist open-book polyhedra for which A (for all k > 0 and η > 0) is not even a
compact perturbation of a coercive operator, establishes that these conjectures do not
hold in the 3-d case.5

2 The Galerkin method and essential numerical range in Hilbert
spaces

In this section we recall, in a Hilbert space setting, the definitions of the coerciv-
ity, numerical range, and essential numerical range of a bounded linear operator, the
relationships between these concepts, and their role in the convergence theory of the
Galerkinmethod. These results provide the justification for the equivalence of the open
questions Q2, Q2′, and Q2′′ in Sect. 1.1. In particular we attack questions Q2 (about
convergence of the Galerkin method for the standard 2nd kind integral equations of
potential theory) and Q2′ (coercivity plus compactness of the related operators), via
the reformulation Q2′′ in terms of the essential numerical range of the double-layer
potential operator. The equivalence of Q2′ andQ2′′ is provided byCorollary 2.2 below,
and that between Q2 and Q2′ by Theorem 2.3. The main new result in this section
is Theorem 2.5, a significant strengthening of part (c) of Theorem 2.3, that further
explores the relationship between the coercivity plus compactness of an operator A
and convergence of the associated Galerkin method.

5 A quite different counterexample to the first of these conjectures is given in [24, §6.3.2].
The example constructed (in both 2-d and 3-d) is a � that is C∞ and non-trapping for which
infφ∈L2(�),‖φ‖L2(�)

=1 |(Aφ, φ)L2(�)| → 0 as k → ∞ at least as fast as k−1, so that the bound (1.18)

is not satisfied with an α0 independent of k. (But it might still be the case for the counterexample in [24,
§6.3.2] that A is coercive for each fixed k.).
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We say that a linear operator A : H → H, where H is a Hilbert space, is coercive
6 if there exists an α > 0 such that

∣∣(Aφ, φ)H
∣∣ ≥ α ‖φ‖2H for all φ ∈ H. (2.1)

A closely related concept is positive definiteness.We say that a bounded linear operator
B : H → H is strictly positive definite if it is self-adjoint and if, for some β > 0,
(Bφ, φ)H ≥ β‖φ‖2H, for all φ ∈ H.

Importantly, coercivity of an operator is also related to its numerical range. Recall
that the numerical range (also known as the field of values) of a bounded linear operator
A : H → H is defined by

W (A) :=
{
(Aψ,ψ)H : ‖ψ‖H = 1

}
, (2.2)

and the essential numerical range is defined by

Wess(A) =
⋂

K compact

W (A + K). (2.3)

For every bounded linear operator A, W (A) and Wess(A) are convex, bounded sets
(e.g., [8,33,48]); we call

w(A) := sup
z∈W (A)

|z| and wess(A) := sup
z∈Wess(A)

|z|

the numerical radius and essential numerical radius of A, and note that [48, §1.3]

1

2
‖A‖H ≤ w(A) ≤ ‖A‖H so that also

1

2
‖A‖H,ess ≤ wess(A) ≤ ‖A‖H,ess,

(2.4)

where

‖A‖H,ess := inf
K compact

∥∥A − K
∥∥H

is the essential norm of A. We recall that the spectrum of A is the set of λ ∈ C such
thatA− λI is not invertible, and the essential spectrum ofA is the set of λ ∈ C such
that A − λI is not Fredholm. We recall also that (e.g., [8,33,48]) W (A) contains the
spectrum of A and Wess(A) its essential spectrum, so that also

rH(A) ≤ w(A) and rH,ess(A) ≤ wess(A),

6 In the literature, the property (2.1) (and its analogue for operators A : H → H′, where H′ is the dual
of H) is sometimes called “H-ellipticity” (as in, e.g., [84, Page 39], [89, §3.2], and [54, Definition 5.2.2])
or “strict coercivity” (e.g., [61, Definition 13.28]), with “coercivity” then used to mean either thatA is the
sum of a coercive operator and a compact operator (as in, e.g., [89, §3.6] and [54, §5.2]) or thatA satisfies
a Gårding inequality (as in [84, Definition 2.1.54]).
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where rH(A) := maxz∈spec(A) |z| and rH,ess(A) := maxz∈ess spec(A) |z| are the spec-
tral radius and essential spectral radius ofA.We note also the following elementary but
key observation: if V is a closed subspace ofH, P : H → V is orthogonal projection,
and Ã := PA|V , then

W (Ã) ⊂ W (A), Wess(Ã) ⊂ Wess(A), ‖Ã‖V ≤ ‖A‖H,

and ‖Ã‖V,ess ≤ ‖A‖H,ess. (2.5)

Lemma 2.1 (Equivalent formulations of coercivity) Given a bounded linear operator
A : H → H on a Hilbert space H, the following are equivalent:

(a) A is coercive;
(b) A = c(B+ iG), for some c ∈ C \ {0} and bounded linear operators B and G such

that G is self-adjoint and B is strictly positive definite;
(c) A = c(I + B), for some c ∈ C \ {0} and bounded linear operator B such that

‖B‖H < 1;
(d) 0 /∈ W (A);
(e) For some θ ∈ R and α > 0, � [eiθ (Aφ, φ)H

] ≥ α‖φ‖2H, for all φ ∈ H.

References for the proof The equivalence of (b)–(d) is shown, for example, in the dis-
cussion around [43, Chapter II, Lemma 5.1], and the equivalence of a) and d), for
example, in [7, Lemma 3.3]. That d) and e) are equivalent is immediate from the
convexity of W (A) (e.g., [48, Theorem 1.1-2]). ��

We are interested, in particular, in the equivalence of a) and d) in the above lemma,
and in the following straightforward corollary of that equivalence, which implies the
equivalence of Q2′ and Q2′′ in Sect. 1.1. For completeness we include the short proof.

Corollary 2.2 If A : H → H is a bounded linear operator, then A is the sum of a
coercive operator plus a compact operator if and only if 0 /∈ Wess(A).

Proof If A + K is coercive and K is compact, then 0 /∈ W (A + K) by the above
lemma, and so 0 /∈ Wess(A). Conversely, if 0 /∈ Wess(A) then, for some compact K,
0 /∈ W (A + K), so that by the above lemma A + K is coercive. ��

2.1 The Galerkinmethod in Hilbert spaces

Recall the definition of the Galerkin method for approximating solutions of the oper-
ator equation Aφ = g, where φ, g ∈ H, A : H → H is a bounded linear operator,
andH is a Hilbert space: given a sequence (HN )∞N=1 of finite-dimensional subspaces
of H with dim(HN ) → ∞ as N → ∞,

find φN ∈ HN such that
(
AφN , ψN )H = (g, ψN

)
H for all ψN ∈ HN . (2.6)

The Galerkin method is convergent for the sequence (HN )∞N=1 if, for every g ∈ H,
the Galerkin equations (2.6) have a unique solution for all sufficiently large N and
φN → A−1g as N → ∞.
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Closely related to this definition, (HN )∞N=1 is asymptotically dense in H or con-
verges to H if, for every φ ∈ H,

inf
ψN ∈HN

‖φ − ψN ‖H → 0 as N → ∞.

It is easy to see that if the Galerkin method converges then (HN )∞N=1 converges toH.
Indeed, a standard necessary and sufficient condition (e.g., [43, Chapter II, Theorem
2.1]) for convergence of the Galerkin method is that (HN )∞N=1 converges to H and
that, for some N0 ∈ N and c > 0,

‖PNAφN ‖H
‖φN ‖H ≥ c, for all non-zero φN ∈ HN and N ≥ N0, (2.7)

where PN is orthogonal projection of H onto HN .
The equivalence of Q2 and Q2′ in Sect. 1.1 is given by Part (c) of the following

theorem.

Theorem 2.3 (The Main Abstract Theorem on the Galerkin Method)

(a) If A is invertible then there exists a sequence (HN )∞N=1 for which the Galerkin
method converges.

(b) If A is coercive (i.e. (2.1) holds) then, for every sequence (HN )∞N=1, the Galerkin
equations (2.6) have a unique solution φN for every N and

∥∥φ − φN
∥∥H ≤ ‖A‖H

α
inf

ψ∈HN

∥∥φ − ψ
∥∥H,

so φN → A−1g as N → ∞ if (HN )∞N=1 converges to H.
(c) If A is invertible then the following are equivalent:

• The Galerkin method converges for every sequence (HN )∞N=1 that converges to
H.

• A = A0 + K where A0 is coercive and K is compact.

References for the proof Part (a) was first proved in [67, Theorem 1]; see also [43,
Chapter II, Theorem 4.1]. Part (b) is Céa’s Lemma; see [16]. Part (c) was first proved
in [67, Theorem 2], with this result building on results in [93]; see also [43, Chapter
II, Lemma 5.1 and Theorem 5.1]. ��

Part (c) of the above theorem implies that, if A is invertible but not coercive plus
compact, then there exists at least one sequence of finite-dimensional subspaces
(HN )∞N=1 converging to H for which the Galerkin method is not convergent. The
following stronger result, Theorem2.5,which implies Theorem1.4, builds on the argu-
ments in [67] to show that, ifA is not coercive plus compact, then the Galerkin method
fails for many subspace sequences: precisely, given a sequence of finite-dimensional
subspaces (H∗

N )∞N=1 converging toH, withH∗
1 ⊂ H∗

2 ⊂ ..., either:

(i) the Galerkin method is not convergent for the sequence (H∗
N )∞N=1; or
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(ii) the Galerkin method for (H∗
N )∞N=1 does converge but there exists a sequence

(HN )∞N=1, sandwiched by the sequence (H∗
N )∞N=1 (i.e. satisfying (b) in Theorem

2.5), such that the Galerkin method is not convergent for (HN )∞N=1.

Note that, in Theorem2.5, (HN )∞N=1 is a sequence that converges toH. This follows
from condition (b) and the convergence of the Galerkin method for (H∗

N )∞N=1. For the
proof of this theorem we need the following lemma.

Lemma 2.4 If (Kn)∞n=1 is a collectively compact sequence of bounded linear operators,
meaning that [4]

⋃
n∈N

{Knφ : ‖φ‖H ≤ 1} (2.8)

is relatively compact, and if each Kn is self-adjoint, then φn⇀0 as n → ∞ implies
that Knφn → 0, for every sequence (φn)∞n=1 ⊂ H.

Proof Suppose that φn⇀0, in which case (φn) is bounded. To show that Knφn → 0 it
is enough to show that each subsequence of (Knφn) has a subsequence converging to
zero. But if (Kn)

∞
n=1 is collectively compact and each Kn is self-adjoint then, by [4,

Corollary 5.7], {Kn : n ∈ N} is relatively compact as a subset of the Banach space of
bounded linear operators on H. So take a subsequence of (Knφn), denoted again by
(Knφn). This has a subsequence, denoted again by (Knφn), such that ‖Kn−K̂‖H → 0,
for some bounded linear operator K̂ , and the relative compactness of (2.8) implies
that K̂ is compact [4, §1.4], and so completely continuous. Thus ‖Knφn‖H ≤ ‖Kn −
K̂‖H‖φn‖H + ‖K̂φn‖H → 0. ��

Surprisingly to us, if self-adjointness is dropped, then the above lemma does not
hold, indeed it need not hold even that Knφn⇀0. A counterexample is the operator
sequence of [4, Example 5.5].

Theorem 2.5 Suppose that A is invertible but A cannot be written in the form A =
A0 + K, where A0 is coercive and K is compact, and that (H∗

N )∞N=1 is a sequence
of finite-dimensional subspaces of H, with H∗

1 ⊂ H∗
2 ⊂ ..., for which the Galerkin

method is convergent. Then there exists a sequence (HN )∞N=1 of finite-dimensional
subspaces of H, with H1 ⊂ H2 ⊂ ..., such that:

(a) the Galerkin method is not convergent for the sequence (HN )∞N=1; and
(b) for each N ∈ N, H∗

N ⊂ HN ⊂ H∗
MN

, for some MN ∈ N.

Proof We prove this result by constructing a sequence (HN )∞N=1 satisfying (b) for
which

inf
φ∈HN \{0}

‖PNAφ‖H
‖φ‖H → 0 as N → ∞,

wherePN denotes orthogonal projection ontoHN , so that (2.7), a necessary condition
for convergence of the Galerkin method, fails.
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Using that 0 ∈ Wess(A) by Corollary 2.2, [67, Lemma 2] (or [43, Chapter II,
Lemma 5.2]) shows that there exists an orthonormal sequence (φm)∞m=1 inH such that
(Aφm, φm)H → 0 as m → ∞. Further, arguing exactly as done to prove (5.4) in [43,
Chapter II, Lemma 5.2], noting that every orthonormal sequence is weakly convergent
to zero, so that φm⇀0 and

(Aφm, φ)H = (φm,A′φ)H → 0

as m → ∞, for every φ ∈ H, where A′ is the adjoint of A, we see that, by taking
subsequences if necessary, we can choose the orthonormal sequence so that

RnAφn → 0 as n → ∞, (2.9)

where Rn is orthogonal projection onto the subspace Vn := span{φ1, ..., φn}.
Now choose a sequence (ψm)∞m=1 such that, for every m ∈ N, ψm ⊂ H∗

n , for some
n ∈ N, and

‖φm − ψm‖ ≤ 2−m, m ∈ N. (2.10)

(This is possible since the Galerkin method is convergent for (H∗
N )∞N=1 so that this

sequence converges to H.) We note that (ψm)∞m=1 is a Riesz sequence. Indeed, if, for
some m, n ∈ N with n ≥ m and some a = (am, ..., an) ∈ C

n+1−m ,

ψ :=
n∑

j=m

a jψ j and φ :=
n∑

j=m

a jφ j ,

then, by (2.10) and Cauchy-Schwarz, where ‖a‖2 := (
∑n

j=m |a j |2)1/2,

‖ψ − φ‖H ≤ ‖a‖2
2m−1

√
3

≤ ‖a‖2√
3

, so that

√
3 − 1√
3

‖a‖2 ≤ ‖ψ‖H ≤
√
3 + 1√
3

‖a‖2
(2.11)

since ‖φ‖H = ‖a‖2. Note also that, since (2.10) holds and φm⇀0 as m → ∞, we
have also that ψm⇀0.

For m, n ∈ N with m ≤ n, let Qm,n denote orthogonal projection onto the sub-
space Wm,n := span{ψm, ..., ψn}, and Qn orthogonal projection onto Wn := W1,n .
We now show that (2.9) holds with the orthonormal sequence (φn) replaced by its
approximation (ψn), precisely that

QnAψn → 0 as n → ∞. (2.12)

Form ∈ N, letWm denote the subspace of thoseψ ∈ H that have the representation

ψ =
∞∑

j=m

a jψ j with
∞∑

j=m

|a j |2 < ∞;
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this is a closed subspace by the second set of inequalities in (2.11). Let Qm denote
orthogonal projection onto Wm . We note that Qm,n converges strongly to Qm as
n → ∞, i.e., for every m ∈ N,

Qm,nφ → Qmφ, as n → ∞, for all φ ∈ H. (2.13)

As a consequence, for each fixed m ∈ N, the family of operators {Qn −Qm,n : n ≥ m}
is collectively compact. For if (p j )

∞
j=1 ⊂ H is a bounded sequence and, for each j ∈ N,

n j ∈ N with n j ≥ m, then, for some coefficients a j = (a1, j , ..., an j , j ) ∈ C
n j , with

‖a j‖2 ≤ √
3/(

√
3 − 1)‖p j‖H,

Qn j p j =
n j∑

n=1

an, jψn, so that (Qn j − Qm,n j )p j =
m−1∑
n=1

an, j (ψn − Qm,n j ψn).

Since {|an, j | : j, n ∈ N, n ≤ m−1} is bounded, it follows byBolzano-Weierstrass and
(2.13) that ((Qn j −Qm,n j )p j )

∞
j=1 has a convergent subsequence. Thus {Qn −Qm,n :

n ≥ m} is collectively compact; moreover, orthogonal projection operators are self-
adjoint (e.g., [83, Theorem 12.14]). Since (ψn)∞n=1 is weakly convergent to zero, it
follows from Lemma 2.4 that, for every m ∈ N,

(Qn − Qm,n)Aψn → 0 as n → ∞. (2.14)

To complete the proof of (2.12) we show, using (2.10) and (2.11), that

Qm,nAψn → 0 as m → ∞, (2.15)

uniformly in n ≥ m. It is easy to see that this, together with (2.14), implies (2.12).
To see that (2.15) holds, note first that, by (2.10), it is enough to show that

Qm,nAφn → 0 as m → ∞, uniformly in n ≥ m. For each m, n ∈ N with n ≥ m let

χm,n :=
n∑

j=m

a jφ j ,

where (a j )
n
j=m is the unique set of coefficients such that

Qm,nAφn =
n∑

j=m

a jψ j , (2.16)

and letRm,n denote orthogonal projectiononto the subspaceVm,n := span{φm, ..., φn}.
Then, for m, n ∈ N with n ≥ m,

‖Qm,nAφn‖2H + ‖Aφn − Qm,nAφn‖2H = ‖Aφn‖2H = ‖Rm,nAφn‖2H
+‖Aφn − Rm,nAφn‖2H
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and, since ‖Rm,nAφn‖H ≤ ‖RnAφn‖H and ‖Aφn−Rm,nAφn‖H ≤ ‖Aφn−χm,n‖H
(sinceRm,nAφn is the best approximation to Aφn from Vm,n), it follows that

‖Qm,nAφn‖2H ≤ ‖RnAφn‖2H + (‖Aφn − χm,n‖H + ‖Aφn − Qm,nAφn‖H) ×
(‖Aφn − χm,n‖H − ‖Aφn − Qm,nAφn‖H)

≤ ‖RnAφn‖2H + (2‖Aφn‖H + ‖χm,n − Qm,nAφn‖H) ×
‖χm,n − Qm,nAφn‖H.

Now, where the coefficients a = (am, ..., an) are defined by (2.16),

‖χm,n − Qm,nAφn‖H =
∥∥∥∥∥∥

n∑
j=m

a j (φ j − ψ j )

∥∥∥∥∥∥H
≤ ‖a‖2

2m−1
√
3

≤ ‖Qm,nAφn‖H
2m−1(

√
3 − 1)

,

using (2.11). Since ‖Qm,nAφn‖H ≤ ‖Aφn‖H ≤ ‖A‖H, we see that we have shown
that

‖Qm,nAφn‖2H ≤ ‖RnAφn‖2H + ‖A‖2H
(
2 + 1/(

√
3 − 1)

) 1

2m−1(
√
3 − 1)

.

But this right hand side tends to zero as m → ∞, uniformly in n ≥ m, by (2.9).
Wehave shown that (2.12) holds,where, for eachn ∈ N,Qn is orthogonal projection

ontoWn . Thus (2.7) fails for the sequence (Wn)∞n=1, and note also that, by definition
of (ψn), it holds for every n that Wn ⊂ H∗

m for some m ∈ N. To achieve our initial
aim and complete the proof we augment our subspaces Wn in such a way that (2.7)
still fails while, additionally, our modified sequence of subspaces satisfies (b).

For n, N ∈ N let PN
n denote orthogonal projection from H onto the subspace

WN
n := H∗

N + Wn , and L N
n orthogonal projection onto the orthogonal complement

in WN
n of Wn , a subspace of H∗

N . Then PN
n = Qn + L N

n and, clearly, for each N ,
{L N

n : n ∈ N} is collectively compact, for it is uniformly bounded and the range of
L N

n is contained in the finite-dimensional spaceH∗
N , for every n ∈ N. Thus, and since

ψn⇀0 and each L N
n is self-adjoint, L N

n Aψn → 0 as n → ∞, for every N ∈ N, by
Lemma 2.4. It follows, using (2.12), that, for every N ∈ N,

PN
n Aψn = QnAψn + L N

n Aψn → 0 as n → ∞.

Choose an increasing sequence (nN )∞N=1 ⊂ N such that ‖PN
nN

AψnN ‖ ≤ N−1, and set
HN := WN

nN
= H∗

N + WnN and PN := PN
nN

, for N ∈ N, so that PN is orthogonal
projection onto HN . Then H1 ⊂ H2 ⊂ ..., the sequence (HN )∞N=1 satisfies (b), and,
recalling (2.10), we see that

inf
φ∈HN \{0}

‖PNAφ‖H
‖φ‖H ≤ ‖PNAψnN ‖H

‖ψnN ‖H ≤ N−1

1 − 2−nN
→ 0 as N → ∞,

so that (2.7) fails and the proof is complete. ��
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2.2 Calculating the essential numerical range and essential norm

Our proofs of Theorems 1.1–1.3 depend on localisation results for the essential norm
and essential numerical range of D (Theorems 3.2 and 3.17). These in turn depend on
the following generalHilbert space results. The first of these is a useful characterisation
of the essential norm (cf.Weyl’s criterion (e.g., [52, Theorem7.2], [33, Lemma4.3.15])
for membership of the essential spectrum).

Lemma 2.6 Let H be a separable Hilbert space and A a bounded linear operator on
H. Then

‖A‖H,ess = sup
(φn)∈S

lim inf
n→∞ ‖Aφn‖H = sup

(φn)∈S
lim sup

n→∞
‖Aφn‖H,

where S is the set of sequences (φn)
∞
n=1 such that ‖φn‖H = 1 and φn⇀0 as n → ∞.

Proof If (φn) ∈ S and T is compact, then

‖A + T ‖H ≥ lim sup
n→∞

‖(A + T )φn‖H = lim sup
n→∞

‖Aφn‖H,

since T φn → 0 as n → ∞. Thus

‖A‖H,ess ≥ sup
(φn)∈S

lim sup
n→∞

‖Aφn‖H. (2.17)

We now prove that

‖A‖H,ess ≤ sup
(φn)∈S

lim inf
n→∞ ‖Aφn‖H, (2.18)

and the result follows from (2.17) and (2.18).
Let Pn be a sequence of orthogonal projection operators converging strongly to the

identity, each with finite-dimensional range, and letQn := I −Pn . Then, sinceAPn

is compact, the definition of the essential norm implies that

‖A‖H,ess ≤ lim inf
n→∞ ‖AQn‖H.

By the definition of the norm, and since Qn is a projection operator so that ‖AQn‖H
coincides with the norm of A restricted to the range of Qn , we can find, for each
n, φn in the range of Qn such that ‖φn‖H = ‖Qnφn‖H = 1 and ‖AQnφn‖H ≥
‖AQn‖H − 1/n. Therefore

‖A‖H,ess ≤ lim inf
n→∞ ‖AQn‖H = lim inf

n→∞ ‖AQnφn‖H.

The inequality (2.18) then follows from the facts that ‖Qnφn‖H = 1 for all n and
Qnφn⇀0 as n → ∞; indeed, if ψ ∈ H then |(ψ,Qnφn)H| = |(Qnψ,Qnφn)H| ≤
‖Qnψ‖H → 0, since Qn converges strongly to zero. ��
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The following lemma has something of the flavour of limit operator arguments and
results (e.g., [66], [21, §5.3]). We apply this as a component in our localisation results
(e.g. in Lemma 3.14). Moreover, application of this lemma in combination with (2.5)
leads to a rather direct attack on Q2′′: to show that a particular set � is contained in
Wess(D) it is enough, by (2.5), to show that � is contained in Wess(D†), where D† is
D restricted to a subset �† of �. If the following lemma applies with Ã = D† then it
is, moreover, enough to show that � ⊂ W (D†) to conclude. And we detail methods
in Sect. 2.3, based on (2.5), to show that a set � ⊂ W (D†).

Lemma 2.7 Let H be a Hilbert space and A a bounded linear operator on H. If there
exists an isometry T on H (so that (T φ, T ψ)H = (φ,ψ)H for all φ,ψ ∈ H) such
that (i) T commutes with A and (ii) T n → 0 weakly as n → ∞ (i.e. T nφ⇀0
for every φ ∈ H), then Wess(A) = W (A) and ‖A‖H,ess = ‖A‖H. If also V is a
closed subspace of H and QT n → 0 strongly as n → ∞ (i.e. QT nφ → 0 for
every φ ∈ H), where Q := I − P and P : H → V is orthogonal projection, then

Wess(Ã) = W (Ã) = W (A) and ‖Ã‖V,ess = ‖Ã‖V = ‖A‖H, where Ã := PA|V .

To get a concrete sense of situations where Lemma 2.7 can be applied (this is
similar to the application we make in Lemma 3.14), consider the case (e.g., [10,66])
where H = �2(Z), and A and T = A are both the right shift operator. Clearly, T
is an isometry and A commutes with T . Further, T n → 0 weakly, so that, applying
this lemma, Wess(A) = W (A). Since A = T is a normal operator (its adjoint is
the left shift operator) we have additionally [48, §1.4] that W (A) = conv(spec(A)),
which is the closed unit disk {z : |z| ≤ 1}. Set V = �2(N) ⊂ �2(Z), P : H → V
to be orthogonal projection, and Ã := PA|V . Then Ã (which is non-normal) is the
restriction of A to �2(N) that acts by multiplication by the infinite Toeplitz matrix
which is zero except for 1’s on the first subdiagonal. We see, by applying the second

part of the lemma, that Wess(Ã) and W (Ã) are also the closed unit disk.

Proof of Lemma 2.7 We prove the statements about the numerical range and essential
numerical range; the proofs of the statements about the norm and essential norm are
analogous, using that

‖A‖H = sup
φ,ψ∈H\{0}

|(Aφ,ψ)H|
‖φ‖H‖ψ‖H .

The definition of the essential numerical range implies immediately that Wess(A) ⊂
W (A) for any bounded linear operatorA. Conversely, suppose that z ∈ W (A). Then,
for some φ ∈ H with ‖φ‖H = 1, and all n ∈ N,

z = (Aφ, φ)H = (T nAφ, T nφ)H = (AT nφ, T nφ)H,

where we have used the facts that T is an isometry and commutes with A. Given a
compact operator K, let

zn := ((A + K)T nφ, T nφ
)
H = z + (KT nφ, T nφ)H.
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Since T nφ⇀0, we have KT nφ → 0, so zn → z. But zn ∈ W (A + K) for each n, so
z ∈ W (A + K). Since this holds for all compact K, z ∈ Wess(A). We have therefore
shown that W (A) ⊂ Wess(A), so W (A) ⊂ Wess(A) since Wess(A) is closed.

Now suppose that V is a closed subspace of H and that QT n → 0 strongly as
n → ∞, where Q := I − P and P : H → V is orthogonal projection. We have

that Wess(Ã) ⊂ W (Ã) ⊂ W (A) by definition and (2.5). To see that also W (A) ⊂
Wess(Ã), suppose that z ∈ W (A), in which case z = (Aφ, φ)H, for some φ ∈ Hwith
‖φ‖H = 1. Then QT nφ → 0 as n → ∞ so that

‖PT nφ‖H = ‖T nφ‖H + o(1) = ‖φ‖H + o(1) = 1 + o(1), as n → ∞. (2.19)

Thus, for some N ∈ N,PT nφ �= 0 for n ≥ N , so that, given any compactK : V → V ,

zn := ((Ã + K)PT nφ,PT nφ)H
‖PT nφ‖2H

∈ W (Ã + K), n ≥ N .

Further, as n → ∞, using (2.19), the definition of Ã, that QT nφ → 0, and that
T nφ⇀0 so that KPT nφ → 0 (since KP : H → V is compact), it follows that

zn = ((Ã + K)PT nφ,PT nφ)H + o(1)

= (APT nφ,PT nφ)H + (KPT nφ,PT nφ)H + o(1)

= (AT nφ, T nφ)H + o(1) = z + o(1),

sinceA commutes with T and T is unitary. Thus z ∈ W (Ã + K). Since this holds for
every compact K, z ∈ Wess( Ã). Thus W (A) ⊂ Wess(Ã); indeed W (A) ⊂ Wess(Ã)

since Wess(Ã) is closed. ��

2.3 Calculating the numerical range and norm

QuestionQ1 requires estimation of the essential normof D andQ2′′ requires determin-
ing membership of its essential numerical range. Our localisation results in Sect. 3.1
below (and see Lemma 2.7 above) reduce these questions to determining norms and
membership of the numerical range for local representatives of D. In this section we
present the results that we use for these calculations.

Expanding on (2.5), suppose that (HN )∞N=1 is a sequence of finite-dimensional
subspaces of the Hilbert space H, PN : H → HN is orthogonal projection and
ÃN := PNA|HN . Then

W (A) ⊃ W (ÃN ) = {(Aψ,ψ)H : ψ ∈ HN , ‖ψ‖H = 1}.

Further, suppose that dim(HN ) = N and {ψ1, ..., ψN } is an orthonormal basis for
HN , and construct the matrix AN ∈ C

N×N by

(AN ) jm := (Aψm, ψ j )H, 1 ≤ j, m ≤ N . (2.20)
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(Note that this is precisely the Galerkinmatrix that we obtain on rewriting the Galerkin
equations (2.6) as a linear system using the basis {ψ1, ..., ψN }.) Then, for every a =
(a1, ..., aN )T ∈ C

N×1, where (·, ·)2 denotes the standard inner product on C
N and

‖ · ‖2 the associated norm (and also the induced operator norm),

aH ANa = (ANa, a)2 = (Aφ, φ)H, ‖ANa‖2 = ‖Aφ‖H, and ‖a‖2 = ‖φ‖L2(�),

where φ :=∑N
j=1 a jψ j , so that

‖AN ‖2 = ‖ÃN ‖V ≤ ‖A‖H and W (AN ) = W (ÃN ) ⊂ W (A). (2.21)

Further, if H1 ⊂ H2 ⊂ ... and (HN )∞N=1 is asymptotically dense in H, i.e. H =
∪∞

N=1HN , then

‖A1‖2 ≤ ‖A2‖2 ≤ ..., W (A1) ⊂ W (A2) ⊂ ..., ‖A‖H = lim
N→∞ ‖AN ‖2,

W (A) = ∪∞
N=1W (AN ); (2.22)

(see, e.g., [33, Theorem 9.3.4] for this last result).
The equations (2.22) reduce computing the normand numerical range of an operator

to computing the limits of norms and numerical ranges of finite matrices. In particular,
it turns out that we need later to compute the norms and numerical ranges of real N ×N
matrices CN that have entries given by

(CN ) jm = (BN ) jme jm, 1 ≤ j, m ≤ N , (2.23)

where, for some e0 ≥ 1,

0 ≤ e jm ≤ e0, 1 ≤ j, m ≤ N , (2.24)

and BN ∈ R
N×N has entries

(
BN
)

jm := (−1)m+1 sign(m − j), 1 ≤ j, m ≤ N , (2.25)

where sign(s) := 1 for s > 0, := −1 for s < 0, and := 0 for s = 0. For a squarematrix
E , letwr (E) denote the numerical abscissa of E , i.e.wr (E) := supz∈W (E) �(z). Since
the numerical range is convex,

W (CN ) =
⋂

0≤θ≤2π

{
z : �(eiθ z) ≤ wr

(
eiθCN

)}
, (2.26)

and wr (eiθCN ), the numerical abscissa of eiθCN , is also the largest eigenvalue of the
Hermitian matrix Cθ

N := (eiθCN + e−iθCT
N )/2 (e.g., [33, Theorem 9.3.10]).

Lemma 2.8 If CN ∈ R
N×N is defined by (2.23), with BN defined by (2.25) and e jm

satisfying (2.24), then:
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(i) w(CN ) ≤ ‖CN ‖2 ≤ e0(N − 1).
(ii) W (CN ) is symmetric about the real axis, so that wr (eiθCN ) = wr (e−iθCN ),

θ ∈ R.
(iii) If e jm = emj whenever m − j is even, then

W (CN ) ∩ R = [−wr (CN ), wr (CN )] = [−‖C0
N ‖2, ‖C0

N ‖2],

so that W (CN ) ∩ R ⊃ [−a, a] for N ≥ 3, with equality when N = 3, where

a := 1

2

√
(e12 + e21)2 + (e23 + e32)2.

(iv) If e jm = emj for all 1 ≤ j, m ≤ N, then, for θ ∈ R,

(Cθ
N ) jm = sign(m − j)e jm

2

(
e−iθ (−1) j − eiθ (−1)m

)
, 1 ≤ j, m ≤ N , (2.27)

and wr (eiθCN ) = wr (ei(θ+π)CN ) = ‖Cθ
N ‖2.

(v) If, for some ε > 0 and N ≥ 2, |e jm − 1| ≤ ε/(N − 1) for 1 ≤ j, m ≤ N, then

⋂
0≤θ≤2π

{
z : �(eiθ z) ≤ wr

(
eiθ BN

)
− ε
}

⊂ W (CN ) (2.28)

and

W (CN ) ⊃ [ε − b, b − ε],

where b = ‖B0
N ‖2.

Proof Item (i) follows by (2.4) and since the maximum row and column sums are both
≤ e0(N − 1). Item (ii) holds since the entries of CN are real, so that if λ = aH CNa
then λ̄ = āH CN ā.

To see (iii), note that, by (ii) and since W (CN ) is closed and convex, W (CN )∩R =
[−wr (−CN ), wr (CN )]. Further, if e jm = emj when j − m is even, and λ is an
eigenvalue of C0

N with eigenvector a = (a1, ..., aN )T , then −λ is also an eigenvalue,
with eigenvector b = (b1, ..., bN )T , where b j := (−1) j a j , j = 1, ..., N . Thus,
and since wr (CN ) and −wr (−CN ) are the largest and smallest eigenvalues of C0

N ,
it follows that ‖C0

N ‖2 = wr (−CN ) = wr (CN ). The final claim of (iii) follows from
(2.5) and since a is the largest eigenvalue of C0

N when N = 3.
The formula (2.27) is immediate from the definition of Cθ

N , and the rest of (iv)
follows from the observation that, if e jm = emj , 1 ≤ j, m ≤ N , and λ is an eigen-
value of Cθ

N with eigenvector a = (a1, ..., aN )T , then −λ is also an eigenvalue, with
eigenvector b = (b1, ..., bN )T , where b j := (−1) j a j , j = 1, ..., N .

If, for some ε > 0 and N ≥ 2, |e jm − 1| ≤ ε/(N − 1) for 1 ≤ j, m ≤ N , then
‖BN − CN ‖2 ≤ ε by part (i). We have (2.27) and that wr (eiθCN ) and wr (eiθ BN )

are the largest eigenvalues of the Hermitian matrices Cθ
N and Bθ

N , respectively. Since
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‖Cθ
N − Bθ

N ‖2 ≤ ε, it follows that wr (eiθCN ) ≥ wr (eiθ BN ) − ε, and (2.28) follows
by (2.26). Since also, by (iii), W (BN )∩R = [−b, b] where b = ‖B0

N ‖2 = wr (±BN )

and, as a consequence of (ii), W (CN ) ∩ R = [−wr (−CN ), wr (CN )], it follows also
that [ε − b, b − ε] ⊂ W (CN ). ��

Part (v) of the above lemma relates properties of CN to those of BN when ‖CN −
BN ‖2 is small. This is helpful as we can compute properties of BN explicitly, which
we do in the following lemma. We see later that matrices of the form CN /2 serve as
approximations, in some sense, to the double-layer potential operator D on L2(�),
and that CN is approximated by BN for certain limiting geometries, so that BN /2 is,
in some sense, an approximation for D. This motivates the calculation of spec(BN ),
though we do not use those calculations hereafter.

Lemma 2.9 (Properties of BN )

(i) W (B1) ⊂ W (B2) ⊂ . . ..
(ii) If N ≥ 3 is odd then wr (BN ) ≥ √

(N + 1)/2, with equality when N = 3, and
wr (eiθ BN ) ≥ √

(N − 1)/2, 0 ≤ θ ≤ 2π , so that

conv

([
−√(N + 1)/2,

√
(N + 1)/2

]⋃{
z ∈ C : |z| <

√
N − 1

2

})
⊂ W (BN ).

(iii) If N ≥ 2 then

spec(BN ) =
{ {−1, 1}, if N is even,

{−1, 0, 1}, if N is odd.

Proof Item (i) is an instance of (2.5). From Lemma 2.8(iv), wr (eiθ BN ) = ‖Bθ
N ‖2,

0 ≤ θ ≤ 2π . The 2-norm of Bθ
N is no smaller than the 2-norm of any of its columns.

When N ≥ 3 is odd, using (2.27) with e jm = 1, we see that the 2-norm of the
first column of Bθ

N is
√

(N − 1)/2 and the 2-norm of the second column of B0
N is√

(N + 1)/2, so that ‖B0
N ‖2 ≥ √

(N + 1)/2, with equality when N = 3 by Lemma
2.8(iii). Thus (ii) follows since W (BN )∩R = [−‖B0

N ‖2, ‖B0
N ‖2], by Lemma 2.8(iii),

and using (2.26) and that the numerical range is convex.
To see (iii), let BN (λ) = λIN − BN . Then, for N = 3, 4, ..., det(BN (λ)) =

(λ2 − 1) det(BN−2(λ)), so that

det(λIN − BN ) =
{

(λ2 − 1)ν, if N = 2ν,

λ(λ2 − 1)ν, if N = 2ν + 1,

for ν ∈ N, and the result follows. ��
Combining Lemma 2.8(v) and Lemma 2.9(ii), we obtain the following corollary.

Corollary 2.10 If N ≥ 3 is odd and, for some ε > 0, |e jm − 1| ≤ ε/(N − 1) for
1 ≤ j, m ≤ N, then

{
z ∈ C : |z| ≤

√
N − 1

2
− ε

}
⊂ W (CN ) (2.29)
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and
[
ε −√(N + 1)/2,

√
(N + 1)/2 − ε

]
⊂ W (CN ).

3 Localisation of the essential norm and essential numerical range of
the double-layer operator

3.1 Localisation arguments

In this section we prove a localisation result (Theorem 3.2) for the essential norm
and essential numerical range, adapting and extending localisation arguments used by
I. Mitrea [74, Lemma 1, Page 392] who showed (using the notations below, including
(3.1) and that Bδ(x) is the open ball of radius δ with centre x) that if, for some δ > 0
and λ ∈ C, λPδ(x) − Dx,δ is Fredholm of index zero on L2(Bδ(x)), for every x ∈ �,
then λI − D is Fredholm of index zero on L2(�). Key tools in our arguments are
the Weyl-type characterisation of the essential norm, Lemma 2.6 above, and that D
can be written as its local action plus a compact operator (see (3.8)), thanks to the
compactness of the commutator [w, D] when w is a Lipschitz continuous function on
�. We then specialise this localisation result, including to the case when � is Lipschitz
polyhedral, in Theorem 3.17 below.

Definition 3.1 (Lipschitz constant and Lipschitz character) A bounded Lipschitz
domain�− is Lipschitz with constant M if, for any x ∈ �, locally near x the boundary
� is (in some rotated coordinate system) the graph of a Lipschitz function with Lips-
chitz constant M . The infimum of all M ≥ 0 for which �− is Lipschitz with constant
M is called the Lipschitz character of �−.

For δ > 0 and x ∈ �, let Pδ(x) be the orthogonal projection operator on L2(�) that
is multiplication by the characteristic function of Bδ(x) restricted to �.

Theorem 3.2 (Localisation result for general Lipschitz case) Suppose that �− is a
bounded Lipschitz domain and let

Dx,δ := Pδ(x)D Pδ(x). (3.1)

(a) For some x∗ ∈ �,

‖D‖L2(�),ess = lim
δ→0

sup
x∈�

‖Dx,δ‖L2(�) = sup
x∈�

lim
δ→0

‖Dx,δ‖L2(�) = lim
δ→0

‖Dx∗,δ‖L2(�)

.(3.2)

(b) For some x∗ ∈ �,

Wess(D) =
⋂
δ>0

conv

(⋃
x∈�

W (Dx,δ)

)
= conv

(⋂
δ>0

⋃
x∈�

W (Dx,δ)

)

123



Coercivity, essential norms, and the Galerkin method...

=
⋃
x∈�

⋂
δ>0

W (Dx,δ) =
⋂
δ>0

W (Dx∗,δ).

(3.3)

Proof (a) The definition (3.1) implies that,

if x, x′ ∈ � and Bδ(x) ⊂ Bδ′(x′), then ‖Dx,δ‖L2(�) ≤ ‖Dx′,δ′ ‖L2(�). (3.4)

In particular ‖Dx,δ‖L2(�) ≤ ‖Dx,δ′ ‖L2(�) for 0 < δ < δ′ and x ∈ �, so that the limits
in (3.2) are well-defined. To see the last two equalities in (3.2), for δ > 0 let

Cδ := sup
x∈�

‖Dx,δ‖L2(�), (3.5)

and let

L1 := lim
δ→0

Cδ = lim
δ→0

sup
x∈�

‖Dx,δ‖L2(�), L2 := sup
x∈�

lim
δ→0

‖Dx,δ‖L2(�).

Now choose a sequence δn > 0 such that δn → 0 as n → ∞, and choose a sequence
of points xn ∈ � such that

L1 = lim
n→∞ ‖Dxn ,δn ‖L2(�).

By passing to a subsequence if necessary, we can assume also that, for some x∗ ∈
�, xn → x∗ as n → ∞. Then (3.4) implies that, if εn := δn + |xn − x∗|, then
‖Dxn ,δn ‖L2(�) ≤ ‖Dx∗,εn ‖L2(�) for all n so that

L1 ≤ lim
n→∞ ‖Dx∗,εn ‖L2(�) ≤ L2. (3.6)

Similarly, we can choose a sequence of points xn ∈ � and an x† ∈ � such that
εn := |x† − xn| → 0 as n → ∞ and

L2 = lim
n→∞ lim

δ→0
‖Dxn ,δ‖L2(�) ≤ lim

n→∞ lim
δ→0

‖Dx†,δ+εn
‖L2(�) ≤ L1.

Thus L1 = L2, i.e. the second equality in (3.2) holds, and then (3.6) implies that the
last equality in (3.2) holds.

We now prove the first inequality in (3.2). Suppose that δ > 0, choose ε < δ/3 and,
for x ∈ �, let Ux := Bε(x). Let G be a finite subset of � such that U := {Ux : x ∈ G}
is a cover for �. For x ∈ G, let Vx denote the union of all those Uy ∈ U that intersect
Ux, note that Vx ⊂ Bδ(x), and let ηx ∈ L∞(�) denote the characteristic function of
Vx∩�. Let (χx)x∈G be a partition of unity for� subordinate toU , so thatχx ∈ C∞

0 (Rd),
0 ≤ χx ≤ 1, χx is supported in Ux, and

∑
x∈G

χx = 1 on �. (3.7)
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Note that wx := √
χx is at least Lipschitz continuous.7 We observe further that if

w ∈ C0,1(�) then the commutator [w, D], defined by [w, D]φ := wDφ − D(wφ)

for φ ∈ L2(�), is compact since it is an integral operator on L2(�) with a weakly-
singular kernel (e.g., [61, Theorems 2.29 and 4.13]).

For φ ∈ L2(�),

Dφ =
∑
x∈G

D(χxφ) =
∑
x∈G

wxD(wxφ) −
∑
x∈G

[wx, D](wxφ) =
∑
x∈G

wxD(wxφ) + T φ,

(3.8)

where T is compact. Now

(
(D − T )φ, Dφ

)
L2(�)

=
∑
x∈G

(
wxD(wxφ), Dφ

)

=
∑
x∈G

(
ηxD(wxφ), D(wxφ) + [wx, D]φ)

=
∑
x∈G

‖ηxD(wxφ)‖2L2(�)
+ T̃ (φ), (3.9)

where

T̃ (ψ) :=
∑
x∈G

(
ηxD(wxψ), [wx, D]ψ) for ψ ∈ L2(�).

Since Vx ∩ � ⊂ Bδ(x),

‖ηxD(wxφ)‖L2(�) ≤ ‖Dx,δ‖L2(�)‖wxφ‖L2(�) ≤ Cδ‖wxφ‖L2(�),

where Cδ is defined by (3.5). Using this last bound in (3.9), we have

∣∣((D − T )φ, Dφ)L2(�)

∣∣ ≤ C2
δ

∑
x∈G

‖wxφ‖2L2(�)
+ |T̃ (φ)| = C2

δ ‖φ‖2L2(�)
+ |T̃ (φ)|.

(3.10)

Now suppose that (φn) ⊂ S, where S is defined in Lemma 2.6. Then, since ‖φn‖ = 1,
φn⇀0, and T and each [wx, D] are compact, T φn → 0 and T̃ (φn) → 0. Thus, by

7 This claim follows easily from the following one-dimensional result: if F ∈ C2(R) and, for some m ≥ 0,
F(x) ≥ 0 and |F ′′(x)| ≤ m for x ∈ R, then, arguing as in [42, Lemma 1], (F ′(x))2 ≤ 2m F(x), x ∈ R.
This implies that G(x) := √

F(x), x ∈ R, is Lipschitz continuous with Lipschitz constant L := √
m/2.

For G ∈ C(R) and is differentiable at every x where F(x) > 0, with |G′(x)| ≤ L . Thus, if a < b and
F(x) > 0 for a < x < b, |G(b) − G(a)| ≤ L|b − a| by the mean value theorem (MVT). If F(x) = 0 for
some x ∈ (a, b) then there exist c, d ∈ [a, b] with a ≤ c ≤ d ≤ b, F(c) = F(d) = 0, and F(x) > 0 for
a < x < c and d < x < b so that, again by the MVT, |G(b)− G(a)| ≤ |G(c)− G(a)|+ |G(b)− G(d)| ≤
L|c − a| + L|b − d| ≤ L|b − a|.
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(3.10),

lim sup
n→∞

‖Dφn‖2L2(�)
≤ C2

δ ,

and by Lemma 2.6, ‖D‖L2(�), ess ≤ Cδ . Since we have shown this for all sufficiently
small δ, and L1 := limδ→0 Cδ , we have

‖D‖L2(�), ess ≤ L1.

Now let x∗ ∈ � be such that the last equality in (3.2) holds and choose a sequence
δn > 0 such that δn → 0 as n → ∞. Then

L1 = lim
n→∞ ‖Dx∗,δn ‖L2(�) = lim

n→∞ ‖Dx∗,δn φn‖L2(�),

for some φn ∈ L2(�), supported in Bδn (x
∗), such that ‖φn‖L2(�) = 1. Since the

support of φn is contained in Bδn (x
∗), φn⇀0 as n → ∞. Thus, by Lemma 2.6,

‖D‖L2(�), ess ≥ lim sup
n→∞

‖Dφn‖L2(�) ≥ lim
n→∞ ‖Dx∗,δn φn‖L2(�) = L1,

and we have proved the first inequality in (3.2).
(b) Similar to (3.4), the definition of Dx,δ , (3.1), implies that

if x, x′ ∈ � and Bδ(x) ⊂ Bδ′(x′), then W (Dx,δ) ⊂ W (Dx′,δ′), (3.11)

so that, in particular, W (Dx,δ) ⊂ W (Dx,δ′) for 0 < δ < δ′ and x ∈ �.
For δ > 0 and x ∈ � let

Sδ :=
⋃
x∈�

W (Dx,δ), S∞ :=
⋂
δ>0

Sδ, and Wx :=
⋂
δ>0

W (Dx,δ).

With these notations, we can abbreviate (3.3) as

Wess(D) =
⋂
δ>0

conv (Sδ) = conv (S∞) =
⋃
x∈�

Wx = Wx∗ . (3.12)

Observe that Sδ ⊂ Sδ′ for 0 < δ < δ′, and that S∞ and each Sδ are compact, from
which it follows that

conv(S∞) =
⋂
δ>0

conv(Sδ). (3.13)

If φ ∈ L2(�) and ‖φ‖L2(�) = 1, in which case
∑

x∈G θx = 1, where θx :=
‖wxφ‖2

L2(�)
, then, from (3.8),

((D − T )φ, φ) =
∑
x∈G

(wxD(wxφ), φ) =
∑
x∈G

θx(Dψx, ψx), (3.14)
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where ψx := wxφ/
√

θx. Clearly ‖ψx‖L2(�) = 1 and supp(ψx) ⊂ Vx ⊂ Bδ(x) ∩ �, so
that (Dψx, ψx) ∈ W (Dx,δ). Therefore (3.14) implies that

W (D − T ) ⊂ conv (Sδ) for every δ > 0,

and hence, since the convex hull of a compact set is compact,

Wess(D) ⊂
⋂
δ>0

conv (Sδ) . (3.15)

On the other hand, given x ∈ �, let z ∈ Wx, in which case z ∈ W (Dx,δn ) for every
positive null sequence δn . So suppose that δn > 0 and δn → 0. Then, for each n there
exists ψn ∈ L2(�) with ‖ψn‖L2(�) = 1 and supp(ψn) ⊂ � ∩ Bδn (x) such that

∣∣(Dx,δn ψn, ψn) − z
∣∣ < 1

n
.

Since (Dx,δn ψn, ψn) = (Dψn, ψn) and ψn⇀0, z = limn→∞((D + T )ψn, ψn) for
every compact operator T , so that z ∈ Wess(D). Therefore

Wx ⊂ Wess(D) for every x ∈ �,

so that

⋃
x∈�

Wx ⊂ Wess(D). (3.16)

Combining (3.13), (3.15) and (3.16), we see that we have shown that

⋃
x∈�

Wx ⊂ Wess(D) ⊂
⋂
δ>0

conv (Sδ) = conv (S∞) .

Since Wx∗ is convex, to complete the proof of (3.12) it is enough to show that

S∞ ⊂ Wx∗ , (3.17)

for some x∗ ∈ �.
So suppose that z ∈ S∞ and that the positive decreasing sequence δn → 0. Then

z ∈ Sδn for each n, so that there exists xn ∈ � and zn ∈ W (Dxn ,δn ) such that
|zn − z| ≤ 1/n. Arguing using the compactness of � as in the proof of Part (a), by
passing to a subsequence if necessary we can assume that, for some x∗ ∈ �, xn → x∗
as n → ∞, with εn := δn + |x∗ − xn| a decreasing sequence. By (3.11) we have that
zn ∈ Gn := W (Dx∗,εn ). Since zn → z, each Gn is compact, and Gn+1 ⊂ Gn for
n ∈ N,

z ∈
⋂
n∈N

Gn = Wx∗ .
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��
The following result is well-known, following, e.g., from [53, Theorem 1.10] (note

that the space of Lipschitz continuous functions is continuously embedded in the BMO
space I1(BMO) used in [53]).

Theorem 3.3 If � is a Lipschitz graph with Lipschitz constant M, and D is the double-
layer potential operator on �, then there exists an absolute constant μ > 0, and a
constant Cd depending only on the dimension d, such that

‖D‖L2(�) ≤ Cd M(1 + M)μ.

Combining Theorems 3.3 and 3.2 we obtain.

Theorem 3.4 Suppose that �− has Lipschitz character M and D is the double-layer
potential on �−. Then, where Cd and μ are as in Theorem 3.3,

‖D‖L2(�), ess ≤ Cd M(1 + M)μ. (3.18)

Proof By Theorem 3.2, ‖D‖L2(�),ess = limδ→0 ‖Dx∗,δ‖L2(�) for some x∗ ∈ �. Since
�− has Lipschitz character M , for all M ′ > M there exists δ > 0 such that, by (2.5)
and Theorem 3.3, ‖Dx∗,δ‖L2(�) ≤ Cd M ′(1 + M ′)μ, and the result follows. ��
Corollary 3.5 (‖D‖L2(�),ess < 1/2 if the Lipschitz character is small enough.) Denote
the Lipschitz character of �− by M. There exists M0 > 0 such that if 0 ≤ M < M0
then ‖D‖L2(�),ess < 1/2. Therefore, for this same range of M, λI + D is the sum of
a coercive operator and a compact operator when |λ| ≥ 1/2.

We make three remarks about Theorems 3.2, 3.3, and 3.4 and Corollary 3.5.

• If � is C1, then M = 0, and the bound (3.18) reproduces the result [41, Theorem
1.2(c)] that D is compact.

• Since the essential spectral radius of D is less than its essential norm, Corollary
3.5 reproduces the result [74, Theorem 1] (stated for the elasto- and hydro-static
analogues of the double-layer potential, but holding also for D) that λI + D is
Fredholm of index zero for |λ| ≥ 1/2 if the Lipschitz character is small enough.

• Theorems 3.2 and 3.3make clear that the size of the essential normdepends only on
the local Lipschitz character of � when � is the boundary of a bounded Lipschitz
domain. In contrast, the norm of D depends very much on the global geometry of
�.

3.2 Locally dilation invariant surfaces and polyhedra

Our localisation result, Theorem 3.2, relates the essential norm and essential numerical
range of the double-layer potential on � to the norm and numerical range of local
representatives of D at x ∈ �, specifically to the limits as δ → 0 of these properties
of D restricted to Bδ(x). In certain cases, the local geometry is sufficiently simple that
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we can characterise these limits rather explicitly. This is the case if�− is a polyhedron
as we note below, but it is also the case for a more general class of domains that we
make use of later and introduce now.

Definition 3.6 (Locally dilation invariant) When � is the boundary of a bounded
Lipschitz domain �−, � is locally dilation invariant at x ∈ � with scale factor
β ∈ (0, 1) if, for some δ > 0,

β(Bδ(x) ∩ � − x) = Bβδ(x) ∩ � − x. (3.19)

� is locally dilation invariant at x ∈ � if it is locally dilation invariant at x ∈ � for
some scale factor β ∈ (0, 1). � is locally dilation invariant if � is locally dilation
invariant at each x ∈ �.

The proof of the following lemma providing equivalent characterisations is straight-
forward and is omitted.

Lemma 3.7 Suppose that � is the boundary of a bounded Lipschitz domain �− and
that x ∈ � and β ∈ (0, 1). Then the following are equivalent:

(i) � is locally dilation invariant at x with scale factor β.
(ii) β(Bδ(x) ∩ � − x) ⊂ Bβδ(x) ∩ � − x, for some δ > 0.
(iii) There exists some rotated coordinate system with origin at x and a Lipschitz

continuous function f : R
d−1 → R

d−1 with f (βy′) = β f (y′), y′ ∈ R
d−1,

such that, in this rotated coordinate system, Bδ(x) ∩ � = Bδ(x) ∩ �x, where
�x := {(y′, f (y′)) : y ∈ R

d−1} is the graph of f .
(iv) For some δ > 0,

Bδ(x) ∩ � = {x} ∪
{
x + βn(y − x) : n ∈ N0, y ∈ (Bδ(x) ∩ �

) \ Bβδ(x)
}
.

(3.20)

It is helpful to state explicitly the following result about the invariance of the normal
vector on locally-dilation-invariant �.

Lemma 3.8 (Normal vector on locally-dilation-invariant �) If � is locally dilation
invariant at x with scale factor β ∈ (0, 1), so that (3.19) holds for some δ > 0, then,
for y ∈ �∩ Bδ(x) such that the unit normal vector n(y) exists, n(y) = n(x+β(y−x)).

The following 2-d example of Definition 3.6 (and see Fig. 3), which we return to
later, may be instructive.

Example 3.9 Suppose that � is the boundary of a 2-d Lipschitz domain �−, and that,
locally near 0 ∈ �, � is the graph of the Lipschitz continuous function f : R → R

defined, for some β ∈ (0, 1), by

f (s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, s ≤ 0,
1 + β

1 − β
(s − βm), βm ≤ s ≤ βm−1(1 + β)/2,

1 + β

1 − β
(βm−1 − s), βm−1(1 + β)/2 ≤ s ≤ βm−1,

(3.21)
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Γ Ω−
x1 = 0

x2

x3x4

x5

Fig. 3 An example Jordan curve � enclosing a bounded Lipschitz domain �−, and containing {(s, f (s)) :
−1 ≤ s ≤ 1}, where f is defined by (3.21) with β = 0.8. � is locally dilation invariant at x1 = 0with scale
factor β. � is locally conical (and so locally dilation invariant) at every other x ∈ �, so that � is locally
dilation invariant. The vertices {x1, ..., x5} are a set of generalised vertices of � in the sense of Definition
3.16. By the calculations at the end of Sect. 4.1, 12 I ± D and 1

2 I ± D′ cannot be written as sums of coercive
plus compact operators for this particular �

form ∈ Z. Then (by the equivalence of (i) and (iii) in Lemma 3.7),� is locally dilation
invariant at 0 with scale factor β.

The following is an important special case of Definition 3.6.

Definition 3.10 (Locally conical) � is locally conical at x ∈ � if, for some δ > 0,

β(Bδ(x) ∩ � − x) = Bβδ(x) ∩ � − x, for all β ∈ (0, 1), (3.22)

equivalently if

Bδ(x) ∩ � =
{
x + t(y − x) : 0 ≤ t < 1, y ∈ ∂ Bδ(x) ∩ �

}
. (3.23)

� is locally conical if � is locally conical at every x ∈ �.

Thus, if� is locally dilation invariant at x ∈ �, then, for some δ > 0 and β ∈ (0, 1),
x + β(y − x) ∈ � for all y ∈ Bδ(x) ∩ �, while if � is locally conical at x then this
holds for all β ∈ (0, 1).

As Fig. 3 illustrates, � can have infinitely many vertices while at the same time
being locally dilation invariant, and also locally conical at all but one x ∈ �. If � is
locally conical, i.e. is locally conical at every x ∈ �, � cannot have infinitely many
vertices as a consequence of a general result in metric-space geometry [64].

Lemma 3.11 (Locally conical surfaces are polyhedra) Suppose that � is the boundary
of a bounded Lipschitz domain �−. Then � is locally conical if and only if � is a
polygon (d = 2) or a polyhedron (d = 3).
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Proof Equip � with the metric d(·, ·) in which d(x, y) is the geodesic distance from
x to y on �. � with this metric is a compact length space (in the sense of [64, §2]).
We note that � is a polygon or a polyhedron if and only if it is a polyhedral space in
the sense of [64, §2], i.e. it admits a finite triangulation (in the standard metric space
sense, e.g. [76, §78]), with each simplex isometric to a simplex in R

d−1 (i.e. to an
interval for d = 2, a triangle for d = 3). Further, it follows from [64, Theorem 1.1]
that � is a polyhedral space if and only if it is locally conical. ��

If � is locally dilation invariant at x with scale factor β ∈ (0, 1), so that (3.19)
holds for some δ > 0, let

�x :=
{
x + βn(y − x) : y ∈ Bδ(x) ∩ �, n ∈ Z

}
and �s

x := Bs(x) ∩ �x, s > 0.

(3.24)

(Explicitly, �x is given as in (iii) of Lemma 3.7, in terms of the local parameterisation
of � near x.) If � is locally conical at x, then

�x =
{
x + t(y − x) : y ∈ Bδ(x) ∩ �, t ≥ 0

}
, (3.25)

i.e. �x is a (Lipschitz) cone. Let Ds
x, for s > 0, denote the double-layer potential

operator on �s
x, and Dx the double-layer potential operator on �x.

When � is locally dilation invariant at x ∈ � with scale factor β ∈ (0, 1) (in which
case x + βn(y − x) ∈ �x for all y ∈ �x and n ∈ Z), define V ρ

x : L2(�x) → L2(�x),
with ρ = βn for some n ∈ Z, by

V ρ
x φ(y) := φ(x + ρ(y − x)), for y ∈ �x and φ ∈ L2(�x). (3.26)

This definition immediately implies that: (i) V ρ
x is invertible, with (V ρ

x )−1 = V ρ−1

x ;
and (ii) V ρ

x : L2(�
ρ
x ) → L2(�1

x) is a bijection.

Lemma 3.12 If � is locally dilation invariant at x ∈ � with scale factor β ∈ (0, 1),
and ρ = βn, for some n ∈ Z, then ρ(d−1)/2V ρ

x is a bijective isometry from L2(�
ρ
x ) to

L2(�1
x), and also from L2(�x) to itself.

Proof We have already noted that these mappings are bijections. To see that they are
isometries, observe that, for ψ, φ ∈ L2(�x),

(
V ρ
x ψ, V ρ

x φ
)

L2(�x)
=
∫

�x

ψ(x + ρ(y − x)) φ(x + ρ(y − x)) ds(y)

= ρ−(d−1)
∫

�x

ψ(z) φ(z) ds(z),

by letting z = x + ρ(y − x) and recalling that ds(z) = ρ(d−1)ds(y). ��
The following property of the double-layer operator is well known in the case that

�x is a cone; see, e.g., [36, Equation B.5].
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Lemma 3.13 (Dilation property of the double-layer operator) If � is locally dilation
invariant at x ∈ � with scale factor β ∈ (0, 1) and ρ = βn, for some n ∈ Z, then

D1
xV ρ

x = V ρ
x Dρ

x , (3.27)

where both sides map L2(�
ρ
x ) → L2(�1

x). Similarly, DxV ρ
x = V ρ

x Dx on L2(�x).

Proof We prove the first of these claims; the second follows similarly. From (1.4), for
φ ∈ L2(�

ρ
x ) and y ∈ �

ρ
x ,

Dρ
xφ(y) = 1

cd

∫
�

ρ
x

(y − z) · n(z)
|y − z|d φ(z) ds(z)

= 1

cd

∫
�1
x

ρ(̃y − z̃) · n(̃z)
ρd |̃y − z̃|d φ(x + ρ(̃z − x))ρd−1ds (̃z) = D1

x(V ρ
x φ)(̃y),

where we have used the change of variables y = x + ρ(̃y − x), z = x + ρ(̃z − x),
with ỹ, z̃ ∈ �1

x , and Lemma 3.8. Therefore, for ỹ ∈ �1
x,

D1
x(V ρ

x φ)(̃y) = Dρ
xφ(y) = Dρ

xφ(x + ρ(̃y − x)) = V ρ
x
(
Dρ
xφ
)
(̃y).

��
Lemma 3.14 Suppose that � is locally dilation invariant at x with scale factor β ∈
(0, 1), and �x and �s

x are given by (3.24). Let Ds
x, for s > 0, denote the double-layer

potential operator on �s
x, let Dx denote the double-layer potential operator on �x,

and use the other notations in Theorem 3.2.
(i) For all δ > 0 sufficiently small so that Bδ(x) ∩ � = �δ

x,

‖Dx,δ‖L2(�) = ‖Dδ
x‖L2(�δ

x)
(3.28)

and

W (Dx,δ) = W (Dδ
x). (3.29)

(ii) For all ρ > 0,

‖Dρ
x ‖L2(�

ρ
x ),ess = ‖Dρ

x ‖L2(�
ρ
x ) = ‖Dx‖L2(�x)

= ‖Dx‖L2(�x),ess (3.30)

and

Wess(Dρ
x ) = W (Dρ

x ) = W (Dx) = Wess(Dx). (3.31)

Proof Equations (3.28) and (3.29) are immediate from the definitions since � ∩
Bδ(x) = �δ

x. Equations (3.30) and (3.31) follow by applying Lemma 2.7 with H :=
L2(�x), A := Dx, T := r (d−1)/2Vr , with r = β−1 > 1, V := L2(�

ρ
x ) ⊂ L2(�x),
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P : H → V orthogonal projection, and Q := I − P . By Lemma 3.12, T is an isom-
etry on L2(�x), and, by Lemma 3.13, T commutes with Dx. If φ,ψ ∈ C0(�x), the
set of compactly supported continuous functions on �x whose support is contained in
�x \ {x}, then (T nφ,ψ)L2(�x)

= 0 for all sufficiently large n such that the supports
of T nφ and ψ are disjoint; similarly QT nφ = 0 for all sufficiently large n. Since
C0(�x) is dense in L2(�x) it follows that T n → 0 weakly andQT n → 0 strongly as
n → ∞. Thus the conditions of Lemma 2.7 are satisfied and (3.30) and (3.31) follow.

��
Remark 3.15 Part (ii) of the above lemma tells us that, if � is locally dilation invariant
at x, then, given ρ > 0,

‖D̃‖L2(�x∩N ) = ‖D̃‖L2(�x∩N ),ess and W (D̃) = Wess(D̃), (3.32)

for the neighbourhoodN = Bρ(x) of x; here D̃ := P Dx|�x∩N , where P : L2(�x) →
L2(�x ∩N ) is orthogonal projection, so that D̃ is the double-layer potential operator
on �x ∩N . In fact there is nothing special about these particular neighbourhoods. The
relationships (3.32) hold for any open neighbourhood, N , of x. This can be seen by
inspecting the proof of the above lemma. Alternatively, ifN is such a neighbourhood,
then Bρ(x) ⊂ N , for some ρ > 0, so that, from the definition of the essential norm,
(3.30), and (2.5),

‖D̃‖L2(�x∩N ),ess ≤ ‖D̃‖L2(�x∩N ) ≤ ‖Dx‖L2(�x)

= ‖Dρ
x ‖L2(�

ρ
x ),ess ≤ ‖D̃‖L2(�x∩N ),ess;

the same argument holds for the numerical range.

Combining the above lemma with Theorem 3.2 (our general localisation result for
Lipschitz domains), we obtain a stronger localisation result (Theorem 3.17 below)
for the case when � is locally dilation invariant, in particular when � is Lipschitz
polyhedral. In the case of Lipschitz polyhedral �, similar localisation results have
been obtained for the essential spectrum of D on L2(�) and other spaces; see, in
particular, [36, §4] and [34, Theorem 4.16]. To state our localisation result we need
the following definition.

Definition 3.16 (Generalised vertices) When� is locally dilation invariant, equipping
� with the Euclidean topology on R

d restricted to �, the finite set VN = {x1, ..., xN }
⊂ � is a set of generalised vertices of � if every x ∈ � is an interior point of � ∩ �x j ,
for some j ∈ {1, ..., N }. VN is a minimal set of generalised vertices if VN is a set of
generalised vertices but VN \ {x j } is not a set of generalised vertices for j = 1, ..., N .

We note that every locally-dilation-invariant � has a set of generalised vertices (an
example is Fig. 3). To see this, for each x ∈ � choose s(x) > 0 such that (3.19)
holds with δ = s(x). Then {Bs(x)(x) : x ∈ �} is an open cover of � which has a
finite subcover {Bs(x1)(x1), ..., Bs(xN )(xN )}. Further, {x1, ..., xN } is a set of generalised
vertices, since every x ∈ � is in one of the balls Bs(x j )(x j ), and Bs(x j )(x j ) ∩ � ⊂
�x j ∩ �, j = 1, ..., N .
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It is easy to see that any set of generalised vertices has a subset that is a minimal
set of generalised vertices. It is unclear to us whether there is a unique minimal set of
generalised vertices for every locally-dilation-invariant �. However, if � is a polygon
or a polyhedron, there is a uniqueminimal set of generalised vertices, namely the usual
set of vertices; this set is a unique minimum since each vertex, x, is on the boundary
or in the exterior of �y ∩ � for every other y ∈ �.

Theorem 3.17 (Localisation for locally-dilation-invariant surfaces and polyhedra)
Suppose that �, the boundary of the bounded Lipschitz domain �−, is locally dilation
invariant and VN = {x1, ..., xN } is a set of generalised vertices of �. (This is the case,
in particular, if �− is a polygon or a polyhedron and VN is the set of vertices in the
normal sense.) Then

‖D‖L2(�), ess = sup
x∈�

‖Dx‖L2(�x)
= max

x∈VN
‖Dx‖L2(�x)

(3.33)

and, for some x∗ ∈ �,

Wess(D) =
⋃
x∈�

W (Dx) =
⋃
x∈VN

W (Dx) = W (Dx∗). (3.34)

Proof By Theorem 3.2, for some x∗ ∈ �,

‖D‖L2(�),ess = sup
x∈�

lim
δ→0

‖Dx,δ‖L2(�) = lim
δ→0

‖Dx∗,δ‖L2(�),

from which it follows, by (3.28) and (3.30) in Lemma 3.14, that

‖D‖L2(�),ess = sup
x∈�

‖Dx‖L2(�x)
= ‖Dx∗‖L2(�x∗ ) = ‖Dρ

x∗‖L2(�
ρ

x∗ ),

for all ρ > 0. Since VN is a set of generalised vertices, x∗ is an interior point of
� ∩ �x, for some x ∈ VN , so that �

ρ
x∗ ⊂ � ∩ �x, for some ρ > 0 and x ∈ VN , so that

‖Dρ
x∗‖L2(�

ρ

x∗ ) ≤ ‖Dx‖L2(�x)
, by (2.5). Thus

‖D‖L2(�),ess = ‖Dx∗‖L2(�x∗ ) = ‖Dρ
x∗‖L2(�

ρ

x∗ ) ≤ max
x∈VN

‖Dx‖L2(�x)
≤ sup

x∈�

‖Dx‖L2(�x)

= ‖D‖L2(�),ess.

Similarly, by Theorem 3.2, for some x∗ ∈ �,

Wess(D) =
⋃
x∈�

⋂
δ>0

W (Dx,δ) =
⋂
δ>0

W (Dx∗,δ),

from which it follows, by (3.29) and (3.31) in Lemma 3.14, that

Wess(D) =
⋃
x∈�

W (Dx) = W (Dx∗) = W (Dρ
x∗),
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for all ρ > 0. Again, �ρ
x∗ ⊂ � ∩ �x, for some ρ > 0 and x ∈ VN , so that, by (2.5),

Wess(D) = W (Dx∗) = W (Dρ
x∗) ⊂

⋃
x∈VN

W (Dx) ⊂
⋃
x∈�

W (Dx) = Wess(D).

��
We suspect, but have no proof of this conjecture, that the point x∗ in Theorem 3.17 is
one of the generalised vertices, x1, ..., xN .

4 The essential norm and essential numerical range of the
double-layer operator on Lipschitz domains (proofs of Theorems
1.1 and 1.2)

In this section we prove two of our main theorems, Theorems 1.1 and 1.2, constructing
particular 2-d and 3-d Lipschitz domains �M , with Lipschitz constant M , for which
we can prove rather sharp quantitative estimates for the essential norm and essential
numerical range and their dependence on M . These constructions and the associated
arguments have some subtleties. To get the main ideas across, we present in Sect. 4.1
calculations for the slightly-simpler 2-d example that we have met already in Fig. 3
and Example 3.9, this an example that illustrates our localisation result, Theorem 3.17,
for locally-dilation-invariant surfaces.

Nevertheless, throughout this section (and Sect. 5 to follow) we use, in the main,
the same tools, namely:

(i) our localisation results, Theorems 3.2 and 3.17, and the associated Lemma 3.14,
that replace calculation of the essential normand essential range of the double-layer
potential operator D on �, with calculations of the ordinary norm and numerical
range;

(ii) equations (2.21) and (2.22), that reduce calculation of the norm and numerical
range of a bounded linear operator to calculation of the same quantities for matri-
ces; and

(iii) Lemmas 2.8 and 2.9 and Corollary 2.10 that provide estimates of the numerical
ranges of the matrices that arise in our calculations.

Additionally, in Sects. 4.2 and 4.3 we require calculations of the norms of infinite
Toeplitz matrices that are associated with our operator D.

Related to (ii), we use throughout this section and Sect. 5 the following construction,
a particular instance of the general Hilbert space construction below (2.20). Suppose
that �̃ is some subset of �, measurable with respect to surface measure. For some N ∈
N, letHN denote an N -dimensional subspace of L2(�̃) ⊂ L2(�) and let {ψ1, ..., ψN }
be an orthonormal basis for HN , and define the Galerkin matrix DN ∈ R

N×N by

(DN ) jm := (Dψm, ψ j ), 1 ≤ j, m ≤ N . (4.1)

Then (see (2.21))

‖DN ‖2 ≤ ‖D̃‖L2(�̃) ≤ ‖D‖L2(�) and W (DN ) ⊂ W (D̃) ⊂ W (D), (4.2)
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where D̃ and D are the double-layer potential operators on �̃ and �, respectively.
Suppose further that (HN )∞N=1 is a sequence of finite-dimensional subspaces, with
HN ⊂ L2(D̃),HN of dimension N , and H1 ⊂ H2 ⊂ ..., and let

V :=
∞⋃

N=1

HN ⊂ L2(�̃).

(V = L2(�) if (HN )∞N=1 is asymptotically dense in L2(�).) Then, where DV :=
P D|V and P : L2(�) → V is orthogonal projection, it follows from (2.22) and (2.5)
that

‖D1‖2 ≤ ‖D2‖2 ≤ ... ≤ ‖DV ‖V , W (D1) ⊂ W (D2) ⊂ ... ⊂ W (DV ), (4.3)

lim
N→∞‖DN ‖2 = ‖DV ‖V ≤ ‖D̃‖L2(�̃), and W (D̃) ⊃ W (DV ) =

∞⋃
N=1

W (DN ).

(4.4)

4.1 The essential numerical range of a domain with a locally-dilation-invariant
boundary

Definition 4.1 (2-d graph �β ) Choose β ∈ (0, 1). For m ∈ N, let �2m−1 denote the
open straight line segment connecting (βm−1, 0) and (βm−1(1+β)/2, βm−1(1+β)/2),
and let�2m denote the open line segment connecting (βm−1(1+β)/2, βm−1(1+β)/2)
and (βm, 0). Let

�β := {(s, 0) : −1 ≤ s ≤ 0} ∪
⋃

m∈N
�m;

equivalently �β := {(s, f (s)) : −1 ≤ s ≤ 1}, where f is defined by (3.21).

We consider the case where �β ⊂ � and � is the boundary of a Lipschitz domain
�−. (Such a case is shown, for β = 0.8, in Fig. 3, where �β is the part of � between
the points x5 and x2.) From (3.21),

| f ′(s)| = 1 + β

1 − β
, for almost all s ∈ [0, 1], (4.5)

so that the Lipschitz constant of �− tends to infinity as β → 1−. We note also that,
as discussed in Example 3.9, � is locally dilation invariant at x = 0, with scale factor
β. Thus, by Remark 3.15 and (2.5),

W (Dβ) = Wess(Dβ) ⊂ Wess(D), (4.6)

where Dβ and D are the double-layer potential operators on �β and �, respectively.
We note further that if, as in Fig. 3, � is locally dilation invariant, then Wess(D) can
be characterised precisely by Theorem 3.17.
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To establish a lower bound for W (Dβ) when β ≈ 1 our method is to relate, in the
sense of the following lemma, Dβ to the matrix BN defined by (2.25).

Lemma 4.2 (The relationship of BN to Dβ ) Let �β be as in Definition 4.1. Given
N ∈ N, define the orthonormal set {ψ1, ..., ψN } ⊂ L2(�β) by

ψm(x) :=
{

|�m |−1/2, x ∈ �m,

0, otherwise,
(4.7)

for m = 1, ..., N. Suppose that the unit normal n on �β is such that n2(x) > 0 for
almost every x ∈ �β , and define the Galerkin matrix DN by (4.1), where D = Dβ is
the double-layer potential operator on �β , and define BN ∈ R

N×N by (2.25). Then

(
DN
)

jm = (BN
)

jmd jm, 1 ≤ j, m ≤ N , (4.8)

where d jm := 0 for j = m,

d jm := 1

2π |� j |1/2|�m |1/2
∫

� j

αm ds, for j �= m, (4.9)

and

αm(x) := 2π

∣∣∣∣
∫

�m

∂�(x, y)
∂n(y)

ds(y)

∣∣∣∣ =
∫

�m

|(x − y) · n(y)|
|x − y|2 ds(y), x ∈ R

2 \ �m,

(4.10)

is the angle subtended at x by �m. Further, d jm = dmj when m − j is even, and

W (DN ) ∩ R ⊃ [−a, a], (4.11)

for N ≥ 3, with equality when N = 3, where

a := 1

2

√
(d12 + d21)2 + (d23 + d32)2. (4.12)

Moreoever, for 1 ≤ j, m ≤ N, with j �= m, d jm → 1/2 as β → 1−, so that

DN → 1

2
BN . (4.13)

Proof For m ∈ N and x ∈ R
2 \ �m ,

∫
�m

∂�(x, y)
∂n(y)

ds(y) = ±αm(x)
2π

, (4.14)
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where the + sign is taken if x is on the side of �m to which the normal points, i.e.
if, for some y ∈ �m , (x − y) · n(y) > 0, otherwise the − sign is taken. Thus, for
1 ≤ j, m ≤ N ,

Dβψm(x) = 1

2π |�m |1/2 (−1)m+1sign(m − j)αm(x), x ∈ � j , (4.15)

and (4.8) follows. When m − j is even, � j and �m are parallel, so that d jm = dmj by
the combination of (4.9) and (4.10) and the fact that |(x− y) · n(y)| = |(x− y) · n(x)|
for x ∈ � j , y ∈ �m . Then (4.11) holds for N ≥ 3, with equality when N = 3, by
Lemma 2.8(iii). As β → 1−, d jm → 1/2 (for j �= m) implying (4.13), since

|� j | ∼ |�m | → 1, and
∫

� j

αm ds → π

by the dominated convergence theorem. ��
Theorem 4.3 Given R > 0, there exists β0 ∈ (0, 1) such that, if �− is a bounded
Lipschitz domain with boundary � that contains �β and β0 ≤ β < 1, then

Wess(D) ⊃ {z ∈ C : |z| < R
}
, (4.16)

so that also ‖D‖L2(�),ess ≥ R, and λI + D and λI + D′ cannot be written as the sum
of coercive and compact operators for any λ ∈ C with |λ| ≤ R.

Proof Given R > 0, choose the smallest odd N ≥ 3 such that
√

(N − 1)/2 ≥ 2R +1,
and then choose β0 ∈ (0, 1) such that |2d jm − 1| ≤ 1/(N − 1) for 1 ≤ j, m ≤ N and
β0 ≤ β < 1, with this possible by Lemma 4.2. Then, by Corollary 2.10 applied with
ε = 1,

W (2DN ) ⊃ {z ∈ C : |z| ≤ √(N − 1)/2 − ε
} ⊃ {z ∈ C : |z| < 2R

}
,

for β0 ≤ β < 1, so that W (DN ) ⊃ {z ∈ C : |z| < R}. When the outward-pointing
normal, n, on �, has n2 > 0 almost everywhere on �β , this inclusion, together with
(4.2), applied with �̃ = �β and D̃ = Dβ , and (4.6), implies (4.16). When n2 < 0,
we have instead that −W (DN ) = W (−DN ) ⊂ Wess(D), and the same conclusion
holds. It follows that ‖D‖L2(�),ess ≥ R by (2.4). Further, (4.16) implies that also
Wess(D′) ⊃ {z ∈ C : |z| < R}, so that 0 is in both Wess(λI + D) and Wess(λI + D′),
for |λ| ≤ R, so that, by Corollary 2.2, λI + D and λI + D′ cannot be written as sums
of coercive and compact operators. ��

The above theorem guarantees that (4.16) holds, in particular that±1/2 ∈ Wess(D),
if � ⊃ �β and β is close enough to 1, but gives no idea of how close to one β needs
to be. We can estimate this using (4.12). Arguing as in the proof of the above theorem
and using (4.11), we have, under the same assumptions as the theorem, that

[−a, a] ⊂ Wess(D) = Wess(D′),
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Fig. 4 Plot of a, given by (4.12),
against β. Note that
[−a, a] ⊂ R ∩ W (DN ), for
N ≥ 3, with equality when
N = 3, so that also [−a, a] ⊂
Wess(Dβ) ⊂ Wess(D)

where a is given by (4.12) with the coefficients d jm given by (4.9). In Fig. 4 we plot
a against β, computing the integrals (4.9) accurately by numerical quadrature. As
expected, since d jm → 1/2 as β → 1− by Lemma 4.2 provided j �= m, a approaches
the limit

√
2/2 ≈ 0.7071 asβ → 1−. The datawe plot suggest that [−a, a] ⊃ {− 1

2 ,
1
2 }

provided β > 0.7903, so that, by Corollary 2.2, 12 I ± D and 1
2 I ± D′ cannot be written

as sums of coercive and compact operators for β above this value. (This is the case,
in particular, for the � in Fig. 3.) The value β = 0.7903 corresponds, by (4.5), to a
Lipschitz constant for the surface �β ⊂ � of (1 + β)/(1 − β) ≈ 8.54.

4.2 Proof of Theorems 1.1 and 1.2 in the 2-d case

4.2.1 The norm and numerical range of the double-layer potential operator on a
periodic Lipschitz graph

As the main step in the proofs of Theorems 1.1 and 1.2, we calculate in this section
lower bounds on the norm and numerical range (and their essential variants) for the
double-layer potential operator D on a particular “sawtooth” periodic Lipschitz graph.

Definition 4.4 (The “sawtooth” Lipschitz graph �M ) Given M > 0 (the Lipschitz
constant) define fM : R → R by

fM (s) :=
{

Ms − 2m, 2m ≤ Ms ≤ 2m + 1,
2m + 2 − Ms, 2m + 1 ≤ Ms ≤ 2m + 2,

(4.17)

for m ∈ Z, so that fM is periodic with period 2/M and

| f ′
M (s)| = M,

for almost all s ∈ R. Let �M := {(s, fM (s)) : s ∈ R} be the graph of fM , so that

�M =
⋃
m∈Z

�m,
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0

Γ0Γ1Γ2Γ3

x1

x2

Fig. 5 The “sawtooth” curve �M , as specified in Definition 4.4, when M = 1

where �m is the open line segment connecting ((1 − m)/M, 0) and (−m/M, 1), for
m odd, connecting ((1 − m)/M, 1) and (−m/M, 0), for m even. (See Fig. 5 for �M

when M = 1.)

Let DM : L2(�M ) → L2(�M ) denote the double-layer potential operator on �M ,
defined with the unit normal n on �M such that n2(x) > 0 for almost all x ∈ �M .
Define V M+ ⊂ V M ⊂ L2(�M ) by

V M := {φ ∈ L2(�M ) : φ is constant on �m for m ∈ Z}, V M+ := {φ ∈ V M :
φ|�m = 0, for m ≤ 0}. (4.18)

Let P M : L2(�M ) → V M and P M+ : L2(�M ) → V M+ be orthogonal projections, and
let DV M := P M DM |V M and DV M+ := P M+ DM |V M+ .

The next two lemmas do most of the quantitative work for us in proving The-
orems 1.1 and 1.2. In particular, Lemma 4.6 provides precise characterisations for
‖DV M ‖V M ≤ ‖DM‖L2(�M ) and W (DV M ) ⊂ W (DM ) in terms of symbols of associ-
ated infinite Toeplitz matrices.

Lemma 4.5 For M > 0,

‖DM‖L2(�M ),ess = ‖DM‖L2(�M ) ≥ ‖DV M ‖V M = ‖DV M+ ‖V M+ and

Wess(DM ) = W (DM ) ⊃ W (DV M ) = W (DV M+ ).

Proof The first equalities in each line follow by applying Lemma 2.7 with H =
L2(�M ), A = DM , and T = T , where T : L2(�M ) → L2(�M ) is a right-shift
operator defined by

T φ(x) = φ ((x1 − 2/M, x2)) , for x = (x1, x2) ∈ �M , φ ∈ L2(�M ).

Similarly, the last equalities in each line follow by applying Lemma 2.7withH = V M ,
A = DV M , T = T |V M , V = V M+ , and P = P M+ |V M . The other statements of the
lemma (the “≥” and the “⊃”) follow from (2.5). ��

In the following lemma we use the notations of Sect. 2.3. In particular, wr (CN )

denotes the numerical abscissa of a square matrix CN , and BN is the matrix defined
by (2.25). We denote the norm on L∞(−π, π) by ‖ · ‖∞.
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Lemma 4.6 (The double-layer operator on �M ) Given N ∈ N, define the orthonormal
set {ψ1, ..., ψN } ⊂ V M+ ⊂ L2(�M ) by (4.7), but with �m as in Definition 4.4, and
define the Galerkin matrix DN by (4.1), where D = DM is the double-layer potential
operator on �M . Then:

(a)

(
DN
)

jm = (BN
)

jmd ′
j−m, 1 ≤ j, m ≤ N , (4.19)

where d ′
0 := 0,

d ′
� := 1

2π
∣∣�|�|

∣∣
∫

�|�|
α ds, � ∈ Z \ {0}, (4.20)

and

α(x) := 2π

∣∣∣∣
∫

�0

∂�(x, y)
∂n(y)

ds(y)

∣∣∣∣ , x ∈ R
2 \ �0, (4.21)

is the angle subtended at x by �0. Further, for each � ∈ Z \ {0},

d ′
� → 1

2
so that DN → 1

2
BN as M → ∞, (4.22)

and

d ′
� = M

2π |�| + O(�−2), as |�| → ∞. (4.23)

(b)

‖DN ‖2 → ‖DV M ‖V M = ‖E‖�2(N) = ‖e‖∞, as N → ∞, (4.24)

where E : �2(N) → �2(N) is (multiplication by) the infinite Toeplitz matrix defined
by

(E) jm := sign(m − j)d ′
m− j , j, m ∈ N,

and e ∈ L∞(−π, π) is its symbol, given by

e(t) = −2i
∞∑

m=1

d ′
m sin(mt) = − iM sign(t)(π − |t |)

2π
+ er (t), −π ≤ t ≤ π,

(4.25)

where er ∈ C(R) is 2π -periodic with er (0) = 0, so that

‖DV M ‖V M = ‖E‖�2(N) = ‖e‖∞ ≥ M

2
. (4.26)
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(c) For N ≥ 3,

W (DN ) ∩ R ⊃ [−a, a], where a := √
2 d ′

1, (4.27)

with equality when N = 3. Further, where Dθ
N denotes the real part of eiθ DN ,

wr (eiθ DN ) = wr (e−iθ DN ) = wr (−eiθ DN ) = ‖Dθ
N ‖2, θ ∈ R, and

wr (e
iθ DN ) = ‖Dθ

N ‖2 → ‖H θ‖2 = ‖hθ‖∞, as N → ∞, (4.28)

where H θ : �2(N) → �2(N) is (multiplication by) the infinite Toeplitz matrix
defined by

(
H θ
)

jm := 1 − e−2iθ (−1) j−m

2
sign(m − j)d ′

m− j , j, m ∈ N,

and hθ ∈ L∞(−π, π) is its symbol, given by

hθ (t) = −i
∞∑

m=1

(1 − e−2iθ (−1)m)d ′
m sin(mt) = −iM

sign(t)(π − |t |) + e−2iθ t

4π

+hθ
r (t), (4.29)

for −π < t < π , where hθ
r ∈ C(R) is 2π -periodic with hθ

r (0) = 0, so that

lim
N→∞ wr (e

iθ DN ) = ‖hθ‖∞ ≥ M

4
, θ ∈ R. (4.30)

Moreover,

W (DV M ) =
∞⋃

N=1

W (DN ) =
⋂

0≤θ≤2π

{
λ ∈ C : �(eiθλ) ≤ ‖hθ‖∞

}

⊃ {λ ∈ C : |λ| ≤ M/4}. (4.31)

Proof Part (a). Arguing as in the proof of Lemma 4.2, (DN ) jm is given by the right
hand side of (4.8), but with d jm replaced by d ′

jm , defined by (4.9) and (4.10) with

�m as in Definition 4.4. By symmetry of �M and since fM is periodic with period
2/M , d ′

jm = d ′| j−m|,0 = d ′| j−m|, for 1 ≤ j, m ≤ N . That d ′−� = d ′
� = d ′

�,0 → 1/2
as M → ∞, for each � ∈ N, so that (4.22) holds, follows exactly as in the proof of
Lemma 4.2, and the asymptotics (4.23) follow easily from the definitions (4.20) and
(4.21).

Part (b). ‖DV M ‖V M = ‖DV M+ ‖V M by Lemma 4.5, and ‖DN ‖2 → ‖DV M+ ‖V M

as N → ∞ by (4.4), since H1 ⊂ H2 ⊂ ..., where HN is the space spanned by
{ψ1, ..., ψN }, and V M+ = ∪∞

N=1HN . Moreover, it is easy to see that, for each N ∈ N,
‖DN ‖2 = ‖EN ‖2, where EN is the order N finite section of E . That ‖EN ‖2 →
‖E‖2 = ‖e‖∞, with e given by the first of the equalities in (4.25), are standard
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properties of infinite Toeplitz matrices with bounded symbols [10]. The last equation
in (4.25), with

er (t) := −2i
∞∑

m=1

(d ′
m − M/(2πm)) sin(mt), t ∈ R, (4.32)

follows since

sign(t)(π − |t |) = 2
∞∑

m=1

sin(mt)

m
, −π ≤ t ≤ π, (4.33)

and that er is continuous and er (0) = 0 follows since the series (4.32) is abso-
lutely and uniformly convergent by (4.23). The bound (4.26) follows since ‖e‖∞ ≥
limt→0 |e(t)| = M/2.

Part (c). Where CN is the matrix in Lemma 2.8, DN = CN if we set e jm = d ′| j−m|,
for 1 ≤ j, m ≤ N . Thus (4.27) follows from Lemma 2.8(iii), and that wr (eiθ DN ) =
wr (e−iθ DN ) = wr (−eiθ DN ) = ‖Dθ

N ‖2, for θ ∈ R, from Lemma 2.8(ii) and (iv).
Using (2.27), we see also that

(
H θ
)

jm = e−iθ (−1)m+1(Dθ
N ) jm , 1 ≤ j, m ≤ N , so

that ‖Dθ
N ‖2 = ‖H θ

N ‖2, where H θ
N is the order N finite section of H θ . The remaining

results up to and including (4.30) follow in the same way as we proved (4.24)-(4.26),
using (4.33) and that

−t = 2
∞∑

m=1

(−1)m sin(mt)

m
, −π < t < π.

The final statement (4.31) follows from (4.4), (2.26), and (4.30). ��
Combining Lemma 4.5 and 4.6 we see that, for M > 0,

‖DM‖L2(�M ) ≥ lim
N→∞ ‖DN ‖2 = ‖DV M ‖V M ≥ M

2
and (4.34)

W (DM ) ⊃
∞⋃

N=1

W (DN ) = W (DV M ) ⊃ {λ ∈ C : |λ| ≤ M/4} , (4.35)

so that w(DM ) ≥ M/4. On the other hand, by (2.4) and Theorem 3.3, for some
C, μ > 0,

1

2
‖DM‖L2(�M ) ≤ w(DM ) ≤ ‖DM‖L2(�M ) ≤ C M(1 + M)μ, M > 0.

For sufficiently large M > 0 it appears that the last of the bounds in (4.34) and the last
inclusion in (4.35) are in fact equalities. Indeed, it follows from (4.26) and (4.30) that
(4.34) holds with the last “≥” replaced by “=” if ‖e‖∞ = M/2, and (4.35) holds with
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Fig. 6 Graphs of 2|e(t)|/M and 4max0≤θ≤2π |hθ (t)|/M against t/π , where e and hθ are the symbols of
the infinite Toeplitz matrices E and Hθ , given by (4.25) and (4.29), respectively

the last “⊃” replaced by “=” if ‖h∞‖∞ = M/4, for θ ∈ R, and the plots in Fig. 6
suggest the conjecture that

‖e‖∞ = M/2, at least for M ≥ 1, and ‖hθ‖∞ = M/4,

for θ ∈ R, at least forM ≥ 2.

4.2.2 The proof of Theorems 1.1 and 1.2

Wenowuse the above results to proveTheorems 1.1 and 1.2 in the 2-d case, as Theorem
4.9 below. Let

�M,m :=
2m⋃
j=1

� j , m ∈ N, (4.36)

where � j is as defined in Definition 4.4 (and see Fig. 5).

Definition 4.7 (�M
d and �M

d for d = 2) Choose β ∈ (0, 1) and, given M > 0, define
(γ j )

∞
j=1 ⊂ (0,∞) by

γ j := M(β j−1 − β j )

2 j
, j ∈ N.

Define f M
β : R → [0,∞) by

f M
β (s) :=

{
0, if s ≤ 0 or s ≥ 1,

γ j fM ((s − β j )/γ j ), if β j ≤ s < β j−1,
(4.37)
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0 1ββ2β3β4...

Fig. 7 The curve �M
2 , as specified in Definition 4.7, in the case M = 1 and β = 0.6. The labels are the

x1-coordinates of the point 0 = (0, 0) and of the first 5 of the points (β j , 0), j = 0, 1, .... All these points
lie on �M

2

for j ∈ N, where fM is defined by (4.17), and note that the definition we make for γ j

ensures that f M
β ∈ C0,1(R), with |( f M

β )′(s)| = M for almost all s ∈ (0, 1), and that

{ f M
β (s) : β j ≤ s ≤ β j−1} = (β j−1, 0) + γ j�

M, j , j ∈ N, (4.38)

where �M, j is defined by (4.36). Let ε := 0.1 and let

�M
2 :=

{(
s, f M

β (s)
)

: −ε ≤ s ≤ 1 + ε
}

= {(s, 0) : −ε ≤ s ≤ 0 or 1 ≤ s ≤ 1 + ε}
∪
⋃
j∈N

(
(β j−1, 0) + γ j�

M, j
)

; (4.39)

see Fig. 7 for �1
2 when β = 0.6. Set x′ := (−ε,−ε) and x′′ := (1 + ε,−ε), and let

�M
2 :=

{
(x1, x2) : −ε < x1 < 1 + ε and − 2ε < x2 < f M

β (x1)
}

∪ Bε(x′) ∪ Bε(x′′);

see Fig. 1 for �1
2 when β = 0.6. Note that �M

2 ⊂ R
2 is a simply-connected Lipschitz

domain with Lipschitz constant M , and the boundary � of �M
2 contains �M

2 and is C1

except at a countable set of points on
{(

s, f M
β (s)

) : 0 ≤ s ≤ 1
} ⊂ �M

2 .

The proofs of Theorems 1.1 and 1.2, in both the 2-d and 3-d cases, depend on
(4.34) and (4.35), and on the localisation result Theorem 3.2. They also depend on the
simple observation that the norm and numerical range of the double-layer potential
on a curve or surface �′ are the same as those of the double-layer potential operator
on its translate, �′ + x, for x ∈ R

d . These quantities are also invariant under scaling
in the sense of the following lemma.

Lemma 4.8 Suppose that �′ := {(y′, f (y′)) : y′ = (y1, ..., yd−1) ∈ N }, for some
open N ⊂ R

d−1, d = 2 or 3, and some f ∈ C0,1(Rd−1), and let Dκ denote the
double-layer potential operator on κ�′ for κ > 0. Then

‖Dκ‖L2(κ�′) = ‖D1‖L2(�′) and W (Dκ) = W (D1), κ > 0.
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Proof Define V : L2(κ�′) → L2(�′) by V φ(y) = κ(d−1)/2φ(κy), for φ ∈ L2(�′),
y ∈ �′. Then, arguing exactly as in the proofs of Lemmas 3.12 and 3.13, we see that
V is an isometric isomorphism and D1V = V Dκ , so that D1 and Dκ are unitarily
equivalent, and the result follows. ��
Theorem 4.9 (Theorems 1.1 and 1.2 in the 2-d case) Suppose that � is the boundary
of �M

2 , defined as in Definition 4.7, for some M > 0 and β ∈ (0, 1). Then

‖D‖L2(�),ess ≥ M

2
and Wess(D) ⊃ {λ ∈ C : |λ| ≤ M/4}.

Proof Let x∗ := 0 ∈ �M
2 ⊂ �. By Theorem 3.2,

‖D‖L2(�),ess ≥ lim
δ→0

‖Dx∗,δ‖L2(�) and Wess(D) ⊃
⋂
δ>0

W (Dx∗,δ).

Thus the result follows if we show that ‖Dx∗,δ‖L2(�) ≥ M/2 and W (Dx∗,δ) ⊃ {λ ∈
C : |λ| ≤ M/4}. By (4.34) and (4.35), this in turn follows if we can show that
‖Dx∗,δ‖L2(�) ≥ ‖DN ‖2 and W (Dx∗,δ) ⊃ W (DN ), for every N ∈ N and δ > 0, where
DN is as defined in Lemma 4.6. Givenm ∈ N, set �̃ := �M,m , defined by (4.36). Then,
by (4.3) and (4.2), ‖DN ‖2 ≤ ‖D̃‖L2(�̃) and W (DN ) ⊂ W (D̃), for N = 1, ..., 2m,
where D̃ denotes the double-layer potential operator on �̃. But, by construction of �M

2
in Definition 4.7 (see (4.38)), for every δ > 0 there exists κ > 0 and s ∈ R such that
�̂ := (s, 0) + κ�̃ ⊂ Bδ(x∗) ∩ �, so that

‖D̂‖L2(�̂) ≤ ‖Dx∗,δ‖L2(�) and W (D̂) ⊂ W (Dx∗,δ),

by (2.5), where D̂ denotes the double-layer potential operator on �̂. Furthermore, by
Lemma 4.8,

‖D̂‖L2(�̂) = ‖D̃‖L2(�̃) and W (D̂) = W (D̃),

so that

‖Dx∗,δ‖L2(�) ≥ ‖DN ‖2 and W (Dx∗,δ) ⊃ W (DN ),

for N = 1, ..., 2m. Since this holds for every m ∈ N and δ > 0, the proof is complete.
��

4.3 Proof of Theorems 1.1 and 1.2 in the 3-d case

We now prove Theorems 1.1 and 1.2 in the 3-d case as Theorem 4.12 below, which
proves the bounds (4.53) for the domain �M

3 specified in the following definition.
The proof builds on the 2-d case. Indeed the bounds (4.53) hold if we define �d

3
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Fig. 8 View from above of �M
3 when M = 2 and β = 0.6

alternatively as

[−1, 1] × �M
2 , (4.40)

where �M
2 is as in Definition 4.7; all that is needed for (4.53) to hold is that �, the

boundary of�M
3 , contains [−ε, ε]×�M

2 , for some ε > 0. But�M
3 given by the simple

definition (4.40) has Lipschitz constant larger than M . The following more elaborate
definition, which makes a smoother cut-off in the x1-direction, constructs �M

3 so that
[−1, 1] × �M

2 ⊂ � while ensuring that the Lipschitz constant of �M
3 does not exceed

M .

Definition 4.10 (�M
d and �M

d for d = 3) For M > 0, define FM : R → [0,∞) by

FM (s) =
⎧⎨
⎩
1, |s| ≤ 1,
cos(2(|s| − 1)/(1 − β)), 1 < |s| < 1 + ϑ,

0, |s| ≥ 1 + ϑ,

(4.41)

where ϑ := π(1 − β)/4. Fix β ∈ (0, 1) and, for M > 0, define f M
3-d : R2 → [0,∞)

by

f M
3-d(x1, x2) = FM (x1) f M

β (x2), x1, x2 ∈ R, (4.42)

where f M
β is defined by (4.37). Then FM ∈ C0,1(R) and f M

3-d ∈ C0,1(R2). Further,

since |( f M
β )′(s)| = M and 0 ≤ f M

β (s) ≤ γ1 = M(1− β)/2, for almost all s ∈ [0, 1],
|∇ f M

3-d| ≤ M , for almost all (x1, x2) ∈ R
2, with equality for almost all (x1, x2) ∈

(−1, 1) × (0, 1). Let ε := 0.1 and let

�M
3 :=

{(
x1, x2, f M

3-d(x1, x2)
)

: |x1| ≤ 1 + ε + ϑ,−ε ≤ x2 ≤ 1 + ε
}

. (4.43)
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ΩM
3x = 0

Fig. 9 Cross-section in the plane x1 = 0 through the domain �M
3 , as specified in Definition 4.10, for

Lipschitz constant M = 2 (and β = 0.6). The thinner blue line shows the part of the boundary of the C1

domain G given by (4.45) in Definition 4.10 that is not shared with�M
3 . See also Fig. 8 for the key, non-C1,

part �M
3 of the upper surface of �M

3 (color figure online)

�M
3 is shown in Fig. 8; note also that, where �M

2 is as in Definition 4.7,

{
x = (x1, x2, x3) ∈ �M

3 : |x1| ≤ 1
}

= [−1, 1] × �M
2 , (4.44)

so that �M
2 , shown in Fig. 7, is a cross-section of �M

3 through the plane x1 = c, for
any c ∈ [−1, 1]. Let C := 2 + 2ε + ϑ , so that

[ − 1 − ε − ϑ, 1 + ε + ϑ] × [ − ε, 1 + ε] ⊂ EC :=
{
(x1, x2) ∈ R

2 : x21 + x22 < C2
}

.

Let G ⊂ {(x1, x2, x3) ∈ R
3 : x3 < 0} be any C1 domain such that EC × {0} ⊂ ∂G,

e.g.,

G :=
{
x = (x1, x2, x3) ∈ R

3 : r := (x21 + x22 )
1/2 < C + ε,−g(r) − ε

< x3 < g(r) − ε} , (4.45)

where

g(s) :=
{

ε, 0 ≤ s ≤ C,(
ε2 − (s − C)2

)1/2
, C < s ≤ C + ε.

Set

�M
3 := G ∪

{
(x1, x2, x3) ∈ R

3 : |x1| < 1 + ε + ϑ,−ε < x2 < 1 + ε,

0 ≤ x3 < f M
3-d(x1, x2)

}
.

Then �M
3 ⊂ �, where � is the boundary of �M

3 , �M
3 is a simply-connected Lipschitz

domain with Lipschitz constant M , and � is locally C1 at every point on � \ �M
3

(Fig. 9).

For a > 0 and m ∈ N let

�m,a := (−a, a) × �m and �M,m
a := [−a, a] × �M,m, (4.46)

where �m and �M,m are as in Definition 4.4 and (4.36), respectively.
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Lemma 4.11 (3-d version of Lemma 4.6) Given N ∈ N and a > 0, define the
orthonormal set {ψ1, ..., ψN } ⊂ [−a, a] × �M by (4.7), but with �m replaced by
�m,a, and define the Galerkin matrix DN ,a by (4.1) (with DN replaced by DN ,a),
where D is the double-layer potential operator on [−a, a] × �M . Then

(
DN ,a

)
jm = (BN

)
jmd ′

j−m,a, 1 ≤ j, m ≤ N , (4.47)

where d ′
0,a := 0, and, for � ∈ N,

d ′−�,a := d ′
�,a := 1∣∣��,a

∣∣
∫

��,a

∫
�0,a

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y)ds(x) (4.48)

= 1

2π |��|
∫

��

∫
�0

|(y − x) · n(y)|
|x − y|2(

1 + |x − y|2
4a2

)1/2
ds(y)ds(x). (4.49)

Furthermore,

d ′
� ≤ d ′

�,a ≤
(
1 + 1

4a2

(
1 + (1 + �)2

M2

))1/2
d ′
�, � ∈ Z, a > 0, (4.50)

where d ′
� is as defined in Lemma 4.6, and thus

DN ,a → DN as a → ∞, (4.51)

where DN is defined by (4.19).

Proof That (4.47) and (4.48) hold follows exactly as in the proof of Lemma 4.6. To
see (4.49), note that (4.48) implies, since |��,a | = 2a|��|, that

d ′
�,a = 1

8πa |��|
∫

��,a

∫
�0,a

|(̂y − x̂) · n(̂y)|
|̂x − ŷ|3 ds (̂y)ds (̂x), � ∈ N.

Writing x̂ = x1e1 +x and ŷ = y1e1 +y, where e1 is the unit vector in the x1-direction
and x1 := e1 · x̂, y1 := e1 · ŷ, it follows, since e1 ·n(̂y) = 0, that, for � ∈ N and a > 0,

d ′
�,a = 1

8πa |��|
∫

��

∫
�0

∫ a

−a

∫ a

−a

|(y − x) · n(y)|(|x − y|2 + (x1 − y1)2
)3/2 dx1dy1ds(y)ds(x).

Now

∫ a

−a

dx1(|x − y|2 + (x1 − y1)2
)3/2
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= 1

|x − y|2
(

a − y1√|x − y|2 + (a − y1)2
+ a + y1√|x − y|2 + (a + y1)2

)

and

∫ a

−a

a ± y1√|x − y|2 + (a ± y1)2
dy1 =

√
|x − y|2 + 4a2,

so (4.49) follows. Using (4.20) and (4.21), we see that

d ′
� = 1

2π |��|
∫

��

∫
�0

|(y − x) · n(y)|
|x − y|2 ds(y)ds(x), � ∈ N. (4.52)

For x ∈ �0, y ∈ ��, |x − y|2 ≤ 1 + (1 + �)2/M2. Combining this inequality with
(4.49) and (4.52), we obtain the bounds (4.50) for � ∈ N. These bounds also hold for
� ∈ Z, since d ′

0,a = d ′
0 = 0 and d ′−�,a = d ′

�,a and d ′−� = d ′
�, for � ∈ N and a > 0.

Clearly, (4.50) implies (4.51). ��
The proof of the following theorem follows that of Theorem 4.9, but also uses

Lemma 4.11.

Theorem 4.12 (Theorems 1.1 and 1.2 in the 3-d case) Suppose that � is the boundary
of �M

3 , defined as in Definition 4.7, for some M > 0 and β ∈ (0, 1). Then

‖D‖L2(�),ess ≥ M

2
and Wess(D) ⊃ {λ ∈ C : |λ| ≤ M/4}. (4.53)

Proof Let x∗ := 0 ∈ �M
3 ⊂ �. Arguing as in the proof of Theorem 4.9, we obtain

that

‖D‖L2(�),ess ≥ lim
δ→0

‖Dx∗,δ‖L2(�) and Wess(D) ⊃
⋂
δ>0

W (Dx∗,δ),

by Theorem 3.2. Hence the result follows if we show that ‖Dx∗,δ‖L2(�) ≥ M/2 − ε

and W (Dx∗,δ) ⊃ {λ ∈ C : |λ| ≤ M/4 − ε}, for every ε > 0 and δ > 0.
So suppose that ε > 0 and δ > 0. With DN as defined in Lemma 4.5, ‖D1‖2 ≤

‖D2‖2 ≤ ... and W (D1) ⊂ W (D2) ⊂ ... by (4.3). It follows from (4.34) and (4.35)
and the convexity of each W (DN ) that, for some N ∈ N, ‖DN ‖2 ≥ M/2 − ε/2 and
W (DN ) ⊃ {λ ∈ C : |λ| ≤ M/4 − ε/2} and then, by Lemma 4.11, that there exists
a > 0 such that ‖DN ,a‖2 ≥ M/2 − ε and W (DN ,a) ⊃ {λ ∈ C : |λ| ≤ M/4 − ε}.
So the result is proved if we can show that ‖Dx∗,δ‖L2(�) ≥ ‖DN ,a‖2 and W (Dx∗,δ) ⊃
W (DN ,a).

Setting �̃ := �
M,m
a for some m ≥ N/2, it follows from (2.5) that ‖DN ,a‖2 ≤

‖D̃‖L2(�̃) and W (DN ,a) ⊂ W (D̃), where D̃ denotes the double-layer potential oper-
ator on �̃. But, by construction of �M

3 in Definition 4.10 (see (4.44) and (4.38)), there
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exists κ > 0 and s ∈ R such that �̂ := (0, s, 0) + κ�̃ ⊂ Bδ(x∗) ∩ �M
3 ⊂ Bδ(x∗) ∩ �,

so that

‖D̂‖L2(�̂) ≤ ‖Dx∗,δ‖L2(�) and W (D̂) ⊂ W (Dx∗,δ),

by (2.5), where D̂ denotes the double-layer potential operator on �̂. But also, by
Lemma 4.8,

‖D̂‖L2(�̂) = ‖D̃‖L2(�̃) and W (D̂) = W (D̃),

so that

‖Dx∗,δ‖L2(�) ≥ ‖DN ,a‖2 and W (Dx∗,δ) ⊃ W (DN ,a)

and the proof is complete. ��

5 The essential numerical range of the double-layer operator on
polyhedra (proof of Theorem 1.3)

We now consider Lipschitz polyhedral �, proving Theorem 1.3, showing that the
essential numerical range of the open-book Lipschitz polyhedron �θ,n contains an
arbitrarily large disc centred on zero in the complex plane if n ≥ 2, the number of
pages, is large enough, and the opening angle θ ∈ (0, π ] is small enough. In Sect. 5.1
we define �θ,n . In Sect. 5.2 we give the proof of Theorem 1.3.

5.1 Definition of the family of “open-book" polyhedra

In this section we define �θ,n , the open-book polyhedron with n ≥ 2 pages and
opening angle θ ∈ (0, π ] (see Definition 5.7 below and Figs. 2 and 12). This star-
shaped, Lipschitz polyhedron lies between the planes x3 = 0 and x3 = −1. Indeed its
5n+1 vertices comprise 2n+1 vertices (the “top” vertices) that lie in the plane x3 = 0
and 3n vertices (the “bottom” vertices) that lie in the plane x3 = −1. We first specify,
in Definitions 5.1 and 5.2, these top and bottom vertices, and we specify underneath
these definitions (and see Figs. 10 and 11) the polygons �0 and �−1 that form the
top and bottom faces of �θ,n . We then show, in Lemma 5.3, that certain groups of
four vertices, each group comprising two top vertices and two bottom vertices, lie in
planes (under certain constraints on the parameters r1 and r2 in Definition 5.2). The
boundary �θ,n of the open-book polyhedron �θ,n has 3n + 2 faces; 3n of these are
the convex hulls of these groups of four vertices, each of these a convex quadrilateral;
the remaining two are the top and bottom faces �0 and �−1.

Definition 5.1 (The verticesym ,m = 1, . . . , 3n (the “top” vertices)) Given θ ∈ (0, π ]
and n ∈ N with n ≥ 2, let

θn := θ

2n − 1
, (5.1)
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y3j−2 = 0
j = 1, ..., n

y2 = (1, 0, 0)

y3n = (cos(θ), sin(θ), 0) y3n−1 = (cos((2n − 2)θn), sin((2n − 2)θn), 0)

y3 = (cos(θn), sin(θn), 0)

y5 = (cos(2θn), sin(2θn), 0)

θn

θn

Fig. 10 The polygon �0, consisting of n congruent triangles, that forms the “top” face of the open-book
polyhedron �θ,n , i.e. the part of its boundary, �θ,n , that lies in the plane x3 = 0. Shown is the case n = 4
and θ = π/2. The vertices of the n triangles that are not 0 lie on the circle of radius one centred at 0 (shown
in red) (color figure online)

y3 j−2 := 0, y3 j−1 := (cos ((2 j − 2)θn) , sin ((2 j − 2)θn) , 0) ,

and y3 j := (cos ((2 j − 1)θn) , sin ((2 j − 1)θn) , 0) , for j = 1, . . . , n.

Let �0 be the polygon formed by the union of n (congruent) triangles, where the
j th triangle has vertices y3 j−2, y3 j−1, and y3 j , for j = 1, ..., n; �0 forms the “top”
face of our polyhedron (see Fig. 10). Observe that these triangles meet at the common
vertex 0 where each triangle has angle θn .

We now define zm , m = 1, . . . , 3n, depending on three parameters r1, r2, and η.
The idea is that each zm is defined as a perturbation of ym − (0, 0, 1), so that, for
certain parameter values, the ym and zm are the vertices of a polyhedron, where the
perturbations are such that the polyhedron is star-shaped and Lipschitz.

Definition 5.2 (The vertices zm , m = 1, . . . , 3n (the “bottom” vertices)) Given θ ∈
(0, π ], n ∈ N with n ≥ 2, r j > 0, j = 1, 2, and η in the range

0 < η <
θn

2
, (5.2)

where θn is given by (5.1), let

z1 := (0, 0,−1), z2 := (r1, 0,−1),

z3 j := (cos ((2 j − 1)θn + η) , sin ((2 j − 1)θn + η) ,−1) , j = 1, . . . n − 1,

z3 j−2 := (r2 cos ((2 j − 5/2)θn) , r2 sin ((2 j − 5/2)θn) ,−1) , j = 2, . . . n,

z3 j−1 := (cos ((2 j − 2)θn − η) , sin ((2 j − 2)θn − η) ,−1) , j = 2, . . . n, and
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z1 = (0, 0,−1)
z2 = (r1, 0,−1)

z3n = (r1 cos(θ), r1 sin(θ),−1)
z3n−1

z3

z4

z5

Fig. 11 The 3n-sided polygon �−1, that forms the “bottom” face of the open-book polyhedron �θ,n , i.e.
the part of its boundary, �θ,n , that lies in the plane x3 = −1. Shown is the case n = 4 and θ = π/2. Also
shown is the polygon �0 (in light gray). The vertices z1, . . . , z3n of �−1 are given as in Definition 5.2,
with the parameters r1, r2, and η given by (5.3), (5.4), and (5.5), respectively. Note that �θ,n is shown in
3-d with the same parameter values in Fig. 2

z3n := (r1 cos θ, r1 sin θ,−1).

Observe that the points z3 j , j = 1, . . . n − 1, are rotations of y3 j − (0, 0, 1) by the
angle η in the x3 = −1 plane, and similarly for z3 j−1 and y3 j −(0, 0, 1). If r2 is small,
then z3 j−2, j = 2, . . . , n, can be considered as perturbations of y3 j−2 − (0, 0,−1) =
(0, 0,−1) (see Figs. 10 and 11). Let �−1 be the polygon in the plane x3 = −1 formed
by connecting the vertices z1, z2,...,z3n , z1, in that order; �−1 forms the “bottom" face
of our polyhedron (see Fig. 11).

We join pairs of vertices of �0 with pairs of vertices in �−1 to form the open-book
polyhedron �θ,n (so-called because it resembles—see Figs. 2 and 12—an open book
with n pages). Before proceedingwith the definition, we check that the pairs of vertices
that we propose to join to create quadrilateral faces of �θ,n do indeed lie in the same
planes.

Lemma 5.3 (Particular groups of four vertices lie in planes)

(i) (“Front of Page 1 and back of Page n.”) For all r1 > 0, the points y1, y2, z1, and
z2 lie in the x2 = 0 plane, and the points y3n, y1, z3n, and z1 lie in the x2 = 0
plane rotated by angle θ clockwise about the x3 axis.

(ii) (“The ends of Pages 1 and n.”) Given η satisfying (5.2), if

r1 := cos(θn/2 + η)

cos(θn/2)
, (5.3)

then y2, y3, z2, and z3 lie in a plane, and y3n−1, y3n, z3n−1, and z3n also lie in a
plane.
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(iii) (“The backs of Pages 1, . . . , n − 1 and the fronts of Pages 2, . . . , n.”) Given η

satisfying (5.2), if

r2 := sin(η)

sin (θn/2)
, (5.4)

then y3 j , y3 j+1, z3 j , and z3 j+1, j = 1, . . . , n − 1, lie in a plane, and
y3 j−2, y3 j−1, z3 j−2, and z3 j−1, j = 2, . . . , n, also lie in a plane.

(iv) (“The ends of Pages 2, . . . , n − 1.”) For all η satisfying (5.2), the points
y3 j−1, y3 j , z3 j−1, and z3 j , j = 2, . . . , n − 1, lie in a plane.

The proof of Lemma 5.3 is straightforward, and so is omitted.

Remark 5.4 The constraints on θ and n in Definitions 5.1 and 5.2, together with (5.2),
ensure that r j ∈ (0, 1), for j = 1, 2, where r1 and r2 are defined by (5.3) and (5.4),
respectively, and imply that

r1 → 1 and r2 ∼ 2η

θn
= 2(2n − 1)η

θ
as θ → 0.

We now define the polygonal faces (other than �0 and �−1) of our polyhedron.

Definition 5.5 (Faces � j , j = 1, . . . , 3n)

(i) (“Front of pages.”) Let �3 j−2, j = 1, . . . , n, be the convex hull of y3 j−2, y3 j−1,

z3 j−2, and z3 j−1.
(ii) (“Ends of pages.”) Let �3 j−1, j = 1, . . . , n, be the convex hull of y3 j−1, y3 j ,

z3 j−1, and z3 j .
(iii) (“Back of pages.”) Let �3 j , j = 1, . . . , n, be the convex hull of y3 j , y3 j+1, z3 j ,

and z3 j+1, for j < n, the convex hull of y3n, y1, z3n, and z1 for j = n.

Corollary 5.6 Provided the parameters r1, r2 and η satisfy (5.3), (5.4), and (5.2), � j ,
j = 1, . . . , 3n, are polygons.

Proof For�3 j−2, j = 1, . . . , n, this follows from Part (i) (for j = 1) and Part (iii) (for
j = 2, . . . , n) of Lemma 5.3. For �3 j−1, j = 1, . . . , n, this follows from Part (ii) (for
j = 1, n) and Part (iv) (for j = 2, . . . , n − 1) of Lemma 5.3. For �3 j , j = 1, . . . , n,
this follows from Part (i) (for j = n) and Part (iii) (for j = 1, . . . , n − 1) of Lemma
5.3. ��
Definition 5.7 (Open-book polyhedron �θ,n) With � j , j = −1, 0, 1, . . . , 3n, as
above, r1 given by (5.3), r2 given by (5.4), and η given by

η := θθn

4π
= θ2

4π(2n − 1)
, (5.5)

so that η satisfies (5.2), let �θ,n denote the closed surface

�θ,n :=
3n⋃

j=−1

� j , (5.6)
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Fig. 12 The open-book polyhedron �θ,n with: n = 2 pages, opening angle θ = π/4 (left); n = 6 pages,
opening angle θ = π/3 (right)

and let �θ,n (the open-book polyhedron with n pages and opening angle θ ) denote the
interior of �θ,n (see Figs. 2 and 12).

Remark 5.8 (Closing the book) Key to the proof below of Theorem 1.3 is the limit
θ → 0 (“closing the book”). In this limit (see (5.5) and Remark 5.4) r1 → 1 and
r2 → 0 and the “fronts” and “backs” of the pages of the book (i.e. the faces �3 j−2 and
�3 j , j = 1, . . . , n) collapse onto the unit square [0, 1] × {0} × [0, 1]. Precisely, for
j = 1, ..., n,y3 j−2 = 0,y3 j−1 → (1, 0, 0), z3 j−2 → (0, 0,−1), z3 j−1 → (1, 0,−1),
y3 j → (1, 0, 0), and z3 j → (1, 0,−1).

The open-book polyhedron is star-shaped with respect to a ball, in the following
standard sense.

Definition 5.9 (Star-shaped and star-shaped with respect to a ball) Abounded domain
� ⊂ R

d is star-shaped with respect to x0 ∈ � if the line [x, x0] ⊂ �, for every x ∈ �,
where [x, x0] := conv ({x, x0}). � is star-shaped if it is star-shaped with respect to
some x0 ∈ �. � is star-shaped with respect to the ball Bε(y), for some ε > 0 and
y ∈ �, if [x, x0] ⊂ � for every x ∈ � and x0 ∈ Bε(y). � is star-shaped with respect
to a ball if it is star-shaped with respect to Bε(y), for some ε > 0 and y ∈ �.

Lemma 5.10 For θ ∈ (0, π ] and n ∈ N with n ≥ 2, �θ,n is a bounded Lipschitz
polyhedron that is star-shaped with respect to a ball, and �θ,n is its boundary.

Proof By construction and Lemma 5.3, �θ,n is a bounded polyhedron with boundary
�θ,n . To see that �θ,n is star-shaped with a respect to a ball, which implies that �θ,n

is Lipschitz, it is enough, by [51, Lemma 3.1], to show that (x − x0) · n(x) ≥ γ , for
some x0 ∈ � and γ > 0 and all x ∈ �θ,n for which the outward-pointing unit normal
n(x) is defined. If x0 = (0, 0,−1), it is easy to see that this condition holds for all
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x ∈ � j , with j = 0 or j = 2, . . . , 3n − 1; indeed, by the symmetry of �θ,n , it is
enough to check this holds for j = 0 and j = 2, . . . , 6. But this implies that this
condition also holds, on the same subset of �θ,n , if we take x0 = (ε, ε, ε − 1) ∈ �θ,n

for any sufficiently small ε. Moreover, with this choice of x0 it holds also, for some
γ > 0, that (x − x0) · n(x) ≥ γ for x ∈ � j with j ∈ {−1, 1, 3n}. ��

5.2 Proof of Theorem 1.3

We first state and prove an analogue of Lemma 4.2 with �θ,n instead of �β . For this
purpose it is convenient to introduce a notation for the 2n faces of�θ,n that are “fronts”
and “backs” of pages (and not “ends", or the top, �0, or the bottom, �−1).

Definition 5.11 (Relabelling of “front” and “back” pages of �θ,n) Let

�̃m := �3 j−2 for m = 2 j − 1, j = 1, . . . , n,

and

�̃m := �3 j for m = 2 j, j = 1, . . . , n.

Lemma 5.12 (The relationship of BN to the double-layer potential on�θ,n) Let �θ,n be
as in Definition 5.7, with �̃m, m = 1, . . . , 2n, as in Definition 5.11. Setting N = 2n−1
(which makes N odd), define the orthonormal set {ψ1, ..., ψN } ⊂ L2(�θ,n) by

ψm(x) :=
{

|�̃m |−1/2, x ∈ �̃m,

0, otherwise,

for m = 1, ..., N. Define the Galerkin matrix DN by (4.1), where D is the double-layer
potential operator on �θ,n, and define BN ∈ R

N×N by (2.25). Then

(
DN
)

jm = (BN
)

jmd jm, 1 ≤ j, m ≤ N , (5.7)

where d jm := 0 for j = m,

d jm := 1

4π |�̃ j |1/2|�̃m |1/2
∫

�̃ j

αm ds, for j �= m,

and

αm(x) := 4π

∣∣∣∣
∫

�̃m

∂�(x, y)
∂n(y)

ds(y)

∣∣∣∣ =
∫

�̃m

|(x − y) · n(y)|
|x − y|3 ds(y), x ∈ R

3 \ �̃m,

is the solid angle subtended at x by �̃m. Further, for 1 ≤ j, m ≤ N, with j �= m,
d jm → 1/2 as θ → 0, so that

DN → 1

2
BN . (5.8)
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Proof For m = 1, . . . , N and x ∈ R
3 \ �̃m ,

∫
�̃m

∂�(x, y)
∂n(y)

ds(y) = ±αm(x)
4π

, (5.9)

where the+ sign is taken if x is on the side of �̃m to which the normal points, otherwise
the − sign is taken. Thus, for 1 ≤ j, m ≤ N ,

Dψm(x) = 1

4π |�̃m |1/2 (−1)m+1sign(m − j)αm(x), x ∈ �̃ j , (5.10)

and (5.7) follows. Let �∗ := ∪N
j=1�̃ j . As θ → 0, the vertices of each quadrilateral �̃ j

tend to the corresponding vertices of the unit square [0, 1] × {0} × [0, 1] (see Remark
5.8), so that |�̃ j | → 1 and αm(x) → 2π for almost all x ∈ �∗ \ �̃m . Thus, as θ → 0,
for j �= m,

|�̃ j | ∼ |�̃m | → 1 and
∫

�̃ j

αm ds → 2π

by the dominated convergence theorem, so that d jm → 1/2, implying (5.8). ��
Proof of Theorem 1.3 Suppose n ∈ N with n ≥ 2, and that � = �θ,n , with θ ∈ (0, π ],
and D is the double-layer potential operator on �. By Theorem 3.17,

Wess(D) =
⋃
x∈V

W (Dx),

where V is the set of vertices of � and �x is the cone at x given by (3.25). In particular,
since x∗ := 0 is a vertex,

Wess(D) ⊃ W (Dx∗).

But, recalling Definition 5.11 and setting N = 2n − 1, we have

�x∗ ⊃ �∗ :=
N⋃

j=1

�̃m,

so that, by (2.21), W (DN ) ⊂ W (Dx∗), where DN is defined by (5.7). But, by Lemma
5.12, 2DN → BN as θ → 0, so, by Corollary 2.10, for every ε > 0 there exists θ0 > 0
such that

[
ε −√(N + 1)/2,

√
(N + 1)/2 − ε

]
∪
{

z ∈ C : |z| ≤
√

N − 1

2
− ε

}

⊂ W (2DN ) = 2W (DN ),

for 0 < θ ≤ θ0, and the result follows since Wess(D) is convex. ��
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6 The essential norm of the double-layer operator on polyhedra in
weighted spaces of continuous functions (proof of Theorem 1.5)

If the bounded Lipschitz domain �− ⊂ R
d is a polygon or polyhedron, then D is also

a bounded linear operator on C(�) (equipped with the usual supremum norm). Indeed
this is true (e.g., [95, §4], [69, Chapter 4, §2]) if and only if8

sup
x∈Rd\�

∫
�

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) < ∞, (6.1)

in which case the norm of D as an operator on C(�) is

‖D‖C(�) = sup
x∈�

∫
�

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y).

When φ ∈ C(�) and (6.1) holds, the integrals (1.2)/(1.4) are well-defined for all
x ∈ �, and the function Dφ so-defined is equal almost everywhere to a continuous
function; indeed Dφ is continuous if the definition of Dφ is adjusted on a set of
(surface) measure zero to read

Dφ(x) :=
(

�(x) − 1

2

)
φ(x) +

∫
�

∂�(x, y)
∂n(y)

φ(y) ds(y), x ∈ �, (6.2)

where

�(x) := lim
δ→0

|Bδ(x) ∩ �−|
|Bδ(x)| , x ∈ �,

is the density of �− at x (e.g., [57, Lemma 2.9], [58]), with�(x) = 1/2 almost every-
where on � (everywhere that the normal n is well-defined). An explicit expression,
similar in flavour to Theorem 3.2, is also known for the essential norm of D on C(�),
that ( [57, §4], [69, Chapter 4, Theorem 10], or [95, Theorem 4.1])

‖D‖C(�),ess = lim
δ→0

sup
x∈�

∫
�∩Bδ(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y). (6.3)

Suppose now that w ∈ L∞(�) satisfies (1.11) for some c− > 0 and define by
(1.12) the weighted norm ‖ · ‖Cw(�) on C(�), this norm equivalent to the supremum
norm. Generalisations of (6.3) to the case when C(�) is equipped with a weighted
norm ‖ · ‖Cw(�) have been discussed by Král and Wendland [60], Král and Medková
[58], andWendland [95], who state the formula (6.4) below for cases where the weight
w is lower semi-continuous (in particular see [58, Theorem 18]), when the ess sup in
(6.4) can be replaced by a supremum. So that our results apply to the class of weights

8 We note that, in the 2-d case, �− in Fig. 3 is an example of a bounded Lipschitz domain for which (6.1)
does not hold. For, using the notation of Definition 4.1 and (4.10), for every m ∈ N the side �m ⊂ �β ⊂ �

subtends the same angle αm (0) at x = 0, so that (6.1) blows up as x → 0.
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considered by Hansen [49] (see the discussion in Sect. 1.1), we prove that the formula
(6.4) holds when w ∈ L∞(�), a more general class of weights than in [58,60] (see,
e.g., [97, Theorem 5]). Our proof starts from that of (6.3) in [57, §4] for the unweighted
case, this also the starting point for the proof when w is lower semicontinuous in [58].
But the proof for the casew ∈ L∞(�) has new difficulties.We need to design the proof
so as to avoid computing the action of a general Borel measure on our L∞(�) weight
(this action can be sensibly defined whenw is lower semicontinous). Furthermore, the
proofs in [57,58] implicitly (and trivially) reverse the order of suprema over φ ∈ C(�)

and x ∈ �; to justify this when the supremum over x ∈ � is replaced by an essential
supremum we prove first the following lemma.9

Lemma 6.1 Suppose that z ∈ L∞(�) and, for some index set S, { fφ : φ ∈ S} is a
bounded subset of C(�). Then

A := sup
φ∈S

ess sup
x∈�

(|z(x) fφ(x)|) = ess sup
x∈�

(
|z(x)| sup

φ∈S
| fφ(x)|

)
=: B.

Proof Given ε > 0 we can choose ψ ∈ S so that ess supx∈� |(z(x) fψ(x)|) ≥ A − ε.
But | fψ(x)| ≤ supφ∈S | fφ(x)|, for every x ∈ �, so it follows that A − ε ≤ B. Since
this holds for all ε > 0, B ≥ A.

Conversely, given ε > 0 there exists G ⊂ � with surface measure |G| > 0 such
that |z(x)| supφ∈S | fφ(x)| ≥ B − ε, for each x ∈ G. Thus, for each x ∈ G there exists
ψx ∈ S such that |z(x) fψx(x)| ≥ B − 2ε, for x ∈ G. By Lusin’s theorem (e.g., [82,
§2.24]) there exists z̃ ∈ C(�) and G̃ ⊂ � such that z(x) = z̃(x) for all x ∈ � \ G̃
and |G̃| < |G|. Thus |Ĝ| > 0, where Ĝ := G \ G̃, and |̃z(x) fψx(x)| ≥ B − 2ε, for
x ∈ Ĝ. Since each z̃ fψx is continuous, for every x ∈ Ĝ there exists ε(x) > 0 such that
|̃z(y) fψx(y)| ≥ B − 3ε, y ∈ � ∩ Bε(x)(x). Let

O :=
⋃
x∈Ĝ

� ∩ Bε(x)(x).

Then {� ∩ Bε(x)(x) : x ∈ Ĝ} is an open cover for O ⊃ Ĝ (in the Euclidean topology
on Rd restricted to �) which has a countable subcover {� ∩ Bε(xn)(xn) : n ∈ N}, with
each xn ∈ Ĝ (to see this, use that the Euclidean topology is second countable, or that
O = ∪n∈NGn , where each Gn := {x ∈ O : dist(x, � ∩ ∂O) ≤ n−1} is compact and
so has a finite subcover). Thus

0 < |Ĝ| =
∣∣∣∣∣

∞⋃
n=1

Ĝ ∩ Bε(xn)(xn)

∣∣∣∣∣ ≤
∞∑

n=1

∣∣Ĝ ∩ Bε(xn)(xn)
∣∣ .

9 If f : S × T → R then, trivially, sups∈S supt∈T f (s, t) = sup(s,t)∈S×T f (s, t) = supt∈T sups∈S
f (s, t). But this need not hold if a sup is replaced by an ess sup. E.g., if S = T = R (equipped with
Lebesgue measure) and f (s, t) := 1 if s = t , := 0 otherwise, then sups∈S ess supt∈T f (s, t) = 0 but
ess supt∈T sups∈S f (s, t) = 1.
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Thus, for some m ∈ N,
∣∣Ĝ ∩ Bε(xm )(xm)

∣∣ > 0. Since

|z(y) fψxm
(y)| = |̃z(y) fψxm

(y)| ≥ B − 3ε, y ∈ Ĝ ∩ Bε(xm )(xm),

A ≥ ess supy∈� |z(y) fψxm
(y)| ≥ B − 3ε. Since this holds for all ε > 0 the proof is

concluded. ��
Theorem 6.2 Suppose that �− is a bounded Lipschitz domain with boundary �, that
(6.1) holds, and that w ∈ L∞(�) satisfies (1.11) for some c− > 0. Then

‖D‖Cw(�),ess = lim
δ→0

ess sup
x∈�

∫
�∩Bδ(x)

w(y)
w(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y). (6.4)

Proof Given δ > 0 choose ε ∈ (0, δ) and χ ∈ C(� × �) such that 0 ≤ χ(x, y) ≤ 1
for x, y ∈ �, χ(x, y) = 1 for |x − y| ≥ δ, and χ(x, y) = 0 for |x − y| ≤ ε. Define
Kδ : C(�) → C(�) by

Kδφ(x) :=
∫

�

χ(x, y)
∂�(x, y)
∂n(y)

φ(y) ds(y), x ∈ �. (6.5)

Then Kδ is an integral operator with kernel
∑d

j=1 k j (x, y)n j (y), with each k j contin-
uous, and so is compact on C(�). Further, for φ ∈ C(�),

‖(D − Kδ)φ‖Cw(�) ≤ ess sup
x∈�

∫
�∩Bδ(x)

|φ(y)|
w(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) ≤ Rδ‖φ‖Cw(�),

where

Rδ := ess sup
x∈�

∫
�∩Bδ(x)

w(y)
w(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y).

Thus ‖D‖Cw(�),ess ≤ ‖(D − Kδ)‖Cw(�) ≤ Rδ . Since this holds for every δ > 0,
‖D‖Cw(�),ess ≤ limδ→0 Rδ .

Let C ′(�) denote the dual space of C(�), the space of regular complex Borel
measures on � (see, e.g., [82, Theorem 6.19]). Arguing as in [57, p. 107], to see that
‖D‖Cw(�),ess ≥ limδ→0 Rδ , it is enough to show that ‖D − K‖Cw(�) ≥ limδ→0 Rδ for
every finite rank operator K on C(�), since this set of operators is dense in the space
of compact operators on C(�).10 Further, if K is finite rank then

Kφ =
N∑

j=1

φ j

∫
�

φ dμ j , φ ∈ C(�),

10 Recall that there exists a sequence (Rn)n∈N of bounded linear operators onC(�) that converges strongly
to the identity with the range of Rn finite-dimensional for each n, so that, for every compact operator K ,
Rn K has finite rank and (see, e.g., [61, Theorem 10.10]) ‖Rn K − K‖C(�) → 0 as n → ∞. Explicitly,
see, e.g., [55, p. 186], we can take Rnφ(x) := ∑x∈G χxφ(x), φ ∈ C(�), where G and χx are as defined
in and above (3.7), with ε = 1/n.
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for some N ∈ N, φ j ∈ C(�), μ j ∈ C ′(�), j = 1, ..., N . Moreover, as in [57, p. 108],
we can assume that {x ∈ � : |μ j |({x}) > 0} is finite since any μ ∈ C ′(�) can be
approximated arbitrarily well in norm by such ameasure. Thus it is enough to consider
the case that μ j = μc

j + μd
j , where each μd

j is a finite sum of Dirac delta measures
and each μc

j is continuous, i.e. |μc
j |({x}) = 0 for each x ∈ �, which implies also that

|μc
j |(� ∩ Bδ(x)) → 0 as δ → 0 for each x ∈ �, and hence, using the compactness of

�, also that

lim
δ→0

sup
x∈�

|μc
j |(� ∩ Bδ(x)) → 0. (6.6)

Let K c : C(�) → C(�) denote the “continuous” part of K , meaning that

K cφ :=
N∑

j=1

φ j

∫
�

φ dμc
j , φ ∈ C(�);

similarly, let K d := K − K c denote the “discrete" part of K . We show that ‖D −
K‖Cw(�) ≥ limδ→0 Rδ by showing that ‖D − K c‖Cw(�) ≥ limδ→0 Rδ and that

‖D − K‖Cw(�) ≥ ‖D − K c‖Cw(�). (6.7)

To see that (6.7) holds, let � := {x ∈ � : ∑N
j=1 |μd

j |({x}) > 0}, a finite subset of
�, and let C�(�) := {φ ∈ C(�) : φ(x) = 0 for x ∈ �}. Then, since K dφ = 0 for all
φ ∈ C�(�),

‖D − K‖Cw(�) ≥ sup
φ∈C�(�)

‖φ‖Cw(�)≤1

‖(D − K )φ‖Cw(�) = sup
φ∈C�(�)

‖φ‖Cw(�)≤1

‖(D − K c)φ‖Cw(�)

. (6.8)

Thus (6.7) holds if we can show that

sup
φ∈C�(�)

‖φ‖Cw(�)≤1

‖(D − K c)φ‖Cw(�) ≥ sup
‖φ‖Cw(�)≤1

‖(D − K c)φ‖Cw(�) = ‖D − K c‖Cw(�)

.(6.9)

Given ε > 0, choose φ ∈ C(�) with ‖φ‖Cw(�) ≤ 1 such that

‖(D − K c)φ‖Cw(�) ≥ ‖D − K c‖Cw(�) − ε.

Then there exists G ⊂ � of positive measure with dist(G,�) > 0 such that �(x) =
1/2, (1.11) holds, and

∣∣∣∣ 1

w(x)
(D − K c)φ(x)

∣∣∣∣ ≥ ‖D − K c‖Cw(�) − 2ε, for x ∈ G.

123



Coercivity, essential norms, and the Galerkin method...

Further, for every δ > 0 there exists φδ ∈ C�(�)with |φδ(x)| ≤ |φ(x)|, x ∈ �, so that
‖φδ‖Cw(�) ≤ 1, and such that supp(φ − φδ) ⊂ ∪x∈�(� ∩ Bδ(x)). This set is disjoint
from G if δ is small enough, so that, for some δ′ > 0 and all sufficiently small δ > 0,
D(φ − φδ)(x) = Kδ′(φ − φδ)(x), for x ∈ G, where Kδ′ is defined by (6.5). It is easy
to see that ‖Kδ′(φ − φδ)‖C(�) → 0 as δ → 0; moreover, ‖K c(φ − φδ)‖C(�) → 0 as
δ → 0, since limδ→0 |μc

j |(� ∩ Bδ(x)) = 0, for j = 1, ..., N and each x ∈ �. Thus

∣∣∣∣ 1

w(x)
(D − K c)φδ(x)

∣∣∣∣ ≥ ‖D − K c‖Cw(�) − 3ε, x ∈ G,

if δ is small enough, so that

sup
φ∈C�(�)

‖φ‖Cw(�)≤1

‖(D − K c)φ‖Cw(�) ≥ ess sup
x∈�

∣∣∣∣ 1

w(x)
(D − K c)φδ(x)

∣∣∣∣

≥ ‖D − K c‖Cw(�) − 3ε.

Since this holds for all ε > 0, (6.9) holds and (6.7) follows.
To see that ‖D − K c‖Cw(�) ≥ limδ→0 Rδ , note that, using Lemma 6.1, which

applies since D − K c is a bounded operator on C(�),

‖D − K c‖Cw(�) = sup
‖φ‖Cw(�)≤1

ess sup
x∈�

∣∣∣∣ 1

w(x)
(D − K c)φ(x)

∣∣∣∣

= ess sup
x∈�

(
1

w(x)
sup

‖φ‖Cw(�)≤1
|(D − K c)φ(x)|

)

= ess sup
x∈�

(
1

w(x)
sup

‖φ‖Cw(�)≤1
|(λx − μc

x)(φ)|
)

,

where

λx(ψ) :=
∫

�

∂�(x, y)
∂n(y)

ψ(y) ds(y), μc
x(ψ) :=

N∑
j=1

φ j (x)
∫

�

ψ dμc
j , ψ ∈ C(�).

Now, for x ∈ � and δ > 0, where Sδ(x) := {φ ∈ C(�) : ‖φ‖Cw(�) ≤ 1, supp(φ) ⊂
Bδ(x)},

sup
‖φ‖Cw(�)≤1

|(λx − μc
x)(φ)| ≥ sup

φ∈Sδ(x)
|(λx − μc

x)(φ)|

≥ sup
φ∈Sδ(x)

|λx(φ)| − |μc
x|(� ∩ Bδ(x))

=
∫

�∩Bδ(x)
w(y)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) − |μc
x|(� ∩ Bδ(x)),
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this last line following as a corollary of Lusin’s theorem (see [82, p. 56]) and the
dominated convergence theorem. Thus

‖D − K c‖Cw(�) ≥ Rδ − c−1− sup
x∈�

|μc
x|(� ∩ Bδ(x)), δ > 0.

That ‖D − K‖Cw(�) ≥ limδ→0 Rδ follows from this bound, (6.7), and (6.6). ��
In the following lemma we use again, in the case that � is Lipschitz polyhedral, the

notation �x of (3.25) for the cone that coincides with � in a neighbourhood of x ∈ �.

Lemma 6.3 Suppose that �− is a bounded Lipschitz polyhedron with boundary � and
that, for some x ∈ �, some relatively open �× ⊂ �x ∩ �, and some C > 0,

inf
x∈�×

∫
�×

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) ≥ C . (6.10)

Then, for every w ∈ L∞(�) that satisfies (1.11) for some c− > 0,

‖D‖Cw(�),ess ≥ C .

Proof Suppose that (6.10) holds and, without loss of generality, suppose that x = 0.
Then, making a change of variables as in the proof of Lemma 3.13, we see that

inf
x∈β�×

∫
β�×

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) ≥ C, (6.11)

for all β > 0. Given δ > 0, choose β > 0 so that β�× ⊂ � ∩ Bδ/2(0). Then

ess sup
x∈Bδ/2(0)∩�

∫
�∩Bδ(x)

w(y)
w(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y)

≥ ess sup
x∈β�×

(
1

w(x)

∫
β�×

w(y)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y)
)

≥ C,

since the last integral above is ≥ C ess infy∈β�× w(y), for all x ∈ β�×. Thus, for all
δ > 0,

ess sup
x∈�

∫
�∩Bδ(x)

w(y)
w(x)

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) ≥ C,

and the result follows from Theorem 6.2. ��
Proof of Theorem 1.5 Suppose that n ∈ N with n ≥ 2, θ ∈ (0, π/4] and �− := �θ,n ,
the open book polyhedron as in Definition 5.7, and note that 0 is one of the vertices.
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Relabelling the “front” and “back” pages as in Definition 5.11, let �∗ := ∪2n
m=1�̃m , so

that �∗ is contained in the cone �0 with vertex 0. Let

�× := {x ∈ �∗ : (x1 − 1/2)2 + (x3 + 1/2)2 < 1/64}.

Then �× = ∪2n
m=1�

×
m , where each �×

m ⊂ �̃m is an ellipse, in particular

�×
1 = {x = (x1, x2, x3) : (x1 − 1/2)2 + (x3 + 1/2)2 < 1/64, x2 = 0}

is the circular disc of radius 1/8 in the plane x2 = 0 centred on x1 = 1/2, x3 = −1/2.
Further (cf. Lemma 5.12), for each x ∈ �×

j ⊂ �×, j = 1, . . . , 2n,

α(x) := 4π
∫

�×

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y)

is the sum of the solid angles subtended at x by the 2n − 1 ellipses �×
m , with m ∈

{1, . . . , 2n}, m �= j . As θ → 0 (“closing the book”, Remark 5.8), each ellipse �×
m

approaches the disc �×
1 , so that �× comprises asymptotically 2n circular discs of

radius 1/8 that are concentric and approximately parallel. Thus, as θ → 0,

inf
x∈�× 4π

∫
�×

m

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) → π, m = 1, . . . , 2n,

this being the solid angle subtended by the disc �×
1 at each point of the circle {x =

(x1, x2, x3) : (x1 − 1/2)2 + (x3 + 1/2)2 = 1/64, x2 = p}, in the limit p → 0. Thus,
given any ε > 0 there exists θ0 ∈ (0, π/4] such that

inf
x∈�×

∫
�×

∣∣∣∣∂�(x, y)
∂n(y)

∣∣∣∣ ds(y) = inf
x∈�×

α(x)
4π

≥ 2n − 1

4
− ε, 0 < θ ≤ θ0.

The result follows by applying Lemma 6.3. ��
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