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Abstract. Can we improve machine-learning (ML) emula-
tors with synthetic data? If data are scarce or expensive to
source and a physical model is available, statistically gener-
ated data may be useful for augmenting training sets cheaply.
Here we explore the use of copula-based models for gener-
ating synthetically augmented datasets in weather and cli-
mate by testing the method on a toy physical model of
downwelling longwave radiation and corresponding neural
network emulator. Results show that for copula-augmented
datasets, predictions are improved by up to 62 % for the mean
absolute error (from 1.17 to 0.44 W m−2).

1 Introduction

The use of machine learning (ML) in weather and climate
is becoming increasingly popular (Huntingford et al., 2019;
Reichstein et al., 2019). ML approaches are being applied
to an increasingly diverse range of problems for improving
the modelling of radiation (e.g. Cheruy et al., 1996; Cheval-
lier et al., 1998, 2000; Krasnopolsky et al., 2005; Meyer
et al., 2021; Ukkonen et al., 2020; Veerman et al., 2021),
ocean (e.g. Bolton and Zanna, 2019; Krasnopolsky et al.,
2005), chemistry (e.g. Nowack et al., 2018), and convection
(e.g. Krasnopolsky et al., 2013), as well as the representation
of sub-grid processes (e.g. Brenowitz and Bretherton, 2018;
Gentine et al., 2018; O’Gorman and Dwyer, 2018; Rasp et
al., 2018), and the post-processing of model outputs (e.g.
Krasnopolsky and Lin, 2012; Rasp and Lerch, 2018).

When it comes to training ML models for weather and
climate applications two main strategies may be identified:
one in which input and output pairs are directly provided
(e.g. both come from observations) and a second in which
inputs are provided but corresponding outputs are generated
through a physical model (e.g. parameterization schemes or
even a whole weather and climate model). Although the for-
mer may be considered the most common training strategy in
use today, when the underlying physical processes are well
understood (e.g. radiative transfer) and numerical codes are
available, the latter may be of particular interest for develop-
ing one-to-one emulators (i.e. statistical surrogates of their
physical counterparts), which can be used to improve compu-
tational performance for a trade-off in accuracy (e.g. Cheval-
lier et al., 1998; Meyer et al., 2021; Ukkonen et al., 2020;
Veerman et al., 2021). Here, for clarity, we will only be fo-
cusing on the latter case and refer to them as emulators.

In ML, the best way to make a model more generalizable
is to train it on more data (Goodfellow et al., 2016). How-
ever, depending on the specific field and application, input
data may be scarce, representative of only a subset of situ-
ations and domains, or, in the case of synthetically gener-
ated data, require large computational resources, bespoke in-
frastructures, and specific domain knowledge. For example,
generating atmospheric profiles using a general circulation
model (GCM) may require in-depth knowledge of the GCM
and large computational resources (e.g. data used in Meyer
et al., 2021).

A possible solution to these issues may be found by aug-
menting the available input dataset with more samples. Al-
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though this may be a straightforward task for classification
problems (e.g. by translating or adding noise to an image),
this may not be the case for parameterizations of physi-
cal processes used in weather and climate models. In this
context, it is common to work with high-dimensional and
strongly dependent data (e.g. between physical quantities
such as air temperature, humidity, and pressure across grid
points). Although this dependence may be well approxi-
mated by simple physical laws (e.g. the ideal gas law for
conditions found in the Earth’s atmosphere), the generation
of representative data across multiple dimensions for most
weather and climate applications is challenging (e.g. the non-
linear relationship between cloud properties, humidity, and
temperature).

To serve a similar purpose as real data, synthetically
generated data thus need to preserve the statistical prop-
erties of real data in terms of individual behaviour and
(inter-)dependences. Several methods may be suitable for
generating synthetic data such as copulas (e.g. Patki et al.,
2016), variational autoencoders (e.g. Wan et al., 2017), and,
more recently, generative adversarial networks (GANs; e.g.
Xu and Veeramachaneni, 2018). Although the use of GANs
for data generation is becoming increasingly popular among
the core ML community, these require multiple models to
be trained, leading to difficulties and computational burden
(Tagasovska et al., 2019). Variational approaches, on the
other hand, make strong distributional assumptions that are
potentially detrimental to generative models (Tagasovska et
al., 2019). Compared to black-box deep-learning models, the
training of vine copulas is relatively easy and robust, while
taking away a lot of guesswork in specifying hyperparam-
eters and network architecture. Furthermore, copula models
give a direct representation of statistical distributions, mak-
ing them easier to interpret and tweak after training. As such,
copula-based models have been shown to be effective for
generating synthetic data comparable to real data in the con-
text of privacy protection (Patki et al., 2016).

The goal of this paper is to improve ML emulators by aug-
menting the physical model’s inputs using copulas. We give
a brief overview of methods in Sect. 2.1 with specific im-
plementation details in Sect. 2.2–2.5. Results are shown in
Sect. 3, with a focus on evaluating synthetically generated
data in Sect. 3.1 and ML predictions in Sect. 3.2. We con-
clude with a discussion and prospects for future research in
Sect. 4.

2 Material and methods

2.1 Overview

The general method for training an ML emulator for a set of
N samples involves the use of paired inputs x = {x1, . . .,xN }

and outputs y = {x1, . . .,xN } to find the best function ap-
proximation for a specific architecture and configuration. For

Figure 1. General strategies identified for training ML emulators.
(a) Inputs x are fed to the physical model to generate correspond-
ing outputs y; x and y are used to train the ML emulator. (b) A
data generation model (here copula) is fitted to inputs x to generate
synthetic inputs x′; inputs x and x′ are fed to the physical model
to generate corresponding outputs y and y′; both x, x′ and y, y′

are used to train the ML emulator. After training, the model (m; e.g.
architecture and weights) is saved and used for inference on new
data.

inference, the trained ML emulator is then used to predict
new outputs y∗ from inputs x∗. Outputs y are generated
through a physical model from x and fed to the ML emu-
lator for training (Fig. 1a). In this paper we introduce an ad-
ditional step: augmentation through copula-based synthetic
data generation (Fig. 1b). The method is demonstrated with
a toy model of downwelling radiation as the physical model
(Sect. 2.4) and a simple feed-forward neural network (FNN)
as the ML emulator (Sect. 2.5). To evaluate the impact of
copula-generated synthetic data on predictions we focus on
predicting vertical profiles of longwave radiation from those
of dry-bulb air temperature, atmospheric pressure, and cloud
optical depth (other parameters affecting longwave radiative
transfer, such as gas optical depth, are treated as constant in
the simple model described in Sect. 2.4). This task is chosen
at it allows us to (i) evaluate copula-based models for gener-
ating correlated multidimensional data (e.g. with dependence
across several quantities and grid points), some of which (e.g.
cloud optical depth) are highly non-Gaussian; (ii) develop a
simple and fast toy physical model that may be representative
of other physical parameterizations such as radiation, (urban)
land surface, cloud, or convection schemes; and (iii) develop
a fast and simple ML emulator used to compute represen-
tative statistics. Here we define case (a) as the baseline and
generate six different subcases for case (b) using (i) three
levels of data augmentation factors (i.e. either 1×, 5×, or
10× the number of profiles in the real dataset) (ii) generated
from three different copula types. In the following sections
we give background information and specific implementa-
tion details about the general method used for setting up
the source data (Sect. 2.2), data generation (Sect. 2.3), tar-
get generation (Sect. 2.4), and estimator training (Sect. 2.5)
as shown in Fig. 1b.
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Table 1. Profiles of input and output quantities used in this study.
Input quantities are dry-bulb air temperature T , atmospheric tem-
perature p, and cloud layer optical depth τc. T and p are taken
directly from the NWP-SAF dataset (Eresmaa and McNally, 2014),
and τc is derived from other quantities as described in Sect. 2.4.
The output quantity downwelling longwave radiation L↓ is com-
puted using the physical model described in Sect. 2.4. Atmospheric
model levels are 137 for full levels (FLs) and 138 for half-levels
(HLs).

Symbol Name Unit Dimension

Inputs

T Dry-bulb air temperature K FL
p Atmospheric pressure Pa FL
τc Cloud optical depth 1 FL

Output

L↓ Downwelling longwave W m−2 HL
radiation

2.2 Source data

Inputs are derived from the EUMETSAT Numerical Weather
Prediction Satellite Application Facility (NWP-SAF; Eres-
maa and McNally, 2014) dataset. This contains a repre-
sentative collection of 25 000 atmospheric profiles previ-
ously used to evaluate the performance of radiation mod-
els (e.g. Hocking et al., 2021; Hogan and Matricardi, 2020).
Profiles were derived from 137-vertical-level global opera-
tional short-range ECMWF forecasts correlated in more than
one dimension (between quantities and spatially across lev-
els) and extending from the top of the atmosphere (TOA;
0.01 hPa; level 1) to the surface (bottom of the atmosphere;
BOA; level 137). Inputs consist of profiles of dry-bulb air
temperature (T in K; Fig. 2a), atmospheric pressure (p in Pa;
Fig. 2b), and cloud layer optical depth (τc; Fig. 2c). τc is de-
rived from other quantities to simplify the development of
models as described in Sect. 2.4. Dry-bulb air temperature,
atmospheric pressure, and cloud layer optical depth are then
used as inputs to the physical model (Sect. 2.4) to compute
outputs containing profiles of downwelling longwave radia-
tion (L↓ in W m−2; Fig. 2d). As both copula models and ML
emulator work on two-dimensional data, data are reshaped to
input X and output Y matrices with each profile as row (sam-
ple) and flattened level and quantity as column (feature) and
reconstructed to their original shape where required. Prior to
being used, source data are shuffled at random and split into
three batches of 10 000 profiles (40 %) for training (Xtrain,
Ytrain), 5000 (20 %) for validation (Xval, Yval), and 10 000
(40 %) for testing (Xtest, Ytest).

2.3 Data generation

Data generation is used to generate additional input sam-
ples (here atmospheric profiles) to be fed to the physical
model (Sect. 2.4) and ML (Sect. 2.5) emulator. Optimally,
synthetically generated data should resemble the observed
data as closely as possible with respect to (i) the individual
behaviour of variables (e.g. the dry-bulb air temperature at a
specific level) and (ii) the dependence across variables and
dimensions (e.g. the dry-bulb air temperature across two lev-
els). Copulas are statistical models that allow these two aims
to be disentangled (Trivedi and Zimmer, 2006; Joe, 2014)
and to generate new samples that are statistically similar to
the original data in terms of their individual behaviour and
dependence.

2.3.1 Background on copula models

Suppose we want to generate synthetic data from a proba-
bilistic model for n variables Z1, . . .,Zn. To achieve the first
aim, we need to find appropriate marginal cumulative dis-
tributions F,. . .,Fn. A simple approach is to approximate
them by the corresponding empirical distribution functions.
To achieve the second aim, however, we need to build a
model for the joint distribution function F(z1, . . .,zn). The
key result, Sklar’s theorem (Sklar, 1959), states that any joint
distribution function can be written as

F (z1, . . .,zn)= C (F1 (z1) , . . .,Fn (zn)) . (1)

The function C is called copula and encodes the dependence
between variables.

Copulas are distribution functions themselves. More pre-
cisely, if all variables are continuous, C is the joint distri-
bution of the variables U1 = F1(Z1), . . .,Un = Fn(Zn). This
fact facilitates estimation and simulation from the model.
To estimate the copula function C, we (i) estimate marginal
distributions F̂1, . . ., F̂n, (ii) construct pseudo-observations
Û1 = F̂1(Z1), . . ., Ûn = F̂n(Zn), and (iii) estimate C from
the pseudo-observations. Then, given estimated models Ĉ
and F̂1, . . ., F̂n for the copula and marginal distributions, we
can generate synthetic data as follows.

1. Simulate random variables U1, . . .,Un from the esti-
mated copula Ĉ.

2. Define Z1 = F̂
−1
1 (X1), . . .,Zn = F̂

−1
n (Xn).

2.3.2 Parametric copula families

In practice, it is common to only consider sub-families of
copulas that are conveniently parameterized. There is a vari-
ety of such parametric copula families. Such families can be
derived from existing models for multivariate distributions
by inverting the equation of Sklar’s theorem:

C (u1, . . .,un)= F
(
F−1

1 (u1) , . . .,F
−1
n (un)

)
. (2)
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Figure 2. Profiles of (a) dry-bulb air temperature, (b) atmospheric pressure, and (c) cloud layer optical depth from the NWP-SAF dataset
(25 000 profiles; Eresmaa and McNally, 2014) as well as corresponding profiles of longwave radiation computed using the toy physical
model described in Sect. 2.4. Profiles are ordered using band depth statistics (López-Pintado and Romo, 2009), shown for their most central
(median) profile, and grouped for the central 0 %–25 %, 25 %–50 %, and 50 %–100 %.

For example, we can take F as the joint distribution func-
tion of a multivariate Gaussian and F1, . . .,Fn as the corre-
sponding marginal distributions. Then Eq. (2) yields a model
for the copula called the Gaussian copula, which is parame-
terized by a correlation matrix. The Gaussian copula model
includes all possible dependence structure in a multivariate
Gaussian distribution. The benefit comes from the fact that
we can combine a given copula with any type of marginal dis-
tribution, not just the ones the copula was derived from. That
way, we can build flexible models with arbitrary marginal
distributions and Gaussian-like dependence. The same prin-
ciple applies to other multivariate distributions and many
copula models have been derived, most prominently the Stu-
dent’s t copula and Archimedean families. A comprehensive
list can be found in Joe (2014).

2.3.3 Vine copula models

When there are more than two variables (n > 2) the type of
dependence structure these models can generate is rather lim-
ited. Gaussian and Student copulas only allow for symmetric
dependencies between variables. Quite often, dependence is
asymmetric, however. For example, dependence between Z1
and Z2 may be stronger when both variables take large val-
ues. Many Archimedean families allow for such asymmetries
but require all pairs of variables to have the same type and
strength of dependence.

Vine copula models (Aas et al., 2009; Czado, 2019) are a
popular solution to this issue. The idea is to build a large de-
pendence model from only two-dimensional building blocks.
We can explain this with a simple example with just three

variables: Z1, Z2, and Z3. We can model the dependence be-
tween Z1 and Z2 by a two-dimensional copula C1,2 and the
dependence between Z2 and Z3 by another, possibly differ-
ent, copula C2,3. These two copulas already contain some
information about the dependence between Z1 and Z3, the
part of the dependence that is induced by Z2. The missing
piece is the dependence between Z1 and Z3 after the effect
of Z2 has been removed. Mathematically, this is the condi-
tional dependence between Z1 and Z3 given Z2 and can be
modelled by yet another two-dimensional copula C1,3|2. The
principle is easily extended to an arbitrary number of vari-
ables Z1, . . .,Zn. Algorithms for simulation and selection of
the right conditioning order and parametric families for each
(conditional) pair are given in Dißman et al. (2013).

Because all two-dimensional copulas can be specified in-
dependently, such models are extremely flexible and allow
for highly heterogenous dependence structures. Using para-
metric models for pairwise dependencies remains a limiting
factor, however. If necessary, it is also possible to use non-
parametric models for the two-dimensional building blocks.
Here, the joint distribution of pseudo-observations (Û1, Û2)
is estimated by a suitable kernel density estimator (see Na-
gler et al., 2017).

2.3.4 Implementation

Here we use Synthia (Meyer and Nagler, 2021) version 0.3.0
(Meyer and Nagler, 2020) with pyvinecopulib 0.5.5 (Na-
gler and Vatter, 2020) to fit three different copula types:
Gaussian, vine-parametric, and vine-nonparametric. Vine-
parametric fits a parametric model for each pair in the model

Geosci. Model Dev., 14, 5205–5215, 2021 https://doi.org/10.5194/gmd-14-5205-2021
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from the catalogue of Gaussian, Student, Clayton, Gum-
bel, Frank, Joe, BB1, BB6, BB7, and BB8 copula families
and their rotations (see Joe, 2014, for details on these fam-
ilies) using the Akaike information criterion (AIC). Vine-
nonparametric uses transformation local quadratic likelihood
fitting as explained in Nagler et al. (2017). Copulas are fitted
to Xtrain to generate synthetic training sets X′train using three
augmentation factors (i.e. each containing either 1×, 5×, or
10× the number of profiles in Xtrain). Xtrain plus X′train form
augmented training sets containing 20 000 profiles (or double
the amount of training data) for 1× augmentation factor and
60 000 and 110 000 profiles for 5× and 10× augmentation
factors, respectively. As the generation of new profiles with
copula models is random, the generation is also repeated 10
times for each case to allow meaningful statistics to be com-
puted.

2.4 Target generation

Target generation is used to generate outputs from cor-
responding inputs using a physical model. Here, out-
puts are computed using a simple toy model based on
Schwarzschild’s equation (e.g. Petty, 2006) to estimate the
downwelling longwave radiation under the assumption that
atmospheric absorption does not vary with wavelength as

dL↓

dz
= a(z)

[
B(z)−L↓

]
, (3)

where z is the geometric height, B is the Planck function at
level z (i.e. B = σSBT

4, where σSB is the Stefan–Boltzmann
constant, giving the flux in W m−2 emitted from a horizontal
black-body surface), and a is the rate at which radiation is
intercepted and/or emitted. A common approximation is to
treat longwave radiation travelling at all angles as if it were
all travelling with a zenith angle of 53◦ (Elsasser, 1942):
in this case a =Dβe, where βe is the extinction coefficient
of the medium, and D = 1/cos(53)= 1.66 is the diffusiv-
ity factor, which accounts for the fact that the effective path
length of radiation passing through a layer of thickness 1z
is on average 1.661z due to the multiple different angles of
propagation. In the context of ML, a(z) and B(z) are known
and F(z) is to be predicted. Here we use the difference in two
atmospheric pressures expressed in sigma coordinates (1σ ,
where σ is the pressure p at a particular height divided by
the surface pressure p0) instead of z. The layer optical depth
τ = βe1z is calculated from the total-column gas optical
depth τg and cloud layer optical depth τc as τ = τc+ τg1σi ,
since 1σ is the fraction of mass of the full atmospheric col-
umn in layer i. Then, as the downwelling flux at the top of
the atmosphere is 0, the equation is discretized as follows
assuming B and a are constant within a layer:

L
↓

i−1/2 = L
↓

i+1/2 (1− εi)+ Biεi, (4)

where Bi is the Planck function of layer i, εi = 1−e−ai1z =
1−eDτ is the emissivity of layer i,L↓i+1/2 is the downwelling

flux at the top of layer i, and L↓i−1/2 is the downwelling
flux at the bottom of layer i. We compute L↓ from T , p,
and τc using the real NWP-SAF (Xtrain) or augmented (Xtrain
plus X′train) data. To reduce, and thus simplify, the number
of quantities used in the physical model and ML emulator
(Sect. 2.5), τc is pre-computed and used instead of vertical
profiles of liquid and ice mixing ratios (ql and ql) and effec-
tive radius (rl and rl) as 3

2
1p
g

(
ql
ρlrl
+

qi
ρiri

)
, where ρl is the

density of liquid water (1000 kg m−3), ρi is the density of
ice (917 kg m−3), and g is the standard gravitational accel-
eration (9.81 m s−2). For τg we use a constant value of 1.7
determined by minimizing the absolute error between pro-
files computed with this simple model and the comprehen-
sive atmospheric radiation scheme ecRad (Hogan and Bozzo,
2018).

2.5 Estimator training

As the goal of this paper is to determine whether the use
of synthetic data improves the prediction of ML emulators,
here we implement a simple feed-forward neural network
(FNN). FNNs are one of the simplest and most common neu-
ral networks used in ML (Goodfellow et al., 2016) and have
been previously used in similar weather and climate applica-
tions (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2002).
FNNs are composed of artificial neurons (conceptually de-
rived from biological neurons) connected with each other;
information moves forward from the input nodes through
hidden nodes. The multilayer perceptron (MLP) is a type of
FNN composed of at least three layers of nodes: an input
layer, a hidden layer, and an output layer, with all but the
input nodes using a nonlinear activation function.

Here we implement a simple MLP consisting of three
hidden layers with 512 neurons each. This is implemented
in TensorFlow (Abadi et al., 2015) and configured with
the Exponential Linear Unit activation function, Adam op-
timizer, Huber loss, 1000-epoch limit, and early stopping
with patience of 25 epochs. The MLP is trained with profiles
of dry-bulb air temperature (Fig. 2a), atmospheric pressure
(Fig. 2b), and layer cloud optical depth (Fig. 2c) as inputs
and profiles of downwelling longwave radiation (Fig. 2d)
as outputs. Inputs are normalized and both inputs and out-
puts are flattened into two-dimensional matrices as described
in Sect. 2.2. The baseline case (Fig. 1a) uses 10 000 input
profiles without data augmentation for training, and copula-
based cases (Fig. 1b) use either 20 000, 60 000, or 110 000
profiles. The validation dataset Yval of 5000 profiles is used
as input for the early stopping mechanism, while the test
dataset Ytest of 10 000 profiles is used to compute statistics
(Sect. 3.2). Because of the stochastic nature of MLPs, train-
ing (and inference) is repeated 10 times for each case to allow
meaningful statistics to be computed. Given that the genera-
tion of random profiles in the case of augmented datasets is
also repeated 10 times (see Sect. 2.3.4), any case using data

https://doi.org/10.5194/gmd-14-5205-2021 Geosci. Model Dev., 14, 5205–5215, 2021
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Figure 3. Summary statistics si from 100 iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %, and (f) 90 %
quantiles. Each point corresponds to a statistic for a single iteration in arbitrary units. The x axis represents the projection of real NWP-
SAF Xtrain, while the y axis represents that of the copula-generated data X′train. Results are reported for Gaussian, vine-parametric, and
vine-nonparametric copulas (see legend for keys).

generation includes 100 iterations in total (i.e. for each data
generation run, the estimator is trained 10 times).

3 Results

3.1 Copula

The quality of synthetic data is assessed in terms of sum-
mary statistics (e.g. Seitola et al., 2014) between the training
Xtrain and copula-simulated X′train datasets. For each copula
type we compute a vector of summary statistics si = f

(
pi
)
,

where f is the statistic function and pi = Dwi , with D a
matrix of flattened source or simulated data and w a vector
of random numbers for the ith iteration. Summary statistics
are computed for mean, variance, and quantiles, iterating 100
times to allow meaningful statistics to be computed. As we
consider random linear combinations of variables in source
and copula-generated data, we expect these summaries to co-
incide only if both marginal distributions and dependence be-
tween variables are captured. Figure 3 shows scatterplots of
summary statistics si for (a) mean, (b) variance, (c) standard
deviation, and (d) 10 %, (e) 50 %, and (f) 90 % quantiles.
Real NWP-SAF data are shown on the x axis and copula-
generated data on the y axis, with each point corresponding
to a random projection as described earlier (100 points in to-

tal). For a perfect copula model, we expect all points to fall
on the main diagonal, where x = y. Figure 3 shows that for
all copula models, synthetically generated data are close to
the real data, with larger errors in variance and standard de-
viation.

Qualitatively, we can evaluate copula-generated profiles in
terms of their overall shape and smoothness across multi-
ple levels, as well as range and density at each level. To this
end we plot a side-by-side comparison of source (Fig. 4, left
panel) and Gaussian-copula-generated (Fig. 4, right panel)
profiles showing the median profile and random selection of
90 profiles grouped in batches of 3 (i.e. each having 30 pro-
files) for the central 0 %–25 %, outer 25 %–50 %, and 50 %–
100 % quantiles calculated with band depth statistics (López-
Pintado and Romo, 2009). Simulated profiles of dry-bulb
air temperature (Fig. 4b) appear less smooth than the real
ones across levels (Fig. 4a); however, both density and range
are simulated well at each level. Simulated profiles of atmo-
spheric pressure (Fig. 4d) are simulated well: they are smooth
across all levels with similar range and density (Fig. 4c). The
highly non-Gaussian and spiky profiles of cloud optical depth
(Fig. 4e) make qualitative comparisons difficult; however,
simulated profiles (Fig. 4f) have a similar range and density,
with high density for low values, and most range between
levels 80 and 120.

Geosci. Model Dev., 14, 5205–5215, 2021 https://doi.org/10.5194/gmd-14-5205-2021
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Figure 4. Profiles of (a, c, e) real NWP-SAF and (b, d, f) Gaussian-copula-generated data for (a–b) dry-bulb air temperature, (c–d) atmo-
spheric pressure, and (e–f) cloud optical depth. The median profile is shown in black, with a random selection of 90 profiles grouped in
batches of 3 (i.e. each having 30 profiles) for the central 0 %–25 %, outer 25 %–50 %, and 50 %–100 % calculated with band depth statistics
(López-Pintado and Romo, 2009).

3.2 Machine learning

To evaluate whether ML emulators trained on augmented
datasets have lower prediction errors compared to the base-
line, here we use the test dataset Xtest of 10 000 profiles de-
fined in Sect. 2.2. Statistics are computed based on a vector
of differences d between the physically predicted baseline
Ytest and ML-emulated Y′test (i.e. d = Ytest−Y′test). From

this, the mean bias
(

MB= 1
N

N∑
i=1
di

)
and mean absolute er-

ror
(

MAE= 1
N

N∑
i=1
|di |

)
for the set of N profiles are com-

puted.
Box plots of MB and MAE are shown in Fig. 5. Summary

MB and MAE for the ML emulator with the lowest MAE
using an augmentation factor of 10× are reported in Table 2.
A qualitative side-by-side comparison of baseline and ML-
predicted profiles using Gaussian-copula-generated profiles
with an augmentation factor of 10× is shown in Fig. 6.

MBs (Fig. 5a) across all copula types and augmentation
factors are generally improved, with median MBs and re-
spective spreads decreasing with larger augmentation fac-
tors. Overall, the Gaussian copula model performs better

than vine-parametric and vine-nonparametric models. MAEs
(Fig. 5b) show a net improvement from the baseline across
all copula models and augmentation factors. When using an
augmentation factor of 1× (i.e. with double the amount of
training data), the median MAE is reduced to approximately
1.1 W m−2 from a baseline of approximately 1.4 W m−2

and further reduced with increasing augmentation factors.
In the best case, corresponding to an augmentation factor
of 10× (i.e. with an additional 100 000 synthetic profiles),
the copula and ML emulator combinations with the lowest
MAE (Table 2) show that MBs are reduced from a base-
line of 0.08 W m−2 to −0.02 and −0.05 W m−2 for Gaus-
sian and vine-nonparametric, respectively, but increased to
0.10 W m−2 for vine-parametric. MAEs are reduced from a
baseline of 1.17 W m−2 to 0.45, 0.56, and 0.44 W m−2 for
Gaussian, vine-parametric, and vine-nonparametric copula
types, respectively.

The ML training configuration with the lowest overall
MB and MAE combination during inference corresponds
to a Gaussian copula and augmentation factor of 10× (Ta-
ble 2). Errors between the physically predicted Ytest and
ML-predicted Y′test are shown for the baseline (Fig. 6a) and
Gaussian copula case (Fig. 6b). These are shown grouped by
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Figure 5. Errors grouped by different copula types (Gaussian: blue, vine-parametric: yellow, vine-nonparametric: red) and augmentation
factors (1×, 5×, 10×) for the mean bias (MB; a) and mean absolute error (MAE; b). The median for the baseline case is shown in black,
and the range is shaded in grey.

Figure 6. Prediction errors for (a) baseline and (b) data-augmented emulator using 110 000 profiles (10× augmentation factor; Gaussian
copula). The median (most central) profile is shown in black, and the most central 25 %, outer 25 %–50 %, and 50 %–100 % profiles are
computed using band depth statistics and shown in shades of blue.

their central 0 %–25 %, outer 25 %–50 %, and 50 %–100 %.
Qualitatively, most ML-generated profiles show improve-
ments. The most central 25 % profiles are within±20 W m−2

for the Gaussian copula case and about ±40 W m−2 for
the baseline case. Near-surface errors (levels 130-BOA) are
reduced to approximately ±5 W m−2 from approximately
±10 W m−2.

4 Discussion and conclusion

Results from a qualitative comparison of synthetically gen-
erated profiles (Fig. 4) show that synthetic profiles tend to
be less smooth and noisier than the real NWP-SAF. Never-
theless, a machine-learning evaluation shows that errors for
emulators trained with augmented datasets are cut by up to
75 % for the mean bias (from 0.08 to−0.02 W m−2; Table 2)

Table 2. Mean bias (MB) and mean absolute error (MAE) for base-
line and copula cases. Statistics shown for the ML emulator com-
bination with the lowest MAE. Baseline trained using 10 000 real
NWP-SAF profiles. Copula cases were trained using 110 000 pro-
files (10 000 real and 100 000 synthetic), i.e. with an augmentation
factor of 10×. Bold indicates the lowest error.

Case MB (W m−2) MAE (W m−2)

Baseline 0.08 1.17
Gaussian −0.02 0.45
Vine-parametric 0.10 0.56
Vine-nonparametric −0.05 0.44

and by up to 62 % for the mean absolute error (from 1.17 to
0.44 W m−2; Table 2).
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In this study, we show how copula-based models may be
used to improve the prediction of ML emulators by gener-
ating augmented datasets containing statistically similar pro-
files in terms of their individual behaviour and dependence
across variables (e.g. dry-bulb air temperature at a specific
level and across several levels). Although the focus of this
paper is to evaluate copula-based data generation models to
improve predictions of ML emulators, we speculate that the
same or similar methods of data generation have the potential
to be used in several other ML-related applications, such as to
(i) test architectures (e.g. instead of cross-validation, one may
generate synthetic datasets of different size to test the effect
of sample size on different ML architectures), (ii) generate
data for un-encountered conditions (e.g. for climate change
scenarios by extending data ranges or relaxing marginal dis-
tributions), and (iii) compress data (e.g. by storing reduced
parameterized versions of the data if the number of samples
is much larger than the number of features).

Although so far, we have only highlighted the main ben-
efits of copula-based models, several limiting factors should
also be considered. A key factor for very high-dimensional
data is that both Gaussian and vine copula models scale
quadratically in the number of features – in terms of both
memory and computational complexity. This can be allevi-
ated by imposing structural constraints on the model, for ex-
ample using structured covariance matrix or truncating the
vine after a fixed number of trees. However, this limits their
flexibility and adds some arbitrariness to the modelling pro-
cess. A second drawback compared to GANs is that the
model architecture cannot be tailored to a specific problem,
like images. For such cases, a preliminary data compression
step as in Tagasovska et al. (2019) may be necessary.

As highlighted here, data augmentation for ML emulators
may be of particular interest to scientists and practitioners
looking to achieve a better generalization of their ML em-
ulators (i.e. synthetic data may act as a regularizer to re-
duce overfitting; Shorten and Khoshgoftaar, 2019). Although
a comprehensive analysis of prediction errors using different
ML architectures is out of scope, our work is a first step to-
wards further research in this area. Moreover, although we
did not explore the generation of data for un-encountered
conditions (e.g. by extending the range of air temperature
profiles while keeping a meaningful dependency across other
quantities and levels), the use of copula-based synthetic data
generation may prove useful to make emulators more resis-
tant to outliers (e.g. in climate change scenario settings) and
should be investigated in future research.
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