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Chapter 7
Development of a Simple, Open-Source
Hurricane Wind Risk Model for Bermuda
with a Sensitivity Test on Decadal
Variability

Pinelopi Loizou, Mark Guishard, Kevin Mayall, Pier Luigi Vidale,
Kevin I. Hodges, and Silke Dierer

Abstract A hurricane-catastrophe model was developed for assessing risk associ-
ated with hurricane winds for Bermuda by combining observational knowledge with
property value and exposure information. The sensitivity of hurricane wind risk to
decadal variability of events was tested. The historical record of hurricanes passing
within 185 km of Bermuda was created using IBTrACS. A representative exposure
dataset of property values was developed by obtaining recent governmental Annual
Rental Value data, while Miller et al. (Weather Forecast 28:159–174, 2013) pro-
vided a vulnerability relationship between increasing winds and damage. With a
probabilistic approach, new events for 10,000 years were simulated for three differ-
ent scenarios using (1) the complete record of annual TC counts; (2) two high-
frequency periods and; (3) two low-frequency periods. Exceedance probability
curves were constructed from event loss tables, focusing on aggregating annual
losses from damaging events. Expected losses of low-frequency scenarios were less
than losses of high-frequency scenarios or when the whole historical record was
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used. This framework suffers from uncertainties due to different assumptions and
biases within IBTrACS. Small data sizes limit our ability to conduct a formal model
validation and results should be interpreted in this context. In the future, sensitivity
tests on the different components of the model will be performed.
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7.1 Introduction

Tropical cyclones (TCs) belong to the category of weather systems which bring
severe damage and destruction across many regions of the planet in respect to rain,
winds, and storm surge. Studies by McCarthy et al. (2015) and Goldenberg et al.
(2001) have shown that TC activity around the globe undergoes important variability
through the decades. Insurance and re-insurance companies can be particularly
impacted by TCs, especially in countries that are more likely to see a TC making
landfall.

Table 7.1 provides information about the ten costliest Atlantic hurricanes (NOAA
2020a; U.S. Bureau of Labor Statistics n.d.; Kishore et al. 2018). It can be seen that
four of them occurred during the last Atlantic hurricane seasons (2017 and 2018)
while nine of them occurred during the past 20 years. The columns indicate: name;
year; maximum achieved intensity; total numbers of fatalities; total cost in billions of
US dollars unadjusted for inflation; and adjusted total cost for 2017 in billions of US
dollars. Deaths and damage costs refer to the total numbers of fatalities (direct and
indirect) and damages across all the affected areas and countries. It should be
highlighted that when thinking about damage and impact from a hazard, it is useful
to use a metric of the affected area’s wealth, for example the Gross Domestic Product
(GDP). Hurricane Maria (2017) can be seen as a notable example: even though the
total damage caused by the hurricane was around $91.6 bn, the impact on Dominica
was way more significant than the impact on the United States. The damage after
adjusting for inflation was 244% of Dominica’s 2017 GDP. In addition, the

Table 7.1 Top 10 costliest Atlantic Hurricanes (as of 2019)

Name Year Category Deaths Cost (in bn) Cost 2017 (in bn)

Katrina 2005 5 1200 $125 $164.9

Harvey 2017 4 68 $125 $129.5

Maria 2017 5 Estimates up to >8500 $91.6 $94.9

Irma 2017 5 47 $77.2 $66.5

Sandy 2012 3 233 $68.7 $76.3

Ike 2008 4 103 $38 $43.3

Wilma 2005 5 23 $27.4 $34.4

Andrew 1992 5 26 $27.3 $47.6

Ivan 2004 5 92 $26.1 $33.9

Michael 2018 5 74 $25.1 $25.1 (US)



uncertainty and large range of fatalities (particularly in Puerto Rico) caused by
Hurricane Maria can be attributed to the fact that the assessment of deaths was
difficult to perform and that many people died because of delays (or inability) in
receiving medical care (Kishore et al. 2018).
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Insurance and re-insurance companies often use catastrophe models to quantify
the risk associated with hurricanes. A catastrophe model is used for assessing
financial impacts of catastrophes, for estimating physical damages of properties,
and assigning probabilities to the range of potential outcomes (RMS 2020). There
are three main components: hazard (in this case, information about tropical
cyclones), exposure (information about properties), and vulnerability (information
about the damage a property can get). The goal of catastrophe modelling is to
combine the three main components for the estimation of financial loss from hazards.

The aim of the study is to combine what is known from the historical hurricane
record with information about property values, exposure, and vulnerability to
develop a hurricane catastrophe risk model to assess the risk for Bermuda. It is
worth noting that the intent of this study is not to rigorously reproduce the method-
ology of traditional catastrophe model development used by insurers and re-insurers.
However, we use the conceptual process as a guide to develop our hurricane wind
risk model. Figure 7.1 presents time series of annual numbers of tropical cyclones.
The red line indicates the time series for the whole North Atlantic basin, while the
black bars present the number of storms that came within 185 km (or 100 nm) of
Bermuda. The historical record of hurricanes is created by using the International

Fig. 7.1 Time series of annual numbers of tropical cyclones. Red line shows the time series for the
whole North Atlantic basin. The black bars show the time series of storms that came within 185 km
of Bermuda



Best-Track Archive for Climate Stewardship (IBTrACS) (Knapp et al. 2010). Recent
Annual Rental Value data, taken from the Bermuda Government (2019), are used for
the development of a representative dataset of property values for each of the
36 electoral constituencies in Bermuda. Miller et al. (2013) have performed damage
analysis for Hurricane Fabian (2003) that shows the estimation of damage functions
incorporating effects of topography. The study concluded that when topographic
effects are taken into consideration for the near-surface wind speeds, there is a
correlation between increasing damage and elevation.
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7.2 Methodology

7.2.1 Data

For the purposes of this study, IBTrACS was used for obtaining a historical record
for storms that have impacted Bermuda. In addition, Annual Rental Value data from
the Bermuda Government are used for developing a representative dataset of
property values for each of the 36 electoral constituencies in Bermuda.

7.2.1.1 Best-Track Dataset (Observations)

IBTrACS is a combination of the best track data taken from different agencies such
as the Regional Specialized Meteorological Centers (RSMCs), the Tropical Cyclone
Warning Centers (TCWCs), as well as other national agencies. The IBTrACS-ALL
(v03r03) dataset, which includes data taken from all agencies, is used for this study.
Full details can be found in Knapp et al. (2010). Data are available from 1877 until
2018. The agencies provide information about the best estimated position of each
storm in terms of longitude and latitude in addition to reporting wind speed and mean
sea level pressure (MSLP) values. The different agencies use different wind-
averaging periods, and the values are reported in knots. The North Atlantic data
are derived from the Hurricane Databases (HURDAT2) and are provided at 6-hour
intervals. The wind speeds are 1-min sustained winds at 10 m, and they have been
converted from knots to meters per second (multiplied by 1.94).

7.2.2 Exposure

7.2.2.1 Annual Rental Value Data

The Government of Bermuda’s Land Valuation Department collects information
about locations, types of property, size of living accommodation, size of any
ancillary accommodation, amenities, and characteristics (Land Valuation



¼

PV Description Address (fictional) Parish

Department 2019). They provide the Land Valuation List which includes location,
type, and annual rental value (ARV) data. The ARV data used in this study are from
2009, but accessed in 2019, since more recent data were unavailable. A few
representative examples of the ARV data are shown in Table 7.2. In order to protect
the householders’ personal information, the addresses displayed on the table are
anonymized. The annual rental value is converted to estimated actual property value
(PV) by multiplying by a factor of 50. In operational catastrophe models developed
for re/insurance applications, building parameters such as construction type and
number of stores are often used as second-order modifiers. In the case of the current
analysis, secondary modifiers such as property type and location are available in the
ARV dataset and could be used in future to refine and enhance this modelling
framework.
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Table 7.2 Examples for the ARV data

2009
ARV

$15.600 780.000 APARTMENT 5 HARRY STREET HM01 CITY OF HAMILTON

$21.600 1.080.000 SHOP 8 HARRY STREET HM01 CITY OF HAMILTON

$13.800 690.000 APARTMENT 2 RONALD ROAD HM38 DEVONSHIRE

$33.600 1.680.000 HOUSE 8 FRED LANE MA12 SANDYS

$40.800 2.040.000 HOUSE 11 FLER LANE GE14 ST. GEORGE’S

7.2.3 Bermuda’s Historical Record of Hurricanes

The first step of the process was to obtain a historical record of hurricanes that have
either made landfall or that have been in close proximity to Bermuda. Therefore, by
using the complete record for IBTrACS (1877–2018), for every year, for every
storm, every track point which came within 185 km of Bermuda (32.39

�
N, 64.68

�
W)

along with the wind speed information is kept for further analysis. The choice of
185 km is based on the threat parameter used by the Bermuda Weather Service
(NOAA 2020a). The process is summarised on Fig. 7.2a. Figure 7.2b presents all the
points that were kept for further analysis. Bermuda is indicated with a black cross.

For each point that is kept, the distance from Bermuda is calculated by using the
Haversine formula given by:

d ¼ r � c ð7:1Þ

where r 6371 km is the Earth’s radius and c is given by:

c ¼ 2 � arctan
ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
� �

ð7:2Þ



where
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a b

Fig. 7.2 (a) Schematic of the methodology for creating the dataset of storms for Bermuda.
(b) Tropical cyclones that passed within 185 km from Bermuda (black cross)

a ¼ sin 2 ϕ2 � ϕ1

2

� �
þ cos ϕ1ð Þ � cos ϕ2ð Þ � sin 2 λ2 � λ1

2

� �
ð7:3Þ

with ϕ1 and λ1 the latitude and longitude coordinates of the storm track point in
radians and ϕ2andλ2the latitude and longitude coordinates of Bermuda in radians.
For each point, a radius of maximum wind (rmax) was chosen based on Eq. 7.4:

rmax ¼

200 km, v � 17 ms�1

125 km, 17 < v � 32 ms�1

95 km, 32 < v � 42 ms�1

50 km, 42 < v � 49 ms�1

30 km, 49 < v � 58 ms�1

25 km, 58 < v � 70 ms�1

20 km, v > 70 ms�1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7:4Þ

where v is the intensity from the IBTrACS. The values for rmax were chosen
empirically based on a collection of data from H*WIND (NOAA 2020b) which
included tropical cyclones that affected Bermuda during the period 2006–2014.

Then for each point that was saved, the intensity of the storm at Bermuda is
calculated by:



r
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Fig. 7.3 Plot of estimated wind speeds at Bermuda against the distance from Bermuda (orange
line). The blue line indicates a fitted logarithmic curve

vBDA ¼ v �
ffiffiffiffiffiffiffiffi
max

d

q
, d > rmax

v, d � rmax

8<
: ð7:5Þ

where d is given by the aforementioned Haversine formula. The first part of
Eq. (7.5) is a variation of the Rankine Vortex (Holland et al. 2010). Afterwards, for
each year, for each storm, the point with the highest estimated intensity in Bermuda
is retained. Eventually, all the points of the highest estimated intensities for all the
storms that passed within 185 km of Bermuda are obtained. By sorting the data
according to distance and fitting a logarithmic curve, a relationship between the
distance of a storm from Bermuda and its estimated wind speed in Bermuda is
obtained. The relationship is presented in Fig. 7.3 and it is described by:

f xð Þ ¼ 63:1� 8:05 � ln xð Þ, ð7:6Þ

where x is the distance (d ) in km and f(x) is the wind speed in ms�1.
A very important component of a catastrophe model is the relationship between

wind and damage. According to Sealy and Strobl (2017) the appropriate way to
simulate the relationship is by varying the damage of the property with the cubic
power of the wind speed. For the purposes of this study, a damage index, f, proposed
by Emanuel (2011) is used for the calculation of the proportion of damage as a
function of wind speed, V:

f ¼ u3i
1þ u3i

ð7:7Þ



¼

where
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Fig. 7.4 Relationship between damage and wind speed. Black dots indicate an estimate of the
Miller et al. (2013) figure 12 data. (a) Fitting the data with the different damage index curves by
varying Vhalf; (b) projection of the different curves that were fitted to the data

ui ¼ MAX Vi � Vthreshð Þ, 0½ �
Vhalf � Vthresh

ð7:8Þ

where Vi is the estimated wind speed in Bermuda (calculated by Eq. 7.6), Vthresh is
the wind speed below which no damage occurs, and Vhalf is the value of wind speed
at which half of the property is damaged. Different studies (Emanuel 2011; Elliott
et al. 2015; Sealy and Strobl 2017) have used a threshold of around 25.7 ms�1

(50 kts) for Vthresh, while for Vhalf different values were chosen based on the nature of
each study. For this study, in order to choose appropriate thresholds, the data by
Miller et al. (2013) were used. They found a threshold of approximately 37.5 ms�1

for the occurrence of roof damage. Therefore, by using Vthresh ¼ 37.5 ms�1 and by
varying Vhalf to best fit the Miller et al. (2013) data (see Fig. 7.4), it was found that at
Vhalf 95 ms�1 half of the property was damaged.

7.2.4 Generating New Datasets

The next step of the study involved using the historical record of annual number of
storms for Bermuda shown in Fig. 7.1 to generate new random events with their
potential losses. The process of generating new datasets, as summarized in Fig. 7.5,
begins by calculating the probability of a number of hurricanes occurring. Previous
studies (Jagger et al. 2001; Klotzbach 2010; Emanuel 2011; Scherb et al. 2015; Sealy
and Strobl 2017) have suggested using the Poisson distribution since it provides a
simple method for computing the probability of hurricane occurrence. The Poisson
distribution is given by:

P X ¼ kð Þ ¼ λk
k!
e�λ ð7:9Þ



where λ is taken as the average annual number of hurricanes (μ 0.86) for Bermuda
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Fig. 7.5 Schematic of the process of generating the new datasets

Fig. 7.6 Time series of simulated events for 10,000 years

¼
from the historical record. Afterwards, random events (Fig. 7.6) for the period of
10,000 years were generated from the Poisson distribution. To each event, a ran-
domly generated number for distance (in km) between 0 and 185 was assigned.
Then, by using Eqs. 7.6, 7.7, and 7.8, a wind speed and a damage ratio value are
calculated and assigned to each event. Eventually, by using the PV data, the potential
loss for each event can be estimated and then the sum of all the losses in each year is
calculated.

7.2.5 Incorporating Decadal Variability

Numerous studies have shown that on decadal time scales, TC activity in the North
Atlantic can be influenced by the Atlantic Multidecadal Oscillation (AMO) through
variations of sea surface temperatures (Goldenberg et al. 2001; McCarthy et al. 2015;
Ting et al. 2019; Murakami et al. 2020; Mann et al. 2021; Hallam et al. 2021). The
associated warm and cold phases of the AMO can last for 20–40 years and they can
lead, either directly or via modulation of other modes, such as the El-Niño Southern
Oscillation (ENSO), to more or less active hurricane seasons (Knight 2005; Zhang
and Delworth 2006; Klotzbach and Gray 2008). Therefore, the final step of the study



was to test the model for different climate scenarios. To do that, different time
periods with either increased or decreased TC activity within the time series were
examined. The different periods were chosen based on the following steps:
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Fig. 7.7 Time series for Bermuda (black bars). The 10-year moving average is shown with the red
solid line and its mean is shown with the dashed red line

1. Find the mean (μall) of the time series for the annual number of tropical storms in
Bermuda.

2. Calculate the 10-year moving average of the time series (centred–red solid line in
Fig. 7.7).

3.
4.

Find the mean of the 10-year moving average (μ10 – red dashed line in Fig. 7.7).
For high-frequency phases, take at least 10 consecutive years for which the
10-year moving average is greater than μ10 and the mean of the 10+ consecutive
years to be greater than μall. Two high frequency phases were found: 1973–1989
and 1999–2014.

5. For low-frequency phases, take at least 10 consecutive years for which the
10-year moving average is less or equal than μ10 and the mean of the 10+
consecutive years to be less than μall. Two low-frequency phases were found:
1882–1895 and 1897–1930.

Then, for each phase, by using the mean of the phase, new events were randomly
generated by following the process outlined in Sect. 7.2.4.

7.3 Results

The output of a catastrophe model is the loss amount from a catastrophic peril. This
is given in the form of an Event Loss Table – the format and a data sample are shown
in Table 7.3. By looking at the time series of simulated events on Fig. 7.6, the
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maximum number of events in a single year in that scenario is seven individual
events. Therefore, for Table 7.3 column 1 corresponds to the year number, columns
2–8 correspond to the losses from the individual events, and column 9 corresponds
to the amount of loss in a year (the sum of losses from the individual events). It can
be seen that there were years with no events (e.g., year 7), years with a single
non-damaging event (e.g., year 1), years with a single damaging event (e.g., year 0),
years with multiple non-damaging events (e.g., year 4), years with multiple damag-
ing events (e.g., year 8), and years with both damaging and non-damaging events
(e.g., year 3). From this tabulated output one can construct an Exceedance Proba-
bility (EP) curve. The EP curve describes the annual probability that an amount of
loss will be exceeded. In constructing the EP curves, we focus on aggregating annual
losses. If a more granular analysis were needed, effort would have been made to
establish a specific identifier for each event. However, it is worth noting here that the
model output has been constructed from an Aggregate Exceedance Probability
(AEP) perspective and neglects further analysis of individual contributions to the
annual losses (Occurrence Exceedance Probability - OEP). A future refinement
would be to assess the variability of loss events on an annual basis via an OEP
analysis.
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Figure 7.8 presents the cumulative distribution function (CDF) of expected losses
on all properties in all parishes of Bermuda when the whole time series of annual
counts of tropical storms for Bermuda is used for simulating new events. The
histogram (empirical results) indicates the actual losses from events that were intense
enough to cause damage, meaning events that had an estimated wind speed at
Bermuda greater than 37.5 ms�1 (based on Miller et al. 2013). The black dashed
line indicates the theoretical CDF, meaning what one would expect to observe if
there was an infinite number of damaging events. Non-damaging events were
excluded from the analysis, but we present all the model output. For example, by

Fig. 7.8 Cumulative distribution function (CDF) of expected AEP losses on all properties, all
parishes of Bermuda when the 1877–2018 record for Bermuda was used for simulating new events.
The histogram indicates the empirical CDF of losses from damaging events



looking at the histogram from the empirical results, there is a 21.9% chance that
during a year with at least one damaging event, losses will exceed $1bn.

7 Development of a Simple, Open-Source Hurricane Wind Risk Model for. . . 155

Examination of the decadal variability of TCs revealed two high-frequency and
two low-frequency phases. High-phases A and B correspond to the periods
1973–1989 (with mean μ ¼ 1.18) and 1999–2014 (with mean μ ¼ 1.31), respec-
tively, during which the 10-year moving average was greater than the mean of the
10-year moving average. Low-phases A and B correspond to the periods 1882–1895
(with mean μ ¼ 0.64) and 1897–1930 (with mean μ ¼ 0.68), respectively, during
which the 10-year moving average was less than or equal to the mean of the 10-year
moving average.

For each one of the four phases, the mean was calculated and used as described in
Sect. 7.2.4 to find the Poisson rate probability of number of events occurring, from
which new events were randomly generated for each phase. Empirical and theoret-
ical CDFs were plotted for each phase, as well as for the CDF shown in Fig. 7.8
(hereafter referred to as no-phase), and are shown in Fig. 7.9.

Results showed that losses from damaging events sampled from both high-
frequency scenarios were larger than the losses from damaging events sampled
from the two low-frequency scenarios and the no-phase scenario. In addition, the
annual exceedance probabilities for low-phase B were smaller than the ones for
low-phase A, while the probabilities for high-phase B were greater than the ones for
high-phase A. It should be noted that, since the process of simulating new events is
random, the output of the model will not always resemble the results presented here.

Furthermore, the number of simulated events is dependent on the average annual
number of hurricanes. For this study, the means of the different phases ranged from
0.64 to 1.13 hurricanes per year. It is expected that a significantly higher annual

Fig. 7.9 EP curves for all five scenarios



5 20

average will result in a significantly increased number of simulated events, and thus
larger losses. Lastly, it is important to highlight that, based on Eq. 7.6, the highest
wind speed of a simulated event can be up to 63.1 ms�1, while the lowest damaging
wind speed is 37.5 ms�1. It is certain that if the former value were higher or if the
latter value were lower, the resulting EP curves would be very different, showing
greater losses particularly in a high-frequency scenario. In future work, the sensitiv-
ity of the model on both the effect of the average annual rate of hurricanes and the
estimated wind speed in Bermuda will be explored.
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Information about return periods (RP) of catastrophic events can be obtained
from EP curves. The return period (in years) corresponds to 1/EP. Table 7.4 presents
examples of EP values and the corresponding RPs for all five scenarios shown in
Fig. 7.9 for six different loss amounts. The loss amounts are shown in column 1, EPs
and RPs for the no-phase scenario are in columns 2 and 3, for the two high-phase
scenarios in columns 4–7 and for the two low-phase scenarios in columns 8–11. For
example, in the no-phase scenario there is a 5.7% probability that an amount of $4bn
will be exceeded in a year with at least one damaging event. This probability
corresponds to a RP of around 17.5 years. The probability that the same amount
will be exceeded rises for both high-frequency scenarios and dips for both
low-frequency scenarios.

Table 7.5 presents examples of estimated losses for certain return periods of
catastrophic events. The first and second columns indicate the return periods and

Table 7.4 Exceedance probability and return period values for different loss amounts

No-Phase High-A High-B Low-A Low-B

Loss EP RP EP RP EP RP EP RP EP RP

($bn) (%) (year) (%) (year) (%) (year) (%) (year) (%) (year)

0.50 84.8 1.2 85.2 1.2 85.5 1.2 84 1.2 83.1 1.2

1.00 68.9 1.5 69.3 1.4 70.1 1.4 67.4 1.5 65.7 1.5

2.00 38.7 2.6 40.0 2.5 41.2 2.4 36.7 2.7 33.7 3

3.00 17.1 5.8 18.3 5.5 19.4 5.2 15.4 6.5 13.1 7.6

4.00 5.7 17.8 6.6 15.3 7.2 13.9 4.9 20.6 3.7 27.2

5.00 1.3 75.9 1.8 54.5 2.1 47.4 1.2 86.6 0.7 138.5

Table 7.5 Loss amounts for different return period values

RP
(years)

EP
(%)

Loss ($bn)

No-Phase High-A High-B Low-A Low-B

2.8 2.9 3 2.7 2.6

10 10 3.5 3.6 3.7 3.4 3.2

25 4 4.3 4.4 4.5 4.1 3.9

50 2 4.7 4.9 5 4.6 4.4

75 1.3 5 5.2 5.3 4.9 4.7

100 1 5.2 5.4 5.5 5.1 4.8

200 0.5 5.5 5.8 6 5.5 5.2



corresponding exceedance probabilities, while expected losses for each scenario are
shown in the remaining columns. For example, a once-in-200-years catastrophic
event is expected to cause $5.5bn worth of damage across all parishes and all types
of buildings in a no-phase scenario, compared to $6bn in a high-phase B scenario.
These losses are halved for a catastrophic event with a return period of once-per-five-
years.
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Event Loss Tables and EP curves provide the ability to yield indicative return
periods of threshold loss events (or changes in magnitude of losses for a given return
period). This is very important for insurance and re-insurance companies since they
are provided with necessary information that can help in the process of decision
making.

7.4 Limitations and Future Work

This study serves as a simple catastrophe model for assessing annual hurricane wind
risk in Bermuda, with a scientifically informed sensitivity test on long-term frequen-
cies. It does not intend to reproduce traditional catastrophe modelling methodologies
widely used by insurance and re-insurance companies, but to merely serve as a guide
for the development of a hurricane wind risk model.

The process of building a catastrophe model entails various sources of uncer-
tainties in all the different components.

Firstly, a key limitation of the study is the use of the observational record. Despite
the fact that the record for the North Atlantic basin is considered to be the longest and
most comprehensive record compared to other basins (Strachan et al. 2013), it
suffers from homogeneity problems due to changes in operational procedures
(Landsea 2007), whose most important source of uncertainty is the observational
error (Tolwinski-Ward 2015). In addition, evaluation of the model with historical
losses is problematic, as there are only a few very recent official reports from
damaging storms affecting Bermuda that can be used for calibration purposes. So,
not only are the basin-wide statistics a source of uncertainty, but the damaging
impacts in Bermuda are also insufficient to affect a useful calibration of the model.

Secondly, different decisions made in the process of exploring the relationship
between the distance of a storm from Bermuda and the estimated intensity in the
country (see Sect. 7.2.3) is another source of uncertainty. These decisions include the
arbitrary choices for rmax, the use of the variation of the Rankine vortex, the different
conversions, and the curve fitting. In the future it would be really beneficial to
explore different techniques for simulating hurricane intensity such as the ones
outlined in Holland et al. (2010), Justus et al. (1978), and Jagger and Elsner
(2006). In addition, wind asymmetries, the exclusion of which can have a negative
impact on TC risk assessment (Pahwa 2007; Alvehag and Soder 2011), could be
addressed following suggestions by studies such as Olfateh et al. (2017) and Chang
et al. (2020).
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Thirdly, it is important to highlight the lack of studies in Bermuda that explore the
relationship between the intensity of a storm and the proportion of damage on
properties. Since the vulnerability component of a catastrophe model is of great
importance, there is a necessity for more studies like Miller et al. (2013) to b
conducted in future catastrophic events, since they will provide an opportunity for
updates and sensitivity tests on this model framework.

Lastly, the impact of decadal variability of TCs on potential losses has been
examined only in terms on frequency. It will be of great interest to explore the impact
in terms of intensity as well. The reasoning behind this comes from the fact that,
particularly for the North Atlantic basin, it has been shown that even during
low-activity hurricane seasons, very intense tropical cyclones can cause a lot of
damage and destruction should they make landfall.

7.5 Discussion

We have developed a simple model for the assessment of hurricane wind risk.
Despite the limitations of the study outlined above, this methodology may be useful
for jurisdictions with limited availability of property exposure or vulnerability
datasets. In the absence of a set of robust engineering studies or readily available
property exposure data, assessments of the variability of risk can still be achieved,
especially for small island jurisdictions. In our study, we utilized a real estate dataset
and a published damage survey as the bases for development of exposure and
vulnerability inputs, respectively. The hazard portion of this model is constructed
by randomly generating multiple location-centric events that are constrained using
the historical record. However, this approach is simple compared to the Monte Carlo
simulations used to develop the stochastic storm track datasets in commercial
catastrophe models (RMS 2019). Our method can quickly and easily be applied to
assess the variability of wind hazard in different climate regimes, such as ENSO or
the NAO, and can utilize other input such as historical anecdotal document archives
(e.g. Chenoweth and Divine 2008), climate model simulations of future storm
regimes (e.g. Wehner et al. 2015), or geological proxy datasets, such as those
provided in Wallace et al. (2014). The simple nature of the model may also be of
benefit in quick sensitivity tests of modelled losses to changes in hazard, vulnera-
bility, or exposure. This may be especially useful for the purposes of teaching
different aspects of risk and its estimation. The code underlying the model itself is
written in Python, and it is accessible freely via Github here https://github.com/
PinelopiLoizou/Risk_Model.
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