
Does model calibration reduce uncertainty
in climate projections? 
Article 

Accepted Version 

Tett, S. F. B., Gregory, J. M. ORCID: https://orcid.org/0000-
0003-1296-8644, Freychet, N., Cartis, C., Mineter, M. J. and 
Roberts, L. (2022) Does model calibration reduce uncertainty 
in climate projections? Journal of Climate, 35 (8). pp. 2585-
2602. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-21-
0434.1 Available at https://centaur.reading.ac.uk/102092/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/JCLI-D-21-0434.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Generated using the official AMS LATEX template v6.1

Does Model Calibration Reduce Uncertainty in Climate Projections?1

Simon F. B. Tetta , Jonathan M. Gregoryb,c , Nicolas Freycheta , Coralia Cartisd , Michael J.2

Minetera , Lindon Robertse
3

a School of Geosciences, University of Edinburgh, Edinburgh, UK4

b National Centre for Atmospheric Science, University of Reading, Reading, UK5

c Met Office Hadley Centre, Exeter, UK6

d Mathematical Institute, University of Oxford, Oxford, UK7

e Mathematical Sciences Institute, Australian National University, Canberra, Australia8

Corresponding author: Simon Tett, simon.tett@ed.ac.uk9

1

LaTeX File (.tex, .sty, .cls, .bst, .bib) Click here to access/download;LaTeX File (.tex, .sty, .cls,
.bst, .bib);climChangeCalibrate_newstyle.tex



ABSTRACT: Uncertainty in climate projections is large as shown by the likely uncertainty ranges

in Equilibrium Climate Sensitivity (ECS) of 2.5-4K and in the Transient Climate Response (TCR)

of 1.4-2.2K. Uncertainty in model projections could arise from the way in which unresolved pro-

cesses are represented, the parameter values used, or the targets for model calibration. We show

that, in two climate model ensembles which were objectively calibrated to minimise differences

from observed large scale atmospheric climatology, uncertainties in ECS and TCR are about two

to six times smaller than in the CMIP5 or CMIP6 multi-model ensemble. We also find that

projected uncertainties in surface temperature, precipitation and annual extremes are relatively

small. Residual uncertainty largely arises from unconstrained sea-ice feedbacks. The 20+ year old

HadAM3 standard model configuration simulates observed hemispheric scale observations and

pre-industrial surface temperatures about as well as the median CMIP5 and CMIP6 ensembles

while the optimised configurations simulates these better than almost all the CMIP5 and CMIP6

models. Hemispheric scale observations and pre-industrial temperatures are not systematically

better simulated in CMIP6 than in CMIP5 though the CMIP6 ensemble seems to better simulate

patterns of large-scale observations than the CMIP5 ensemble and the optimised HadAM3 config-

urations. Our results suggest that most CMIP models could be improved in their simulation of large

scale observations by systematic calibration. However, the uncertainty in climate projections (for

a given scenario) likely largely arises from the choice of parametrisation schemes for unresolved

processes (“structural uncertainty”), with different tuning targets another possible contributor.
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SIGNIFICANCE STATEMENT: Climate models represent unresolved phenomenon controlled29

by uncertain parameters. Changes in these parameters impact how well a climate model simulates30

current climate and its climate projections. Multiple calibrations of a single climate model,31

using an objective method, to large scale atmospheric observations are done. These models32

produce very similar climate projections at both global and regional scales. An analysis which33

combines uncertainties in observations with simulated sensitivity to observations and climate34

response also has small uncertainty showing that, for this model, current observations constrain35

climate projections. Recently developed climate models have a broad range of abilities to simulate36

large scale climate with only some improvement in their ability to simulate this despite a decade37

of model development.38

1. Introduction39

Charney et al. (1979) estimated that the equilibrium warming for doubled atmosphere CO240

concentration (the Equilibrium Climate Sensitivity; ECS) is between 1.5 and 4.5K. Despite many41

years of research, Working Group 1 of the Intergovernmental Panel on Climate Change in its Fifth42

Assessment Report arrived at the same numerical range, though with much greater understanding43

of the uncertainty (Stocker et al. 2013). Sherwood et al. (2020) (S2020) carried out a comprehen-44

sive assessment of literature on climate sensitivity, and combined evidence from processes (largely45

clouds), paleo-climate (largely the Last Glacial Maximum and mid-Pleistocene warm period), and46

observed changes in climate. They defined an effective climate sensitivity (S) which is the ECS es-47

timated following the linear-regression method of Gregory et al. (2004). Uncertainties in observed48

change and paleo-climate include a considerable contribution from "pattern" uncertainty. S202049

reported a likely range of 2.3-4.5K for S. Building on this, the most recent IPCC assessment(IPCC50

2021) reported a likely range of 2.5-4K for ECS with a best estimate of 3K. They also reported that51

some models had climate sensitivities inconsistent with this range.52

Estimates of the Transient Climate Response (TCR), which is the warming at the time of doubled53

CO2 in a transient simulation with CO2 increasing by 1%/year, also have a large spread, with a54

likely (66% confidence) range of 1.4-2.2K(IPCC 2021). This uncertainty has implications for the55

global budget for CO2 emissions required to limit temperature rise, because TCR is a factor in the56

Transient Climate Response to Emissions (Gillett et al. 2013). A review by Knutti et al. (2017)57
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of many studies which estimated ECS and TCR found that TCR was somewhat constrained by58

observations, and correlated with projected warming over the next few decades, while ECS has a59

stronger relationship with late 21st century warming (Grose et al. 2018). S2020 also reported that60

effective climate sensitivity was a better predictor of late 21st century warming, especially under61

high emission scenarios, than was TCR.62

There has been hope that relating model properties outside observed change from the multi-63

model ensemble to properties of the observed climate (Hall and Qu 2006) or climate change might64

constrain future climate change ("emergent constraints"). Caldwell et al. (2018) reviewed several65

proposed emergent constraints, and found that many were closely related, and that only four of66

the constraints were consistent with the original explanations from the original author. Schlund67

et al. (2020) found that several emergent constraints that performed well in earlier multi-model68

ensembles did not perform well in the CMIP6 ensemble suggesting such constraints were not robust.69

Sanderson et al. (2021) argued these findings could arise from common structural assumptions in70

a multi-model ensemble.71

Some groups have observed that the parameters used in model parameterisations are uncertain72

(Stainforth et al. 2005). These perturbed parameter ensembles (PPEs) have had a range of ECS73

values with some large (Stainforth et al. 2005) and some small(Sanderson 2011). Rowlands74

et al. (2012); Yamazaki et al. (2013), using variants of HadCM3(Gordon et al. 2000), found good75

agreement with observed climate change but very large uncertainties in future climate change.76

Others have also used perturbed parameter ensembles to explore potential future climate change77

with recent approaches by the UK’s Met Office for the UKCP18 programme(Lowe et al. 2019)78

including constraints from forecast skill (Sexton et al. 2021; Yamazaki et al. 2021). In general,79

these approaches use filtering where the PPE is generated by modifying parameter values, often80

using a latin-hypercube design and then filtering out those models inconsistent with observations.81

This is computationally expensive if many of those models are inconsistent with observations.82

An under-explored issue is the role of model calibration in which model parameters are modified83

to reduce the discrepancy between simulation and observations (Mauritsen et al. 2012). So, we84

pose the question: how much uncertainty is there in ECS and TCR when a climate model is85

objectively calibrated to a diverse set of large scale climatological observations? Climate models86

are subjectively tuned to current observations (Mauritsen et al. 2012; Hourdin et al. 2017) with87
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almost all modelling groups (Hourdin et al. 2017) using the net top of atmosphere flux as a target88

though a wide diversity of additional targets are used by different groups. Tett et al. (2013a)89

showed that it was possible to calibrate four parameters in a climate model to top-of-atmosphere90

(TOA) radiative flux measurements and that uncertainty in ECS was small (Tett et al. 2013b). Tett91

et al. (2017)(T17 from hereon) built on this to show it was possible to calibrate the atmospheric92

component (HadAM3;Pope et al. (2000)) of the venerable HadCM3 climate model (Gordon et al.93

2000) driven by observed Sea Surface Temperatures, sea-ice and radiative forcings targeting a94

broad set of large space and time scale atmospheric variables. We build on this work by generating,95

using two different algorithms, two calibrated ensembles of the HadAM3 model, coupling them to96

the HadCM3 ocean model and examining the climate response of the two ensembles. We find that97

uncertainties in the climate response are small both at the global and regional scales suggesting98

that the structural way in which models represent unresolved processes is key to uncertainty in99

projections.100

The rest of the paper is structured as follows. First we detail the methods used to generate the101

ensembles and our analysis methodology. We then show results from the two ensembles, followed102

by a set of sensitivity studies. We then report on results from a linear analysis which allows us to103

explore sensitivity before finally concluding.104

2. Methods105

a. Calibration and Experimental Design106

We generated two ensembles of the HadAM3 model (Pope et al. 2000) using multiple atmospheric107

model simulations. The two ensembles were both calibrated to large-scale observed climate (see108

next paragraph for more details), each using its own algorithm. Parameter values varied across109

the members of both calibrated ensembles (T17 and Fig. 1) suggesting multiple, or wide and flat,110

minima. Several of the parameters often have values set at the expert based maxima or minima.111

CW_LAND, KAY_GWAVE, CHARNOCK& G0 in particular, show this behaviour. This suggests, for these112

parameters, that the expert judgement of the plausible parameter range can significantly impact the113

calibrated parameter values. We discuss the potential impact of this further later.114

We then coupled the calibrated atmospheric-model configurations to the HadCM3 ocean model,121

in a state obtained from several thousand years of coupled spinup with pre-industrial forcing122
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Fig. 1. Normalised parameters for CE7 (black), DF14 (orange), calibrated sensitivity studies(blue), and

uncalibrated sensitivity studies (red). Parameters named with short names in Table 1. All values are normalised

from 0 to 1 where 0 (1) is smallest (largest) value from expert based range. Cases are named on left with

number as used in Fig. 2. The grey dots show standard HadAM3/HadCM3 values. Parameters are ordered from

left to right by their normalised impact on ECS4. Parameters with a * after their name were used in the CE7

optimisation.
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Table 1. Parameter descriptions and normalised perturbations used to compute Jacobians. Short names used

throughout paper are the first three characters with any _ removed. Those with a * after are used in the CE7

ensemble. See Yamazaki et al. (2013) and T17 for fuller description of parameters. The table shows parameter

name, which process it impacts, the normalised perturbation, to 3 sig. figures, used to compute the atmospheric

Jacobian (Atmos), the ECS4 Jacobian (ECS4) and the T140 Jacobian (T140).

140

141

142

143

144

Parameter Process Atmos ECS4 T140 Parameter Process Atmos ECS4 T140

CT* Cloud 0.0286 0.1 0.1 DYNDIFF Horizontal diff. 0.111 0.5 –

EACF* Cloud 0.1 0.2 0.2 KAY_GWAVE Gravity wave 0.4 0.5 0.5

ENTCOEF* Convection 0.0179 0.1 0.1 ASY_LAMBDA Boundary Layer 1/3 0.5 –

ICE_SIZE* Radiation 0.1 0.5 0.5 CHARNOCK Boundary Layer 0.375 0.5 0.5

RHCRIT* Cloud 0.0333 0.2 0.2 G0 Boundary Layer 0.267 0.5 –

VF1* Cirrus Cloud 0.0667 0.2 0.2 Z0FSEA Boundary Layer 0.417 0.5 –

CW_LAND* Cloud/Precip. 0.105 0.5 0.5 ALPHAM Sea-Ice Albedo 0.4 0.5 0.5

(Gordon et al. 2000). With each coupled configuration we ran a control with unchanged CO2, and123

other experiments with changes in CO2 imposed (described below).124

The calibration procedure (Tett et al. 2017) chooses parameter vectors for HadAM3 to minimise125

the weighted squared difference between simulated control and observed climatological monthly126

means for March 2000 to February 2005 (inclusive), following a 16-month spinup. The calibration127

considered geographical fields of large-scale land air temperature (LAT), land precipitation (LP),128

pressure differences from the global mean (SLP), TOA outgoing longwave radiation (OLR), TOA129

reflected shortwave radiation (RSR), 500 hPa temperature (T500) & relative humidity (q500). For130

each variable, except SLP, the globe was divided into three regions and area-weighted and time131

means computed.The three regions considered were the Northern Hemisphere extra-tropics (NHX;132

latitude > 30◦N), Tropics (latitude between ±30◦), and the Southern Hemisphere extra-tropics133

(SHX; latitude < 30◦S) allowing representation of different large scale climate regimes. For SLP,134

instead of three independent quantities, the two differences (NHX average− global average) and135

(Tropics average−global average) were used. Global-average TOA net radiative flux (NET, #) was136

included as a further constraint with a target value of 0.5 W/m2. The atmospheric model was tuned137

to these 21 observations by modifying parameters (Table 1) that earlier work had used (Knight138

et al. 2007; Yamazaki et al. 2013; Rowlands et al. 2012).139

7



The optimisation (Tett et al. 2017) aimed to minimize the cost-function (COST):145

� (p) =
(

(s−o))C−1(s−o) + 1

2`
(# −0.5)2

)

/(=+1)

where p is the vector of parameter values and ` = 0.01 is a penalty weight on the net radiative146

balance. C is a covariance matrix formed by summing an estimate of observational uncertainty147

with twice the control variability. We do this because both the simulations and the observations148

are assumed to contain chaotic internally generated unforced variability with the same statistical149

characteristics as the control. The observational uncertainty component of C had all off-diagonal150

values set to zero. Uncertainties for OLR and RSR come from the analysis of Loeb et al. (2009),151

while other observations used the difference between two independent estimates (see T17 for152

details). = is the number of observables (20 in our case – three regions x six quantities plus two153

SLP values); o is a vector of the observed targets while s are the simulated values. If our estimates154

of observational uncertainty is reliable, and if C is diagonal implying � is j2-distributed, the155

5-95% confidence range for � is 0.6–1.6.156

T17 calibrated eight cases using seven parameters and a Gauss-Newton algorithm (Table 1)157

starting the optimisation from sets of extreme parameter values. We generated another two cases158

using the same algorithm to give 10 parameter sets. We call this ensemble “CE7” (indicating the159

number of parameters). Using a new algorithm termed Derivative Free Optimization for Least160

Squares (Cartis et al. 2019) (DFOLS) we generated five cases using 14 parameters (Table 1). This161

ensemble is called “DF14”. As with CE7 these started from extreme parameter values. Unlike the162

Gauss-Newton algorithm, DFOLS does not explicitly compute derivatives w.r.t. parameters, instead163

using a local-search strategy. Finally, we generated a set of sensitivity studies (SS) (Appendix A2)164

some of which were optimised using the Gauss-Newton methodology of T17. Following T17, and165

to avoid selection bias, the calibrated atmosphere model was run with perturbed initial conditions,166

and the same boundary conditions, to compute � (p).167

All control simulations were ran for 180 years starting from the same well spun-up state of168

HadCM3. T17 (Fig 7) showed that the upper ocean adjusted quickly to the parameter changes. We169

repeated this calculation and find that the upper-ocean largely adjusts by year 40 though with small170

adjustments after that (not shown). In contrast, the deep ocean is still adjusting by year 180 of the171

control in all cases (not shown).172
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After 40 years of control simulations three simulations were carried out in which 1) CO2173

increased at a rate of 1%/year until quadrupling (1pctCO2); 2) was instantaneously doubled174

(abrupt2xCO2); 3) and quadrupled (abrupt4xCO2). The abrupt2xCO2 and abrupt4xCO2175

cases were both integrated for 40 years while the 1pctCO2 case was ran for 140 years. We176

focus on the differences between the forced simulations and their control, especially the transient177

responses at 2 (TCR) and 4×CO2 (T140) in 1pctCO2, the equilibrium climate sensitivity (ECS) in178

abrupt2xCO2 and the equilibrium response to 4×CO2 (ECS4) in abrupt4xCO2. All calculations179

are done on the difference between forced and control simulation in order to correct for residual180

drifts. In Appendix A2 we report on a sensitivity study where we ran a control for 1000 years181

before starting the increased CO2 simulations. We found only a small impact.182

ECS and ECS4 were estimated by regressing net Top-of-Atmosphere (TOA) flux against global-183

mean temperature (Gregory et al. 2004). When obtained by this method, rather than from an184

equilibrium 2×CO2 state, the estimated ECS is commonly called “effective climate sensitivity”.185

Similar calculations were done for other variables to estimate the equilibrium responses at 2× and186

4× CO2. Feedback parameters for the all-sky (_) and clear-sky (_C), short wave (_SLW, _SWC)187

and longwave (_LW, _LWC) TOA radiative fluxes were computed from the slope of the appropriate188

linear regression fit.189

TCR was diagnosed from the 1pctCO2 simulations by fitting a 2nd order polynomial to the190

global-average temperature difference from the equivalent control simulation. We used a 2nd191

order polynomial to capture any deviations from a linear response at longer timescales as seen192

in multiple climate models (Gregory et al. 2015). The value of the fit when CO2 doubled is our193

estimate of TCR. We also computed T140 (the warming at 4×CO2) similarly. We also used this194

approach for other variables shown. As many of the control simulations are still warming at year195

180, control values are, unless stated otherwise, taken from the value at year 180 estimated from a196

2nd order polynomial fit to the data.197

b. CMIP5 and CMIP6 data198

We used data from CMIP5 and CMIP6 multi-model archives. CMIP5 values of ECS, TCR and199

T140 were taken from Gregory et al. (2015) supplemented by results from the 5th IPCC assessment200

report (Stocker et al. 2013) and Zelinka et al. (2020). For the CMIP6 ensemble ECS, TCR and201
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T140 values were taken from Ringer (2019). The ECS values in these references are actually ECS4202

divided by two. For CMIP5 and CMIP6 models, the cost-function was computed from the average203

of all available atmospheric simulations for the same model conservatively regridded to the N48204

grid of HadAM3, time-averaged and, for land values, masked by the HadAM3 land/sea mask. For205

Taylor diagrams(Taylor 2001) we used this regridded and masked data. The piControl global-206

average near-surface air temperature was computed from the last 100 years of the simulation. All207

CMIP5 and CMIP6 summary values can be found in tables 2 and 3.208

c. Uncertainty215

Internal variability will contribute to our estimates of the climate response. To estimate the216

contribution of internal variability to ECS, ECS4 and climate feedback parameters we used an217

ensemble of seven initial condition simulations of HadCM3 in which CO2 was doubled and218

quadrupled. These simulations were all started from the same state with small perturbations and219

are compared against the same control simulation. To compute uncertainty in the transient and220

control simulations a 1000-year long control simulation of HadCM3 was used. Segments of length221

140 years overlapping by 35 years were taken and a second order fit made to this timeseries. Values222

at year 70 and year 140 were then taken from the 2nd order fit. Variances of these values were then223

computed and used to estimate uncertainty from internal climate variability. For TCR, T140 and224

other transient values the variances were doubled as these values are computed from a difference225

between 1pctCO2 and control simulations. For simplicity the same 140-year segments were used226

to compute uncertainties in the control simulation values, although this slightly overestimates their227

uncertainties.228

To give a qualitative estimate of how uncertain the ensembles are, we report the Coefficient of229

Variation (CV) as a %. CV is the standard deviation divided by the mean. When this is small230

then signal-to-noise is large and conversely when it is large signal-to-noise is small. The CV gives231

a sense of how large or small the range of model behaviour may be, but we do not estimate the232

uncertainty in the CV because our ensembles are too small.233
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Table 2. Summary properties for CMIP5 models. ID is the label used in Fig. 2 and other plots. Natmos

and Ncoup are the sizes of the atmospheric and coupled ensembles. COST is the dimensionless value of the

cost-function. Shown in K are the Equilibrium Climate Sensitivity (ECS), Transient Climate Response (TCR),

Transient Climate Response (T140) at 4×CO2 and the pre-industrial control global mean surface air temperature

(GMSAT). Source shows where ECS/TCR/T140 values came from and MM Mean shows the multi-model mean

of the ensemble. Other values are defined in the main text.

209

210

211

212

213

214

Model ID COST Natmos ECS TCR T140 GMSAT Ncoup Source

ACCESS1-0 a 3.1 1 3.5 2.0 4.6 287.1 1 Gregory et al. (2015)

ACCESS1.3 b 4.9 2 2.8 1.6 4.0 287.3 1 Gregory et al. (2015)

BNU-ESM c 8.2 1 4.1 2.6 – 286.1 1 Stocker et al. (2013)

CCSM4 d 5.4 6 2.9 1.8 – 286.4 3 Stocker et al. (2013)

CESM1-CAM5 e 3.6 2 – 2.3 – 286.3 1 Stocker et al. (2013)

CMCC-CM f 6.2 3 – – – 286.6 1 –

CNRM-CM5 g 5.0 1 3.2 2.1 4.5 286.4 1 Gregory et al. (2015)

CSIRO-Mk3-6-0 h 9.1 10 3.0 1.8 4.5 285.9 1 Gregory et al. (2015)

CanESM2 i 4.4 4 3.6 2.4 5.2 286.8 1 Gregory et al. (2015)

FGOALS-g2 j 6.5 1 – 1.4 – 285.5 1 Stocker et al. (2013)

FGOALS-s2 k 7.4 3 4.2 – – 286.7 1 Zelinka et al. (2020)

GFDL-CM3 l 3.6 5 3.2 1.9 4.8 287.3 1 Gregory et al. (2015)

GISS-E2-R m 5.2 12 2.1 1.5 – 287.6 5 Stocker et al. (2013)

HadGEM2-ES n 3.6 6 4.3 2.5 5.4 286.8 1 Gregory et al. (2015)

IPSL-CM5A-LR o 5.7 6 3.5 2.0 5.2 285.2 1 Gregory et al. (2015)

IPSL-CM5A-MR p 6.2 3 3.4 2.0 5.1 286.2 1 Gregory et al. (2015)

IPSL-CM5B-LR q 7.0 1 2.6 1.5 – 286.2 1 Stocker et al. (2013)

MIROC-ESM r – – 3.5 2.2 5.6 – – Gregory et al. (2015)

MIROC5 s – – 2.1 1.5 3.7 – – Gregory et al. (2015)

MPI-ESM-LR t 4.8 3 3.1 2.1 5.0 286.7 1 Gregory et al. (2015)

MPI-ESM-MR u 4.5 3 2.9 2.0 4.8 286.9 1 Gregory et al. (2015)

MRI-CGCM3 v – – 2.2 1.6 4.0 – – Gregory et al. (2015)

NorESM1-M w 5.9 3 2.1 1.4 3.6 286.3 1 Gregory et al. (2015)

bcc-csm1-1 x 6.1 3 2.8 1.7 – 286.9 1 Stocker et al. (2013)

bcc-csm1-1-m y 5.5 3 2.9 2.1 – 287.1 1 Stocker et al. (2013)

inmcm4 z 4.9 1 2.0 1.3 3.0 286.1 1 Gregory et al. (2015)

MM Mean – 5.5 – 3.0 1.9 4.6 286.5 – –

d. Linear Uncertainty Analysis234

In this subsection we explain how we compute, using a linear analysis for small perturbations,235

the observationally constrained distributions of ECS4, TCR and T140 for HadCM3. In essence236

we linearly transform observational uncertainty using Jacobians which capture the sensitivity of237
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Table 3. Summary properties for CMIP6 models with details as table 2

Model ID COST Natmos ECS TCR T140 GMSAT Ncoup Source

BCC-CSM2-MR a 4.4 3 3.1 1.7 4.1 287.9 1 Ringer (2019)

BCC-ESM1 b 6.3 3 3.3 1.8 4.4 288.1 1 Ringer (2019)

CAMS-CSM1-0 c 7.8 2 2.3 1.7 3.8 287.3 1 Ringer (2019)

CESM2 d 5.8 1 5.2 2.1 5.1 287.2 1 Ringer (2019)

CESM2-WACCM e 5.4 3 4.7 2.0 5.1 287.1 1 Ringer (2019)

CNRM-CM6-1 f 6.7 1 4.8 2.1 5.8 286.1 1 Ringer (2019)

CNRM-CM6-1-HR g – – 4.3 2.5 5.7 – – Ringer (2019)

CNRM-ESM2-1 h 6.9 1 4.8 1.8 5.4 286.6 1 Ringer (2019)

CanESM5 i – – 5.6 2.7 6.6 – – Ringer (2019)

E3SM-1-0 j – – 5.3 3.1 7.3 – – Ringer (2019)

EC-Earth3 k – – 4.2 2.3 5.9 – – Ringer (2019)

EC-Earth3-Veg l – – 4.3 2.6 6.1 – – Ringer (2019)

FGOALS-f3-L m 8.2 3 3.0 2.1 4.8 286.1 1 Ringer (2019)

GFDL-CM4 n – – 3.9 2.1 5.0 – – Ringer (2019)

GFDL-ESM4 o – – 2.7 1.6 3.8 – – Ringer (2019)

GISS-E2-1-G p 4.7 8 2.7 1.7 – 286.9 6 Ringer (2019)

GISS-E2-1-H q – – 3.1 1.9 4.4 – – Ringer (2019)

GISS-E2-2-G r – – 2.4 1.7 3.9 – – Ringer (2019)

HadGEM3-GC31-LL s 2.9 5 5.5 2.6 6.6 286.9 1 Ringer (2019)

HadGEM3-GC31-MM t 2.8 4 – – – 287.5 1 –

INM-CM4-8 u – – 1.8 1.3 3.1 – – Ringer (2019)

IPSL-CM6A-LR v 6.0 11 4.5 2.3 5.9 285.9 2 Ringer (2019)

MCM-UA-1-0 w – – 3.6 1.9 4.5 – – Ringer (2019)

MIROC-ES2L x – – 2.7 1.6 3.7 – – Ringer (2019)

MIROC6 y 8.2 10 2.6 1.6 3.7 288.4 1 Ringer (2019)

MPI-ESM1-2-HR z – – 3.0 1.7 4.2 – – Ringer (2019)

MRI-ESM2-0 A 4.5 3 3.2 1.6 3.8 287.0 1 Ringer (2019)

NESM3 B – – 4.7 2.7 6.2 – – Ringer (2019)

NorESM2-LM C – – 2.5 1.5 3.5 – – Ringer (2019)

SAM0-UNICON D 3.7 1 3.6 2.2 4.6 286.2 1 Ringer (2019)

UKESM1-0-LL E 3.0 1 5.3 2.8 6.6 286.5 1 Ringer (2019)

MM Mean – 5.4 – 3.8 2.0 5.0 287.0 – –

simulated observations and climate response to give a distribution for climate response. This238

allows us to compare a linear analysis with the results from the non-linear multiple calibrations239

and explore sensitivity to our estimate of observational uncertainty.240

Assuming small perturbations and that the parameters p have a multi-variate Gaussian distribution241

(p∼ # (po,Cp)) where p0 are the optimised parameters, the covariance matrix (Cp) can be computed242
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(T17) from:243

Cp = PCP) (1)

where P is a transformation matrix = (JA
)C−1JA)−1JA

)C−1 with JA the Jacobian of observational244

derivatives w.r.t. parameters in the atmospheric simulations estimated, in our case, using a 14-245

member ensemble. C is the observational co-variance matrix defined above. A perturbation analysis246

for the climate responses (r = (��(4,)�',)140) ∼ # (ro,Cr)) can be done by computing the247

Jacobian (Jr) using control, abrupt4xCO2 and 1pctCO2 coupled simulations for each perturbed248

parameter.Cr = JrCpJr
) where ro and Cr are the responses from the optimised parameter settings249

and the response covariance matrix respectively. When computing the Jacobian for TCR and250

T140, only those ten parameters that had a significant impact on ECS4 were perturbed. As there251

are only small differences between the response of the optimised model and the standard model252

(Appendix A2) we approximated ro and po with values for the standard HadCM3 model ps.253

To compute the parameter perturbations, the HadSM3 simulations of Rowlands et al. (2012)254

were used. From the changes in ECS reported there, and assuming local linearity, the parameter255

changes needed to give roughly a 0.5K change in ECS were computed with a maximum normalised256

perturbation of 0.5 allowed (Table 1).257

To keep the normalised parameters within (0,1) we generated parameter vectors from the multi-258

variate normal distribution (p ∼ # (po,C
′

p)). For the small fraction of p where all normalised259

parameters were in the range (0,1) we computed changes in ECS4 and T140 from J(p−ps). We260

generated at least 1000 realisations of p with normalised elements between 0 and 1 by random261

generation and removal of all cases where this was not so. To increase the efficiency of this process262

C′

p was computed by combining a prior distribution for the normalised elements p ∼ # (0.5, I) with263

Cp using Bayes theorem. The covariance and best-estimate, for ECS4 and T140, was computed264

from the p samples. Uncertainties are summarized by the standard deviation of ECS and T140265

from these distributions.266

This linear analysis only considers uncertainty in the perturbed parameters and does not consider267

structural uncertainty, nor from the error arising from HadAM3 being, on our measure, significantly268

different from observations.269

Using this linear uncertainty approach, we can modify the observational error by changing C270

and the recomputing uncertainties in ECS4, TCR and T140. We tested the impact of forcing271
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C to be largely diagonal by, for each of the seven variables, generating the sub-matrix from the272

outer product of the estimated standard deviations for only this variable (which assumes perfect273

correlation between the three (or two) observations). These sub-matrices were composed together274

to form the observational error covariance matrix. Twice the internal variability covariance matrix275

was then added to give a different, and more correlated, estimate of C.276

We also explored the impact of the expert judgment on the parameter range by increasing the277

parameter range to (−0.5,1.5) and increasing the prior on the parameters to p ∼ # (0.5,
√

(2)I).278

This could lead to some unphysical parameter values but for the linear analysis this is irrelevant.279

We also applied this increase to ALPHAM alone, and all parameters except ALPHAM.280

To test the impact of individual variables, we repeated the above analysis. We considered each281

of the seven variables, each with two or three observations, in turn and scaled the observational282

standard deviation of all other observations by 100 (“other”). This should be large enough to283

provide no constraint on the parameters from those observations or variable. We also repeated the284

analysis, but only scaled the standard deviations for the observations of that variable by 100 and285

left other uncertainties unmodified (“leave-out”).286

3. Results287

In this section we first compare the calibrated HadAM3 with the atmosphere models of CMIP5 and288

CMIP6 with regard to their simulation of the large scale climate for 2001-2005. We then examine289

uncertainties in global temperature change in the two calibrated and two CMIP ensembles. We290

finish with a linear uncertainty analysis showing that the linear analysis of HadCM3 uncertainties291

has similar uncertainties to the calibrated ensembles.292

a. Representation of Large-scale Climate293

To assess the simulations we use the same cost function (see Methods) as T17. Both of the CMIP294

ensembles show a very wide distribution (top two rows of Fig. 2a) compared to both HadAM3295

calibrated ensembles (third and fourth rows of Fig. 2a), with only a modest improvement in CMIP6296

compared to CMIP5 (Tables 2 and 3) though there is a modest shift in the distribution to better297

models.298
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The best (worst) CMIP5 model, using our cost-function, is ACCESS-1-0 (CSIRO-Mk3-6-0)311

with HadGEM3-GC31-MM(FGOALS-f3-L) being the best (worst) CMIP6 models. The CE7312

ensemble has a mean (range) cost-function of 4.7 (4.4-5.3) which is below and narrower than the313

CMIP5 ensemble, with 5.4 (3.1-9.1)(Fig. 2(a)), and the CMIP6 ensemble, with 5.4 (2.8-8.2). The314

DF14 ensemble has a narrower range (3.1-3.7) and a mean value (3.4) comparable with the best315

CMIP5 and CMIP6 atmosphere-only simulations. The standard HadAM3 configuration, with a316

cost-function of 4.6, is better than 17 out of 21 (10 out of 16) CMIP5 (CMIP6) AMIP simulations.317

This suggests that on our chosen metric that the 20+ year old HadAM3 model simulation of mean318

climate is comparable with the current generation of climate models. The reduction in cost function319

seen in the DF14 ensemble further suggests that calibration can improve the ability of models to320

simulate observed climate with the cases from this ensemble having cost functions close to the321

best models in the CMIP5/6 ensemble. However, even the minimum cost function (for HadGEM3-322

GC31-MM) is too large to be consistent with observations (see Methods), indicating the need for323

further model improvement in the CMIP6 ensemble.324

Considering the simulation of the individual observational indices we find that for both the333

CMIP5 and CMIP6 atmospheric-only ensembles (dark-blue and blue bars, respectively, in Fig. 3),334

the 25-75% model range encompasses zero error, except that there is too much land precipitation335

in the Northern Hemisphere extra-tropics in both ensembles. However, individual models are336

inconsistent with observations of different quantities. All HadAM3 ensembles are inconsistent337

with several observational quantities, particularly land air temperature and precipitation. The338

DF14 ensemble has, in general, smaller errors and biases than CE7, suggesting DFOLS is a better339

method than the Gauss-Newton variant for calibrating atmospheric models.340

We compared observational estimates of preindustrial surface temperatures with the control341

and piControl coupled atmosphere-ocean simulations from all four ensembles. All ensembles342

have broad and comparable distributions of global-average surface air temperatures; the CMIP6343

ensemble has a broader range than the other three ensembles. For the CMIP5 ensemble the mean344

value is slightly colder than the best-estimate 19th century values (Fig. 2(b)) with about half of this345

ensemble being inconsistent with pre-industrial temperatures. The centre of the CMIP6 distribution346

is slightly warmer than the 19th century values with, also, about half the models inconsistent with347

the 19th century estimates. Both the CE7 and DF14 ensembles are, on average, about 0.25K348
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warmer than those observations, while the standard HadCM3 is slightly cold. The DF14 ensemble349

has a narrower range than CE7 and four out of five of the members have temperatures consistent350

with the preindustrial temperature estimates.351

Figure 4 shows partial Taylor diagrams (Taylor (2001);“Taylor Wedges”) for the seven variables352

used in our analysis. Focusing first on the CMIP5 and CMIP6 ensembles. For SLP we see little353

difference between both ensemble averages, though CMIP6 lacks the outliers seen in CMIP5. Land354

air temperature (LAT) is well simulated in the two ensembles. Conversely, the simulation of Land355

Precipitation (LP) is poorer than LAT with only modest improvement from CMIP5 to CMIP6. In356

the mid-Troposphere, the patterns of 500 hPa temperature (T500) from the ensembles are very357

similar to those observed. Mid-tropospheric relative humidity (q500) is not as well simulated as358

T500, though does show a modest improvement from CMIP5 to CMIP6. Finally, considering TOA359

radiation. OLR is reasonably well simulated in both ensembles (with some room for improvement)360

while RSR is not very well simulated and the CMIP6 ensemble shows a distinct improvement361

compared to the CMIP5 ensemble.362

Considering the CE7 and DF14 HadAM3 ensembles (Figure 4). Except for SLP, and LP, the371

DF14 ensemble is at similar locations in the Taylor wedge as the standard model is. The CE7372

ensemble for all variables is close to the standard model. For LAT, T500 and OLR calibrated,373

and uncalibrated, HadAM3 are comparable with the CMIP5 and CMIP6 ensembles. For SLP the374

DF14 ensemble improves on the uncalibrated model and is broadly consistent with the CMIP6375

ensemble. For RSR, LP and q500 calibrated and uncalibrated HadAM3 are broadly consistent376

with the CMIP5 ensemble with somewhat worse performance than the CMIP6 ensemble.377

Overall, we conclude that both calibrated ensembles are, despite the age of the HadCM3 model,378

comparable with the CMIP5 ensemble, and not greatly worse than the CMIP6 ensemble, in their379

ability to simulate observed large-scale mean observations. We also conclude that the DF14380

ensemble is more realistic than the CE7 ensemble suggesting that the DFOLS algorithm is a better381

algorithm than the Gauss-Newton algorithm for calibrating climate models.382

b. Climate Response383

There is a broad range in the CMIP ensembles for T140 with ensemble-means of 4.6 (CMIP5)384

and 5K (CMIP6) (Fig. 2(c); Table 4). The two HadCM3 calibrated ensembles have almost385
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Table 4. Ensemble average values for CMIP5, CMIP6, CE7, and CE14 ensembles (to two s.f.). Uncertainties

are one standard deviation for each ensemble (to 1 s.f.). Bracketed values are coefficient of variation rounded

to 1%. Standard-deviations from initial condition ensembles (ICE) for ECS/ECS4 and internal variability (IV)

(see methods) for TCR/T140 are also shown. Also shown are results from the linear analysis for four restricted

parameter cases. Sensitivity studies are shown, for ECS4 and T140, on the right. They are a strongly correlated

observational covariance matrix( _C), and the expert judgement parameter range doubled (x2) for all seven and

ten significant parameters, only ALPHAM (ICERx2) and all parameters except ALPHAM (NoICERx2).

396

397

398

399

400

401

402

Ensemble ECS ECS4 TCR T140 Sens Study ECS4 T140

CMIP5 3.1±0.7(21%) 6.2±1(21%) 1.9±0.4(19%) 4.6±0.7(15%) 7PR_C 6.3±0.1(2%) 4.7±0.06(1%)
CMIP6 3.9±1(28%) 7.8±2(28%) 2±0.3(17%) 5±1(20%) SigPR_C 6.5±0.4(6%) 4.8±0.1(3%)
CE7 3.1±0.1(5%) 6.2±0.4(6%) 2±0.05(3%) 4.7±0.2(3%) 7PRx2 6.1±0.3(5%) 4.7±0.2(3%)
DF14 3.1±0.3(9%) 6.5±0.5(8%) 2±0.1(5%) 4.8±0.2(5%) SigPRx2 7±1(17%) 5.1±0.5(9%)
ICE 2.9±0.1(4%) 6.3±0.2(3%) 2.1±0.03(2%) 4.7±0.08(2%) IceRx2 6.5±1(16%) 4.8±0.4(7%)
7PR - 6.3±0.2(3%) 2.1±0.07(3%) 4.7±0.1(3%) NoIceRx2 7.1±0.7(9%) 5.2±0.3(6%)
14PR - 7.1±0.6(9%) − −
NoIceR - 6.3±0.3(5%) − −
SigPR - 7.1±0.6(9%) 2.4±0.1(6%) 5±0.3(5%)

identical ensemble means, are between the two CMIP ensembles, and have similar uncertainties386

to one another(Table 4). In all ensembles, T140 is more than double TCR (compare stars and387

hexagons). This is a common feature across the CMIP5 and CMIP6 ensembles with several known388

mechanisms (Gregory et al. 2015). Uncertainties, summarised through standard deviations, are389

not much larger than internal variability for TCR in both HadCM3 calibrated ensembles (Table 4).390

Relative uncertainties in both ECS and TCR are very similar, and are also small in the HadCM3391

ensembles, at about three to six times smaller than the CMIP ensembles. The equilibrium responses392

((Fig. 2(d); Table 4) show a similar pattern to the transient responses with uncertainties in CE7393

being smaller than in DF14. The calibrated ensembles have relative uncertainties at most half of394

the CMIP5 and CMIP6 ensembles (ECS for DF14 compared to ECS for the CMIP5 ensemble).395

The correlation between the atmosphere-only cost function and T140 (ECS4) in the CMIP5403

ensemble is -0.15 (0.04) neither of which are significant at the 10% level. For the CMIP6 ensemble404

the correlations are -0.46 and -0.44 for T140 and ECS4 respectively, which are just significant at405

the 10% level. Even so these are weak correlations suggesting that the cost function applied to406

multiple models does not provide a strong constraint. Results from our two calibrated ensembles407
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suggest that, once observational constrains have been applied, only a small uncertainty due to408

parameter choices remains in the transient and equilibrium responses to CO2. If this is true of409

other models, it suggests that the much larger uncertainties shown by CMIP in TCR, TCR140, ECS410

and ECS4 arise from the range of physical parameterisation schemes used (so-called “structural411

uncertainty”), or from the calibration targets used, rather than from poor calibration.412

c. Uncertainties in Regional Climate Change413

Having shown that uncertainties in large-scale temperature change and climate feedbacks are414

small, we consider the CV of regional temperature change at the 4×CO2 in the 1pctCO2 simula-415

tions. These are similar, and small, in the CE7 and DF14 ensembles (Fig. 5) being between 5 and416

10% across most of the world. Uncertainties in both ensembles are largest:417

1. where the model shows least warming, likely because internal variability is, relative to the418

forced response, more important there.419

2. in the Arctic likely due to large internal variability and Arctic amplification.420

3. in the North Atlantic likely due to significant variability in the AMOC.421

CV, in both ensembles, in zonal-mean ocean-only, land-only, annual minimum and maximum424

temperature surface air temperatures are also small being below 10% across most of the world425

(Fig. 6(a,b)). Exceptions to this are the two extreme temperature indices south of 30S and in426

Antarctica. CV’s for mean and extreme precipitation (Fig. 6(c,d)) are also small and below 10%427

over most of the world. Near the equator CV values are relatively large for ocean precipitation428

though generally below 15%.429

In summary, like the global-mean changes, the uncertainties in the calibrated ensembles are435

small in important characteristics of near-surface climate change.436

d. Linear Uncertainty Analysis437

To see if our results are robust, we present a linear uncertainty analysis (see Methods). This438

approach combines observational uncertainty estimates with the sensitivity of atmospheric simula-439

tions and of the climate response to parameter perturbations to give an observationally constrained440

distribution for climate response. This approach also allows us to determine which parameters are441
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constrained by the atmospheric observations, which observations constrain the response, and test442

sensitivity to assumptions about observational uncertainty.443

Perturbing parameters in the cloud and convective parametrisations (Fig. 7(a) and Table 1) has444

the largest impact on the simulated observations in the atmosphere-only simulations. The net TOA445

radiative flux (NET), tropical reflected shortwave radiation (RSR), and tropical land precipitation446

(LP) show the largest Jacobian values w.r.t. normalised parameter change suggesting these are447

key climatological observations. While, for example, Northern Hemisphere extra-tropical 500448

hPa humidity is insensitive to parameter changes so provides little constraint. Many parameters,449

after calibration, have small uncertainties (Fig. 7(b)) showing that these parameters are strongly450

constrained by the observations we use. Exceptions are ALPHAM (ALP - the hyperparameter451

that controls the albedo of sea-ice) and CHARNOCK ( CHA - a boundary layer parameter) which452

are unconstrained by our atmospheric model simulations and observations used. The Jacobian453

(Fig. 7(c)) for ECS4 and T140 shows that only a few parameters have large impact on simulated454

climate change. Of these, cloud and convection processes are the most important parameter455

uncertainties and are strongly constrained by our analysis.456

Combining the parameter covariance (Fig. 7(b)) with the Jacobian of climate response (Fig. 7(c))468

gives linear estimates of uncertainty (for ECS4 in red and T140 in blue in Fig. 7(d)). For the469

seven parameter case (7P) we find a mean and standard deviation of ECS4 similar to that from470

the CE7 ensemble. Using all fourteen parameters (14P) gives very large uncertainties in ECS4471

(Table 4). Restricting the parameter set to the expert judgement range (see methods) slightly472

reduces the uncertainty range for the seven parameter case (7PR) but gives a larger ECS4 and a473

much narrower uncertainty range for the fourteen parameter case (14PR) than the unconstrained474

case (14P). Restricting to the thirteen parameters (NoIceR) excluding ALPHAM gives a mean475

and uncertainty in ECS4 very similar to the seven parameter cases. Overall this suggests that our476

results are sensitive to assumptions about the plausible range for parameters. Restricting to the477

ten parameters (SigP and SigPR) that had a ≥ f impact on ECS4 gives very similar results to478

the fourteen parameter cases (14P and 14PR) suggesting that the other four have little effect. To479

compute the TCR/T140 Jacobian we restricted perturbations to only these ten parameters.480

We found similar results to ECS4 for TCR (Table 4) and T140 (Fig. 7(d)). T140 mean and481

uncertainty both increase when going from seven to ten parameters, largely due to inclusion of the482

19



ice-albedo parameter in the analysis. Uncertainties for both TCR and T140 are comparable to the483

CE7 and DF14 calibrated ensembles (Table 4). To test sensitivity to our assumed observational484

structure, we examined the impact of producing a correlated co-variance matrix for observational485

error (see methods). This reduces the estimated uncertainty (Table 4) in ECS4 and T140 particularly486

for the SigPR case, suggesting our results are conservative. Considering the sensitivity case when487

the parameter range is doubled, then we find uncertainties in ECS4 and T140 increase by about 70488

to 80%. This seems to largely be due to the ice hyperparameter (compare ICERx2 and NoICERx2489

with SigPR) which is not well constrained with our atmosphere-only calibration simulations.490

To examine if any subset of the observations are responsible for the small uncertainties we491

examine the standard deviations of T140 (fT140) when we increase uncertainties by a factor of 100492

in all but one variable, or group of variables (“other”). We also examine the impact of increasing493

uncertainty in only one variable, or group of variables, by a factor of 100 (“leave-out”). We do494

this for the SigPR case (see Methods; Figure 8). For the "other" analysis if a variable constrains495

T140 we would expect fT140 to change little from the All case while for the “leave-out” analysis496

we would expect fT140 to change considerably from the All case.497

We consider first the “leave-out” analysis where fT140, with the exception of the Radn and505

Sfc cases, is little impacted by increasing the uncertainty on other variables a hundred-fold. For506

this analysis leaving out individual variables gives only small changes in T140 standard deviation507

with removal of Land Precipitation (LP), RSR (Reflected Solar Radiation) and NET (Net flux)508

causing the largest, though modest, increases in fT140. In the “other” analysis the Sfc and Radn509

variable groups, on their own, give similar magnitudes of fT140 to each other though larger than510

the All case. Using only single variables leads to quite large fT140 values (Figure 8). Of the511

single variable constraints LP, SLP, RSR and NET appear to constrain the most while q500, T500512

and OLR constrain T140 the least and are similar to the None analysis (where no observational513

constraints are applied). These results suggest that a smaller combination of variables, than the514

original seven, may constrain T140. After a some experimentation we found that LP, RSR and515

NET combined without any other variables (Best in Figure 8) lead to fT140 comparable to fT140 in516

the All analysis and is consistent with our earlier analysis of the Jacobian. Similar findings hold for517

ECS4 (not shown).This suggests these three variables are key, in our framework, to constraining518

climate response.519
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Appendix A1 explores changes in forcing from CO2 (likely fast responses to CO2 changes520

rather than changes in radiative forcing) and feedbacks. We find that all-sky shortwave (_SW)521

and longwave (_LW) climate feedbacks do show large changes between the two ensembles and,522

especially for the CE7 ensemble, within the ensemble. However, total climate feedback changes523

are small due to near-cancellation between changes in _LW and _SW after calibration.524

4. Discussion and Conclusions525

Using two different approaches, we find that the large-scale response of HadCM3 (Gordon et al.526

2000) to CO2 increase is strongly constrained when the simulated control climate is objectively527

calibrated against multiple large-scale 5-year mean atmospheric observations. Observations of528

land precipitation, reflected shortwave radiation, and net flux provide the strongest observational529

constraints on the model. Observational estimates of pre-industrial global-average temperature530

give an independent test on the ability of the HadCM3 to simulate large scale climate. Most,531

but not all, of the calibrated models are in agreement with this observation. Using the DFOLS532

algorithm (Cartis et al. 2019) to calibrate the atmospheric component of HadCM3 (Pope et al.533

2000) we find it is possible to produce model configurations that are in much better agreement534

with large-scale observations than the standard configuration, and than almost all of the CMIP5535

and CMIP6 models. For model calibration, it appears that DFOLS is better than the Gauss-Newton536

method used in Tett et al. (2017).537

Rowlands et al. (2012) filtered perturbed physics ensemble (PPE) of flux-adjusted HadCM3538

simulations to be close to observed regional trends in near-surface temperature and with a flux539

adjustment global-mean between ±5Wm−2. They found a likely range of 1.4-3K in near-surface540

changes in the 2050s driven by the SRES A1B scenario. Removing the flux-adjustment filter541

increased the upper limit to 3.4K. However, there are many differences between our study and542

theirs. Key differences are that we do not perturb the sulphur cycle and are using idealised studies543

to examine TCR, T140, ECS and ECS4 while they look at the response to a mixture of forcings in544

the mid-2050s. Our uncertainties in climate response, based on calibration to several 5-year mean545

observations, are considerably smaller than the approximately 40% uncertainties in the response546

reported by Rowlands et al. (2012). This suggests multiple large-scale observations may constrain547

model parameters, and thus climate response, better than observed temperature change. The key548
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observations we have identified are land precipitation, reflected solar radiation and net flux into the549

Earth system.550

Residual uncertainties in climate response arise from poorly constrained parameters which551

can have modest impact on climate feedbacks for example sea-ice. Sea-ice parameters can be552

successfully calibrated using decadal-scale coupled simulations(Roach et al. 2017) showing the553

importance of appropriate simulation design to calibrate models.554

In Appendix A2 we report on a series of sensitivity studies. We find that use of a short spinup555

does not make a very large difference to our results. We also found that changes in the ice-albedo556

hyper-parameter had little impact on the cost function but a modest impact on the model response.557

Structural changes to the model physics through inclusion of aerosol impact on cloud properties558

(Jones et al. 2001) had a relatively large impact on the both HadCM3’s ability to simulate current559

climate and its response to CO2. However, we found this was due to changes in the diagnosed560

forcing from CO2 rather than to changes in feedbacks. We speculate that this is due to changes in561

fast cloud feedbacks. Changes to the representation of ice-crystals in the model’s radiation scheme562

had little impact. Thus, structural changes in HadCM3 can have a significant impact on its response563

but in a surprising way.564

We also found a broad spread in the ability of the CMIP5 and CMIP6 multimodel ensembles to565

represent well the large scale 5-year mean atmospheric observations and pre-industrial temperature.566

Further, CMIP6 is not noticeably better than CMIP5 on the two large-scale metrics we used though567

does show some improvement in the simulation of patterns of 2000-2005 large-scale means.568

This suggests that model development, over the past decade, has not greatly improved the ability569

of climate models to simulate current large scale or pre-industrial climate. It is plausible that570

automatically calibrating many of the CMIP6 models, using state-of-the-art algorithms, would571

make them more in agreement with observations.572

We believe, making the plausible assumption that there is nothing unusual about HadCM3, that573

our results will hold for other models. Thus, for any specific model, uncertainty in climate response574

will be small if the model parameters are calibrated against multiple observations. This may be575

sensitive to the cancellation of SW and LW feedbacks from cloud changes seen in HadCM3. Since576

we found no robust linear relationship between our calibration metric and climate response in577

the CMIP5 and CMIP6 ensembles, and the changes in HadCM3 response with changes to model578
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physics, we suggest that uncertainty in the two ensembles largely arises from structural differences.579

If so, calibrated perturbed physics ensembles (such as the UKCP18 ensemble; Lowe et al. (2019))580

have likely too small an uncertainty range for future climate change, because they do not address581

structural uncertainty.582

However, the possibility that different groups have followed different calibration strategies can583

not be ruled out as a source of uncertainty in model response to CO2 and other forcings. Moving584

to an objective and documented approach to model calibration rather than the current ad hoc585

approach (Hourdin et al. 2017) would help understand this. Based on our results, using objective586

methods to calibrate climate (or Earth System) models to large-scale observations is likely to587

improve their ability to simulate current large-scale mean states, and may narrow the range of588

model projections. However, it is likely that structural uncertainty arising from different choices in589

how to parameterise unresolved processes in also important. In summary, to reduce the recalcitrant590

uncertainty in model response to greenhouse gases and other forcings requires much more focus591

on how models represent unresolved processes than there may have been hitherto.592
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APPENDIX613

A1. Drivers of Climate Response Uncertainty614

In this appendix we consider the drivers of the uncertainty in climate response in both ensembles.615

We start by considering ECS4 which depends on both CO2 forcing (including rapid adjustment) and616

the climate feedback parameter (ECS4 = � (4×CO2)/_) with both _ and � possibly impacted by617

changes in model parameters. We next consider the contributions of SW (_SW) and LW feedbacks618

(_LW) to uncertainty with _ = _SW +_LW and then similarly for clear-sky feedbacks (_SWC and619

_LWC). To easily assess uncertainty in these joint distribution, relative to the standard model, we fix620

one of _, � (4×CO2), and _C to the standard values which in the plane being considered is a line.621

Uncertainties around this line are computed by modifying ECS4, _ and _C to their standard value622

±2
√

2f where f is the standard deviation from the 7 member initial condition ensemble. Model623

configurations within this region have values consistent with the standard model though this may624

arise from cancellation between processes.625

Starting with ECS4 and forcing at 4×CO2 (Fig. A1(a)). Most of the CE7 ensemble members sit626

inside the internal-variability confidence region suggesting no significant joint change in ECS4 and627

forcing. All but one of the remaining CE7 members sit within the grey region suggesting that much628

of the limited variability in ECS in this ensemble arises from cancellation between fast adjustments629

to CO2 forcing and feedback strengths. For the DF14 ensemble, relative to the CE7 ensemble, the630

ensemble-mean has a smaller value of _ and a smaller forcing. The individual members of both631

ensembles lie close to the constant ECS4 line but with different forcings and climate feedback’s.632

This suggests that internal variability in the estimation of these values produces strongly correlated633

values (the ellipse in Fig. A1(a) is narrow and strongly oriented along the _-F line) and that the634

calibration process modifies feedbacks and the fast response to CO2 such that ECS4 changes little.635

One exception to this cancellation is the DF14-4 case which has higher TCR140 and ECS4 (Fig. 2)636
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than any of the other ensemble members. This occurs because _ is smaller than the rest of the637

ensemble with similar CO2 forcing.638

Internal variability does not produce strong correlations between shortwave (SW) and longwave647

(LW) climate feedbacks (Fig. A1(b)), but the members of both the CE7 and DF14 ensembles are648

aligned so that strong LW positive feedbacks are correlated with strong negative SW feedbacks.649

Both ensembles are significantly different from the Standard configuration. This likely arises650

because parameter changes modify simulated clouds and cloud feedbacks. If, in response to651

warming, there is a reduction in cloud cover then this will cause an increase in outgoing LW and652

a reduction in reflected SW. So by modifying model cloud parameters, but constraining the model653

to agree well with observations, we generate strong negative correlations between the SW and LW654

feedbacks. This is what leads to the small uncertainties in _ in CE7. DF14 shows a smaller spread655

in _SW and _LW suggesting that the better calibration method reduces uncertainty in these feedback656

parameters. Finally considering clear sky feedbacks (Fig. A1(c)), the CE7 members are largely657

within, or very close, to the internal variability centred on the Standard configuration suggesting658

no significant changes in clear sky feedbacks in this ensemble. DF14 shows a shift though no659

systematic change in the total clear sky LW feedback. One case (DF14-4) from this ensemble has660

a much more negative clear sky SW feedback than the remaining four members. The remaining661

ensemble members are not very different from one another with a shift to slightly larger (less662

amplifying) clear sky feedback parameter largely due to near cancelling changes in SW and LW663

clear sky feedbacks.664

The DF14-4 case is an outlier in that is has a weaker climate feedback strength and so higher665

ECS4, if fast CO2 feedbacks do not change, than the other ensemble members. Considering the666

all-sky SW and LW feedback strengths this case is not obviously different from the rest of the667

ensemble. However, the clear-sky SW feedback strength is much more negative that the rest of the668

ensemble. Several parameters from this case differ from the rest of the ensemble (Fig. 1) but one669

parameter that has a large difference is ALPHAM. This parameter controls the albedo of sea-ice670

and so changes in it might be expected to impact clear sky SW feedbacks.671

Overall differences in feedbacks between the ensembles seem to arise from small changes in672

clear sky feedbacks and near cancellation of changes in all-sky SW and LW feedbacks arising from673

cloud changes. However, DF14-4 appears to be an outlier as it shows large differences, from the674
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Table A1. Sensitivity cases. All optimised cases started with default parameters and normalised parameter

values for all cases. Estimated 2f differences for ECS4 (T140) is about 0.5 (0.2) K (Table 4).

681

682

ID COST ECS ECS4 TCR T140 GMSAT Description

Standard S 4.6 3.0 6.1 2.1 4.7 286.3 Standard configuration

StdOpt SO 4.6 3.1 6.0 2.0 4.9 286.1 Optimised standard configuration

StdStar S* 4.1 3.3 6.7 2.0 4.9 286.7 Optimised 8-parameter (7 CE7 parameters

plus DYNDIFF) configuration with cloud ice

properties modified

Indirect Aerosol IA 5.9 3.5 7.4 2.2 5.5 289.1 Standard configuration with interactive in-

direct aerosol scheme(Jones et al. 2001) in-

cluded.

Optimised Aerosol IO 3.9 2.5 5.4 1.8 4.1 285.9 Optimised version of Indirect Aerosol.

Perturb Ice Ic 4.8 3.5 7.3 2.2 5.5 285.2 Standard configuration with ice-albedo

hyper-parameter set to maximum value.

Long Control LC 4.9 3.1 6.7 2.0 4.7 287.9 1000-year spinup of optimised HadAM3-

7#5 case.

HadAM3-7#05 – 4.9 3.2 6.8 2.0 5.0 287.5 Reference for Long Control

rest of the ensemble, in the climate feedback parameter, ECS4 and the clear-sky SW feedback675

parameter.676

A2. Sensitivity Studies677

Here we report on a series of sensitivity studies in order to understand our results. They all use678

the same experimental protocol described above and are shown in Figures 2 and A1. They are also679

summarized in Table A1.680

Our protocol used a short spinup of 40 years and so we test if this impacts our results by taking683

a warm HadCM3 control case (HadAM3-7#05) and extending its control to 1000 years after684

which it warmed by a further 0.5K (Fig. 2b) (LC). This case had a T140 0.3K less (≈ −2f) than685

the original case (Table A1). Impacts of 0.3K are comparable with the estimated variability in686

both ensembles and are not particularly large. Differences between the ECS4 and ECS values are687

smaller and not statistically significant, as are differences between the TCR values (Table A1). This688

suggests our results are not an artefact of relatively short spinup of the perturbed coupled models.689

The linear analysis and Appendix A1 suggested that the sea-ice albedo hyper-690

parameter(ALPHAM) might explain some of the differences between the two ensembles. To691

test this we carried out a set of simulations (Ic) in which ALPHAM was set to its maximum value692
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with all other parameters at their standard value. This configuration had a cost-function similar to693

the standard model suggesting that this parameter, as expected, has little impact on the atmospheric694

simulation. However, its control temperatures are much colder than any other case (Fig. 2 and695

Table A1) Further, ECS4 and T140 are larger than all optimised cases consistent with the linear696

analysis and the DF14-4 case.697

To see if the standard model could be further optimised using the Gauss-Newton algorithm and698

the impact of this optimisation was we started a Gauss-Newton optimisation using the standard699

parameters as initial values (T17; Table A1). This configuration had near-identical values to the700

standard model (Fig. 1) and differs little from the standard model (Table A1; Figures 2 andA1). The701

only significant changes are that this configuration is a little colder than the standard configuration.702

Relative to the standard configuration this optimised configuration has an increased LW feedback703

and more negative SW feedback which oppose one another leading to very similar net feedback.704

This is also the case for the clear sky feedbacks.705

To explore the role that structural uncertainty might play in our results we carried out two further706

calibrations of HadAM3, using the Gauss Newton algorithm of T17, in which the model physics707

was changed and then the calibrated atmospheric model coupled to the ocean model (Table A1). In708

one (StdStar;S*) we changed the properties of ice crystals in the radiation code and then optimised709

using the same seven parameters as CE7 plus the model diffusion hyper-parameter. In another710

(Optimised Interactive Aerosol;IO) we added an interactive aerosol indirect effect (Jones et al.711

2001) and optimised using the same seven parameters as used in CE7. Both calibrated models had712

cost function values smaller than any of the CE7 ensemble members and about 15% smaller than713

the standard model.714

S* is very similar to the standard model though with somewhat higher values of ECS4 and T140.715

The SW and LW all-sky feedbacks in this configuration are very different from the standard model716

but the changes offset one another. In combination with a smaller forcing from CO2, than the717

standard configuration, this leads to a similar climate responds.718

The optimised interactive aerosol configuration (IO) has T140 and ECS4 values significantly719

below both the standard model and both calibrated ensembles (Table A1; Fig. 2). This model720

has a significantly smaller ECS and forcing from 4×CO2 than the standard configuration with721

its LW and SW feedback parameters very close to the DF14 ensemble mean values. Its total722
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feedback parameter is similar to the standard configuration (Fig. A1(b)) but its diagnosed forcing723

in abrupt4xCO2 is much smaller than the standard configuration’s value (Fig. A1(a). It shows724

quite dramatic changes in the SW and LW feedbacks but these cancel leading to only a small change725

in total feedback. This model also shows changes in the clear sky feedbacks with a shift to weaker726

clear sky feedback. Thus, the reason for the changes in T140 and ECS4 in this configuration are727

due to relatively fast changes in the atmosphere in response to changes in CO2 rather than changes728

in climate feedbacks.729

The unoptimised model with the interactive indirect aerosol scheme produces a model that has a730

worse simulation of large scale climate, and much larger climate responses than the standard and731

optimised aerosol configurations as well as many of the CMIP5 and CMIP6 models (Fig. 2). This732

configuration, unlike the calibrated cases, changes the all-sky SW feedback and is also significantly733

different clear sky feedbacks. This, in turn, suggests it is not the impact of aerosols per say that734

changes the response but the calibration of other processes to produce a reasonable simulation that735

then modify the fast response to CO2 forcing.736

Overall, the effect of calibration in the sensitivity studies is to generate configurations that have737

climate responses that are similar to that of the standard configuration. This arises from near-738

cancellation between SW and LW climate feedback strength, and then between CO2 forcing and739

total climate feedback strength.740

References741

Caldwell, P. M., M. D. Zelinka, and S. A. Klein, 2018: Evaluating emergent constraints on742

equilibrium climate sensitivity. Journal of Climate, 31 (10), 3921–3942, https://doi.org/10.743

1175/JCLI-D-17-0631.1.744

Cartis, C., J. Fiala, B. Marteau, and L. Roberts, 2019: Improving the flexibility and robustness of745

model-based derivative-free optimization solvers. ACM Trans. Math. Softw., 45 (3), 32:1–32:41,746

https://doi.org/10.1145/3338517, URL http://doi.acm.org/10.1145/3338517.747

Charney, J. G., and Coauthors, 1979: Carbon Dioxide and Climate: A Scientific Assessment:748

Report of an Ad Hoc Study Group on Carbon Dioxide and Climate, Woods Hole, Massachusetts,749

July 23-27, 1979, to the Climate Research Board, Assembly of Mathematical and Physical750

28



Sciences, National Research Council. National Academies Press, URL http://www.nap.edu/751

catalog/12181.html.752

Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of753

global warming to cumulative CO2 emissions using CMIP5 simulations. Journal of Climate,754

26 (18), 6844–6858, https://doi.org/10.1175/JCLI-D-12-00476.1, URL https://doi.org/10.1175/755

JCLI-D-12-00476.1, https://doi.org/10.1175/JCLI-D-12-00476.1.756

Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and757

R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version758

of the Hadley Centre coupled model without flux adjustments. Clim. Dyn., 16, 147–168.759

Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate re-760

sponse parameter under increasing CO2. Philosophical Transactions of the Royal Society A:761

Mathematical, Physical and Engineering Sciences, 373 (2054), 20140 417, https://doi.org/762

10.1098/rsta.2014.0417.763

Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate764

sensitivity. Geophys. Res. Lett., 31, L03 205, https://doi.org/10.1029/2003gl018747.765

Grose, M. R., J. Gregory, R. Colman, and T. Andrews, 2018: What climate sensitivity index is766

most useful for projections? Geophysical Research Letters, 45 (3), 1559–1566, https://doi.org/767

10.1002/2017gl075742.768

Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in769

future climate change. Geophys. Res. Lett., 33, L03 502, https://doi.org/10.1029/2005GL025127.770

Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bul-771

letin of the American Meteorological Society, 98 (3), 589–602, https://doi.org/10.1175/772

BAMS-D-15-00135.1, URL https://doi.org/10.1175/BAMS-D-15-00135.1, https://doi.org/10.773

1175/BAMS-D-15-00135.1.774

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group775

I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge776

University Press, (In Press).777

29



Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing778

in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20 293–20 310.779

Knight, C. G., and Coauthors, 2007: Association of parameter, software, and hardware variation780

with large-scale behavior across 57,000 climate models. Proc. Natl. Acad. Sci. U. S. A., 104 (30),781

12 259–12 264, https://doi.org/10.1073/pnas.0608144104.782

Knutti, R., M. A. A. Rugenstein, and G. C. Hegerl, 2017: Beyond equilibrium climate sensitivity.783

Nature Geoscience, 10, 727, URL http://dx.doi.org/10.1038/ngeo3017.784

Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith,785

and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget.786

J. Clim., 22, 748–765, https://doi.org/10.1175/2008JCLI2637.1.787

Lowe, J. A., and Coauthors, 2019: UKCP18 science overview report. Met788

Office Hadley Centre, URL https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/789

science-reports/UKCP18-Overview-report.pdf.790

Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. Journal of Advances in791

Modeling Earth Systems, 4, M00A01, https://doi.org/10.1029/2012MS000154.792

Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical793

parametrizations in the Hadley Centre climate model – HadAM3. Clim. Dyn., 16, 123–146.794

Ringer, M., 2019: https://github.com/mark-ringer/cmip6.795

Roach, L. A., S. F. B. Tett, M. J. Mineter, K. Yamazaki, and C. D. Rae, 2017: Automated parameter796

tuning applied to sea ice in a global climate model. Climate Dynamics, 1–15, https://doi.org/797

10.1007/s00382-017-3581-5.798

Rowlands, D., and Coauthors, 2012: Broad range of 2050 warming from an observationally799

constrained large climate model ensemble. Nature geoscience, 5 (4), 256–260.800

Sanderson, B. M., 2011: A multimodel study of parametric uncertainty in predictions of climate801

response to rising greenhouse gas concentrations. J. Clim., 34, 1362–1377, https://doi.org/802

10.1175/2010JCLI3498.1.803

30



Sanderson, B. M., A. G. Pendergrass, C. D. Koven, F. Brient, B. B. B. Booth, R. A. Fisher,804

and R. Knutti, 2021: The potential for structural errors in emergent constraints. Earth System805

Dynamics, 12 (3), 899–918, https://doi.org/10.5194/esd-12-899-2021.806

Schlund, M., A. Lauer, P. Gentine, S. C. Sherwood, and V. Eyring, 2020: Emergent constraints on807

equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth System Dynamics,808

11 (4), 1233–1258, https://doi.org/10.5194/esd-11-1233-2020.809

Sexton, D. M. H., and Coauthors, 2021: A perturbed parameter ensemble of HadGEM3-GC3.05810

coupled model projections: part 1: selecting the parameter combinations. Climate Dynamics,811

56 (11-12), 3395–3436, https://doi.org/10.1007/s00382-021-05709-9.812

Sherwood, S. C., and Coauthors, 2020: An assessment of earth's climate sensitivity using multiple813

lines of evidence. Reviews of Geophysics, 58 (4), https://doi.org/10.1029/2019rg000678.814

Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising815

levels of greenhouse gases. Nature, 433, 403–406.816

Stocker, T., and Coauthors, 2013: IPCC, 2013: climate change 2013: the physical science basis.817

Contribution of working group I to the fifth assessment report of the intergovernmental panel on818

climate change. Cambridge University Press.819

Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram.820

Journal of Geophysical Research: Atmospheres, 106 (D7), 7183–7192.821

Tett, S. F. B., M. J. Mineter, C. Cartis, D. J. Rowlands, and P. Liu, 2013a: Can top of atmosphere822

radiation measurements constrain climate predictions? part 1: Tuning. J. Climate, 26, 9348–823

9366, https://doi.org/10.1175/JCLI-D-12-00595.1.824

Tett, S. F. B., D. J. Rowlands, M. J. Mineter, and C. Cartis, 2013b: Can top of atmosphere825

radiation measurements constrain climate predictions? part 2: Climate sensitivity. J. Climate,826

26, 9367–9383, https://doi.org/10.1175/JCLI-D-12-00596.1.827

Tett, S. F. B., K. Yamazaki, M. J. Mineter, C. Cartis, and N. Eizenberg, 2017: Calibrating828

climate models using inverse methods: Case studies with HadAM3, HadAM3P and HadCM3.829

Geoscientific Model Development, 10, 3567–3589, https://doi.org/10.5194/gmd-2016-305.830

31



Williamson, D., M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jackson, and K. Yamazaki,831

2013: History matching for exploring and reducing climate model parameter space using ob-832

servations and a large perturbed physics ensemble. Climate Dynamics, 41 (7), 1703–1729,833

https://doi.org/10.1007/s00382-013-1896-4.834

Yamazaki, K., D. M. H. Sexton, J. W. Rostron, C. F. McSweeney, J. M. Murphy, and G. R. Harris,835

2021: A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections:836

part 2: global performance and future changes. Climate Dynamics, 56 (11-12), 3437–3471,837

https://doi.org/10.1007/s00382-020-05608-5.838

Yamazaki, K., and Coauthors, 2013: Obtaining diverse behaviors in a climate model without the839

use of flux adjustments. JGR-Atmospheres, 118, 2781–2793, https://doi.org/10.1002/jgrd.50304.840

Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein,841

and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophysical842

Research Letters, 47 (1), https://doi.org/10.1029/2019gl085782.843

32



3 4 5 6 7 8 9
Cost

SS

DF14

CE7

CMIP6

CMIP5

En
se

m
bl

e

SSOS* IAIO
Ic
LC

0
123

4

0

1
2

3

4
5
6

7

8
9

a
b c

de
f

h

mpst v
y

ADE

a

b

c

d
e f

g
h

i

j k

l

m
n o p q

t

u w
x

y
z

a ) 2001 - 2005 Cost

285.0 285.5 286.0 286.5 287.0 287.5 288.0 288.5 289.0
GMSAT (K)

En
se

m
bl

e

S
SO

S* IAIOIc
LC

0
1 2

34

0
1
23 4
56789

a bc

d

e

f

h

m p

s

t
v yA

D
E

a
bc d

e
f

g
h

ij k

l
m

no
p
q

t u
w

x yz

b ) Control GMSAT

3 4 5 6 7
Warming (K)

SS

DF14

CE7

CMIP6

CMIP5

En
se

m
bl

e

S
SO

S*

IAIO
Ic

LC0

1

2

3

4

0
12

34

5
67

89

a b
c

de f
g

h
i

jklm
no

qr s
u v

wxy
z

A BC
D E

ab
g

h

i
l

nop

r

s
t

u
v

w

z
c ) T140

4 5 6 7 8 9 10 11
Warming (K)

En
se

m
bl

e

S
SO

S* IAIO IcLC

0

1
2

3

4

0 123
4 5
6

78
9

a b

c

de

f
g h

ij
klm

n

o

p
q

r s
u

v

w
x
y z

A B
C D E

a

b

c

d

g
h

i

k
lm

nop
q rs t

u
v
w

xyz
d ) ECS4

Fig. 2. Simulated values for CMIP5 (dark blue), CMIP6 (pale blue), CE7 (black) and DF14 (orange) ensembles.

Also shown are sensitivity cases (SS; blue (optimised), red (unoptimised), and grey (standard configuration)

boxes) described in table A1. Box and whiskers for CMIP5 and CMIP6 ensembles shows 25-75% range with

whiskers extending from 5 to 95%. Stars show average value for ensemble. Y-axis in all sub-plots shows

ensemble with the individual simulations having a small random offset added for presentation purposes. a: Cost

values for atmosphere-only simulations. b: Control global average surface air temperature with vertical dashed

line showing estimated observed 19th century temperature with grey shading its uncertainty range(Williamson

et al. 2013). c) T140 and d) ECS4. Hexagons in c & d show ensemble average values for 2× TCR and 2×

ECS. Black error bar centred on Standard HadCM3 model in b & c shows 2f uncertainty range estimated from

1000-year long control simulation while in d shows same from 7-member initial condition ensemble. Letters for

CMIP5 (black) and CMIP6 (blue) correspond to different models defined in tables 2 and 3. Numbers for CE7

and DF14 ensembles correspond to individual parameter settings (See Fig. 1 for parameter values).
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deviation normalised by the observed area-weighted standard deviation. The angle shows the correlation between

observations and simulation, and dotted contour lines show normalised RMS difference.
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Fig. 5. Coefficient of Variation(%) for temperature change at 4×CO2 for CE7 (a) and DF (b) ensembles.

Colours and contours at 0, 2, 5, 10, 20 and 50%.

422

423

36



0 5 10 15 20 25
%

90 S

60 S

30 S

Eq

30 N

60 N

90 N
a ) CE7 Temp. CV (%)

Ocean
Land
Land Txx
Land Tnn

0 5 10 15 20 25
%

b ) DF14 Temp. CV (%)

0 5 10 15 20
%

90 S

60 S

30 S

Eq

30 N

60 N

90 N
c )  CE7 %Precip.   CV (%)

Ocean
Land
Land max

0 5 10 15 20
%

d ) DF14 %Precip. CV (%)

Fig. 6. Coefficient of Variation (%) of zonal-mean temperature change at 4×CO2 for ocean (grey), land

(green), land annual maximum (red) and land annual minimum (blue) for CE7(a) and DF14(b) ensembles. CV

(%) for % change in ocean (grey), land (green) and annual maximum (dark blue) precipitation relative to control

simulation for CE7 (c) and DF14(d) ensembles. Locations where the estimated control precipitation was less

than 10−5(10−4) Kg m−2s−1 for land/ocean (annual maximum land) were ignored in the zonal-mean calculation.
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Fig. 7. a) Atmospheric Jacobian for observations normalised by their uncertainty estimates (largely observa-

tional uncertainty) where x-axis is simulated observation and y-axis is parameter. Vertical dashed lines divide up

the Northern Hemisphere extra-tropics, Tropics and Southern Hemisphere extra-tropics and the global average

net flux. b) 10× normalised parameter co-variance (see methods) after constraint applied. c) Jacobian for ECS4

(Red bars)& T140 (blue bars) ordered by absolute ECS4. d) Estimated ECS4 & T140 (red & blue bars; y-axis)

and ±2f (error-bars) for seven parameters (7P), fourteen parameters (14P), all parameters excluding ALPHAM

(NoIce), and the ten parameters with ≥ f impact on ECS4 (sigP) in K. R appended shows when the normalised

parameter values are limited to (0,1) (see methods). T140 values not shown for 14P, 14PR, NoIce, and NoIceR

cases as TCR Jacobian not complete for all parameters. Both Jacobians are with respect to normalised parameter

where 0 is minimum value and 1 is maximum and parameters use short names (Table 1). Parameters with *

appended are the seven parameter cases.
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Fig. 8. Standard deviation for T140. For each analysis all variables, except the named variable or group of

variables, have their uncertainty increased by 100 times (“other”). This, in effect, means those observations do

not constrain the parameters and T140. All is all variables, Sfc is LAT, LP and SLP, Radn is OLR, RSR and

NET, while Trop is q500 and T500. Best is LP, RSR and Net and None is when all observational uncertainties

are scaled. Red bars show standard deviations when only that variable, or group of variables, had its uncertainty

increased by a factor of 100 (“leave-out”). Horizontal dashed line show value for All analysis while vertical

dashed lines separate the variables that contribute to Sfc, Radn, and Trop groups.
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Fig. A1. Scatter plots at 4× CO2 for CE7 (orange) and DF14 (grey) calibrated ensembles, and sensitivity

studies (blue/red boxes). Stars show ensemble means. a) Forcing (� (4×CO2) vs climate feedback (_) ; b)

SW climate feedback (_SW) vs LW climate feedback (_LW); c) Clear sky SW climate feedback (_SWC) vs clear

sky LW climate feedback (_LWC). Black ellipses are centred on the Standard HadCM3 configuration and shows

2f joint-uncertainty ellipse computed from initial condition ensemble while cross shows 2f errors for x and y

variables separately. Dashed lines show ECS4 (a), _ (b) and _�(c) fixed at standard values while grey region

shows ±2
√

2f internal variability range around standard configuration for this parameter. H and L indicate which

side of the dashed line where these values are higher or lower than standard model.
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