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ABSTRACT

Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework
is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear inter-
actions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented
on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new
concept called certainty that monotonically increases with the information available about the target process. The framework is presented in
detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures
that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out poten-
tially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic
processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework pro-
vides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore,
by applying it to real observations related to the El-Nino–Southern-Oscillation system, we demonstrate its power and advantage over other
methodologies.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0054228

Unraveling cause and effect in complex systems is one of the
fundamental tasks of science. This becomes a considerable chal-
lenge in systems where interventions are not possible and our only
sources of information are time series of the processes of interest.
Huge progress has been made for systems in which the under-
lying causal structure can be represented on a standard graph,
in which each process is represented by a node and causal links
by arrows from one node to another. However, there are many
systems where the causal structure is too rich to be represented
on such graphs. We developed the first complete causal discov-
ery network for such systems, decomposing the causal influence
of each driver into its direct contribution to a target process and
its contribution with any other driver, any two other drivers, etc.

Furthermore, we are able to quantify the influence of unknown
driver processes so that we know how accurate our causal decom-
position is. The usefulness is demonstrated via many examples.
The new framework allows for new insights into complex systems
for which often only time series are available, such as the atmo-
sphere and the ocean and climate, astrophysics, the human brain,
etc.

I. INTRODUCTION

Causal discovery can be roughly divided into four different
tasks: uncovering the causal network, building structural causal
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models, studying the influence of interventions, and counterfactual
reasoning. This paper deals with the first task: uncovering the causal
network with a goal to progress scientific knowledge of a system.
The information source is time series of variables or processes of the
system of interest.

Since the systems of interest are highly nonlinear, building
structural equation models is a difficult task that we will not consider
here. We refer to the literature on, e.g., relevant vector machines,
Bayesian symbolic regression, and many other developments for
interesting progress in that field, including using neural networks
as structural equations; see, e.g., Refs. 1–5. We do not consider
interventions because the systems of interest do not allow for inter-
ventions either because interventions are impossible and unethical
or would change the dynamics of the system such that the interven-
tion takes a completely different structure. Examples of application
are systems where the internal dynamics is so complex that manip-
ulating external forcings does not reveal much about the internal
dynamics. One can think about systems such as the atmosphere
or the ocean, biological food webs, complex chemical systems, the
brain, etc. Interventions on internal variables of these systems typ-
ically push these systems off their attractor, resulting in causal
inference on regions of state space that are not of interest. One
could argue that a small enough intervention, small in magnitude,
spatial and temporal extent, would still be useful in such systems.
However, due to the strong feedback, it is hard to infer what the
direct influence of the intervention is and what is related to reac-
tions to the feedback. For this reason, we will call such systems
non-intervenable.

In fact, excluding interventions means we cannot use Pearl
and coworkers’ beautiful do-calculus, in which the “do” operator
means a direct intervention. If a given causal network allows inter-
ventions, one can then use do-calculus to calculate the effect of the
intervention without actually doing the intervention.6 While our
framework potentially complements do-calculus, showing such is
beyond the scope of this paper. Our intended applications do not
allow either actual or theoretical interventions; therefore, we will use
the term “non-intervenable,” or “observational causal inference,” to
denote our path of study, restricting ourselves to use data only from
observations, reliable simulations, or a combination. (See Ref. 7, for
example, who explore a form of importance sampling to explore one
data set to infer causal inference on another.)

Because of these limitations, we define causal relations between
a target process x and potential driver processes y through two cri-
teria: (1) the cause y precedes the effect x, and (2) a causal relation
between processes or variables in a system exists if there is flow of
information between them, hence information flow from y to x. Our
goal is not to predict the future of x from y; that would be a next
step. The goal is to increase understanding of a system by establish-
ing how information flows through the system, where information
is to be interpreted as reduction of uncertainty.

Precise mathematical descriptions of observational causal
inference started with the seminal works of Wiener8 and Granger9 in
the 1950s and 1960s. Their basic idea was to build a minimal struc-
tural equation model by defining a set of functions from observed
variables and determine the regression coefficients of these driver
functions, or driver processes, on a target process. A large regression
coefficient suggests a large causal influence of that driver process on

the target process. If the regression coefficient of a process is small,
that process is not considered a cause for the target process. Pruning
in this way leads to a minimal model, and this minimal model is then
the causal model of the target process. In this framework, one has to
define the potential driver processes directly, or nonlinear functions
of them, beforehand, and the causal inference is in essence looking
for linear cross correlations between linear or nonlinear functions.

Granger causality is based on the idea that a process is a driver
of a target if it reduces the unexplained variance in the target pro-
cess. The driver can be nonlinearly related to the target, but in
that case, the functional form of the relation has to be specified.
Methods based on information theory avoid the specification of
this functional form by considering the reduction in unexplained
entropy in the target process. The first example of this kind is trans-
fer entropy,10 and many extensions are now available. The idea here
is to define the causal strength of a process y to a process x as
the conditional mutual information I(xt; y<t|z<t) in which z repre-
sents all other processes, and y and z are in the past of xt. These
methods pursue the identification of the causal network but are not
useful to build an actual structural equation model because informa-
tion theoretic measures such as (conditional) mutual information
are invariant under single-variable nonlinear monotonic transfor-
mations. Hence, these methods cannot distinguish between a model
in which a variable x is present or say exp(x).

Several of these methods rely on graphical representations, and
algorithms typically start either from an empty graph and add strong
relations or from a fully connected graph and prune weak relations
until a minimal unidirectional acyclic graphical model is found that
represents the causal network. An example of building up from
an empty graph is the Peter and Clark (PC) algorithm,11 and the
so-called greedy equivalence search12 is an example of a pruning
algorithm. The strength of relations is determined via conditional
independence tests (e.g., PC) or via scoring rules (Greedy equiva-
lence Search), and the emphasis is more on establishment or removal
of causal links, hence determining the causal structure rather than
determining the actual causal strength (defined in whatever way).
Recently, Sun et al.13 pose the problem as an information theoretic
optimization method.

These methodologies have been extended to high dimen-
sions and, in particular, applied to earth system processes by, e.g.,
Refs. 14–16. Many other formalisms have been proposed, and the
excellent reviews of Runge et al.17 and Glymour et al.4 contain much
of present-day efforts for systems in which interventions are not
possible. As mentioned, our interest is in those kind of systems.

More general methods to generate causal models for non-
intervenable systems have been developed since. For instance, con-
vergent cross mapping18 tries to find the underlying dynamical
system using Takens’ embeddings. The idea is that if a driver vari-
able can be predicted from the time embedding of the target process,
then that driver process is a cause of the target process. The reason-
ing is opposite to Granger causality, which tries to predict the target
from the drivers. Sugihara et al.18 provide a very careful discussion of
the connection of convergent cross mapping and Granger causality.
Recently in Leng et al.,19 an extension called partial cross mapping
was proposed that can distinguish direct (i.e., y→ x) from indi-
rect (i.e., y→ z→ x). Unfortunately, these CCM-based methods
are less suited when the underlying process is strongly stochastic,
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or heavily corrupted by unknown processes (“noise”), because the
embedding methodology is not robust to the presence of noise. Fur-
thermore, each causal inference based on CCM looks for the behav-
ior of binary connections, and it cannot infer how different causes
work together to influence the target, which, as explained below, is a
crucial motivation for the development of our methodology.

A recent surge of causal discovery methods originated in
machine learning. The typical assumption is that information is
available on interventions in a complex system, and large data sets
are used to infer the average treatment effect, for instance, by includ-
ing causal regularizers; see, e.g., Ref. 20 and references therein for
many studies in these areas. Many studies search for causal features
out of a finite set of features, while our focus is on processes where
the causal feature set is continuous and hence infinitely large. The
standard assumption is that the underlying processes can be repre-
sented on a standard Directed Acyclic Graph (DAG) as this is the
underlying structure of a typical neural network, while, as argued
below, graphs are too restrictive for the causal structures we are
interested in. Machine learning has also been used to infer the influ-
ence of confounders on the causal net. The idea is that, although
the confounder itself is not known, we do have proxy variables from
which representations of the confounder influence can be estimated,
for instance, via causal effect variational autoencoders.21,22

One issue with the methods discussed above is that there are
many examples in the real world where causes are nonlinear inter-
actions between driver processes, and the above transfer-entropy-
based and other methods cannot disentangle this properly; see, e.g.,
Refs. 14 and 23. A simple example is a transistor in which one
process acts as a gate keeper for the connection between other pro-
cesses. However, there is a more fundamental limitation of these
methodologies.

All methods mentioned above can be represented on standard
graphical networks, such as Bayesian networks or Markov-random
fields, called causal graphs. Most theory and methodologies are
based on so-called directed acyclic graphs (DAGs), in which each
edge is an arrow, and there is at most one arrow between two ver-
tices. These graphs represent the underlying joint probability of the
system. However, these networks are designed to represent dyadic,
so binary, interactions between the variables, while in many systems,
the interactions are polyadic.24,25 A simple example demonstrates the
issue. Assume that driver y = 0 if z = 0 and y can take on 0 or 1 with
equal probability when z = 1. The target x = yz+ 1− z− y+ ηx,
in which ηx denotes random noise that is independent of y and
z. All conditional mutual information terms of x with any driver
conditioned on the other driver are zero; therefore, a graph repre-
sentation will consist of three nodes without edges. However, there
is a nontrivial relation between the variables. One could argue that
the problem is rather special in that it does not satisfy the faithfulness
and causal Markov6,26 conditions that are typically assumed in causal
discovery, which together state that independency on the DAG
means independency in the joint pdf and vice versa (see also the dis-
cussion in Ref. 27). However, the problem runs deeper. The issue is
that many joint pdfs cannot be represented on a DAG, and hyper-
graphs are needed. Let us try to put this structure x = yz+ y+ ηx

on a graphical model, as in Fig. 1. The problem is that the combined
influence of y and z cannot be represented by one edge, but edges
need to be allowed to merge for which a hypergraph is needed. Many

FIG. 1. Attempt to put the structure x = yz+ y + ηx on a graphical model. The
black arrows denote the binary connections between y and x and z and x. The
red arrow shows the combined influence of y and z on x, the yz term. This link
is present but cannot be represented on the graph, which allows only one edge
between nodes, and edges are not allowed to combine or split.

processes in nature are of the nonlinear form depicted in Fig. 1,
for instance, advection terms in fluid dynamics, the interaction of
radiation with matter, predator–prey biological systems, chemical
reactions, etc. Standard graphical networks such as DAGs are not
general enough to represent these processes. Our framework is not
based on such graphical models and in fact is developed with this
kind of polyadic interactions in mind.

A framework that can handle these polyadic interactions, at
least in principle, is the interesting contribution by Williams and
Beer.28 They introduced a nonnegative decomposition of multivari-
ate information, the so-called partial information decomposition
(PID) that does allow for the inclusion of joint information; there-
fore, it does allow for polyadic interactions. The basic idea is that
the total driver process information can be split into unique contri-
butions U from each driver, synergistic contributions S with other
driver processes, and redundant contributions R. Redundant con-
tributions are contributions to the target process that two or more
driver processes have in common. These descriptions are rather
vague, which allows for freedom, but also hampers applicability. For
a system with only three processes, one target x and two driver pro-
cesses y and z, the mutual information between the target and the
drivers is decomposed as

I(x; y, z) = U(x; y|z)+ U(x; z|y)+ S(x; y, z)+ R(x; y, z),

I(x; y) = U(x; y|z)+ R(x; y, z), (1)

I(x; z) = U(x; z|y)+ R(x; y, z).

This system consists of three equations for the four unknown contri-
butions and hence is underdetermined. The only general condition
is that all four quantities have to be non-negative. We can eliminate
the unique contribution U by forming

I(x; y, z)− I(x; y)− I(x; z) = S(x; y, z)− R(x; y, z), (2)
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and hence, the difference between S and R is defined in terms of
mutual information but not each term individually. In informa-
tion theory, this combination of mutual informations is minus the
interaction information, and hence,

I(x; y; z) = R(x; y, z)− S(x; y, z), (3)

which can have any sign. Furthermore, from the basic PID equa-
tions and the conditional information relation I(x; y|z) = I(x; y, z)
− I(x; z), we can derive

I(x; y|z) = U(x; y|z)+ S(x; y, z), (4)

which shows that the conditional mutual information is interpreted
as the sum of the unique and synergistic information in the PID
framework.

Many definitions have been explored defining one of the vari-
ables in the PID framework and deducing the others from the
framework, but all have their weaknesses. For instance, Barrett29

showed that for dependent Gaussian source processes, three pop-
ular interpretations of PID,28,30–32 all lead to the situation that the
weakest source has zero unique contribution. However, this result
is problematic. Suppose that we do have a weakest source process
that has unique information on the target process, in the sense that
it contains information on the target that none of the other driver
processes have. All three PID interpretations mentioned above insist
that unique contribution is zero, leading to a logical inconsistency.

Besides this, it is not clear if a unique contribution between a
driver and target can be well defined in the first place. It can when
the system can be decomposed on a graphical network, and in that
case, conditioning out other processes as in transfer entropy logically
provides the unique contribution. However, when a cause consists
of nonlinear interactions between drivers, which is reality for many
systems in the natural world, conditioning is insufficient to define
a unique contribution. As mentioned above, conditioning can open
gateways that are otherwise closed. The unique contribution of pro-
cess y on x, U(x; y|z), is supposed to mean something like “when
driver z is not present.” However, z is always present. We would
need to find measures that exclude all influence of z, but a general
way to do that does not exist (unless we allow for interventions).
These problems, to us, seem to point to serious issues with present-
day interpretations of the PID formalism. That does not mean that
the formalism is not useful, just that more work on its interpretation
is needed.

In this paper, we provide a new causal discovery framework
for non-intervenable systems that is unique in several ways. It does
not rely on causal graphs, and hence, its application is not restricted
by the issues discussed above. It is based on the notion of cer-
tainty instead of entropy. Certainty increases monotonically with the
amount of information we have about a target process. Another rea-
son to introduce this new concept is that it is always nonnegative
for unbounded variables, while differential entropy can be nega-
tive, obscuring clear interpretations. The total mutual information
of all driver processes with the target process is interpreted as the
increase of certainty compared to having only the time series of the
target process. We decompose the total mutual information in direct
contributions from each driver to the target and joint contributions
between two processes, between three processes, etc. We normalize
the contribution of each process and define direct, joint, and total

causal strengths from one process to another. By normalizing each
contribution, different studies can be compared, and the certainty
from the original time series of the target process, the so-called self-
certainty, can be reinterpreted as the contribution from unknown
processes. Hence, we can quantify the contribution of unknown pro-
cesses (such as “noise”) and show that including new processes can
only decrease this contribution from unknown processes. This is dif-
ferent from confounder influence estimation in machine learning, in
which proxies for the confounder influence have to be present, while
we need no extra information on the confounders.

This paper is organized as follows. In Sec. II, the basic ingredi-
ents of the new framework are introduced, followed by an example
of how to decompose the mutual information when three processes
are involved. Then, we show in Sec. IV the general theory of the
decomposition of the total mutual information, discuss confounders
in Sec. V, and apply the framework to several examples in Sec. VI.
The paper is finalized by a discussion and concluding section.

II. BASICS OF THE FRAMEWORK

The problem we want to solve is to identify the relative
influence of a set of nonlinearly interacting random processes yi,
i = 1, 2, . . . , N on a target random process x. The subindex i denotes
a separate process, not a time index. Each of these processes them-
selves is a time series. Relative influence is defined as the extent to
which process yi increases our knowledge about process x. Hence,
we want to decompose our predictive knowledge about x in its con-
tributions from all processes yi (which can include the past of any
driver or even the past of x itself), written symbolically as

(y1:N → x) =
N

∑

i=1

(yi → x), (5)

where (yi → x) contains all direct and joint contributions to x in
which yi is involved. We will show in Secs. III and IV that this
decomposition can indeed meaningfully be made with a proper
definition of the arrow, even when the interaction of drivers with
each other to influence the target is inseparable.

The full framework consists of a set of tools and operations as
defined below. The framework defines a causal web that consists of
driver nodes and a target node and directed edges (arrows) pointing
into the target. An arrow can directly connect a driver node to the
target or it can merge with one or more arrows from other driver
nodes. Figure 1 is the simplest example, but more complex examples
are provided later.

Each arrow that points to the target has a causal strength
attached to it that describes the relative strength of the causal link
between the one node it originates from or the relative causal
strength due to the interaction of several nodes that the arrow orig-
inates from. The causal strength is normalized to enhance under-
standing and comparison with other systems. Subsections II A–II C
describe how these relative causal strengths are calculated and how
they should be interpreted. One special directed edge points to the
target from unresolved processes. This can be noise or other phys-
ical processes that could be of interest, but we forgot to include in
the driver set, the so-called confounders. The relative causal strength
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attached to this arrow allows for confounder detection, as explained
in the chapter on confounders.

The causal strength calculations are based on mutual informa-
tion and conditional mutual information among drivers conditioned
on other drivers, as detailed below. In principle, the strength of every
possible interaction between drivers toward the target needs to be
calculated to obtain a full description of the causal structure of the
system. Our method is minimally causally sufficient in accordance
with definitions in Ref. 33. It is sufficient because for every target
variable, the set of mlinks represents all possible causal influences
due to combination of two or more drivers. Also, it is minimal as
any subset of these would not be causally sufficient in general.

A. Entropy and mutual information

The time-lagged mutual information I(x; y1:N) between a target
process x and a possible driver process y, or a whole range of driver
processes y1:N, is defined via the Shannon entropy H(..) as

I(x; y1:N) = H(x)−H(x|y1:N), (6)

where we assume a positive time lag between process x and driver
processes y1:N for a causal link.

This lagged mutual information denotes the reduction in
entropy of process x when we condition on the processes y1:N. We
want to interpret the entropy in terms of information as in Shan-
non’s entropy, but we are interested in the case that each process
lives on an unbounded domain. The differential entropy is defined
as

Hdiff(p) = −
∫

p(x) log p(x) dx, (7)

where p(x), the probability density function (pdf) of a process x, can-
not be used because it can be negative, and it is not invariant under
nonlinear transformations of the variables. Alternatively, we use
the relative entropy, relative to a reference process with probability
density q(x) as

Hrel(p||q) =
∫

p(x) log

[

p(x)

q(x)

]

dx. (8)

The relative entropy is positive for any choice of q(x), as long as its
support is equal to or larger than that of p(x). This density q(x) will
provide an offset relative to p(x), the pdf of the process of interest.
Although this offset density cancels in Eq. (6), it influences the size
of our causal strengths between processes.

Many choices can be made for this reference density. Ideally, it
has as little structure as possible, such as a uniform density. How-
ever, a uniform density does not exist on an unbounded domain. In
this paper, we will mainly use the Cauchy or Lorentz pdf, given by

q(x) = 1

π

γ

γ 2 + (x− µx)
2

(9)

defined by width parameter γ and mean µx. A logical choice for the
mean of the pdf is the sample mean. We choose γ such that the ref-
erence density has the same entropy as the density with maximum
entropy based on the mean and variance of the original process,
so is the Gaussian. Since the entropy of the Cauchy distribution is
log(4πγ ) and that of the corresponding Gaussian (1/2) log(2πeσ 2

x ),

we can identify γ =
√

(e/8π)σx, where e is the base of the natural
logarithm. With this choice, the reference density can be interpreted
as a maximum entropy pdf in the sense that it has the same max-
imum entropy as a Gaussian, but on top of that, it has infinite
variance.

Other choices can be used too, e.g., a Gaussian with sample
mean and variance or a uniform pdf with boundaries defined by
the sample minimum and maximum values. We will discuss the
influence of the reference density in Sec. VII-D.

B. Certainty as information theoretic measure

In Sec. II A, we introduced the relative entropy as an important
quantity in our framework. We now introduce a related quantity
called certainty, defined as

W(x|y1:N) =
∫

p(x, y1:N) log

[

p(x|y1:N)

q(x)

]

dxdy1:N. (10)

This quantity is a relative entropy with a reference density that still
has to be determined. We also introduce the unconditioned version,
called the self-certainty in this context, as

W(x) =
∫

p(x) log

[

p(x)

q(x)

]

dx, (11)

which is also a relative entropy. The reference density is an impor-
tant quantity for the size of the noise term and hence is related to
confounder detection. It should be chosen as uninformative as pos-
sible, so uniform for discrete variables (which is not the focus of this
paper), and a wide distribution, wider than the target, for continuous
variables.

We have 0 ≤W(x) ≤ ∞, with boundaries attained when
p(x) = q(x) or a delta Dirac function, respectively. This is in con-
trast to entropy, which is a measure of uncertainty. Hence, W can
be seen as a measure of certainty: given a wide reference density, the
narrower the pdf of x, the more we know about x, and indeed the
higher our certainty about x. Similarly, for the conditional variant,
we have 0 ≤W(x) ≤W(x|y1:N) ≤ ∞, as can easily be verified.

The certainty and the self-certainty are related through the
information theoretic relation

W(x|y1:N) =W(x)+ I(x; y1:N) (12)

as follows directly from the definition of the terms. Expression
(12), which only contains non-negative terms, will be the basis
for our causal inference. The term W(x) denotes the amount of
self-certainty we have on process x. The mutual information term
I(x; y1:N) is the increase in certainty on x, due to knowledge of y1:N.
W(x|y1:N) denotes the information we have on process x when we
condition on processes y1:N; therefore, we know what these processes
y1:N are doing.

Section II C will introduce normalization, which will allow for
a more direct interpretation of the terms in the theory and will make
different experiments comparable.

C. The need for normalization

We can calculate the quantities above, but they would have little
direct meaning. What does a mutual information of, say, 2.6 mean?
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Some meaning can be extracted if we compare what this value would
mean for a standard process, such as a Gaussian, but if the process
is far from Gaussian, e.g., multimodal, this explains very little. Since
our quantity of interest is the relative contribution to the certainty
in x brought by each process, we normalize (12) by the certainty
conditioned on all these processes, W(x|y1:N),

1 = W(x)

W(x|y1:N)
+ I(x; y1:N)

W(x|y1:N)
. (13)

Using normalization by W(x|y1:N), we find as the relative influence
of all processes y1:N on process x or the causal strength of processes
y1:N toward process x,

cs(x; y1:N) = (y1:N → x)

W(x|y1:N)
= I(x; y1:N)

W(x|y1:N)
, (14)

and hence,

1 = cs(x) = cs(x; y1:N)+ cs(x; x)

= I(x; y1:N)

W(x|y1:N)
+ W(x)

W(x|y1:N)
. (15)

This last equation is the same as (13) showing the contributions to
x by processes y1:N and its self-certainty. The importance of the nor-
malization is that now, we can compare different studies on causal
discovery. Instead of having to infer if mutual information of, say,
2.6 is large or not, we know immediately if a causal strength of, say,
1/2, is large, this means that process contributes 50% to explaining
the target process.

There is, however, another reason for introducing normaliza-
tion. To understand the framework further, we assume that the
underlying equation that governs process x can be written as

g(x, y1:N, η) = 0 (16)

for some function g(..), in which η denotes all processes not included
in y1:N; therefore, all unresolved or unknown processes are typically
considered noise. This assumption is completely general. The pro-
cess η is included because any real-world time series will always
contain unknown or unresolved processes as well as observation
noise; therefore, process η does play a role in reality. If we would
know the process η, we could calculate I(x; y1:n, η) and the result
would be ∞. In that case, W(x) would be insignificant compared
to the mutual information. This suggests that the ratio between the
self-certainty and the mutual information of the known processes
y1:N gives us a measure of how close we are in taking all relevant pro-
cesses for x into account. This ratio contains the same information
as the ratio between W(x) and I(x; y1:n)+W(x) =W(x|y1:N). This,
then, suggests that the smaller W(x)/W(x|y1:N), the more complete
the processes y1:N are in the causal description of x.

To clarify this further, assume we discover a new impor-
tant process w. Because W(x|y1:N, w) =W(x|y1:N)+ I(x; w|y1:N) and
I(x; w|y1:N) ≥ 0 because it is a bivariate mutual information, we
have W(x|y1:N, w) ≥W(x|y1:N). Since W(x) does not change by
incorporating w, the ratio W(x)/W(x|y1:N, w) will be smaller than
W(x)/W(x|y1:N). This means that the more relevant driver pro-
cesses we include, the smaller the ratio between the self-certainty and
the certainty. Hence, we can attribute this ratio to unmodeled pro-
cesses. We thus find that the normalization by W(x|y1:N) changes the

interpretation of the W(x) term from self-information to the causal
strength of unmodeled processes, and hence, we identify cs(x; x)
= cs(x; η). We consider this a very useful property that other frame-
works lack.34 McGill develops this decomposition in the discrete
setting and does notice that what we call self-certainty is related to
what he calls noise. However, using this as a measure on the accuracy
of the causal discovery is new. In Sec. V, we discuss the important
case when the missed processes contain important information on
the causal structure, the so-called confounders.

III. DECOMPOSING MUTUAL INFORMATION WHEN

TWO DRIVER PROCESSES ARE INVOLVED

Now that we have defined the general framework a method to
quantify the individual contributions (yi → x) is developed. As an
example of how we determine individual contributions to the target
process x, we first study the case of target process x and two driver
or source processes y and z. For completeness, we note that each of
these processes y or z could be process x itself but lagged in time.
Equation (12) for three processes reads

W(x|y, z) = I(x; y, z)+W(x), (17)

and our task now is to decompose I(x; y, z) into the contributions
from y and z.

The influence of each process on x can be divided in two con-
tributions: a contribution when we fix the other process, which we
will call the 1link contribution, and a correction to that. That correc-
tion by y and z together; therefore, a 2link contribution is often only
partially taken into account. For instance, the situation depicted in
Fig. 1, where the red arrow denotes a nonlinear interaction between
the two drivers, is often ignored in the literature that bases the causal
structure on DAGs (e.g., Refs. 6, 14, and 25) because that struc-
ture cannot be represented on such a graph. While ignoring this
contribution might be useful for some systems, we will show in
the examples that the present generalization is necessary for a full
description of the causal network.

The conditional 1link contribution of process y is found by
conditioning on all other processes, so on process z in this case.
This means that we study the influence of y on x when the influ-
ence of z has already been taken into account because it is given.
This 1link contribution can be quantified by the conditional mutual
information of y to x given process z,

(y→ x)1link = I(x; y|z) =

=
∫

p(z)

∫

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) dxdydz. (18)

That the 1link can be considered the direct contribution of process
y on x can be seen from the conditioned version of Eq. (17),

I(x; y|z) =W(x|y, z)−W(x|z); (19)

therefore, the increase in certainty of x when y becomes available,
given that we know the influence of process z. Similarly, for the 1link
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contribution from process z, we find

(z→ x)1link = I(x; z|y). (20)

The correction term of both contributions has to be related to the
combined influence of y and z on x. Since the full contributions of y
and z should add up to I(x; y, z), as shown in Sec. II-B, the correction
term has to be

(y→ x)2link = I(x; y, z)− I(x; y|z)− I(x; z|y). (21)

This is half the total contribution of both processes, minus their
conditional 1link contributions. If this term is positive, it can be
interpreted as the contribution of the combination of y and z not
contained in the conditional 1link contributions from y to x and
from z to x, which can be termed the “synergy.” A more direct phras-
ing would be that this term provides a measure on how y and z
enhance each other’s influence on x. On the other hand, when it
is negative, it can be seen as the “redundant” information in the
conditional information. A more direct phrasing would be that the
two drivers hinder each other’s influence on x. Since this contri-
bution is purely combined, i.e., it only acts when both y and z are
active, the symmetry between y and z in this term demands that it
must be divided equally between the two processes. Hence, the total
contribution from y to x becomes

(y→ x)total = (y→ x)1link +
1

2
(y→ x)2link

= I(x; y|z)+ 1

2

[

I(x; y, z)− I(x; y|z)− I(x; z|y)
]

. (22)

Using the standard relation I(x; y, z) = I(x; z|y)+ I(x; y), we find

(y→ x)total = I(x; y|z)+ 1

2

[

I(x; y)− I(x; y|z)
]

. (23)

The quantity between the parentheses is known as the interaction
information, defined as

I(x; y; z) = I(x; y)− I(x; y|z) = I(x; z)− I(x; z|y). (24)

Interaction information measures the influence of a variable z on
the amount of information shared between x and y, but it can do
this in a non-intuitive way. For instance, when y and z are enhanc-
ing each other’s influence on x, conditioning on z, therefore, fixing z
can diminish this enhancement; therefore, I(x; y) > I(x; y|z) and the
interaction information is positive. On the other hand, z can open a
pathway between y and x that is not present without z. In that case,
one would expect I(x; y) < I(x; y|z); therefore, the 2link is negative.
The fact that the 2link can be negative shows that one cannot identify
the 1link with “unique” information from y to x in a PID frame-
work interpretation because non-unique information should still be
positive. For completeness, the total contribution from z is

(z→ x)total = I(x; z|y)+ 1

2

[

I(x; z)− I(x; z|y)
]

. (25)

Now, we find the causal strength of y to x as

cs(x; y) = (y→ x)total

W(x|y, z)

= I(x; y|z)
W(x̂|y, z)

+ 1

2

(

I(x; y)− I(x; y|z)
)

W(x̂|y, z)
(26)

and similarly for z. The unmodeled or noise relative contribution to
x is given by

cs(x; η) = W(x)

W(x̂|y, z)
, (27)

leading to the total causal strength toward x as

1 = cs(x; y)+ cs(x; z)+ cs(x, η)

= I(x; y|z)
W(x|y, z)

+ I(x; z|y)
W(x|y, z)

+ I(x; y; z)

W(x|y, z)
+ W(x)

W(x|y, z)
. (28)

As mentioned above, a large portion of the previous literature on
causal inference using standard graphs has systematically ignored
the corrections to the “pure” 1link contributions. They thus missed
potentially important parts of the causal network. It is true that the
order of importance of processes y and z for x will not change when
the 2link is included as that term is the same for z and y. However,
the ratio of the contributions will change. Furthermore, when more
processes are present, 2links (and higher-order links) can change the
order of importance compared to the 1link order and hence can lead
to a completely different interpretation of the causal structure of the
system. We will see examples of this later.

We can make the link to the PID framework by using (3) and
(4) and decomposing our total contribution from y to x as

(y→ x)total = I(x; y|z)+ 1

2

[

I(x; y)− I(x; y|z)
]

= U(x; y|z)+ S(x; y, z)+ 1

2

[

R(x; y, z)− S(x; y, z)
]

= U(x; y|z)+ 1

2
S(x; y, z)+ 1

2
R(x; y, z). (29)

This suggests that the total contribution of y to x is a unique con-
tribution and half the sum of the synergy and redundancy, all as
defined in the PID framework. This makes sense if we invoke the
symmetry argument that synergy and redundancy should only be
included half for the y contribution, with the other half for the z con-
tribution, but remember that none of the terms are defined uniquely
in the PID framework. Given the difficulty in defining a unique con-
tribution, our framework makes perhaps more sense than the PID
framework. Our decomposition is based on the number and iden-
tity of the “active” (as opposed to conditioned on) variables in the
mutual information, as explained further in Sec. IV.

IV. DECOMPOSING MUTUAL INFORMATION WHEN N

DRIVER PROCESSES ARE INVOLVED

When N processes yi, i = 1, 2, . . . , N influence process x, we
can generalize the above as follows. To find the total contribution
of each process yi, we first quantify how much each of them con-
tributes to I(x; y1:N) on top of what all others contribute. Then, we
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quantify how much each process contributes in combination only
with one other process. This is followed by how much each process
contributes in combination only with two other processes, etc., until
we reach how much each process contributes in combination only
with all other processes. The word “only” is important as we have
to avoid double counting. This leads to a decomposition of the total
contribution of process yi to W(x|y1:N) as

(yi → x)total = (yi → x)1link +
1

2
(yi → x)2links +

1

3
(yi → x)3links

+ · · · + 1

N
(yi → x)Nlink. (30)

Factors such as 1/2 appear because each 2link process yi, yj appears
both in the contribution from yi and in the contribution from yj.
Hence, this contribution needs to be distributed between these two
process contributions. Since they both serve in equal capacity to this
term, each process contributes 1/2 of this term. A similar argument
holds for all higher-link terms in this decomposition. The decom-
position of the total mutual information in terms of all the links
was also noted by McGill,34 who developed the theory for discrete
systems, and Brown,35 who worked in arbitrary spaces but neither
did decompose this further into the contributions from each driver
separately and hence neither did find our interpretation.

Each mlink contains conditional mutual informations of the
form I(x; yi, z|w), in which z is a (m−1) subset of y6=i, and w contains
those processes that are not process yi and not in z. This conditional
mutual information contains all possible interactions between the
active variables yi and all variables in z, including lower order links.
To make sure this term only contains pure mlinks, we need to sub-
tract all links of lower order; therefore, (m− 1)links, (m− 2)links,
etc., all the way to the conditional 1links, contained in the original
mlink set, to avoid double counting. An expression for the mlink of
driver yi can be written as follows. First, define Ii as a set of m− 1
non-overlapping indices from {1, . . . , N} that do not contain i, and
mi the set {i, Ii}. Then, define mi−1 as a set of m− 1 non-overlapping
indices from the set {mi} and mi−2 as a set of m− 2 non-overlapping
indices from the set {mi−1}, etc. With these definitions, the mlink of
driver i in an N-driver system can be written recursively as

(yi → x)mlinks =
∑

all Ii



I(x; yj∈mi
|yk/∈mi

)

−
∑

all mi−1

(

yj∈mi−1 → x
)

(m−1)links
· · ·

−
∑

all mm−1

(

yj∈mm−1 → x
)

1links



 . (31)

As an example, when three processes influence x (N = 3), we find
for each i

(yi → x)3link = I(x; y1, y2, y3)−
(

Î1,2|3 + Î1,3|2 + Î2,3|1

)

−
(

Î1|2,3 + Î2|1,3 + Î3|1,2

)

, (32)

in which the 2links are given by

Îi,j|k = I(x; yi, yj|yk)−
(

Îi|j,k + Îj|i,k

)

(33)

and for the 1links

Îi|j,k = I(x; yi|yj, yk). (34)

Note the structure of this decomposition. Every term I(x; yi, yj|yk)

contains two 1link contributions that need to be subtracted to define
the 2link. This is similar to what we did in Sec. III, but now with
the extra conditioning on yk. For the 3link, we have that every term
I(x; y1, y2, y3) contains both 2links and 1links that need to be sub-
tracted. Indeed, all three possible 2links and all three possible 1links
are subtracted.

Let us now evaluate this completely for the first y process; there-
fore, i = 1. There is only one 1link, namely, I(x; y1|y2, y3). There are
two 2links, namely, y1, y2 and y1, y3. From each of them, we need
to subtract the two 1links; therefore, in total, we need to subtract
four 1links. Finally, there is only one 3link y1, y2, y3, which will be
decomposed as above. Hence, we find

(y1 → x)total = (y1 → x)1link +
1

2
(y1 → x)2links +

1

3
(y1 → x)3links

= I(x; y1|y2, y3)+ 1/2
[

I(x; y1, y2|y3)+ I(x; y1, y3|, y2)

−
(

I(x; y1|y2, y3)+ I(x; y2|y1, y3)+ I(x; y1|y2, y3)

+ I(x; y3|y1, y2)
)]

+ 1/3
[

I(x : y1, y2, y3)

−
(

I(x; y1, y2|y3)+ I(x; y1, y3|, y2)+ I(x; y2, y3|, y1)
)

+ 2
(

I(x; y1|y2, y3)+ I(x; y2|y1, y3)+ I(x; y1|y2, y3)

− I(x; y1|y2, y3)+ I(x; y2|y2, y3)+ I(x; y3|y2, y3)
)]

.

(35)

Because of the symmetry of the 3links term, it is the same for all
processes yi. However, both the 1link and the 2links terms are depen-
dent on the driver process under study. In general, for a system with
N drivers, all links smaller than the Nlink will have links that are
driver-process specific.

By grouping similar terms, it is possible to simplify the expres-
sion above further as

(y1 → x)total = 1/3I(x; y1, y2, y3)

+ 1/6
[

I(x; y1, y2|y3)+ I(x; y1, y3|y2)
]

− 1/3I(x; y2, y3|y1)+ 1/3I(x; y1|y2, y3)

− 1/6
[

I(x; y2|y1, y3)+ I(x; y3|y1, y2)
]

, (36)

which now defines the total contribution of y1 to target x, decom-
posed in its mlink contributions.

Adding all contributions from y1 to y3 together, we can show
that indeed

I(x; y1:3) =
3

∑

i=1

(yi → x) (37)

as expected. It is straightforward to extend the decomposition for
N > 3.

Chaos 31, 123128 (2021); doi: 10.1063/5.0054228 31, 123128-8

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

In terms of computational expense, the number of terms grows
rapidly with the number of processes. However, two features of the
theory keep the work manageable. First, the scheme is recursive, and
second, the contributions from the different terms contain many
terms that are the same. In fact, for N = 3, we need to calculate three
terms of the form I(x; yi|yj, yk), three terms of the form I(x; yi, yj|yk),
the term I(x; yi, yj, yk, yl), and W(x̂) (or W(x̂|y1:N) but that is more
expensive to calculate), so 8 terms in total. It is easy to show that the
number of terms to be calculated is equal to

N
∑

k=0

N!

k!(N− k)!
= 2N. (38)

This growth with the number of driver processes N is exponential,
but all mutual information calculations are independent and can be
performed in parallel.

It is important to mention upfront that we do not need to cal-
culate probability density functions in high-dimensional spaces but
instead can use the time series directly in our calculation of the
mutual informations by using the k-nearest-neighbor algorithm of
Ref. 36. Before we discuss how the new framework deals with a few
well-chosen systems that illustrate its strengths and weaknesses, we
say a few words on how the system deals with confounders.

V. MISSING PROCESSES AND CONFOUNDERS

Missing processes are processes that are missed when potential
drivers are identified and that if included would have a strong influ-
ence on the causal strength of one or several other drivers toward the
target process. An example of such a process is a confounder, which
is a missed process that drives both one or more identified drivers
and the target process. Let us see how these effects are represented
in the framework. Assume, for ease of notation, that the system con-
tains three processes, a target x, a known process y, and a missing
process z.

In the new framework, there is a way to infer that a missing
process is present via the causal strength of the noise term cs(x; η)

=W(x)/W(x|y) in this case. If this term is larger than expected
from observational noise, it is likely that we missed an important
driver. Practically, the effect from observational noise can be esti-
mated by perturbing the target process series with three times the
observational noise (so that the effective perturbation from the true
process is twice as large) and recalculate the causal noise term and do
this several times. If the noise term in these perturbed experiments
remains the same, a missing process will be present. On the other
hand, if the causal noise term is sensitive to these perturbations, it is
unlikely that an important missing process is present.

We illustrate the idea in the following simple experiment. The
underlying true system is described by

xn+1 = 2yn + zn + εn
x ,

yn = 0.3yn−1 + εn−1
y , (39)

zn = 0.6zn−1 + εn−1
z ,

in which εx ∼ N(0, 10−4), εy, εz ∼ N(0, 10−2). Using 20 000 time
steps, we calculate the causal strength of the noise without taking
process z into account as cs(x; η)no z = 0.301. We add a realization of

noise to the target and recalculate the causal strength; repeating this
ten times gives cs(x; η)no z = 0.308± 0.005. The difference between
the causal strengths before and after the noise perturbations is about
2%. This insensitivity to the observational noise suggests that there
is a much larger contributor to the causal strength of the noise, and
hence, we can assume that an important driver process has been
missed.

After realizing that z is an important process, we recalculate the
causal strength of the noise as cs(x; η) = 0.086. Repeating the noise
perturbation experiments for this case leads to cs(x, η) = 0.124,
a change of about 50%. The larger difference between these two
suggests that no further missing processes are present.

If the missing process is a confounder, it is a strong driver of
both an identified driver and the target. The now standard way to
define the presence of a confounder is via do-calculus,

p(x|do(y)) 6= p(x|y), (40)

in which do(y) means that y is given a certain value and all processes
that influence y are blocked. However, we cannot use this idea here
because we are especially also interested in systems in which such
an intervention would change the whole dynamics, resulting in a
different system we are not interested in.

The definition used here is that I(xn+1; y−∞:n|z−∞:n) = 0, where
n is a time index and in which the conditioning is on the whole
past of z, and we consider the causal strength of the whole past of
y on xn+1. On a DAG, this would mean that there is no direct arrow
from y to x that does not go via z: either y influences x via z, i.e.,
yn−1 → zn → xn+1 , or z is a common driver of both y and x, i.e.,
yn+1 ← zn → xn+1. In the first case, when yn−1 → zn → xn+1, we
would find a nonzero causal strength between yn−1 and xn+1, which
is correct because y does drive x, via z. The framework will give the
correct answer in this case. One could argue that this is not a true
confounder case because of this relation.

The second case, in which yn+1 ← zn → xn+1, is more interest-
ing. If we do not know about the existence of z, the causal strength
cs(xn+1; yn) will be nonzero if any of the three processes has memory,
meaning that its past is a driver of its present. This is because xn and
yn are driven by zn−1, and memory in either x, y, or z will result in
a connection between yn and xn+1. Without having knowledge of z,
this is a correct answer.

The question is what happens when z comes to our attention.
Remember that the confounding nature of z on the (x, y) relation
is defined as I(xn+1; y−∞:n|z−∞:n) = 0. In this case, the total causal
strength of the whole past of y would be

cs(xn+1; y−∞:n) = I(xn+1; y−∞:n|z−∞:n)

W(xn+1|y−∞:n, z−∞:n)

+ 1

2

(

I(xn+1; y−∞:n)− I(xn+1; y−∞:n|z−∞:n)
)

W(xn+1|y−∞:n, z−∞:n)

= 1

2

I(xn+1; y−∞:n)

W(xn+1|y−∞:n, z−∞:n)
. (41)

Hence, this nonzero causal strength shows that the framework
suggests that y does influence x, while in fact, z is driving both y and
x separately. However, if z is driving y, then y has information from
z; therefore, y has information that drives x. The framework does
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recognize the information y has on driving x. Since the frame-
work does not only calculate causal strength but also all mlink
contributions including I(xn+1; y−∞:n|z−∞:n) = 0, it recognizes the
confounding nature of z.

This short discussion demonstrates how missing processes are
identified and how subsequently confounders are identified in the
causal framework. We have a way of estimating the influence on the
target of missing processes relative to the observational noise in the
system, allowing for identification of their presence, and we identify
true confounders via 1links.

VI. COMPARISON WITH OTHER FRAMEWORKS

Since our framework is specifically developed with nonlinear
systems in mind, we only compare to other methods that allow for
nonlinear interactions. In Table I, a comparison of capabilities is
provided. As mentioned in Sec. I, transfer entropy as introduced by
Schreiber10 and further developed for high-dimensional systems by,
e.g., Ref. 25, does only a partial decomposition, similar to a 1link in
the new framework. The PID framework has no unique definition of
unique, synergistic, and redundant information. As we will see in the
first example in Sec. VII, the simplest three-variable system already
leads to interpretation problems that suggest that this decompo-
sition is not that useful. Only the new framework provides a full
decomposition of the causal strength over its different contributions,
has a unique normalization that does not depend on application, is
complete in the sense that it allows for confounder detection, and
generates complete causal webs that are much richer than DAGs
because they allow for merging of directed edges. For two different
causal web styles, see Figs. 2 and 8.

Our framework has some parallels with the framework that
Runge developed in Ref. 14. His framework aims to answer the
question how strong the indirect causal influence is of a process
on a target process, where the direct causal influence is defined via
a transfer entropy. Specifically, the paper concentrates on the spe-
cific influence of a process y that is a few time steps in the past of
the target process x and where y influences other processes z that
in their turn influence x. The interaction information from y via z
is defined as the mutual information of all paths between y and x
minus the mutual information of all paths between y and x condi-
tioned on process z. The paper restricts the analysis to causal systems
that can be represented by a DAG, while our framework is more
general than that because we explicitly take nonlinear interactions

FIG. 2. Causal connections for the Lorenz 1963 system between driver processes
xn, yn, and zn and the target process xn+1, where n is the time index. The black
arrows denote the direct connections between drivers and target, the 1links. The
red arrows show the 2links between two drivers and the target, and the blue lines
denote the 3link. All values represent causal strengths and have been normalized
by the total certaintyW(xn+1|xn, yn, zn).

between processes into account, which cannot be represented on a
such a graph.

VII. EXAMPLES

Several examples are discussed to illustrate the behavior of the
new framework. We start with linear models with Gaussian noise,
then discuss nonlinear models without interactions between the
terms, followed by models with nonlinear interactions and finally
the Lorenz 1963 model.

All information theoretic quantities were calculated using the
k-nearest-neighbor algorithm of Ref. 36, where the number of near-
est neighbors is set to 4, with little sensitivity to the actual number.
To increase the numerical accuracy, the target and all drivers are
transformed via the CDF of a Gaussian to a truncated Gaussian,
specifically cutting 4.25% of the full distribution off each tail. The
reference density for the certainty calculation is the Lorentz–Cauchy
density. In Sec. VII-D, the influence of different reference densities
is investigated in detail.

TABLE I. Comparison of causal discovery frameworks.

Characteristic New framework Transfer entropy PID CCM

Total causal strength cs(x, y) 1links I(x;y|z) U+ S+R per cause . . .

Decomposition 1link, all 2links, . . . , Nlink per cause 1link per cause U, S, R per cause

Binary target-
driver, no

conditioning
Normalization With W(x|y, z) Application dependent . . . . . .
Missing process detection Via cs(x;η) . . . . . . . . .
Confounder detection Via cs(x;η), followed by zero 1links Zero 1links . . . . . .
Graphical representation Full causal web (see, e.g., Fig. 8) hypergraph DAG Hypergraph ? DAG
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TABLE II. Underlying model equations and characteristics of the noise terms.

Model x y z

Model 1 xn+1= 2yn+ zn+N(0, 10−4) yn=N(0, 1) zn=N(0, 1)
Model 2 xn+1= zn+N(0, 10−4) yn−1=N(0, 1) zn= yn−1+N(0, 1)
Model 3 xn+1= zn+N(0, 10−4) yn+1= zn+N(0, 10−2) zn=N(0, 1)

A. Memory-limited models

The following models are special in that their temporal mem-
ory is strongly limited, allowing us to concentrate on local-in-time
relations. Furthermore, the models are simple enough so that they
can be represented on a standard graph except for model 6. Table II
shows the first three models that we used to generate time series, on
which we then test the causal discovery framework. We generated
100 time series from each model of length 50 000 steps and calcu-
lated the mutual information and conditional mutual informations
as needed. The results of the experiments are presented in Table III.

Model 1 is perhaps the most simple model one can think of and
can be represented on a graph as y→ x← z. It is linear and has no
memory; therefore, interpretation of the terms should be straight-
forward. The conditional mutual information, the 1link, is larger
than the mutual information between y and x and between z and
x. This means that the interaction information is negative, and the
reason is that without conditioning, the variable z acts as noise in
the mutual information calculation of y and x and similarly for y.
The causal strength of y to x is 1.6 times larger than that of z to x
(0.56/0.35), with a small contribution for the noise process. If only
the 1links would be taken into account, the ratio of the y contribu-
tion to the z contribution is much lower, 1.1, due to the omission of
the 2link contributions. In this simple model, the conditional mutual
information is equal to the transfer entropy, and it is interesting to
see how transfer entropy suggests very similar contributions from y
and z, while the causal strength of the former is expected to be much

TABLE III. (Conditional) mutual information and total information flows. Typical

uncertainties are 0.005, based on ten random realizations of the time series.

Estimate Model 1 Model 2 Model 3

I(x;y|z) 2.99 0.00 0.00
I(x;z|y) 2.30 2.33 2.33
I(x;y) 0.80 0.33 0.00
I(x;z) 0.11 2.66 2.33
I(x;y;z) −2.19 0.33 0.00
I(y;z) 0.00 1.42 2.65
(y→ x)total 1.91 0.17 0.00
(z→ x)total 1.19 2.50 2.33
W(x̂) 0.31 0.30 0.29
W(x̂|y, z) 3.41 2.96 2.61
cs(x;y) 0.56 0.06 0.00
cs(x;z) 0.35 0.84 0.89
cs(x;η) 0.09 0.10 0.11

larger considering the actual model, as correctly indicated by our
framework.

It is also interesting to connect these results to the PID frame-
work. The form of model 1 suggests that there is no synergy and
no redundancy in this system because y and z are completely inde-
pendent when driving x. However, I(x; y|z) > I(x; y), and hence,
R(x; y, z)− S(x; y, z) < 0 in the PID framework so that the synergy
has to be nonzero, as all contributions are non-negative in the PID
framework. The only way to keep consistency in the PID framework
is to introduce the influence of unaccounted-for processes (“noise”),
as we do in our discussion above on the 2links, but PID does not
include “noise” terms. The words “unique,” “synergy,” and “redun-
dancy” are difficult to define even in this simple system. If we make
the straightforward choice U(x; y|z) = I(x; y|z) we find, see Eq. (4)
in Sec. I, that S(x; y, z) = 0, which leads to R(x; y, z) < 0, which is
inconsistent with the non-negativeness of the variables in the frame-
work. If, instead, we choose R(x; y, z) = 0, the unique contribution
of y on x becomes the mutual information I(x; y), while we know
that this mutual information also contains influence from z.

Model 2 is a system in which z acts as a gateway for the infor-
mation flow between y and x; graphically, y→ z→ x. The only
nonzero contributions in model 2 are those between xn+1, zn, and
yn−1 since the system variables have no memory. This leads to pos-
itive interaction information because conditioning on z in I(x; y|z)
destroys the connection between y and x. The mutual information
between y and x is nonzero without this conditioning, showing that
there is information flow from y to x in this system because know-
ing y does provide information about z and hence information about
x; the 1links are just unable to pick this up. As expected, the causal
strength of z to x is much higher than that of y to x. The reason for
this small y contribution is that the noise ηz is of the same order
of the signal y, making the I(x; y) dominated by noise. This can
be seen clearly when we substitute the expression for zn in model
2: xn+1 = yn−1 + ηn

z + ηn+1
x . Indeed, lowering the noise in z does

make I(x; y) much larger (not shown). It is also interesting that if
we remove y from the causal calculations, the underlying model
remains model 2, but if we only consider x and z, the total causal
strength from z to x increases to 0.90. Hence, in this case, z takes up
the causal strength of y, which is exactly what the framework should
do.

Model 3 can be represented as y← z→ x; therefore, z drives
both y and x. The measures are calculated between xn+1 and yn and
zn as the drivers need to be lagged at least one time unit from the
target for causal influence. We see that any measure between y and
x is zero, and indeed, the causal strength between y and x is zero, as
it should be. The difference between the case discussed in Sec. V is
that the processes have no memory in this model.
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TABLE IV. Underlying model equations and characteristics of the noise terms.

Model

4 xn+1= 0.4xn+ 0.4zn+N(0, 10−4) yn= 0.5yn−1+ 0.5zn−1+N(0, 10−2) zn= 0.4zn−1+N(0, 10−2)
5 xn+1= 0.6xn+ ynzn+ 0.3zn+N(0, 10−6) yn= 0.3yn−1+N(0, 10−4) zn= yn−1+N(0, 10−4)
6 xn+1=wn+ 0.6 yn−1+ 0.4 zn−1+N(0, 10−4) yn=N(0, 1) zn=N(0, 1) wn= yn−1+ 4 zn−1+N(0, 1)

It is interesting to discuss what we could infer from transfer
entropy, which only works with the first two rows in Table III. It can
distinguish between models 1 and 2, but not between models 2 and
3. Furthermore, in model 2, it does not see that y influences x via z.
Finally, it has no way to infer if strong confounders are present or
not.

We now study how the framework reacts to time series with
memory. In Model 4, in Table IV, the evolution of z is not influ-
enced by x and y, but z is a driver for both x and y; graphically,
x← z→ y. Table V shows the results for various quantities from
the new framework.

The conditional mutual information of y and target x, given
the past of x and z, is zero, which in a directed graph would mean
that y is not a driver of x. The causal strength cs(x; y) is nonzero,
however. This reflects the possibility that y influences x jointly with
other drivers. It turns out that the memory in the variables is impor-
tant in understanding what happens. In Table V, variable y denotes
the combination yn, yn−1, approximately the whole process y in the
past of xn+1. Similarly, z denotes zn, zn−1. Model 4 shows that if
y = (yn, yn−1) is known, then we know also about zn−1. However,
zn−1 drives zn, which in turn drives xn+1. The framework does pick
up this link, but should it? In fact, it should, as we can write the
evolution equation of x purely in terms of y, as

xn+1 = 0.4xn + 0.4zn + N(0, 10−4)

= 0.4xn + 0.16zn−1 + N(0, 10−2)

= 0.4xn + 0.32yn − 0.16yn−1 + N(0, 2x10−2). (42)

Hence, y is a true driver of x. The main driver of target x is z fol-
lowed by the past of x. This ordering makes sense as z also influences

TABLE V. (Conditional) mutual informations and causal strengths for Models 4–6.

Typical uncertainties are 0.005, based on ten random realizations of the time series.

For Models 5 and 6, the variable xd is the variable x in the past of target x. All drivers

are total contributions from one and two steps lagged behind the target.

Estimate Model 4 Model 5 Model 6

I(x;y|xd, z) or I(x;y|z, w) 0.00 0.00 0.07
I(x;z|xd, y) or I(x;z|y, w) 1.18 0.36 0.00
I(x;xd|y, z) or I(x;w|y, z) 0.15 0.22 0.00
cs(x;y) 0.05 0.17 0.20
cs(x;z) 0.65 0.39 0.29
cs(x;xd) or cs(x;w) 0.14 0.22 0.44
cs(x;η) 0.16 0.22 0.07

the past of x, while x does not influence z. While y can be consid-
ered a true driver of x via Eq. 42, the noise term in that equation is
much larger than in the original equation, explaining its small causal
strength.

Model 5 shows an example in which target x is driven by its
past, by y, and by z, while z is completely driven by y. Therefore,
y and the past of x are the driving processes in this model. How-
ever, I(x; y|xd, z) = 0, while I(x; z|xd, y) = 0.36. This cannot happen
in a model that can be represented on a directed acyclic graph,
but Model 5 has nonlinear interactions between its drivers, hence
cannot be represented so. Any method that is based on a DAG rep-
resentation will miss the importance of y for driving x. This shows
the importance of including the higher-order links in the causal
network.

One can argue that Models 4 and 5 are qualitatively the same
based on Table V. Can the framework distinguish between these
two totally different underlying systems? In fact, it can, but one has
to dive deeper into the decomposition. In the nonlinear Model 5,

we find (not shown) that the 2link Î(xn+2; zn+1, yn|rest) = 0.21 [see
Eq. (33) for its definition], while this contribution is 0 for the lin-
ear model. This is the 2link between zn+1 and yn when they drive
xn+2, where we subtracted the 1links to avoid double counting; see
Sec. IV. In the linear Model 4, this interaction is already covered via
the 1link of z with target x; therefore, the 2link does not provide
much more information. However, in the nonlinear Model 5, there
is crucial information added by the interaction of y and z over just
the 1links. Furthermore, the fact that y is lagging behind z shows that

y is driving z. Note that Î(xn+2; yn+1, zn|rest) is zero in both models;
therefore, it does not show that z is driving y in Model 5. The reason
is that in the linear model that interaction is taken up via the 1links.

In Model 6, we show that even in a linear model, counterintu-
itive things can happen. Also, in this model, y stands for (yn, yn−1),
etc. In all earlier model examples, the order of importance of y and z
on x does not change using just the 1links or the full causal strengths
from the complete framework. As mentioned earlier, this is indeed
the case for any three-variable model because the interaction infor-
mation is symmetric in y and z. However, when more variables are
introduced, this ordering can change, as shown in the last column
of Table V. In terms of 1links (conditional information), one would
expect that y is most important for x, and z and w are not impor-
tant at all. However, taking all links properly into account, we find
that w is most important, then z, and then y. Therefore, roles have
completely reversed. The reason for the reversal of y compared to z
is that as soon as we do not condition on w, z is more important for
x than y. Similarly, w changes roles with z because conditioning on
y and z makes w just a noise process for x; therefore, the 1link has
zero conditional mutual information. Transfer entropy, which only
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FIG. 3. Causal connections between driver processes xn, yn, and zn and the tar-
get process yn+1. The black arrows denote the direct connections between drivers
and the target, the 1links. The red arrows show the 2links between two drivers and
the target, and the blue lines denote the 3link.

uses the 1st three rows of Table V would misinterpret the order of
importance of the driving processes.

B. The Lorenz 1963 model

We now apply the framework to the well-known Lorenz 1963
model, with model equations,

dx

dt
= σ(y− x),

dy

dt
= ρx− xz− y, (43)

dz

dt
= xy− βz.

The interesting aspect of this system of equations is that it can-
not be fully represented on a standard graph. We generated time
series of x, y, and z for 50 000 time steps using a Runge–Kutta 4
scheme with time step 0.01, starting very close to the attractor at
(1.508 87, −1.531 271, 25.460 91). We use as drivers the three pro-
cesses x, y, and z and as a target process the time series of x shifted
forward one time step. To make this a realistic experiment, we added
Gaussian noise of variance 0.01 to each time series after integrating

the Lorenz 1963 equations, i.e., adding observational noise. We are
trying to reconstruct the causal structure of the system using only its
noisy time series.

Figure 2 shows the causal strength of the links for the x target.
Perhaps surprisingly initially, the 1link contributions (represented
by the black arrows) are all smaller than some of the 2links. Look-
ing at the equation for x, the small size of 1t would suggest a very
good approximation xn+1 = xn + εn, where |εn| << |xn|. However,
unlike correlations, the actual size of the variables is not impor-
tant; rather, the narrowness of the joint probability density functions
determines the size of the causal strengths. This is immediately clear
when it is realized that a mutual information value is independent
of a single-variable nonlinear monotonic transformation. For the
Lorenz 1963 system, if we know xn, xn+1 can be larger or smaller,
that depends on if we are on the upward or the downward branch
of a Lorenz wing. However, knowing xn and yn tells us in which
branch of a wing the system is, and hence, we know quite well if
xn+1 will be larger or smaller than xn. Hence, knowing xn and yn is
much more valuable for predicting the value of xn+1 than xn alone,
and indeed, the 2link is about a factor 9 larger (0.70) than the 1link
I(xn+1; xn|yn, zn) (0.08). However, there is more to this.

Figure 2 shows that xn and zn have a strong causal relation with
xn+1, of value 0.53, while zn does not even appear in the governing
equation for xn+1. We can learn a lot from this. First, the framework
is not optimized to find the physical laws that govern the underly-
ing dynamics. This is not surprising as, as mentioned above, mutual
informations cannot distinguish between nonlinear and linear rela-
tions, in the sense that it is insensitive to a single-variable nonlinear
monotonic transformation. However, we now see that it cannot even
determine from the 2links if a variable is present in one of the gov-
erning equations of a system. This means that information has to
flow in from what happens before time n, so from the larger scale
dynamics. (Note that this connection is not due to the use of a RK4
numerical scheme as it is also present when using an Euler scheme.)
At the larger scale dynamics, knowing xn and zn does tell us the wing
and the direction of flow; therefore, it is known if xn+1 will be larger
or smaller than xn: the direction of flow is known.

This idea is strengthened by the fact that the 2link from yn and
zn to xn+1 is smaller, 0.15. This lower value is related to the fact that
in the y–z plane, the two wings overlap to a large extent, and it is
difficult to know which wing is which and hence what the value of
xn is. Thus, it will be difficult to predict xn+1.

Finally, the 3link is negative and quite large. The 3link con-
tains that flow of information from all drivers toward the target
x after the 1link and 2link contributions have been subtracted.
From this, we can understand that its negative value indicates that
the 2links and 1links contain redundant information; for instance,

TABLE VI. Causal strength for the Lorenz 1963 model, 1 time lag, with standard deviations of 0.005%.

Estimate Value Estimate Value Estimate Value

cs(xn+1, xn) 0.485 cs(yn+1, xn) 0.260 cs(zn+1, xn) 0.173
cs(xn+1, yn) 0.274 cs(yn+1, yn) 0.545 cs(zn+1, yn) 0.130
cs(xn+1, zn) 0.151 cs(yn+1, zn) 0.135 cs(zn+1, zn) 0.584
cs(xn+1, ηn) 0.090 cs(yn+1, ηn) 0.062 cs(zn+1, ηn) 0.114
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the 2links x, y and x, z contain overlapping information that needs
compensation.

To find the total contribution of xn from Fig. 2, we take the
1link, 1/2 time the 2links it is involved in, and 1/3 of the 3link it
is involved in, leading to 0.08+ (1/2)(0.70+ 0.53)+ (1/3)(−0.63)
= 0.48. Using this methodology, we find for the total contributions
of y and z 0.27 and 0.15, respectively, leaving 0.09 for the noise con-
tribution, as detailed in Table VI. This table does suggest that z is
less important than x and y for xn+1, but its contribution is not zero.

Figures 3 and 4 show similar diagrams for the y and z targets.
The first thing that catches the eye is that 2links containing the tar-
get 1 step back in time are again large. Also, here, the 3link cannot
be neglected and is negative for both the y and z target. This means
that the 1- and 2links contain redundant information that needs
compensation, similar to what we found for the x target. For the z
variable as a target, the 1link with z one step back in time is much
larger than for the targets x and y. The main reason for this is that z
is independent on the wing the system is in. The product of x and y
tells us whether z is increasing or decreasing.

We can again calculate the causal strengths of each variable
xn, yn, zn to yn+1 and similarly for zn+1, and the results are depicted
in Table VI. Given the underlying evolution equation, it is not
surprising that x is more important than z for y.

We see from the causal strengths that they are much closer to
the governing equations than, e.g., the 1link contributions. On the
other hand, the 1link and 2link contributions seem to tell us more
about the underlying large-scale structure. This is a quite interesting
feature of the new framework that we will elaborate on in a further
study.

C. The coupled Lorenz 1963 model

As a final example of the workings of the framework, we study
two Lorenz 1963 systems in which one forces the other. This system

FIG. 4. The same for the target process zn+1. All values have been normalized
by the total certaintyW(yn+1|xn, yn, zn) andW(zn+1|xn, yn, zn), respectively.

has also been studied by Staniek and Lehnertz37 and reads

dx1

dt
= σ(y1 − x1)+ ε(x2 − x1),

dx2

dt
= σ(y2 − x2),

dy1

dt
= ρx1 − x1z1 − y1,

dy2

dt
= ρx2 − x2z2 − y2,

dz1

dt
= x1y1 − βz1,

dz2

dt
= x2y2 − βz2.

(44)

The coupling strength ε is varied from 0 to 9, the latter correspond-
ing to complete synchronization of the two systems. The coupled
system was discretized with a Runge–Kutta 4 scheme with a time
step of 0.01. A spin-up run of 104 time steps was performed before
each experiment, each of which lasted 50 000 time steps. We show
averaged results based on ten runs starting with different initial
conditions.

Figure 5 shows the direct causal strength or the 1link of x1 on
x2 with the red line and of x2 on x1 with the blue line. We see that
x1 does not drive x2 at any coupling strength, consistent with the
model equations. The driving of x2 toward x1 shows a maximum
at ε = 6 and drops to zero for higher coupling strengths. The reason
for this is that for larger coupling strengths, x1 and x2 are close to full
synchronization, and hence, the coupling term ε(x2 − x1) becomes
smaller and smaller. If the underlying structure of the system is not
known (and it is assumed unknown in our experiment) and the
coupling strength is large, say 8 or higher, one could draw the con-
clusion that the two systems are uncoupled by just looking at these
1links. This shows that the 1links, e.g., such as provided by transfer
entropy and its variants,37 do not provide enough information.

Instead, looking at the total causal strengths in Fig. 6, we see
that x2 is causing variations in x1 (blue line), slowly growing with the
coupling strength, with faster growth after ε = 6. As we have seen in
Fig. 5, this is when synchronization sets in, and x1 and x2 become
very similar. The total causal strength from x1 to x2 is much lower.
It is non-zero because the two systems start to synchronize slightly
for low coupling strengths so that x2 has some information on x1.

FIG. 5. Direct causal strength, or 1link, from x2 to x1 (blue) and from x1 to x2 (red)
for the coupled Lorenz 1963 system as a function of the coupling strength ε.
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FIG. 6. Total causal strength from x2 to x1 (blue) and from x1 to x2 (red) for the
coupled Lorenz 1963 system as a function of the coupling strength ε.

Only when the coupling strength is larger than 6, synchronization
becomes so strong that the two curves start to behave quite similar.

D. Sensitivity to reference density

We close this section of examples by studying the sensitivity of
the results to the reference density. The reference density only shows
up in the self-certainty and the total certainty, not in the mutual
informations. Hence, it will not influence the causal strength of the
driver processes relative to each other. However, it will influence
the size of the self-certainty, and through that, the relative size of
the “noise” term is compared to the other drivers.

In all the results above, we used the Lorentz–Cauchy density,
with mean equal to the target sample mean and width parameter
γ =
√

(e/8π)σx such that the entropy of the density is equal to that
of a Gaussian with standard deviation σx ut with infinite variance.
We will compare these results with those from two other reference
densities, the Gaussian density with mean and variance equal to that
of the target, and a density that is uniform on the interval spanned
by the range of the target samples [min(x), max(x)] and zero outside
that range. The Gaussian and the uniform density are extreme cases
in the sense that if the target is Gaussian distributed, the noise con-
tribution will be zero, while a uniform density is expected to lead to
the largest noise contribution.

FIG. 7. Histogram of the x-variable from 10 00 000 samples from a Lorentz 1963
model simulation. Note the finite size of the domain and image of this model.

We choose Models 2 and 4 and the x-variable of the Lorenz
system as examples of this influence. Model 2 is linear, Model 4 is
nonlinear, both with memory over 1 time step, and the Lorenz sys-
tem has infinite memory, at least in theory. We use the same noise
settings for each of these systems as described earlier.

The results are shown in Table VII. The first and the last row,
the latter a normalization of the first, show the same trend for mod-
els 2 and 4. The estimated noise contribution is the lowest for the
Gaussian reference density, the highest for the uniform density,
and the results for the Lorentz–Cauchy density are in between. For
model 2, in which the target is Gaussian distributed, the noise con-
tribution using the Gaussian reference density is indeed zero. The
Lorenz 1963 model behaves differently in that the largest estimated
noise contribution comes from using the Lorentz–Cauchy density.
This is not surprising as the strange attractor of that system has
extremes, which do not vary much from one realization to the other;
therefore, the uniform density is closer than the Lorentz–Cauchy
density with its wide tails; see Fig. 7.

These numbers show that uniform density is the most conser-
vative estimate of how much the drivers explain about the target and
might be considered the preferred reference density for models 2
and 4. However, the boundaries of the uniform density are deter-
mined by the two extremes in the target time series and hence can
be strongly dependent on the actual realization of the noise. (As dis-
cussed, a counterexample is the Lorenz 1963 system, which has a

TABLE VII. Causal strengths and certainties for different models as a function of reference density.

Model 2 Model 4 Lorenz x-variable

Estimate Cauchy Gaussian Uniform Cauchy Gaussian Uniform Cauchy Gaussian Uniform

W(x) 0.30 0.00 0.66 0.28 0.24 1.39 0.39 0.04 0.21
W(x|y, z) 2.96 2.66 3.30 2.76 2.71 3.87 4.35 4.01 4.15
cs(xn+1, yn) 0.06 0.06 0.05 0.48 0.49 0.34 0.27 0.30 0.29
cs(xn+1, zn) 0.84 0.94 0.76 0.41 0.42 0.30 0.15 0.16 0.16
cs(xn+1, xn) 0.49 0.53 0.51
cs(xn+1, ηn) 0.10 0.00 0.20 0.10 0.09 0.36 0.09 0.01 0.05
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TABLE VIII. Mlink values and total strength in % for target Nino3.4.

Estimate 1links 2links 3links 4links Causal strength

HEAT 11 8 3 3 25
Nina34 9 6 4 3 22
U850 8 5 3 3 19
U200 6 3 1 3 13
“Noise” 22

very strong attractor, but one would not expect such behavior in
general.) Strong dependence on the noise realization is an undesir-
able property of the uniform density. Because the structure of the
Lorentz–Cauchy density is determined by averaged quantities of the
target time series, its mean and its entropy, it is less sensitive to a
specific realization of the noise. Furthermore, as mentioned before,
the Lorentz–Cauchy density has extremely wide tails and is in that
sense closest to a wide uniform density.

We stress again that if the present framework is used, one has to
specify the reference density. For discrete variables, the natural ref-
erence density is the uniform density, and the discussion presented
here does not apply.

E. Application to ENSO

The last example is a real-world example based on the time
series of monthly indices representing the El-Nino–Southern-
Oscillation (ENSO) phenomenon from 1979 until 2019. The
time series are the sea-surface temperature in Eastern Tropi-
cal Pacific (Nino3.4, called the NINA34 time series), the trop-
ical east-west wind at a height of 850 hPa (U850), the tropical
east-west wind at 200 hPa (U200), and the ocean heat con-
tent (HEAT, upper 300 m). The data have been extracted from
https://psl.noaa.gov/enso/dashboard.lanina.html where details on
their exact meaning and generation can be found. To reduce the
influence of noise, we perform a five point moving average on each
time series.

We want to infer the cause for the sea-surface temperature
(SST) of the Eastern Pacific, which we measure with the Nino3.4
index. The complication is that several processes can influence
Nino3.4 at different time lags, including Nino3.4 itself. Since the
time series is relatively short, only 492 monthly time steps, we can-
not explore the new framework in full. Each variable at a different
lag would be a process in the new framework; therefore, if we assume
up to 6 months time lag, we would have 4× 6 = 24 processes. It is
impossible to find accurate estimates of high-dimensional integrals
with only 492 time points. On the other hand, geophysical systems
often display different causal structures operating on different time
scales. To solve this problem, we concentrate on the influence of all
four drivers on this target with a time lag between 3 and 4 months.
This choice stems from a calculation of that time lag between the
target and each of the drivers for which the mutual information
between them is the largest. It turns out that U200 has a largest
mutual information with the target at a 1-month lag, U850 at 2–3
months, and HEAT at 3–4 months. We choose the largest of these
as that is most interesting in terms of long-term prediction.

FIG. 8. Causal net for drivers of Nino3.4 using lags 1–4 months for each driver
(see the text). The circles denote the drivers and their 1link contribution, the blue
lines are the 2links, the red lines the 3links, and the 4link is the same for all in
green.

Table VIII shows the total causal strengths for each driver and
a decomposition in the 1links, 2links, etc.. We first note that all
four processes are causal to Niño3.4 at the 3–4 months time lag,
and the most important one is HEAT, so the ocean heat content
in the upper 300 m. This is understandable as the heat content is
related to the down-welling Kelvin wave that sets off an El-Nino or
the upwelling Kelvin wave that sets off a La-Nina. Such a wave takes
about 3 months to travel from the West to the East equatorial Pacific.
The 1links are much smaller than the total causal strengths, pointing
out the importance of the interactions between the variables to drive
the target. It is through these interactions with others via 2links and
3links that the 1link of each driver is increased by a factor of order
2 to the total causal strength. This makes perfect sense physically
because ENSO is a strongly coupled ocean-atmosphere system with
strong feedback.

To analyze this further, we show a full decomposition of the
causal web in Fig. 8. The numbers in the circle denote the 1links,
the blue lines denote the 2links, the red lines denote the 3links, and
the 4link is depicted in green. The connection between these num-
bers and Table VIII is as follows. To find the total 2link contribution
from, e.g., HEAT in Table VIII, we add all its 2 link values and divide
the result by 2. As explained earlier, the division by two denotes that
each 2link in Fig. 8 has to be divided over the two contributing pro-
cesses. This leads to (7+ 6+ 3)/2 = 8. (Note that rounding errors
appear when not all digits available are used.) 3links are obtained in
a similar way with division by 3, etc. Note that the target itself is not
displayed in this figure.

The largest 2 links are between HEAT and NINA34 (7%) and
HEAT and U850 (6%). The first shows that a high SST together
with a high heat content leads to a high SST 3–4 months later.
The second shows that a strong positive wind anomaly pushes the
heat anomaly further East, again enhancing the SST there. The 3link
between these three processes shows that on top of these 2link inter-
actions, they also work in concert to influence the NINA34 SST 3–4
months later. This is because a higher SST will strengthen the U850
via wind convergence above the high SST, which will enhance the
SST 3-4 months later via an ocean heat content anomaly driven by
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this wind. Remember that a 3link is the interaction term between
the three drivers with the 2links and the 1links subtracted. Hence,
this 3link indeed denotes a physical connection between the three
drivers.

Of note is the low interaction of U200 with the other processes:
it does interact via 2links with NINA34 and HEAT at a 2%–3% level,
and the 2link with U850 is only 1%. Its 3link with Heat and U850 is
even negative, showing that these three processes together reduce
the causal relation between each of them and the target. However,
the 4link between all four drivers is relatively large at 11%. This
means that if we add NINA34 to this trio, the causal relation with the
target is enhanced. This is understandable because the connection
between what happens in the ocean-atmosphere boundary layers is
connected to the upper atmosphere via the SST. The SST drives sup-
presses vertical advection and hence the connection to U200. It is
only in interaction with HEAT and low-level winds that this process
can influence the evolution of El Nino and the SST 3–4 months in
advance.

Finally, we checked for missing processes by perturbing the
target time series by random Gaussian noise with standard devia-
tion 0.05, to be compared with the standard deviation of 0.7 for the
Nina34 index itself. The actual error in the index is unknown; there-
fore, we took a noise standard deviation value that was almost 10% of
that of the signal. This resulted in a causal contribution of the noise
term in the framework of 0.220, against 0.219 for the unperturbed
target, a change of less than 1%. This insensitivity to observational
noise shows that there are important missing processes in the sys-
tem, as explained in Sec. V. This is not surprising as we know that
the ENSO phenomena are a complicated coupled climate mode that
can only partly be described by the four drivers we used here.

In comparison with other frameworks, we note that transfer
entropy will not provide information on the 2-, 3-, and 4links, miss-
ing out significantly on the physics. We have not found a useful
comparison with PID, as its component terms are hard to define.
However, even if we managed to do that, PID does not decompose
the synergistic and redundant terms, missing out on the physical
interpretation.

CCM determines binary causal relations, and hence, it is also
not able to disentangle the richness of the underlying physics. We
used a band-pass Butterworth filter of order 4 and band periods
0.05–0.35 months. The optimal lag and the embedding dimension
were found by trial and error for HEAT, U850, and U200 with
Nina34. Figure 9 displays the results (note that the arrows in the
legend indicate the driver to target, not predictive power). The
strongest driver for Nina34 is HEAT, followed by U200. U850 does
not seem to converge, suggesting no (strong) driving from U850.
The CCM score indicating Nina34 as a driver suggests that the causal
relations tend to be bidirectional. However, the converge of all lines
is rather weak, suggesting that a longer time series is needed. Fur-
thermore, noise seems to hamper causal identification. It is hard to
infer physical relations from these curves.

VIII. DISCUSSION

A new causal discovery framework has been developed based
on a complete decomposition of total mutual information between
a target process and all its potential drivers. It builds on certainty, a

FIG. 9. CCM-scores indicating driver → target relations vs the length of the
time series used. Note that the orange and gray lines do not seem to converge,
suggesting no causal relation.

non-negative quantity, and invariant under nonlinear uni-variable
transformation, unlike differential entropy. This allows us to infer
how knowledge of driver processes increases our knowledge of a
target process, thereby how it increases our certainty about that pro-
cess. We can decompose the contribution of each driver process in
direct contributions, and joint contributions between two processes,
between three processes, etc. This decomposition is rich as it allows
a detailed characterization of the underlying causal structure. By
normalizing each contribution, different studies can be compared,
and the self-certainty can be reinterpreted as the contribution from
unknown processes, allowing us a quantification of the processes
not included in the causal discovery set, including the importance
of confounders. In this sense, the framework can be considered a
complete framework.

We showed in simple dynamical systems the advantage of
including the joint contributions over traditional approaches. Using
the Lorenz 1963 system as an example, we showed that the frame-
work will, via the causal strengths, contain information about the
governing equations, while the 1links and 2links reveal informa-
tion on the underlying low-dimensional structure that the dynamics
live on. In the Lorenz 1963 example, these links reveal features of
the strange attractor and even the dynamics on that strange attrac-
tor. Furthermore, using the framework on real-world time series of
ENSO indices, we showed a tight coupling between the resulting
causal web and the underlying physics of the system.

The framework has a few drawbacks that need discussing. For
continuous variables, we need to define a reference probability den-
sity as a function of the target variable. The resulting causal strengths
do depend on this density. A thorough investigation of several pos-
sibilities leads us to conclude that the Lorentz of Cauchy density has
many advantages compared to others and is the density of choice in
this paper. Since any result obtained with one reference density can
be transformed to those using another reference density, the main
message is that the reference density used should be reported with
the causal strength values.

Another potential drawback is the number of calculations
involved. In general, when there are N driver processes, the number
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of (conditional) mutual informations that need to be calculated
is 2N. Often, however, a large number of the driver processes is
related to connections at larger time lags. Assumptions on the struc-
ture of the underlying system, e.g., 1st-order Markov, would make
many of these mutual informations noncausal, reducing the num-
ber of calculations needed. As an example from the Lorenz 1963
system, the direct 1link contributions more than one time step
back are all zero because the conditioning blocks the information:
I(xn+1; yn−1|xn, yn, zn, . . . , ) = 0. Similar remarks hold for higher-
order links and can be generalized as follows for a 1st-order Markov
system: All conditional mutual informations that condition on all
variables at the same time will block information flow from before
to after that time. Extensions like this can be made for 2nd-order
Markov processes, etc. The point is that if more is known about
the underlying dynamics, we can use that to reduce the number
of calculations needed. As a final remark on calculations, since all
(conditional) mutual information calculations are independent of
each other, the causal calculations are highly efficient on parallel
computer platforms.

The framework is based on information theoretic measures
such as mutual information. As has been known for some time, e.g.,
Ref. 23 showed convincingly, there are systems that have different
internal dependencies but for which all information-theory based
measures are identical. This means that we will not be able to see
those internal dependencies with our framework. This, of course, is
not surprising as entropy-based measures are integrals over nonlin-
ear functions of the underlying probability density functions, and
hence, details of these probability density functions will be lost. In
fact, the argument can easily be pushed further to something like:
any causal theory that relies on integral quantities of probability
density functions will miss out on certain details in these densi-
ties and hence potentially miss important causal structures. In our
view, it is impossible to avoid this issue as any causal theory is ulti-
mately based on summary statistics. It is unknown what real-world
causal structures are, but we do know that many systems do differ
in entropy-based measures, and it is these systems that we intend to
study with the present framework.

An important ingredient of this framework is still missing: a
proper uncertainty estimate on all terms. If long time series are avail-
able, one can split these up into shorter time series and calculate
the sample variance in the resulting sample of mutual informa-
tion calculations. A handle on the bias could be obtained by using
subseries of different length and compare sample means of differ-
ent time series length calculations. We are working on a complete
Bayesian setting for the framework to accommodate this shortcom-
ing as hypothesis testing on zero causal strength, which is often used
in present-day causal studies, is clearly not enough for scientific
exploration.

For some realistic systems, such as financial time series or cli-
mate change time series, causal discovery needs to be assessed on
non-stationary time series. The presented framework would need
to be extended to included them. There are several challenges to
address. These include defining the main changes, which may be a
function of the time scale of interest and the length of the time series.
As an example from climate science, we know climate, e.g., defined
as the joint pdf of system earth over a 30-year time scale, is changing.
Performing time-series-based causal discovery over a 100-year time

scale has to proceed with care for this pdf is changing. However, over
a million-year time scale, meaningful causal discovery can be per-
formed treating the time series as stationary. As another example,
systems with regime shifts can be treated as non-stationary, unless
one wants to study the cause of the regime shifts. A promising venue
for capturing causality on non-stationary time series based on time-
lagged information measures has been proposed by Papana et al.38

They use rank vectors based on delay vectors from the time series to
estimate the partial symbolic transfer entropy.

Finally, although the present-day formulations such as PID and
convergent cross mapping have shortcomings, it is important to
better understand what synergy, redundancy, and unique contribu-
tions actually mean and come up with a closed system such as the
framework presented in this paper, incorporating those ideas.
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