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ABSTRACT
We study the dominating sets and reverse Carleson measures on
exponentially weighted Bergman spaces Apω under a new metric.
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1. Introduction

Let H(D) denote the space of all analytic functions on D, where D is the open unit disk
in the complex plane C. For a, z ∈ D, let ρ(a, z) = |a − z|/|1 − āz| denote the pseudo-
hyperbolic metric and �(z, r) = {a ∈ D : ρ(a, z) < r} be the pseudo-hyperbolic disk. Let
σ(a, z) = |a − z|/|1 − āz|2 and D(z, r) = {a ∈ D : σ(a, z) < r}, where the metric σ is
introduced by Cho and Park [1]. A weight is a positive function ω ∈ L1(D, dA), where
dA(z) = dx dy

π
is the normalized area measure on D. For a Borel measurable set E ⊂ D, we

define

ω(E) =
∫
E
ω(z) dA(z).

It is obvious that ω(D) < ∞. For 0 < p < ∞, the weighted Bergman space Ap
ω consists of

those functions f ∈ H(D) for which

‖f ‖Ap
ω

=
(∫

D

|f (z)|pω(z)p/2 dA(z)
)1/p

< ∞.
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We are going to study the dominating sets and reverse Carlesonmeasures on exponentially
weighted Bergman spaces Ap

ω, for a certain class E of radial rapidly decreasing weights.
The class W , considered previously in [2–5], consists of the radial decreasing weights of
the form ω(z) = e−2ϕ(z), where ϕ ∈ C2(D) is a radial function such that (�ϕ(z))−1/2 �
τ(z), for some radial positive function τ(z) that decreases to 0 as |z| → 1− and satis-
fies limr→1− τ ′(r) = 0. Here, � denotes the standard Laplace operator. Furthermore, we
assume that there either exists a constantC>0 such that τ(r)(1 − r)−C increases for r close
to 1 or

lim
r→1−

τ ′(r) log
1

τ(r)
= 0.

A positive function τ on D is said to be of class L if it satisfies the two properties:

(A) there is a constant c1 such that τ(z) ≤ c1 (1 − |z|) for all z ∈ D;
(B) there is a constant c2 such that |τ(z) − τ(ζ )| ≤ c2|z − ζ | for all z, ζ ∈ D.

We also use the notation

mτ := min(1, c−1
1 , c−1

2 )

4
,

where c1 and c2 are the constants appearing in the previous definition. For a ∈ D and δ > 0,
we use Dδ(a) to denote the Euclidean disk centered at a and having radius δτ(a). It is easy
to see from conditions (A) and (B) (see [4, Lemma 2.1]) that if τ ∈ L and z ∈ D(δτ (a)),
then

1
2τ(a) ≤ τ(z) ≤ 2τ(a), (1)

for sufficiently small δ > 0, that is, for δ ∈ (0,mτ ).

Definition 1.1: We say that a weight ω is of class L∗ if it is of the form ω = e−2ϕ , where
ϕ ∈ C2(D) with �ϕ > 0, and (�ϕ(z))−1/2 � τ(z) with τ being a function in the class L.
Here � denotes the classical Laplace operator.

It is straightforward to see thatW ⊂ L∗. Now, we consider the class E that consists of
the weights ω ∈ W satisfying

C1ω(z) ≤ ω(a) ≤ C2ω(z), for z ∈ Dδ,r(a), (2)

whereDδ,r(a) := D(δτ (a)) ∪ D(a, r) andC1 andC2 are positive constants. The exponential
type weights

ωβ(z) := ωγ ,σ ,β(z) = (1 − |z|2)γ exp
( −β

(1 − |z|2)σ
)
, γ ≥ 0, σ > 0, β > 0,

are in the classW with associated subharmonic function

ϕγ ,σ ,β(z) = −γ log(1 − |z|2) + β(1 − |z|2)−σ .

We have

(�ϕγ ,σ ,β(z))−1 � τ(z)2 = (1 − |z|2)2+σ ,

and it is easy to see that τ(z) satisfies the conditions in the definition of the class W and
ωγ ,σ belongs to E , see Lemma 2.5 in [1] and Lemma 2.1.
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For a measurable subset G of D, we say that G is a dominating set for Ap
ω if there exists

a constant C>0 (depending on G) such that

‖f ‖p
Ap

ω

≤ C
∫
G

|f (z)|pω(z) dA(z), for any f ∈ Ap
ω.

Our first main result on the dominating sets for Ap
ω reads as follows.

Theorem 1.2: Suppose ω ∈ E and p>0. Let G be a measurable subset of D. Then G is a
dominating set of Ap

ω if and only if there exist constants δ > 0 and r ∈ (0, 1) such that

ω(G ∩ D(z, r)) > δω(D(z, r)) (3)

for all z ∈ D.

Let ω ∈ E and 0 < p, q < ∞. A positive Borel measure μ is a q-Carleson measure for
Ap

ω if there exists a constant C>0 such that∫
D

|f (z)|q dμ(z) ≤ C‖f ‖p
Ap

ω

, for f ∈ Ap
ω.

That means the inclusion Iμ : Ap
ω → Lq(D, dμ) is bounded.

In contrast, for a positive Borel measure μ, we say that μ is a q-reverse Carlesonmeasure
for Ap

ω if there exists a constant C>0 such that

‖f ‖p
Ap

ω

≤ C
∫

D

|f (z)|q dμ(z).

The concept of Carleson measures was first introduced by L. Carleson in order to study
interpolating sequences and the corona problem [6] on the algebraH∞ of all bounded ana-
lytic functions on the unit disk. It quickly became a powerful tool for the study of function
spaces and operators acting on them. The BergmanCarlesonmeasureswere first studied by
Hastings [7] and further pursued by Oleinik [8], Luecking [9, 10], Cima and Wogen [11],
and many others see, for instance, [12–14].

The reverse Carleson inequality on the classical Bergman spaces was firstly raised by
Luecking. Luecking [15] studied the dominating sets and the reverse Carleson inequality
for the classical Bergman spaces. It was generalized to the Bergman spaces on the unit ball
in [16] and in Hardy spaces, we refer the reader to [17]. Moreover, the closed range of
the restriction operators was studied based on the characterization of the reverse Carleson
inequality. The reverse Carleson inequality for the derivatives of Bergman functions was
studied by Luecking [10]. Recently, Korhonen and Rättyä [18] characterized the dominat-
ing set for the Bergman spaces with radial doubling weights and gave a necessary condition
of the dominating sets. Inspired by the results above, we study the reverse inequality for
the exponentially weighted Bergman spaces.

In this paper, we give some sufficient conditions for a p-Carleson measure to be a p-
reverse Carleson measure for the Bergman space Ap

ω, see Theorem 1.3 and Theorem 1.4
below.



4 C. TONG ET AL.

For any z ∈ D and r ∈ (0, 1/4), we consider

kr(z) = μ(D(z, r))
ω(D(z, r))

and ‖μ‖∗ = sup
z∈D

k 1
4
(z).

The next theorem describes a condition sufficient to guarantee that a positive Borel
measure μ is a p-reverse Carleson measure for Ap

ω.

Theorem 1.3: Supposeω ∈ E . Let p>0, ε > 0 and δ > 0. Let μ be a positive Borel measure
such that ‖μ‖∗ < ∞. If there exists a constant r ∈ (0, 1/4) such that the set G = {z ∈ D :
kr(z) > ε‖μ‖∗} satisfies (1), then μ is a p-reverse Carleson measure for Ap

ω.

The third result of our findings gives some sufficient conditions for a positive Borel
measure μ to satisfy a reverse Carleson inequality for derivatives of functions belonging to
Ap

ω.

Theorem 1.4: Let ω ∈ E and p>1. Let μ be a positive Borel measure satisfying

(1) there exists a constant c>0 such that μ(D(z, t)) ≤ cω(D(z, t)) for all z ∈ D and
t ∈ (0, 1/4);

(2) there exist constants δ > 0 and r ∈ (0, 1/4) such thatμ(D(z, r)) > δω(D(z, r)) for
all z ∈ D.

Then there exists a natural number n0 and a positive constant C such that

(∫
D

|f (z)|pω(z) dA(z)
) 1

p
≤ C

n∑
j=0

[∫
D

∣∣∣∣∣ f (j)(z)j!

∣∣∣∣∣
p

(1 − |z|2)jp dμ(z)

] 1
p

,

for all f ∈ Ap
ω and each natural number n ≥ n0.

Next, we close our study of reverse Carleson measures with the following theorem that
is a generalization of [19, Theorem 1], but before that let us give a definition: Let {μn} be a
sequence of measures on D. We say that μn converges weakly to a measure μ, denoted by
μn ⇀ μ, if ∫

D

h(z) dμn(z) →
∫

D

h(z) dμ(z),

for all h in the class Cc(D) of non-negative continuous compactly supported functions in
D.

Theorem 1.5: Let ω ∈ E and 0 < p < ∞. Let {μn} be a sequence of p-Carleson measures
for Ap

ω such that

� = sup
n

sup
ξ∈D

(
1

τ(ξ)2

∫
D(δτ (ξ)/2)

ω(z)−1 dμn(z)
)

< ∞.

Then, {μn} has a weakly convergent subsequence.
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Further, if μn ⇀ μ, then

lim
n→∞

∫
D

h(z) dμn(z) =
∫

D

h(z) dμ(z), h ∈ Ap
ω, (4)

and μ is a p-Carleson measure for Ap
ω. Furthermore, if μn are p-reverse Carleson measures

for Ap
ω, then μ is also a p-reverse Carleson measure for Ap

ω.

The paper is organized as follow: In Section 2, we recall some notations and preliminary
results which will be used later. In Section 3, we give some key lemmas that will play an
important role to prove the main results of this paper. Sections 4, 5 and 6 are devoted to
the proofs of our findings.

2. Preliminaries

In this section, we collect some preliminary results that we shall need in the rest of the
paper. We give some useful estimates.

Lemma2.1: For any r>0 sufficiently small and z ∈ D, there exists a constant C = C(r) > 0
such that

C−1
r ≤ 1 − |a|2

1 − |z|2 ≤ Cr

and

C−1
r ≤ 1 − |a|2

|1 − az̄| ≤ Cr

for any z ∈ D and all a ∈ D(z, r).

Lemma 2.1 can be found in [1, 20–22].

Lemma 2.2: For any r ∈ (0, 1/2) and z ∈ D, there exists a constant C>0 such that

C−1r2(1 − |z|2)4 ≤ A(D(z, r)) ≤ Cr2(1 − |z|2)4.

Moreover, for ω ∈ E , there exist positive constants C1 and C2 such that

C1(1 − |z|2)4ω(z) ≤ ω(D(z, r)) ≤ C2(1 − |z|2)4ω(z).

Proof: Given any r ∈ (0, 1/2) and z ∈ D, the first chain of inequalities follows from
Lemma 2.3 of [1]. We next prove the second chain. Since

ω(D(z, r)) =
∫
D(z,r)

ω(a) dA(a),

and by (2), we have

C1ω(z)A(D(z, r)) ≤ ω(D(z, r)) ≤ C2ω(z)A(D(z, r)).

The desired result follows from the first inequality of Lemma 2.2. �
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Lemma 2.3: Suppose ω ∈ E and 0 < r1, r2, r3 < 1/2. Then there exist constants c and C
such that

c ≤ ω(D(z, r1))
ω(D(a, r2)

≤ C

for any z and a in D with σ(a, z) ≤ r3.

Proof: The desired result follows from Lemmas 2.1 and 2.2. �

The following lemma is a generalized sub-mean value theorem.

Lemma 2.4: Let ω ∈ E , r ∈ (0, 1/2) and p>0. Then there exists constants C0 > 0 and
C>0 such that

|f (z)|p ≤ C0

ω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a)

and

|f (n)(z)|p ≤ C
(1 − |z|2)2npω(D(z, r))

∫
D(z,r)

|f (ξ)|p dA(ξ), (5)

for any z ∈ D and f ∈ H(D).

Proof: For any f ∈ Ap
ω, by Cauchy integral formula together with subharmonicity, there

exists a constant c = c(r) > 0 such that

|f (n)(z)|p ≤ c
(1 − |z|2)2np+4

∫
D(z,r)

|f (ξ)|p dA(ξ).

By (2), we obtain

|f (n)(z)|p ≤ C
(1 − |z|2)2np+4ω(z)

∫
D(z,r)

|f (a)|pω(a) dA(a).

By Lemma 2.2, we have

|f (n)(z)|p ≤ C′

(1 − |z|2)2npω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a),

which completes the proof. �

The following lemma gives comparable property of the exponential type weight ωβ in
Dδ(z).

Lemma 2.5: Let δ > 0 be small enough and β > 0. Then, there exist C1 > 0 and C2 > 0
such that

C1ωβ1(z) ≤ ωβ(ξ) ≤ C2ωβ2(z), ξ ∈ D(δτ (z)),

where β1 = 2tβ and β2 = 2−tβ with t = 2σ
2+σ

.
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Proof: Recall that

ωβ(z) := ωγ ,σ (z) = (1 − |z|2)γ exp
( −β

(1 − |z|2)σ
)
, γ ≥ 0, σ > 0, β > 0,

and its associated function τ has the following expression:

τ(z) = (1 − |z|2)1+σ/2, z ∈ D,

see [3, p 12]. By (1), we have

1
2t(1 − |z|2)σ ≤ 1

(1 − |ξ |2)σ ≤ 2t

(1 − |z|2)σ , ξ ∈ D(δτ (z)). (6)

Then,

exp
( −β1

(1 − |z|2)σ
)

≤ exp
( −β

(1 − |ξ |2)σ
)

≤ exp
( −β2

(1 − |z|2)σ
)
.

Using (6), we get the desired result. �

The following lemma on coverings is due to Oleinik, see [8]. One can also find a similar
result in [23].

Lemma 2.6: Let X be an open subset of D and let τ be a positive function on D as defined in
above. Let δ > 0 be small enough. Then there exists a sequence of points {an} ⊂ D such that
the following conditions are satisfied:

(i) an /∈ D( δ
4τ(ak)), n �= k.

(ii) X ⊂ ⋃
n D(δτ (an))

(iii) D̃(δτ (an)) ⊂ D(3δτ(an)), where D̃(δτ (an)) = ⋃
z∈D(δτ (an)) D(δτ (z)) n = 1, 2, 3,

. . ..
(iv) {D(3δτ(an))} is a covering of X of finite multiplicity N.

The multiplicity N in the previous lemma is independent of δ, and it is easy to see that
one can take, for example,N = 256. Any sequence satisfying the conditions in Lemma 2.6
will be called a (δ, τ)-lattice.

3. Key lemmas

In this section, we are going to give some key lemmas that will play an important role in
the proofs of our main results.

Suppose f ∈ H(D), λ ∈ (0, 1), r ∈ (0, 1) and p>0, we define a set

Eλ,r(z) = Eλ,r(f , z) = {a ∈ D(z, r) : |f (a)| > λ|f (z)|}
and the operator

Bp,λf (z) = 1
ω(Eλ,r(z))

∫
Eλ,r(z)

|f (a)|pω(a) dA(a),

where z ∈ D. To prove the sufficiency of Theorem 1.2, we need the following three lemmas.
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Lemma 3.1: Let r ∈ (0, 1/2), λ ∈ (0, 1) and p>0. Then there exists a constant C1 =
C1(r,α,β) > 1 such that

log
1
λp

+
(

1
C1

− 1
)
log |f (z)|p ≤ ω(Eλ(z))

ω(D(z, r))

(
log

1
λp

+ log
Bλf (z)
|f (z)|p

)
holds for any f ∈ Ap

ω and z ∈ D.

Proof: Since log |f |p is subharmonic, by Lemma 2.2 and (2), we obtain

log |f (z)|p ≤ C
(1 − |z|2)2

∫
D(z,r)

log |f (a)|p dA(a)

≤ C′

(1 − |z|2)2ω(z)

∫
D(z,r)

log |f (a)|pω(a) dA(a).

By Lemma 2.2, we have

log |f (z)|p ≤ C1

ω(D(z, r))

∫
D(z,r)

log |f (a)|pω(a) dA(a)

≤ C1

ω(D(z, r))

(∫
D(z,r)\Eλ,r(z)

+
∫
Eλ,r(z)

)
log |f (a)|pω(a) dA(a). (7)

On the one hand, the definition of Eλ,r implies

1
ω(D(z, r))

∫
D(z,r)\Eλ,r(z)

log |f (a)|pω(a) dA(a) ≤
(
1 − ω(Eλ,r(z))

ω(D(z, r))

)
log λp|f (z)|p. (8)

On the other hand, by Jensen’s inequality for the concave function log, we have

1
ω(D(z, r))

∫
Eλ,r(z)

log |f (a)|pω(a) dA(a) ≤ ω(Eλ,r(z))
ω(D(z, r))

logBp,λf (z).

Plugging this and (8) into (7), we conclude that(
1
C1

− 1
)
log |f (z)|p ≤ log λp + ω(Eλ,r(z))

ω(D(z, r))

(
log

Bp,λf (z)
|f (z)|p − log λp

)
,

which gives the desired result. �

Lemma 3.2: Let f ∈ Ap
ω, r ∈ (0, 1), p>0 and ε > 0, we define a set

Sr =
{
z ∈ D : |f (z)|p <

εp

ω(D(z, r))

∫
D(z,r)

|f (ξ)|pω(ξ) dA(ξ)

}
.

Then there exists a constant C = C(r,α,β) > 0 such that∫
Sr

|f (ξ)|pω(ξ) dA(ξ) ≤ Cεp
∫

D

|f (ξ)|pω(ξ) dA(ξ).
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Proof: For z ∈ Sr, we have

|f (z)|p ≤ εp

ω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a),

Integrating over z ∈ Sr on both sides of the inequality above and using Fubini’s theorem,
we obtain∫

Sr
|f (z)|pω(z) dA(z) ≤ εp

∫
S

1
ω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a)ω(z) dA(z)

≤ εp
∫
D

|f (a)|pω(a)
∫
S

1
ω(D(z, r))

χD(a,r)(z)ω(z) dA(z) dA(a)

≤ Cεp
∫

D

|f (a)|pω(a) dA(a),

where the last inequality follows from Lemma 2.3 and the fact χD(z,r)(a) = χD(a,r)(z). �

Lemma 3.3: Let f ∈ Ap
ω, r ∈ (0, 1/2), p>0 and ε ∈ (0, 1), we define a set

Tλ,ε = {z ∈ D : |f (z)|p < εp+2Bp,λf (z)}.

Then there exists a constant C2 = C2(p, r,α,β) > 0 such that

∫
Tλ,ε

|f (ξ)|pω(ξ) dA(ξ) ≤ C2ε
p
∫

D

|f (ξ)|pω(ξ) dA(ξ).

Proof: Let Sr be the same as in Lemma 3.2, we have

∫
Tλ,ε

|f (ξ)|pω(ξ) dA(ξ) =
∫
Tλ,ε∩Sr

|f (ξ)|pω(ξ) dA(ξ) +
∫
Tλ,ε\Sr

|f (ξ)|pω(ξ) dA(ξ).

The first integral has been estimated in Lemma 3.2. Next, we estimate the second integral.
By Fubini’s theorem, we obtain

∫
Tλ,ε\Sr

|f (z)|pω(z) dA(z)

≤ εp+2
∫
Tλ,ε\Sr

1
ω(Eλ,r(z))

(∫
Eλ,r(z)

|f (a)|p ω(a) dA(a)

)
ω(z) dA(z)

≤ εp+2
∫

D

|f (a)|p ω(a)

(∫
Tλ,ε\Sr

χD(a,r)(z)
ω(Eλ,r(z))

ω(z) dA(z)

)
dA(a).
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We claim that there exists a positive constant C>0 such that∫
Tλ,ε\Sr

χD(a,r)(z)
ω(Eλ,r(z))

ω(z) dA(z) ≤ C/ε2, for any a ∈ D and ε ∈ (0, 1). (9)

Assuming the claim, we have∫
Tλ,ε\Sr

|f (z)|pω(z) dA(z) ≤ C2ε
p
∫

D

|f (a)|pω(a) dA(a).

This finishes the proof. Now, it remains to prove (9). To obtain this, we need first to find an
upper bound of the quotient ω(D(z,r))

ω(Eλ,r(z)) that is proportional to ε−2. Indeed, by Lemmas 2.4
and 2.1, we can find a constant c1 = c1(r,β ,α) > 0 such that

|f (z) − f (a)| ≤ cr|z − a|
(1 − |z|2)2

(
1

ω(D(z, r))

∫
D(z,r)

|f (ξ)|p ω(ξ) dA(ξ)

) 1
p

≤ c1|z − a|
|1 − z̄a|2Mf ,

for all a ∈ D(z, r), where

Mf :=
(

1
ω(D(z, r))

∫
D(z,r)

|f (ξ)|pω(ξ) dA(ξ)

) 1
p
.

Letting ε < 2c1r and taking |z − a| < ε
2c1 |1 − z̄a|2, we have

|f (z) − f (a)| ≤ ε

2
Mf .

For any z /∈ Sr, we have |f (z)| ≥ εMf . Hence,

|f (a)| ≥ |f (z)| − ε

2
Mf ≥ 1

2
|f (z)|.

Let λ < 1/2, we have

|f (a)| ≥ λ|f (z)|,
and hence, a ∈ Eλ,r(z). Therefore, for any z /∈ S, ε < 2c1r andλ < 1/2,we haveD(z, ε

2c1 ) ⊂
Eλ,r(z). From this and Lemma 2.4, we can find a positive constant c2 = c2(r,α,β) such that

ω(D(z, r))
ω(Eλ,r(z))

≤ ω(D(z, r))
ω(D(z, ε

2c1 ))
≤ c

r2(1 − |z|2)4
ε2

4c21
(1 − |z|2)4

= c2
ε2

.

Therefore, by lemma 2.3, there exists a constant c3 = c3(r,α,β) > 0 such that∫
Tλ,ε\Sr

χD(a,r)(z)
ω(Eλ,r(z))

ω(z) dA(z) ≤ c2c3
ε2

.

This completes the proof. �
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The following lemma will be used to prove Theorem 1.3.

Lemma 3.4: Let p>0 and 0 < r < 1/4. Let μ and ν be positive Borel measure on D such
that μ(D(z, 1/4)) ≤ C3ω(D(z, 1/4)) and ν(D(z, r)) ≤ C4 ω(D(z, r)) for any z ∈ D. Then
there exists a constant C = C(p,α,β) > 0 such that∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (z) − f (a)|p dν(a) dμ(z) ≤ rpCC3C4‖f ‖pω,

for any f ∈ Ap
ω.

Proof: For any z ∈ D and r ∈ (0, 1/4), by Lemma2.1, we can find a sufficiently large c1 > 0
(independent of r) such that

1
c1

≤ 1 − |a|
|1 − āz| ≤ c1

whenever z ∈ D(a, r). Similarly, for a sufficient small r, by Lemma 2.4, we can find a
sufficiently large c2 > 0 (independent of r) such that

|f (z) − f (a)|p ≤ c2|z − a|p
(1 − |a|2)2p+4

∫
D(a,r)

|f (ξ)|p dA(ξ),

whenever z ∈ D(a, r). Multiplying both sides by χD(a,r)(z)/ω(D(a, r)), integrating with
respect to ν in the variable z, we have

1
ω(D(a, r))

∫
D(a,r)

|f (z) − f (a)|p dν(z)

≤ c2rp
1

ω(D(a, r))

∫
D(a,r)

|1 − āz|2p
(1 − |a|2)2p+4

(∫
D(a, 12 )

|f (ξ)|p dA(ξ)

)
dν(z)

≤ c2p1 c2c3rp
∫
D(a, 12 )

|f (ξ)|p
(1 − |ξ |2)4 dA(ξ)

ν(D(a, r))
ω(D(a, r)

≤ c C4rp
∫
D(a, 12 )

|f (ξ)|p
(1 − |ξ |2)4 dA(ξ),

the penultimate inequality follows from Fubini’s theorem and Lemma 2.1, and the last
inequality follows from the hypothesis on ν, where the positive constant c is independent
of r. Note the fact χD(ξ ,1/2)(a) = χD(a,1/2)(ξ). Integrating both sides with μ in the variable
a, by Fubini’s theorem, Lemma 2.2 and the hypothesis on μ, we obtain∫

D

(
1

ω(D(a, r))

∫
D(a,r)

|f (z) − f (a)|p dν(z)
)
dμ(a)

≤ CC4rp
∫

D

(∫
D(a, 12 )

|f (ξ)|p
(1 − |ξ |2)4 dA(ξ)

)
dμ(a)

≤ CC4rp
∫

D

|f (ξ)|p μ(D(ξ , 12 )
(1 − |ξ |2)4ω(ξ)

ω(ξ) dA(ξ)
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≤ CC4rp
∫

D

|f (ξ)|p μ(D(ξ , 12 )
ω(D(ξ , 12 ))

ω(ξ) dA(ξ)

≤ CC3C4rp
∫

D

|f (ξ)|pω(ξ) dA(ξ).

This completes the proof. �

We shall use the following lemma in the proof of Theorem 1.4.

Lemma 3.5: Let q ≥ p > 1, n ∈ N and μ be a positive Borel measure onD. Then there exists
a constant C>0 such that∫

D

|f (n)(z)|q dμ(z) ≤ C
(∫

D

|f (z)|pω(z) dA(z)
) q

p
(10)

for any f ∈ D if there exists a constant C′′ > 0 such that

μ(D(z, r)) ≤ C′′(ω(D(z, r))
q
p (1 − |z|2))nq (11)

for some (or equivalently any) r ∈ (0, 1).

Proof: We take (5), raise it to the q/p−power, and integrate with respect to μ. By
Lemmas 2.1 and 2.3, there exists a constant c1 = c1(α,β , r, p, n) > 0 such that

intD|f (n)(z)|q dμ(z)

≤
∫

D

(
C′

(1 − |z|2)2npω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a)
) q

p
dμ(z)

≤ c1C′ qp
∫

D

(∫
D(z,r)

1
(1 − |a|2)2npω(D(a, r))

|f (a)|pω(a) dA(a)
) q

p
dμ(z),

where C′ is the one defined in Lemma 2.4. Applying Minkowski’s inequality to the right-
hand side and using the fact χD(z,r)(a) = χD(a,r)(z), we obtain∫

D

|f (n)(z)|p dμ

≤ c1C′ qp

⎡⎣∫
D

(∫
D

χD(a,r)(z)

(1 − |a|2)2nqω(D(a, r))
q
p
|f (a)|qω(a)

q
p dμ(z)

) p
q

dA(a)

⎤⎦
q
p

= c1C′ qp

⎡⎣∫
D

|f (a)|pω(a)
(μ(D(a, r)))

p
q

ω(D(a, r))(1 − |a|2)2np dA(a)

⎤⎦
q
p

≤ C
(∫

D

|f (a)|pω(a) dA(a)
) q

p
,
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the last inequality follows from (16). The proof is complete. �

As is well known, maximal functions play a crucial role in the real-variable theory of
Hardy spaces [24]. In this paper, we establish a maximal function characterization for
the Bergman spaces. To this end, let X be a measurable subset of D. We define for each
sufficiently small δ, r > 0 and f ∈ H(X) :

Mδ(f )(z) = sup
ξ∈D(δτ (z))

|f (ξ)|, for z ∈ D.

The following result is used in the proof of the Theorem 1.5, but is of independent interest.

Theorem 3.6: Let δ > 0 be small enough, 0 < p < ∞. Let X be a measurable connected
open subset of D. Then, there exist positive constants C1 and C2 such that

C1‖Mδ(f )‖Lp(X,ω) ≤ ‖f ‖Lp(X,ω) ≤ C2‖Mδ(f )‖Lp(X,ω),

for any f ∈ H(X).

Proof: Let {an} be a (δ, τ)-lattice on X as defined in Lemma 2.6. By applying Lemma A in
[2], we have

‖Mδ(f )‖pLp(X,ω)
=
∫
X

sup
ξ∈D( δ

3 τ(z))
|f (ξ)|pω(z) dA(z)

≤
∞∑
n=1

∫
D(δτ (an))

sup
ξ∈D( δ

3 τ(z))
|f (ξ)|pω(z) dA(z)

≤ C
∞∑
n=1

∫
D(δτ (an))

Kδ,ω(z)ω(z) dA(z),

where

Kδ,ω(z) = sup
ξ∈D( δ

3 τ(z))

1
ω(ξ)τ(ξ)2

∫
D( δ

3 τ(ξ))

|f (s)|pω(s) dA(s).

By Lemma 2.6, (2), (1), and the fact that

|s − an| ≤ |s − ξ | + |ξ − z| + |z − an| ≤ δ

3
τ(ξ) + δ

3
τ(z) + δτ(an)

≤ 2δ
3

τ(z) + δ

3
τ(z) + δτ(an) ≤ 3δτ(an),

we obtain ∫
D(δτ (an))

Kδ,ω(z)ω(z) dA(z) �
∫
D(3δτ(an))

|f (s)|pω(s) dA(s).

Then,

‖Mδ(f )‖pLp(X,ω)
≤ C

∞∑
n=1

∫
D(3δτ(an))

|f (s)|pω(s) dA(s) ≤ C‖f ‖pLp(X,ω)
.

In addition, by Lemma A in [2] with β = 0, the definition of the maximal function
Mδ(f ), (2) and (1), we get the other inequality. This completes the proof. �



14 C. TONG ET AL.

4. Proof of Theorem 1.2

Proof: We first prove the necessity. We set fa = Fa/‖Fa‖ω for any a ∈ D, then ‖fa‖ω = 1.
By Lemma 2.1, we can find b1 > 0 such that

1
b1

≤ 1 − |a|2
|1 − z̄a| ≤ b1, (12)

whenever z ∈ D(a, r). It follows that∫
D(a,r)

|fa(ξ)|pω(ξ) dA(ξ) ≥ 1
b21‖Fa‖pω

.

Then ∫
G\D(a,r)

|fz(ξ)|pω(ξ) dA(ξ) ≤
(∫

D

−
∫
D(a,r)

)
|fa(ξ)|pω(ξ) dA(ξ)

≤ 1 − 1
b21‖Fa‖pω

.

Since G is a dominating set of Ap
ω, then there exists a constant b2 > 0 such that∫

D

|fa(ξ)|pω(ξ) dA(ξ) ≤ b2
∫
G

|fa(ξ)|pω(ξ) dA(ξ).

By (12), we have ∫
G∩D(a,r)

|fa(ξ)|pω(ξ) dA(ξ) ≤ b21
‖Fa‖pω

ω(G ∩ D(a, r))
ω(D(a, r))

,

Since G ∩ D(a, r) = G \ (G \ D(a, r)), we have

ω(G ∩ D(a, r))
ω(D(a, r))

≥ ‖Fa‖pω
b21

(∫
G

−
∫
G\D(a,r)

)
|fa(ξ)|pω(ξ) dA(ξ)

≥ ‖Fa‖pω
b21

(
1
b2

−
(
1 − 1

b21‖Fa‖pω

))

=
(
1
b2

− 1
) ‖Fa‖pω

b21
+ 1

b21

≥
(
1
b2

− 1
) ∫

D(a,r)
(1−|a|2)2
|1−z̄a|2

1
ω(D(a,r))ω(z) dA(z)

b21
+ 1

b41

≥ 1
b41b2

.

The last inequality follows from (12). From this, the necessity follows by taking
δ = b−4

1 b−1
2 .
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It remains to prove the sufficiency. We first prove f ∈ Ap
ω with ‖f ‖∞ ≤ 1. For ε > 0, let

E = D \ Tλ,ε = {z ∈ D : |f (z)|p ≥ εp+2Bλf (z)},

where Tλ,ε is the one defined in Lemma 3.4. By using this lemma, there exists a constant
C1 > 1 such that∫

D

|f (ξ)|p ω(ξ) dA(ξ) =
(∫

E
+
∫
Tλ,ε

)
|f (ξ)|p ω(ξ) dA(ξ)

≤
∫
E
|f (ξ)|pω(ξ) dA(ξ) + C1ε

p
∫

D

|f (ξ)|pω(ξ) dA(ξ).

Choosing ε small enough such that εpC1 < 1/2, we obtain∫
D

|f (ξ)|pω(ξ) dA(ξ) < 2
∫
E
|f (ξ)|pω(ξ) dA(ξ). (13)

By Lemma 2.4 and the definition of Eλ,r, we can obtain

|f (z)|p ≤ C0

∫
Eλ,r(z) |f (a)|pω(a) dA(a)

ω(D(z, r))

∫
D(z,r) |f (a)|pω(a) dA(a)∫
Eλ,r(z) |f (a)|pω(a) dA(a)

= C0

∫
Eλ,r(z) |f (a)|pω(a) dA(a)

ω(D(z, r))

(∫
D(z,r)\Eλ,r(z) + ∫Eλ,r(z)

)
|f (a)|pω(a) dA(a)∫

Eλ,r(z) |f (a)|pω(a) dA(a)

≤ C0

∫
Eλ,r(z) |f (a)|pω(a) dA(a)

ω(D(z, r))

(
1 +

∫
D(z,r)\Eλ,r(z) ω(a) dA(a)∫

Eλ,r(z) ω(a) dA(a)

)

= C0

ω(Eλ,r(z))

∫
Eλ,r(z)

|f (a)|pω(a) dA(a)

= C0Bλf (z),

Take

λp < min
{

1
C0

, ε
2p+4

δ

}
.

Since ‖f ‖∞ ≤ 1 and C1 > 1, we have (C−1
1 − 1) log |f (z)|p ≥ 0 for any z ∈ D. Combining

this with (13) and Lemma 3.1, we obtain

ω(Eλ,r(z))
ω(D(z, r))

≥
log 1

λp + ( 1
C1

− 1) log |f (z)|p

log 1
λp + log Bλf (z)

|f (z)|p

≥
2
δ
log 1

εp+2

2
δ
log 1

εp+2 + log 1
εp+2

≥ 1 − δ

2
,
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for any z ∈ E. Thus,

ω(Eλ,r(z)) > ω(D(z, r) \ Eλ,r(z)) + ω(Eλ,r(z)) − δ

2
ω(D(z, r)).

Then

ω(D(z, r) \ Eλ,r(z)) ≤ δ

2
ω(D(z, r)).

By (3), we obtain

ω(G ∩ Eλ,r(z)) = ω(G ∩ [D(z, r) \ (D(z, r) \ Eλ,r(z))])

= ω(G ∩ D(z, r)) − ω(G ∩ (D(z, r) \ Eλ,r(z)))

> δω(D(z, r)) − δ

2
ω(D(z, r))

= δ

2
ω(D(z, r)).

Therefore,

1
ω(D(z, r))

∫
G

χD(z,r)(a)|f (a)|pω(a) dA(a) ≥ 1
ω(D(z, r))

∫
G

χEλ,r(z)(a)|f (a)|pω(a) dA(a)

≥ λp|f (z)|pω(G ∩ Eλ,r(z))
ω(D(z, r))

≥ δλp

2
|f (z)|p. (14)

Integrating both sides over E, by Funini’s theorem and (14), we obtain∫
E

1
ω(D(z, r))

∫
G

χD(z,r)(a)|f (a)|pω(a) dA(a)ω(z) dA(z)

=
∫
G

|f (a)|pω(a)
(∫

E

1
ω(D(z, r))

χD(a,r)(z)ω(z) dA(z)
)
dA(a)

>
δλp

2

∫
E
|f (z)|pω(z) dA(z)

>
δλp

4

∫
D

|f (z)|pω(z) dA(z). (15)

By Lemma 2.3, there exists a constant C = C(α,β , r) > 0 such that∫
E

1
ω(D(z, r))

χD(a,r)(z)ω(z) dA(z) ≤ C
ω(E ∩ D(a, r))

ω(D(a, r))
≤ C.

By (15), we obtain∫
G

|f (ξ)|pω(ξ) dA(ξ) ≥ Cδ

4
λp
∫

D

|f (ξ)|pω(ξ) dA(ξ).

This finishes the proof of the case f ∈ Ap
ω with ‖f ‖∞ ≤ 1.
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For more general f ∈ Ap
ω ∩ H∞, we need only to take g = f /‖f ‖∞. For f ∈ Ap

ω, it fol-
lows from Proposition 1.2 in [3] that polynomials are dense in Ap

ω whenever ω is radial
weight. Therefore, we can approximate f in the Ap

ω-norm by a polynomial sequence {pn}.
Since ∫

D

|pn(z)|pω(z) dA(z) ≤ C
∫
G

|pn(z)|pω(z) dA(z)

and taking n → ∞, we obtain the desired result. This completes the proof. �

As an application of Theorem 1.2, we characterize invertible Toeplitz operators Th on
A2

ω, where h is a bounded measurable function on D. Recall that the Toeplitz operator Th :
A2

ω → A2
ω is defined by Th(f ) = P(hf ), where P is the Bergman projection from L2ω onto

A2
ω. Toeplitz operators are studied intensively during the past decades. Interested readers

can refer [3, 23, 25–27] and the references therein.

Corollary 4.1: Let p>0 and h be a bounded measurable function on D. Let ω ∈ W such
that the polynomials are dense in Ap

ω. Then the following are equivalent.

(1) Th is invertible on A2
ω.

(2) There exists t>0 such that the set Gt = {z ∈ D : |h(z)| > t} satisfies (3).
(3) There exists a constant η > 0 such that∫

D

|h(z)f (z)|pω(z) dA(z) ≥ η

∫
D

|f (z)|pω(z) dA(z), (16)

for any f ∈ Ap
ω.

Proof: The proof of the statement (1) is equivalent to (2) is similar to the one obtained in
[15, Corollary 3], we omit the details.

Now we assume (3) and prove (2). By (16), there exists a constant η > 0 such that

η

∫
D

|f (z)|pω(z) dA(z) ≤
∫

D

|h(z)f (z)|pω(z) dA(z)

≤
∫
Gt

|h(z)f (z)|pω(z) dA(z) + tp
∫

|h|≤t
|f (z)|pω(z) dA(z),

for any f ∈ Ap
ω. Since h is a boundedmeasurable function onD, then there exists a constant

M>0 such that |h(z)| ≤ M, for every z ∈ D. Taking tp < η, we have

(η − tp)
∫

D

|f (z)|pω(z) dA(z) ≤
∫
Gt

|h(z)f (z)|pω(z) dA(z)

≤ M
∫
Gt

|f (z)|pω(z) dA(z).

That is, Gt is a dominating set. The set Gt satisfies (3), by Theorem 1.2, which gives the
desired result.
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Conversely, by our hypothesis and Theorem 1.2, there exists a constant C>0 such that∫
D

|f (z)|pω(z) dA(z) ≤ C
∫
Gt

|f (z)|pω(z) dA(z),

for any f ∈ Ap
ω. It follows that∫

D

|h(z)f (z)|pω(z) dA(z) ≥
∫
Gt

|h(z)f (z)|pω(z) dA(z) ≥ tp

C

∫
D

|f (z)|pω(z) dA(z).

By taking η = tp/C, the statement (2) is proven. This completes the proof. �

5. Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3: Applying Lemma 3.4 in the case dν = ω dA, then there exists a
constant C = C(p,α,β ,μ) > 0 such that∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (z) − f (a)|pω(a) dA(a) dμ(z) ≤ Crp‖f ‖pω, (17)

where 0 < r < 1/4 and f ∈ Ap
ω. We first prove the case 1 < p < ∞. Rasing the 1/p-

power to the inequality above and using Mincowski’s inequality to the left-hand side, we
obtain (∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a) dμ(z)
) 1

p

−
(∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (z)|pω(a) dA(a) dμ(z)
) 1

p
≤ C

1
p r‖f ‖ω. (18)

On the one hand, since 0 < r < 1/4, by Fubini’s theorem, Lemma 2.3 and the definition
of G, we can find a constant c1 > 0 independent of r such that∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (a)|pω(a) dA(a) dμ(z)

=
∫

D

|f (a)|pω(a)
(∫

D

χD(a,r)(z)
ω(D(z, r))

dμ(z)
)

dA(a)

≥ c1
∫

D

|f (a)|pω(a)kr(a) dA(a)

≥ c1ε
∫

D

|f (a)|pω(a)‖μ‖∗χG(a) dA(a)

= c1ε‖μ‖∗
∫
G

|f (a)|pω(a) dA(a).
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On the other hand, we have∫
D

1
ω(D(z, r))

∫
D(z,r)

|f (z)|pω(a) dA(a) dμ(z) =
∫

D

|f (z)|p
∫
D(z,r) ω(a) dA(a)

ω(D(z, r))
dμ(z)

=
∫

D

|f (z)|p dμ(z).

By (18), we obtain

(
c1ε‖μ‖∗

∫
G

|f (a)|pω(a) dA(a)
) 1

p
−
(∫

D

|f (z)|p dμ(z)
) 1

p
≤ C

1
p r‖f ‖ω.

Since G satisfies (3), by Theorem 1.2, there exists a constant c2 > 0 such that∫
D

|f |pω dA ≤ c2
∫
G

|f |pω dA

for all f ∈ Ap
ω. Choosing r small enough such that Crp ≤ c1ε‖μ‖∗/c2, we obtain(∫

D

|f |pω dA
) 1

p
≤ 1

(
c1ε‖μ‖∗

c2 )
1
p − (Crp)

1
p

(∫
D

|f |p dμ
) 1

p
,

which proves the case 1 < p < ∞.
Now we study the case 0 < p ≤ 1. Applying the inequality |a − b|p ≥ |a|p − |b|p to the

left-hand side of (17), we obtain∫
D

1
ω(D(z, r))

∫
D(z,r)

f (a)|pω(a) dA(a) dμ(z)

−
∫

D

1
ω(D(z, r))

∫
D(z,r)

|f (z)|pω(a) dA(a) dμ(z) ≤ Crp‖f ‖pω.

By an argument similar to that in the case 1 < p < ∞, we obtain∫
D

|f |pω dA ≤ 1
c1ε‖μ‖∗

c2 − Crp

∫
D

|f |p dμ.

This completes the proof. �

Proof of Theorem 1.4: Let ε and t be small positive numbers whose exact value will be
specified later, and let

G =
{
a ∈ D :

μ(D(a, t))
ω(D(a, t))

> ε

}
.

We first use Theorem 1.2 to prove that condition (2) implies that (3) holds forD(z, 2r) and
some choice of ε > 0 and δ > 0, where r ∈ (0, 1/4) is from condition (2). Indeed, on the
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one hand, if

ω(G ∩ D(z, 2r)) ≤ δω(D(z, 2r))

for any ε and δ, then we consider the set

K = D \ G =
{
z ∈ D :

μ(D(a, t))
ω(D(a, t))

≤ ε

}
.

We would have

ω(K ∩ D(z, 2r)) = ω(D(z, 2r) \ (G \ D(z, 2r)))

= ω(D(z, 2r)) − ω(G \ D(z, 2r))

≥ ω(D(z, 2r)) − δω(D(z, 2r))

= (1 − δ)ω(D(z, 2r)),

that is,

δω(D(z, 2r)) ≥ ω(D(z, 2r)) − ω(K ∩ D(z, 2r)) = ω(D(z, 2r) \ K). (19)

Let t ∈ (0, r]. It is easy to see that

ω(D(z, 2r) ∩ D(w, t)) ≥ χD(z,r)(w)ω(D(w, t)) (20)

for all w ∈ D. For any ε and δ, it follows form (19), (20) and Lemma 2.3 that there exists a
constant c2 = c2(α,β , t, r) > 0 such that

ε + δ sup
a∈D

μ(D(a, t))
ω(D(a, t))

≥ ε
ω(K ∩ D(z, 2r))

ω(D(z, 2r))
+ δ

ω(D(z, 2r))
ω(D(z, 2r))

sup
a∈D

μ(D(a, t))
ω(D(a, t))

≥ 1
ω(D(z, 2r))

∫
K∩D(z,2r)

μ(D(a, t))
ω(D(a, t))

ω(a) dA(a)

+ 1
ω(D(z, 2r))

∫
D(z,2r)−K

μ(D(a, t))
ω(D(a, t))

ω(a) dA(a)

= 1
ω(D(z, 2r))

∫
D(z,2r)

μ(D(a, t))
ω(D(a, t))

ω(a) dA(a)

= 1
ω(D(z, 2r))

∫
D

(∫
D

χD(z,2r)(a)χD(w,t)(a)
ω(D(a, t))

ω(a) dA(a)
)
dμ(w)

≥ c
ω(D(z, 2r))

∫
D

ω(D(2z, r) ∩ D(w, t))
ω(D(w, t))

dμ(w)

≥ c
ω(D(z, 2r))

∫
D

χD(z,r)(w)ω(D(w, t))
ω(D(w, t))

dμ(w)

≥ c
μ(D(z, r))
ω(D(z, 2r))

> c2
μ(D(z, r))
ω(D(z, r))

> c2s > 0.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 21

It follows from condition (1) that there exists a constantM>0 such that

sup
a∈D

μ(D(a, t))
ω(D(a, t))

< M.

For fixed s>0, we can choose some ε and δ such that

ε + δM ≤ c2s.

This would be in contradiction with our earlier assumption. Thus, we have shown that (1)
holds for D(z, 2r) and some choice of ε > 0 and δ > 0.

Write D = G ∪ K. It follows from the assertion (2) of Theorem 1.2 that there exists a
constant c3 > 0 such that∫

D

|f (a)|p μ(D(a, t))
ω(D(a, t))

ω(a) dA(a) ≥
∫
G

|f (a)|p μ(D(a, t))
ω(D(a, t))

ω(a) dA(a)

≥ ε

∫
G

|f (a)|pω(a) dA(a)

≥ c3ε
∫

D

|f (a)|pω(a) dA(a).

On the other hand, it follows from Lemma 2.3 and Fubini’s theorem that there exists a
constant c4 = c4(α,β , t) > 0 such that∫

D

|f (a)|p μ(D(a, t))
ω(D(a, t))

ω(a) dA(a) =
∫

D

|f (a)|p
ω(D(a, t))

∫
D

χD(a,t)(z) dμ(z)ω(a) dA(a)

=
∫

D

∫
D(z,t)

|f (a)|p
ω(D(a, t))

ω(a) dA(a) dμ(z)

≤ c4
∫

D

1
ω(D(z, t))

∫
D(z,t)

|f (a)|pω(a) dA(a) dμ(z).

Therefore, we have established the inequality

(∫
D

|f (ξ)|pω(ξ) dA(ξ)

) 1
p

≤ Ct

[∫
D

(∫
D(z,t) |f (a)|pω(a) dA(a)

ω(D(z, t))

)
dμ(z)

] 1
p

, (21)

for t>0, where Ct = Ct(α,β , ε, p, t) > 0.
We use Taylor formula to expand f (a) on the right-hand side of (21) and then use

Minkowski’s inequality, the result is

Ct

[∫
D

(∫
D(z,t) |f (a)|pω(a) dA(a)

ω(D(z, t))

)
dμ(z)

] 1
p

≤ Ct

n∑
j=0

[∫
D

1
ω(D(z, t))

∫
D(z,t)

∣∣∣∣∣ f (j)(z)(a − z)j

j!

∣∣∣∣∣
p

ω(a) dA(a) dμ(z)

] 1
p
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+ Ct

[∫
D

1
ω(D(z, t))

∫
D(z,r)

1
n!

∫ a

z
(a − ζ )nf (n+1)(ζ ) dζ |pω(a) dA(a) dμ(z)

] 1
p
.

(22)

The sum on j is easily estimated as

n∑
j=0

(∫
D

1
ω(D(z, t))

∫
D(z,t)

∣∣∣∣∣ f (j)(z)(a − z)j

j!

∣∣∣∣∣
p

ω(a) dA(a) dμ(z)

) 1
p

≤ cn5
n∑
j=0

(∫
D

∣∣∣∣∣ f (j)(z)(1 − |z|)j
j!

∣∣∣∣∣
p

dμ(z)

) 1
p

, (23)

the inequality above follows by the fact that |a − z| ≤ c5(1 − |z|) whenever a ∈ D(z, t),
where c5 = c5(t) > 1. To estimate the second part of (21), we note that |a − ζ | ≤ c5(1 −
|z|) and |a − z| ≤ c5(1 − |z|). From Lemma 3.5 and the arguments on page 102 of [10],
combining (21), (22) and (23), we obtain

(∫
D

|f (ξ)|pω(ξ) dA(ξ)

) 1
p

≤ Ctcn5

⎛⎝ n∑
j=0

(∫
D

∣∣∣∣∣ f (j)(z)(1 − |z|)j
j!

∣∣∣∣∣
p

dμ(z)

)⎞⎠
1
p

+ CtC(C′t)n
(∫

D

|f (ξ)|pω(ξ) dA(ξ)

) 1
p
, (24)

where C′ and C are two positive constants independent of n and t. We first choose t such
that C′t < 1 and Ct is fixed. Then we choose positive integer n0 such that CtC(C′t)n0 < 1.
The desired result now follows by moving the second term on the right-hand side of (24)
to the left-hand side. This completes the proof of the theorem. �

6. Proof of Theorem 1.5

The first statement can be established by following the same proof of [19, Theorem 1].
Now, we prove (4). Let f ∈ Ap

ω and h ∈ Cc(D) satisfying h(z) ≤ 1 for all z ∈ D. On the
one hand, by Fatouś lemma and since μn ⇀ μ, we have

lim inf
n→∞

∫
D

|f (z)|p dμn(z) ≥ lim
n→∞

∫
D

h(z)|f (z)|p dμn(z) =
∫

D

h(z)|f (z)|p dμ(z).

Since we may let such h increase to 1 on the whole unit disk, we have

lim inf
n→∞

∫
D

|f (z)|p dμn(z) ≥
∫

D

|f (z)|p dμ(z). (25)

On the other hand, let ε > 0 and take r close enough to 1 such that∫
D\D(0,r)

|f (z)|pω(z) dA(z) ≤
∫

D\D(0,r1)
|f (z)|pω(z) dA(z) < ε, (26)
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where r1 = r − 2(1 − r). Let h ∈ Cc(D) such that h(z) ≤ 1 for all z ∈ D and h = 1 on
D(0, r). Then,∫

D

|f (z)|p dμn(z) ≤
∫

D

h(z) |f (z)|p dμn(z) +
∫

D\D(0,r)
|f (z)|p dμn(z). (27)

We first handle the second integral on right-hand side and consider the open sets E =
D \ D(0, r) and Ẽ = D \ D(0, r1). It is clear that E ⊂ Ẽ. Take X = Ẽ in Lemma 2.6. From
(A) of the definition of τ , we have

τ(z) ≤ c1(1 − |z|) for z ∈ D and δc1 < 1
4 .

Then, for sufficiently small 0 < δ < 1, z ∈ E and ξ ∈ D(δτ (z)), we have

|ξ | ≥ |z| − |δτ(z)| ≥ r − δc1(1 − r) ≥ r − 2(1 − r) = r1,

which implies that ξ ∈ Ẽ. Therefore, by LemmaA in [2], Fubini’s theorem and (1), we have∫
E
|f (z)|p dμn(z) ≤ C

∫
E

1
τ(z)2ω(z)

∫
D( δ

4 τ(z))
|f (ξ)|pω(ξ) dA(ξ) dμn(z)

≤ C
∫
Ẽ
Mδ(f )(ξ)ω(ξ)

(
1

τ(ξ)2

∫
D(δτ (ξ)/2)

dμn(z)
ω(z)

)
dA(ξ).

Since μn is p-Carleson measure for Ap
ω,

Kδ
ω(μn) = sup

ξ∈D

(
1

τ(ξ)2

∫
D(δτ (ξ)/2)

ω(z)−1 dμn(z)
)

< ∞,

see Theorem 1 in [4]. Thus, by Theorem 3.6 and (26), we obtain∫
E
|f (z)|p dμn(z) ≤ CKδ

ω(μn)

∫
Ẽ
Mδ(f )(ξ)ω(ξ) dA(ξ)

≤ CKδ
ωα,β1

(μn)

∫
Ẽ
|f (ξ)|ω(ξ) dA(ξ)

≤ C�ε.

Therefore, by taking the limit superior of (27), we obtain

lim sup
n→∞

∫
D

|f (z)|p dμn(z) ≤
∫

D

h(z)|f (z)|p dμ(z) + C�ε

≤
∫

D

|f (z)|p dμ(z) + C�ε

≤
∫

D

|f (z)|p dμ(z),

since ε is arbitrary. By combining this with (25), we deduce (4).
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Moreover, since μn are p-Carleson measures for Ap
ω, we have∫

D

|f (z)|p dμn(z) ≤ �1‖f ‖pAp
ω

, f ∈ Ap
ω and n ∈ N,

where �1 = supn ‖Iμn‖p. By identity (4), we may pass to the limit to obtain∫
D

|f (z)|p dμ(z) ≤ �1‖f ‖pAp
ω

, f ∈ Ap
ω.

Thus, μ is a p-Carlesonmeasure forAp
ω. In the case of reverse Carlesonmeasures, the lower

inequality follows in a manner similar to above. Details of this step are omitted.
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