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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The trade-off between offspring size and number is central to life history strategies. Both the

evolutionary gain of parental care or more favorable habitats for offspring development are

predicted to result in fewer, larger offspring. However, despite much research, it remains

unclear whether and how different forms of care and habitats drive the evolution of the

trade-off. Using data for over 800 amphibian species, we demonstrate that, after controlling

for allometry, amphibians with direct development and those that lay eggs in terrestrial envi-

ronments have larger eggs and smaller clutches, while different care behaviors and adapta-

tions vary in their effects on the trade-off. Specifically, among the 11 care forms we

considered at the egg, tadpole and juvenile stage, egg brooding, male egg attendance, and

female egg attendance increase egg size; female tadpole attendance and tadpole feeding

decrease egg size, while egg brooding, tadpole feeding, male tadpole attendance, and male

tadpole transport decrease clutch size. Unlike egg size that shows exceptionally high rates

of phenotypic change in just 19 branches of the amphibian phylogeny, clutch size has

evolved at exceptionally high rates in 135 branches, indicating episodes of strong selection;

egg and tadpole environment, direct development, egg brooding, tadpole feeding, male tad-

pole attendance, and tadpole transport explain 80% of these events. By explicitly consider-

ing diversity in parental care and offspring habitat by stage of offspring development, this

study demonstrates that more favorable conditions for offspring development promote the

evolution of larger offspring in smaller broods and reveals that the diversity of parental care

forms influences the trade-off in more nuanced ways than previously appreciated.

Introduction

Life history theory [1,2] aims to explain how diverse life history strategies evolve under natural

selection. Central to the theory are trade-offs that optimize resource allocation to the compet-

ing demands of growth, reproduction, and self-maintenance, under the assumption that indi-

vidual resources are finite. A key life history trade-off is between the number and size of
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offspring produced in a given reproductive attempt [3,4]. In many species, larger offspring are

of greater quality and enjoy higher survival [5,6]. However, producing larger offspring comes

at the cost of having fewer of them [1,2], a theoretical prediction repeatedly supported in many

animal and plant species and populations [5,7,8]. Surprisingly, despite much research, it is still

unclear whether and how selective pressures related to environmental conditions and type of

parental care drive evolutionary changes in the offspring size–number trade-off [9–20].

Answering this question is fundamental not only for advancing theory, but also because these

life history traits influence the demographic trajectory of natural and introduced populations

[21–25] and their ability to overcome many anthropogenic stressors [24,26–28]. For example,

in several taxa, fecundity influences extinction risk [27,29], population growth rate [30], inva-

sion success [21,22], and the ability to thrive in urban, or more generally human-modified,

habitats [26,28]. Here, we test hypotheses predicting that parental care or terrestrial habitats in

which offspring develop alter the offspring size–number trade-off, specifically leading to

smaller clutches of larger eggs, in a sample of over 800 amphibian species. Importantly, selec-

tion is expected to increase rates of phenotypic evolution on target traits [31–36]. Therefore,

we expect that egg and clutch size exhibit higher phenotypic change when under selection

imposed by parental care and offspring habitat. To test these predictions, we employ cutting

edge Bayesian phylogenetic comparative methods [31,37] that quantify the strength and direc-

tion of associations of parental care and offspring habitat with the trade-off and simultaneously

identify heterogeneity in rates of phenotypic evolution. By testing whether higher rates of evo-

lution in egg or clutch size are explained by parental care diversity and offspring habitat, our

approach allows us to get closer to causation at a large comparative scale than what is possible

with standard phylogenetic comparative methods. Finally, unlike most previous studies, we

treat individual care behaviors and adaptations by each parental sex as separate drivers rather

than clumping them together, since they likely entail different costs and benefits to the carer

(s), are likely favored under diverse ecological conditions, and may thus influence the trade-off

differently. Combined, our analyses provide a powerful and comprehensive test of the hypoth-

eses that parental care diversity and offspring habitat are responsible for evolutionary changes

in egg and clutch size.

Natural selection should favor the evolution of larger eggs when environmental conditions

are favorable and offspring survival is high. Specifically, theoretical models and empirical stud-

ies find that females invest in larger offspring when predation on offspring is low, or in stable,

competitive environments [18,38–41]. Terrestrial habitats may promote the evolution of larger

eggs in amphibians through different mechanisms. Since eggs are eaten by many vertebrate

and invertebrate species in aquatic habitats, laying eggs on land has long been viewed as an

adaptation that minimizes egg predation and could in turn promote the evolution of larger

eggs (fish: [42]; amphibians: [39,43–45]). Moreover, larger eggs in terrestrial habitats experi-

ence lower water loss, hence risk of desiccation, having a more favorable volume to surface

ratio than smaller ones [46,47].

Parental care is also considered a possible driver for the evolution of larger offspring. Specif-

ically, theoretical models suggest that parental care may evolve to buffer the offspring against

unfavorable environmental conditions when offspring mortality is high or in favorable but

ephemeral habitats [13,48–53]. Subsequently, higher offspring survival should promote addi-

tional parental investment, such as in larger eggs [13,52,53]. This is because, while larger eggs

take longer to hatch and thus require prolonged parental protection, they are of higher fitness

value to parents as they result in larger larvae or juveniles that suffer low mortality and reach

sexual maturity early [20].

Offspring number rather than offspring size may, however, be the target of selection.

EnvironmentalAU : PleasecheckandconfirmthattheeditstothesentenceEnvironmentalconditionscandrivebroodsizeevolution½19; 27�since:::didnotaltertheintendedthoughtofthesentence:conditions can drive brood size evolution [19,27] since they determine the
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mortality risks on eggs and young, for example, due to predation, desiccation, thermoregula-

tion, or oxygen availability [17,20,54,55], and the amount of resources available to females for

provisioning their eggs and young posthatching/birth in caring species [17]. Discovering

which trait in the trade-off is under selection is thus not trivial because reasons as to why

females should invest in larger or in more offspring may differ and a change in one of the traits

in the trade-off does not always lead to a proportional change in the other. For example, mam-

mals with biparental care are more fecund, but neonatal size does not differ in species with

biparental or uniparental care, suggesting that biparental care has evolved to enhance parental,

rather than offspring, fitness [56]. Similarly, selection in reef fishes has acted differently on egg

size and clutch size [18]. Specifically, demersal guarded eggs are larger than pelagic and scat-

tered eggs as predicted by theoretical models of parental care evolution [13,52,53], while

clutches are bigger in larger species, likely reflecting fecundity selection [19,27], but clutch size

is unrelated to egg size. ToAU : PleasecheckandconfirmthattheeditstothesentenceToidentifywhetherselectionbyaproposeddriveraltersoffspring:::didnotaltertheintendedthoughtofthesentence:identify whether selection by a proposed driver alters offspring size

and/or offspring number, both elements of the trade-off, needs to be considered.

Comparative studies on the relative importance of the drivers of offspring size and number

reach different conclusions. For example, some found that eggs are larger in caring than non-

caring fish species [11,13,20], but egg size is unrelated to parental care in insects [9] and neona-

tal size is unrelated to any male care behaviors in mammals [56]. Likewise, studies in

amphibians disagree on whether care, terrestrial egg development, or neither is associated

with larger eggs or smaller clutches [10,12,14–16]. Many previous comparative studies have

focused only on offspring size and care, or offspring number and environmental conditions,

and ignored one or more of the following factors that may covary with them: the trade-off

between offspring size and number as discussed above, the stage of development (egg, larvae,

or juvenile) at which the offspring are terrestrial (offspring habitat) and/or are cared for, the

diversity in parental care strategies, and allometry (S1 Table). Specifically, offspring size may

change not because directly under selection but when selection alters offspring number. Like-

wise, female size may change over evolutionary time due to selection unrelated to reproduc-

tion (for example, predation risk, resource availability and interspecific resource partitioning,

thermoregulation [57–61]). Since larger females typically produce larger offspring and are

more fecund in many taxa [19], a change in female size may only indirectly affect offspring

size and/or number even if neither is directly under selection [10,62,63]. Moreover, amphibian

terrestrial eggs are larger than aquatic eggs and frequently cared for [10,16,64]. Finally, direct

developing eggs (i.e., those hatching as juveniles) are larger than those hatching as tadpoles in

amphibians because they require more resources to complete development [65,66], are gener-

ally terrestrial, and laid in smaller clutches [10]. Thus, we need to consider all these factors

simultaneously if we are to disentangle how strongly parental care and offspring habitat affect

the evolutionary trajectory of offspring size and/or number.

While parental care strategies are highly diverse, previous comparative studies have typi-

cally reduced care to a simple binary trait (care or no care). This is problematic because the

costs and benefits of care likely differ between the sexes [67] and vary across care forms. For

example, in mammals, 2 male care behaviors, carrying the offspring and provisioning the

mother, are associated with more frequent breeding and larger litters, respectively, while 2

other paternal behaviors, grooming and huddling with the offspring, are unrelated to life his-

tory traits [56]. Finally, diverse ecological and social conditions may promote distinct care

behaviors and adaptations. In amphibians, tadpole feeding is associated with larval develop-

ment in small, water-filled, plant cavities [68], while care forms at the tadpole and juvenile

stage are promoted by the earlier evolution of egg attendance in both sexes [69]. Hence,

clumping care diversity into a simple binary trait likely obscures meaningful differences in

how diverse care forms, ranging from simple egg attendance to complex morpho-physiological

PLOS BIOLOGY Drivers of the offspring size-number tradeoff in amphibians

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001495 January 4, 2022 3 / 20

https://doi.org/10.1371/journal.pbio.3001495


adaptations like viviparity, may influence the trade-off between offspring size and number.

Recent studies have attempted to incorporate diversity in amphibian parental care by ranking

care forms for their presumed degree of protection or nutrition (S1 Table); however, such clas-

sifications have limited empirical foundation.

Amphibians are an ideal group in which to investigate how offspring habitat and diverse

forms of parental care influence the offspring size–number trade-off. While the majority of

amphibians spawn in aquatic environments and provide no care, an incredible diversity of

care forms at the egg, tadpole, and/or juvenile stage of offspring development has evolved (and

been lost) multiple times across the phylogeny and is found in about 25% of extant species

[69]. These include attendance, transport, brooding (eggs or tadpoles develop on or inside

the parental body), feeding (the mother provisions the offspring with trophic eggs or

sloughed-off skin), and viviparity [69] (Table 1). With the exception of feeding and viviparity,

all these care behaviors and adaptations can be found in both sexes in amphibians [69]

(Table 1). Moreover, eggs, larvae, and/or juveniles can be terrestrial or aquatic and eggs may

hatch as either tadpoles or juveniles (i.e., direct development). Using this diversity, we investi-

gate the hypotheses that parental care and terrestrial offspring habitat select for larger eggs and

smaller clutches. We thus test theoretical predictions [13,39,40,52,53] for expected positive

associations between egg size, parental care forms, and terrestrial habitat at each stage of devel-

opment (egg, tadpole, and juvenile), while controlling for allometry, clutch size, and direct

development. We build similar models swapping clutch size and egg size when investigating

the evolution of clutch size.

Importantly, the development of new cutting-edge phylogenetic methods and large phylog-

enies with hundreds of species now offer the opportunity to test the novel prediction that the

rates of egg and clutch size evolution increase if they are under selection imposed by the evolu-

tion of parental care and/or terrestrial habitat. It is well documented that the speed at which

Table 1. Description of amphibian parental care. Brief definition of parental care forms from Furness and Capellini

[69], where details of the data collection protocols can be found. Sample sizes for the variables as used in this study can

be found in S2 Table. All care forms with the exception of tadpole feeding and viviparity can be carried out by either

(or both) sexes in a species.

Parental care form

(caring sex)

Definition

Egg attendance (♀ or♂) A parent remains (full or part-time) with the eggs at a fixed location.

Egg brooding (♀ or ♂) A parent broods the eggs on (for example, in pouches on the back, between the

hindlegs) or inside their body (for example, vocal sacs, stomach, under the dorsal skin).

Tadpole attendance (♀
or♂)

A parent remains (full or part-time) with the larvae (aquatic or terrestrial).

Tadpole transport (♀ or

♂)

Relocation of tadpoles from one habitat to another, where they become free-living.

Tadpole brooding (♀ or

♂)

Tadpoles complete most or all of their development inside or on the body of the parent

and are not free-living.

Tadpole feeding (♀) Female provides eggs for tadpoles to consume (Anura).

Juvenile attendance (♀ or

♂)

A parent remains (full or part-time) with juveniles at a fixed location.

Juvenile transport (♀ or

♂)

Transport of newly hatched froglets on parent’s body.

Juvenile feeding (♀) Female provisions juveniles with sloughed off skin (i.e., dermatophagy or skin-feeding

in Caecilians).

Viviparity (♀) Female gestates offspring in the oviducts and gives live birth. This category includes

lecithotrophic and matrotrophic viviparity.

https://doi.org/10.1371/journal.pbio.3001495.t001
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traits evolve (the “rate of phenotypic evolution”) may differ across a phylogeny (“rate heteroge-

neity”). In other words, rate heterogeneity indicates that phenotypic traits have accumulated

more (or less) change along some branches of a phylogeny than expected for their length

(often measured as time) and when compared to other branches. Given that phenotypic traits

should evolve more rapidly when under intense selection [31–37,70–72], high rates of pheno-

typic evolution in some branches could be the result of stronger selection in those branches.

Here, we use variable rates models [37] (Methods, Variable rates model) not only to quantify

the direction and magnitude of effects of proposed drivers (parental care, offspring habitat,

and direct development) on target traits (egg and clutch size) like standard phylogenetic

approaches (such as phylogenetic generalized least squares (PGLS) models), but also to identify

branches in the phylogeny along which egg and clutch size have accumulated exceptionally

high levels of phenotypic change. Such branches are visually represented as stretched branches

and indicate episodes of likely strong selection (Fig 1A). If the proposed drivers are responsible

for intense selection on target traits, causing exceptional evolutionary rates, we expect that

they explain at least some rate heterogeneity identified by variable rates models in which the

proposed drivers are not included. Therefore, the proposed drivers should associate with target

traits in the direction predicted by the hypothesis (as in PGLS), and, in addition, models

including them as predictors should exhibit fewer (still unexplained) cases of exceptional rates

(stretched branches) compared to those in models without them (Fig 1A versus 1B). In the

context of this study, we should therefore find that, if parental care and terrestrial habitat select

for larger eggs and/or smaller clutches, stretched branches indicating exceptional evolutionary

rates in egg or clutch size are fewer in models with care and offspring habitat included as pre-

dictors relative to models without them (Fig 1A and 1B).

Fig 1. Predictions linking rate heterogeneity to proposed selective drivers using phylogenetic variable rate models. We first identify

heterogeneity in rates of phenotypic evolution in a target trait (i.e., egg or clutch size) with a simple model (A) that excludes any predictor

of interest. The simple model identifies branches with exceptionally high rates of evolutionary change, which are visually represented as

stretched branches. As an example, here, we illustrate egg size (represented by size of the black dots). Our simple model for egg size

included only body size and clutch size (these predictors are not visually represented in this figure). Next, we run a model including

additional explanatory variable(s) of interest (for example, parental care forms, offspring habitat, direct development). If the additional

predictor(s) select for changes in egg size, they should explain at least some of the rate heterogeneity observed in the simpler model (A).

Thus, variable rate models including additional predictor(s) are expected to identify fewer branches with exceptional rates of egg size

evolution (B) when compared to the simpler models without them (A). For simplicity, in this example, we visualize the expected effect of

only one predictor of interest, offspring habitat (red, terrestrial; blue, aquatic), on egg size (black dots; larger dots indicate larger eggs).

https://doi.org/10.1371/journal.pbio.3001495.g001
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Results

Egg size

We use phylogenetic variable rate models and a sample of over 800 species with no missing

data (S1 Data; sample sizes in S2 Table) to quantify the relative importance of individual care

forms and offspring habitat on egg size, while accounting for the trade-off with clutch size,

allometric effects, and direct development. Our models simultaneously identify branches in

the phylogeny exhibiting exceptional rate of egg size evolution. Starting with a model including

all predictors (“Full model,” S3A Table), we followed a model simplification procedure, pro-

gressively eliminating each nonsignificant predictor until only significant predictors remained

(“Reduced model,” S3B Table) (Methods, Identifying significant predictors of egg and clutch

size evolution). Consistent with theoretical predictions [40,52,53], our variable rates approach

reveals that eggs are larger in species with larger body size, smaller clutches, terrestrial eggs,

direct development, egg brooding, female egg attendance, and male egg attendance (Fig 2A,

S3B Table). In contrast to predictions, however, eggs are smaller with 2 female care behaviors:

tadpole feeding and female tadpole attendance (Fig 2A, S3B Table).

We further evaluate the relative importance of each significant predictor (S4A Table) by

examining the change in the model’s marginal likelihood when one predictor at a time is

removed, which provides an estimate of effect sizes for each predictor (Methods, Identifying

significant predictors of egg and clutch size evolution). This shows that body size, clutch size,

and direct development have a greater effect on egg size than terrestrial eggs and parental care

Fig 2. Egg and clutch size evolution. In (A) and (D), posterior distributions of the parameter estimates (β) of the significant predictors in the

reduced model (S3B and S3D Table) for egg size (A) and clutch size (D), using phylogenetic variable rates models. Branches of the amphibian

phylogeny that exhibit exceptional rates of evolution (r> 1 in�95% of the posterior distribution) are depicted in red for egg size (simple model,

with only body size and clutch size as predictors, in (B), and reduced model in (C)) and for clutch size (simple model, with only body size and egg

size as predictors, in (E), reduced model in (F)). The identity of these branches is reported in S5 Table for egg size and S6 Table for clutch size.

Raw data for these analyses are available in S1 and S2 Data.

https://doi.org/10.1371/journal.pbio.3001495.g002
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forms (S4A Table). These effect sizes correspond to a remarkable increase in egg size for an

average-sized amphibian with average clutch size, ranging between approximately 15% for

female egg attendance to 57% for egg brooding, and a decrease in egg size of nearly 50% with

female tadpole attendance and 32% with tadpole feeding (S4A Table).

Variable rates analysis also identifies exceptional rates of egg size evolution, while account-

ing only for body size and clutch size, in 19 branches (Fig 2B, S5 Table) (Methods, Identifying

rate shifts). These branches indicate the phylogenetic position of episodes of intense selection

on egg size. The significant predictors in the reduced model (S3B Table) explain the excep-

tional rates of egg size evolution in only 3 of these branches (Fig 2B and 2C, S5 Table).

Clutch size

From the full model with all predictors, model simplification procedure identifies the signifi-

cant predictors. The reduced model with only significant predictors from our variable rates

analysis demonstrates that clutches are bigger in larger species and smaller with larger eggs,

terrestrial eggs, terrestrial larvae, direct development, egg brooding, male tadpole attendance,

male tadpole transport, and tadpole feeding (Fig 2D, S3C and S3D Table). Changes in model

marginal likelihood when one predictor at a time is removed indicate that after body size and

egg size, terrestrial eggs, terrestrial larvae, and direct development have a greater effect on

clutch size than care forms (S4B Table). These effect sizes correspond to a reduction in clutch

size, ranging from about 50% with terrestrial eggs and male tadpole attendance up to 71% with

tadpole feeding for an average-sized amphibian producing eggs of average size (S4B Table).

While accounting for body size and egg size, we identify exceptional rates of clutch size evolu-

tion in 135 branches, 108 of which (80%) are explained by care forms, direct development, and

terrestrial eggs and larvae (Fig 2E and 2F, S6 Table). This suggests that offspring habitat, direct

development, and care forms are responsible for intense selection on clutch size in these

branches.

Discussion

The trade-off between offspring size and number is central to life history theory and has

important implications in both basic and applied questions; however, which selective pressures

influence its evolution, is debated. Here, we have investigated 2 hypotheses proposing that

parental care and/or more favorable terrestrial habitats for offspring development select for

larger eggs [13,39,40,52], while accounting for allometric effects, direct development, and the

trade-off with clutch size. We have also asked whether the proposed drivers have acted on

clutch size rather than egg size. Our results show that amphibians with direct development

and those with terrestrial offspring have both larger eggs and smaller clutches (Fig 3). Consid-

ering individual parental care forms separately has allowed us to unravel the complex and con-

trasting influence that they exert on the trade-off, with egg brooding, male and female egg

attendance increasing egg size, female tadpole attendance and feeding decreasing egg size, and

egg brooding, tadpole feeding, male tadpole attendance, and male tadpole transport reducing

clutch size (Fig 3). Importantly, by simultaneously considering variation in rates of phenotypic

evolution across the phylogeny, our variable rates analyses demonstrate that the significant

predictors of egg and clutch size evolution can explain much of the rapid phenotypic change

in these life history traits, indicating that they have imposed intense selection on the offspring

size–number trade-off.

We find broad support for theoretical models that both parental care and terrestrial off-

spring habitat promote the evolution of larger offspring, but the role of parental care is more

complex than previously appreciated and depends on the type of care, the stage at which care
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is provided and the sex of the caring parent. Specifically, while accounting for allometry and

the trade-off with clutch size, our study demonstrates that eggs are larger by about 20% if ter-

restrial, as predicted by theoretical models suggesting that favorable environmental conditions

for offspring development select for larger offspring [40]. In support of the theoretical predic-

tion that parental care drives an increase in egg size [52], we simultaneously find that eggs are

15% and 20% larger if attended by females and males, respectively, and nearly 60% bigger if

brooded by parents. However, in contrast to this prediction [52], eggs are smaller by 32% with

tadpole feeding and by nearly 50% with female tadpole attendance. Although these results may

seem unexpected, we note that Nussbaum and Schultz’s theoretical model [40] predicts that, at

any given level of parental care, egg size may decrease if environmental conditions for juvenile

survival improve. We propose that this may be the case for female tadpole attendance, which

occurs in ponds and terrestrial protected habitats, such as burrows, where the tadpoles can be

Fig 3. Summary of results on the evolution of egg size–clutch size trade-off. (A) Distribution of parental care forms,

offspring habitat, direct development, and life history traits in amphibians (n = 805 species; raw data in S1 and S2

Data). All variables, except clutch size, egg size, and body size, are binary. (B) Summary of the significant associations

for the trade-off between egg size and clutch size, combining their respective reduced models (S3B and S3D Table).

Variables associated with increases in egg or clutch size are above the trade-off and indicated with a plus; variables

associated with decreases in egg or clutch size are below the trade-off and indicated by a minus. For each variable, we

report in brackets the percentage of change in egg or clutch size computed for an average-sized amphibian with

average clutch size or egg size, respectively (S4A Table for egg size and S4B Table for clutch size).

https://doi.org/10.1371/journal.pbio.3001495.g003
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defended against predators [39,73]. We suggest that tadpole feeding females may not need to

produce large eggs because they continue to provision their young throughout larval develop-

ment, analogous to matrotrophic viviparous fish (for example, those with maternal provision-

ing of offspring via a placenta). Oviparous and viviparous species without matrotrophy

typically supply their eggs fully before fertilization, after which they provide no further nutri-

tion [74,75]. Conversely, females of matrotrophic fish start off with small eggs, which they con-

tinue to provision throughout development [74,75]. Overall, accounting for diversity in

parental care has allowed us to unravel that different care behaviors and adaptations may drive

the evolution of egg size in different directions and at different magnitude. We anticipate that

similar results will be found in taxa with high diversity of care forms, such as other vertebrate

classes, insects, and crustaceans.

Theoretical models and empirical studies on the role of care and offspring habitat have pri-

marily focused on the evolution of offspring size alone [14,15,40,52,53]. However, selection

may act on offspring number instead and only indirectly alter offspring size. While accounting

for offspring number in statistical models offers a much stronger test of hypotheses on pro-

posed drivers of offspring size evolution, investigating whether such drivers also affect off-

spring number (while accounting for offspring size) provides a comprehensive answer. We

thus also ask whether the proposed drivers of egg size evolution directly affect clutch size.

After accounting for allometry and the trade-off with egg size, our variable rates analysis indi-

cates that terrestrial habitat at the egg and larval stage, direct development, egg brooding, tad-

pole feeding, male tadpole attendance, and male tadpole transport are associated with a

substantial reduction in clutch size ranging between 50% and 70%. These results are consistent

with numerous physiological and physical mechanisms known to constrain clutch size. For

example, because oxygen diffusion is compromised within the jelly of terrestrial eggs, smaller

clutches ensure sufficient oxygenation by reducing competition [46]. Oxygen limitation is

likely to also be particularly acute for direct developing eggs, typically laid on land, given their

extended period of development and large size. For tadpole feeding, we suggest that mothers

cannot support large clutches because they often provide energetically expensive nutrition

over a long period of offspring development. Consistent with this idea, female strawberry poi-

son frogs (Oophaga pumilio) lay fewer eggs when simultaneously provisioning older tadpoles,

while tadpoles in larger clutches receive smaller meals and suffer higher mortality [76]. Instead,

physical space may constrain clutch size in brooding species, in species with male tadpole

transport, and those with terrestrial tadpoles. Specifically, the size of the body cavity or surface

area of the back is likely to limit the number of eggs parents can care for in egg brooding frogs

or the number of tadpoles that males can transport [73]. Likewise, terrestrial tadpoles with no

caring parents frequently develop in foam nests, burrows, or within cup-shaped nests and typi-

cally do not feed [39,64]. These confined spaces are likely to provide shelter to only a few tad-

poles, while limitation to oxygen diffusion might further constrain the number of developing

larvae as it does for eggs. While constraints on offspring number beyond amphibians have

been previously discussed mostly in relation to viviparity [11,77], our results suggest that

clutches are likely to be reduced in many other species in which the eggs or young are physi-

cally associated with the parental body or are placed in microenvironments or nests where

physiological or physical conditions impose an upper limit to the number of offspring they can

accommodate.

Bringing findings for egg size and clutch size together, this study reveals how proposed

drivers affect both or only one of the 2 elements of this trade-off (Fig 3B). Specifically, terres-

trial eggs, egg brooding, and direct development act simultaneously on both egg and clutch

size, i.e., directly increase egg size and decrease clutch size, beyond the indirect effect that they

already have on the other element of the trade-off. Instead, male egg attendance, female egg
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attendance, and female tadpole attendance only associate with egg size; tadpole terrestriality,

male tadpole attendance, and male tadpole transport only associate with smaller clutches;

while tadpole feeding is associated with both smaller eggs and smaller clutches. By accounting

for diversity in care forms and offspring habitat by stage of development, we demonstrate that

terrestrial habitat and direct development consistently lead to larger eggs and smaller clutches,

while different care forms can have contrasting effects on the offspring size–number trade-off.

Thus, it is not surprising that studies clumping or arbitrarily ranking care forms across devel-

opmental stages find that terrestrial habitat, but not parental care, is associated with egg size or

number. Many theoretical models consider parental care as a uniform species characteristic

that varies in duration, intensity (for example, how much food to provision), or, in the context

of sexual conflict, by caring sex. However, our study demonstrates that the effect of parental

care on egg size and clutch size is far more complex and differs depending on the type of care,

the stage at which care is given and the sex of the carer. We thus need a new theoretical frame-

work that explicitly considers such diversity of care and provides quantitative predictions on

how different care behaviors and adaptations should impact the evolutionary trajectory of egg

and clutch size and, more broadly, life history strategies.

Importantly, our variable rates models explicitly consider heterogeneity in rates of pheno-

typic evolution and simultaneously identify where in the phylogeny egg size and clutch size

have accumulated more phenotypic change than expected, indicative of intense selection. Epi-

sodes of exceptional rates of egg size evolution are few (19 branches), and the significant eco-

logical and parental care predictors account for only 3 of these exceptional rates. In contrast,

exceptional rates of evolution in clutch size were frequent (135 branches), and 80% of these

were explained by ecological and parental care predictors. Thus, our approach reveals that

many more branches across the phylogeny exhibit higher rates of phenotypic evolution for

clutch size than egg size, most of which is explained by offspring habitat, direct development,

and care forms. This likely reflects the potential physiological constraints on the size of ana-

mniotic eggs (for example, due to oxygenation [46,47]) and the higher interspecific variance in

clutch size (ranging from 1 to tens of thousands) than egg size. Therefore, our study reveals

that there is greater opportunity for selection on clutch size than egg size in amphibians. Based

on our findings, we expect that selection has acted more strongly on offspring number than on

offspring size in lineages with high diversity of parental care forms and adaptations, high

diversity of habitats in which the eggs develop, and large variance in clutch size, like fish and

insects. Conversely, egg size may be under stronger selection than clutch size in lineages like

birds that exhibit lower diversity in care forms compared to amphibians and are limited in the

number of offspring they can produce due space limitations within nests. We suggest that

future comparative studies testing hypotheses on the evolutionary drivers of this key life his-

tory trade-off consider both offspring number and size and explicitly incorporate diversity in

parental care, while theoretical models should evaluate under which conditions the greater

response of clutch size to selection affects the evolutionary trajectory of offspring size.

To conclude, this study demonstrates that evolutionary changes in offspring habitat, paren-

tal care, and direct development have led to rapid adaptive evolution in egg and clutch size.

While terrestrial offspring habitat influences the offspring size–number trade-off as predicted

by theoretical models [13,39,40,52], considering the full diversity in care forms by stage of off-

spring development and sex of caring parent has revealed that different care behaviors and

adaptations have contrasting effects on the trade-off. Importantly, incorporating variation in

rates of egg and clutch size evolution in our theoretical framework has allowed us to test pre-

dictions not only on the direction and magnitude of effects of proposed drivers, but also on

how proposed drivers lead to rapid change in the trade-off. Our approach thus reveals that epi-

sodes of rapid evolution in egg and clutch size are explained by offspring habitat, direct
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development, and some care forms, as expected if these traits select for rapid adaptive changes

in egg and clutch size to new conditions. More broadly, we expect that other comparative stud-

ies incorporating rate heterogeneity in their theoretical and analytical framework will further

reveal how behavioral traits and ecological conditions explain rapid phenotypic change, and

thus identify episodes of intense selection, at a large comparative scale.

Methods

Data collection

Parental care and direct development. Parental care data (attendance, transport, brooding,

feeding, viviparity) at the egg, tadpole, and juvenile stage (Table 1) were taken from Furness

and Capellini [69] where detailed descriptions of the data collection protocols can be found.

All parental care variables are binary (S1 Data). In our analyses, we included all forms of care

that were represented by more than 5 species exhibiting the trait of interest (S2 Table), hence

we discarded juvenile transport and juvenile feeding. Likewise, we considered the sex of the

caring parent in each care form only if the number of species exhibiting a trait remained

greater than 5 (S2 Table).

Direct development referred to eggs hatching directly as juveniles (as opposed to larvae) or

offspring being born as juveniles in viviparous species. We thus class all species with a larval

stage as lacking direct development and those without a larval stage as having direct develop-

ment, regardless of whether they were cared for or not, and, if cared for, irrespective of the

form of care received and the sex of the caring parent. Thus, direct development was a binary

variable (sample sizes by category in S2 Table; raw data in S1 Data).

Offspring habitat. Data on the environment where eggs and tadpoles are found were extracted

from 458 primary and secondary sources and cross-checked (reference list in S1 and S3 Data).

We discarded species lacking information on these variables, or for which information was con-

tradictory between sources, and this contradiction could not be resolved. Thus, we did not infer

the condition for species with ambiguous information from data of closely related species.

Unlike most previous studies, we classified the habitat where eggs and tadpoles are found

(i.e., aquatic or terrestrial) separately and based on microhabitats, because the risk of desicca-

tion may differ substantially by stage of offspring development (i.e., where only the eggs or tad-

poles are aquatic) and vary by microhabitat. Therefore, we scored the habitat in which eggs are

laid as a binary trait, i.e., as aquatic or terrestrial, based upon oviposition location (sample sizes

in S2 Table). Eggs were scored as aquatic if they developed in water irrespective of the location

or size of the water body (i.e., streams, small or large ponds, small pools), and eggs in foam

nests on the water surface or in excavated basins partially filled with water or directly adjacent

to water were scored as aquatic. Conversely, eggs that developed on the ground away from

water (i.e., in leaf litter, in burrows or nests or soil cavities, under stones or logs, in rock crev-

ices, and similar) or arboreally (i.e., attached to leaves or vegetation) were scored as terrestrial.

Likewise, eggs located in foam nests in terrestrial subterranean or excavated chambers far

removed from water were scored as terrestrial. Eggs laid in phytotelmata (plant cavities filled

with water) were scored as terrestrial if the eggs were explicitly described as being placed ter-

restrially in phytotelmata (i.e., above the waterline on bamboo internodes, on bromeliad

leaves, side of tree hole, or similar); in all other cases, such eggs were classified as aquatic. Egg

brooding species (eggs developing on or inside the parental body) with terrestrial adults were

scored as having terrestrial eggs, whereas brooding species of the family Pipidae in which

adults live in water were classed as having aquatic eggs. Likewise, viviparous species with ter-

restrial adults were scored as exhibiting terrestrial eggs, and viviparous Caecilian species in the

family Typhlonectidae in which adults live in water were classified as having aquatic eggs.
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We classify the habitat in which tadpoles grow as a binary trait (sample sizes in S2 Table).

Specifically, we considered larvae as terrestrial when they develop exclusively on land away

from water in a terrestrial nest, burrow, on the ground or on rocks, or on or inside the parent’s

body and the adult is terrestrial. All other species had larvae developing in water, including

those whose tadpoles develop in phytotelmata, or direct development and are classified as not

having terrestrial tadpoles. Data on egg and larval habitat can be found in S1 Data.

Life history data. We found data on life history traits for 805 species with data on parental

care, direct development, and offspring developmental habitat (S1 Data). Egg size (mm),

clutch size, and adult body length (mm) were taken from Allen and colleagues [21], Oliveira

and colleagues [78] (AmphiBIO), and additional primary sources (reference list in S1 and S3

Data). Egg size and clutch size were reported as a range (minimum–maximum) in Oliveira

and colleagues [78] but as means in Allen and colleagues [21]. Therefore, we calculated the

midpoint of the minimum and maximum values for egg and clutch size in AmphiBIO and

combined with Allen and colleagues’ data [21] (see below). We checked all egg size values of

viviparous species in both AmphiBIO and Allen and colleagues’ data sets. AmphiBIO some-

times recorded offspring body size at birth in viviparous species in the same column as egg

diameter. These values were discarded because they are not comparable, given that the mea-

sured length of an offspring at birth (i.e., uncoiled) is necessarily larger than egg diameter and

it is not taken at the same developmental point. We also discarded all egg size values for species

with matrotrophic viviparity. In matrotrophic species, egg size is initially small and offspring

increase in size over the course of gestation [79]; we could not verify when in development

egg/offspring size was measured and therefore whether this was taken at a comparable stage to

that of the oviparous taxa. Thus, the only values retained for egg size in viviparous taxa were

for species that exhibited lecithotrophic viviparity or ovoviviparity and in which the value

could be confirmed in a primary reference.

We visually identified outliers within each data set using trait by trait plots. We corrected

any error (i.e., mis-entry from original source) and searched the literature for additional

sources when we could not locate or determine the primary source; we then corrected the

value if necessary. Thus, all outliers within each data set were either determined to be errors

and corrected or verified as correct and left unchanged. Next, we plotted comparable life his-

tory trait values from the 2 data sets against each other and identified highly discrepant values.

We checked the accuracy of the discrepant values by consulting primary and secondary

sources. If the value from 1 data set was determined to be in error or likely to be in error, it

was deleted and the value from the other data set was retained. For the few cases in which the

life history trait value could not be verified, we took the mean value from the 2 data sets. We

built our data set by taking life history values from Allen and colleagues [21] if available, and, if

not, from AmphiBIO. Note, however, that the data on body size were not combined between

the 2 data sets because Allen and colleagues [21] reported the mean snout vent length for all 3

Amphibian orders, while AmphiBIO reported maximum values of snout vent length for

Anura, but total length for Caudata and Gymnophiona. Therefore, we used only data from

AmphiBIO for body size. Finally, we added new data for species with missing values for egg

size, clutch size, and body size from additional primary and secondary sources (reference list

in S1 and S3 Data). Life history data were log10-transformed for statistical analysis.

Phylogeny. We used the phylogeny of Pyron [80], which does not have any polytomies, in

all analyses as this is the most comprehensive time-calibrated tree for amphibians that was

built solely with molecular data without imputation of missing taxa based on taxonomy (i.e.,

without molecular data). The phylogeny pruned for the species in our study is available as

S2 Data.
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Correlated evolution of offspring size–number trade-off with parental care

and offspring habitat

Multicollinearity between predictors. We assess the magnitude of multicollinearity between all

predictors in the full model for egg and clutch size using variance inflation factors (VIFs) [81],

computed on a non-phylogenetic regression using the R package car. This is a conservative

approach because the inclusion of phylogeny typically weakens the strength of covariation

between variables; therefore, VIFs are likely to be higher in nonphylogenetic than in phyloge-

netic models. VIF scores greater than 5 indicate likely problematic collinearity, and greater

than 10 very problematic collinearity [81]. We found no evidence of problematic multicolli-

nearity between predictors in our models of egg and clutch size evolution since all VIF values

were less than 2.5 (S7 Table).

Variable rates model. We use phylogenetic variable rates models [31,37] in BayesTraits V.3

[82] to test for associations between life history traits (egg or clutch size), type of parental care,

and offspring developmental habitat (terrestrial or aquatic eggs and larvae), while accounting

for allometry, the trade-off between offspring size and number, and direct development (S2

Table). Variable rates model is an extension of PGLS models [83]. However, unlike standard

PGLS, variable rates model can simultaneously account for deviation from the assumption of

the underlying Brownian motion model, that the rate of evolution is constant throughout the

phylogeny, i.e., there is heterogeneity in the rate of phenotypic evolution [37]. Specifically, this

approach identifies branches in the phylogeny that have accumulated more or less phenotypic

evolution than expected for their length (i.e., here, time) and relative to the rest of the phylog-

eny (i.e., the “background” rate). The model then stretches and compresses such branches in

direct proportion to the observed higher or lower amount of phenotypic evolution. This

makes these branches conform to the assumption of Brownian motion and thus allows a more

accurate estimate of model parameters. Crucially, identifying which branches exhibit an excep-

tional rate of phenotypic evolution can help us identify the selective pressures responsible for

these bursts of rapid adaptive change [31,37] (see Identifying rate shifts).

Variable rates models estimate the rate of evolution in the phylogenetically structured resid-

ual error of a linear model along the branches of the phylogeny. The model divides the Brown-

ian variance of a continuous trait (σ2) into 2 components, which are estimated simultaneously:

a global background rate of evolution (σb
2) and rate scalars r defining branch specific rate

shifts relative to the background rate [37]. Together, the global background rate and branch

specific r optimize the variance for each branch and identify the branches that have experi-

enced a higher (r> 1) or lower (0� r< 1) rate of phenotypic evolution than the global back-

ground rate. This can be visually represented with a scaled phylogeny where each branch

length has been multiplied by its specific scalar r, such that longer branches depict faster evolu-

tionary rates (i.e., more phenotypic evolution than expected) and shorter branches slower evo-

lutionary rates (i.e., less phenotypic evolution) than the global background rate. The model is

implemented in a Bayesian Markov chain Monte Carlo (MCMC) framework with reversible

jump and returns a posterior distribution of partial regression coefficients for all predictors in

the model, branch specific scalars r, global background rate σb
2, and λ (the phylogenetic signal

ranging between 0 and 1 [83]). Following previous studies [37,71], we use a gamma prior (α =

1.1, β rescaled to give a median of 1) for the scalar parameter as this ensures that both rate

increases and decreases are equally proposed. Note that we provide no a priori information to

the model about how many branches should be rescaled, which branches should exhibit rate

shifts, and by how much. Instead, reversible jump allows the algorithm to propose and esti-

mate any number of scalars r between 0 and the total number of nodes in the phylogeny

(including the tips), anywhere in the phylogeny, as appropriate to the data [37].
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All MCMC chains were run for a total of 200.5 million iterations with the first 500,000 dis-

carded as burnin and sampling every 100,000 iterations thereafter. We used uniform priors

ranging between −100 and 100 for all estimated regression coefficients and a uniform prior

ranging between 0 and 1 for λ. We ensured that the effective sample size (ESS) for all estimated

parameters was greater than 1,000, calculated with the R package LaplacesDemon, and visually

inspected the trace plots to confirm that the chains converged and had good mixing.

Identifying significant predictors of egg and clutch size evolution. We entered egg or clutch

size as the response variable in a variable rates model, and body size, clutch size, or egg size,

respectively, type of parental care (female egg attendance, male egg attendance, egg brooding,

female tadpole attendance, male tadpole attendance, female tadpole transport, male tadpole

transport, tadpole brooding, tadpole feeding, juvenile attendance, and viviparity), direct devel-

opment, and offspring developmental habitat (terrestrial eggs, terrestrial larvae) as predictors.

Our data set consisted of 805 species with no missing data for any of the above 16 variables (S1

Data; sample sizes for each binary predictor are given in S2 Table). We first fit a “full model”

including all predictors (S3A and S3C Table). Next, we followed a model simplification proce-

dure starting from full models with all predictors and progressively eliminating the least signif-

icant predictor and rerunning the analysis until only significant predictors remained in the

simplest statistically justifiable model (“Reduced models” in S3B and S3D Table). The signifi-

cance of each predictor was evaluated as the proportion of the posterior distribution of its beta
value that crossed zero (Px), with influential predictors having Px < 0.05 [31,37]. We report the

mean, median, 95% credible intervals, Px, and ESS of all predictors in the full and reduced

models for egg and clutch size evolution in S3 Table.

We quantified the effect size of each significant predictor in the reduced models through

the change in model marginal likelihood when one significant predictor was individually

removed from the reduced model. Thus, we compared the median likelihood values of the

reduced model against that of a reduced model missing one predictor at a time (S4 Table). For

each significant binary predictor in the reduced models (S3B and S3D Table), we also esti-

mated the percentage change in egg or clutch size when a trait of interest was present versus

when it was absent. This was computed based on the parameter estimates of the reduced mod-

els and in a species of average body size with average egg or clutch size, while holding all other

binary predictors as absent (S4 Table).

Identifying rate shifts. Using variable rates model, we could simultaneously identify the sig-

nificant predictors of egg and clutch size and branches exhibiting significant deviations (i.e.,

rate shifts) in the rate of phenotypic evolution relative to the background rate. We defined

branches as showing exceptional rate shifts if their estimated scalar r was greater than 1 (posi-

tive shifts, i.e., higher rates of evolution) or less than 1 (negative shifts, i.e., lower rates of evolu-

tion) in 95% of the posterior distribution [31]. Branches showing exceptional rates of

evolution reveal that selection has acted more strongly along those branches. Therefore, to

investigate whether the significant predictors in the reduced models were responsible for any

shifts in the evolutionary rates of egg or clutch size, we compared the number of branches

exhibiting rate shifts in the reduced models (S3B and S3D Table) with that of simpler models

that only included body size and the trade-off between egg and clutch size as predictors (Fig

1A versus 1B). Branches exhibiting rate shifts in these simpler models showed that there was

significant unexplained variance in egg or clutch size rates of evolution. We expected that, if

parental care forms, direct development, and/or offspring habitat explained the rate heteroge-

neity identified in the simpler models, the number of stretched (or compressed) branches in

the reduced model should be lower than the number in their respective simpler models (i.e.,

comparisons between Fig 1Aa and 1B). This evidence would strongly suggest that parental

care, direct development, and offspring developmental habitats have selected for rapid
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adaptive changes in egg or clutch size in the stretched (or compressed) branches of the simpler

models that no longer exhibit exceptional rate of evolution in the reduced models. We report

the list of branches exhibiting rate shifts in the simple and reduced models for egg size and

clutch size in S5 and S6 Tables, respectively.

Supporting information

S1 Table. Summary of previous phylogenetic comparative studies on the correlated evolu-

tion between parental care, offspring developmental environment, and/or offspring size–

number trade-off in amphibians. Here, we only report results of variables of interest to the

aims of our study.
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tors of egg and clutch size in this study. The total sample size of our data set is 805 species,

with complete parental care, offspring habitat, direct development, and life history data (body

size, egg size, and clutch size). Here, we report the sample sizes for these 805 species for all pre-

dictors considered in this study, those in which more than 5 species exhibited the trait of inter-

est.
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S3 Table. Variable rates models for egg and clutch size. Results for the analysis of egg size in

(A) full model, including all predictor variables, and (B) the simplest statistically justifiable

model (reduced model) with only significant predictors after model simplification (see Meth-

ods, Identifying significant predictors of egg and clutch size evolution). Results of analysis for

clutch size in (C) full model and (D) reduced model. The columns report the ESS, the mean

and median of the posterior distributions, the 95% HPD interval, and the proportion of the

posterior distribution crossing zero (Px) for each predictor variable in the model. We also

report model R2, phylogenetic signal as estimated by λ, and model marginal likelihood. ESS,

effective sample size; HPD, highest posterior density.
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S4 Table. Effect sizes of the significant variables in the reduced model for egg size (A) and

clutch size (B) and corresponding percentage change in egg and clutch size for an average-

sized amphibian. Effect sizes are quantified as the median reduction in marginal likelihood

when a given predictor is individually removed and the model rerun (see Methods, Identifying

significant predictors of egg and clutch size evolution). The percentage change is computed as

the difference between the estimated egg (A) or clutch size (B) when each predictor in turn is

present compared to when it is absent, for an average-sized amphibian with average egg (A) or

clutch size (B), holding all other predictors of the reduced models as absent. The direction of

the percentage change reflects an increase (+) or decrease (−) in egg (A) or clutch size (B).
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S5 Table. Rate shifts in amphibian egg size evolution from variable rates model. We report

the 19 branches that show exceptional rates of evolution in egg size, relative to the background

rate, from the simple model including only body size and clutch size (left column) and the

reduced model including the significant predictors (right column; the statistics for the reduced

model is reported in full in S3B Table) (see Methods, Identifying rate shifts). Each branch is

identified by its descendants. For each branch, we also report the median of the scalar r (see

Methods, Identifying rate shifts). These branches correspond to those highlighted in red in Fig

2B and 2C. The blank cells listed under the reduced model are those that exhibit rate shifts in
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the simple model but not the reduced model, i.e., branches for which rapid egg size evolution
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