University of
< Reading

Peptides for vaccine development

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open access

Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926
(2022) Peptides for vaccine development. ACS Applied Bio
Materials, 5 (3). pp. 905-944. ISSN 2576-6422 doi:
https://doi.org/10.1021/acsabm.1c01238 Available at
https://centaur.reading.ac.uk/103824/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1021/acsabm.1c01238

Publisher: American Chemical Society (ACS)

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Downloaded via 86.20.141.31 on August 22, 2022 at 08:54:43 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

IEXSAPPLIED
BIO MATERIALS

Ho®
www.acsabm.org

Peptides for Vaccine Development
Ian W. Hamley*

Cite This: ACS Appl. Bio Mater. 2022, 5, 905-944 I : I Read Online

ACCESS | [l Metrics & More | Article Recommendations

ABSTRACT: This review discusses peptide epitopes used as antigens in the development of fé’sr’;gzégei’”’"“”e,( tbodics
vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential o — Y -
immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, @ ®

HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of \

overexpressed proteins are summarized, including human epidermal growth factor receptor 2
(HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers
caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), v
are also discussed. This review also provides an overview of model peptide epitopes used to \. peptide

stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence FEIN AN SN

antigwe enting cell

of other adjuvants on peptide formulations. As highlighted in this review, several peptide  cejuiarimmune ,

. . . L . : . ) response | antigen
immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future

therapies due the specificity of the response that can be achieved using peptide epitopes. oTLe

KEYWORDS: Peptides, vaccines, immune response, infectious diseases, cancer, epitopes, adjuvants

1. INTRODUCTION utions.” " This can be beneficial to the immunogenicity due to

the high density presentation of bioactive peptide units, leading
potentially to improved antigen or adjuvant efficacy. Peptides
can form self-assembled peptide nanoparticles (SAPNs), and
protein sub-units can assemble into virus-like particles (VLPs).
Reviews on the use of such structures for vaccine development
are available.'*”'® The latter topic, since it concerns protein
superstructures (recently reviewed elsewhere'”) is outside the
focus of the present review. As yet, few peptide-based vaccines
have been employed in the clinic, although several systems are in
advanced stages of clinical trials or are currently in active
development (see Table 1 for examples).”*~>° Examples of these
studies are discussed in the current review. Figure 1 shows a
representation of the approximate numbers of peptide vaccines
under development for the same selection of conditions in Table
1. This is illustrative that most peptide vaccines are in
development for cancers, with a significant fraction for HIV
and smaller numbers for infectious viral diseases, with the
exception of COVID-19 where many trials have recently been
launched due to the recent impact of the global pandemic. The
relatively smaller numbers of trials for other infectious diseases
may reflect a number of factors including the prevalence of
existing non-peptide vaccines (e.g, those in use based on

The development of vaccines is of immense interest in view of
existing and emerging viral diseases. Vaccination as currently
recognized was developed and widely implemented starting just
over 200 years ago, but variolation using cowpox to treat
smallpox as used in China and Africa predates this by centuries.
Many vaccines are based on inactivated pathogens; however,
there is intense interest into methods based on modern
biotechnologies, for example, application of DNA/RNA
technologies, use of recombinant proteins, and virus-like
nanoparticle formation. These have led recently, for instance,
to vaccines for COVID-19, brought into practice remarkably
rapidly to the huge benefit of humanity, saving hundreds of
thousands of lives.'™® Biotechnologies can provide a more
targeted immune response, by biomolecular design and
engineering, and in addition these techniques can be used to
rapidly re-engineer vaccines in response to emerging variants
and mutants. These characterize many diseases caused by
coronaviruses, influenza virus, and others.

Subunit vaccines are attracting considerable attention due to
the potential to precisely tune the immune response using
antigens from protein fragments or peptides, as well as the
relative ease of production of these biomolecules. In addition,
peptides have potential activities as adjuvants. Short peptides
can be produced at scale using automated synthesis methods, Received:  December 7, 2021
whereas longer peptides and proteins may conveniently be Accepted:  February 1, 2022
produced recombinantly. Certain types of peptides including Published: February 23, 2022
surfactant-like peptides, lipopeptides (peptide amphiphiles),

and amyloid-forming peptides can self-assemble forming
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nanostructures (nanofibrils, micelles, etc.) in aqueous sol-
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Figure 2. Antigen presentation and interaction with T-cells in the
adaptive immunity system. Cell types and processes are discussed in the
text. For simplicity, cell produced cytokines are not shown.
Abbreviations: APC, antigen-presenting cell; DC, dendritic cell;
MHC, major histocompatibility complex; TCR, T cell receptor;
CTL, cytotoxic T-lymphocyte.

cytokine stimulation) antibodies as part of the humoral immune
response (Figure 2). B cells and macrophages, in addition to
APCs such as dendritic cells (DCs), present MHC-II at high
levels, and thus MHC-II molecules are expressed in a more cell-
specific manner than those of MHC-I. Antigenic peptide binding

by class I and class Il MHCs has been reviewed.*® Databases of
MHC ligands including peptides have been assembled.*’~>*

The innate immune response (Figure 3) recognizes pathogen-
associated molecular patterns (PAMPs) via pattern recognition
receptors (PRRs). Types of PRRs include Toll-like receptors
(TLRs), C-type lectin agonists (CLRs), RIG-I (retinoic acid-
inducible gene I), NOD-like receptors (NLRs), stimulator of
interferon (IFN) genes (STINGs) (Figure 3), and others.”* >

The activated adaptive immune system exploits antigen-
recognizing B cells, T cells, dendritic cells, and antibodies. As
noted above, the adaptive immune system produces T-helper
cells, which release cytokines to assist other immune cells. T-
helper cells differentiate into Thl cells or Th2 cells. The cell-
mediated response relies on the former, and the humoral
response involves Th2 cells (Figure 2). This refers to the
production of antibodies or antimicrobial peptides in extrac-
ellular fluid (and is also known as antibody-mediated
immunity).

The activity of a vaccine may be improved using an adjuvant,
which is an additive that stimulates a stronger immune response.
These were traditionally based on inorganic materials, especially
alum, but more recently, organic systems, especially emulsions
and liposome formulations, have been developed. Lipopeptides,
especially those containing the PamCS (palmitoyl-Cys-Ser)
motif, can show self-adjuvant properties, as discussed else-
where.**” As pointed out by Abudula et al,, self-assembling
peptides may have adjuvant activity that results from the
formation of depots of antigens, by directing vaccines to APCs,
or by the improvement of immune-cell priming.>* Organic
vaccine adjuvants have been discussed in a number of
reviews,””**" and a review specifically focused on adjuvants
for subunit-based peptide vaccines is available.”"

This review is focused on the development of immunogenic
peptides for applications in vaccines. This complements my
recent review on lipopeptides for vaccine development,45 and
the current overview excludes material previously covered, that
is, discussion of lipopeptides as immunogens or adjuvants. It also
does not cover potential peptide vaccines for neurodegenerative
diseases such as Alzheimer’s disease, which has been recently
reviewed.” This review is focused on subunit vaccines based on
unconjugated peptides. As this is a vast and also fast-moving

Innate
* ) immunity
PAMPS **
PRRs: TLRs, NLRs, CLRs
pathogen g lipids RIG-1, STING
\\ sugars ®
B4 ) . .
A% M cytokines  Adaptive
\ nucleic T — g /
Acids ® * @ Immunity
@ .Q\ antigen
antigen peptides and
adjuvant )
small activated APC
molecules

Figure 3. Innate versus adaptive immunity. The types of PAMPs that stimulate the innate immune response via PRRs such as those shown (defined in

the text) are indicated.
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Table 2. Key Peptide Sequences Highlighted in This Review

sequence

SIINFEKL
LPDEVSGLEQLESIINFEKLTEWTSSNVMEER

ISQAVHAAHAEINEAGR
SGPSNTPPEIL
LEEKKGNYVVTDH

AKXVAAWTLKAAA
GQIGNDPNRDIL
QYIKANSKFIGITE
FNNFTVSFWLRVPKVSASHLE
AQYIKANSKFIGITEL
STDSCDSGPSNTPPEI

QLINTNGSWHIN

CGWVAGLFYYHKF

LMGYIPLVGA
EGRAWAQPGYPWPLYGNEGL
AVGIGAVFLGFLGAAG and AVGIGAVF
LDKWASLWNWENITNWLWYIR

ELLELDKW
RIQRGPGRAFVTIGK
SLYNTVATL
ILKEPVHGV
KQIINMWQEVGKAMYA
NPNA (NANP) repeats
YLQPRTFLL
FLLNKEMYL
FIAGLIAIV
FVSEETGTL
YVYSRVKNL
SLVKPSFYV
LAILTALRL
WTAGAAAYY
GAAAYYVGY
RSAIEDLLFDKV

KRSFIEDLLFNKV

ASTEK
PKKS

QLQMGEGITVQYGT
YKLQPLTFL

YCILEPRSG
SVVNIQKEIDRLNEVAKNLN
RPQASGVYMGNLTAQ

HGEFAPGNYPALWSYA
FAPGNYPAL
CDSGPSNTPPEIHPVV
RGYVYQGL
RFKMFPEVKEKGMAG
FTSEHSHFSL

KIFGSLAFL and KIFGSLAFLPESFDGDPA
IISAVVGIL

GVGSPYVSRLLGICL
PESFDGDPASNTAPLQPEQLQ

origin
ovalbumin

ovalbumin (longer sequence incorporating
preceding)

ovalbumin
adenovirus AdS Ela protein

B cell epitope from epidermal growth factor
receptor class III variant

pan HLA DR-binding epitope (PADRE)

universal Th cell epitope

universal Th cell epitope

universal Th cell epitope

Th epitope

human adenovirus type S early region 1B CTL
epitope

HCYV E2 envelope glycoprotein epitope I

HCV E2 envelope glycoprotein epitope 1I

HCV core TCL epitope

HCYV core Th epitope

HIV envelope glycoprotein gp41 fragments

HIV gp41 membrane proximal external region
(MPER) epitope

HIV gp41 MPER epitope

HIV gp160 CTL epitope

HIV glycoprotein CTL epitope
HIV Pol DNA polymerase CTL epitope
HIV gp120 Th epitope

P. falciparum CS protein motif
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 T cell epitope
SARS-CoV-2 HLA-binding epitope
SARS-CoV-2 HLA-binding epitope

common coronavirus spike protein sequence
SARS cleavage site sequence

SARS-CoV-2 RBD sequence
SARS-CoV-2 RBD sequence

MERS B cell epitope

MERS T cell epitope

MERS T cell epitope

SARS-CoV spike protein B cell epitope

lymphocytic choriomeningitis virus (LCMV)
nucleoprotein T cell epitope

murine respirovirus nucleoprotein epitope
murine respirovirus CTL epitope
adenovirus type S EIA protein sequence

vesicular stomatitis virus (VSV) nucleoprotein
sequence

human glutamic acid decarboxylase (GAD)6S
protein T cell epitope

human glutamic acid decarboxylase (GAD)6S
protein T cell epitope

minimal HER-2 epitope
HER-2/neu protein fragment
HER-2/neu protein fragment
HER-2 antibody binding peptide

9209

application
model antigen

model antigen

model antigen
model antigen

model antigen

model antigen

model antigen from tetanus toxin
model antigen from tetanus toxin
model antigen from tetanus toxin
model antigen from tetanus toxin

model antigen

HCV antigen
HCV antigen
HCV antigen
HCV antigen
HIV antigen
HIV antigen

HIV antigen

HIV antigen

HIV antigen

HIV antigen

HIV antigen

malaria antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen
SARS-CoV-2 antigen

SARS-CoV-2 and other coronavirus
antigen

SARS-CoV-2 and other coronavirus
antigen

SARS-CoV-2 antigen
SARS-CoV-2 antigen
MERS-CoV antigen
MERS-CoV antigen
MERS-CoV antigen
SARS-CoV antigen
LCMYV antigen

murine respirovirus (Sendai virus)
antigen

murine respirovirus (Sendai virus)
antigen

used in a murine respirovirus
candidate vaccine

VSV antigen

insulin-dependent diabetes mellitus
(IDDM) antigen

insulin-dependent diabetes mellitus
(IDDM§ antigen

HER-2 cancer antigen

HER-2 breast cancer antigen
HER-2 breast cancer antigen
HER-2 breast cancer antigen

refs
62-71
69

72
65
64

64,73
74=76
74=76
74-76
77

78

79
80
81
82
83
84,85

86
87
88,89
88
90
25,91-94
95
95
96
96
97
97
97
98
98
99

100,101

102
102
103
103
103
104
105,106

107
108—110
110
111,112
113

113

114,115
116,117
118,119
120
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Table 2. continued

sequence origin application refs

YMPIWKFPDEEGAC HER-2 antibody binding peptide HER-2 breast cancer antigen 120

CRVLQGLPREYVNARHC HER-2 antibody binding peptide HER-2 breast cancer antigen 120

VARCPSGVKPDLSYMPIWKFPDEEGACQPL (C: HER-2 peptide sequence HER-2 breast cancer antigen 121

disulfide crosslink site)

KIFGSLAFLPESFDGDPA HER-2 peptide sequence HER-2 breast cancer antigen 115

RRLLQETELVEPLTPS HER-2 peptide sequence HER-2 breast cancer antigen 115

HGVTSAPDTRPAPGSTAPPA variable number of tandem repeats (VNTR) MUCI cancer antigen 76,122
domain of MUCI B cell epitope

VLSNDVCAQV (and VISNDVCAQV) prostate-specific antigen (PSA) epitope prostate cancer 42,123,124

ALDVYNGLL prostatic acid phosphatase (PAP) peptide prostate cancer 125
sequence

ALQPGTALL prostate steam cell antigen (PSCA) sequence prostate cancer 126

EIWTHSTKV folate receptor-ar sequence ovarian cancer antigen 25,77

MHTAPGWGYRLS folate receptor-a sequence ovarian cancer antigen 127

SLLMWITQCFLPVF (and SLLMWITQC) antigen derived from NY-ESO-1 containing both  antigen expressed in a number of 41,128
Th and Tc epitopes cancers

LLEFYLAMPFAT NY-ESO-1 epitope antigen expressed in a number of 129

cancers

IMDQVPSFV modified melanoma differentiation glycoprotein melanoma antigen 130
gp100 sequence (cf. preceding entry)

SSPGCQPPA melanoma differentiation glycoprotein gp100 melanoma antigen 131
sequence

YMDGTMSQV tyrosinase sequence for melanoma vaccine 130

QCSGNFMGF tyrosinase sequence for melanoma vaccine 131

LHHAFVDSIF tyrosinase sequence for melanoma vaccine 131

TWHRYHLL and TAYRYHLL tyrosinase gp75 protein sequence and variant for melanoma vaccine 132

AAAPKIFYA melanoma CTL epitope from screening melanoma antigen 133

KASEKIFYV melanoma CTL epitope from SSX protein melanoma antigen 133

KYICNSSCM pS3 tumor antigen protein sequence pS3 tumor antigen 134

LGFLQSGTAKSVMCT P53 Th epitope pS3 tumor antigen 135

FEQNTAQP murine lung tumor-associated antigen peptide =~ murine lung carcinoma antigen 136,137

FEQNTAQA murine lung tumor-associated antigen peptide = murine lung carcinoma antigen 136,137

AAGIGILTV and EAAGIGILTV Melan-A-specific CTL peptides melanoma antigen 138,139

LAGIGILTV Melan-A-specific CTL peptide variant (cf. melanoma antigen 140
preceding)

CYTWNQMNL Wilm’s tumor gene modified CTL epitope Wilm’s tumor antigen (associated 141

with some leukemias and others)

SSIEFARL and SEIEFARL herpes simplex virus glycoprotein sequence and model viral tumor antigen 132
modification

RAHYNIVTE HPV E7 protein CTL epitope HPV-induced tumors 69,142,143

QAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR ~ HPV E7 protein CTL epitope HPV-induced tumors 69

MDRVLSRADKERLLELLKL polyoma virus T-antigen polyoma virus-induced tumors 144

EPLTSLTPRCNTAWNRLKL murine leukemia virus (MuLV) CTL epitope ~ MuLV-induced tumors 145

SSWDFITV murine leukemia virus (MuLV) CTL epitope MuLV-induced tumors 145

SPSYVYHQF murine leukemia virus (MuLV) gp70 protein MuLV-induced tumors 145
CTL epitope

LPYLGWLVF murine mastocytoma P815 cells tumor antigen 62

field, the aim is to capture some key findings and concepts, and
unfortunately it is not possible to cover all the exciting work on

this subject.

This review is organized as follows. First in section 2, model
peptide based antigens (and adjuvants) are discussed, in
particular those based on self-assembling peptides. Then section
3 covers peptides for vaccines for a range of viral and other
infectious diseases, including the highly topical subject of SARS-
CoV-2 peptide-based vaccines. This is followed by section 4 on
cancer immunotherapy peptides. Section S provides concluding
remarks. Table 2 lists key peptide sequences discussed in this

review.
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2. MODEL SELF-ASSEMBLING PEPTIDE ANTIGENS
AND ADJUVANTS

Sequences from ovalbumin (OVA) have been used as model
antigens. These can stimulate CD8" T cell responses as
demonstrated, for example, in a study combining an ER
(endoplasmic reticulum) insertion sequence signal peptide
(RYMILGLLALAAVCSAM) with epitopes from chicken
ovalbumin (SIINFEKL, amino acids, aa 257—264) or a natural
tumor antigen expressed by the murine mastocytoma P815
(P1A aa 35—43, LPYLGWLVF).”” Immunization with the
fusion peptide RYMILGLLALAAVCSAMSIINFEKL signifi-
cantly extended the survival of mice challenged with a thymoma
(cancerous thymus) transfected with the complementary DNA

2

of chicken ovalbumin.® Sequences from OVA, especially
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OVA 3 330 NH,-ISQAVHAAHAEINEAGR-Am
RGD-Q11 Ac-GGRGDS-GGG-QQKFQFQFEQQ-Am
OVA(B)-Q11 NH,-ISQAVHAAHA-SGSG-QQKFQFQFEQQ-Am
OVA(T)-Q11 NH,-AAHAEINEAGR-SGSG-QQKFQFQFEQQ-Am
P3-Q11 Ac-QQKPQPQPEQQ-Am
P3-OVAQ11 | NH,-ISQAVHAAHAEINEAGR-SGSG-QQKPQPQPEQQ-Am
KFE8 Ac-FKFEFKFE-Am
RGD-KFE8 Ac-GGRGDS-GGG-FKFEFKFE-Am
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Figure 4. (a) Self-adjuvant peptide sequences studied by Collier’s group based on the Q11 fibrillizing peptide (blue sequence and non-fibrillizing
proline variants, black sequences) and sequences from ovalbumin OVA323-339 (red sequence) with a short hydrophilic spacer (green). (b) Long time
scale antibody response, comparing Q11 hybrids with the Q11 peptide and the OVA sequence in CFA (complete Freund’s adjuvant), after initial dose
and half-initial dose booster after 4 weeks. (c, d) ELISA antisera analysis of sera after S weeks (c) or 24 weeks (d). *p < 0.05 by ANOVA using Tukey
post hoc test. Reproduced from ref 146. Copyright 2012 American Chemical Society.

SIINFEKL, have been widely used as model immunogens as
discussed in the following examples.

A peptide, Q11 (QQKFQFQFEQQ), that forms f-sheet
fibrils has been used as a platform to display biologically active
motifs, including the RGD tripeptide and model anti-
gens.”’>'* The QI1 peptide by itself or with complete
Freund’s adjuvant (CFA, an emulsion containing inactivated
mycobacteria) is non-immunogenic. However, linking a
sequence from ovalbumin (OVA, chicken egg ovalbumin
sequence 323—339, ISQAVHAAHAEINEAGR, Figure 3a)
was shown to lead to the production of antibodies
(immunoglobulin titers, Figure 3b—d) in mice, without the
need for additional adjuvant (i.e., it is self-adjuvating).”” This
ovalbumin domain contains both T and B cell epitopes and was
linked to Q11 via a short SGSG hydrophilic spacer (Figure 3a).
OVA stimulates CD40-driven T and B cell responses.'*” The
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immune response was suggested to be dependent on self-
assembly since, like the parent Q11 peptide, Q11—OVA forms
P-sheet fibrils and a variant peptide with three F — P
substitutions (Figure 3a), which does not fibrillize, also does
not raise antibodies.”” In fact self-assembly and conformation
were studied in PBS buffer solution, not under in vivo conditions,
and it was not established whether the conjugates form S-sheet
fibrils under these conditions. The antibody response was found
to be T cell-dependent, and no notable antibody stimulation was
observed for Q11 conjugates to OVA fragments comprising only
B or T cell epitopes (sequences shown in Figure 4a).'*
Subsequently, the low cytotoxicity and inflammatory properties
of this conjugate were investigated in more detail, in comparison
to the conventional adjuvant alum, the results demonstrating
low cytotoxicity (analysis of tissue swelling and cellular and
cytokine responses).'*® Immunization with nanofibers bearing

https://doi.org/10.1021/acsabm.1c01238
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epitopes led to differentiation of T cells into T follicular helper
(Tth) cells and of B cells into germinal center cells in an antigen-
specific manner and produced IgG that was neutralizing in
influenza hemagglutination inhibition assays and cross-reacted
with the native protein antigen. Increased expression of the
CD80 and CD86 activation markers (of dendritic cells) was
observed in the presence of peptide nanofibers.'**

The adjuvant activity of an alternative fibrillizing peptide,
KFE8 (FKFEFKFE) in a conjugate with OVA was also shown
since a KFE8—OVA hybrid generates an immune response (IgG
titers) while the parent KFE8 peptide does not. The authors
point out that the similar immunogenicity of the two very
distinct peptide—OVA constructs indicates the lack of sensitivity
to fibrillizing peptide sequence.'* The group later showed thata
conjugate of Q11 to the OVA sequence OVA,; 544, SIINFEKL,
stimulates a response of CD8" T cells, which is desirable for
effective adjuvant activity (note that others have suggested that
such short sequences do not stimulate CD8" T cell responses).**
The authors highlighted the advantage of the system as a non-
inflammatory system that can be stored at room temperature,
eliminating the need for cold chain storage.63 The KFE8 peptide
has also been used in a mixture with West Nile Virus (WNV)
EIII receptor-binding domain from the envelope protein.'*” An
emulsified mixture of the KFE8 peptide adjuvant hydrogel and
the EIIl protein was shown to produce robust antibody
responses and to confer significant protection in the mouse
model against lethal infection.'*’

The same OVA peptide, SIINFEKL, was developed earlier as
a model antigen in a study of the effect of combination of a
peptide immunogen with a TLR agonist.”> The peptide was
delivered transcutaneously in the form of an ointment
containing the TLR7 agonist imiquimod,. The use of a
transdermal delivery method to prime CTLs and the full
immune response observed (in the mouse model employed) are
interesting aspects of the work. The peptide SGPSNTPPEI
(SGP) from the adenovirus AdS Ela protein (aa 234—243) also
generates a CTL response, peptide and imiquimod both being
required to prime a T cell response.”> This epitope had
previously been shown to prime CTL cells in a vaccine with IFA
(incomplete Freund’s adjuvant) and an activating monoclonal
antibody to promote CD40 activation.””>"*" This latter is
essential for the induction of therapeutic CTL immunity usinﬁa
tumor-specific peptide vaccine in tumor-bearing mice. ’
Peptide SIINFEKL is sufficiently widely used as an OVA
antigen that cells (B3Z hybridomas) responsive via TCRs to this
sequence are available.”® However, it has been shown that serum
proteases can disrupt presentation of SIINFEKL by MHC class I
molecules due to proteolysis.”” On the other hand, the
presentation of the full OVA sequence can be enhanced in the
presence of f,-microglobulin in serum. This can be blocked
using appropriate protease inhibitors (in this case an amino-
peptidase inhibitor but not an endopeptidase inhibitor), and the
authors also point out that minimal sequences such as
SIINFEKL may need modification or extension to guard against
serum inactivation.®” Degradation by peripheral DCs has been
noted for other short peptide antigens.'*”

The SIINFEKL motif has been incorporated in synthetic
vaccines comprising this sequence linked to either the TLR9
DNA ligand, CpG, or the TLR2 ligand Pam3CysSK4.68 Fast,
enhanced uptake of both types of TLR-conjugated peptides was
observed in DCs, although the uptake mechanisms were
distinct.”® Pam;CSK, and related lipopeptides are discussed in
recent reviews on lipopeptides for vaccine development.*>”
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The preceding examples of J-sheet forming peptides and
many others in Table 2 contain aromatic residues, which can
promote fibril formation due to 7-stacking interactions.">*~'**
In fact, the examples in Table 2 indicate a prevalence of aromatic
residues above that typically found in proteins (<10% for F, W,
and Y together'”). However, many epitopes in Table 2 do not
form p-sheet structures, and the aromatic residues may play
important roles in interactions with particular receptors. Coiled-
coil constructs have been investigated as model peptide
assemblies potentially able to stimulate immune responses. In
one example, a sequence from the coiled-coil domain of the y-
chain of mouse fibrinogen was used as a template to create a
related coiled-coil forming peptide and a triblock of this peptide
with a central PEG chain.">> The parent peptide had an
unordered conformation; however the derivative and peptide—
PEG—peptide triblock had similar high helical content of
secondary structure based on CD spectra. The distribution of
aggregates present was probed using analytical ultracentrifuga-
tion, which revealed the presence of dimers and tetramers or
pentamers for the peptide and predominantly dimers for the
triblock, along with a population of larger multimers (up to SO-
mers). Only the triblock raised antibodies in mouse serum;
however there was no evidence for T cell production by
splenocytes or lymph node cells.">* In contrast to the effective /-
sheet fibril conjugates developed by the same group that show T
cell responsiveness, on the basis of these results further research
on the coiled-coil systems was not pursued.

In another example of a vaccine platform based on coiled-
coils, model antigens including SIINFEKL, a PADRE epitope
(section 3.3, aKXVAAWTLKAa), or the epidermal growth
factor receptor class III variant B cell epitope LEEKKG-
NYVVTDH were attached at the N-terminus of a model 29-
residue coiled-coil-forming peptide.* These peptides aggre-
gated into fibrils, which were internalized by APCs and
generated robust antibody and CD4" and CD8" T cell responses
in mice, without supplemental adjuvants.é4

3. PEPTIDES FOR VACCINES FOR INFECTIOUS
DISEASES

3.1. Influenza. Human influenza pandemics were respon-
sible for between 50 and 100 million deaths in the last
century."*° The development of effective vaccines for influenza
is challenging due to the huge sequence diversity and high
mutation rate of influenza viruses. One target is influenza
hemagglutinin (HA), a family of glycoproteins that enable viral
entry into host cells. These glycoproteins exhibit substantial
variation in their sequence and glycosylation patterns, which are
important strategies to escape host immune responses.157
Despite this, it has been possible to isolate broadly neutralizing
antibodies against these viruses, and the structure of these
antibodies has been investigated. The thousands of influenza A
strains fall into two major groups and can be further classified
into 17 HA subtypes according to their reactivity against
polyclonal antisera.">” HAs are shuffled into a circulating human
virus from the huge reservoir of HA subtypes in avian viruses in
order to evade immunity within the population. To attempt to
circumvent sequence diversity, vaccine design has focused on
highly conserved domains, especially those of viral envelope
glycoproteins that are targeted by broadly neutralizing antibod-
ies.” Since the “stem” region of hemagglutinin HA2 is highly
conserved, it represents an excellent target."”® Based on the
stem, “mini-HAs” (molecular weight 40—242 kDa) were
developed, and the best candidate exhibited structural and

https://doi.org/10.1021/acsabm.1c01238
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Figure S. Coiled-coil peptide constructs that present I—LAsequences.161 (a) Construct design, (top) schematic, (bottom) detail. (b) Dimeric coiled-coil
showing noninterface residues as *. The knobs-in-holes packing is shown on the left (N and C termini indicated), while the hydrophobic interactions
between L and I residues at positions a and d are shown in the helical wheel representation on the right (heptad positions abcdefg shown), (c) Specific
sequences of two of the peptides studied including SP with the highest cross-reactivity. Reproduced with permission from ref 161. Copyright 2016

Wiley-VCH.

broadly neutralizing antibody binding properties similar to those
of full-length HA and was shown to protect mice after exposure
to influenza and to reduce fever in monkeys after sublethal
challenge.'*® The structural features of antibodies that bind to
the HA stem have been investigated, and this has led to the
identification of some conserved residues.'>*'>

Synthetic peptides that contain fragments of HA2 are able to
elicit antibody titers. Wang et al. showed that a mouse vaccine
containing a HA2-based synthetic peptide protects against
influenza viruses of subtypes HIN1, H3N2, and H5N1, which
diverge in structure.'® Based on earlier work on the H3 subtype
virus, they used the long a-helical (LAH) sequences, residues
76, 130, of HA2. A conjugate vaccine was synthesized that
comprises the LAH sequence and a C-terminal spacer domain of
eight amino acids (a so-called Flag tag) followed by a cysteine
residue to enable coupling to the carrier protein keyhole limpet
hemocyanin (KLH). The conjugate may bind residues within a
single a-helical portion of the HA2 protein.'®” Hodge’s group
produced an immunogen that produces antibodies to group 1 or
group 2 HAs, depending on the sequence.'®' This group used de
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novo principles to design a double stranded a-helical coiled-coil
template that contains conserved a-helical epitopes from the
region of the stem of influenza A HA glycoproteins. The
construct, shown in Figure S, also contains a KLH carrier
attached via a spacer to the cysteine-linked coiled-coil region,
stabilized by patterned hydrophobic I and L residues, consistent
with coiled-coil design principles (and two arginine residues are
included to improve solubility). The actual peptide sequences
are also shown in Figure 5. The immunogen SP demonstrates
the strongest cross-reactivity against group 1 and group 2 HA
proteins.161

Multimeric-001 is a peptide vaccine for influenza that has
proceeded to stage III clinical trials, being based on both B and T
cell (CTL and Th) epitopes from HA, nucleoprotein (NP), and
matrix 1 (M1) and sequences combined as triplicates within a
single recombinantly expressed polypeptide.”* ** The sequen-
ces are shown in Table 3. This recombinant peptide can be
produced using standard fermentation procedures and can be
readily deployed for human use.”” Multimeric-001 can be used
as a complete vaccine or as a primer for a HSN1 influenza
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Table 3. Sequences of the Components of Peptide Influenza
Vaccine Multimeric-001>°

peptide” amino acid sequence
HA epitope 1 PKYVKQNTLKLAT
HA epitope 2 SKAYSNCYPYDVPDYASL
HA epitope 3 WLTGKNGLYP
HA epitope 4 WTGVTQN
HA epitope S PAKLLKERGFFGAIAGFLE
NP epitope 6 FWRGENGRKTRSAYERMCNILKGK
NP epitope 7 SAAFEDLRVLSFIRGY
NP epitope 8 ELRSRYWAIRTRSG
M epitope 9 SLLTEVETYVP

“HA, hemagglutinin; NP, nucleoprotein; M, matrix protein. The
peptide sequence is (HA epitope 1) - (HA epitope 2) - (M epitope 9)
- (HA epitope 3) - (HA epitope 4) - (NP epitope 6) - (HA epitope 5)
- (NP epitope 7) - (NP epitope 8).

vaccine.”® As expected since it has reached phase III trials,
Multimeric-001 is effective against a variety of strains as a
separate vaccine or as a pandemic primer, and it has a good safety
profile.

A candidate influenza vaccine able to protect mice has been
developed based on VLPs originating from the RNA
bacteriophage AP205.'“> This scaffold was shown to provide a
versatile carrier for a variety of peptide epitopes. Peptides
derived from angiotensin II, CXCR4 receptor, Salmonella typhi
outer membrane protein, gonadotropin releasing hormone
(GnRH), or influenza A M2 protein were linked to either
terminus of the AP20S coat protein, and some were able to
generate peptide-specific antibodies. In particular, the VLPs
containing the influenza-related peptide generated a protective
immune response, generating IgGs and lengthening the survival
of mice.'®” A vaccine against avian influenza that is based on an
extended coiled-coil peptide that aggregates into polyhedral
virus-like particles has been tested in chickens.'®® These are
icosahedral or octahedral, respectively, for 97-residue peptides
designed to form pentameric—trimeric coiled-coils or tetrameric
coiled-coils. The tetrameric construct with adjuvant (complete
or incomplete Freund’s adjuvant) offered protection against one
flu subtype, HSN2.'**

In silico methods (ClustalW sequence analysis and prediction
of immunogenicit?r) were used to identify T cell epitopes for
influenza A and B.'®* The six identified T cell epitopes were then
synthesized, and four lead candidates were examined as a
potential influenza vaccine mixture. The induction of a HLA-
specific Th1-like immune response was examined. The survival
of transgenic mice against lethal challenge with influenza was
significantly enhanced by immunization.'®* This vaccine (Flu-v)
has progressed to stage II clinical trials.'*®

Another candidate vaccine in which conserved B- and T-cell
epitopes are combined is VaccFlu. The peptides in the mixture
employed were developed using a proprietary platform based on
responses to HLA-restricted epitopes.'®® Wild-type and trans-
genic HLA-A*02:01 mice immunized with the peptide mixture
showed both cell and humoral immune responses, and the
vaccine can provide protection from severe disease symptoms
upon infection.'®°

3.2. Hepatitis C and Hepatitis B. Hepatitis C virus (HCV)
infections can cause liver diseases such as cirrhosis or
hepatocellular carcinoma. Both CD4" and CD8" T cells are
involved in the response to infection, and the role of the humoral
immune system has been highlighted.'®” There are currently no
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vaccines for this condition, although trials of candidates are
underway.

Development of a hCV vaccine that is effective has been
hindered by the variability of the virus, resulting from mutations
that facilitate circumvention of the immune system, specifically
sequence variation within epitopes targeted by T cells.”'*® The
properties of HCV have been compared to those of other
hepatitis viruses, for which vaccines are available.'® Broadly
neutralizin_g antibodies (bnAbs) can even abrogate pre-existing
infection,"”” and the determinants for B cell response have been
uncovered.'”! The targeting by neutralizing antibodies of
epitopes of HCV envelope glycoproteins has been discussed.'®”
A novel peptide vaccine, 1C41, has been developed that
comprises five synthetic peptides containing HCV T cell
epitopes with adjuvant poly(i-arginine).'”* Immunogenicity
was assessed by examining T cell epitope-specific [*H]-
thymidine proliferation and IFN-y and using HLA tetramer
binding assays, and these studies confirmed that IC41 was well
tolerated and that it induces Th1 and CTL responses in all dosed
groups.'”” However, on further examination it was found that T
cell responses were too small to produce significant differences
in HCV RNA for most patients, so further optimization is
needed.'”® The authors also noted that the peptide vaccine may
also have restricted utility, since only a minority of possible
epitopes are included, and repeated stimulation with a small
number of peptides may narrow the CTL response. Later, it was
shown that an improved dose regimen or intradermal injection
can be used to improve the immunogenicity of IC41."”* Topical
application of the TLR7 agonist imiquimod did not enhance
immunogenicity. In a phase II clinical trial, a modest, but not
clinically meaningful, decrease in viral load was noted in patients
receiving IC41 (with topically applied imiquimod); however,
HCYV viral load reduction and T cell immune response were not
found to be correlated.'” It was thus proposed that these studies
provide proof-of-principle as a basis for further research, for
example, on combination therapies with antiviral drugs.'”

The majority of antibodies raised against HCV react against
E2 glycoprotein epitopes. Many antibodies recognize over-
lapping e7pitopes, and sequences of these have been
obtained.'”'”” Structure-based design principles were used to
develop immunogens that stimulate antibody responses to the
HCV E2 envelope glycoprotein (residues 412—423, QLINTN-
GSWHIN) epitope I.”* This led to constructs with a conserved
linear epitope, in particular peptides based on a cyclic defensin
protein (Figure 6) and an immunogen with two copies of this
epitope at the E2 surface. Vaccination of mice with these
peptides elicited antibody responses to epitope I, and the
obtained mouse serum is able to neutralize HCV. It was noted
that the cyclic designs produce enhanced epitope-specific
responses and neutralization compared to the native peptide.”’

Epitope mimicry is a concept in which discontinuous exposed
epitope fragments are displayed on a scaffold as shown
schematically in Figure 7.%° This approach was followed in the
design of immobilized fragments of the HCV-envelope E2
protein. Thiol groups were used to covalently link the linear and
cyclic epitope mimics on maleimide-activated plate surfaces.*’
These constructs incorporated peptide antigen sequences based
on epitope II of the HCV E2 glycoprotein, i.e. precursor peptide
CGWVAGLFYYHKEF. It was found that in contrast to linear
epitope mimics, cyclic peptides showed specificity toward
monoclonal antibodies targeted to HCV E2 epitope II. This in
vitro system was used for diagnostic testing of antibody
recognition using peptide-functionalized ELISA plates, which
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Figure 6. (a) Alignment of HCV-bound E2 epitope I (PDB code
4DGY; green) with a conformer of a cyclic 6-defensin peptide BTD-2
obtained from NMR (PDB code 2M2S; cyan), sticks represent cyclized
residues (yellow, disulfide bridge; red, locations of backbone
cyclization) and key epitope positions L413, G418, and W420. (b)
Sequences of peptides including peptide C1 cyclized via disulfide
linkages of yellow cysteine residues and C2 via the red residues (cf.
BTD-2). Reproduced with permission from ref 79. Copyright 2017
American Society for Microbiology.

can be used for further enhancement of epitope design for
vaccine development.*’

Other approaches to creating HCV vaccines have been
explored. Filskov et al. used a mixture of peptides that span the
sequence of HCV nonstructural protein 3 (NS3) to present T
cell epitopes.'”® Broadened CD4* and CD8" T cell responses
were observed in vaccinated mice using a panel of 62 20-residue
peptide epitopes spanning the NS3 sequence. In another
example, peptide-based subunit vaccines have been investigated,
in particular the effect on CTL generation comparing vaccines
based on Th or CTL epitopes of the HCV core, a mixture of
CTL and Th peptides or a conjugated Th—CTL peptide.'”” The
peptides studied were the HCV core CTL epitope (C7A10;

LMGYIPLVGA, aa 133—142),°' the Th epitope (CP4;
EGRAWAQPGYPWPLYGNEGL aa 72—91)% and the con-
jugated Th-CTL peptide (CP4—C7A10, EGRAWAQPGYPW-
PLYGNEGLLMGYIPLVGA). Mice immunized with C7A10,
the C7A10/CP4 mixture or CP4-C7A10, but not those
immunized with Th peptide alone, produced HCV core CTL
epitope-specific effector cells.'””

Hepatitis B virus (HBV) causes chronic hepatitis B, which is
responsible for liver disease. A vaccine is now routinely available,
which contains genetically engineered hepatitis B surface
antigen (HBsAg). Another recently introduced vaccine,
Heplisav, also targets HBsAg but also incorporates a TLR9
agonist adjuvant.'*” A review on HBV vaccines is available.'®'

Candidate HBV peptide vaccines have recently been
investigated. The B cell epitope HBsAg (113—135) has been
displayed on a novel chimeric VLP carrier based on a bat HBV
core antigen.'”” The carrier was additionally optimized by
incorporating one CD8" T cell epitope and two CD4* T cell
epitopes. The resulting construct stimulates an antibody
response specific to HBsAg (113—135), with increased T cell
stimulation. In addition, lasting suppression of HBsAg and HBV
DNA in HBV transgenic mice was noted."*? Immunotherapy
with a recombinant vaccine comprising grass pollen antigen
peptides and an HBV envelope protein domain can also produce
antibody responses protecting against hepatitis B infection (see
also section 3.6)."*> HBV 15-mer peptide T cell epitopes that
bind HLA class II alleles have been predicted using in silico
methods.'®* Sette et al. measured peripheral blood lymphocyte
levels of patients with acute hepatitis to probe the antigenicity of
ca. 100 different HBV-derived potential epitopes, all carrying
HLA-A*02:01 binding motifs and found that an immune
response is elicited above a defined affinity threshold."®

3.3. HIV. Human immunovirus (HIV) causes AIDS
(acquired immune deficiency syndrome), a potentially lethal
human disease. There are now treatments, mainly based on
small molecule antiretroviral compounds, which can almost
completely ameliorate the effects of the condition. For example,
a 36-residue peptide, enfuvirtide (trade name Fuzeon), which
inhibits the fusion of the gp41 HIV viral coat protein with cell
membranes, preventing the virus from entering the cell, is
available as a clinical treatment.'*

Despite progress in the development of small molecule
antiviral treatments, there is still considerable research interest in
prophylactic vaccines since none have yet been brought into
practice.'®” The V3 (variable region 3 of the HIV envelope) loop

Discontinuous epitope

.
B, &8

Assembly on Q ; @
Seaffold molecule = Scaffold

Figure 7. Epitope mimicry, in which discontinuous exposed fragments are displayed on a scaffold (here surface tethered molecules). Reproduced from

ref 80. Copyright 2018 American Chemical Society.

915

https://doi.org/10.1021/acsabm.1c01238
ACS Appl. Bio Mater. 2022, 5, 905—944


https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01238?fig=fig7&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.1c01238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Bio Materials

www.acsabm.org

EVE

O

HN’h\NH
H
H

:

89

332

H ]
g l _/J-L\_\_ \
S,)---u./\/\”/me'x EINCTRPNNNTRPGEIIGDFRQAH?NISRAKWN
DS bl T T M _

Figure 8. The 33-residue V3 glycopeptide epitope bearing a high-mannose glycan (green and blue are mannose and GIcNAc units, respectively) at the
N332 site.'”® The cyclization via disulfide formation from two cysteines is shown. The peptide is N-terminally biotinylated to facilitate site-specific
immobilization for binding analysis. The sequence corresponds to a truncated V3 sequence containing residues 293—304 and 321—-339, the tip
residues 304—320 being replaced with a Pro-Gly dipeptide insert (black), which induces a reverse turn conformation. Reprinted from ref 198 with

permission of Elsevier.

(a)

HO— © o
Ho .
oy HC;BJ\‘I

|
°¢ sumnm
[ = =

O
—OH

® GlcNAc
® Man9

NHAC

Ty

NHAc

H O o009
\N,\/\/YN AN sa»
H O_J = e »

| S

r 2 =

&W N o V3 glycopeptide 332\

N-N/LJ'\rr MINCTRPNNNTRPOEIIGDIRQANCNISRAKWN
0

P00
* Qe
=NH e 9

L 4
V3 glycopeptide .

332 \‘,
N ‘/\/\)\E|NCTRPNNNYRPGEIIGDIRQAHCNISRAKWN
O NH

L N J
® Q
e o
©
0. V3 alveopentid
N”N o V3 glycopeptide 132
“ZZ,..\W‘N N*/\/\)\EIN(IZTRPNNNTRPGEI|GDIRQAH(12NISRAKWN
o}
© NH L L A
oy
LA
0 N .
P V3 glycopeptide
H 332\,

N N H 0
oa) ~“\/\,N’]\/}r N‘/\MEINCITRPNNNTRPGEI!GDIRQAHICNISRAKWN
NH;

Figure 9. (a) Linear three-component conjugate containing a Pam;CSK,-based region (purple), a T-helper epitope (green), and the V3 peptide
epitope (red) with N332 glycosylation (mannose indicated in green and GlcNAc in blue). (b) Multivalent analogue of the conjugate in panel a with
presentation of three V3 glycopeptide epitopes. Reproduced from ref 199. Copyright 2018 American Chemical Society.

of the HIV-1 virus spike membrane glycoprotein gp120'**

represents a target for neutralizing antibodies and consequently
has been identified as a promising candidate for peptide-based
vaccine design.”>"*"~'"* This glycoprotein is vital for viral
infection as it enables HIV entry into the host cell. It was used in
the development of AIDSVAX gp120 B/E from VaxGen, and
later RV144, which combines AIDSVAX with ALVAC-HIV
(vCP1521, from Sanofi-Pasteur), a recombinant canary pox
priming immunogen.'”*~"*> AIDSVAX was not successful after
phase III trials'*"*” in the US, while RV144 was the subject of
further trials in Thailand but has not been approved due to
limited efficacy.'®”'**

Minimal peptide sequences have been examined as epitopes
of V3-glycan-specific bnAbs based on the HIV-1 glycopeptide
immunogen.'”® A vaccine was developed'”® based on a synthetic
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three-component mixture containing a 33-mer V3 glycopeptide
epitope with a high-mannose glycan at the N332 site (Figure 8),
a universal T helper epitope P30, a 21-residue peptide derived
from the tetanus toxoid,"” and lipopeptide PamyCSK,. This
self-adjuvanting system was shown to induce glycan-dependent
antibody responses.'”® This work was later extended to the
synthesis of other analogous conjugates glycosylated at N332 as
well as N301 and N295 sites in a study of glycan-reactive bnAb
binding sites."”" Binding was studied via surface plasmon
resonance and ELISA measurements. The same group later
covalently linked the three components previously studied in
mixtures to produce the conjugate shown in Figure 9, along with
a multivalent version in which three copies of the N332
glycosylated V3 epitope are presented.'”” Multivalent presenta-
tion significantly increased the immunogenicity of the V3
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glycopeptide, and the antisera showed stronger binding to HIV
glycoproteins than the monovalent glycopeptide.

Another HIV envelope glycoprotein that has been targeted is
gp41."*® The HIV-1 fusion peptide, which comprises 15—20
hydrophobic N-terminal residues of the Env gp4l trimer
subunit, is targeted by human bnAbs.** The peptide includes
the gp415;,_s,, sequence AVGIGAVFLGFLGAAG, regions of
which were found (by molecular dynamics simulations) to be
solvent-exposed. HIV envelope proteins such as gp120 and gp41
(and hemagglutinin from influenza virus membranes) undergo
conformational changes that enable virus and host cell
membranes to fuse.”””*°" A shorter fusion peptide termed
FP8 has the most prevalent sequence AVGIGAVF (residues
512—519).”" Immunization with this peptide followed by
boosting with intact Env trimer can elicit therapeutically relevant
cross-clade bnAbs in standard vaccine animal models.
Neutralizing responses in mice can be generated by priming
with FP8 linked to keyhole limpet hemocyanin (KLH) (see
section 3.1) and boosting with prefusion-stabilized Env
trimers.””*> A SAPN coiled-coil construct has been created
that incorporates the gp41 (HXB2 strain 662—682) membrane
proximal external region (MPER) sequence at the N-terminus of
the pentameric unit, which has been used to develop a potential
adjuvant-free HIV-1 vaccine.” The MPER epitope (LDKWAS-
LWNWFNITNWLWYIR) was added so as to preserve the
native a-helical presentation of the 4E10 gp41 antibody epitope.
The peptide also incorporates a trimeric coiled-coil sequence
and a sequence from Plasmodium berghei (see section 3.4).
Activity against HIV-1 was assessed using rats after immuniza-
tion with MPER-SAPNs. It was shown that MPER-specific
antibodies were generated via the repetitive display of MPER
antigen on the SAPN, although detectable neutralizing activity
against HIV-1 was not observed in any of the sera.** MPER is
present at the C terminus of the exterior part of §p41 and is only
partially accessible in the native Env spike.*” However, the
flexible region is accessible for bnAbs during membrane fusion,
that is, during the conformational transitions induced in the
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native Env spike upon binding to CD4 and co-receptors. A core
gp4l MPER epitope ELLELDKW was identified by phage
display,*® and later screening led to variant ELLELDKM, which
shows better antibody binding properties.”> This peptide
combined with a gp41 3S epitope to reduce CD4" depletion,
may be used to provide a dual-function vaccine to reduce and
protect against infection while preserving CD4" T cells.*

A (mouse model) HIV vaccine was developed that contains
linked peptides representing an immune-dominant CTL
epitope, P18, of gp160, located collinearly at the C-terminus
of three cluster peptides.”** The former epitope is recognized by
Th cells, of multiple MHC types from mice and humans. The
dual-functional peptide exhibited both CD8" CTL and CD4"
Th activity not observed when only P18 or cluster peptide
mixtures were employed.””* HIV vaccines based on HIV-1 I1IB
gpl60 formulated with ISCOMS (immune-stimulating com-
plexes) can generate CTLs that kill fibroblasts transfected with
the gp160 IIIB gene, in response to the whole envelope protein
or the immunodominant CTL epitope (RIQRGPGRAFVT-
IGK) of gp160.*

CTL epitopes from HIV glycoprotein (SLYNTVATL) or
DNA polymerase Pol protein (ILKEPVHGV) or both have
been linked to a Th sequence, specifically the promiscuous
PADRE T-helper cell motif AKXVAAWTLKAAA (X
cyclohexylalanine) (see also section 2), fused to CpG-
oligodeoxynucleotides as adjuvants (TLR9 agonists).”® In a
mouse model of human HLA-A*02, the immunogenicity of
linked DNA—peptide conjugates was enhanced compared to
noncovalently linked mixtures of the same molecules, assessed
by peptide-mediated cytotoxicity and IFN-y release, and
protection against viral infection is provided.”® The HIV-1
SLYNTVATL peptide has also been linked to an ionic
complementary peptide EAK16-11 (AEAEAKAKAEAEAKAK)
that self-assembles into f-sheet fibrils, to potentially enhance
immunogenicity.”” The conjugate peptide was studied in a
mixture with TLR7/8 agonists resiquimod or imiquimod. DCs
generated from HIV-positive patients exposed to the nanofiber
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Figure 11. Peptide conjugate UK-39 developed as a malaria vaccine. Reprinted from ref 222, Copyright 2007, with permission from Elsevier.

formulation stimulated a significantly greater CTL response,
compared to the DCs pulsed with the unconjugated peptide
alone, or the unconjugated peptide mixed with TLR agonist."’

Adenovirus serotype 26 (Ad26) vectors have been exploited
in the development of HIV vaccines that incorporate express
mosaic HIV envelogpe (Env) and Gag-Pol immunogens [Gag =
group antigens].””> This vaccine has proceeded to phase IIb
clinical trials after earlier trials using rhesus monkeys.””> This
adenovirus vaccine builds on the earlier MRKAdS HIV-1
vaccine (Merck and Co., Inc.).?%%*%7

A HIV vaccine strategy relying on the humoral immune
system has been proposed that is based on a mixture of synthetic
peptides comprising HIV-1 Env V3 sequences from HIV
isolates, based on the conserved GPGR core sequence at the V3
tip region of gp120.208 Earlier, peptide-based ELISA was used to
measure antibodies that specifically bind synthetic HIV
fragment sequences (15-mers) derived from HIV serum
specimens from Japanese patients with hemophilia A infected
with HIV-1 subtype B.**> The GPGR tetrapeptide motif was
present in 78% of strains.””’ V3 peptides cyclized via disulfide
bonds showed better HIV-1 neutralization behavior in rabbits
compared to the linear homologous peptide.”’ The constrained
V3 peptides bearing the GPGR motif were linked to a 16-residue
segment (KQIINMWQEVGKAMYA) of the gp120 C4 region,
a known Th epitope. The constrained peptide also stimulated a
significantly enhanced HIV-1 neutralizing response compared to
that elicited by a gp120 construct with exposed V3 peptide.”

The HIV vaccine Vacc-4x is a candidate peptide-based HIV
vaccine that has reached advanced clinical trials.”'*~>"* It is a
mixture of four modified peptides (20—27 residues) from p24
capsid”'? that is designed to produce cell-mediated immune
responses to HIV p24 Gag protein regions conserved between
certain HIV strains.”'>*"*

3.4. Malaria and Other Parasite Diseases. Malaria is
caused by sporozoites of parasites of Plasmodium species,
especially P. falciparum and P. vivax. These are carried by
Anopheles spp. mosquitoes and are transmitted when blood is
ingested.”'>*'® It is estimated that around 200 million people
per year contract malaria, and in 2019, about 400 000 people,
949% of whom were in Africa, died from the disease.”"” Figure 10
shows a schematic of the malaria parasite life cycle.”"®

Strategies have been suggested for anti-malaria peptide
vaccines based on the P. falciparum life cycle (cf. Figure
10):>*'*! (1) sporozoite spreading in the liver prevention
(pre-erythocyte stage vaccines); (2) erythrocyte (red blood cell)
entry inhibition (blood stage vaccines); and (3) induction of
neutralizing antibody responses against the parasite’s game-
tocyte or ookinete stages in mosquitoes (transmission blocking
vaccines). The most common malaria vaccines are subunit
vaccines containing antigenic proteins or vaccines based on
attenuated live parasite proteins.”> Subunit vaccines may be
developed based on proteins with strong antigenic activity
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including the circumsporozoite (CS) protein and apical
membrane antigen 1 (AMA-1). The CS protein is a ca. 42
kDa soluble protein that is needed for sporozoite development
in the liver. Within the CS protein, a 37 tetrapeptide repeat, Asn-
Pro-Asn-Ala (NPNA) (or equivalently NANP), along with a
thrombospondin conserved domain, are essential immunogenic
epitopes.””"”* The development of malaria subunit vaccines
has recently been reviewed.”'®

The first approved malaria vaccine (RTS,S, trade name
Mosquirix) is a recombinant subunit vaccine comprising a 188-
residue truncated CS sequence expressed with a 226-residue
hepatitis-B surface antigen (HBsAg) in yeast.”””*"> This
vaccine generated great excitement, following endorsement by
the WHO in October 2021 of plans for widespread use in
children. Vaccine RTS,S is generally delivered with the
liposomal adjuvant ASO1 containing QS-21 (a plant-derived
saponin) and monophosphoryl lipid A (MPL).”*" A review on
RTS,S discusses other adjuvant formulations that have been
investigated.””' The crystal structure of the ANPNA peptide
(which contains the core CS tetrapeptide repeat mentioned
above) has been determined.”® Antibodies against the NPNA
sequence confer protection against malaria, and these have been
analyzed. In fact, it was possible to obtain crystal structures of
1210 and 1450 antigen-binding fragment (Fab) with
(NANP),.”* These antibodies result from affinity maturation
selection of B cells that express mutated antibody variants with
improved antigen-binding properties. The understanding of the
binding of the co-complex led to the development of UK-39
(Figure 11),** a peptide—phosphatidylethanolamine (PE)
conjugate containing a more stable cyclized structure of the
loop containing two NPNA units.”****~>*° This peptide has
been attached at the surface of immunopotentiating influenza
virosomes (IRIVs) in clinical trial development; these are
vesicles containing reconstituted influenza virus glycoproteins,
which retain activity for binding to the cell surface and cell fusion
and are used as antigen-delivery platforms that elicit B- and T-
cell responses.”””**~*** Immunization of mice and rabbits with
UK-39 at the surface of IRIVs elicited high titers of sporozoite
cross-reactive immunoglobulins.***

A novel peptide-based malaria vaccine, R21, has recently
progressed to phase 3 trials, following phase 2 trials that showed
that 77% of the approximately 400 babies and infants in Burkina
Faso in the trial were protected against disease after 1 year.”””
Like RTS,S, R21 contains a peptide that is a fusion of CS and
HBsAg sequences. However, R21 lacks the unfused excess
HBsAg found in RTS,S and contains a different adjuvant,
saponin-based Matrix-M (R21/MM).>** R21 has been shown to
form virus-like globular particles by TEM imaging.”*° Virus-like
particles such as those formed from p33—HBsAg (p33 is a
peptide derived from lymphocytic choriomeningitis virus) can
actually stimulate APCs without adjuvant.””’ A peptide
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repeats, see also ref 242 and associated discussion within the text) or P. vivax CS protein repeat region (DRAAGQPAGDRADGQPA); green, coiled-
coil pentamer domain; blue, coiled-coil trimer domain; yellow, predicted human HLA-restricted CD8" T cell epitopes from P. falciparum CS protein;
magenta: universal CD4 T-helper epitope (PADRE) within the trimer domain. (b) Schematic of packing of coiled-coils into spherical nanoparticles.
(c) TEM image of nanoparticles (scale bar = 100 nm). (d) Size distribution of the nanoparticles from dynamic light scattering. From ref 243.

fragment of p33, p33 —41 (KAVYNFATM), shows a similar
ability to form VLPs.”

Another candidate malaria vaccine was developed based on a
peptide sequence from the C- termlnal region (aa 282—383) of
the CS protein of P. falciparum.”> A vaccine was formulated
with Montanide adjuvant and in human trials was found to be
well tolerated and able to produce a strong sporozoite-specific
antibody response through CD4* and CD8* CTLs.*** A longer
sequence, 181—276, from the C-terminal region of P. falciparum
merozoite surface protein 3 (MSP3) has also been used in
vaccine trials with Montanide or alum as adjuvant.”** Although
vaccines with both adjuvants were immunogenic, that
containing Montanide was found to give adverse reactions
(inflammation).”** As the basis for malaria vaccine develop-

ment, a series of a-helical peptides (30—70 residues) have been
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prepared and investigated based on screening of the P.
falciparum 3D7 genome. This led to the identification of a
series of coiled-coil domains of protelns thought to be present in
the parasite erythrocyte stage.””> The array of synthesized
peptides were all specifically recogmzed in immune sera of
humans, though to different extents.”

CS-specific CTL have been generated by immunization by
peptides from CS proteins from other malaria species, P. berghei
and P. yoelii. The CS peptides correspond to a CTL epitope
presented by MHC class 1 H-2K¢ molecules or by Th cells.”*°
Use of both of both types of peptide prevented the induction of
T cell tolerance and increased the magnitude of the CTL
response.”*®

Another antigen that has been used in subunit vaccine
development is the apical membrane antigen 1 (AMA-1), which
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Figure 13. (a) Representative schematic structure of a coronavirus such as SARS-CoV-2. (b) (left) Spike protein from SARS-CoV with one receptor
binding domain (RBD) raised and (right) a closed conformation of the SARS-CoV-2 spike protein. The S1 fragment is colored magenta, and the S2
fragment is red, with glycosylation in lighter shades. From https://pdb101.rcsb.org/motm/246.

is a type I integral membrane protein located at the merozoite
surface (a merozoite is a cell produced by asexual reproduction
that is released from red blood cells).”> AMA-1 is an 83 kDa
integral membrane protein with sequence diversity (allelic
variants), which is cleaved into a 66 kDa product upon
merozoite release.””” The structure of AMA-1 has been
examined and is found to be stabilized by multiple disulfide
bonds.””® AMA-1 plays a central role in erythrocyte invasion by
Plasmodium species.”>*>**" The critical residues involved in
erythrocyte binding were identified and include the sequences
DAEVAGTQYRLPSGKCPVFG, VVDNWEKVCPRK-
NLQNAKFG, WGEEKRASHTTPVLMEKPYY, and MIKSAF-
LPTGAFKADRYKSH. All conserved peptides were able to
prevent merozoite penetration of red blood cells and merozoite
development, indicating that these peptides are associated with
P. falciparum invasion.”*” AMA-1 has three subdomains in its
ectodomain, and it appears that strain-specific epitopes in
domain I are recognized by the majority of antibodies raised
against the ectodomain.”*" Since this domain shows consid-
erable sequence variation in contrast to domain III (which
contains more conserved epitopes), a virosomal formulation
(IRIV) of a peptide that mimics the partly conserved loop I of
domain III was developed that elicits parasite growth-inhibiting
antibodies.”*' A synthetic peptide comprising residues 446—490
of AMA-1 was attached at the N-terminus to a phosphatidyle-
thanolamine lipid derivative (similar to the concept discussed
above and conjugate structure shown in Figure 11), and the
conjugate was incorporated into IRIVs as an antigen delivery
system. Cyclized and linear versions of the peptide antigen both
elicited antibodies that showed specific binding to parasite-
expressed AMA-1, in a mouse model.”*" Following encouraging
animal study results with the conjugate containing a cyclized
peptide (and the CS protein NPNA-conjugates discussed
above), human clinical trials have been conducted.”

Collier’s group has also used the Q11 peptide discussed in
section 2 as a scaffold for the malaria peptide antigen (NANP),
from the CS protein of the P. falciparum protozoan parasite.”**
The conjugate retains a f-sheet fibril structure and was found to
be effective in raising antibodies, the response lasting up to 40
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weeks. Antibody production was shown to be T cell- and
MyD88-dependent (studied using MyD88 knockout mice; the
MyD88 protein plays an essential role in immune cell activation
through TLRs) whereas antibody production was not abolished
in knockout mice lacking functional TLR-2, TLR-5, or NALP3
(also known as NLRP3, a pattern recognition receptor protein
involved in the inflammasome pathway). The (NANP);—Q11
conjugate could be co-assembled with OVA—QI1 without
diminishing the immunogenicity of either on its own.”**
Spherical particles with a diameter of about 40 nm formed by
the self-assembly of ~125-residue coiled-coil peptides (mini-
proteins) were used as vaccine nanoparticles for the malaria
parasite P. falciparum CS.*** The peptides contain sequences
designed to form coiled-coil pentamers or trimers with several
functional epitopes (Figure 12a,b). Figure12c shows an electron
micrograph image, revealing spherical nanoparticles, along with
a schematic of the modeled packing of approximately 60 peptide
chains into such a structure (Figure 12b). These SAPNs raise
long-lasting antibodies in mice and long-lived CD8" T cells. The
latter was achieved by incorporating KMY CD8" T cell epitopes
into the nanoparticles (Figure 12), where KMY refers to
KPKDELDY, MPNDPNRNV, and YLNKQNSL.** In a related
work, a B cell immunodominant repeat sequence
(DPPPPNPN),D from the malaria parasite P. berghei CS
protein was similarly displayed on coiled-coil peptides of the
same design.”** The non-adjuvanted vaccine was shown to
provide extended protection against malaria in rodents.”**
Vaccines for toxoplasma in mice were also developed using
related coiled-coil oligomerization domains in a single linear
peptide.”*> The pentameric and trimeric coiled-coil domains
were linked via spacers (cf. Figure 12) to the GRAj_ s
(LPQFATAAT) peptide and a PADRE-derived CD4 helper
epitope (ERFVAAWTLRVRA) within the same peptide
sequence. This GRA peptide is based on GRA7, a potent
antigen that elicits IFN-y from CD8" T cells and is expressed in
Toxoplasma gondii infections. Similar to the previously discussed
SAPNSs, these peptides self-assemble into icosahedral nano-
particles, as imaged by TEM, with a diameter ~38 nm
determined by dynamic light scattering (cf. Figure 12d).”*
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Figure 14. Interaction of ACE-2 (light blue and yellow surfaces) with spike RBD (red): (A) bound complex; (B) close-up of the interaction interface;
(C—E) Highlighting important residues from spike RBD involved in complex formation. PDB 7DMU. Reproduced with permission from ref 250.

Copyright 2021 Wiley-VCH.

3.5.SARS-CoV-2 and Related Coronaviruses. The global
COVID-19 pandemic caused by the SARS-CoV-2 [SARS,
severe acute respiratory syndrome] virus stimulated the
incredibly rapid development successful vaccines based on
mRNA and adenovirus vectors, and others. ~****™*’ To date,
peptide—epitope based vaccines for SARS-CoV-2 have not
reached practice, although a number of trials have been launched
(see, for example, Table 1). The structure of a coronavirus is
illustrated in Figure 13a, and the spike protein structures are
highlighted in Figure 13b. Key to recognition of human cells are
the spike (glyco)proteins, which interact with the ACE2 cell
receptor (Figure 13b). SARS-CoV-2 proteins have now been
sequenced, and it has been possible to identify key regions
involved in the binding of the spike protein to target cells, and
these represent potential targets for therapeutic interventions. A
review is available that focuses on peptide therapeutics for
SARS-CoV and SARS-CoV-2 and contains, among other
valuable information, a table of peptide inhibitors that have
been identified from in vitro and in silico approaches that target
interactions mediated by the spike receptor binding domain
(RBD).”" Other strategies are discussed including peptide
inhibition to target the ACE-2 receptor itself, fusion inhibition
by targeting heptad repeat domains HR1 and HR2 and
inhibition of binding between the ACE-2 receptor and the
RBD (Figure 14). An early review on SARS-CoV-2 modeling
activities introduces several of the widely used immunoinfor-
matics methods (including many discussed below) as well as
summarizing research done early in the pandemic that identified
T cell peptide epitopes and studied their HLA-binding
activities.”>' A review of angiotensin receptor blockers as
potential targets for SARS-CoV-2 treatments highlights that
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viral peptides may not be effective against future coronavirus
outbreaks, as mutations could render them inactive.”** Reviews
on SARS-CoV-2 vaccines under development includes dis-
cussion of several vaccine candidates based on peptide
epitopes.”*/7**25323% It should be noted that this is a very
fast moving field and these reviews are often rapidly outdated by
fast emerging knowledge and technologies. There is now a very
extensive literature on SARS-CoV-2 including identification of
many peptides as T cell epitopes as well as other studies on viral
protein/cell receptor binding inhibition. The following is a
selection of key reports to date, including examples of both
experimental and computational studies. A few examples are also
discussed of earlier work on related coronaviruses MERS-CoV
[MERS: Middle East respiratory syndrome] and SARS-CoV
(from the 2002—2004 SARS outbreak).

Peptide epitopes have been identified from COVID-19
patient screens using the VirScan phage-display platform
which uses an oligonucleotide library encoding S6-residue
peptides tiling every 28 amino acids (and 20-mers spanning
every 5 aa) across the proteome.””® Among the peptides
highlighted, ten epitopes were thought likely to be recognized by
neutralizing antibodies. The authors highlighted the relevance of
such findings to the development of diagnostics and the isolation
of antibodies including potential neutralizing antibodies.”*” In
another study of sera from COVID-19 patients, a library of B cell
peptides was produced that spans the whole S glycoprotein of
SARS-CoV-2 (or SARS-CoV) in series of five overlapping
peptides.”*® This led to the identification of two dominant
immunoglobulin regions on the SARS-CoV-2 spike glycopro-
tein recognized by sera from patients recovering from COVID-
19, one close to the RBD.**® Peptide epitope targets for T cell
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recognition have been selected based on predictions of SARS-
CoV-2 HLA-binding peptides using the SYFPEITHI database
and NetMHCpan artificial neural network server. T cells
amplified in vitro from patients exposed to SARS-CoV-2 (or
controls) enabled the identification of a series of HLA-binding
peptides that are natural T cell epitopes.”>” The peptides specific
for SARS-CoV-2 enabled post-infection T cell immunity to be
detected, even in seronegative convalescent patients, which thus
established similarity to common cold coronaviruses. Pre-
existing T cell responses in were observed for 81% of unexposed
individuals.”>” On the other hand, Ferretti et al. reported SARS-
CoV-2 epitopes that are widely shared by CD8" T cells of
COVID-19 patients but show low cross-reactivity with other
seasonal coronaviruses.”>® All memory CD8* T cells for a
particular COVID-19 patient were screened, for every HLA
allele, against every epitope in the SARS-CoV-2 virus and the
four seasonal coronaviruses responsible for the common cold.
CD8" T cells were cocultured with an array of engineered target
cells that express one HLA allele, each of the target cells
expressing a unique 61-residue SARS-CoV-2 protein fragment.
These sequences were found to be processed naturally by the
target cells, the appropriate peptide epitopes being displayed on
MHC class I molecules. The authors also found that most
epitopes are not within spike protein sequences.””® A SARS-
CoV-2 peptide microarray was constructed using 15-mer
peptides (with a S residue overlap across the proteome) to
analyze antibody binding.”* In addition, the utility of SARS-
CoV-1 antibodies in the detection of the SARS-CoV-2
nucleocapsid protein was demonstrated. The authors also
identified B cell epitopes for SARS-CoV-2 antibodies in the
serum of ten COVID-19 patients.””” Two HLA-A*02:01-
restricted CD8" T cell epitopes specific for SARS-CoV-2 have
been identified: A2/S,59 7 (YLQPRTFLL) and A2/
Orflabygs_350; (FLLNKEMYL).” T cells corresponding to
the former epitope are detected at comparable frequencies in
acute and recovering patients (and at levels above those for
uninfected donors) though with a weaker response than for
influenza or Epstein-Barr virus A2 sequences. The former
epitope shows high conservancy with MERS-CoV and SARS-
CgV-l , and the latter shows 100% conservancy with SARS-CoV-
1.

Significant cellular responses have been observed using
splenocytes of mice given a SARS-CoV-2 spike protein RNA/
lipid nanoparticle vaccine candidate.”®” In particular IFN-y was
produced, upon re-stimulation with SARS-CoV-2 peptides from
a pool of 15-mers.”

Extensive computational modeling has been undertaken to
examine potentially useful epitopes. In one example, a
computational screening study of SARS-CoV-2 proteins
including nucleocapsid proteins, membrane glycoproteins and
surface spike glycoproteins has identified epitopes for B cells, Th
cells, and CTLs.”®' The computational data suggest that the
epitopes can be used in a vaccine that is non-toxic, non-
allergenic, and able to elicit cell- and humoral-mediated immune
response. Lin et al. used immune informatics methods to identify
B and T cell epitopes for the membrane glycoprotein (M),
surface glycoprotein (S), and nucleocapsid protein (N) of
SARS-CoV-2 and evaluated their antigenicity and interactions
with HLA alleles.”®> Analysis of toxicity, allergenicity,
physiochemical properties, and stability confirmed the selectiv-
ity and specificity of the candidate epitopes.”®” An immune
informatics approach has been adopted using the viral genome
to identify highly immunogenic B cell epitopes and nearly 500
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HLA-restricted T cell epitopes.”® A total of 30 peptides were

selected as potential vaccine candidates, 26 of them derived from
the SARS-CoV-2 spike protein, 2 from the membrane protein,
and 2 from the envelope protein. A docking study revealed that
sequences FIAGLIAIV and FVSEETGTL strongly bind differ-
ent types of HLA. A selection of these were used in the
development of peptide vaccines which elicited cellular and
humoral responses specific to antigens in mice.”® Screening of
the immune epitope database (IEDB)*”*' revealed a series of B
cell peptide epitopes and ProPred-I and ProPred servers were
used to select MHC-I and MHC-II binding T cell epitopes
respectively within pre-identified B cell epitope regions.”** The
VaxiJen server’®* was then used to assess potential antigenicity.
The 13 MHC-I and 3 MHC-II antigenic epitopes identified were
connected using (EAAAK); linker peptides to construct a model
peptide vaccine, the docking of which to TLR-5 was modeled.”*
In a separate study, the IEDB was also used to identify T cell
epitopes and to model MHC class I and class II binding along
with in silico docking analysis and VaxiGen server antigenicity
testing.”” Lead candidate peptides identified were
YVYSRVKNL, SLVKPSFYV, and LAILTALRL, and these
dock well with HLA-A*02:01.”” An in silico analysis has been
performed of binding affinity of viral peptide and MHC class I
for HLA-A, -B, and -C genotypes for all 8-mer and 12-mer SARS-
CoV-2 peptides (48395 unique peptides).””> HLA-B*46:01
contained the fewest predicted binding peptides for SARS-CoV-
2, indicating that with a person with this allele may be
particularly susceptible to COVID-19,°*° as for SARS-CoV.>*°
On the other hand, HLA-B*15:03 was presented by highly
conserved SARS-CoV-2 peptides common to many human
coronaviruses to the greatest extent, suggestin§ that it could
provide cross-protective T cell-based immunity.”®®

Another group used the IEDB to identify T cell epitopes in
SARS-CoV2 and SARS-CoV, which have high sequence
homology.”®” Using these predicted pools of epitopes, SARS-
CoV-2 CD4" and CD8" T cell responses following infection in
recovered COVID-19 patients were analyzed.”*® SARS-CoV-2
T cell responses cross-reactive with those from other common
coronaviruses were observed in healthy donors, indicating the
possibility of pre-existing immunity in the human population.***
Another study also examined the immunodominant memory T
cell responses specific to SARS-CoV-2 in patients who recovered
from COVID-19.”*’ This was evaluated in vitro using peptides
covering the full proteome of SARS-CoV-2. The extent and
magnitude of T cell responses were notably enhanced in severe
cases. T cell responses specific to the spike or the total response
were found to correlate with spike-specific antibody production.
The authors identified a series of 41 peptides with CD4" or
CD8" epitopes, including six immunodominant epitope
groups.2 ® Immunoinformatics methods (NetCTL, CTLPred,
BepiPred, etc.) have been employed to find CTL and B cell
epitopes within the SARS-CoV-2 surface glycoprotein sequence,
and binding of CTLs with MHC-1 was analyzed.”’® Similar
techniques were used by Crooke et al., who identified 41 T cell
epitopes and 6 B cell epitopes as potential targets for the
development of peptide-based vaccines.””' HLA-binding
sequences (9-mer peptides) were also screened using NetMHC
and NetCTL to analyze proteasome cleavage and transport.”””
Potential CD8" T cell cross-reactivity conferred by other
coronavirus strains against SARS-CoV-2 has also been examined
using in silico mapping (using IEDB, NetMHC, and other tools)
of CD8" T cell epitopes shared between coronaviruses.””* This
follows an examination of the immunogenicity of SARS-CoV-2
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sequences (and correlation to related sequences in the IEDB) as
well as identification of novel HLA-binding and TCR-
recognition sequences by the same group.”’* Similar informatics
methods (NetMHC, VaxiJen, AntigenPro, ToxinPred, and
AllerTop servers) were used by Samad et al. to identify B and
T cell epitopes and to predict their immunogenicity.””> The
binding interaction between the vaccine and a toll-like receptor
(TLR4) was also probed.””” Related tools were used in a search
for immune cell epitopes in reports from other groups.”®”®
Rakib et al. also modeled HLA-B*15:01 binding and identified
lead candidate peptides WTAGAAAYY and GAAAYYVGY.”
The IEDB and VaxiJen servers were used in a similar study
identifying B and T cell epitopes and examining docking
interactions with TLR3.””” Inspired by the fact that the SARS-
CoV-2 spike protein interacts directly with the peptidase
domain (PD) of the ACE2 receptor, the interaction of a PD
peptide sequence that was shown to block interaction with the
spike protein has been modeled using molecular dynamics
simulations, thus providing a possible candidate inhibitor
peptide.””®

The sequence RSAIEDLLFDKYV occurs in many coronavirus
spike proteins such as those from the human common cold
coronavirus or various animal coronaviruses.” It is located
immediately following the second (S2’) cleavage site of SARS-
CoV and MERS-CoV,”” and closely related sequences have
been identified in SARS-CoV-2.”” Among related sequences,
KRSFIEDLLENKY is a well-conserved epitope located near one
of the established cleavage sites of SARS viruses that appear to
be necessary for virus activation during cell entry.'*”'"" This
sequence was identified from bioinformatics, from the sequence
of the spike protein obtained from extracted nucleic acid or
protein and prediction and alignment of surface sites and
subsequent investigation of binding to targets.'"”’ Antibody
epitopes of spike proteins were analyzed using the BepiPred-2.0
bioinformatic tool, making a comparison between MERS-CoV,
SARS-CoV, and SARS-CoV-2, and unique epitopes, shared
epitopes, and epitopes shared by multiple antigens (public
epitopes) were identified.'”> Two high-score epitopes located in
the RBD (peptides ASTEK and PKKS) with the potential to
block the interaction between ACE2 and the S}z)ike protein to
inhibit SARS-CoV-2 infection were identified."

Potential epitopes derived from the SARS-CoV-2 sequences
for HLAs that are often present in Japanese people have been
subjected to bioinformatics screening, enabling the identifica-
tion of a large number of peptide epitopes likely to have high
affinity to HLA class I and II molecules, respectively, potentially
able to elicit T cell responses.”* Binding affinity was assessed
using the NetMHC family of software.”®” A variety of
bioinformatics tools were used to predict the binding affinity
between 15-mer and 9-mer peptides from the possible space of
SARS-CoV-2 peptides (the peptidome) with large numbers of
MHC class I and HLA alleles.”®" A considerable number of
peptide—HLA complexes (pMHCs) were identified with a
predicted binding affinity less than 500 nM.”"!

As an alternative to identification of immunogenic peptide
epitopes, in silico methods have been used to screen for protease
inhibitors. A database docking screen was followed by molecular
dynamics (MD) simulations of the docking of four lead
candidate peptide and peptide-like small molecules into the
protease binding site.”**

Peptides associated with the Th1 adaptive immune response,
specifically antiviral cytokines from interferon gamma (IFNy)
core sequences have been shown to have cell nuclear localization
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properties similar to that of the much longer parent protein. In
particular, heptapeptide RKRKRSRC has cell nucleus local-
ization behavior,”®® the sequence of this peptide being similar to
the SV40 nuclear localization sequence (NLS) PKKKRKYV in
the SV40 (simian vacuolating virus 40) large T-antigen NLS.***
This peptide and related antiviral cytokines including TNFa and
interleukin-12 are virus-specific effectors for T cell antigens
involved in the immune response to coronaviruses.”*

In silico methods have also been employed to identify peptide
epitopes for MERS-CoV, leading to potential vaccines in
preclinical development.*****” Computational analysis techni-
ques including use of several tools within IEDB were employed
to identify T and B cell epitopes for potential use in a
multiepitope vaccine, and interactions with HLA alleles and
TLR-3 were also modeled.”*® Immunoinformatics and compu-
tational methods (using IEDB, BCPRED, and Vaxijen servers
among others) have been used to identify highly conserved B
and T cell epitopes for the MERS-CoV spike protein, and their
antigenicity and interactions with the HLA B7 allele were
evaluated.””> Among B cell epitopes, the highest antigenicity was
found for QLQMGFGITVQYGT, which was also highly
immunogenic. Considering T cell epitopes, MHC class I
peptide YKLQPLTFL and MHC class II peptide YCILEPRSG
were found to be highly antigenic.'”> An immunoinformatics-
based genome-wide screen of vaccine targets showed that the
MERS-CoV nucleocapsid protein is a better protective
immunogen compared to the S protein, with high conservancy
and potential to elicit both neutralizing antibodies and T cell
responses.”®” In addition, B cell, Th, and CTL epitopes were
screened leading to multiple identified sequences.”®” Software
from the IEDB and other resources has also been used to predict
MERS-CoV epitope vaccines based on sequences from the S
glycoprotein or the envelope protein (or modified sequen-
ces).”” Such sequences can elicit both neutralizing antibodies
and responses from B cells, Th cells, and CTLs.>® Heptad
repeat 1 (HR1) peptide inhibitors have been designed to disrupt
membrane fusion mediated by HR1/HR2 between MERS-CoV
and host cells.””" In particular, a 42-residue a-helical peptide
exhibits potent inhibitory activity that can be further enhanced
in a peptide—gold nanorod complex.””!

Computational methods were used to identify epitopes for
vaccine development for SARS-CoV following the first SARS
outbreak in 2003. Bioinformatic analysis led to the prediction of
two epitopes (N1 and N2) from the nucleocapsid protein, which
were then studied experimentally.””> Antibodies induced by
these peptides had a high binding affinity to the nucleocapsid
protein of SARS-CoV and N1 peptide-specific IgG antibodies
were detectable in the sera of SARS patients after immuniza-
tion.””> A software-based procedure was used to identify T cell
epitopes in the SARS-CoV S protein.””” The immunogenicity of
HLA-A*02-restricted T cell epitopes was investigated in
patients who had fully recovered from SARS-CoV infection,
and a specific T cell response was indeed elicited.”” Five
immunodominant sites have been identified on the SARS spike
protein via Pepscan analysis using a set of synthetic sequences
spanning the entire S protein sequence using SARS patient sera
and antisera from small animals immunized with inactivated
SARS-CoV.””* It was found that site IV situated in the middle of
the S protein sequence (residues 528—63S) is an important
epitope, a fragment of which, Sgy;_g34 reacted with all the
convalescent SARS patient sera, indicating its potential
application as an antigen.””* A virus-like particle has been
developed as a SARS-CoV immunogen.'** The VLP comprises a
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designed coiled-coil peptide that contains a pentameric
sequence, a trimeric domain, and the SARS-CoV spike protein
C-terminal heptad repeat region (HRC) peptide SVVNIQ-
KEIDRLNEVAKNLN, which is a B cell epitope. The peptide
aggregates into nanoparticles (predicted to be polyhedra) with a
diameter around 25 nm, and the nanoparticles elicit antibodies
in BALB/c mice and demonstrate neutralization activity in
vitro.'”* A review on vaccine candidates for SARS-CoV is
available that focuses on the spike protein as target.””

3.6. Other Infections and Conditions. A peptide vaccine
for lymphocytic choriomeningitis virus (LCMV) was exam-
ined.'” The 15-mer peptide RPQASGVYMGNLTAQ, which is
a T cell epitope of LCMV nucleoprotein, stimulated a specific
CTL response in mice. The same peptide formulated with
incomplete Freund’s adjuvant was shown to protect mice against
subsequent infection with live virus.'%°

The Q11 peptide discussed in section 2 was used as a scaffold
to co-assemble T and B cell epitopes for vaccine development.”
Peptide Q11 was coupled to either a CD4" T cell epitope
(PADRE, aKXVAAWTLKAa, X= cyclohexylalanine, a = p-
alanine) or a B cell epitope (E214, FEGTEDAVETIIQAIEA)
from Staphylococcus aureus via an SGSG linker. Fibrils from the
co-assembled peptides were imaged by TEM. Peptide PADRE—
QI1 elicited a T cell response (in contrast to the PADRE
peptide itself), whereas E214—Q11 did not raise antibodies in
the mouse model but the co-assembled E214—Q11/PADRE—
Q11 did. The authors note that optimization of T follicular
helper (Tfh) response is important for human antibody
response, especially for vaccines against bacterial infection or
influenza.”

A peptide from murine respirovirus (formerly Sendai virus)
that is recognized by CTLs was identified using recombinant
virus constructs containing separate genes of Sendai virus, in
particular a series of peptides that span a nucleoprotein gene
product.'”” Mice immunized with the peptidle HGEFAP-
GNYPALWSYA (positions 321—336 of the virus NP) were
protected against a lethal virus dose. Shorter Sendai virus
epitopes (down to 9 residue FAPGNYPAL) also stimulate
immunogenicity via CTLs without assistance from Th
cells."®*™""” The latter study also shows loading of MHC class
I using an adenovirus type 5 E1A protein sequence CDSGPS-
NTPPEIHPVV via H-2D" binding." "’

The specific features of receptors of CTLs that recognize an
antigenic peptide associated with vesicular stomatitis virus
(VSV) presented by the class I MHC molecule H-2K® have been
examined, based on peptide RGYVYQGL, which comprises
residues 52—59 of the nucleoprotein.''"''* Even single amino
acid substitutions influenced recognition by TCRs in a
transgenic mouse model.'"?

T cell epitopes of human glutamic acid decarboxylase GAD65
protein are associated with insulin-dependent diabetes mellitus
(IDDM).'"* CTL clones specific to GADG6S5 antigens were
isolated from two patients with congenital rubella syndrome
(CRS)-associated IDDM. Overlapping T cell epitopes (9-mer
peptides) recognized by both CD4" and CD8" CTL clones were
identified as sequences bounded by GADG6S 255-266,
RFKMFPEVKEKGMAG, or GAD65 276—28S, FTSEHSHESL,
respectively.'"?

A potential B cell epitope-based vaccine termed BM32 as been
developed for immunotherapy of grass pollen allergy and is
based on recombinant proteins incorporating a series of grass
pollen antigen peptides with hepatitis B surface protein domain
as an immunoactive carrier.””® The vaccine was found to be well
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tolerated and able to reduce allergic reactions as well as allergen-
specific T-cell responses via IgG antibodies.”’® Immunotherapy
with BM32 can also induce antibodies protecting against
hepatitis B infection.'®

4. CANCER IMMUNOTHERAPY PEPTIDES

The manipulation of the immune response to treat cancer in
immuno-oncology is attracting great interest, with the aim to
circumvent the immunosuppressive evasion mechanisms used
by cancer cells. The main focus has been to tune the responses of
T cells, since these cells are able to clear tumors. Cancer cells are
characterized by overexpression or mutation of certain proteins
compared to normal healthy cells. Thus, proteins (or genes) that
are expressed differently in cancer cells than in healthy cells or in
a mutated form are targets for inmunotherapies. The following
discussion covers a number of tumor-associated antigens,
including mucin 1 (MUC1), human epidermal growth factor
receptor 2 (HER-2), cancer—testis antigen 1 (NY-ESO-1),
melanoma antigen recognized by T cells 1 (Melan-A or MART-
1), prostate-specific antigen (PSA), and others. Antigens such as
glycoprotein 100 (gp100), prostatic acid phosphatase (PAP),
and melanoma antigen-encoding gene (MAGE) are discussed
elsewhere, along with neoantigens that result from tumor-
specific mutations.””” Tumor neoantigens are the subject of
focused reviews.””*>*° Peptide-based vaccines for cancer have
also been reviewed elsewhere.’*°™%* In addition, the uses of
peptides to target cancers caused by infective agents, for
example, cervical cancer caused by human papillomavirus
(HPV), are discussed.

4.1. HER-2. HER-2 (also known as HER-2/neu) is a protein
within the human epidermal growth factor receptor family, and
over-expression of this oncogene is involved in the development
and progression of some aggressive breast cancers. It is also
associated with certain ovarian, stomach, lung, and uterine
cancers. The HER-2 signaling pathway is involved in cell growth
and division, and over-expression and gene amplification of
HER-2 are linked to tumor cell proliferation and anti-apoptotic
signaling, as observed for 15—30% of human breast
cancers.”**>*® Monoclonal antibody therapies including
trastuzumab (Herceptin) and pertuzumab that target HER-2
are already used as passive immunization breast cancer drugs;
however, immunotherapies based on active peptide epitopes are
attracting considerable interest."'” Synthetic peptide sequences
from HER-2 have been developed as minimal epitopes
recognized by ovarian tumor-reactive CTL. Based on this, the
nonapeptide E75 (HER-2449_3,7, KIFGSLAFL) was identified,
and it was shown that this can be recognized specifically by CTL
on ovarian tumors.''* A number of other HER-2 peptides were
preferentially recognized by one or two CTL cell lines,
indicating that both common and specific HER-2 epitopes
may show immunoactivity against ovarian tumors. Another
group reported that these peptides can be processed naturally as
a gastric cancer tumor-associated antigens recognized by CTLs
that are tumor-specific and HLA-A*02-restricted.’*””*® The
relative binding affinity of nona- and deca- peptides derived from
HER-2 to HLA-A*02.1 was also determined by this group.*”’
Tumor-associated lymphocytes isolated from patients with
cancers of the breast or ovary, enabled the identification of
several such peptides.’”” These tumor-associated CTLs are also
able to lyse other tumors, including those from non-small-cell
lung, colon carcinoma, renal cell carcinoma, and pancreatic
cancers, indicating that HER-2/neu epitopes are common to
various types of epithelial tumors.””” Peptide E75 combined
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with GM-CSF (granulocyte—macrophage colony-stimulating
factor) was used in a vaccine (nelipepimut-S, also known as
NeuVax) progressed to phase I1I clinical trials as a breast cancer
treatment.''®710731?

Another HER-2 fragment-based peptide developed as a breast
cancer immunotherapy is GP2, a fragment of the trans-
membrane portion of the HER-2/neu protein (654—662,
IISAVVGIL)." "7 This was the subﬂ'ect of ghase and I and II
trials in combination with GM-CSE." """ This trial showed
that the GP2 vaccine has a good safety profile and suggests that
the clinical utility of vaccination, particularly for patients with
HER2 overexpression who received the full vaccine series."'” A
further peptide based on a HER-2 sequence that has been used
in a breast cancer vaccine trial (again with GM-CSF) is based on
AE-36, with sequence GVGSPYSRLLGICL (HER-2/neu 776—
790)."'%'"? The addition of an N-terminal four-amino-acid
LRMK sequence to give AE-37 was found in a phase I clinical
trial to increase vaccine potency when compared with the
unmodified peptide epitope.'"®

A HER-2 peptide-based vaccine was designed based on
computer modeling of antibody binding regions of HER-2."*’
Seven B cell epitopes from HER-2/neu were prepared and
linked to a tetanus toxoid sequence and used for immunization
in BALB/c mice. Immunizations with peptides P4 (PESFDG-
DPASNTAPLQPEQLQ) or P7 (YMPIWKEPDEEGAC) or a
combination of P7 with P6 (CRVLQGLPREYVNARHC)
induced anti-peptide antibodies.'** Since it is known that
immune response polarization towards the Th1 path (Figure 1)
is important for tumor prevention, the addition of the adjuvant
IL-12 to a mixture of P4, P6, and P7 (again linked to tetanus
toxoid through C-terminal cysteine residues) was investigated,
with the aim to increase the potency of the breast cancer
vaccine.”’? These peptides were used in a subsequent phase I
trial using virosomes (IRIVs) incorporating the three
peptides.”’* The authors report that this multipeptide vaccine
is well tolerated, safe, and effective in overcoming immuno-
logical tolerance to HER-2/neu. Following these trials, further
improvement of immunogenicity was achieved by linearly
linking the peptides to give P467, and this peptide was coupled
either to virosomes or to diphtheria toxoid CRM197, which,
along with adjuvant, was used as a metastatic breast cancer
vaccine.”"® This multiepitope vaccine induced polyclonal
antibodies with anti-proliferative activity against HER-2/neu,
and on the basis of these promising findings, phase II trials were
launched. This technology has been taken forward by Imugene
as HER-Vaxx (IMU-131), a treatment for metastatic gastric
cancer.”'

Distinct HER-2 B cell epitopes have been used as the basis of
vaccines that reached clinical trials. Fusion peptides were
prepared comprising sequences 316—339 and 628—647 from
HER-2 connected via a GPSL linker to a measles virus fusion
(MVE) protein sequence and an emulsion adjuvant.”’” The
combination vaccines were observed to have good safety and
efficacy in eliciting antibody responses. This study built on
earlier work in which HER-2 B cell epitopes were coupled to a
promiscuous T cell epitope from MVF 288—302.>'*"" This
multiepitope vaccine (along with IL-12) led to significant
reduction in the quantity of pulmonary metastases resulting
from challenge with tumor cells overexpressing HER-2. Leading
B cell epitope candidates were identified based on computer
modeling of antibody binding, from which peptides were
selected for further study including the two sequences
mentioned above.’’” The crystal structure of human HER-2
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complexed with trastuzumab shows that the antigen-binding
region of HER-2 covers residues 563—626 and that there is
extensive disulfide-bonding.'*" Minimal peptides from this
sequence that mimic the binding epitope were prepared,
specifically four constructs were designed (Table 4) to contain

Table 4. Peptides Synthesized from the Trastuzumab-
Binding Domain of HER-2'*'

Peptide? Sequenceb
‘ —
563-598 CHPECQPQNGYVTCFGPEADQCVACAHYKDPPFCVA
585-598 VACAHYKDPPFCVA
[ 1
597-626 VARCPSGVKPDLSYMPIWKFPDEEGACQPL
613-626 IWKFPDEEGACQPL

“Peptides containing disulfide bonds (red lines) are shown; linear
versions were also synthesized. “Residues involved in binding
trastuzumab are shown in bold, and the box highlights a possible
N-linked glycosylation site in the 563—598 epitope. Underlined
amino acids show Cys to Lys mutations to avoid disulfide formation.

as least one section from the three binding sequences that make
contact with trastuzumab as well as one or more disulfide bonds
in three cyclic peptides prepared. The 597—626 epitope,
VARCPSGVKPDLSYMPIWKFPDEEGACQPL (bold cys-
teines highlight disulfide cross-link locations) linked to a MVF
sequence via a GPSL spacer was particularly effective in
generating rabbit antibodies that recognized HER-2. It also
inhibited in vitro proliferation of HER-2-expressing breast
cancer cells and produced antibody-dependent cytotoxicity,
and immunization significantly reduced tumor burden in the
mouse model studied.'*' The same concept was used to identify
cyclic peptides able to mimic the binding region of pertuzumab
with the HER-2/neu dimerization domain.” Again, a cyclized
epitope (266—296) was linked to an MVF sequence, and the
resulting construct inhibited mammary tumor growth in vivo. A
combination of two peptides both containing the MVF
sequence, one bearing the cyclized epitope 597—626 from the
trastuzumab binding sequence and the other the 266—296
pertuzumab domain, has been developed (with adjuvant) and
evaluated in phase II clinical trials involving patients with solid
metastatic tumors (lung, breast, colon, ovarian, and others)**!
and is known as B-Vaxx.”>***

Peptides that could act as Th epitopes have been investigated
based on HER-2 sequences 369—384 (KIFGSLAFLPES-
FDGDPA), 688—703 (RRLLQETELVEPLTPS), and 971—
984 (ELVSEFSRMARDPQ).115 These sequences contain
HLA-A*02-binding motifs in residues 369—377, 689—697,
and 971—-979. These peptides were shown to provide effective
antitumor CD8" T cell mediated immunity and were able to lyse
tumors in breast or ovarian cancer. Th epitopes of the HER-2/
neu protein mixed with GM-CSF have been developed as
vaccines for HER2 /neu-overexpressing ovarian, breast, or non-
small-cell lung cancers.”** Epitopes employed include several
each from extra- and intracellular domains of the protein. The
final HLA-A*02 vaccine formulation consisted of peptides
corresponding to the above HER-2 sequences 369—384, 688—
703, and 971-984.>> Work on HER-2 peptide vaccines has
recently been reviewed.”**
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Figure 15. Structures of MUC1 glycopeptides 1 and 2, conjugated with T helper epitopes P2, P4, P30, and BSA. Reproduced with permission from ref

76. Copyright 2013 Wiley-VCH.

4.2. MUC1. Tumor-associated glycoprotein MUC1 (mucin
1, cell surface associated) is a target for cancer immunotherapy.
It is overexpressed by cancer cells, and the glycosylated proteins
can concentrate growth factors near cancer cell receptors, and
the extensively glycosylated proteins can also block immune
cells and therapeutic drugs. Huang et al. used the Q11 peptide
(section 2) in their development of a self-assembling adjuvant-
free peptide system for cancer immunotherapy.'”” They
targeted the overexpression of MUCI proteins by epithelial
cancer cells. The MUCI variable number of tandem repeats
(VNTR) domain is a B cell epitope, and this 20-residue
sequence (HGVTSAPDTRPAPGSTAPPA) along with glyco-
sylated variants (at T9 or T16) were shown to form fibrils that
display B cell epitopes. The conjugates glycosylated at T9 were
shown to generate an immune response, that is, measurable IgG
titers, in mice. The antisera were also analyzed by ELISA, and
flow cytometry was used to probe binding of antibodies to MCE-
7 human tumor cells that express MUC1."**

A self-adjuvanting MUC1-based vaccine was designed by Cai
et al”® They coupled the tandem repeat glycopeptide
HGVTSAPDTRPAPGSTAPPA from MUCI1 to three universal
Th cell epitope peptides from tetanus toxoid:”*™’ P4-
(GQIGNDPNRDIL), P2 (QYIKANSKFIGITE), and P30
(FNNFTVSFWLRVPKVSASHLE) (Figure 15). These pep-
tides can be used to substitute for the parent tetanus toxoid and
can stimulate human and mouse immune systems. Raju et al.
determined the sequences of tetanus toxin (TTX) recognized by
CD4" T cell lines stimulated with TTX or with a large pool of 20-
residue synthetic peptides, overlapping by five residues and
spanning the complete sequences of the TTX light (L) and
heavy (H) chains.”*® The authors noted that the peptide pool
lines did not completely match the T cell reactivity of the full
protein, and that this needs to be considered when peptide-
propagated lines are used in T cell repertoire studies.”* Brossart
et al. used computational sequence analysis to identify HLA-
A*02 binding peptides derived from the MUCI protein for
vaccine therapies.”*

Tecemotide is a lipopeptide antigen used in a MUCI cancer
vaccine. The vaccine contains lipopeptide STAPPAHGVTSA-
PDTRPAPGSTAPPKG where K denotes palmitoyl-lysine. This
reached phase III trials for non-small-cell lung cancer
(START).”’

4.3. NY-ESO-1. NY-ESO-1 is an antigen expressed in a range
of cancers (originally identified as a testicular cancer
antig.;en),‘ng‘329 as well as in normal testes, and is therefore
considered as a potential target for the development of vaccines
against a number of epithelial cancers.'”***" This antigen is
present in 80% of synovial cell sarcoma patients and about 25%
of those with common epithelial tumors or melanoma.>*' The
NY-ESO-1 gene was identified by analysis of recombinant
cDNA expression libraries using autologous patient serum
antibodies and tumor mRNA.>** The sequence of this 180-
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residue peptide (miniprotein) has also been provided.’*®

Peptide NY-ESO-1 157—170 (SLLMWITQCFLPVF) contains
both Th and CTL epitopes and as such is recognized by NY-
ESO-1-reactive CD8" and CD4" T cell clones. Furthermore, it
shows promise as a cancer treatment since both CD4" and CD8"*
T cells are produced in blood from melanoma patients after in
vitro stimulation with this peptide.'”® Autologous CD4" T cells
with specificity to NY-ESO-1 (specifically DCs pulsed with the
SLLMWITQCFLPVF epitope co-cultured with patient T cells)
have been used in the treatment of metastatic melanoma.”*” A
shorter epitope SLLMWITQC was used in clinical trials of an
immunotherapy for metastatic synovial cell sarcoma or
melanoma using genetically engineered lymphocytes (TCRs
recognizing the peptide epitope) reactive with NY-ESO-1.%*"%
The same sequence was also used in clinical studies with patients
having myeloma.”** NY-ESO-1 specific TCR engineered T-cells
were found to produce sustained antigen-specific antitumor
effects.

CD4" responses to a range of NY-ESO-1 peptides have been
assessed in cancer patients.”” NY-ESO-1 peptide 80—109
(LLEFYLAMPFAT) was found to be the most immunogenic,
although other 12-mer peptides also elicited a T-cell
response.’”” A phase I trial of a vaccine for NY-ESO-1 related
cancers was performed on patients with esophageal cancer, non-
small-cell lung cancer, and gastric cancer.”** The 20-mer peptide
YLAMPFATPMEAELARRSL (NY-ESO-1, 91—-110) which
incorporates multiple epitopes recognized by CD4* and CD8*
cells, as well as antibodies, was used together with adjuvant. Both
CD4" and CD8" T cell responses and NY-ESO-1 antibodies
were increased or induced in nearly all patients.**’

Peptides derived from NY-ESO-1 have been employed in
phase I clinical trials for prostate cancer vaccines.”’ The most
immunogenic peptides (restricted by HLA-A*02 and specific
haplotypes) were employed, specifically DP4-restricted NY-
ESO-1 peptide YGRKKRRQRRRSLLMWITQAFLPV, DR4-
restricted NY-ESO-1 peptide PGVLLKEFTVSG (ESO DR4-
1P), and the A2-restricted peptide SLLMWITQC (fragment
NY-ESO-1 157-165).*

4.4. Folate Receptor. Folate (vitamin B,) is an essential
compound with an important role in cell growth and division.
Insufficient intake of folate may increase the risk of cancers
including those of the breast, ovary, pancreas, lung, brain, cervix,
and prostate gland. Folate is transported into the cell via the
folate receptor, the reduced folate carrier (RFC), and the
proton-coupled folate transporter (PCFT).*® Folate receptor-A
(FR-a) overexpression is associated with many cancers such as
those mentioned above.**

Malonis et al. have tabulated peptide sequences from FR-a
(one of the two membrane-associated forms of FR) used in
vaccines.”® This includes E39 (EIWTHSTKYV, FR-a 191—199),
which was used in a phase I clinical trial for advanced stage
ovarian cancer in a vaccine incorporating this peptide along with
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four other MHC class I peptides, one MHC class II peptide, and
an adjuvant.”” The ovarian-cancer protein-derived peptides
were derived from HER-2/neu (see section 4.1) or melanoma-
associated antigen-Al (MAGE-A1), as well as FR-a and the
MHC class II peptide AQYIKANSKFIGITEL derived from
tetanus toxoid protein. The trials showed low toxicity but limited
T cell responses.””

Epitopes of FR-a were identified using a CD4" cell epitope
prediction algorithm, and tested for the generation of immuni
in ovarian or breast cancer patients compared to controls.”
Fourteen peptides were identified within the carboxy- and
amino-termini of FR-a. It was found that a significant proportion
of patients showed immunity against at least one peptide.”>” On
the basis of these results, a phase 1 clinical trial using five FR-a
peptides (with GM-CSF adjuvant) was launched involving
ovarian and breast cancer patients.*** The vaccine was reported
to be well tolerated in all patients and to elicit or augment
immunity in more than 90% of patients. Phase II clinical trials of
this multi-antigen mixture (combined with monoclonal anti-
body durvalumab) are being pursued by Marker Therapeutics as
a treatment for ovarian (and breast) cancer.”’

An 12-mer peptide (MHTAPGWGYRLS) specific for FR-a
was isolated from a phage library of random dodecapeptides.'*”
The tumor targeting ability of this peptide was examined via
phage homing and fluorescence imaging experiments.'”” Phage
display screening of therapeutic peptides for other cancers has
been reviewed.”*”**! Tumor-associated lymphocytes recognize
other peptides derived from folate binding proteins and a
number of nonameric peptides with this function have been
identified.”*

4.5. Prostate-Specific Antigen. Prostate-specific antigen
(PSA) is produced in the prostatic epithelium, in both benign
and malignant forms, and its level is elevated in cancer of the
prostate. PSA-based vaccines for prostate cancer have been
reviewed.”** A clinical trial of peptide PSA 154—163 (155L, i.e.,
VLSNDVCAQV) progressed to phase II trials.”* Although a
CD8" T cell response to the native peptide PSA 5, 143
(VISNDVCAQV) was induced, the modified agonist peptide
failed to stimulate reactivity against tumor targets expressing
PSA."* The modified VLSNDVCAQV sequence had been
identified in earlier studies on binding of PSA epitopes to HLA
and T cell activation.'”*"** Peptide FLTPKKLQCV
(PSA s4_163) also shows HLA-A*02 binding and CTL
responses.

Earlier work led to phase I/1I clinical trials of a T cell therapy
for prostate cancer using autologous DCs exposed to peptides
specific for HLA-A*02:01 from prostate-specific membrane
antigen (PSMA) [an enzyme also known as glutamate
carboxy;)eptidase II or N-acetyl-L-aspartyl-L-glutamate pepti-
dase 1].°**7*° peptides LLHETDSAV and ALFDIESKV were
used, and cellular responses were detected along with a decrease
in PSA level in some patients who received DCs exposed to the
latter peptide, supporting potential utility in prostate cancer
therapy,”** and a combination of the two peptides was used in
phase II trials.”*>™*" The responses observed in the clinical
trials were generally significant (some partial responders were
noted) and of long duration.’

Peptides from prostate stem cell antigen (PSCA) have also
been used in the development of immunotherapy for advanced
prostate cancer.'”® Human T cells could recognize the peptides
in a HLA-A*02:01 specific fashion. Peptide PSCAj, ,,,
ALQPGTALL, was able to generate a T cell response specific
to PSCA in a human lymphocyte culture from a patient with
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metastatic prostate cancer.'”® Peptides (nonamers) from
prostatic acid phosphatase (PAP), a prostate tissue-specific
antigen that binds HLA-A*02, were identified.'"*> The lead
peptide ALDVYNGLL was used to generate tumor-specific
CTLs in a study of PAP-based antigens for immunotherapy in
prostate cancer.'*’

Phage display of 12-mer peptides led to the identification of
PSMA peptide ligands, with lead candidate GTIQPYPESWGY
shown to bind strongly and specifically to androgen-sensitive
human prostate adenocarcinoma (LNCaP) cells.”*® This
peptide is able to deliver the pro-apoptotic peptide D-
(KLAKLAK), to LNCaP cells causing cell death, although
studies on immunotherapy using this sequence have not as yet
been performed.

4.6. T Cell Interactions and TCR-Based Vaccines.
Chimeric antigen receptor T cell therapy (CAR-T) (Figure
16) is emerging as an important route for cancer treatments,

e

CAR-T

Figure 16. Schematic of chimeric antigen receptor T cell (CAR-T)
therapy. In stage 1, T cells are extracted from blood, then in stage 2, the
gene encoding specific antigen receptors is incorporated ex vivo into the
T cells, producing (3) CAR receptors labeled on the surface of cells. (4)
These cells are grown and harvested before (S) engineered T cells are
infused back into the patient.

especially for challenging solid tumors. It has the potential for
personalized cancer vaccines, using patient-derived cells.
Peptide epitopes recognized by T cells that can promote their
cancer cell killing activities are thus of considerable interest.
Arrays of autoimmunogenic tumor antigens have been created
by identifying the antigenic targets on cultured melanoma cells
recognized by CTLs.”*” This is usually used to identify genes
rather than peptides; however a method to identify antigens
recognized by CTL on most HLA-A*02 melanomas involves the
isolation and sequencing of the pezgtides displayed by class I
MHC molecules at the cell surface.”*” Peptide epitopes that lead
to cancer immunogenicity have also been identified based on
predicted binding to MHC class I and the conformational
stability of the interacting peptide—MHC class I complex.™"
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Tumor antigens in T cell immunotherapy have been
reviewed.”*’ Vaccination with peptides can enhance the activity
of CAR-T's. In one example,g’52 solid tumors have been shown to
suppress tumor-specific immune responses via multiple
mechanisms, and this is a significant factor in the development
of adoptively transferred (patient-derived) tumor-specific T cell
therapies.352 Since viruses induce potent immune responses, it
has been proposed that their immunogenicity can be used in the
treatment of solid tumors using virus-specific T cells engineered
to incorporate tumor-specific chimeric antigen receptors.352
Tanaka et al. examined the activation of T cells specific for VZV
(varicella zoster virus) using overlapping peptide libraries
spanning virion proteins of VZV.>*> Amphiphilic CAR-T ligands
have been developed that, upon injection, traffic to lymph nodes
and decorate the surfaces of APCs, thereby priming CAR-T's in
the native lymph node microenvironment.>>* The amphiphilic
CAR-T ligands include peptide amphiphiles with an albumin-
binding phospholipid backbone, a PEG linker, and an antibody-
binding peptide sequence (epidermal growth factor receptor
type III deletion mutant, EGFRVIII).**® Lymph node targeting
is important because antigens conjugated to DC-targeting
antibodies reach these cells in the draining lymph nodes as noted
in a study on peptide amphiphiles (or CpG nucleotide
amphiphiles) as molecular vaccines with a range of antigens.”>"

Tumor infiltrating lymphocytes (TILs) may also be targeted
for adoptive cellular therapy. A screening approach was used in a
genome-wide approach to identify patient tumor-expressed
mutated proteins, followed by synthesis and evaluation of
mutated T cell epitopes as candidates based on modeled MHC
binding ability for recognition by TILs.”>> This led to the
identification of mutated antigens expressed on autologous
tumor cells recognized by TILs from three individuals with
melanoma where tumor regression was observed following
adoptive transfer of TILs. Candidate HLA-binding epitope
peptides (9 and 10 residues) were thus identified.”>> A similar
strategy was developed as a cancer immunotherapy based on
mutation-specific CD4* T cells in an epithelial cancer patient.**®
The cells recognized a mutated 25-residue peptide (ERBB2IP
fragment) expressed by the cancer, and regression of the tumor
was observed after treatment with the TILs. In another example,
a melanoma differentiation glycoprotein antigen, pMell7/
gpl100, has been identified via recognition by CTL clones
from the peripheral blood of melanoma patients, and by TILs."*
Multiple gp100-derived peptides corresponding to the con-
sensus motif for binding to HLA-A*02 antigen were recognized
by from melanoma patient TILs, including gp100 209-217
(ITDQVPSFV).*>*’~%? A modification of this sequence
IMDQVPSFV was combined with sequence YMDGTMSQV
from tyrosinase (368—376) that is recognized by human CTLs
in a system used to potentially treat metastatic melanoma. These
peptides were formulated in an emulsion with IFA with or
without IL-12, which was observed to increase peptide-specific
CTL response."*° This peptide has been shown to increase long-
term memory and antigen-specific effector CD8* T cells in
melanoma patients using montanide as an adjuvant in a model
%0 This tyrosinase peptide fragment and others have
been investigated as peptide vaccines for melanoma, in a study
focused on the effect of GM-CSF and KLH as adjuvants.*®’
Peptides processed from melanosome proteins, tyrosinase
(QCSGNFMGF and LHHAFVDSIF) or gpl00 (SSPGC-
QPPA), have been identified in a study on T cell responses in
human melanoma, along with five neoantigens (antigens
generated by mutations) in tumor cells."”'
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Combinatorial peptide libraries as well as modeling methods
have been used to identify ligands for tumor-reactive CTLs. This
subject has been reviewed.”> In one example, positional
scanning of sequences of a series of decapeptides was used to
identify tumor-reactive CD8" T cell clones specific for the
melanoma cell antigen Melan-A.**® The same group later used
this procedure to screen the cytotoxicity of a library composed of
3.1 X 10" 9-mer peptides in a positional scanning format, to
search for antigens recognized by a melanoma-reactive CTL. It
was noted that the identified optimal peptide (AAAPKIFYA)
contains five amino acids that are identical to those at the
corresponding position in the native SSX-24, 4o-derived
sequence (KASEKIFYV) [SSX = sarcoma X chromosome
breakpoint protein]."*’ Yeast-display libraries of HLA decamer
peptides have been used in an antigen screen of “orphan” TCRs
expressed on human colorectal adenocarcinoma TILs.*** Four
TIL-derived TCRs exhibited strong selectivity towards peptides
presented in a highly diverse library of HLA-A*02:01 types (the
most common human MHC class I molecule). Enhancement of
T cell antigens by altering HLA-A*02:01 anchor residues has
been used as a strategy to improve peptide vaccines.’”> A
combinatorial peptide library was created containing 9.36 X 10"
different decamer peptides, starting from the wild-type pre-
proinsulin 15—24 peptide (ALWGPDPAAA) and TCR binding
was analyzed via peptide—MHC tetramer binding at the cell
surface and surface plasmon resonance measurements.**®

The tumor antigen protein pS3 (associated with the
regulation of DNA repair and cell regulation including
apoptosis) has potential in cancer therapies since the over-
expression and mutation of pS3 make it a promising antigen
target for T cell-mediated immunotherapy. Using a mouse
sarcoma model, Noguchi et al. screened 24 peptide mutations of
a pS3 gene (Meth A) and identified a nonapeptide, KYICN-
SSCM, that generate CD8" and CD4" T cell responses.134 The
immunization of mice with this peptide (with incomplete
Freund’s adjuvant) showed increased resistance to Meth A
challenge. Using a mouse model, Lauwen et al. demonstrated a
CD4" Th cell response against three immunodominant p53
epitopes.”®® Thl immunity was induced by immunization of
mice with synthetic peptide vaccines comprising the identified
epitopes, and it was shown that the CD4" T cell repertoire
specific to pS3 is not limited by self-tolerance (due to the
expression of wild-type p53 in somatic tissues).* The three p53
Th epitopes identified differ from the murine p53 Th epitope
LGFlls,SQSGTAKSVMCT (aa 108—121) previously identi-
fied.

Tumor-specific immunity mediated by CD8"* T cells has also
been reported in a murine lung carcinoma. Two tumor-
associated antigen peptides, FEQNTAQP or FEQNTAQA,
were shown to induce a CTL response.**"*” A CTL response
was observed to a mouse vaccine based on a genetically
engineered hybrid comprising the model epitope OVA,s, 547,
SIINFEKL (Table 1), conjugated to a naturally occurring
hepatitis B core protein nanocage.

Tumor-reactive CTLs associated with melanocytes and
melanoma bind to peptide antigens from the Melan-A/
MART-1 gene."”® Melan-A-specific CTLs (HLA-A*02:01-
restricted) recognize mainly the Melan-A,,_;s (AAGIGILTV)
and the Melan-A,;_;; (EAAGIGILTV) peptides. The Melan-
A,;_5s variant containing a Leu in position 1 (LAGIGILTV)
induces specific T cells in vitro with enhanced immunological
activity compared to the native peptide.*” An analogue of the
Melan-Ay¢_;5 peptide with A2L substitution displayed stable
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binding to HLA-A*02:01 and was also better reco§nized than
the natural peptide by tumor-reactive CTL clones. > It has been
shown that MART-1 tumor-specific T cells are activated after
immunization with this and closely related peptides and
different adjuvants.**” Further information on vaccines based
on MART-1 and other peptide vaccines is available in a
review.””” The AAGIGILTV peptide and the tyrosinase peptide
YMDGTMSQYV are susceptible to enzymatic degradation by
dendritic cells, which has to be considered for in vivo
applications (to prevent or reduce this requires sequence
modifications, extensions, etc.).139

Another study based on Wilms’ tumor gene (this gene is
overexpressed in most types of leukemia and several solid
tumors, including breast and lung cancer) WT1 peptides
examined binding of epitopes to particular HLA-A*02
molecules. The modified peptide (CYTWNQMNL) was more
effective in eliciting CTLs specific for WT1 than the natural
WT1 peptide.'*'

Peptides associated with major histocompatibility complex
(MHC) class I expressed by tumors are recognized by CTLs;
however many such peptides are weak immunogens and thus so-
called heteroclitic peptides (synthetic variants of natural
sequences) have been designed to enhance immunogenicity.
This was demonstrated, for example, in a study using a peptide
based on a herpes simplex virus (HSV) glycoprotein sequence
Bgs_s0sy SEIEFARL, which also serves as a model tumor antigen
of viral origin."*” This peptide differs from the native sequence
SSIEFARL at position 2. The latter peptide contains serine
substituting glutamic acid, which should reduce electrostatic
repulsion with MHC class I molecules and hence improve MHC
binding and thus immunogenicity. This heteroclitic peptide was
successfully used with DNA to immunize against melanoma
tumor challenge and elicit regression of tumors. In addition, H—
Kb-binding motifs (a haplotype, i.e., group of alleles, of a mouse
MHC) from tyrosinase-related protein gp7S were identified and
peptide TWHRYHLL (gp,,,_»59) was found to have similar
binding properties to SEIEFARL and was used to produce a
heteroclitic variant TAYRYHLL, which was found show strong
binding to K, comparable to SSIEFARL. This heteroclitic
peptide, based on a self-antigen expressed by melanoma cells,
was also used (with DNA) in a vaccine that conferred protection
against tumors in mice."*

4.7. Peptide Vaccines for Virus-Induced Tumors. In
early work, Melief’s group identified a CTL peptide epitope able
to prevent human papillomavirus (HPV)-induced tumors.'**
HPV infection is responsible for 90% of cervical cancer cases, the
commonest being the HPV-16 subtype, and two genes, E6 and
E7, play major roles in the progression of the malignant
phenotype.**” A series of 240 overlapping peptides from HPV-
16 E6 and E7 were evaluated in terms of their binding to H-2K"
and H-2D® MHC class I molecules."****” This led to the
identification of the H-2D"-binding CTL epitope E7 49—57
(RAHYNIVTF, which is part of a longer sequence identified as
immunogenic in vivo by Tindle et al.'*’), as well as HPV E6
sequences that bind H-2K".'** However, this group later noted
that synthetic peptide immunization can also lead to CTL
tolerance instead of immunity and enhanced tumor
growth.””*”! Tt was also reported that short peptide epitopes
such as OVA,,_,¢4 do not permanently stimulate CD8" T cells
(this is contradicted by work from Collier’s group discussed in
section 2) although they found that longer sequences can do
50.””% Synthetic peptides comprising the sequence DRAHYNI
(E743-54) conjugated to major B cell epitopes on the E7

929

molecule can elicit strong antibody responses to HPV-16 E7.'**

This is a good example of a peptide vaccine in which linked Th
and CTL epitopes provide a strong immune response in mice.””>
Vaccines that combine E7 subunits with conventional
therapeutics such as cisplatin can offer enhanced chemo-
therapeutic activity, for example, through increased suscepti-
bility to the killing of cisplatin-treated tumors mediated by
CTLs.”*

In a study on lipopeptides containing a peptide sequence,
STDSCDSGPSNTPPE], from human adenovirus type S early
region 1B (AdSE1B), Melief and coworkers have reported that
CTL tolerance is also not suppressed by peptide lipidation or
incorporation into liposomes (in fact these cause tumor
outgrowth), although it can be avoided by presentation of
peptides on dendritic cells.”® An in vivo study again using OVA
peptide fragments showed that extended peptides are presented
selectively by activated DCs whereas short peptides are also
displayed by T cells and B cells.””> Experiments using B cell
knockout mice revealed that B cells have an important role in the
priming of T cells for short peptides but not for long peptides.*”®
The issue of tolerance, especially in relation to cross-
presentation of cellular antigens, has also been reviewed.”’® A
low binding affinity of minimal peptides, often derived from
“self” sequences (involved in the established T cell response), to
the MHC can be insufficient to activate CTL cells. To increase
the immunogenicity of peptide vaccines, the MHC—peptide
complex can be stabilized. In one example, this has been
achieved by modification of cysteine residues.”’” It was shown
that ensuring that these are present in reduced form leads to a
10—100-fold increase in antigenicity of two influenza virus
nucleoprotein (NP) peptides, although this is not related to the
affinity to H-2K%. Similar enhancements were obtained by
substituting cysteine with alanine or serine in the synthetic
peptides.””” That immunogenicity requires high affinity MHC
class 1—peptide binding was confirmed by a study using 83
peptide epitopes, which also established that CTL binding
capability is also necessary.””® In particular, high affinity H—K,-
binding peptides induced peptide-specific CTL responses. In a
study based on HBV and HPV-16 peptide epitopes, it was also
confirmed that those that form stable MHC—peptide complexes
exhibit immunogenicity.””” Many HLA-A*0201-restricted T
cell epitopes unfortunately form low dissociation constant
complexes.’”

In a study of T cell activation parameters to predict vaccine
efficacy using a range of TLR agonists, the HPV-16 E7 epitope
RAHYNIVTF has been used as well as the HPV-16 E7 35-
residue long peptidle QAEPDRAHYNIVTFCCKCDSTLRL-
CVQSTHVDIR (aa 43—77) spanning both the Th epitope
(underlined) and the CTL epitope (in bold), along with a 32-
mer peptide LPDEVSGLEQLESIINFEKLTEWTSSNVMEER
that encodes the OVA epitope SIINFEKL discussed in section
2.7 A series of adjuvants comprising TLR agonists and an
agonistic CD40-specific antibody activated DCs in vitro
although a strong functional T cell response in vivo was not
induced in all cases.

In a preclinical study of cervical cancer induced by HPV-16,
immunization with a HPV-16-derived 35 amino acid extended
peptide that contains both CTL and Th epitopes was tested by
this group compared to immunization with a minimal HPV-16
E7 9-residue peptide CTL epitope.””**° The HPV-16 E7 long
peptide vaccine induced pronounced HPV-16-specific CD4"
and CD8" T cell immunity in mice. In mice vaccinated with the
35-residue peptide vaccine, but not the minimal CTL peptide,
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HPV-16-positive tumors were eliminated.”® Based on these
studies, a phase I/1II clinical trial of a vaccine consisting of a series
of 13 overlapping peptides was launched in end-stage cervical
cancer patients, each peptide comprising 27—3S residues
spanning the complete sequence of the HPV-16 E6 and E7
proteins.”®" Vaccine-induced T cell responses specific for HPV-
16 E6 were detected in all patients in the study, and HPV-16 E7-
specific T cell responses were observed in five out of six
patients.*®> Despite this, and §00d tolerance, only limited
therapeutic activity was noted.””> The same group also carried
out a phase II vaccination study to treat HPV-16-positive vulvar
intraepithelial neoplasia grade III. A vaccine containing the 13
overlapping long peptides of the E6 and E7 oncoproteins of
HPV-16 was used for immunization, with some promising
outcomes in terms of patients showing regression of tumors.”’

Polyoma virus is a small DNA tumor virus, and peptides
derived from the sequences of distinct size T antigens can be
used to immunize against polyoma tumors in a study based on a
mouse model."** Peptides derived from sequences found in all
three T antigens (aa 1—-19, MDRVLSRADKERLLELLKL)
among others were all shown to induce immunity against
polyoma tumors.**

Tumors caused by murine leukemia virus (MuLV) can be
prevented by vaccination with Th cell epitopes (EPLTSL-
TPRCNTAWNRLKL and SSWDFITV) from the virus.'* The
peptide-specific CD4" T cells generated did not directly
recognize tumor cells; thus tumor-associated APCs may be
cross-primed. CD8" CTLs that recognize an immune-dominant
viral gag-encoded CTL epitope were the main effector cells in
the elimination of tumors.'** In a related study, it was observed
that immunization with a CTL epitope, SPSYVYHQF, from the
tumor cell-expressed MuLV gp70 envelope protein, does not
protect BALB/c mice against challenge with CT26 tumor
cells.**> However, combining this peptide with a Th peptide,
OVA 323-337 or sperm whale myoglobin (SWM) 106—118,
elicited Th cell responses and protected fractions of the mice
immunized.”®> The conclusion that both CD8* and CD4" T
lymphocytes are required for immunity is also supported by a
study showing that tumor-associated lymphocytes can be
isolated from BALB/c mice injected with tumor cells using
SV40 large T antigens.”®*

5. CONCLUDING REMARKS

As exemplified by the many remarkable studies discussed in this
review, peptides can have considerable potential in the design of
antigens or adjuvants in vaccines. Inevitably, there are both
advantages and disadvantages to the use of peptides. A major
advantage, exemplified by many examples in this review, is the
ability to produce highly selective and specific antigens, based on
natural immunogenic epitopes. Also, peptides can be selected or
designed in order to ensure a good safety profile, avoiding
undesirable immune responses or other side effects. In addition,
peptides are easy to design and synthesize (with the potential
also to scale-up using established techniques), and it is possible
to control peptide conformation and (if it occurs or is desired)
self-assembly using established physicochemical principles.
Other advantages include the availability of methods to prepare
high purity peptides, with reduced biological impurities, thus
reducing potential allergic reactions. Another advantage of
peptides is that their immunogenicity can be subjected to
preliminary assessment using in silico methods, potentially
followed by in vitro techniques, to examine binding of peptides
in MHC complexes or to HLAs. This is becoming increasingly
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widespread, as shown, for example, by the many examples of in
silico modeling of SARS-CoV-2 interactions with cells and
immunogenicity and toxicity in 2020 and 2021 following the
global COVID-19 outbreak, discussed further in section 3.5.
Despite the increased use of many different web servers to
predict peptide immunogen properties, it remains a significant
challenge to predict the actual in vivo immune response to a
given antigen. The translation to practice still requires extensive
trial-and-error studies and animal trials before testing on
humans. It should be emphasized that the immune responses
of animals can be very different from those of humans, due for
instance to significant differences in the PRRs displayed in
human cells compared to those of animals.

Disadvantages of peptide vaccines include issues of
biostability, that is, the susceptibility to proteolysis of peptides
containing native L-amino acid residues; for example this has
been shown for MHC-bound peptides in studies examining
expression by hybridomas®”*® as well as DC surface
proteases."”” The limited stability of peptides in vivo can be
avoided by using non-natural amino acids, cyclization, or
peptidomimetics among other approaches.'”*” It has also been
emphasized that longer peptides may be used to reduce T cell
tolerance and extend the time scale of in vivo epitope
presentation by professional APCs.””>*”> The constrained
conformations of short peptides may also be problematic;
since in general they will not have the three-dimensional folded
structure of a protein or longer peptide, this will potentially
reduce binding to human cells compared to full antigens such as
those from virus coat proteins. Longer epitopes may also lead to
enhanced presentation and induction of T cell expansion in vivo
when the Tc epitope concerned displays weaker MHC class 1
binding.””® Since many peptide epitopes show limited
immunogenicity (compared to vaccines prepared from
attenuated viruses, for exalmple),25 their practical application
may involve formulation with adjuvants to boost the immune
response. More broadly, the delivery of peptide subunit vaccines
has to be considered. This may require preparation as
nanoparticles (for example, virus-like particles), or in an
emulsion or as mentioned in one example, by incorporation of
cell-penetrating peptides or cell-targeting nucleic acids in the
formulation. The small size of peptides can cause renal filtration,
so conjugation to lipid chains,'>**** PEG chains,***7*%
albumins,”® %% etc. can be used to improve halflife in
circulation. Peptide-based therapies with an extended-release
profile may also be useful for therapies for chronic conditions,
reducing the need for daily drug administration. Slow release
systems can be produced through suitable formulation in
emulsion or hydrogel depots, for example. The pharmacoki-
netics and pharmacodynamics of a peptide therapeutic such as a
subunit vaccine are both important considerations for practical
purposes, and this will of necessity be examined during advanced
clinical trials.

Cancer immunotherapy is a potential type of personalized
medicine, that is, a personalized cancer vaccine (PCV) *°7 when
for a given patient tumor sequencing and tumor-associated
antigen analysis and preparation are used to select peptides for a
“personalized” formulation. This has great potential for future
therapeutics. The investigation of combination therapies, using
peptide immunogens along with conventional anticancer drugs,
is another promising area of future research (this comment also
applies for treatments for infectious diseases).

As highlighted in this review, there is great potential to apply
peptide epitope vaccines as therapeutics to treat infectious
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diseases, which affect many people, and also in tumor
immunotherapy, to the possible benefit of millions suffering
from cancer. This is exemplified through the many clinical trials
in progress as well as intense research activity in this field.
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