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ON THE HALF-SPACE MATCHING METHOD FOR REAL
WAVENUMBER∗

ANNE-SOPHIE BONNET-BEN DHIA† , SIMON N. CHANDLER-WILDE‡ , AND SONIA

FLISS†

Abstract. The Half-Space Matching (HSM) method has recently been developed as a new
method for the solution of 2D scattering problems with complex backgrounds, providing an alterna-
tive to Perfectly Matched Layers (PML) or other artificial boundary conditions. Based on half-plane
representations for the solution, the scattering problem is rewritten as a system coupling (1) a stan-
dard finite element discretisation localised around the scatterer and (2) integral equations whose
unknowns are traces of the solution on the boundaries of a finite number of overlapping half-planes
contained in the domain. While satisfactory numerical results have been obtained for real wavenum-
bers, well-posedness and equivalence of this HSM formulation to the original scattering problem
have been established only for complex wavenumbers. In the present paper we show, in the case of a
homogeneous background, that the HSM formulation is equivalent to the original scattering problem
also for real wavenumbers, and so is well-posed, provided the traces satisfy radiation conditions at
infinity analogous to the standard Sommerfeld radiation condition. As a key component of our argu-
ment we show that, if the trace on the boundary of a half-plane satisfies our new radiation condition,
then the corresponding solution to the half-plane Dirichlet problem satisfies the Sommerfeld radia-
tion condition in a slightly smaller half-plane. We expect that this last result will be of independent
interest, in particular in studies of rough surface scattering.

Key words. Helmholtz equation, scattering, Sommerfeld radiation condition, integral equation,
domain decomposition, uniqueness, rough surface scattering

AMS subject classifications. 35J05, 35J25, 35P25, 45B05, 45F15, 65N30, 65N38, 78A45

sec-introduction
1. Introduction and the scattering problem.

1.1. The HSM method. Recently a new method, called the Half-Space Match-
ing (HSM) method, has been developed as an (exact) artificial boundary condition for
two-dimensional time-harmonic scattering problems. This method is based on explicit
or semi-explicit expressions for the outgoing solutions of radiation problems in half-
planes, these expressions established by using Fourier, generalized Fourier, or Floquet
transforms when the background is, respectively, homogeneous [6, 5] (and possibly
anisotropic [32, 3, 31]), stratified [27], or periodic [17, 18]. The domain exterior to a
bounded region enclosing the scatterers is covered by a finite number N of half-planes
(at least three). The unknowns of the formulation are the traces ϕ1, . . . , ϕN of the
solution on the boundaries of these half-planes and the restriction of the solution to
the bounded region. The system of equations which couples these unknowns is de-
rived by writing compatibility conditions between the different representations of the
solution. This coupled system includes second-kind integral equations on the infinite
boundaries of the half-planes.

This new formulation is attractive and versatile as a method to truncate compu-
tational domains in problems of scattering by localized inhomogeneities in complex
backgrounds, including backgrounds that may be different at infinity in different di-
rections. It has been employed successfully in numerical implementations for various
applications, like optical waveguides (including cases with different stratifications in
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2 A.-S. BONNET-BEN DHIA ET AL.

different parts of the background domain) [27], or ultrasonic non-destructive testing
(with an anisotropic elastic background) [32, 31].

Up to now the theoretical and numerical analysis of the method has remained an
open question in the challenging, and practically relevant, non-dissipative case when
waves radiate out to infinity. But a rather complete analysis has been carried out in
the simpler dissipative case, when the solution (and its traces) decay exponentially at
infinity. In that case the analysis can be done using an L2 framework for the traces:
the associated formulation has been shown to be of Fredholm type and well-posed in a
number of cases where the background is homogeneous (but not necessarily isotropic)
[6, 5], with the sesquilinear form of the weak formulation coercive plus compact,
enabling the numerical analysis of the method [5]. This analysis fails in the non-
dissipative case, not least because of the slow decay at infinity of the solution which
results in non-L2 traces.

sec:main results

1.2. Our main results. In this paper we address well-posedness of the HSM
formulation in the non-dissipative case for the scalar Helmholtz equation when the
background is homogeneous and isotropic, so that

{eq:he} (1) −∆u− k2u = 0

outside some ball. (Here, assuming e−iωt time dependence with ω > 0, k = ω/c > 0
and c > 0 are the constant wavenumber and wave speed, respectively, outside the
ball.) For such configurations, it is well known that to achieve a well-posed scattering
problem the scattered field u must satisfy the Sommerfeld radiation condition

{eq:Sommerfeld} (2)
∂u(x)

∂r
− iku(x) = o

(
r−1/2

)
as r := |x| → +∞,

uniformly with respect to x̂ := x/r. Further, it is well known that, if u satisfies (1)
outside some ball and (2), then

{eq:ffp} (3) u(x) =
eikr

r1/2

(
F (x̂) +O(r−1)

)
, as r →∞,

uniformly in x̂ := x/r, where F ∈ C∞(S1), with S1 the unit circle, is the so-called
far-field pattern (e.g., [11, Lemma 2.5]).

The main results of this paper (Theorems 3.5 and 4.1) are to establish well-
posedness for the HSM formulations, stated in detail as (30) and (57) below, in the
case that k > 0 and the background is homogeneous and isotropic, so that the scat-
tered field u satisfies (2) and (1) outside some ball. Precisely, we show that the HSM
formulations are well-posed and equivalent to the original scattering problems pro-
vided we require that each half-plane trace ϕj is locally in L2 and has the asymptotic
behaviour predicted by (3), meaning that

{eq:traceRC} (4) ϕj(x) = cj±
eikr

r1/2

(
1 +O(r−1)

)
,

for some constants cj±, as x tends to infinity in the ± directions along the infinite
boundary of the half-plane. Note that condition (4) can be seen as a radiation con-
dition for the half-plane trace ϕj , playing the role in the HSM formulation for k > 0
that the Sommerfeld radiation condition (2) plays in the formulation of the original
scattering problem.
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Since (i) the HSM system of equations is derived from the unique solution to
the scattering problem and (ii) the half-plane traces of the solution to the scattering
problem do satisfy (4) (because (3) holds), we will see that existence of a solution
holds by construction. The challenge remaining in order to show well-posedness is
to establish uniqueness. There are two difficult aspects to this challenge. The first
is to show that, if ϕj satisfies (4) and u is the solution reconstructed from ϕj in the
corresponding half-plane, so that u satisfies (1) in the half-plane and u = ϕj on the
half-plane boundary, then u(x) = O(r−1/2) as r → ∞ and u satisfies an appropriate
version of the Sommerfeld radiation condition (2). These properties are established in
§3.2. The second challenge, given that we assume ab initio only that the traces ϕj are
locally L2, is to show that each trace ϕj is locally in the trace space H1/2, so that the
reconstructed solution u is locally in H1 as required. But this difficulty arises already
in the corresponding formulation in the dissipative case, and the proof in that case
is sketched in [6, §3.3]. As preparation for the more difficult non-dissipative case, we
expand on that argument in §2.2 below.

1.3. The significance of our results. The main significance of Theorems
3.5 and 4.1 is that these are the first well-posedness results in the important non-
dissipative case for the HSM method, a method which, as discussed above, has already
proved effective for computing scattering by localised inhomogeneities in a range of
complex backgrounds. Our theorems, challenging as they are to prove, are for the
simplest case when the background is homogeneous and isotropic. However, we ex-
pect that these results and formulations will be an important stepping stone to more
complex cases, and we discuss this further in concluding remarks to the paper.

Our main uniqueness result, Theorem 3.5, is also important because it is a crucial
ingredient in the proof of well-posedness in [4, §5] of the so-called complex-scaled
HSM method, proposed recently in [4]. This new formulation is a version of the HSM
method in the non-dissipative case that, in the spirit of complex-scaling in PML (e.g.,
[14]), achieves the L2 framework of the dissipative case by analytically continuing the
half-plane traces into the complex plane, so that the original half-plane boundary is
replaced by a path in the complex plane on which the (analytically-continued) trace
is exponentially decreasing.

Additionally, we expect that the results that we establish (Lemma 2.3, §3.2) on
properties of the half-plane solution operator, that takes the trace on the boundary
of a half-plane and recovers the half-plane solution, will be of independent interest.
Indeed, there is large interest in so-called rough surface scattering problems, where the
Helmholtz equation (or more complicated vector equations) are solved in a non-locally
perturbed half-plane D with boundary or transmission conditions on the rough surface
∂D (e.g., [13, 12, 1, 2, 24, 10, 28, 16, 33, 20]). In this context it is usual, to ensure
uniqueness, to impose the so-called upwards propagating radiation condition (e.g., [12,
2, 24, 10, 16, 33]), which is precisely a requirement that, in some half-plane above the
rough surface, the solution can be represented as the action of this half-plane solution
operator on some L∞ data on the boundary of the half-plane. This rough surface
scattering application, in particular the use of the upwards propagating radiation
condition, has driven significant study of this half-plane solution operator (e.g. [8,
9], [13, §2], [2], [16, §2.3]). The results in §3.2 contribute to this study, shedding
light on the relationship between the upwards propagating radiation condition and
the Sommerfeld radiation condition, complementing previous work, especially [13,
Theorem 2.9], [2], and [20].

sec:scattering problem
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1.4. The scattering problem and the structure of the paper. Let us spell
out in more detail the 2D scattering problem that we consider in this paper. The
propagation domain Ω is R2, or R2 minus a set of bounded Lipschitz obstacles so
that Ω is a Lipschitz domain. We seek u that satisfies an inhomogeneous Helmholtz
equation,

{eq:helmholtz-variable} (5) −∆u− k2 ρu = f in Ω.

Here ρ is a function in L∞(Ω) such that ρ − 1 is compactly supported, so that, if
ρ is real-valued and bounded below by a positive constant, (5) models propagation
in a domain with a local perturbation in wave speed1. The source term f ∈ L2(Ω)
is also assumed to be compactly supported, so that (1) holds outside some ball.
We suppose that the wavenumber is such that k > 0 in the non-dissipative case,
and such that <(k) > 0 and =(k) > 0 in the dissipative case. In the case when
Ω ( R2 we require also a standard (e.g. Dirichlet or Neumann) boundary condition
on Γ := ∂Ω. As is standard we seek a solution u ∈ H1(Ω) in the dissipative case and
u ∈ H1

loc(Ω) := {v|Ω; v ∈ H1
loc(R2)} in the case k > 0. In the non-dissipative case we

require also that u satisfies the Sommerfeld radiation condition (2).
To explain the HSM method, our uniqueness argument, and the role of the ra-

diation condition (4), we consider two specific instances of the problem (5). To get
the main ideas across and to prove the key uniqueness and well-posedness result,
Theorem 3.5, we focus first on the case when Ω = R2 \ O, for some convex polygon
O, with ρ ≡ 1 and f ≡ 0, so that (1) holds in Ω, imposing a Dirichlet boundary
condition u = g on Γ. In this case, where Ω is the exterior of a convex polygon and
(1) holds in Ω, the HSM formulation is a system of second kind integral equations, in
which the unknowns are the traces of u on the finite number of half-planes that abut
the sides of the polygon O. In §2 we recall the HSM formulation for this problem
in the dissipative case, in particular how uniqueness is proved. In §3 we prove our
main Theorem 3.5, i.e., we prove well-posedness in the non-dissipative case under the
additional radiation condition (4).

In §4 we consider the more involved case where f is non zero and/or ρ 6≡ 1, in
which case the second kind integral equation formulation is coupled to a local varia-
tional formulation in a bounded region Ωb containing ∂Ω and the supports of f and
ρ− 1. In this case we assume, to be specific, that the boundary condition on ∂Ω is a
homogeneous Neumann condition. (The changes needed, to the formulation and well-
posedness argument, to address other boundary conditions, and/or inhomogeneities
in the boundary condition, indeed to include other types of compactly supported in-
homogeneities, are straightforward.) The main result in this case, the uniqueness and
well-posedness result Theorem 4.1, is proved by use of Theorem 3.5 and by adapting
the proof of [4, Proposition 6.1]. Section 5 provides a brief conclusion and gives an
indication of more complex configurations to which the same methods and arguments
are expected to apply.

section-HSMcomplexfreq
2. The HSM method for complex wavenumber.

sec:HSMform
2.1. The Half-Space Matching formulation. In this section, as preparation

for studying the HSM method for real wavenumber, we first recall what is known
about the method in the dissipative case. For this purpose, as discussed in §1.4, we

1It is straightforward to incorporate more elaborate local behaviour (e.g. local anisotropies, or
local inhomogeneities in density as well as wave speed), as long as the resulting problem remains
well-posed.
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consider the Dirichlet problem for complex wavenumber (=(k) > 0, <(k) > 0) in
the exterior Ω of a convex polygon O. Thus, for given data g ∈ H1/2(Γ), where
Γ = ∂Ω = ∂O, we consider the Dirichlet problem

{pb:probleme_Dir_diss} (6)

{
−∆u− k2 u = 0 in Ω,

u = g on Γ.

It is well known that Problem (6) has a unique solution u ∈ H1(Ω).
If O is a polygon with N edges denoted Γ1, . . . ,ΓN , the domain Ω is the union of

N overlapping half-planes Ωj , j = 1, ...,N , that abut the N edges of the polygon O.
The angle between Γj and Γj+1 is denoted as Θj,j+1 or equivalently Θj+1,j , where,
here and in the sequel, j ∈ Z/NZ where Z/NZ is the ring of integers modulo N .
This convenient notation means that j = 0 is equivalent to j = N and j = −1 to
j = N − 1. Note finally that, because of the convexity, one has 0 < Θj,j+1 < π for all
j ∈ Z/NZ.

O

Σ1

Σ2

Σ3

x1
1

x1
2

x2
1

x2
2

x3
1

x3
2

Θ1,2

Θ2,3

Θ3,1

O

Σ1

Σ2

Σ3

Σ4

x1
1

x1
2

x2
1

x2
2

x3
1

x3
2

x4
1

x4
2

Θ1,2Θ2,3

Θ3,4 Θ4,1

Fig. 1: Examples of polygons O for N = 3 and 4 and associated notations.

fig:rmd

It is convenient to make use of local coordinate systems xj = (xj1, x
j
2) in each half-

space Ωj . The origin of all of them is the centroid O of the polygon O. We define the
Cartesian coordinate system (O, x1

1, x
1
2) such that the axis Ox1

1 is orthogonal to Γ1 and
directed into the exterior of the polygon, while the axis Ox1

2 is π/2 counter clockwise
to Ox1

1. The other local coordinate systems (O, xj1, x
j
2) are defined recursively as

follows:

(7) ∀j ∈ Z/NZ,
xj+1

1 := cos(Θj,j+1)xj1 + sin(Θj,j+1)xj2,

xj+1
2 := − sin(Θj,j+1)xj1 + cos(Θj,j+1)xj2.

Defining aj , for j = 1, ...,N , to be the distance of the centroid of the polygon to the
edge Γj , each half-plane Ωj is defined in the local coordinate system (O, xj1, x

j
2) as

Ωj := {xj1 > aj} × {xj2 ∈ R},

and its boundary, denoted by Σj , is given by

Σj := {xj1 = aj} × {xj2 ∈ R}.
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As explained in the introduction, the formulation uses the representation of the solu-
tion in each half-plane Ωj in terms of its trace on Σj . More precisely, let us denote

{eq:def_traces} (8) ϕj := u
∣∣
Σj for j = 1, ...,N ,

so that

{eq:def_traces2} (9) u
∣∣
Ωj = U j(ϕj) for j = 1, ...,N ,

where, for j = 1, ...,N and ψ ∈ H1/2(Σj), U j(ψ) ∈ H1(Ωj) is the unique solution of

{eq:half-space} (10)
−∆U j − k2 U j = 0 in Ωj ,

U j = ψ on Σj ,

this solution being well-defined since =(k) 6= 0. We can express U j(ψ) explicitly in
terms of its trace ψ using a Green’s function representation:

{eq:hprGreen} (11) U j(ψ)(xj) =

∫
Σj

∂Gj(xj ,yj)

∂n(yj)
ψ(yj) ds(yj), xj ∈ Ωj ,

where Gj(xj ,yj) is the Dirichlet Green’s function for Ωj and n(yj) is the unit normal

to Σj that points into Ωj . Explicitly, Gj(xj ,yj) = Φ(xj ,yj) − Φ(x̃j ,yj), with x̃j

the image of xj in Σj , where Φ(x,y) is the standard fundamental solution of the
Helmholtz equation defined by

{eq:Greenfct} (12) Φ(x,y) :=
i

4
H

(1)
0 (k|x− y|), x, y ∈ R2, x 6= y,

where H
(1)
n is the Hankel function of the first kind of order n. This leads finally to

{eq:hprPhi} (13) U j(ψ)(xj) = 2

∫
Σj

∂Φ(xj ,yj)

∂yj1
ψ(yj) ds(yj), xj ∈ Ωj ,

which can be rewritten as

{eq:hpr} (14) U j(ψ)(xj) =

∫
R
H(k;xj1 − aj , x

j
2 − y

j
2)ψ(aj , yj2) dyj2, xj = (xj1, x

j
2) ∈ Ωj ,

where we have set

{eq:hpr_kernel} (15) H(k;x1, x2) :=
ikx1

2

H
(1)
1 (k|x|)
|x|

.

To derive a system of equations whose unknowns are the traces ϕj of the solution,
it suffices to observe that the half-plane representations must coincide where they
coexist. For instance, in the overlapping zone Ω1 ∩ Ω2 (see Figure 2) we have

{eq:comp_quarter} (16) u = U1(ϕ1) = U2(ϕ2) in Ω1 ∩ Ω2,

and in particular

{eq:comp1} (17) ϕ2 = U1(ϕ1) on Ω1 ∩ Σ2,
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O

Σ1

Σ2

Θ1,2

u
∣∣
Ω1 = U1(ϕ1)

u
∣∣
Ω2 = U2(ϕ2)

Ω1 ∩ Ω2

Ω2 ∩ Σ1

Ω1 ∩ Σ2

ϕ2 = U1(ϕ1)

ϕ1 = U2(ϕ2)

Ω1 ∩ Ω2

Fig. 2: Compatibility condition in Ω1 ∩ Ω2.

fig:comp_cond

which is a relation linking ϕ1 and ϕ2. By introducing the operator D1,2 : L2(Σ1) →
L2(Ω1 ∩ Σ2) defined by

D1,2 ψ := U1(ψ)
∣∣
Ω1∩Σ2 , ψ ∈ L2(Σ1),

the relation (17) can be rewritten as

{eq:comp1_bis} (18) ϕ2 = D1,2ϕ
1 on Ω1 ∩ Σ2.

From (16), we deduce similarly

ϕ1 = U2(ϕ2) on Ω2 ∩ Σ1,

another relation linking ϕ1 and ϕ2. Repeating this with 1 and 2 replaced, respectively,
by j and j + 1, we get 2N equations linking the N traces. Let us introduce, for all
j ∈ Z/NZ, the operators Dj,j±1 : H1/2(Σj)→ H1/2(Ωj ∩ Σj±1) defined by

{eq:DtD_jjplus1} (19) Dj,j±1 ψ := U j(ψ)
∣∣
Ωj∩Σj±1 , ψ ∈ H1/2(Σj).

Then the compatibility relations between all the traces can be written as:

{eq:syst_comp} (20) ∀j ∈ Z/NZ, ϕj = Dj−1,j ϕ
j−1, on Ωj−1 ∩ Σj ,

ϕj = Dj+1,j ϕ
j+1, on Ωj+1 ∩ Σj .

This system of equations has to be completed with the Dirichlet boundary condition,
rewritten as

{eq:syst_comp_BC} (21) ϕj = g|Γj on Γj , j = 1, ...,N .

Note that for all j the operators Dj,j±1 can be given explicitly by using the repre-
sentation (13) for U j . They are integral operators and more precisely double-layer
potential operators (in the sense, e.g., of [15] or [7]).

One can easily check that (20)-(21) is equivalent to the original problem (6) and
so is well-posed. We recall here the proof of this result because its general idea will
be used in the results proved later in the paper.
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the:equivalenceH1/2 Theorem 2.1. In the case where <(k) > 0 and =(k) > 0, there exists, for each
g ∈ H1/2(Γ), a unique solution (ϕ1, ..., ϕN ) ∈ H1/2(Σ1)×. . .×H1/2(ΣN ) of (20)-(21).

Existence was proven by construction of (20)-(21) from the solution u of (6), with
ϕj := u|Σj for j = 1, ...,N . Uniqueness follows from the following proposition since
(6) is well-posed.

prop:equivalenceH1/2 Proposition 2.2. Suppose <(k) > 0 and =(k) > 0 and let (ϕ1, ..., ϕN ) ∈ H1/2(Σ1)
× . . . × H1/2(ΣN ) be a solution to (20)-(21) (with g ∈ H1/2(Γ)). Then, for all
j ∈ Z/NZ,

{eq:compatibility} (22) U j(ϕj) = U j+1(ϕj+1) in Ωj ∩ Ωj+1,

and the function defined by u = U j(ϕj) in Ωj, j = 1, ...,N , is the unique solution
u ∈ H1(Ω) of (6).

Proof. To prove (22), let us set v = U j(ϕj) − U j+1(ϕj+1). By definition of the
half-plane representations U j and U j+1, it is clear that v ∈ H1(Ωj ∩Ωj+1) and that v
satisfies ∆v+k2v = 0 in Ωj∩Ωj+1. Moreover, the compatibility conditions (20) imply
that v vanishes on the boundary of Ωj ∩Ωj+1. Using that =(k) 6= 0, one deduces that
v = 0 by uniqueness of the solution of the Dirichlet problem in Ωj ∩ Ωj+1. The rest
of the proof is straightforward.

It has been shown in previous papers [6, 5] that, for both mathematical analysis and
computation, it is more convenient to consider the Half-Space Matching formulation
in an L2-framework, which means that ϕj is sought in L2(Σj) instead of H1/2(Σj) so
that the formulation is

{eq:HSMM_complexe} (23)

Find (ϕ1, ..., ϕN ) ∈ L2(Σ1)× . . .× L2(ΣN ) such that for j ∈ Z/NZ

ϕj = Dj−1,j ϕ
j−1, on Σj ∩ Ωj−1,

ϕj = g|Γj , on Γj ,
ϕj = Dj+1,j ϕ

j+1, on Σj ∩ Ωj+1.

Let us emphasize that this makes sense since Dj,j±1ψ is well-defined by (19) and (14)
for all ψ ∈ L2(Σj) and the operators Dj,j±1 are in fact continuous from L2(Σj) to
L2(Ωj ∩ Σj±1) [6]. It has been shown in [6] that problem (23) is of Fredholm type.
More precisely, by rewriting it in an operator form, it is proven that the associated
operator is Fredholm of index 0. This means that existence of a solution is equivalent
to its uniqueness. We refer the reader to [6] for more detail. Here, we focus on the
question of uniqueness. We need to prove that, for a solution of (23), g = 0 implies
ϕj = 0 for all j = 1, ...,N . The sketch of the proof of this uniqueness result, which
is much less straightforward than in the H1/2 framework, has been given in [6]. We
give a detailed presentation of this proof in the following paragraph, in a form that
will be directly used for our main result, which is uniqueness for the case of a real
wavenumber k.

sec:uniquenessD

2.2. The uniqueness result in an L2-framework. The difficulty in proving
a uniqueness result for problem (23) comes from the fact that the half-plane solutions
U j(ϕj) (with U j(ϕj) defined now by (11), (13), or (14)) are in general not in H1(Ωj),
assuming only that ϕj ∈ L2(Σj). But we will take advantage of the following lemma
which summarizes key properties of the half-plane solutions with L2 and/or L∞

Dirichlet boundary data.
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lem:UjinL2 Lemma 2.3. Suppose that =(k) ≥ 0,<(k) > 0. Let φ ∈ L2(R)+L∞(R) and define
u(x), for x = (x1, x2) ∈ R2

+ := (0,∞)× R, by

{eq:hplem-1} (24) u(x) :=

∫
R
H(k;x1, x2 − t)φ(t) dt,

where H is defined by (15). Then the integral is well-defined as a Lebesgue integral
for x ∈ R2

+, u ∈ C∞(R2
+), and ∆u + k2 u = 0 in R2

+. Moreover, if φ is continuous
on an open interval I ⊂ R, then u ∈ C(R2

+ ∪ γ) where γ := {(0, t); t ∈ I}, and
u(0, t) = φ(t), t ∈ I. Finally, if φ ∈ L2(R) and =(k) > 0, then u ∈ L2(R2

+) and there
exists a constant C∞ > 0 independent of φ such that

{eq:uboundL2} (25) ‖u‖L2(R2
+) ≤ C∞‖φ‖L2(R),

whereas if =(k) = 0 then, for any L > 0, u ∈ L2(ωL) where ωL := {x ∈ R2
+; x1 < L},

and there exists a constant CL > 0 independent of φ such that

{eq:uboundL2_rek} (26) ‖u‖L2(ωL) ≤ CL‖φ‖L2(R).

Proof. From asymptotics of the Hankel function H
(1)
1 for large and small argu-

ment, it follows that, for every k with =(k) ≥ 0, <(k) > 0, there exists a C > 0 such
that

{eq:Hbound} (27) |H(k;x1, x2)| ≤ C x1

|x|2
(1 + |x|1/2)e−=(k)|x|.

It follows that, for x ∈ R2
+, the integral in (24) is well-defined as a Lebesgue integral

for any φ ∈ L2(R) + L∞(R). To see that u ∈ C∞(R2
+) and satisfies the Helmholtz

equation, it suffices to argue as in [9, Theorem 3.2]. If φ is continuous on an open
interval I ⊂ R, to see that u ∈ C(R2

+ ∪ γ) and that u(0, t) = φ(t) for t ∈ I, it

is enough to show that u ∈ C(R2
+ ∪ γ̃) and that u(0, t) = φ(t) for t ∈ Ĩ for every

compact γ̃ := {(0, t); t ∈ Ĩ} ⊂ γ. So suppose Ĩ ⊂ I is compact and write φ = φ1 +φ2

where the support of φ2 does not intersect Ĩ and φ1 is bounded and continuous.
Correspondingly, we can split u as u = u1 + u2, where uj is defined by (24) with φ
replaced by φj . It follows from the definition that u2 ∈ C(R2

+ ∪ γ̃) with u2(0, t) = 0

for t ∈ Ĩ, while u1 ∈ C(R2
+) and u1(0, t) = φ1(t) for t ∈ Ĩ by [8, Theorem 3.1], so that

u(0, t) = φ(t) for t ∈ Ĩ. Concerning the L2-estimates (25) and (26) let us recall that
for ψ1 ∈ L1(R) and ψ2 ∈ L2(R) the convolution product ψ1 ∗ ψ2 belongs to L2(R),
with the estimate (Young’s convolution inequality)

‖ψ1 ∗ ψ2‖L2(R) ≤ ‖ψ1‖L1(R)‖ψ2‖L2(R).

For a given x1 > 0, this implies that∫
R
|u(x1, x2)|2dx2 ≤

[∫
R
|H(k;x1, x2)|dx2

]2

‖φ‖2L2(R).

From (27), we deduce that, for some C ′ > 0,∫
R
|H(k;x1, x2)|dx2 ≤ C ′(1 + x1)1/2e−=(k)x1 , x1 > 0.

One easily obtains the estimates (25) for =(k) > 0 and (26) for =(k) = 0.
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Now to prove the uniqueness result, we need some results concerning L2 solutions
of the homogeneous Dirichlet problem in a domain with corners. We gather in the
next lemma the results that we need which are proved in [19, Chapter 2] (see Theorem
2.3.3 and the proof of Theorem 2.3.7).

lem-singularities Lemma 2.4. Let Q be a bounded polygonal domain with N vertices denoted by
S1, . . . , SN . Let us suppose that Q has M < N reentrant vertices that can be supposed
to be S1, . . . , SM without loss of generality. Let P := {S1, . . . , SN} and suppose that
w ∈ C(Q̄ \ P ) ∩ C2(Q) satisfies ∆w = 0 in Q and w = 0 on ∂Q \ P . Then, if
w ∈ L2(Q), there exists w̃ ∈ H1(Q) and M complex constants c1, . . . , cM such that

w(x) = w̃(x) +

M∑
m=1

cm r
−π/αm
m sin(πθm/αm), x ∈ Q,

where, for each m, αm is the interior angle of Q at Sm and (rm, θm) are the polar
coordinates of x whose origin is Sm such that θm is the angle from one of the sides
of ∂Q containing Sm. In particular if M = 0 (Q is convex) then w = 0.

The previous lemma will be used to prove that particular L2 solutions of the Helmholtz
equations in unbounded domains with Dirichlet boundary conditions are in fact H1

in every bounded subset of the domain. To prove that they are H1 in the whole
domain, we will resort to the following result, whose proof follows the arguments of
[30, Lemma 2.2].

lem-L2givesH1 Lemma 2.5. Let Π ⊂ R2 be an unbounded open set such that ΠR := {x ∈ Π; |x| <
R+1} is a Lipschitz domain for all sufficiently large R > 0, and v ∈ L2(Π) a function
such that v|B ∈ H1(B) for all bounded open subsets B of Π. If v satisfies the Helmholtz
equation ∆v + k2v = 0 in Π and its trace is zero on ∂Π, then v ∈ H1(Π).

Proof. Let us define the truncation function χR(x) := FR(|x|) where FR ∈
C∞(R+) is chosen such that 0 ≤ FR ≤ 1, FR = 1 on [0, R], FR = 0 on [R + 1,+∞)
and there exists a constant c > 0 independent of R such that |F ′R| ≤ c

√
FR (this can

be achieved by defining FR so that FR > 0 on (R,R + 1) and vanishes quadratically
at R+ 1). One has for all R > 0∫

Π

(∆v + k2v)vχR dx = 0.

Since v ∈ H1(ΠR; ∆) :=
{
u ∈ H1(ΠR); ∆u ∈ L2(ΠR)

}
we can apply Green’s first

identity in ΠR. Using that v vanishes on ∂Π, this yields∫
Π

|∇v|2χR dx ≤ k2‖v‖2L2(Π) +

∣∣∣∣∫
Π

v∇v · ∇χR dx
∣∣∣∣ .

Since |∇χR| ≤ c
√
χR, applying the Cauchy-Schwarz inequality gives∫

Π

|∇v|2χR dx ≤ k2‖v‖2L2(Π) + c‖v‖L2(Π)

√∫
Π

|∇v|2χR dx,

from which we deduce the existence of a constant C > 0 independent of R such that∫
Π

|∇v|2χR dx ≤ C‖v‖2L2(Π).

This being true for all R, we can conclude that v ∈ H1(Π).
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We are now able to prove the following well-posedness result.

thm:uniqueness-kcomplex Theorem 2.6. If <(k) > 0 and =(k) > 0 then there exists, for each g ∈ H1/2(Γ),
a unique solution (ϕ1, ..., ϕN ) ∈ L2(Σ1)× . . .× L2(ΣN ) of (23).

This is a direct consequence of the following proposition and Theorem 2.1.

prop:trraceL2 Proposition 2.7. Suppose <(k) > 0 and =(k) > 0 and let (ϕ1, ..., ϕN ) ∈ L2(Σ1)
× . . . × L2(ΣN ) be a solution of (23) (with g ∈ H1/2(Γ)). Then ϕj ∈ H1/2(Σj),
j = 1, ...,N .

Proof. The proof consists of two steps.
1. Prove the relations (22) as in Proposition 2.2 but noting that here the func-

tions (ϕ1, ..., ϕN ) that solve (23) are a priori supposed to be only in L2.
2. By noting that the traces on Σ1, . . . ,ΣN of the unique solution of (6) form a

solution of (23) (and are obviously in H1/2), it suffices to prove that, if g = 0,
ϕj = 0 for j = 1, ...,N . To prove this uniqueness result, we show that, in the
case that (ϕ1, ..., ϕN ) satisfies (23) with g = 0, the function defined (thanks
to step 1) by u = U j(ϕj) in Ωj (U j(ϕj) defined by (13)) is in H1(Ω), with
zero trace. Therefore it is equal to 0 everywhere, as the unique solution of
(6) for g = 0. We deduce finally that each ϕj , which we show is the trace of
u on Σj , is zero.

Step 1. As in the proof of Proposition 2.2, we introduce v = U j(ϕj)−U j+1(ϕj+1),
where the ϕj ∈ L2(Σj) satisfy (23), in particular satisfy (20). A priori, we just know,
thanks to Lemma 2.3, that v ∈ L2(Ωj ∩ Ωj+1) ∩ C∞(Ωj ∩ Ωj+1) and that v satisfies
∆v + k2v = 0 in Ωj ∩ Ωj+1. Note that it follows from (20) and Lemma 2.3 that the

ϕj ’s are in fact continuous on Σj \Γj , so that, from Lemma 2.3, U j(ϕj) ∈ C(Ωj \Γj)

and U j(ϕj) = ϕj on Σj \ Γj . As a consequence, v is continuous in Ωj ∩ Ωj+1, except
maybe at Sj , the intersection of Σj and Σj+1, and, thanks to (20), v vanishes on
∂(Ωj∩Ωj+1)\{Sj}. It follows by standard reflection and elliptic regularity arguments

that v ∈ C∞
(

Ωj ∩ Ωj+1 \ {Sj}
)

.

To conclude that v = 0, we only need to prove that v ∈ H1(Ωj∩Ωj+1). Firstly, we
show that v is H1 in all bounded subdomains of Ωj∩Ωj+1. Let us introduce a bounded
convex polygon O′ such that O ⊂ O′ (see Figure 3). Then Q := O′ ∩ Ωj ∩ Ωj+1 is
a convex polygon. Let us consider the following Dirichlet problem: find ṽ ∈ H1(Q)
such that

−∆ṽ = k2v in Q,
ṽ = v on ∂Q.

This problem has a unique solution as v ∈ L2(Q) and the restriction of v to ∂Q is in
H1/2(∂Q)∩C(∂Q), since v ∈ C∞(Q\{Sj}) and, if we set v = 0 at Sj , v|∂Q vanishes in
a neighbourhood of Sj . Further, by standard elliptic regularity arguments, ṽ ∈ C2(Q)
and (see [25], Corollary 7.11.7) ṽ ∈ C(Q̄). One can finally apply Lemma 2.4 to the
function w = v − ṽ ∈ C(Q̄ \ {Sj}) ∩ C2(Q) ∩ L2(Q). Since Q is convex, we conclude

that w = 0, and consequently that v|Q = ṽ ∈ H1(Q). As v ∈ C∞
(

Ωj ∩ Ωj+1 \ {Sj}
)

,

we deduce that v is H1 in all open bounded subdomains of Ωj ∩ Ωj+1. Since also
v ∈ L2(Ωj ∩ Ωj+1), satisfies the Helmholtz equation in Ωj ∩ Ωj+1 and vanishes on
∂(Ωj ∩ Ωj+1), Lemma 2.5 implies that v ∈ H1(Ωj ∩ Ωj+1). Thus v = 0 so that (22)
holds.

Step 2. The second step consists in proving that, if g = 0, the function defined by
u = U j(ϕj) in Ωj is equal to 0 everywhere, and deduce from this that each ϕj = 0.
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For j = 1, ...,N , as above let Sj := Σj ∩Σj+1 so that P := {S1, S2, ..., SN } is the set
of corners of ∂Ω (i.e. the set of vertices of the polygon O). Since, for each j, ϕj is
such that ϕj = g = 0 on Γj , and ϕj ∈ C(Σj \ P ) (see Step 1), it follows from Lemma

2.3 that u ∈ C∞(Ωj)∩L2(Ωj)∩C(Ωj \P ), u = ϕj on Σj \P , in particular u = ϕj =0
on Γj , and ∆u + k2u = 0 in Ωj . Consequently u ∈ C∞(Ω) ∩ L2(Ω) ∩ C(Ω \ P ),
∆u+ k2u = 0 in Ω, and u = 0 on ∂Ω \ P .

Again, to conclude that u = 0, we only need to prove that u ∈ H1(Ω). We proceed
as in the first step of the proof. Introducing the bounded polygon Ω′ := O′ \ O, we
denote by ũ the unique solution in H1(Ω′)∩C(Ω′)∩C2(Ω′) of the Dirichlet problem

−∆ũ = k2u in Ω′,
ũ = u on ∂Ω′.

Then we apply Lemma 2.4 to the function w = u− ũ ∈ C(Ω′ \ P ) ∩C2(Ω′) ∩L2(Ω′).
But, in contrast to the argument in the first step, the polygon Ω′ is not convex and
has N reentrant corners at the vertices S1, S2, ..., SN . Consequently, we deduce
from Lemma 2.4 that there exists a function w̃ ∈ H1(Ω′) and N complex coefficients
c1, ..., cN such that

w = w̃ +

N∑
j=1

cj r
−π/αj

j sin(πθj/αj) in Ω′,

where, as explained in the lemma, αj is the interior angle of Ω′ at Sj and (rj , θj)
are polar coordinates centered at Sj . The definition of θj is such that sin(πθj/αj)
vanishes on Σj ∩ ∂O and Σj+1 ∩ ∂O but note that it does not vanish on Σj ∩ Ωj+1.
Since ϕj ∈ L2(Σj), ũ ∈ C(Ω′), and w = u − ũ = ϕj − ũ on Σj ∩ Ω′, we must have
w ∈ L2(Σj ∩ Ω′), which is possible only if cj = 0. Indeed, since αj < 2π, we have

π/αj > 1/2 so that r
−π/αj

j is not square integrable near rj = 0. Summing up, we have

w = w̃ and u = ũ+ w̃ ∈ H1(Ω′). Since u ∈ C∞(Ω), one concludes that u is H1 in all
open bounded subdomains of Ω, and finally, thanks to Lemma 2.5, that u ∈ H1(Ω).
We have shown that u ∈ H1(Ω) and u satisfies (6) with g = 0. Thus u = 0 and, since
ϕj = u on Σj \ P , we have that ϕj = 0 for all j, which ends the proof.

O

Q

Σ1

Σ2

Ω1 ∩ Ω2

Fig. 3: Illustration for the proof of Theorem 2.6 in the case j = 1 and N = 3. The
convex polygon O′ is indicated in gray and the boundaries of O and Q with dotted
contours.

fig:illustration-theorem
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sec:HSM_realsection-HSMrealfreq
3. The HSM method for real wavenumber.

sub-HSMrealfreqformulation

3.1. The Half-Space Matching formulation. In this section we consider the
Dirichlet problem of the previous section, but now with a real wavenumber k > 0.
We seek u ∈ H1

loc(Ω) such that

{pb:probleme_Dir_real} (28)

{
−∆u− k2 u = 0 in Ω,

u = g on Γ,

for a given g ∈ H1/2(Γ), and such that u satisfies the Sommerfeld radiation condition
(2), which it is convenient to rewrite as

{eq:Sommerfeld-sup} (29) lim
R→+∞

R1/2 sup

{∣∣∣∣∂u(x)

∂r
− iku(x)

∣∣∣∣ ; |x| = R

}
= 0.

It is well known that this problem has a unique solution.
Let us now give a Half-Space Matching formulation of problem (28-29). If we set as

before ϕj := u
∣∣
Σj for j = 1, ...,N , one can easily check by a Green’s identity argument

that the half-plane representations (9), with U j(ϕj) given by (11) (equivalently (13)
or (14)), still hold. A main difference with the case of a complex wavenumber is that
now the solution of (28-29) decays only slowly, like r−1/2 as r →∞, so that we cannot
expect that ϕj ∈ L2(Σj). However ϕj ∈ L2(Σj) + L∞(Σj) so that, for xj1 > aj , the
integral ∫

R
H(k;xj1 − aj , x

j
2 − y

j
2)ϕj(aj , yj2) dyj2

is still well-defined by Lemma 2.3. Then one can check, exactly as in the case of a
complex wavenumber, that the ϕj ’s satisfy the following Half-Space Matching equa-
tions:

{eq:HSMM_real} (30)
ϕj = Dj−1,j ϕ

j−1, on Σj ∩ Ωj−1,
ϕj = g|Γj , on Γj ,
ϕj = Dj+1,j ϕ

j+1, on Σj ∩ Ωj+1,
j ∈ Z/NZ

where

{eq:def_DtD_real} (31) Dj,j±1 ϕ
j := U j(ϕj)

∣∣
Ωj∩Σj±1 ,

with U j(ϕj) given by (11). The idea is again, for numerical purposes, to replace
problem (28-29) by the system of equations (30). But in contrast to the case with
=(k) > 0, it is not clear in which space the functions ϕj ’s must be sought to make
(30) uniquely solvable. In what follows, we will provide a framework which ensures
existence and uniqueness of the solution of (30). More precisely, in this framework,
the unique solution of (30) is given by ϕj := u

∣∣
Σj , where u is the unique solution of

(28-29).
Let us first recall, as just remarked above, that U j(ϕ) is well-defined when ϕ ∈

L2(Σj) + L∞(Σj) by Lemma 2.3, and, indeed, we will require that the solution of
(30) satisfies ϕj ∈ L2(Σj) + L∞(Σj) for j = 1, . . . ,N . But, as discussed in §1.2,
our uniqueness result requires an additional property: analogously to requiring that
u ∈ H1

loc(Ω) satisfies the Sommerfeld radiation condition when k is real, we will
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require, for j = 1, ...,N , that ϕj has the following asymptotics playing the role of a
radiation condition:

{eq:RadCond} (32) ϕj(aj , t) =

{
cj+ eik|t||t|−1/2

(
1 +O(|t|−1)

)
, as t→ +∞,

cj− eik|t||t|−1/2
(
1 +O(|t|−1)

)
, as t→ −∞,

for some constants cj± ∈ C. This obviously holds when ϕj := u
∣∣
Σj , where u is the

unique solution of (28-29), since, as discussed in §1.2, u satisfies (3).
The main result of the present paper is Theorem 3.5 stating that the radiation

condition (32) is strong enough to ensure uniqueness for (30) for k real. We will prove
it by following the same steps as in the case of a complex wavenumber, proving first the
compatibility of half-plane representations in the overlaps between half-planes, and
then uniqueness for the reconstructed solution in the exterior domain Ω. To establish
these results, we will use classical uniqueness results for the Helmholtz equation on
unbounded domains when the solution satisfies the Sommerfeld radiation condition
at infinity. A preliminary question is: can we prove, using (32), that the half-plane
representations (14) satisfy a Sommerfeld condition at infinity? We will establish, in
the next subsection, a slightly weaker result which will be sufficient for the proof of
Theorem 3.5.

sec:half-plane

3.2. Properties of the half-plane solution. We consider in this subsection
the half-space R2

+ := (0,∞)×R. Let us prove a preliminary lemma for the solution of
the Dirichlet problem in R2

+ given by (24), in the case that the Dirichlet data decays
sufficiently rapidly at infinity.

lem-decayingphi Lemma 3.1. Suppose that φ ∈ L∞(R) satisfies, for some p > 1,

{eq:phipsi} (33) |φ(t)| ≤ (1 + |t|)−p, t ∈ R,

and define u(x), for x ∈ R2
+, by

{eq:hplem} (34) u(x) :=

∫
R
H(k;x1, x2 − t)φ(t) dt.

Then there exists a constant C(p) > 0 such that

{eq:ubound} (35) |u(x)| ≤ C(p)(1 + |x|)−1/2, x ∈ R2
+.

Proof. We will use the bound (27), where C > 0, there and throughout the
remainder of the proof, denotes a constant independent of x (and also independent
of p), not necessarily the same at each occurrence. It will be convenient for the proof
to denote by u[φ] the function u defined by (34). Then defining χx2

∈ L∞(R), for
x2 ∈ R, to be the characteristic function of the interval

Ix2 := {t ∈ R; |x2 − t| ≤ (1 + |x2|)/2} ,

we have u[φ] = u[χx2φ] + u[(1 − χx2)φ]. We will establish the bound (35) for each
term of the sum (cf. the argument between (4.16) and (4.17) in [1]).

For the first term we have

|u[χx2φ](x)| ≤
∫
R
|H(k;x1, x2 − t)|χx2(t)|φ(t)|dt,

which gives

{eq:bound-uchiphi} (36) |u[χx2
φ](x)| ≤ 2‖χx2

φ‖L∞(R)

∫ 1+|x2|
2

0

|H(k;x1, s)|ds.



ON THE HALF-SPACE MATCHING METHOD FOR REAL WAVENUMBER 15

Now note that if |t| < |x2|/3 and |x2| ≥ 3, then |t − x2| > 2|x2|/3 ≥ (1 + |x2|)/2, so
that χx2

(t) = 0. Thus, for |x2| ≥ 3, (33) implies that

‖χx2
φ‖L∞(R) ≤ sup

|t|≥|x2|/3
|φ(t)| ≤ (1 + |x2|/3)−p,

while also ‖χx2
φ‖L∞(R) ≤ ‖φ‖L∞(R) ≤ 1, for every x2 ∈ R, so that

{eq:chiphi2} (37) ‖χx2
φ‖L∞(R) ≤ C(1 + |x2|)−p, x2 ∈ R.

Moreover, it follows from (27) that∫ 1+|x2|
2

0

|H(k;x1, s)|ds ≤ Cx1

∫ 1+|x2|
2

0

[
(x2

1 + s2)−1 + (x2
1 + s2)−3/4

]
ds

= C

∫ 1+|x2|
2x1

0

[
(1 + t2)−1 + x

1/2
1 (1 + t2)−3/4

]
dt

≤ C(1 + x1)1/2

∫ 1+|x2|
2x1

0

(1 + t2)−3/4dt

≤ C(1 + x1)1/2 min

(
1,

1 + |x2|
2x1

)
.

Combining this with (36) and (37), we get the following estimate:

|u[χx2φ](x)| ≤ C(1 + |x2|)−p(1 + x1)1/2 min

(
1,

1 + |x2|
2x1

)
,

which gives the expected bound (recalling that p > 1)

|u[χx2
φ](x)| ≤ C(1 + |x|)−1/2, x ∈ R2

+.

To see that the same bound holds for u[(1− χx2
)φ], we note that

|u[(1− χx2)φ](x)| ≤ C sup
t∈R
|H(k;x1, x2 − t)(1− χx2)(t)|

∫
R
|φ(t)|dt.

Observing that, for x ∈ R2
+ and t ∈ R \ Ix2

,

(x2
1 + (x2 − t)2)1/2 ≥ (x2

1 + (1 + |x2|)2/4)1/2 ≥ C(1 + |x|),

and using (27) and (33), it follows that, for x ∈ R2
+,

(38) |u[(1− χx2
)φ](x)| ≤ C x1

(1 + |x|)3/2

∫
R
|φ(t)|dt ≤ C

p− 1
(1 + |x|)−1/2.

It follows from standard interior elliptic regularity results that if u ∈ C2(R2
+)

satisfies
∆u+ k2u = 0 in R2

+,

then for every ε > 0 and x ∈ R2
+ with x1 > ε, so that {y ∈ R2; |x− y| ≤ ε} ⊂ R2

+:

{eq:elliptic-gradient} (39) |∇u(x)| ≤ C 1 + k2ε2

ε
max
|x−y|≤ε

|u(y)|

where C is an absolute constant (see, e.g. [13, Lemma 2.7]). Combining this estimate
with the previous lemma, we have immediately the following corollary:
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cor-nablaubound Corollary 3.2. Suppose that φ ∈ L∞(R) satisfies (33) for some p > 1. Then
there exists a constant C(p) > 0 such that for all ε > 0, the function u defined by (34)
satisfies

{eq:nablaubound} (40) |∇u(x)| ≤ C(p)
1 + k2ε2

ε
(1 + |x|)−1/2, x1 > ε, x2 ∈ R.

Now, using the previous results, we will establish a radiation condition for u
defined by (34) when its trace ϕ satisfies itself a radiation condition.

Lemma 3.3. Suppose that φ ∈ C(R) satisfies

{eq:phi_asymp} (41) φ(t) =

{
c+ eik|t||t|−1/2 +O(|t|−p), as t→ +∞,
c− eik|t||t|−1/2 +O(|t|−p), as t→ −∞,

for some constants c+, c− ∈ C and p > 1. Define u by (34) in R2
+. Then the following

properties hold:
(i) there exists a constant C > 0 such that

{eq:ubound-general} (42) |u(x)| ≤ C(1 + |x|)−1/2, x ∈ R2
+;

(ii) for all ε > 0,

{eq:Sommerfeld-epsilon} (43) lim
R→+∞

R1/2 sup

{∣∣∣∣∂u(x)

∂r
− iku(x)

∣∣∣∣ ;x1 > ε and |x| = R

}
= 0.

Proof. We use the same notation u[φ] for (34) as in the proof of Lemma 3.1. We
prove this proposition by writing φ as φ = φ(1) + φ(2), and correspondingly writing
the integral (34) as u[φ] = u[φ(1)] + u[φ(2)], choosing this splitting as follows: φ(1) is
the trace on the boundary of a solution of the Helmholtz equation in R2

+ that clearly

satisfies (42) and (43), and φ(2)(t) decays sufficiently rapidly as |t| → ∞ so that,
thanks to Lemma 3.1 and Corollary 3.2, u[φ(2)] also satisfies (42) and (43).

In more detail, from the asymptotics of the Hankel function H
(1)
0 it follows that,

for some non-zero c∗ ∈ C,

{eq:Pasymp} (44) Φ(x, (0, t)) = c∗ eik|t−x2| |t|−1/2 +O(|t|−3/2) as |t| → ∞,

for every x ∈ R2. Pick z = (z1, z2), z′ = (z′1, z
′
2) ∈ R2 with k(z2 − z′2)/π 6∈ Z, and

with z1, z
′
1 < 0. Define φ(1) ∈ C(R) by

{eq:phi_1} (45) φ(1)(t) := (c/c∗)Φ(z, (0, t)) + (c′/c∗)Φ(z′, (0, t)) for t ∈ R.

Then φ(1)(t) has the same leading asymptotic behaviour as φ(t) as t→ ±∞ provided

{eq:phi_1_const} (46) ce−ikz2 + c′e−ikz′2 = c+ and ceikz2 + c′eikz′2 = c−.

Let us choose c and c′ so that these two linear constraints hold; this is possible since
k(z2 − z′2)/π 6∈ Z implies that the determinant exp(ik(z′2 − z2)) − exp(ik(z2 − z′2) =
2i sin(k(z2− z′2)) 6= 0 . Then it is clear from an application of Green’s second identity
that, for x ∈ R2

+, u[φ(1)](x) = (c/c∗)Φ(z,x)+(c′/c∗)Φ(z′,x) (see, e.g., the proof that

(ii)⇒(v)⇒(i) in [13, Theorem 2.9]). Hence u[φ(1)] satisfies items (i) and (ii).
It remains to show that the same is true for u[φ(2)] where φ(2) = φ − φ(1). It

follows from (41) and (44)–(46) that, for some c0 > 0, where p′ := min(p, 3/2),

{eq:phipsi2} (47) |φ(2)(t)| ≤ c0(1 + |t|)−p
′
, t ∈ R.
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Item (i) is therefore a direct consequence of Lemma 3.1. To see that u[φ(2)] also
satisfies the radiation condition (ii), choose q ∈ (1, p′) and, for each A > 0, let χA be
the characteristic function of the interval [−A,A]. Write u[φ(2)] = u[χAφ

(2)] + u[(1−
χA)φ(2)]. Now, by (47),

|(1− χA(t))φ(2)(t)| ≤ c0(1 + |t|)−q(1 +A)q−p
′

so that, by (35) and (40) (applied with p replaced by q), there exists a constant
C(q) > 0 depending only on q such that

|u[(1− χA)φ(2)](x)| ≤ C(q)c0(1 +A)q−p
′
(1 + |x|)−1/2, x ∈ R2

+,

and from Corollary 3.2, for all ε > 0, there exists a constant C(q, ε) > 0 depending
only on q and ε such that

|∇u[(1− χA)φ(2)](x)| ≤ C(q, ε)c0(1 +A)q−p
′
(1 + |x|)−1/2, x1 > ε, x2 ∈ R.

Let us set for any function v defined on R2
+:

MR,ε(v) := R1/2 sup

{∣∣∣∣∂v(x)

∂r
− ikv(x)

∣∣∣∣ ;x1 > ε and |x| = R

}
.

It follows from the estimates above that, for all R > 0,

MR,ε(u[(1− χA)φ(2)]) ≤ max(C(q), C(q, ε))c0(1 +A)q−p
′
.

Thus, for all ε > 0, given η > 0 we can choose A > 0 such that MR,ε(u[(1−χA)φ(2)]) ≤
η/2 for all R > 0. But also, for each A > 0, it is standard that u[χAφ

(2)](x),
a double-layer potential supported on a bounded interval, satisfies the Sommerfeld
radiation condition, in particular that MR,ε(u[χAφ

(2)]) ≤ η/2 for R large enough.
Thus, MR,ε(u[φ(2)]) ≤ η for all sufficiently large R, which concludes the proof.

cor:Helmholtz-halfplane Corollary 3.4. Suppose that φ = φ1 + φ2 where φ1 ∈ L2(R) is compactly sup-
ported and φ2 ∈ C(R). If φ satisfies (41) and u is defined by (34), then

(i) there exist two constants C > 0 and R > 0 such that

{eq:ubound-largeR} (48) |u(x)| ≤ C(1 + |x|)−1/2, x ∈ R2
+, |x| > R;

(ii) for all ε > 0, (43) holds.

Proof. Again, we write u[φ] = u[φ1] + u[φ2]. The properties for u[φ2] have been
established in the previous lemma, while u[φ1] is a double-layer potential supported
on a bounded interval, for which such properties are standard, e.g. [11, Theorem 2.14,
Lemma 2.5].

3.3. Proof of the uniqueness result. We are now able to prove the first main
result of the paper.

thm:HSMMUnique Theorem 3.5. Suppose k > 0. There exists, for each g ∈ H1/2(Γ), a unique
solution (ϕ1, ..., ϕN ) ∈ L2

loc(Σ1)× . . .× L2
loc(ΣN ) satisfying (30) such that, for all j,

ϕj satisfies the radiation condition (32).

Existence was proven by the construction above of a solution of (30) from the unique
solution u of (28,2), namely ϕj := u|Σj , j = 1, ...,N . Note in particular that the
Sommerfeld radiation condition (2) for u implies the far-field asymptotics (3), which
implies in turn that each trace ϕj satisfies the radiation condition (32). Uniqueness
follows from the following proposition since (28, 2) is well-posed.
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prop:HSMMUnique Proposition 3.6. Suppose k > 0 and let (ϕ1, ..., ϕN ) ∈ L2
loc(Σ1)× . . .×L2

loc(ΣN )
satisfying (30) (with g ∈ H1/2(Γ)) be such that, for all j, ϕj satisfies the radiation
condition (32). Then the compatibility equations (22) hold for all j ∈ Z/NZ, the
function defined by u = U j(ϕj) in Ωj, j = 1, ...,N , is the unique solution u ∈ H1

loc(Ω)
of (28, 2), and ϕj = u|Σj for each j.

Proof. For each j, ϕj can be decomposed as ϕj = ϕj1 + ϕj2 with ϕj1 = ϕjχjA and

ϕj2 = ϕj(1−χjA), χjA being the characteristic function of {(xj1 = aj , xj2);xj2 ∈ (−A,A)}.
Since ϕj ∈ L2

loc(Σj) satisfies (32), we have that ϕj1 ∈ L2(Σj) with compact support

and, for A large enough, ϕj2 ∈ L∞(Σj). From Lemma 2.3, and by the definition (31)
of the operator Dj,j±1, since (ϕ1, ..., ϕN ) satisfies (30), we deduce, provided we choose

A large enough, that ϕj2 ∈ C(Σj) for all j.
We follow now the same steps as in the proof of Proposition 2.7.
The first step consists in proving equations (22). Again, we introduce v =

U j(ϕj)−U j+1(ϕj+1) and one can show by using Lemma 2.3 as in the proof of Propo-

sition 2.7 that v ∈ L2
loc(Ωj ∩Ωj+1) ∩ C∞(Ωj ∩Ωj+1) ∩ C(Ωj ∩ Ωj+1 \ {Sj}), satisfies

∆v+k2v = 0 in Ωj∩Ωj+1, and vanishes on ∂(Ωj∩Ωj+1)\{Sj}. Moreover, proceeding
exactly as in the proof of Proposition 2.7, one can show that v ∈ H1

loc(Ωj ∩ Ωj+1).
We would like, by applying Corollary 3.4 to U j(ϕj) and U j+1(ϕj+1), to deduce that
v also satisfies the Sommerfeld radiation condition in Ωj ∩ Ωj+1. The issue is that
Corollary 3.4 does not ensure that v satisfies the Sommerfeld radiation condition up
to the boundary. But this difficulty can be overcome; since v = 0 on ∂(Ωj ∩Ωj+1), re-
flection arguments and standard elliptic regularity results combined with the estimate
(48) imply that, for R large enough, there exists a constant C > 0 such that:

{eq:boundsforv} (49) |v(x)|+ |∇v(x)| ≤ C(1 + |x|)−1/2, x ∈ Ωj ∩ Ωj+1, |x| > R.

Then, denoting ΣjR := {x ∈ Ωj ∩ Ωj+1; |x| = R} and dj(x) := min
y∈∂(Ωj∩Ωj+1)

|x − y| ,

one has by (49) for all R large enough,∫
x∈Σj

R,d
j(x)<1

∣∣∣∣∂v(x)

∂r
− ikv(x)

∣∣∣∣2 ds(x) ≤ C(1 +R)−1,

where the constant C is independent of R. Combined with (43) with ε = 1 applied
to U j(ϕj) and U j+1(ϕj+1), this proves that

{eq:Sommerfeld-integrated} (50) lim
R→+∞

∫
Σj

R

∣∣∣∣∂v(x)

∂r
− ikv(x)

∣∣∣∣2 ds(x) = 0,

i.e. v satisfies the Sommerfeld radiation condition in a standard integrated form.
Since v ∈ H1

loc(Ωj ∩ Ωj+1) satisfies ∆v + k2v = 0 in Ωj ∩ Ωj+1, the Sommerfeld
radiation condition (50), and vanishes on ∂(Ωj ∩Ωj+1) \ {Sj}, one can conclude that
v = 0 by uniqueness of such problems in conical domains [21].

The second step of the proof is simpler. Arguing as in the proof of Proposition
2.7, it is enough to prove, in the case g = 0, that the function defined by u = U j(ϕj) in
Ωj , j = 1, ...,N , is equal to 0 everywhere, and to deduce from this that each ϕj = 0.
Proceeding exactly as in that proof, one can show that u ∈ H1

loc(Ω) ∩ C(Ω \ P ),
where P is the set of corners of ∂Ω, that u is a solution of (28) with g = 0, and that
ϕj = u|Σj on Σj \P . Moreover, thanks to the overlaps between the halfspaces Ωj , one
can deduce from Corollary 3.4 applied to each U j(ϕj) that u satisfies the Sommerfeld
condition (2). This implies that u = 0 so that ϕj = 0 for all j,
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Theorem 3.5 is a (new) well-posedness result for (30) in the case of real k. And,
indeed, numerical solution of (30) works well [6, 5] for real k. However, there are still
significant gaps in our theoretical understanding of this formulation. In particular,
while (23) for complex wavenumber k can be written formally in operator form sat-
isfying a Fredholm property, in the case when k is real we know of no function space
setting for which this formulation makes sense, where the Dj,j+1 are well-defined
bounded linear operators.

sec-CHSMgeneralcase
4. General configurations. Let us now recall how to extend the HSM formu-

lation to the general problem presented in the introduction and extend the previous
uniqueness result to this new formulation. More precisely, for a real wavenumber
k > 0 we consider, as discussed in §1.4, the isotropic Helmholtz equation (5) in a
Lipschitz domain Ω, where ρ − 1 ∈ L∞(Ω) and f ∈ L2(Ω) are compactly supported
and Ω is R2 or R2 minus a set of Lipschitz obstacles which are supposed to lie in a
bounded domain. To ensure uniqueness we impose some constraint on ρ, e.g. that
ρ is real-valued or that =(ρ) ≥ 0. As announced in §1.4 the problem we consider is
to seek u ∈ H1

loc(Ω) that satisfies (5), the Sommerfeld radiation condition (2), and
a boundary condition on Γ = ∂Ω. To be specific we will impose the homogeneous
Neumann condition

{eq:neumann} (51)
∂u

∂n
= 0 on Γ,

but the modifications to use other boundary conditions and/or include inhomogeneous
terms are straightforward.

It is well known that this problem is uniquely solvable; in particular, with one
of the above constraints on ρ, uniqueness follows by a Green’s identity, the Rellich
lemma, and unique continuation arguments (e.g., [15, Theorem 8.7]).

Let O be the interior of a convex polygon containing the supports of all these
perturbations. The half-space matching method has been mainly presented for the
case where O is a square (see [6]). But, whereas in the problem in §3 the polygon
O is given and the number of trace unknowns is imposed by the number of sides
of O, here we have freedom to choose the polygon O. In particular, choosing O to
be a triangle has the advantage of minimising the number of trace unknowns. In the
sequel, we suppose that O is a polygon with N edges and we adopt the same notations
as introduced in §2 for the edges Γ1, . . . ,ΓN , the angles between the edges, the N
overlapping half-planes Ω1, . . .ΩN , their boundaries Σ1, . . . ,ΣN , and their associated
local coordinate systems.

Let us now introduce a bounded Lipschitz domain Ωb ⊂ Ω containing O∩Ω such
that ∂Ωb \ Γ is connected (for examples see Figure 4), and a partition Γ1

b , . . . ,Γ
N
b of

∂Ωb \Γ such that, for all j = 1, ...,N , Γjb is connected and Γjb ⊂ Ωj with Γjb ∩Σj = ∅.
There is, of course, no unique choice for such a partition, but the uniqueness result
given in Theorem 4.1 below implies that the solution of the HSM formulation that we
will write down is independent of the choice of the partition.

The unknowns of the HSM formulation are the traces ϕ1, ..., ϕN of the solution u
on the infinite lines Σ1, ...,ΣN , and the restriction ub := u|Ωb to the bounded domain
Ωb. Let us derive the equations linking ϕ1, ..., ϕN and ub. On the one hand, one can
show as in the case of scattering by a polygon (see §3.1) that the ϕj ’s satisfy the
equations

{eq:HSMM_real_gen} (52)
ϕj = Dj−1,j ϕ

j−1, on Σj ∩ Ωj−1,
ϕj = Dj+1,j ϕ

j+1, on Σj ∩ Ωj+1,
j ∈ Z/NZ,
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Γ
Ωb

ΓjbΩj

Σj

Γ Ωb

ΓjbΩj

Σj

Fig. 4: Two examples of possible geometries for our general configuration: O is the
triangle bounded by the lines Σ1, Σ2, and Σ3, and Ωb, shaded in darker gray, is a
larger triangle in the left figure and a disc in the right figure.

fig:general-configuration

where the operators Dj,j±1 are defined in (31). Compared to the problem of scattering
by a polygon, the conditions for the traces on Γj (linked to the given data g in the
case of scattering by a polygon) have to be replaced by an equality between ϕj and
ub on Γj :

ϕj = ub on Γj , j = 1, ...,N .

As in the case of scattering by a polygon, since the wavenumber is real, the traces ϕj

are not in L2 but they decay like |yj2|−1/2 at infinity and we will require, as in §3.1,
that, for j = 1, ...,N , ϕj satisfies the asymptotic condition (32) at ±∞.

On the other hand, we can derive a variational formulation for ub in Ωb. Since
−∆ub − k2ρub = f in Ωb, f is supported in O′ := O ∩ Ω, and u satisfies (51), the
following Green’s identity holds for all vb ∈ H1(Ωb), where n is the normal pointing
out of Ωb:

{FVub1} (53)

∫
Ωb

(
∇ub · ∇vb − k2ρubvb

)
−
∫
∂Ωb\Γ

∂ub
∂n

vb =

∫
O′
fvb.

The last idea is to replace the normal derivative on each part Γjb of ∂Ωb \ Γ by an

integral representation as a function of ϕj . Indeed, since, for all j = 1, ...,N , Γjb ⊂ Ωj ,
we must have

{eq:comp_robin} (54)
∂ub
∂n
− ikub =

∂U j(ϕj)

∂n
− ikU j(ϕj) on Γjb, j = 1, ...,N ,

where U j(ϕj) is the restriction of the solution u to the half-plane Ωj and is expressed
in terms of ϕj in (11). Let us emphasize that our choice of imposing equality of
Robin traces instead of normal derivatives is so that later we have uniqueness for

the formulation for all k > 0. Note also that, since Γjb ∩ Σj = ∅, the Robin trace of

U j(ϕj) on Γjb is C∞ (see Lemma 2.3). To express (54) succinctly we introduce the
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Dirichlet-to-Robin (DtR) operators Λj , given by

{eq:def_DtR} (55) Λjϕ :=

(
∂U j(ϕ)

∂n
− ikU j(ϕ)

) ∣∣∣
Γj
b

.

We note, by Lemma 2.3, that Λjϕ is well-defined (at least) for all functions ϕ ∈
L2(Σj) + L∞(Σj). One can use (11) to write Λjϕ explicitly, for j = 1, ...,N , as

Λjϕ(xj) =

∫
R

(
∇H(k;xj1 − aj , x

j
2 − y

j
2) · n(xj1, x

j
2)

−ikH(k;xj1 − aj , x
j
2 − y

j
2)
)
ϕ(aj , yj2) dyj2, xj = (xj1, x

j
2) ∈ Γjb.

With this notation, the equality (54) can be written as

{eq:comp_robin_bis} (56)
∂ub
∂n
− ikub = Λjϕj on Γjb, j = 1, ...,N .

Our complete formulation reads as follows:

{eq:HSMM_casgeneral} (57)

ϕj = Dj−1,j ϕ
j−1, on Σj ∩ Ωj−1,

ϕj = ub on Γj ,
ϕj = Dj+1,j ϕ

j+1, on Σj ∩ Ωj+1,
j ∈ Z/NZ,

∀vb ∈ H1(Ωb),∫
Ωb

(
∇ub · ∇vb − k2ρubvb

)
− ik

3∑
j=0

∫
Γj
b

ubvb −
3∑
j=0

∫
Γj
b

Λjϕjvb =

∫
O′
fvb,

where the operators Dj,j±1 are defined in (31), and the operators Λj in (55).
The following theorem gives the well-posedness of this formulation.

thm:HSMMUnique_casgeneral Theorem 4.1. Suppose k > 0. There exists, for each f ∈ L2(O′), a unique
solution (ϕ1, ..., ϕN , ub) ∈ L2

loc(Σ1)× . . .× L2
loc(ΣN )×H1(Ωb) of (57) such that, for

all j = 1, ...,N , ϕj satisfies the radiation condition (32).

Existence holds by the construction above of a solution to (57) from the unique
solution of (5, 2, 51). Uniqueness follows from the following proposition since (5, 2,
51) is well-posed.

prop:HSMMUnique_casgeneral Proposition 4.2. Suppose k > 0 and let (ϕ1, ..., ϕN , ub) ∈ L2
loc(Σ1) × . . . ×

L2
loc(ΣN ) × H1(Ωb) be a solution of (57) (with f ∈ L2(O′)) such that, for all j =

1, ...,N , ϕj satisfies the radiation condition (32). Then, for all j ∈ Z/NZ, the com-
patibility equations (22) hold and ub = U j(ϕj) in Ωb ∩ Ωj. Moreover, the function
defined by u = U j(ϕj) in Ωj, for j = 1, ...,N , and by u = ub in Ωb is the unique
solution u ∈ H1

loc(Ω) of (5, 2, 51). Further, ϕj = u|Σj for each j.

Proof. Let (ϕ1, ..., ϕN , ub) ∈ L2
loc(Σ1) × . . . × L2

loc(ΣN ) × H1(Ωb) be a solution
of (57) such that, for all j = 1, ...,N , ϕj satisfies the radiation condition (32), and
let us denote by u∞ ∈ H1

loc(R2 \ O) the unique solution of (28, 2) with g = ub|∂O ∈
H1/2(∂O). Then as shown in §3, the set of traces of u∞ on Σ1, . . . ,ΣN solves (30),
i.e. the first three equations of (57). It follows from Theorem 3.5 and from (57) that
ϕj = u∞|Σj and u∞ = U j(ϕj) in Ωj , for j = 1, ...,N . In particular, the compatibility
equations (22) hold and ϕj = u∞ = ub on Γj for j = 1, ...,N . Moreover, we deduce
from the last equation of (57) that −∆ub − k2ρ ub = f in Ωb, that

∂ub
∂n

= 0 on Γ,
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and that (56) holds. By definition (55) of the DtR operators, we have then

{eq:Lambdajeq} (58) Λjϕj =

(
∂u∞
∂n
− iku∞

) ∣∣∣
Γj
b

, j = 1, ...,N .

Consequently, v := ub − u∞ belongs to H1(Ωb\O) and satisfies

{pb:interiorbvp} (59)

∆v + k2v = 0 in Ωb\O,
v = 0 on ∂O,
∂v

∂n
− ikv = 0 on ∂Ωb\Γ,

the last of these equations following from (56) and (58). But, for every k > 0, this
homogeneous problem has no solution except v = 0. (To see this apply Green’s
identity (cf. (53)) in Ωb\O to deduce that

∫
∂Ωb\Γ |v|

2 = 0, so that v = ∂v/∂n = 0 on

∂Ωb \ Γ, and apply Holmgren’s uniqueness theorem [11, p. 104].) Thus ub = u∞ in
Ωb\O (in particular ub = u∞ = U j(ϕj) in Ωb ∩ Ωj , j = 1, ...,N ) so that the function

w :=

{
ub in Ωb,

u∞ in R2\O,

is well-defined, and is the unique solution u ∈ H1
loc(Ω) of (5, 2, 51).

sec:conclusion
5. Conclusion. The objective of this paper was to prove the well-posedness of

the HSM formulation applied to the Helmholtz equation (5) in the case of a real
wavenumber k > 0. This objective has been achieved: we have proved well-posedness
provided we impose the radiation condition (32) at infinity on the trace-unknowns ϕj

of the HSM equations, this radiation condition analogous to the standard Sommerfeld
radiation condition for the original boundary value problem. Let us recall that the
results of the present paper also complete a proof of well-posedness of the complex-
scaled HSM formulation presented in [4, §5].

An open question is whether the radiation condition (32) on the trace-unknowns,
while natural, is necessary for uniqueness. The answer is not at all clear to us. But one
piece of evidence that suggests that this radiation condition may not in fact be needed
is that one achieves accurate results in numerical experiments by simply truncating
the trace unknowns, setting, for each j, ϕj = 0 outside some sufficiently large finite
section of Σj , not making any use of the radiation condition (32) (see [6, Fig. 7]).

Let us finish by mentioning that our main results should be extendable to more
complex configurations with obstacles extending to infinity. For instance, one might
consider the general configuration of §4 but add a screen that is a semi-infinite line γ1,
choosing the half-planes Ωj so that γ1 is orthogonal to Σ1 and γ1∩Ωj = ∅, for all j 6= 1
(see the left hand part of Figure 5). In this case Ω1\γ1 has two connected components
that are quarter-planes. If γ1 is sound soft or sound hard, i.e. the solution satisfies
a Dirichlet or Neumann homogeneous boundary condition on γ1, one can derive an
expression for U1(ϕ1), the solution in Ω1 given Dirichlet data ϕ1 on Σ1, by solving
separately in each quarter-plane, combining formula (13) with reflection arguments.

More interesting is the case where two parallel semi-infinite lines γj± are intro-
duced, so that now, for some j, Ωj has three connected components, two of them
quarter-planes and one of them a semi-infinite strip which is a waveguide (this is the
case for Ω1 and Ω3 in the right hand part of Figure 5). One can derive an expression
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for U j(ϕj) in each quarter-plane as above, and an expression in the waveguide by
solving as a modal series expansion.

For each of these configurations, and for many other variations on these geome-
tries, we can write down HSM formulations, and we expect that one should be able to
prove well-posedness of the HSM formulation and equivalence with other formulations
by adapting the results proved in the present paper.

Σ1

γ1

Σ1Σ3

γ1
+

γ1
−

γ3
−

γ3
+

Fig. 5: Two geometries that could be considered.

Fig:extensions

Note that if only one semi-infinite line is introduced, as in the left hand side of Fig-
ure 5, and no other obstacles or inhomogeneities are present, one recovers the famous
Sommerfeld half-plane problem [29, §38] that can be solved using the Wiener-Hopf
method (or other techniques). Analytical methods, notably the Wiener-Hopf method,
have been extended to a variety of more complex configurations with waveguides and
wedges, e.g., [26, 23, 22], though not to all configurations that should be treatable by
the extensions of the HSM method to unbounded obstacles that we suggest above.

An interesting question is whether our uniqueness and well-posedness results for
the HSM formulation can be extended to open waveguides. (The HSM method has
been used to compute numerical solutions by Ott [27] in such cases where the medium
in each half-space Ωj is stratified in the xj2 direction.) The difficulty is that the
corresponding Green’s function is no longer available in closed form, which makes the
study of the properties of the half-plane solution more intricate. A further difference
with the cases studied in this paper, and the extensions suggested above, is that,
due to the possible existence of guided waves in the open waveguides, the traces ϕj

may have an oscillatory non-decaying behavior at infinity that should be taken into
account in a modified radiation condition, replacing (32).
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