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A B S T R A C T   

Recent urban and regional studies have focused on identifying positive spillover effects from intensifying flows of 
people in city region networks. However, potential negative spillover effects have lacked attention. The article 
addresses this research gap focusing on the negative spillover effects represented by Covid-19 contagion in the 
Wuhan regional travel flow network, China. Drawing on central place theory and central flow theory, Covid-19 
spatial spread simulation scenarios are explored using a combined micro-level epidemic compartment model and 
urban network approach. It is found that not only centrally positioned primate but secondary cities are highly 
risk exposed to contagion. In addition, these cities have enhanced transmission capacity in a balanced, well- 
connected travel flow network, whereas a centralised or locally clustered network would be more spread 
resilient. Both hierarchical position and horizontal flows are found relevant for explaining Covid-19 uneven 
spread and for informing mobility interventions for a potential future outbreak.   

1. Introduction 

Since the December 2019 outbreak of Covid-19 in Wuhan City, 
China, many studies have investigated the part played by mobility and 
travel in the ensuing global pandemic (Gibbs et al., 2020; Jia et al., 
2020; Kraemer et al., 2020; Liu et al., 2021; Xiong et al., 2020; Zhou 
et al., 2020). Most of these studies have either focused on the application 
of epidemic compartment (EC) models in local contexts or have traced 
international travel flows to predict virus spread across global cities. 
However, the dramatic spread of contagion within the Wuhan city re-
gion (WCR) before the introduction of lockdown policy measures, has 
lacked attention in the academic literature. This article puts the travel 
flows in the WCR ‘eye of the storm’ in Covid-19 and their implications 
for urban planning and policy, centre stage in this special edition of 
Cities. The virus spread is conceived of as a negative spillover effect 
interlinking proximate urban centres in the analysis, inspiring new un-
derstanding of the spatial organisation of urban mobility relations at a 
city region scale. 

Attempts to understand the underlying spatial organisation of re-
lations between cities in urbanised regions were long influenced by 
Christaller's (1933/1966) central place theory (CPT) (Hall & Pain, 2006, 

pp. 4–5). However, with advances in ICT technologies since the late 
twentieth century, attention shifted to the need to make sense of 
evolving city relations in the networked ‘space of flows’ described by 
central flow theory (CFT) (Castells, 1996; Meijers, 2007; Taylor et al., 
2010). European research has found intense cross-cutting flows of peo-
ple travelling between urban centres of different sizes in functionally 
interconnected city regions (Hall & Pain, 2006, p. 17). Other research 
has suggested that resultant positive spillovers of labour, knowledge, 
innovation and capital from large cities allow proximate smaller cities to 
‘borrow’ valuable ‘agglomeration size’ in regional networks of cities 
(Meijers et al., 2016; Meijers & Burger, 2015). 

Reflecting this research, the renewed European Union twenty-year 
policy commitment to boosting economic growth, urged policymakers 
to build linkages “with neighbouring cities and towns in order to 
‘borrow’ size and quality, to create a stronger critical mass and ensure 
positive spillover effects for the development of wider regions” (ESPON, 
2020, p. 2). Following the footsteps of Europe, Chinese regional plan-
ning strategy has sought to promote economic development and spatial 
rebalancing through major investment in time-efficient passenger ser-
vices (Guo et al., 2020; Luo et al., 2010; Wu et al., 2017). Reduction of 
regional inter-urban travel times has been a renewed objective in China's 
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2021–25 ‘Fourteenth Five-Year Plan’1 to further boost national eco-
nomic growth. However, there has been a general lack of research or 
policy enquiry into potential negative spillover effects from intensifying 
human travel flows within a city region. 

As the largest economic agglomeration in central China, Wuhan is 
the leading primate city in a city region with the designated role in the 
Chinese central government planning system of promoting inland 
development (CSC, 2016; NDRC, 2016). State investment in the region's 
infrastructure to facilitate inter-city human mobility has therefore been 
a central plank in government policies to develop the city region 
economically. However, the resultant intensification of travel flows in a 
city region presents a concomitant risk of the geographical distribution 
of contagious human virus infection. Since the first case of Covid-19 was 
officially reported in Wuhan in December 2019, the virus spread rapidly 
across the region, as illustrated in Fig. 1. The 68,135 cases reported in 
the WCR to May 2020 represented 81% of China's total infections na-
tionally. Regardless of a slight decline in national cases, the WCR 
remained the most severely affected region in China until 2022, yet the 
proportions of the epidemic crisis within the city region have attracted 
little attention in or beyond China. 

The worldwide spread of Covid-19 has led to international recogni-
tion of the catastrophic social and economic impacts of the transmission 
of human infectious disease between urban centres of population in a 
hypermobile society (Helbing, 2013; Jia et al., 2020; Liu et al., 2021). 
The 2019 Wuhan outbreak “is unlikely to be the last of its kind” (Bailey 
et al., 2020, 1163) but, to the best of our knowledge, the analysis pre-
sented in this article is the first to consider how city region planning and 
policy can be better prepared to mitigate travel flow contagion risk 
when a future virus outbreak is detected. 

Important for informing our analytical approach is the longstanding 
conundrum of how to reconcile the spatial contradiction noted by Cas-
tells (1996), between territorially administered spatial planning and 
policy, and the networked space of contemporary inter-city flows. 
Reflecting this spatial contradiction, we refer to both CPT and CFT in our 
analysis of the WCR travel flow network. The principles underpinning 
modern transport planning have their roots in CPT (Hall & Pain, 2006). 
The CPT predictive capability was based on the (k = 4) ‘transport 
principle’ (Goodall, 1987),2 which established what would be an effi-
cient transport network interconnecting proximate urban places of 
different sizes servicing a predominantly rural hinterland. However, 
travel flows in contemporary functional city regions have become 
increasingly multi-directional and multi-dimensional, overriding the 
CPT two-dimensional logic of a proximity and service hierarchy order of 
places.3 To understand the spatial organisation of the Covid-19 spread in 
the WCR travel flow network and draw inferences for city region plan-
ning and policy, we therefore examine the multi-directional human 
flows represented by CFT in relation to the urban hierarchical positions 
represented by CPT. 

Our research questions ask:  

• First, what is the association between city positions and virus spread 
in the WCR travel flow network?  

• Second, what is the association between network structures and virus 
spread in the WCR travel flow network?  

• Third, what lessons can be learned for planning and policy mobility 
interventions to mitigate regional virus contagion risk in the event of a 
future infectious disease outbreak? 

The new contribution of the article to existing literature is that by 
means of innovatively combining a micro-level EC model and macro- 
level urban network approach, the scenario projections we develop 
shed light on the part played by complex multi-directional travel flows 
in the WCR network of cities. Furthermore, the analysis puts an overdue 
spotlight on planning and policy considerations from a pre-lock-down 
intervention perspective in the city region where the epidemic 
outbreak originated. Generic CFT and CPT urban processes are drawn on 
to explore the planning and policy implications of negative city region 
spillover effects represented by the spread of a mobile disease. 

The remainder of the article is organised as follows. First, we review 
notable theoretical and empirical contributions to relevant literature. 
Second, the method, data processing and model specification used in the 
analysis are elaborated. Third, the results are presented and discussed. 
Fourth, the conclusion and implications for urban mobility planning and 
policy are considered. 

2. City region Covid-19 mobility puzzles in central place and 
central flow relations 

Unravelling the Covid-19 virus spread in the WCR is rooted in un-
derstanding the way that urban relations are spatially organised, which 
is explicitly discussed in CPT and CFT. The CPT representation of a hi-
erarchical spatial order of cities servicing hinterlands based on the 
1920s development pattern of southern Germany (Christaller, 1933/ 
1966), remained dominant in urban and transport planning thinking 
until the late twentieth century (McLoughlin, 1969; Mulligan, 1984). 
The turn of millennium ‘Global Research Proposal’ unveiled by Taylor 
(1997) in Cities, was distinctive in introducing a method of quantifying 
city relations in the emergent networked space of flows described by 
Castells (1996). Addressing the CPT reliance on over-simplified urban 
relational assumptions (Meijers et al., 2016; Neal, 2011), development 
of the quantitative ‘interlocking network model’ (INM) (Taylor, 2004), 
was followed by the specification of its conceptual premises in the the-
ory of ‘central flows’ (Taylor et al., 2010). 

While the INM has been applied in a swathe of ‘global city’ studies 
(Sassen, 1991), it has also been adapted and applied in city region 
studies. Regional INM applications have explored ‘global city region’ 
connectivity in valuable economic networks and flows of people and 
capital at different spatial scales (Scott, 2001; Hall & Pain, 2006; Taylor 
et al., 2006; Taylor & Pain, 2007; Pain & Hall, 2008; Mahroum et al., 
2008; Zhu et al., 2021). Regional development literature has illustrated 
the contribution of intra-regional knowledge and capital flows to 
regional ‘network capital’ (Huggins & Thompson, 2014; McCann, & van 
Oort., F., 2009; Shi et al., 2021). Studies investigating the concept of 
agglomeration borrowed size, have indicated the potential for city re-
gion network externalities to assist ‘levelling up’ and counter uneven 
spatial development (Burger & Meijers, 2016; Meijers et al., 2016; Van 
Meeteren et al., 2016). In theory, positive spillovers from globally net-
worked cities facilitated by intra-regional flows of people, allow proxi-
mate smaller cities to exploit agglomeration knowledge and innovation 
advantages, flattening traditional CPT hierarchical urban relations. 
Aligned with this argument, cities may also borrow the negative spill-
over effects of Covid-19 infection via human mobility from proximate 
cities in a networked city region. Investigating the “inherent complexity 
and multidimensionality involved” in the spread of a “networked dis-
ease” (Ali & Keil, 2008, xxi; Zhang et al., 2020), remains a critical 
analytical gap for informing planning and policy. 

While critiques of INM analyses in the literature have cited the 
exclusiveness of their prioritisation of urban relations associated with 

1 In Chinese: http://www.xinhuanet.com/politics/2021-03/11/c_11272 
00766.htm.  

2 In central place theory, the k value is used to define the geographical 
relationship between different orders of urban places. With a k = 4 relationship, 
each market area of a higher-order place contains four market areas of a lower 
order place. Settlements were assigned to the midpoints of six sides of a hex-
agonal configuration to minimise the total length of roads between central 
places.  

3 There are two important assumptions with regard to transportation in 
central place theory: residents choose the nearest market to purchase goods and 
services; transport cost is evenly proportionate to geographical distance in all 
directions. These assumptions are weak with respect to a more complex 
contemporary transportation network. 
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corporate networks operating in and through leading global cities, 
leaving ‘ordinary’ cities ‘off the map’ in international analysis (Brown 
et al., 2010; Robinson, 2006). Some studies have speculated that urban 
hinterland ‘middle places’ not represented in global city analysis, can 
‘connect’ other hinterland cities to valuable regional flow networks 
(Doran & Fox, 2016; Humer & Granqvist, 2020). A recent study of the 
capital flow network in the WCR, observed that despite the regional 
primacy of Wuhan, multi-directional horizontal relations are rising, 
interlocked by non-primate, ordinary regional cities (Shi & Pain, 2020). 
This finding raises the question whether ‘middle places’ also exist in the 
WCR travel flow network and are associated with negative Covid-19 
spillovers. Thus, in addition to the importance of complex multi- 
directional flows, the importance of city network positions is also rec-
ognised in network contagion incidents. For example, a ‘knife-edge’ risk 
presented by network ‘central players’ has been identified in corporate 
interlocking defaults, value chain disruptions and commercial real es-
tate market volatility (e.g. Beck & Walker, 2013; Hałaj & Kok, 2013; 
Lizieri & Pain, 2014; Nier et al., 2007). If the findings from these studies 
apply to functionally networked city regions, when an infectious disease 
suddenly breaks out in centrally positioned cities (players) in a well- 
connected regional travel flow network, a knife-edge risk of systemic 
contagion, could result. 

Thus far, academic literature on Covid-19 and urban mobility has 
generally focused on long distance inter-city and local intra-city human 
flows, and their impact on virus spread (Alessandretti, 2022, 12). This is 
illustrated explicitly by several Covid-19 spread simulation studies using 
mobility data within or between the major cities in China and interna-
tionally (Gibbs et al., 2020; Jia et al., 2020; Kraemer et al., 2020; Liu 
et al., 2021; Xiong et al., 2020; Zhou et al., 2020). These studies are 
inadequate for explaining the virus spread associated with complex 
multi-directional inter- and intra-city travel flows. For instance, Zhou 
et al. (2020) employed various EC models to uncover the virus spread 
within cities, whereas their study ignored inter-city travel flows. 
Kraemer et al. (2020) and Jia et al. (2020) calculated one-way outbound 
travel flows from Wuhan to other Chinese cities but did not address the 
virus spread implications of multi-directional two-way inter-city travel 
flows. While Xiong et al. (2020) and Liu et al. (2021)'s more compre-
hensive empirical approach did not consider the simultaneity of intra- 
city and inter-city transmission and the network positions of cities, 
which may lead to biased risk exposure. However, Ali and Keil's (2006) 
study of Severe Acute Respiratory Syndrome (SARS), concluded that 
urban resilience to epidemics is embedded in a network structure that 

reflects the unique positions of cities which are determined by complex 
multi-directional travel flows and the simultaneity of intra- and inter- 
city travel flows. The study focused on the network relations of just 
one global city, the case of Toronto, leaving a research gap in studying 
city networks involving less globalised and smaller cities such as Wuhan 
and its neighbouring cities. 

Correspondingly, the ability of urban planning and policy to promote 
travel flows maintaining continuity and resilience, requires a capacity to 
adapt to shocks caused by the spread of infectious disease and Long 
Covid morbidity (Kelly & Gulati, 2022). There has been increasing 
attention in the academic literature to the policy implications of the 
Covid-19 virus spread for the design of interventions that could avoid 
full lockdown measures (Chinazzi et al., 2020; Kraemer et al., 2020; 
Zhang et al., 2021). Gibbs et al.'s (2020) study cautioned that travel 
interventions imposed early in China's Covid-19 outbreak had a tem-
porary effect on containment of the virus spread and warned that spatial 
spread from major agglomerations may shift healthcare service pressure 
to places with limited capacity. Alessandretti (2022) cautioned that 
studies suggesting that the spread of infection can be limited despite 
reduced travel restrictions, are dependent on the successful imple-
mentation of place-based mobility measures. Nevertheless, the lessons 
for future urban planning and policy from the spread of Covid-19 from 
Wuhan to smaller proximate cities in the WCR, have so far not been 
considered. 

The novel contribution of this article is that it addresses the foregoing 
analytical gaps in the existing literature. Theoretically, the article con-
tributes to increasing scholarly debate noted by Van Meeteren et al. 
(2016) about the relative power of CFT and CPT. In doing so, it fills the 
present gap in enquiry into whether the negative Covid-19 spillovers of 
human mobility follow the same spreading mechanism of positive 
network capital noted by Shi and Pain (2020). Furthermore, the inves-
tigation of multi-directional two-way travel flows in the WCR, sheds 
long overdue light on the underlying complexity of the spatial spread of 
a contagious disease, called for by Ali and Keil (2008). This can assist 
international academic and policy understanding of the “specifics of how 
cities impact regional development” (Clark et al., 2018, 1025), which is 
required to inform advanced mobility intervention planning for unex-
pected epidemic outbreaks. Empirically, the analysis focuses on the 
singular city region in China where the Covid-19 outbreak occurred 
without warning and during the high vulnerability period prior to 
government lockdown interventions being imposed, allows planners and 
policymakers to learn from observations on the spontaneous travel flow 

Fig. 1. The spatial distribution of Covid-19 infected cases in the Wuhan city region (source: NHC).  
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influence on virus spatial spread. Methodologically, the inclusion of 
simultaneous intra-city and inter-city transmission between Wuhan and 
multiple proximate, non-primate cities reduces the bias in existing 
network risk estimation. 

3. Method and data 

In order to unravel the underlying negative spillovers embedded in 
complex place-flow relations, the method builds on Openshaw and 
Veneris (2003) by combining a micro-level epidemic Susceptible- 
Infectious (S–I) model and a macro-level urban network approach to 
test virus spread scenarios and inform city region policy for a sudden 
contagious disease outbreak. EC models generally take a whole popu-
lation as the observational basis for predicting viral contagion trajec-
tories at an enclosed spatial scope and thereby fail to reveal risk 
exposure related to heterogeneities within a city region scope (Wu, 
2020).4 Urban network approach in INM, generally regards a whole city 
as a network node and uses aggregated linkages to represent a functional 
connection between two cities (Taylor, 2004; Taylor et al., 2008; Taylor 
et al., 2010). However, this approach to analysis cannot explicitly reflect 
micro-level human-to-human transmission characteristics of Covid-19 
infection (Jia et al., 2020). Consequently, in the present analysis, mo-
bile people are the ‘agents’ or nodes interlocking networked cities, 
expressed by both inter-city and intra-city human mobilities in the 
regional travel flow network. By innovatively combining the S–I model 
and urban network approach, their respective shortcomings for shed-
ding light on city region virus spatial spread are overcome. 

The methodological quasi-experimental design simulates the spatial 
spread of the Covid-19 virus in the regional travel flow network. On one 
hand, people are assigned as infected cases (treatment groups) following 
the S–I epidemic model with an infectious rate; on the other hand, the 
directions and the total number of inter-city travel flows are controlled 
following actual migration data. The combined micro-level epidemic 
model and macro-level regional travel flow network generate Covid-19 
viral contagion simulations in the WCR. The design allows potential 
contagious risks under different scenarios to be detected by varying 
origin cities and network structures. The analysis adopts a structured 
approach to examine the association of city position and network flow 
relations with Covid-19 spatial transmission. First, a regional travel flow 
network is constructed based on Baidu commuting data. Second, an 
epidemic S–I model is employed to simulate the spatial spread of Covid- 
19 initiated by different cities ceteris paribus, in order to estimate the 
association between city positions and virus spread. Third, the simula-
tion model is implemented by re-organising inter-city human flows 
ceteris paribus, in order to estimate the role of network structures in 
virus spread. 

3.1. Data 

The source of the travel flow data is the Baidu human mobility big 
data platform (qianxi.baidu.com) which tracks daily commuting flows 
covering more than 300 cities in China. Data on inter-city human flow 
direction, inter-city human flow scale and intra-city human flows are 
taken from the Baidu map app that is widely used in China as a navi-
gation application and other apps that use Baidu's Location-based 

Service (LBS). The Baidu map has 320 million users covering 1.1 billion 
terminal devices and processes 120 billion daily LBS requests from 0.5 
million mobile applications (source: lbsyun.baidu.com).5 In order to 
shed light on regional spontaneous travel flows, the period from 1st 
January to 23rd January 2020 is selected as the time window for anal-
ysis because Wuhan was locked down on 23rd January and other cities 
in the region followed suit.6 Imposition of lockdown has been found 
largely effective in reducing the basic infection reproduction rate in 
China (Tian et al., 2020). And human interactions are changed consid-
erably when people become fully aware of the risk of infection (Imai 
et al., 2020). 

3.2. The construction of the regional travel flow network 

The regional travel flow network is comprised of nodes (human in-
dividuals) and linkages (human interactions). The human-to-human 
transmission of Covid-19 can thus be mirrored by node-to-node link-
ages distributed in the network. To provide a better fit with the dynamic 
micro-level process of human-to-human viral transmission, population 
units are assigned as network nodes according to population size (one 
node represents 10,000 individuals). For data privacy and technological 
limitation reasons, it is not possible to track every individual's travel 
itineraries to assign linkages. Instead, with a fixed number of linkages, 
intra-city linkages are distributed across nodes within the same city; 
inter-city linkages are assigned to two nodes that are located in different 
cities following the direction of inter-city travel flows. Although the 
randomisation of intra-city linkage assignments simplifies realistic sce-
narios to some extent, it improves the overall robustness of scenario 
simulations compared to former studies that neglect the simultaneity of 
inner- and inter-city transmission (e.g. Liu et al., 2021). In order to 
improve the robustness of the model, the assignment process is iterated 
100 times to compensate for randomisation-induced information loss 
while the number of nodes and linkages is unchanged. Consequently, a 
complex mega-size regional travel flow network is constructed 
comprising 5911 nodes, 29,897 intra-city linkages and 1057 inter-city 
linkages, as illustrated in Fig. 2. 

3.3. Calculation of city network relations 

City network relations are estimated by nodal degree and structural 
positions, reflecting CFT horizontal and CPT hierarchical relations 
respectively. Nodal degree measures the direct linkages between cities 
to reflect the individual capacity of nodes to build interactions with 
others through indegree, outdegree and self-degree, according to the 
directions of the flows. Indegree is a measure of the total number of 
linkages a city receives, indicating its ‘attractiveness’ to other cities. 
Outdegree concerns the total number of linkages that a city originates, 
reflecting its centrifugal forces to expand its influence in the network. 
Structural positions take ‘indirectness’ into account, reflecting that a 
node's centrality not only depends on how many direct connections it 
has individually but also on how many connections its neighbor nodes 
have. As Derudder (2019) highlighted, it is structural positions derived 
from ‘beyond first-order neighbours’ that add conceptual relevance to 
urban network approach. The incorporation of ‘indirect’ network 

4 EC models include the S–I model, Susceptible-Infectious-Recovered (SIR) 
model, Susceptible-Infectious-Susceptible (SIS) model, Susceptible-Exposed- 
Infectious-Recovered (SEIR) model etc. All EC models are derived from the 
S–I model and make specifically subjective assumptions on parameters attuned 
to local transmission characteristics to improve the accuracy of calculating the 
effective reproduction number (R0). However, the objective of this study is to 
capture city network risks hidden in a city region mobility pattern rather than 
evaluating the severity of virus infection itself (i.e. the number of R0). Thus, the 
basic S–I model is utilised to implement simulations. 

5 China's mobile map application market is dominated by the Baidu group 
map, the AutoNavi Alibaba group map, and the Tencent map. Only the Baidu 
and Tencent maps provide daily travel data for the period covering the Covid- 
19 outbreak in Wuhan. In addition, only the Baidu map provides hourly time 
granularity, full coverage on prefecture cities and an open platform to geo data 
(the Tencent map is limited to daily time granularity, partial spatial coverage 
on prefecture cities and partial data accessibility).  

6 Lockdown measures included the suspension of buses, railways, flights, and 
ferry services within cities and to other cities. Residents were requested to stay 
at home and not leave cities without permission. 
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positions fills the gap in this regard left by other Covid-19 urban network 
studies that focus on ‘direct’ travel flows (e.g., Jia et al. (2020) and Liu 
et al. (2021)). 

Following this line of reasoning, structural positions are measured by 
‘betweenness’ and ‘closeness’ in the present analysis. Betweenness is 
used to measure how often a given city appears on the shortest paths 
between other cities, reflecting its bridging function in the network. 
Referring to Burt (2009)'s structural hole theory, network actors that are 
positioned in others' shortest paths exert power to affect the whole 
network. The measure of betweenness (CB) of network node (v) is 
formally written as: 

CB(v) =
∑

s∕=v∕=t∈V

σst(v)
σst

(1)  

where σst is the total number of shortest paths from node s to node t and 
σst(v) is the fraction of shortest paths from node s to node t passing 
through node v. 

The other structural measure, closeness, represents the reciprocal of 
the sum of a node's geodesic functional distances from all other nodes. It 
serves as a gauge for how centrally positioned nodes are in the overall 
network. In contrast with betweenness that focuses on nodes' bridge role 
between certain dyads, closeness can reflect a holistic view concerning 
how long it takes to spread information from one node to all others 
sequentially. More formally, the closeness of node x (C(x)) is formulated 
as: 

C(x) =
n − 1

∑
yd(y, x)

(2)  

where d(y,x) is the shortest functional distance between node x and all 
other nodes y. 

3.4. Implementation of the susceptible-infectious model in dynamic 
network modelling 

The S–I model imposes assumptions on the regional travel flow 
network formulated to allow for the transmission of Covid-19 to specific 
connected nodes.7 The model divides the whole network of nodes into 
two subgroups, susceptible and infected respectively. Susceptible nodes 
are not immune to the virus, and once infected, they are unable to 
recover during the observation period8; susceptible nodes turn into 
infected counterparts via contact with confirmed cases according to a 
certain transmission rate. The transmission rate is constant and no 
super-transmission individuals are assumed; once infected, secondary 
transmission starts immediately regardless of incubation period (see 
Nishiura et al., 2020). The S–I model is implemented using a Python 
iterative algorithm to simulate the dynamic spread of Covid-19 
throughout the constructed network until all nodes are eventually 
infected (see Fig. 3). Formally, the number of newly infected nodes (I) is 
written in the form of an ordinary differential equation as: 

dIk

dk
= β∙A∙Ik− 1  

Ik = N − Sk  

The iterative process is converged until: 

Fig. 2. The spatial pattern of the travel flow network in the Wuhan city region (note: the tie strength indicates the number of connections across cities; the number of 
nodes indicates the population size i.e. one node represents 10,000 individuals) (source: Baidu Commuting Data). 

7 There are two reasons why the basic S–I model is chosen: 1) other EC 
models (such as SIR, SIS and SEIR etc.) require more assumptions concerning 
transmission dynamics based on local demographic characteristics which are 
generally heterogeneous across cities; 2) rather than calculating a realistic 
reproduction number, the quasi-experimental design is used intentionally in 
order to capture hidden network risks under different scenarios.  

8 This assumption is justified since this study focuses on investigating the 
initial outbreak period without strong interventions and effective medical 
treatments. 
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∑

k≥0
Ik = N  

where Ik is the number of infected network nodes at the kth epoch; β is 
the probability rate of transmitting disease from an infected node to its 
linked counterparts9; A is the adjacency matrices of infected network 
nodes in the last step Ik− 1; N is the total number of network nodes and S 
is the number of susceptible nodes. 

Last, in order to test the association between network structures and 
viral contagion, inter-city linkages are re-organised to different bench-
mark network structures, i.e. ‘uniform networks’, ‘small world net-
works’, ‘scale free networks’ and ‘nearest neighbour networks’ by 
controlling for the number of nodes and linkages. This analysis estimates 
to what extent these benchmark network structures are exposed to 
network viral contagion in comparison to the existing regional travel 
flow network, thus opening up potential to provide insights into novel 
adaptive planning and policy interventions. Uniform networks follow 
the law of uniform distribution, that is all city nodes have the same 
probability of being linked, indicating a balanced network structure. 
Small world networks describe a network structure where most cities are 
reached within a small number of steps regardless of insufficient direct 

linkages, representing a well-connected network structure. A scale-free 
network is conceived of as a centralised network structure in which 
linkages are concentrated in a limited number of large cities, while other 
cities are weakly linked. In a nearest neighbor network, several locally 
clustered subgroups exist in which subgroup member cities are well- 
connected while connections across subgroups are relatively weak. 

4. Results 

First, as shown in Table 1, in terms of nodal degrees, Wuhan out-
performs other cities in the urban travel flow network in both intra-city 
and inter-city flows. In addition, Wuhan is the only city whose outdegree 
outweighs its indegree, indicating its uniquely ‘expansive’ position in 
the network. In terms of structural positions which add weight to indi-
rect linkages, Wuhan dominates in both betweenness and closeness, 
indicating that it not only has a hub position role but is also centrally 
clustered with other cities. Yichang is notable as a hub city interlinking 
regional eastern and western cities; while associated with its 
geographically central location, Xiaogan also stands out as a centrally 
positioned node in the network. In contrast to other Covid-related urban 
network studies that solely focus on primate cities (Jia et al., 2020; Liu 
et al., 2021), this analysis identifies these examples of non-primate cities 
that have vital roles in regional virus spread. Reflecting their high 
network centrality, they have potential importance as foci for govern-
ment interventions to mediate cost- and time-efficient virus-alert travel 
flows (Ali & Keil, 2006). We find that the regional travel flow network is 
characterised by a centralised hierarchical structure in which Wuhan is 

S S I S

Wuhan intra-city infec�on Wuhan intra-city infec�on

Wuhan intra-city infec�on Wuhan intra-city infec�on

Regional simula�on process Regional simula�on process

Regional simula�on process Regional simula�on process

� �

�

� � � −1

Fig. 3. The dynamic process of the Covid-19 infection in the Wuhan regional travel flow network (note: the epoch reflects the number of iterative steps needed to 
reach the infection status in the Wuhan city region; transmission is occurring within and across cities; the initial infected node is located in Wuhan; accelerating and 
decelerating points are determined by the width of the fitted Gaussian function). 

9 The value of β is characterised by strong spatial heterogeneity worldwide 
due to different social and cultural contexts (for instance, Imai et al., 2020; Lee 
et al., 2020; Shim et al., 2020). Our analysis therefore refers only to medical 
studies that have investigated the transmission of Covid-19 in China before the 
initiation of lockdown measures. Instead of pathological inferences on 
confirmed cases, Bi et al. (2020) directly surveyed close contacts via contact 
tracing and found that the average secondary attack rate is 6.6% in a sample 
population, providing a more direct reliable β for use in our analysis. 
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the primate city10 displaying comprehensive influence in the network, 
while other regional cities have discrete specific network positions. 

Second, as illustrated in Fig. 4, the simulation results indicate that 
Wuhan requires the least iterations (35 steps) to converge the simulation 
process, followed by Xiaogan (38 steps) and Jingmen (39 steps); while if 
the outbreak initiates from Qianjiang, Xiantao or Shiyan, the simulation 
process requires relatively longer steps to converge. This result indicates 
that without policy interventions, Wuhan, Xiaogan and Jingmen are the 
most risk-exposed cities to human contagious disease, while Qianjiang, 
Shiyan and Xiantao are relatively temporally lagged during the virus 
spread process. Furthermore, since the number of iterations can only 
indicate the overall period taken to converge the simulation process, we 
use a Gaussian function to fit the simulation process in order to explore 
outbreak intensity, speed and duration respectively.11 Regarding 
outbreak intensity, Wuhan and Xiaogan stand out, which indicates that 
the number of newly infected people at one iterative step can reach the 
maximum point. Regarding outbreak speed, Wuhan substantially out-
paces other regional cities, indicating that effective policy and planning 
interventions are most needed at the initial stage of a contagious disease 
outbreak in Wuhan (followed by Huanggang and Ezhou). In terms of 
outbreak duration, Wuhan and Xiaogan outperform other cities, which 
indicates that once these cities enter into the intensive spread phase, it 
takes the least time for the virus to spread to the majority of other 
regional cities. Considering all three parameters, it is not surprising that 
the primate city Wuhan is most exposed to unexpected contagious 
shocks due to its dominance in the network. However, we find that 
Xiaogan and Jingmen, both of which are non-primate ordinary cities in 
terms of population size and economic development level, stand out as 
unexpectedly high contagion risk-exposed cities. This result accords 
with and extends the proposition that hinterland middle places (Doran & 
Fox, 2016), or cities described by Derudder (2019) as ‘beyond first-order 

neighbours’, can act as ‘connectors’ in urban systems. 
Third, as presented in Table 2, a pairwise correlation analysis is 

implemented in order to explore the underlying association between 
network relations and the simulated results.12 As expected, outdegree is 
strongly associated with iteration steps, while both indegree and out-
degree are highly correlated with the Gaussian centroid, reflecting that 
cities that are most active in circulating direct human flows are more 
exposed to viral contagion. When indirect network effects are included, 
closeness is found to be most correlated with the Gaussian centroid, 
which means that the more centrally positioned a city is in the regional 
travel flow network, the faster is its capability of spreading the virus to 
the rest of city region. This result corroborates the potential systemic 
contagion risk posed by network central players that are functionally 
closer to other cities in corporate networks (Beck & Walker, 2013). 
Lastly, the overall iteration steps and the Gaussian centroid are generally 
associated with actual cases reported in the city region, while the 
Gaussian amplitude and width are less associated. This may suggest that 
the 2020 lock-down interventions were imposed before the virus spread 
entered an intensive accelerating stage (see Jia et al., 2020; Tian et al., 
2020). This implies the significance of intervention timing and rapid 
responses for building regional adaptivity to unexpected viral shocks, 
particularly in terms of improving the efficiency of collective inter-city 
responses. 

Finally, inter-city travel flows are re-organised into distinctive 
benchmark network structures to simulate the viral contagion (see 
Fig. 5). It is shown that viral contagion is generally faster in balanced, 
well-connected networks (uniform and small world networks), while 
relatively centralised or locally clustered networks (scale-free and 
nearest neighbor networks) are more resilient. For instance, among 
benchmark network structures, Wuhan is most risk exposed in a uniform 
network but most resilient in a nearest neighbor network. For a potential 
future infectious virus outbreak, this finding draws attention to the 
importance of adopting policy and planning interventions to improve 
the structural flexibility/adaptability of network responsiveness to city 
region development specifics (Boschma, 2015). Overall, city region risk 
exposure in an emergent health crisis, is highly associated with both city 
horizontal flows and structural positions, which are spatially uneven, 

Table 1 
City positions and viral contagion simulation results in Wuhan city region human flow network. (Note: the unit of Population is million persons; the unit of GDP per 
capita is 10,000 yuan annually; the amplitude reflects the maximum intensity of Covid-19 transmission at one step; the centroid indicates the least steps to reach the 
peak of Covid-19 transmission; the full width of half maximum measures the duration of outbreak; actual cases are sourced from NHC).  

City Population GDP 
per 
capita 

Self- 
degree 

Indegree Outdegree Betweenness 
centrality 

Closeness 
centrality 

Actual 
cases 

Iteration 
number 

Gaussian 
Amplitude 

Gaussian 
Centroid 

Gaussian 
Width 

Wuhan  11.08  13.4  5249  240  458  0.00108  0.219 50,340  35  0.0780  20.4859  11.9899 
Huanggang  6.33  3.22  3133  113  64  0.00061  0.190 2907  40  0.0599  23.4116  14.6626 
Xiangyang  5.67  7.6  3051  57  43  0.00068  0.188 1175  41  0.0729  24.6350  12.3109 
Jingzhou  5.59  3.72  2755  84  64  0.00069  0.192 1580  42  0.0672  24.1156  13.6329 
Xiaogan  4.92  3.89  2377  115  82  0.00062  0.197 3518  38  0.0778  23.2370  11.7691 
Yichang  4.14  9.83  2217  56  47  0.00071  0.191 931  41  0.0679  23.9437  13.5287 
Enshi  3.38  2.58  1878  28  15  0.00062  0.174 252  44  0.0676  26.8571  13.4175 
Shiyan  3.41  5.13  1789  29  23  0.00064  0.177 672  54  0.0610  26.8465  14.0731 
Jingmen  2.90  6.38  1521  49  38  0.00067  0.195 928  39  0.0745  23.3206  12.8356 
Xianning  2.54  5.36  1417  45  34  0.00054  0.186 836  43  0.0739  25.4746  12.3084 
Huangshi  2.47  6.42  1316  59  54  0.00058  0.186 1015  41  0.0679  23.9642  13.7062 
Suizhou  2.22  4.56  1069  37  21  0.00058  0.183 1307  44  0.0693  25.9413  13.2972 
Tianmen  1.27  4.65  648  31  19  0.00053  0.183 496  42  0.0690  25.1957  13.4698 
Xiantao  1.14  7.02  521  36  25  0.00052  0.186 575  49  0.0620  24.7518  14.4402 
Ezhou  1.08  9.33  467  53  50  0.00046  0.190 1394  44  0.0598  24.0596  15.6734 
Qianjiang  0.97  7.82  447  23  18  0.00050  0.179 198  48  0.0629  27.0192  14.8920  

10 A primate city refers to a city that is overwhelmingly larger than its peer 
cities in terms of population, economy, politics, culture, education etc. at a 
certain geographical scale such as a country or a region.  
11 The discrete results produced by every iterative step are transformed into 

continuous information by fitting the Gaussian function (see details in Conder, 

2015), formally written as: y = a∙exp

(

−

(
x− b

c

)2
)

, where y is the proportion 

of newly infected nodes to the total number of nodes; X is the number of iter-
ation steps; a, b, c are parameters determining the amplitude, the centroid, and 
the width of the curve to indicate outbreak intensity, speed and duration 
respectively. 

12 Multiple regression modelling is not feasible in this study because simulated 
results are endogenously determined by human flows themselves and variables 
confront a multi-collinearity issue. In addition, regression models assume in-
dependence of observations, which omits the characteristics of human-to- 
human interactions for viral transmission. 
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instead of network size. The results point to the importance of both 
tailored place-specifics and indirect network effects considerations in 
city region viral risk mitigation planning. 

5. Conclusion and policy implications 

The analysis has contributed to new understanding of the spatial 
organisation of Covid-19 spread in an urbanised region by examining 
multi-directional human flows represented by CFT in relation to the 
urban hierarchical positions represented by CPT in the WCR travel flow 
network. The combination of a micro-level EC model and macro-level 
urban network approach to simulate Covid-19 spatial spread scenarios 
in the WCR is novel in providing for not only the simultaneity of intra- 
city and inter-city flows but also for multi-directional transmission 
feedback loops within a regional network of cities. In response to our 
research questions, we now turn to consider what can be learned from 
the results and the inferences for city region planning and policy, 

First, what is the association between city positions and virus spread 
in the Wuhan regional travel flow network? 

It is found that the negative spillovers of Covid-19 virus spread are 
highly associated with the centrality of city positions in the regional 
travel flow network. The risk exposure of Covid-19 virus spread is 

disproportionately distributed to the cities with central and interme-
diary positions. Specifically, Wuhan's dominant centrality in the 
network makes it the most influential node in the expansion of the 
contagion across the entire region. In addition, the outstanding cen-
trality of Xiaogan and Jingmen, both in terms of their direct relations 
and hierarchical positions (Taylor et al., 2010, 21), indicates that these 
cities are not only exposed to contagion but are also key network in-
termediaries in the virus spread. This finding highlights the need for 
strategic urban policies that are attuned to the unique positions of cities 
in a given city region travel flow network. 

Second, what is the association between network structures and virus 
spread in the Wuhan regional travel flow network? 

It is found that a well-connected, balanced network structure, can 
accelerate the spread of Covid-19 and vice versa, whereas a centralised 
or locally clustered network structure would be more spread resistant. 
The existing travel flow network is generally hedged between well- 
connected small-world and balanced uniform network structures, indi-
cating a high-level regional contagion risk. This finding draws attention 
to the significance of the structural adaptive capacity of urban networks 
for the mitigation of infection spread and consequently the need for 
effective inter-city coordination and multilateral relations overriding 
administrative boundaries. Overall, both CPT hierarchical and CFT 

Fig. 4. The simulation results of the spatial spread of Covid-19 in the Wuhan region (note: the different curves represent the simulation process that is initiated in 
different cities; the average fitness of the Gaussian function R2 is 99.3%). 

Table 2 
The Correlation Matrix between Network Positions and Simulated Viral Contagion (Note: a nonparametric Spearman correlation test is implemented as a robustness 
check, however no significant changes are found).  

Experiment results: Iteration steps  Gaussian amplitude  Gaussian centroid  Gaussian width  

Network positions Coefficient ρ p value Coefficient ρ p value Coefficient ρ p value Coefficient ρ p value 

Self-degree  0.65  0.01  0.32  0.22  0.45  0.08  0.39  0.13 
Indegree  0.66  0.01  0.28  0.28  0.84  0.00  0.21  0.42 
Outdegree  0.82  0.00  0.15  0.58  0.86  0.00  0.08  0.76 
Betweenness  0.73  0.00  0.45  0.07  0.47  0.06  0.53  0.04 
Closeness  0.56  0.02  0.38  0.15  0.92  0.00  0.33  0.21 
Actual cases  0.75  0.01  0.28  0.49  0.81  0.00  0.25  0.58  
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horizontal city relations have been found relevant for understanding the 
spatial organisation of Covid-19 as a negative network externality. We 
take from this that the Wuhan regional “model of urbanisation is at the 
same time both old and new”, as in the case of European city regions, 
according to Castells (2010, 2738). The WCR results may therefore also 
have relevance for negative spillover effects in European city regions in 
a future sudden communicable disease outbreak. 

Third, what lessons can be learned for planning and policy mobility 
interventions to mitigate regional virus contagion risk in the event of a 
future infectious disease outbreak? 

The intensity and complexity of travel flows in the WCR indicate that 
while shutting down inter-city travel in a blanket lockdown would limit 
the risk exposure of urban centres throughout the region, this inter-
vention would result in high economic and social costs by limiting 
mobility important for positive spillovers to these centres. The juxta-
position between city CPT positions and CFT relational structures for the 
Covid-19 virus spread, endorses Beer et al.'s (2020, 9) view that place- 
based regional solutions remain generally relevant for pandemic “eco-
nomic and social bounce-back”. In consequence, we conclude that future 
WCR urban planning and policy interventions should reflect the het-
erogeneity of specific local place and network flow interactions at a 
granular level to avoid spatially uneven ‘bounce-back’ (Eraydin & 
Taşan-Kok, 2012; Tian et al., 2020). 

The examples of the Xiaogan and Jingmen network positions 
revealed by CPT in our study, indicate that intervention measures in 
functionally networked city regions in other parts of the world might 
beneficially focus on similar intermediary cities in regional travel flow 
networks. A place-based policy is recommended to reflect the dual role 
of these ‘middle place’ cities in connecting peripheral cities both to 
positive and negative externalities. For such place-based interventions 
to be deliverable in a specific government jurisdiction internationally, 
city and regional authority cooperation supported by coordinated 
monitoring systems, would be needed. 

Urban planning and policies to control infectious disease 

transmission in other complex city region network internationally, 
would also need to be informed by vigilant real-time mobility observa-
tions to mediate negative contagion and positive social-economic in-
teractions. Gibbs et al. (2020) found that travel interventions imposed 
early in China's Covid-19 outbreak, had a temporary effect on the 
containment of contagion. Interactive human mobility data platforms 
could track real-time travel flows and identify central players dynami-
cally. These platforms should allow LBS providers and government 
transportation departments to share and integrate their individual da-
tabases, we suggest. The analysis of the regional travel flow network 
suggests that smart data informed network restructuring to manage 
travel flows, could reduce risk exposure to virus spread in the advent of a 
future local outbreak. Complex human behaviors, virus pathological 
characteristics, and health service capacity considerations which were 
outside the scope of the present analysis, would also demand monitoring 
and information sharing. For example, our findings on infection risk in 
the travel flow network can serve as an alarm bell for how healthcare 
demand may shift to places with relatively low service capacity, leading 
to potential public health service system shock (Bailey et al., 2020; Gibbs 
et al., 2020). This risk is likely to apply in other city regions interna-
tionally. Advanced travel flow network mobility observation systems 
could inform agile policy, for example, on medical resource allocations 
to mitigate mortality and Long Covid morbidity negative spillover 
effects. 

Finally, despite Western ‘new regionalism’ and Chinese modernized 
subnational governance models both arguably encouraging regional and 
local territorial institutional cooperation (Dong & Kübler, 2021, 507), 
sceptics have observed that such cooperation is compromised by terri-
torially competitive regional scale-building interventions (Brenner, 
1999, 2004; McCann, 2016; Wu, 2020). Uncoordinated cross- 
jurisdictional policy responses to communicable disease outbreaks 
have also been blamed on nation state competitive economic growth 
agendas at the international level (Ali & Keil, 2006; Eaton & Hum-
phreys, 2020). In consequence, a conclusion for both Chinese and 

Fig. 5. The spatial spread patterns of Covid-19 transmission in different network structures (note: the x-axis represents iteration steps; the y-axis represents the 
accumulated number of infected nodes). 
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international ‘Western’ style planning and policy models is that non- 
competitive, coordinative practices are essential to control the spatial 
spread of a networked, mobile infectious disease. The politics of Covid- 
19 mobility interventions in a disrupted world remain to be addressed in 
other contributions to research. 
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