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Supplementary Notes

1. Comprehensive Results

Supplementary Tables 1 to 10 contain comprehensive results for the experiments de-
scribed in the article, reporting the performance for all utilized combinations of repre-
sentation type, embedding size, and pooling type. In all experiments, due to intrinsic
limitations of the Atom2Vec approach, Atom2Vec vectors [1] could not be created with
dimensions greater than the number of atoms being considered. Similarly, one-hot vec-
tors are limited in dimensionality to the number of atoms being considered. Finally,
pre-trained Mat2Vec vectors [2] were used, and their dimensionality was limited to 200.
All tasks reported utilized the ElemNet feed-forward neural net architecture (consisting
of 17 layers), with L2 regularization instead of dropout.

2. Preliminary Results with Structure-based Architectures

The experiments described in the paper were performed using the ElemNet architec-
ture as a standard (with the exception of the Elpasolite Formation Energy task). We do
not experiment with various different kinds of neural network-based architectures because
the aim of the work is to introduce a new (and more accessible and effective) way of learn-
ing distributed atom representations, and not a particular combination of representation
and architecture, nor to establish a new performance benchmark on a task. Nevertheless,
here we report preliminary results on the use of SkipAtom embeddings with two differ-
ent structure-based architectures: CGCNN [3] and MEGNet [4]. These results highlight
two important points: first, that SkipAtom embeddings are effective in the context of
neural network architectures in general (and not only with an ElemNet architecture),
and second, that they can improve the performance of models that incorporate structure
information.
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The CGCNN model is a convolutional graph neural network that operates on datasets
that incorporate crystal structure information. It can be used for classification and re-
gression tasks. The paper that introduced the CGCNN model used a dataset of 27,430
compounds from the Materials Project to build a regression model for predicting band gap.
The CGCNN paper reports 0.388 eV MAE. They create a 60/20/20 train/validation/test
split: they train on 60% and validate on 20% after each epoch; then they pick the best
model according to the validation score, and evaluate on the test set. The 0.388 eV MAE
is on the test set. Here, we use the CGCNN codebase [5] to reproduce the results, and to
evaluate using SkipAtom vectors as the atom representations. The CGCNN architecture
requires that atom representations are provided. By default, a binary feature vector is
provided (see [3] for more details). In Supplementary Table 11, we compare the results
of using 200-dimensional SkipAtom embeddings to the results of using the default binary
feature vectors.

The MEGNet model [4] consists of a graph neural network that can be used to pre-
dict properties of molecules and crystals. It requires that atoms are given a predefined
representation. Alternatively, one-hot atom vectors can be provided, and an embedding
table is learned during training, which results in learned atom representations. Here,
we use the MEGNet codebase [6] to compare the performance of the MEGNet model
with (and without) the SkipAtom embeddings on the Elpasolite Formation Energy task.
In Supplementary Table 12, we compare the results of using 200-dimensional SkipAtom
embeddings to the results of using the default one-hot vectors, in the context of the Elpa-
solite Formation Energy prediction task with the MEGNet model. Note that in the article
we report a MAE of 0.1089 eV/atom using the original architecture with concatenated
atom vectors (that does not include structure information).

3. Derivation of Materials Graphs

As described in the article, the SkipAtom approach relies on the conversion of the unit
cells of materials to a graph representation. From this graph, atom pairs are derived for
training. The graph representing a material can be derived using any approach desired,
but in this work, an approach is used which is based on Voronoi decomposition [7], which
identifies nearest neighbours using solid angle weights to determine the probability of var-
ious coordination environments. Specifically, the CrystalNN neighbour finding algorithm
was used to construct the graphs [8, 9], as implemented in the pymatgen package (version
2021.2.8.1) [10].

A brief description of the CrystalNN algorithm is provided here for convenience, but
for more details, the reader is referred to the original descriptions [8, 9]. The first step
in the algorithm involves the assignment of a multi-component weight to each atom pair
in the structure, such that these weights correspond to the likelihood that two atoms
are neighbours. The weight consists of various components, including the solid angle
obtained from a Voronoi construction based on the crystal structure, a penalty for atoms
that are too far apart, and the electronegativity difference between the atoms. The next
step involves projecting these multi-component weights onto a quadrant of the unit circle,
ordered from largest to smallest weights, and computing the area under the circle between
adjacent weights to obtain neighbour likelihoods. Finally, the coordination number with
the highest probability for each site is selected.
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4. Learning Representations of Atoms in their Oxidation States

As stated in the article, one limitation of the SkipAtom approach is that it does not
provide representations of atoms in different oxidation states. Since it is (often) possible
to unambiguously infer the oxidation states of atoms in compounds, it is, in principle,
possible to construct a SkipAtom training set of pairs of atoms in different oxidation
states. The number of atom types would increase by several fold, but would still be
within limits that allow for efficient training. Here, we demonstrate this by incorporating
two additional atom types: Fe(II) and Fe(III). We continue to learn a separate embedding
for neutral Fe.

To learn the representations for Fe(II) and Fe(III), we scan the materials structure
database for compounds containing Fe, and determine the oxidation state of the element
using a maximum a posteriori estimation method, as implemented in the BVAnalyzer
class of the pymatgen package (version 2021.2.8.1) [10]. We then form pairs that we will
add to our original training set, by keeping only the pairs where Fe(II) or Fe(III) are the
target atom (i.e. the atom whose context we will learn to predict). The associated atom
in the pair is represented in its neutral state. In total, there were 190,056 pairs generated
in this way, and added to the original dataset.

The embeddings were then learned using the SkipAtom approach described in the
article, together with this enhanced dataset. To evaluate the learned Fe(II) and Fe(III)
representations, a qualitative assessment was made by comparing to Zn and Al, since Zn
is generally found in its Zn(II) state, and Al is generally found in its Al(III) state. The
four embeddings together, Al, Zn, Fe(II), and Fe(III), were subjected to dimensionality
reduction using t-SNE, and the results are plotted in Supplementary Figure 3. It is
apparent that Fe(II) resides more closely to Zn, and Fe(III) resides more closely to Al, as
one might expect, at least along the first dimension.

5. Analysis of the Number of Embedding Dimensions

Across all the evaluation tasks, the performance of the SkipAtom embeddings appears
to increase with the number of embedding dimensions. To better evaluate the influence of
the number of embedding dimensions on the performance of the representations, a series
of SkipAtom embeddings of different sizes were learned. These embeddings were then
mean-pooled for the Refractive Index prediction task, and their performance is given in
Supplementary Table 13. A plot of their performance on the task in given in Supplemen-
tary Figure 4. Also, these embeddings were used for the Elpasolite Formation Energy
prediction task. The results are given in Supplementary Table 14 and Supplementary
Figure 5

6. Analysis of Training Set Size

To analyze the influence of the training dataset size on the quality of the learned
embeddings, 200-dimensional SkipAtom embeddings were learned using either all or 25%
of the available training data from the Materials Project. The training dataset consisting
of 25% of the available pairs was created by randomly sampling from the 15,360,652 pairs
derived from the Materials Project, yielding a dataset with 3,840,163 pairs. These 200-
dimensional SkipAtom embeddings were mean-pooled for the Refractive Index prediction
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task, and their performance is given in Supplementary Table 15.

Supplementary Tables

Supplementary Table 1: Elpasolite Formation Energy prediction results after 10-fold cross-
validation. The dataset consists of 5,645 examples. The task and the model were initially
described in the paper that introduced Atom2Vec (an alternative approach for learning atom
vectors). [1] The target formation energies were obtained by DFT. [11] The mean best formation
energy MAE on the test set after 200 epochs of training in each fold is reported. Batch size
was 32, learning rate was 0.001. Note that Dim refers to the dimensionality of the atom vector;
the size of the input vector is 4 × Dim. All results were generated using the same procedure on
identical train/test folds.

Representation Dim MAE (eV/atom)

Atom2Vec 30 0.1477 ± 0.0078
SkipAtom 30 0.1183 ± 0.0050
Random 30 0.1701 ± 0.0081
Atom2Vec 86 0.1242 ± 0.0066
One-hot 86 0.1218 ± 0.0085
SkipAtom 86 0.1126 ± 0.0078
Random 86 0.1190 ± 0.0085
Mat2Vec 200 0.1126 ± 0.0058

SkipAtom 200 0.1089 ± 0.0061
Random 200 0.1158 ± 0.0050
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Supplementary Table 2: OQMD Dataset Formation Energy prediction results after 10-fold cross-
validation. The dataset consists of 275,424 examples. The target values were computed using
DFT. [12, 13]. The mean best formation energy MAE on the test set after 100 epochs of training
in each fold is reported. All results were generated using the same procedure on identical train/test
folds.

Representation Dim Pooling MAE (eV/atom)

SkipAtom 86 sum 0.0420 ± 0.0005
SkipAtom 86 mean 0.0460 ± 0.0006
SkipAtom 86 max 0.0615 ± 0.0006
Atom2Vec 86 sum 0.0396 ± 0.0004
Atom2Vec 86 mean 0.0417 ± 0.0005
Atom2Vec 86 max 0.0532 ± 0.0006

Bag-of-Atoms / One-hot 86 sum 0.0388 ± 0.0002
ElemNet / One-hot 86 mean 0.0427 ± 0.0007

One-hot 86 max 0.0388 ± 0.0005
Random 86 sum 0.0440 ± 0.0004
Random 86 mean 0.0468 ± 0.0006
Random 86 max 0.0572 ± 0.0007
Mat2Vec 200 sum 0.0401 ± 0.0004
Mat2Vec 200 mean 0.0444 ± 0.0007
Mat2Vec 200 max 0.0501 ± 0.0006
SkipAtom 200 sum 0.0408 ± 0.0003
SkipAtom 200 mean 0.0451 ± 0.0005
SkipAtom 200 max 0.0559 ± 0.0006
Random 200 sum 0.0417 ± 0.0004
Random 200 mean 0.0441 ± 0.0007
Random 200 max 0.0511 ± 0.0005
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Supplementary Table 3: Experimental Band Gap prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 4,604 examples. The target values were obtained by exper-
iment. [14]. The mean best MAE on the test set after 100 epochs of training in each fold
is reported. All results were generated using the same procedure on identical train/test folds.
The reported state-of-the-art result is an MAE of 0.416 eV (Automatminer). [15] Note that the
state-of-the-art result does not make use of structure, and uses composition only.

Representation Dim Pooling MAE (eV)

SkipAtom 86 sum 0.3495 ± 0.0020
SkipAtom 86 mean 0.3737 ± 0.0091
SkipAtom 86 max 0.3954 ± 0.0090
Atom2Vec 86 sum 0.3922 ± 0.0087
Atom2Vec 86 mean 0.4005 ± 0.0080
Atom2Vec 86 max 0.4070 ± 0.0048

Bag-of-Atoms / One-hot 86 sum 0.3797 ± 0.0022
ElemNet / One-hot 86 mean 0.4060 ± 0.0072

One-hot 86 max 0.3823 ± 0.0046
Random 86 sum 0.4109 ± 0.0058
Random 86 mean 0.4286 ± 0.0058
Random 86 max 0.4389 ± 0.0028
Mat2Vec 200 sum 0.3529 ± 0.0007
Mat2Vec 200 mean 0.3886 ± 0.0000
Mat2Vec 200 max 0.3625 ± 0.0070

SkipAtom 200 sum 0.3487 ± 0.0085
SkipAtom 200 mean 0.3737 ± 0.0069
SkipAtom 200 max 0.3985 ± 0.0049
Random 200 sum 0.4058 ± 0.0004
Random 200 mean 0.4181 ± 0.0010
Random 200 max 0.4289 ± 0.0067
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Supplementary Table 4: Theoretical Band Gap prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 106,113 examples. The target values were obtained by DFT-
GGA. [16, 17]. The mean best MAE on the test set after 100 epochs of training in each fold is
reported. All results were generated using the same procedure on identical train/test folds. The
reported state-of-the-art result is an MAE of 0.228 eV (CGCNN). [15] Note that the state-of-
the-art result makes use of structure.

Representation Dim Pooling MAE (eV)

SkipAtom 86 sum 0.2791 ± 0.0008
SkipAtom 86 mean 0.2807 ± 0.0003
SkipAtom 86 max 0.3512 ± 0.0017
Atom2Vec 86 sum 0.2692 ± 0.0008
Atom2Vec 86 mean 0.2712 ± 0.0025
Atom2Vec 86 max 0.3289 ± 0.0016

Bag-of-Atoms / One-hot 86 sum 0.2611 ± 0.0008
ElemNet / One-hot 86 mean 0.2582 ± 0.0003

One-hot 86 max 0.2603 ± 0.0004
Random 86 sum 0.3238 ± 0.0005
Random 86 mean 0.3180 ± 0.0016
Random 86 max 0.4096 ± 0.0008
Mat2Vec 200 sum 0.2741 ± 0.0002
Mat2Vec 200 mean 0.2744 ± 0.0005
Mat2Vec 200 max 0.3256 ± 0.0002
SkipAtom 200 sum 0.2736 ± 0.0008
SkipAtom 200 mean 0.2753 ± 0.0006
SkipAtom 200 max 0.3351 ± 0.0013
Random 200 sum 0.3083 ± 0.0021
Random 200 mean 0.3095 ± 0.0009
Random 200 max 0.3733 ± 0.0010

7



Supplementary Table 5: Bulk Modulus prediction results after 2-repeated 10-fold cross-validation.
The dataset consists of 10,987 examples. The target values were computed using DFT-GGA.
[18]. The mean best MAE on the test set after 100 epochs of training in each fold is reported.
All results were generated using the same procedure on identical train/test folds. The reported
state-of-the-art result is an MAE of 0.0679 log(GPa) (Automatminer). [15] Note that the state-
of-the-art result makes use of structure.

Representation Dim Pooling MAE (log(GPa))

SkipAtom 86 sum 0.0790 ± 0.0002
SkipAtom 86 mean 0.0789 ± 0.0002
SkipAtom 86 max 0.0867 ± 0.0000
Atom2Vec 86 sum 0.0795 ± 0.0005
Atom2Vec 86 mean 0.0810 ± 0.0004
Atom2Vec 86 max 0.0861 ± 0.0002

Bag-of-Atoms / One-hot 86 sum 0.0861 ± 0.0002
ElemNet / One-hot 86 mean 0.0853 ± 0.0001

One-hot 86 max 0.0861 ± 0.0003
Random 86 sum 0.0916 ± 0.0002
Random 86 mean 0.0908 ± 0.0004
Random 86 max 0.0997 ± 0.0001
Mat2Vec 200 sum 0.0776 ± 0.0000
Mat2Vec 200 mean 0.0779 ± 0.0003
Mat2Vec 200 max 0.0813 ± 0.0003
SkipAtom 200 sum 0.0786 ± 0.0003
SkipAtom 200 mean 0.0785 ± 0.0000
SkipAtom 200 max 0.0888 ± 0.0002
Random 200 sum 0.0887 ± 0.0003
Random 200 mean 0.0871 ± 0.0001
Random 200 max 0.0960 ± 0.0004
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Supplementary Table 6: Shear Modulus prediction results after 2-repeated 10-fold cross-validation.
The dataset consists of 10,987 examples. The target values were computed using DFT-GGA. [18].
The mean best MAE on the test set after 100 epochs of training in each fold is reported. All results
were generated using the same procedure on identical train/test folds. The reported state-of-the-
art result is an MAE of 0.0849 log(GPa) (Automatminer). [15] Note that the state-of-the-art
result makes use of structure.

Representation Dim Pooling MAE (log(GPa))

SkipAtom 86 sum 0.1014 ± 0.0001
SkipAtom 86 mean 0.1025 ± 0.0002
SkipAtom 86 max 0.1102 ± 0.0002
Atom2Vec 86 sum 0.1029 ± 0.0000
Atom2Vec 86 mean 0.1054 ± 0.0000
Atom2Vec 86 max 0.1089 ± 0.0005

Bag-of-Atoms / One-hot 86 sum 0.1137 ± 0.0005
ElemNet / One-hot 86 mean 0.1155 ± 0.0001

One-hot 86 max 0.1140 ± 0.0002
Random 86 sum 0.1195 ± 0.0002
Random 86 mean 0.1199 ± 0.0001
Random 86 max 0.1260 ± 0.0001
Mat2Vec 200 sum 0.1014 ± 0.0002
Mat2Vec 200 mean 0.1035 ± 0.0001
Mat2Vec 200 max 0.1050 ± 0.0000

SkipAtom 200 sum 0.1014 ± 0.0000
SkipAtom 200 mean 0.1024 ± 0.0001
SkipAtom 200 max 0.1111 ± 0.0001
Random 200 sum 0.1167 ± 0.0002
Random 200 mean 0.1163 ± 0.0002
Random 200 max 0.1223 ± 0.0000
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Supplementary Table 7: Refractive Index prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 4,764 examples. The target values were computed using
DFPT-GGA. [19]. The mean best MAE on the test set after 100 epochs of training in each fold
is reported. All results were generated using the same procedure on identical train/test folds.
The reported state-of-the-art result is an MAE of 0.299 n (Automatminer). [15] Note that the
state-of-the-art result makes use of structure.

Representation Dim Pooling MAE (n)

SkipAtom 86 sum 0.3369 ± 0.0014
SkipAtom 86 mean 0.3275 ± 0.0004
SkipAtom 86 max 0.3561 ± 0.0013
Atom2Vec 86 sum 0.3419 ± 0.0013
Atom2Vec 86 mean 0.3308 ± 0.0016
Atom2Vec 86 max 0.3522 ± 0.0005

Bag-of-Atoms / One-hot 86 sum 0.3576 ± 0.0002
ElemNet / One-hot 86 mean 0.3409 ± 0.0016

One-hot 86 max 0.3547 ± 0.0013
Random 86 sum 0.3625 ± 0.0012
Random 86 mean 0.3593 ± 0.0006
Random 86 max 0.3891 ± 0.0021
Mat2Vec 200 sum 0.3272 ± 0.0004
Mat2Vec 200 mean 0.3236 ± 0.0017
Mat2Vec 200 max 0.3428 ± 0.0004
SkipAtom 200 sum 0.3340 ± 0.0012
SkipAtom 200 mean 0.3247 ± 0.0015
SkipAtom 200 max 0.3618 ± 0.0026
Random 200 sum 0.3598 ± 0.0053
Random 200 mean 0.3543 ± 0.0006
Random 200 max 0.3824 ± 0.0019
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Supplementary Table 8: Bulk Metallic Glass Formation prediction results after 2-repeated 5-
fold stratified cross-validation. The dataset consists of 5,680 examples. The target values were
obtained from experiment. [20, 21]. The mean best ROC-AUC on the test set after 100 epochs of
training in each fold is reported. All results were generated using the same procedure on identical
train/test folds. The reported state-of-the-art result is an ROC-AUC of 0.858 (RF). [15] Note
that the state-of-the-art result does not make use of structure, and uses composition only.

Representation Dim Pooling ROC-AUC

SkipAtom 86 sum 0.9312 ± 0.0007
SkipAtom 86 mean 0.9346 ± 0.0010
SkipAtom 86 max 0.9243 ± 0.0005
Atom2Vec 86 sum 0.9306 ± 0.0026
Atom2Vec 86 mean 0.9316 ± 0.0012
Atom2Vec 86 max 0.9300 ± 0.0008

Bag-of-Atoms / One-hot 86 sum 0.9277 ± 0.0004
ElemNet / One-hot 86 mean 0.9322 ± 0.0014

One-hot 86 max 0.9289 ± 0.0016
Random 86 sum 0.9262 ± 0.0011
Random 86 mean 0.9274 ± 0.0006
Random 86 max 0.9243 ± 0.0020
Mat2Vec 200 sum 0.9280 ± 0.0004
Mat2Vec 200 mean 0.9348 ± 0.0024
Mat2Vec 200 max 0.9253 ± 0.0009
SkipAtom 200 sum 0.9327 ± 0.0022
SkipAtom 200 mean 0.9349 ± 0.0019
SkipAtom 200 max 0.9268 ± 0.0002
Random 200 sum 0.9274 ± 0.0019
Random 200 mean 0.9302 ± 0.0016
Random 200 max 0.9298 ± 0.0009
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Supplementary Table 9: Experimental Metallicity prediction results after 2-repeated 5-fold strat-
ified cross-validation. The dataset consists of 4,921 examples. The target values were obtained
from experiment. [14]. The mean best ROC-AUC on the test set after 100 epochs of training in
each fold is reported. All results were generated using the same procedure on identical train/test
folds. The reported state-of-the-art result is an ROC-AUC of 0.917 (Random Forest). [15] Note
that the state-of-the-art result does not make use of structure, and uses composition only.

Representation Dim Pooling ROC-AUC

SkipAtom 86 sum 0.9645 ± 0.0012
SkipAtom 86 mean 0.9575 ± 0.0003
SkipAtom 86 max 0.9561 ± 0.0020
Atom2Vec 86 sum 0.9582 ± 0.0008
Atom2Vec 86 mean 0.9541 ± 0.0005
Atom2Vec 86 max 0.9548 ± 0.0006

Bag-of-Atoms / One-hot 86 sum 0.9600 ± 0.0012
ElemNet / One-hot 86 mean 0.9485 ± 0.0007

One-hot 86 max 0.9599 ± 0.0014
Random 86 sum 0.9559 ± 0.0021
Random 86 mean 0.9460 ± 0.0008
Random 86 max 0.9426 ± 0.0037
Mat2Vec 200 sum 0.9655 ± 0.0014
Mat2Vec 200 mean 0.9570 ± 0.0008
Mat2Vec 200 max 0.9634 ± 0.0013
SkipAtom 200 sum 0.9645 ± 0.0008
SkipAtom 200 mean 0.9572 ± 0.0008
SkipAtom 200 max 0.9589 ± 0.0010
Random 200 sum 0.9541 ± 0.0002
Random 200 mean 0.9454 ± 0.0001
Random 200 max 0.9508 ± 0.0011
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Supplementary Table 10: Theoretical Metallicity prediction results after 2-repeated 5-fold stratified
cross-validation. The dataset consists of 106,113 examples. The target values were obtained by
DFT-GGA. [16, 17]. The mean best ROC-AUC on the test set after 100 epochs of training in
each fold is reported. All results were generated using the same procedure on identical train/test
folds. The reported state-of-the-art result is an ROC-AUC of 0.977 (MEGNet). [15] Note that
the state-of-the-art result makes use of structure. Notable is that the CGCNN model in the
same study achieves an ROC-AUC of 0.954, also using structure, which is comparable to the
performance of the Mat2Vec representation, which uses only composition.

Representation Dim Pooling ROC-AUC

SkipAtom 86 sum 0.9520 ± 0.0002
SkipAtom 86 mean 0.9506 ± 0.0000
SkipAtom 86 max 0.9440 ± 0.0000
Atom2Vec 86 sum 0.9526 ± 0.0001
Atom2Vec 86 mean 0.9506 ± 0.0001
Atom2Vec 86 max 0.9450 ± 0.0003

Bag-of-Atoms / One-hot 86 sum 0.9490 ± 0.0002
ElemNet / One-hot 86 mean 0.9477 ± 0.0001

One-hot 86 max 0.9487 ± 0.0003
Random 86 sum 0.9444 ± 0.0000
Random 86 mean 0.9433 ± 0.0002
Random 86 max 0.9330 ± 0.0001
Mat2Vec 200 sum 0.9528 ± 0.0002
Mat2Vec 200 mean 0.9517 ± 0.0001
Mat2Vec 200 max 0.9469 ± 0.0005
SkipAtom 200 sum 0.9524 ± 0.0001
SkipAtom 200 mean 0.9507 ± 0.0001
SkipAtom 200 max 0.9454 ± 0.0001
Random 200 sum 0.9453 ± 0.0002
Random 200 mean 0.9441 ± 0.0001
Random 200 max 0.9380 ± 0.0000

Supplementary Table 11: Band gap prediction results on the test set of 27,430 compounds from
the Materials Project, split 60/20/20, using the CGCNN model. Training was performed for 100
epochs, a learning rate of 0.01 was used, along with a batch size of 256. The default settings
provided by library were used for the other hyperparameters.

Input Representation MAE (eV)

CGCNN binary feature vector 0.381
SkipAtom 200-dim 0.371

Supplementary Table 12: Elpasolite formation energy prediction results with the MEGNet archi-
tecture. This model incorporates crystal structure.

Input Representation MAE (eV/atom)

one-hot atom vectors + embedding table 0.0685
SkipAtom 200-dim 0.0568
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Supplementary Table 13: Refractive Index prediction results after 2-repeated 5-fold cross-
validation using mean-pooled SkipAtom embeddings of various dimensions. The mean best MAE
on the test set after 100 epochs of training in each fold is reported. All results were generated
using the same procedure on identical train/test folds.

Dim MAE (n)

30 0.3278 ± 0.0008
86 0.3262 ± 0.0002
200 0.3248 ± 0.0015
300 0.3252 ± 0.0005
400 0.3267 ± 0.0017
800 0.3263 ± 0.0000

Supplementary Table 14: Elpasolite Formation Energy prediction results after 10-fold cross-
validation using SkipAtom embeddings of various dimensions. The mean best MAE on the test
set after 200 epochs of training in each fold is reported. All results were generated using the same
procedure on identical train/test folds.

Dim MAE (eV/atom)

30 0.1183 ± 0.0050
86 0.1126 ± 0.0078
200 0.1089 ± 0.0061
300 0.1082 ± 0.0053
400 0.1085 ± 0.0029
800 0.1056 ± 0.0034

Supplementary Table 15: Refractive Index prediction results after 2-repeated 5-fold cross-
validation using 200-dim mean-pooled SkipAtom embeddings learned with different amounts of
training data. The mean best MAE on the test set after 100 epochs of training in each fold is
reported. All results were generated using the same procedure on identical train/test folds.

Dim % of training data MAE (n)

200 25 0.3256 ± 0.0003
200 100 0.3248 ± 0.0015
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Supplementary Figures

Supplementary Figure 1: Principal Component Analysis of SkipAtom Representations. The first
two principal components of the SkipAtom 200-dim vectors for 34 atoms are depicted.
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Supplementary Figure 2: Principal Component Analysis of SkipAtom Representations. The third
and fourth principal components of the SkipAtom 200-dim vectors for 34 atoms are depicted.
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Supplementary Figure 3: Dimensionally reduced SkipAtom vectors for Al and Zn, and for Fe(II)
and Fe(III). The vectors were reduced from 200 dimensions to 2 dimensions using t-SNE.
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Supplementary Figure 4: A plot of MAE results for the Refractive Index prediction task, obtained
using 2-repeated 5-fold cross-validation, for a number of different embedding sizes. The SkipAtom
embeddings were mean-pooled.
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Supplementary Figure 5: A plot of MAE results for the Elpasolite Formation Energy prediction
task, obtained using 10-fold cross-validation, for a number of different embedding sizes. The
SkipAtom embeddings were concatenated.
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