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Abstract 

 

Proteins are vital constituents of living cells with diverse structural and functional roles. Therefore, 

the study of functions and structures of proteins is key to our full understanding of living systems 

at the molecular level. X-ray crystallography and Nuclear Magnetic Resonance (NMR) are the 

main experimental techniques used to determine protein structures. However, such procedures are 

costly, labour intensive and time consuming, and many proteins are problematic to solve 

experimentally. In silico modelling of protein structures provides a potential solution to bridge the 

huge protein sequence-structure knowledge gap, which widening due to relative efficiency of 

cheap Next Generation Sequencing compared with experimental methods for determining 

structures. Nevertheless, the accuracy of predicted 3D structures may not always be adequate for 

further biological studies compared to experimental data. The refinement of the 3D protein models 

refers to process used for the improvement of predicted structures, by moving them closer towards 

experimental quality. 

 

Since the 10th Critical Assessment Structure Prediction (CASP10), the usage of Molecular 

Dynamics (MD)-based refinement protocols has been found to be more effective compared with 

other protocols. However, the most successful MD-based protocols generally require 

supercomputer scale resources in order to refine a single 3D protein model. The ReFOLD server 

was developed by our group to rapidly refine 3D models with more modest computational 

resources. However, in CASP12 it was found that many of the 3D models from ReFOLD still 

contained structural flaws and some had drifted further away from the native structure during the 

refinement process. 

 

Many restraint strategies have been used to prevent 3D models from the undesired deviations 

caused by force field inaccuracies. Here, we propose to use to prior predictive data to provide 

reliable guidance to the original MD-based protocol of ReFOLD, in order to direct the refinement 

of models towards the native basin. In the first part of this study, the predicted local model quality 

scores produced by the ModFOLD server were utilised to guide the original MD-based protocol 

of ReFOLD. A fixed threshold based on the predicted per-residue error was applied to determine 
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the poorly predicted regions in a 3D model, which could be targeted for refinement. The local 

quality assessment guided restraint strategy was successful in improving a higher number of 3D 

models, outperforming the original MD-based protocol according to observed scores. The local 

quality assessment guided MD-based protocol was also used to refine CASP13 targets, for the 

refinement and regular prediction categories, and it ranked among the top 10 approaches according 

to the official independent assessment. 

 

Following the CASP13 experiment, the application of a fixed threshold based on the per-residue 

accuracy score was found to be less applicable for the multi-domain structures. Therefore, we 

proposed a novel gradual restraint strategy by considering the need of refinement for each residue 

according to the per-residue accuracy score. The gradual restraint strategy led to further increases 

in the population of the improved models compared to the fixed restraint strategy. We also applied 

our gradual restraint strategy for the refinement of the SARS-CoV-2 targets as a part of the CASP 

Commons COVID-19 initiative, in order to increase the accuracy of best-predicted 3D models, 

which were identified by our ModFOLD server. A significant number of the estimated top 10 

models for each of the targets were generated by our group, according to the initial CASP 

Commons evaluation. 

 

Residue-residue contact prediction methods have now reached up to 70% accuracy and the 

methods have proved to be useful in protein folding, model quality estimation and drug design. In 

this study, we describe the first attempt at applying contact predictions for refinement, where we 

use our Contact Distance Agreement (CDA) scores to apply gradual restraints to guide the MD 

protocol. The contact-assisted restraint strategy performed well, increasing the population of the 

improved models in comparison with the gradual restraint strategy based on the local quality 

estimation.  

 

Finally, a binding site focused MD-based refinement protocol was also developed to improve the 

quality of the protein-ligand binding sites predicted by our FunFOLD server. This focused 

refinement protocol was successful at increasing the accuracy of all predicted binding sites that 

were tested as well as improving global model quality of some models.  
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This thesis has focused on exploiting prior predictive data for use in refinement pipelines, to direct 

the generation of 3D models closer towards the native basin. In the near future, each of the 

improvements described here will be integrated with new versions of our prediction servers, which 

will then be made freely accessible for use by general biologists.  
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1.1 Protein Structure 

 

Proteins have many crucial roles in biological reactions, perform many different functions, and are 

the second most abundant substance in living cells after water. Proteins consist of linear chains of 

various combinations of amino acids, which are covalently bonded with peptide bonds. Hydrogen 

bonds, ionic bonds and van der Waals interactions stabilise the folded proteins at different 

structural levels, and the bonds have a significant role in determining different functions, such as 

enzymes, messengers and other structural components (Brocchieri & Karlin, 2005; Rangwala & 

Karypis, 2010; Roche et al., 2013a; Stoker, 2013; Williamson, 2012a, 2012b). The structure of a 

protein determines its function, therefore, the elucidation of the 3D structures of proteins has 

always been a key factor in understanding their functions, ever since the first protein structure, 

myoglobin, was determined by John Kendrew and Max Perutz in 1958 (Brändén & Tooze, 1991; 

Fletterick, 1992; Williamson, 2012a). Fully understanding a protein’s function depends on 

understanding the forces and interactions at its different structural levels. These 4 principal 

structural levels are hierarchical and described as the primary, secondary, tertiary and quaternary 

structures (see sections1.1.1-1.1.4). 

 

Amino acids are the building blocks of proteins; each has a central carbon atom (C α) connected 

by an amino (NH2), a carboxyl (COOH) group, and a side chain (R) group There are 20 standard 

amino acids that are coded for by the universal genetic code (Williamson, 2012a) (Table 1.1). Each 

amino acid is defined by its unique side chain (R) group (Table 1.1). The amino acids have 

different characteristics resulting from side chain (R) groups, and there can be interactions between 

the side chains that can affect protein functions (Brändén & Tooze, 1991; Stoker, 2013). The amino 

acids are categorised as nonpolar, polar neutral, polar acidic and polar basic amino acids (Brändén 

& Tooze, 1991; Stoker, 2013). Nonpolar side chains are the most commonly seen side chain, and 

other residues have different side chains in terms of their size, shape, acidity, chemical reactivity 

and charges that may be positive or negative (Brändén & Tooze, 1991; Stoker, 2013; Williamson, 

2012a). Each of the twenty standard amino acids is denoted by a single letter (or less commonly 

three-letter) code to represent protein sequence (Table 1.1) (Brändén & Tooze, 1991; Brocchieri 

& Karlin, 2005; McGuffin & Roche, 2011; Stoker, 2013). The twenty amino acids can also be 
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combined to from protein chains of different lengths, which form different 3D-structures. Short 

chains of amino acids (less than 40 amino acids) are usually called peptides or oligopeptides, 

whereas longer chains are called proteins (Brändén & Tooze, 1991; Stoker, 2013; Williamson, 

2012a).  

Amino acid 

Abbreviation 

Side chain Polarity 

Three- letter One-letter 

Aspartic acid (C4H7NO4) Asp D Polar 

Glutamic acid (C5H9NO4) Glu E Polar 

Arginine (C6H14N4O2) Arg R Polar 

Lysine (C6H14N2O2) Lys K Polar 

Histidine (C6H9N3O2) His H Polar 

Asparagine (C4H8N2O3) Asn N Uncharged polar 

Glutamine (C5H10N2O3) Gln Q Uncharged polar 

Serine (C3H7NO3) Ser S Uncharged polar 

Threonine (C4H9NO3) Thr T Uncharged polar 

Tyrosine (C9H11NO3) Tyr Y Uncharged polar 

Alanine (C3H7NO2) Ala A Nonpolar 

Cysteine (C3H7NO2S) Cys C Nonpolar 

Glycine (C2H5NO2) Gly G Nonpolar 

Isoleucine (C6H13NO2) Ile I Nonpolar 

Leucine (C6H13NO2) Leu L Nonpolar 

Methionine (C5H11NO2S) Met M Nonpolar 

Phenylalanine(C9H11NO2) Phe F Nonpolar 

Proline (C5H9NO2) Pro P Nonpolar 

Tryptophan (C11H12N2O2) Trp W Nonpolar 

Valine (C5H11NO2) Val V Nonpolar 

Alanine (C3H7NO2) Ala A Nonpolar 

 

Table 1. 1  List of the standard 20 amino acids. 

Adapted from Williamson, (Williamson, 2012a, 2012b)  
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1.1.1 Primary Structure 

 

The primary structure of protein consists of the amino acid sequence, with covalent peptide bonds 

between amino acids forming linear unbranched chains. The peptide bonds are the strongest bonds 

in proteins and form first during translation. A specific gene sequence in DNA specifies the 

primary structure via mRNA which is then translated into a protein. Frederick Sanger first 

discovered the linear amino acid sequence in insulin and defined the sequence of amino acids 

(Mandle et al., 2012; Sanger, 1959; Sanger & Tuppy, 1951). Determining the primary structure is 

possible with Edman degradation and mass spectrometry, and the genetic code can be translated 

to enable reading of the amino acid sequences from gene sequences (Mandle et al., 2012). 

Therefore, determining the primary structure of a protein, or its amino acid sequence, is relatively 

straightforward following high throughput next generation genome sequencing. 

 

1.1.2 Secondary Structure 

 

The next level of protein structure is the secondary structure which describes the specific sub-

structures of a protein, namely the α-helices and β–strands. In between the helices and strands, 

there are also irregularly shaped ordered elements, called loops or random coil, which are also 

important in protein structure and functions. (Mandle et al., 2012; Pauling et al., 1951; Rangwala 

& Karypis, 2010). The α-helices and β–strands contribute to the stabilisation of a protein structure. 

The α–helix, is a common form of the secondary structure of right or left-handed twists, and the 

structure is kept by hydrogen bonding between N-H and C=O groups (Rangwala & Karypis, 2010; 

Stoker, 2013). β strands interact with each other forming hydrogen bonds also make up β–sheets, 

which are common in many structures. The direction of β-sheets depends on the β-strand positions, 

and they can be made up of either parallel or antiparallel strands (Brändén & Tooze, 1991; Stoker, 

2013; Williamson, 2012a). 

 

It is possible to determine the secondary structure by using spectroscopic methods like far-

ultraviolet (Pelton & McLean, 2000). Although the infrared spectroscopy has been rarely used, an 

initially unassigned NMR spectrum can be used to get structural information of the protein 



Chapter 1 

 

6 

 

secondary structure (Meiler & Baker, 2003). Circular dichroism (CD) spectroscopy is also used to 

determine secondary structures, and the structures are obtained using characteristic spectrums 

(Greenfield, 2006). 

 

Predicting secondary structure relies on accurately identifying the probabilities of α-helices and 

β–strand formation by consecutive amino acids, and the prediction is related to the calculation of 

the free energy of the structure. Chou–Fasman method (Chou & Fasman, 1978) is one of the first 

methods of secondary structure prediction (Chou & Fasman, 1978). The field of secondary 

structure prediction has since matured, and it is largely thought of as a solved problem - the 

accuracy of predictions (~80%) is at the same level as the discrepancy between the different 

methods for defining observed secondary structures. There are many accurate approaches to 

predict secondary structure, such as PSIPRED (McGuffin et al., 2000; Ward et al., 2003), SAM 

(Karplus, 2009), PORTER (Pollastri & McLysaght, 2005) and PROF (Adamczak et al., 2005). 

 

1.1.3 Tertiary Structure 

 

The three-dimensional description of atoms within a protein is referred to as the tertiary structure, 

and it comprises the primary and secondary structures and the amino acid side chain interactions. 

The interactions include electrostatic attractions, covalent disulphide bonds, hydrogen bonds, and 

hydrophobic interactions (Brändén & Tooze, 1991). Electrostatic interactions (salt bridges) are 

found between acidic and basic R groups. Disulphide bonds occur between SH-groups in cysteine 

residues, and they are the strongest and covalent bonds between side chains in the tertiary structure 

(Brändén & Tooze, 1991; Stoker, 2013; Williamson, 2012a). Hydrogen bonds also saturate 

interactions between amino acids in the sub-structures, and they can be weaker compared to other 

types of interactions. Non-polar R groups form hydrophobic interactions to stabilise the protein 

structure (Brändén & Tooze, 1991; Stoker, 2013; Williamson, 2012a). The side-chain interactions 

also form the final shape and function of the proteins (Baldwin, 2007).  

 

The tertiary structure can be determined experimentally by using mainly X-ray crystallography 

and Nuclear Magnetic Resonance (NMR) and Cryogenic Electron Microscopy (Cryo-EM) (see 



Chapter 1 

 

7 

 

section 1.2) (Brändén & Tooze, 1991; Mandle et al., 2012; Rangwala & Karypis, 2010; Stoker, 

2013; Williamson, 2012a). Tertiary structures can also be predicted by Template-Based Modelling 

(TBM) and Template-Free Modelling (FM) methods, which will be explained in section 1.4. 

 

1.1.4 Quaternary Structure 

 

Quaternary structure is the last level of protein structure which is represented by multiple-subunits 

of protein 3D chains and describes their non-covalent interactions in multimeric assemblies 

(Brändén & Tooze, 1991; Mandle et al., 2012; Rangwala & Karypis, 2010; Stoker, 2013; 

Williamson, 2012a). Thus, quaternary structures contain two or more separate protein chains that 

interact to form a multi-subunit complex or multimer. Electrostatic interactions, hydrogen bonds 

and hydrophobic forces provide stability for the interacting subunits forces in quaternary structures  

(Brändén & Tooze, 1991; Chiang et al., 2007; Mandle et al., 2012; Rangwala & Karypis, 2010; 

Stoker, 2013; Williamson, 2012a).  

 

The prediction of quaternary structures is based on docking chains and symmetrical arrangement 

and RosettaDock (Gray et al., 2003; Sircar et al., 2010), DOT (Roberts et al., 2013),and 

HADDOCK (Kastritis et al., 2014) ZDOCK (Pierce et al., 2014) are among the popular methods 

(Seffernick & Lindert, 2020).  

 

1.2. Protein Structure Determination and Prediction 

 

Predicting and determining the structure of specific proteins enable a better understanding of the 

molecular mechanisms of diseases and allow us to infer protein function (McGuffin, 2008). 

Anfinsen demonstrated in the 1970s, that all information about the protein folding is contained 

within its own protein sequence (also known as Anfinsen’s dogma or the thermodynamic 

hypothesis) (Anfinsen, 1973; Williamson, 2012a). This means that the prediction of the 3D 

structure is theoretically possible solely utilising the information from the amino acid sequence. 

Notwithstanding, some proteins which may perform their function in the unfolded or disordered 
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state. These proteins are known as intrinsically disordered proteins (IDP) and make up almost a 

third of the protein sequences (Dorn et al., 2014; Dunker et al., 2001; Tompa & Csermely, 2004; 

Uversky, 2002; Wright & Dyson, 1999). There have been many efforts by groups to understand 

protein folding and to develop accurate structure prediction methods that used the protein sequence 

information and our knowledge of known structures. In this section, the experimental and 

computational methods used to determine and predict protein structures will be introduced (Dorn 

et al., 2014; Guo et al., 2008).  

 

1.2.1 Experimental Methods for Protein Structure Determination 

 

The experimental methods have played the key part in the elucidation of the protein structures 

since the structure of myoglobin was firstly solved using x-ray crystallography in 1958 (Brändén 

& Tooze, 1991; Fletterick, 1992). The protein-ligand and protein-protein interactions are 

determined but the shape or fold of the protein, so determining protein structures has a significant 

role in determining their functionality (Dorn et al., 2014; Dunker et al., 2001; Tompa & Csermely, 

2004; Uversky, 2002; Wright & Dyson, 1999). A knowledge of the interactions occurring within 

and between proteins and ligands may enable further studies, such as new diagnostic methods, 

enzyme engineering, drug discovery and development and disease-related proteins (Dorn et al., 

2014; Dunker et al., 2001; Tompa & Csermely, 2004; Uversky, 2002; Wright & Dyson, 1999). 

The determination of the protein structures may also provide alternative perspectives for therapy 

in disease caused by protein misfolding, including Parkinson’s (Hughes et al., 2017) and 

Alzheimer's (Ashraf et al., 2014) 

 

X-ray crystallography, Nuclear Magnetic Resonance spectroscopy (NMR) and Cryo-Electron 

Microscopy (Cryo-EM) are the main experimental methods that provide the most information for 

determining 3D protein structures. While the approaches have different procedures, they each give 

information about the relative 3D positions of each atom in a protein structure (Jöbstl et al., 2006; 

Petsko & Ringe, 2004; Williamson, 2012b). X-ray crystallography and Nuclear Magnetic 

Resonance spectroscopy are generally the preferred “gold-standard” methods for determining 

protein structures, while Cryo- EM is a more recent development, which is improving for the 
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elucidation of larger complexes albeit at lower resolution (Jöbstl et al., 2006; Petsko & Ringe, 

2004; Williamson, 2012b). 

 

1.2.1.1 X-ray Crystallography 

 

X-ray crystallography is the most productive method in terms of determining the protein structures 

at atomic resolution (Jöbstl et al., 2006; Petsko & Ringe, 2004; Williamson, 2012b). In the first 

stage, X-ray crystallography requires purification to obtain the protein samples at a high enough 

concentration for crystallisation. Following crystallisation, in the second stage, X-rays are fired 

through the crystals, which interact with the electrons and then are scattered by them as defined 

by Braggs law (Bragg et al., 1913; Brändén & Tooze, 1991; Matthews, 1975; Petsko & Ringe, 

2004; Williamson, 2012b). The 3-D atomic positions are then calculated from the electron density 

maps and are then refined using computational and chemical approaches to provide the resolved 

3-D structures. For globular proteins X-ray crystallography is very successful, however, the 

method may not be applied to flexible or disordered regions of proteins (these regions cannot be 

resolved) and membrane proteins are often problematic (Drenth, 1999; Petsko & Ringe, 2004; 

Williamson, 2012b). 

 

1.2.1.2 Nuclear Magnetic Resonance (NMR) 

 

NMR can be used in solution without crystallisation, but the proteins should be soluble and its 

principle relies on the absorption of energy to provide a transition from one state to another state 

(Jöbstl et al., 2006; Petsko & Ringe, 2004; Williamson, 2012b). The states are two different nuclear 

spins, up and down, in a strong magnetic field and the magnetic resonance can be used to identify 

the distinctive resonance of each atom position (Heinemann et al., 2002; Petsko & Ringe, 2004). 

The observed characteristic resonances gives information about the position of the atoms in the 

structure (Drenth, 1999; Heinemann et al., 2002; Petsko & Ringe, 2004). If X-ray and NMR 

methods are applied to the same protein structure, then roughly similar structures should be found. 

Nevertheless, X-ray crystallography provides much more information about the structure and 
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higher resolution structures may be obtained compared to NMR (Drenth, 1999; Petsko & Ringe, 

2004; Williamson, 2012b). 

1.2.1.3 Cryogenic Electron Microscopy (Cryo-EM) 

 

Recent developments in the electron microscopy and imaging technology enable determination of 

large protein complexes with Cryo-EM at relatively high resolutions (~1.25-1.5Å) (Yip et al., 

2020). The determination process starts with the vitrification step, where samples are cooled at 

cryogenic temperature around –180 °C (Cabra & Samsó, 2015; Cho et al., 2013; Schmidt & 

Urlaub, 2017). The experimental stage is followed by image processing using advanced 

computational software to represent the 3D models (Murata & Wolf, 2018). The preparation of the 

samples may still be time-consuming, and the experimental procedure is relatively costly. 

Furthermore, determining high-resolution structures may not be possible depending on the 

thickness of the sample in ice (Cabra & Samsó, 2015; Cho et al., 2013; Costa et al., 2017; Jonic & 

Vénien-Bryan, 2009; Murata & Wolf, 2018; Schmidt & Urlaub, 2017) 

 

1.3 Protein Sequence and Structure Databases 

 

There are several core databases for protein sequences and three-dimensional structures, such as 

The Universal Protein Resource (UniProt), The National Center for Biotechnology Information 

(NCBI), the Protein Data Bank (PDB), the Structural Classification of Proteins (SCOP) and CATH 

(Class Architecture Topology Homology). Uniprot includes identified functional and sequence 

documentation of proteins and genomes and research literature used to collect the data (UniProt 

Consortium, 2008, 2015, 2011). More than 235 million protein sequences are also available in the 

Uniprot database (UniProt Consortium, 2008, 2015, 2011).  

 

The Protein Data Bank (PDB) also contains protein structures obtained by X-ray crystallography, 

NMR, cryo-electron microscopy. (Brändén & Tooze, 1991; Fletterick, 1992; Sherry et al., 2001). 

By the end of September 2020, there have been 168,888 structures made available in the PDB; 

149,528 structures determined by X-ray crystallography, 13,120 structures by NMR, and 5,740 
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structures by electron microscopy (Berman et al., 2000; Bernstein et al., 1977). The PDB is a 

critical resource in terms of structural biology enabling researchers worldwide to freely access 

protein structure data and the PDB enables scientists to obtain and upload new structures 

(Bernstein et al., 1977). The atomic positions and related information about the crystal structure 

of the experimentally determined protein structure are stored in the PDB file format as seen in 

Figure 1.1. 

 

Figure 1. 1 PDB file format 
Adapted from https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html. 

 

Structural Classification of Proteins (SCOP) (Andreeva et al., 2008; Lo Conte et al., 2000) and 

CATH (Class Architecture Topology Homology) (Sillitoe et al., 2015) provide a hierarchical 

classification of proteins allowing researchers to study the similarities between protein structural 

domains, sequences and functions for all known structures.  

 

1.3.1 Protein Sequence-Structure Gap  

 

While the experimental methods for determining protein sequences are now automated, rapid and 

very cheap, the experimental methods for determining protein structure often encounter many 

difficulties in the cloning, expression and purification stages of the process. In addition, the 

experimental procedure can often lead to inadequate quality of crystals and reaching these steps 

can often be time consuming and expensive. Moreover, due to these time and cost constraints, the 

experimental methods are not yet efficient enough to determine the structures of all proteins, so 

there has been a significant widening gap between known protein sequences and solved 3D 

structures (Roche et al., 2014; Roche & McGuffin, 2016b).  
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Approximately 168,888 protein three-dimensional structures that have been determined by the 

experimental methods are available in the Protein Data Bank, whereas the UniProt database just 

hosts roughly 235 million protein sequences at the present time (Berman et al., 2000; UniProt 

Consortium, 2008, 2015; Westbrook et al., 2003). Recent developments in DNA sequencing, next-

generation sequencing and proteogenomics have revealed millions of protein sequences. Just 

roughly one percent of the protein sequences in Uniprot have known structures, therefore the pace 

of the experimental methods for the determination of 3D protein structures is still far away from 

reaching that of sequencing methods (Kaján et al., 2014; Roche & McGuffin, 2016b). It is obvious 

that presently in silico modelling for predicting structures from the sequence is the only way to 

bridge the gap between known sequences and structures (UniProt Consortium, 2008, 2015, 2011). 

 

1.4 Computational Studies on Protein Structures 

 

In this section, the general computational methods for studying protein structures will be 

introduced and discussed. There has been a growing interest in predicting protein structures using 

computational methods as they enable scientists to predict 3D locations of atoms without spending 

the time and resources required for experimental methods. Nevertheless, the prediction of 3D 

structures at high accuracy has been a significant challenge for bioinformatics. 

  

The process of computational modelling of protein structures includes steps starting from the 

prediction of the protein fold and ending with the assessment and refinement of 3D predicted 

models. Predicting protein structures with template free (FM) and template-based modelling 

(TBM) can produce many alternative models with different conformations (Adiyaman & 

McGuffin, 2019). These alternative models should then be evaluated using quality estimation tools 

to predict the most native-like structures and then they must be refined to bring them even closer 

to the actual structure (Bhattacharya & Cheng, 2013a; Roche et al., 2013a; Shuid et al., 2017). The 

accuracy of the predicted models is a key factor if they are to be usefully applied to help solve real 

world biological problems or be used in further computational studies such as, drug design, protein 

docking and the prediction of protein function. 
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1.4.1 Computational Protein Structure Prediction 

 

There are two main strategies for predicting protein structures: Template-Based Modelling, or 

TBM (including homology modelling and fold recognition methods), and template-Free 

Modelling, or FM (including ab initio and fragment assembly methods). In general, the most 

successful methods have traditionally used a template-based approach, which relies on the usage 

of the experimental structures of related protein families as templates in order to predict the target 

structure. If the target sequence has similar protein families with the experimentally determined 

3D structures, then template-based modelling methods can enable more accurate prediction 

compared to others (Dorn et al., 2014; Pavlopoulou & Michalopoulos, 2011; Roche & McGuffin, 

2016b). Fold recognition and threading methods are also useful in case of low sequence similarity 

to build 3D models. Conversely, template-free modelling or ab initio prediction methods can be 

used to predict the structures in cases where suitable templates are unavailable. It is better to apply 

TBM to predict protein structures as a first step, but ab initio methods should be applied in the 

event where no suitable fold templates can be found (Dorn et al., 2014; Pavlopoulou & 

Michalopoulos, 2011; Roche & McGuffin, 2016b).. 

 

1.4.1.1 Template-Based Modelling 

 

Template-based modelling is a much more accurate approach to predict structures by utilising the 

evolutionary relationship based on the similarity with the protein structures having the similar 

protein families and sequences (Dorn et al., 2014; Guo et al., 2008; Pavlopoulou & Michalopoulos, 

2011; Roche & McGuffin, 2016b). If the target sequences are derived from the same families as 

those with known structures, then the structures can be predicted by using the defined closest 

homolog as a template. Thus, the most simple method is called homology modelling, and this can 

predict protein structures by identifying experimentally determined structures with similar 

sequences (Bourne & Shindyalov, 2005; Dorn et al., 2014; Guo et al., 2008; Pavlopoulou & 

Michalopoulos, 2011; Rangwala & Karypis, 2010; Roche & McGuffin, 2016b). There is a growing 
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trend in applying the approach to proteins as the availability of protein structures determined by 

experimental methods gradually increases. The increase in known structures has led to an increase 

in the accuracy of predictions that can be obtained via homology modelling (Bourne & Shindyalov, 

2005; Dorn et al., 2014; Guo et al., 2008; Pavlopoulou & Michalopoulos, 2011; Rangwala & 

Karypis, 2010; Roche & McGuffin, 2016b; Xiang, 2006).  

 

Fold recognition is one of the widely preferred methods using similar folds or parts of folds 

(subdomains) as templates in order to predict protein structures in the absence of clear homologous 

protein sequences and structures (Peng & Xu, 2009). Proteins in different families can have similar 

structures, without having sequence similarity. Utilising fold recognition enables the prediction of 

target structures that are likely to share the same folds as determined structures (McGuffin, 2008b). 

There is no need for sequence similarity between queries and templates that have similar folding 

patterns, and there is no need to have identified similar protein families, as in homology modelling 

(Bourne & Shindyalov, 2005; Dorn et al., 2014; Guo et al., 2008; Pavlopoulou & Michalopoulos, 

2011; Rangwala & Karypis, 2010; Roche & McGuffin, 2016b; Xiang, 2006). The availability of 

the Protein Data Bank and other 3D structure repositories, such as SCOP, has made it easier to 

study the similarity in fold patterns among templates with different sequences, in addition to 

identifying sequences with novel folds (Jones, 2000; McGuffin, 2008a). Fold recognition methods 

are generally more computationally intensive, and the predictions are based on the similarity with 

known folds. Therefore, these factors may limit the accuracy of the predictions made by the fold 

recognition methods (Jones, 2000; McGuffin, 2008a, 2008b). 

 

1.4.1.2 Template Free Modelling  

 

Template-free modelling (FM), also traditionally known as ab initio modelling is useful for 

predicting protein structures when a suitable template is unavailable. Such methods use physical, 

chemical, and thermodynamic principles to predict protein structure (Dorn et al., 2014; 

Pavlopoulou & Michalopoulos, 2011). Ab initio protein structure prediction is typically only used 

in the case of undetectable similarity between structures and sequences. These methods can be 

used to predict structures for small protein sequences having up to ~150 amino acids in order to 
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get accurate predictions without using known template structures  (Dill et al., 2007; Lee et al., 

2009). There is no direct use of known protein templates while predicting structures, and 

predictions are made by utilising energy functions and various modelling algorithms from its 

sequence as stated in Anfinsen's hypothesis (Anfinsen, 1973; Anfinsen et al., 1961; McGuffin, 

2008a; Tramontano et al., 2008). Ab initio approaches can enable prediction of undetermined 

protein structures, but the accuracy of predicted models is often far lower when compared to those 

obtained via TBM (McGuffin, 2008a; Roche et al., 2013a). Ab initio also requires intensive 

computational resources and large conformational searches during the prediction of 3D models 

(McGuffin, 2008a; Roche et al., 2013a). Recent attempts focus on reducing the resources, the 

implications of the theoretical fundamentals and understanding of folding patterns (Allen et al., 

2001; McGuffin, 2008a; Pande et al., 1998). Current applications of deep learning and machine 

intelligence have considerable potential for more accurate FM protein structure prediction since 

deep learning approaches were used to predict contacts to build 3D models in CASP13 (see 

Chapter 5) (Greener et al., 2019; Senior et al., 2019, 2020). AlphaFOLD which showed impressive 

performance in CASP13 employed different deep learning methods for FM prediction by not using 

knowledge of available structures, and its predictions were also based on deep distance prediction 

neural network utilising evolutionary covariation data (Senior et al., 2019, 2020). Some of the 

most widely used structure prediction tools and webservers are also listed in Table 1.2. 
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Name program ad servers  URL 

PconsFold2 (Michel et al., 2017) https://github.com/ElofssonLab/ 

RaptorX-Contact (Wang et al., 2017) http://raptorx.uchicago.edu/ContactMap/ 

RBO_aleph (Mabrouk et al., 2015) http://compbio.robotics.tu-

berlin.de/rbo_aleph/ 

Rosetta (Das and Baker, 2008) https://www.rosettacommons.org/ 

Seok-assembly (Ko et al., 2012) 

 

http://galaxy.seoklab.org 

QUARK (Xu and Zhang, 2012)  https://zhanglab.ccmb.med.umich.edu/QUA

RK/ 

HHpred (Hildebrand et al., 2009) https://toolkit.tuebingen.mpg.de/#/tools/hhpr

ed 

I-TASSER (Roy et al., 2010) https://zhanglab.ccmb.med.umich.edu/I-

TASSER/ 

IntFOLD (McGuffin et al., 2019) https://www.reading.ac.uk/bioinf/IntFOLD/ 

LOMETS (Wu and Zhang, 2007) https://zhanglab.ccmb.med.umich.edu/LOM

ETS/ 

MODELLER (Fiser et al., 2000) https://salilab.org/modeller/ 

PCONS (Wallner and Elofsson, 2006) http://pcons.net/ 

SWISSMODEL (Arnold et al., 2006; Biasini 

et al.,2014; Bordoli et al., 2009) 

 

http://swissmodel.expasy.org/workspace/ 

Rosetta (Das and Baker, 2008)  https://www.rosettacommons.org/ 

DMPfold (Greener et al., 2019) https://github.com/psipred/DMPfold 

 

Table 1. 2 List of some of the most popular server/programs for the prediction of 3D models. 
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1.5 The Critical Assessment of Techniques for Protein Structure Prediction 

 

There has been a clear need to objectively test the reliability and capability of prediction programs 

and methods with sequences from unreleased experimentally determined structures. The Critical 

Assessment of Techniques for Protein Structure Prediction (CASP), which has been thought of as 

the “World Protein Structure Prediction Championships” or “Olympic Games of protein structure 

prediction” was firstly organised under the leadership of John Moult and his colleagues in 1994 

(Fischer et al., 1999; Moult et al., 2005). CASP is a blind prediction experiment carried out every 

other year usually from May to September to effectively assess strategies aimed at modelling 

native-like structures from amino acid sequences. The competition involves a wide range of 

prediction groups from all around the world and evaluates improvements of methods in many 

prediction categories using a blind assessment process.  

 

The CASP process starts with the determination of selected primary structure and the solution (or 

imminent solution) of the 3D protein structure by X-ray or NMR. The target sequences are given 

to predictor groups who will then predict structures and produce models prior to the release of the 

experimental data. Thus, predictors do not have any prior knowledge of the solved 3D structures 

before they are released. The ranking and assessment of prediction methods is made by 

independent assessors, who do not know the identities of the prediction groups, to ensure a reliable 

process performance. The predicted models and related data are evaluated by the CASP committee, 

who utilise mainly scoring methods based on the superposition of C-alpha atoms in the predicted 

and observed structures (Moult et al., 2014, 2016). The CASP experiments carry out a systematic 

and objective evaluation of the participating prediction methods, in the following prediction 

categories: tertiary structure prediction using template-based and template-free modelling, residue-

residue contact prediction, disordered regions prediction, function prediction, model quality 

assessment, model refinement, protein-protein interactions; oligomerisation state and binding site 

prediction (Moult et al., 2009; Roche & McGuffin, 2016b). These prediction categories aim to 

provide a platform for the prediction groups to evaluate their performance strengths within the 

specific areas of their protein structure to function pipelines (Moult et al., 2014, 2016).  
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1.6 Model Evaluation 

 

Predicting protein structures with either TBM or FM methods is challenging. Often many dozens 

or hundreds of alternative different 3D models are produced in the process of prediction, and it is 

often difficult to identify the most accurate model from among many alternatives. There is a need 

to assess the models to discover the most native-like models, thus various Model Quality 

Assessment Programs (MQAPs) have been developed in order to evaluate the alternative models, 

producing global and local quality scores for each model (McGuffin & Roche, 2010). Both the 

local and global errors, including unusual bonds and angles in alternative models, may be 

identified using MQAPs to evaluate the quality of predicted models. In the early years of CASP, 

basic stereochemical checks and simple energy functions were used for evaluation of models, 

however these initial approaches have been followed by more sophisticated methods to score the 

accuracy of 3D models. 

 

The early methods were those which simply checked the stereochemical quality of the models, 

such as those used to validate structures obtained by NMR and X-ray crystallography, i.e. by using 

the Ramachandran plot which enables knowing possible combinations of φ, ψ dihedral angles 

(Ramachandran et al., 1963). The approach has been used to recognise unusual bonds in methods 

such as PROCHECK (Laskowski et al., 1993), WHAT-CHECK (Hooft et al., 1996), and 

MolProbity (Chen et al., 2010; Davis et al., 2004). PROCHECK helps to analyse global and local 

geometrical properties, and PROCHECK-NMR can be used to check protein structures acquired 

by NMR to know their reliability (Laskowski et al., 1993, 1996). Errors in protein crystal structure 

can also be found with WHAT-CHECK (Hooft et al., 1996). MolProbity is a more developed tool 

to optimise the hydrogen-bonding network and clashes (Chen et al., 2010; Davis et al., 2004). 

While these basic checks are important, such initial methods cannot be used to rank alternative 

folds and they do not provide a global score to distinguish correct models from incorrect ones, 

moreover, incorrect models can still have correct stereochemistry. 

 

There are currently three main categories of quality assessment methods: the single-model 

methods, the clustering-based methods and the quasi single-model methods. The single model 
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methods are able to produce a global score for each predicted model separately in low availability 

of the models, and it is fair to say that the approach is fast, and such methods can produce 

reasonably consistent scores. However, the single model approach can be less accurate at 

producing global scores in cases where a wide variety of multiple 3D models are available for a 

given target (Maghrabi & McGuffin, 2017; McGuffin, 2007; McGuffin & Roche, 2010; Wallner 

& Elofsson, 2007). VERIFY 3D was one of the traditional MQAPs used to determine the local 

compatibility of the models by using their sequences (Eisenberg et al., 1997). PROSA-web was 

also later developed used for checking 3D structures (Wiederstein & Sippl, 2007), along with other 

single-model methods such as MetaMQAP (Pawlowski et al., 2008) and QMEAN, which used  

composite scoring functions (a combination of many scores) in order to assess the local and global 

quality of predicted models (Benkert et al., 2008, 2009). 

 

The consensus, or clustering-based, multiple model approach is useful to produce quality scores 

in case of low similarity between many alternative models, and the approach can be used to 

compare multiple models simultaneously. The approach is more accurate, but computationally 

intensive compared to single-model methods. However, the selection of the best model is not 

always possible by using clustering-based methods compared to the single model methods 

(McGuffin & Roche, 2010; Roche et al., 2014). 3D-Jury was perhaps the initial approach program, 

which was based on grouping together models with similar conformations via all against all 

structural comparisons (Ginalski et al., 2003). The SPICKER method has also been developed 

using the k-means algorithm to select the most accurate models by structural clustering (Zhang & 

Skolnick, 2004a). The MULTICOM series of methods also use a clustering-based approach to 

assess predicted models with machine learning and hybrid techniques (Cheng et al., 2009). Other 

clustering-based tools include QMEANclust (Benkert et al., 2009), ModFOLDclust2 (McGuffin, 

2009; McGuffin & Roche, 2010) and Pcons (see chapter 2) (Larsson et al., 2009; Lundström et al., 

2001; Wallner & Elofsson, 2007) 

 

The quasi-single model approach is an important development of model quality assessment 

programs. Such methods can produce scores with similar accuracy to the clustering-based methods 

in case of submission of multiple models, yet they also have the ability to make an assessment for 

a single model at a time (McGuffin et al., 2013; Roche et al., 2014). The quasi-single model 
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approach was first used in the development of the ModFOLD4 server and a more detailed 

description of the ModFOLD server will be given in Chapter 2.  

 

1.7 Model Refinement 

 

Further computational studies such as function prediction, drug design and protein-protein and 

protein-ligand docking often require highly accurate predicted 3D models for comprehensive in 

silico studies (Bonneau et al., 2001; Brylinski & Skolnick, 2008; Ekins et al., 2007; Feig, 2017; 

Laskowski et al., 2005; Mirjalili et al., 2014; Mirjalili & Feig, 2013; Oren et al., 2006; Roy et al., 

2010; Wieman et al., 2004; Zhang, 2009). The process of improving the quality of 3D models is 

referred to as refinement and it is often used as the “last mile” for moving 3D models closer to the 

actual structures. Thus, refining predicted 3D models generated by either TBM or FM aims to 

increase their accuracy towards the native basin (Adiyaman & McGuffin, 2019). Despite the 

success in the improvement of TBM and FM over the years, predicted models may still include 

local and global errors including: unfavourable contacts, irregular hydrogen bonds, geometrical 

clashes and unrealistic bond lengths and angles (Bhattacharya & Cheng, 2013a; Hovan et al., 2018; 

Kryshtafovych et al., 2005; McGuffin et al., 2013; Moult, 2005). In some cases, errors may affect 

the utility of the 3D models, where near experimental accuracy is needed. To fix these types of 

errors, the refinement of the structures has been a crucial part of the prediction pipeline for further 

studies, what is also referred to as the “end-game” for structure prediction (Nugent et al., 2014; 

Shuid et al., 2017). Refinement of 3D models also includes the modification of the secondary 

structure elements, loops and sidechains. Importantly, it should be noted that these local and global 

errors may be successfully identified using Model Quality Assessment Programs (MQAPs), and 

the detected errors might be a useful guide for a targeted refinement process (Bhattacharya & 

Cheng, 2013a; McGuffin et al., 2013; Roche et al., 2013a).  

 

Refinement of 3D models of proteins remains an unsolved problem. Recent attempts at increasing 

the accuracy of the predicted models have often resulted in the deterioration of accuracy; it is often 

challenging to improve upon the quality of the starting models (Adiyaman & McGuffin, 2019; 

Giorgetti et al., 2005; Meiler & Baker, 2003; Oren et al., 2006; Qian et al., 2007; Sliwoski et al., 
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2014; Terashi & Kihara, 2018; Zhang, 2009). The refinement of a 3D model, particularly one 

predicted by TBM, is more likely to result in a deterioration in quality, compared to the initial 

structures, if the model is already based on a known structure and if it is already highly accurate. 

It is also worthy of note that refinement of 3D models predicted by FM is possibly more efficient, 

compared to refinement of TBM models, as there is more likely to be room for improvement (FM 

models are often less accurate) (Feig, 2017; Gront et al., 2012; MacCallum et al., 2009, 2011; 

Nugent et al., 2014). The success of the refinement approaches is based on two-important stages, 

which are both needed to consistently refine protein structures: the sampling stage and the scoring 

stage (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011). Firstly, the 3D models 

generated by the sampling approaches should be (on average) closer to the native state compared 

to the initial model. Secondly, the most improved models from among all generated models must 

be identified via the scoring approaches in order to complete a successful refinement process 

(Adiyaman & McGuffin, 2019). Different refinement approaches have been tried and tested over 

a decade of CASP experiments. Nonetheless, a refinement approach that always leads to consistent 

improvement has not yet been found. In CASP experiments, the best-predicted 3D models have 

often been identified and then assigned as the refinement targets, which makes the refinement 

process more difficult (less room for improvement, more opportunity to deteriorate), and so this 

may also be a limiting factor for the refinement category (Adiyaman & McGuffin, 2019).   

 

1.7.1 Sampling Approaches in the Refinement Pipelines 

 

There are two main categories of sampling tools: the fully-automated server-based programs and 

non-server-based highly CPU intensive approaches, also known in CASP as “human/manual” 

refinement methods (Adiyaman & McGuffin, 2019; Modi & Dunbrack, 2016; Nugent et al., 2014; 

Shuid et al., 2017). Different combinations of the knowledge-based methods (Bhattacharya et al., 

2016; Bhattacharya & Cheng, 2013a, 2013b; Chopra et al., 2010; Jagielska et al., 2008; Lin & 

Head-Gordon, 2011; Lu & Skolnick, 2003; Mirjalili et al., 2014; Misura & Baker, 2005; Nugent 

et al., 2014; Rodrigues et al., 2012; Xu & Zhang, 2011; Zhang, 2009), Monte Carlo simulations 

(Han et al., 2008; Jagielska et al., 2008; Kim et al., 2009; Leaver-Fay et al., 2013; Lin & Head-

Gordon, 2011; Misura & Baker, 2005; Ovchinnikov et al., 2018; Song et al., 2013), physics-based 
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potentials (Chen & Brooks, 2007; Fan & Mark, 2004; Gront et al., 2012; Ishitani et al., 2008; 

Jagielska et al., 2008; Kannan & Zacharias, 2010; Lin & Head-Gordon, 2011; Summa & Levitt, 

2007), and MD simulations (Chen et al., 2008; Chen & Brooks, 2007; Fan & Mark, 2004; Feig, 

2016; Gront et al., 2012; Ishitani et al., 2008; Kannan & Zacharias, 2010; Khoury et al., 2014, 

2017; Lee et al., 2016, 2001; Lindorff-Larsen et al., 2010, 2011; Mirjalili et al., 2014; Mirjalili & 

Feig, 2013; Raval et al., 2012; Shuid et al., 2017; Zhu et al., 2008) are used in the sampling stage 

to generate near-native conformations. 

 

Automated server-based refinement methods rely on the optimisation of side-chain and the 

minimisation of the structural energy utilising the knowledge of protein structures (Khoury et al., 

2017; MacCallum et al., 2009, 2011; Shuid et al., 2017). Automated server-based approaches are 

also practical and scalable, but their changes to the initial predicted models may be seen as minor, 

or more conservative, in comparison with the less automated more intensive methods (MacCallum 

et al., 2009, 2011). The fully automated approaches performed much better in the earlier CASP 

experiments (CASP8, and CASP9), compared to other manual approaches as MD-based methods 

were not successful at directing the generation of 3D models towards the native basin (Khoury et 

al., 2014, 2017; MacCallum et al., 2009, 2011). It should be noted that dramatic structural 

deviations from the native basin have not been observed in the models generated by the automated 

approaches as much as in the manual sampling methods. Nevertheless, the more risk-averse 

approaches have not shown significant performance in terms of improving the quality of the poorly 

predicted initial structures, where there is plenty of room for improvement (Feig, 2017; Gront et 

al., 2012; Hovan et al., 2018; Modi & Dunbrack, 2016; Nugent et al., 2014). Despite the early 

relative successes of the automated server-based refinement programs, in the more recent CASP 

experiments they were less successful compared to the “human” refinement methods, which often 

use intensive MD approaches (Feig, 2017; Gront et al., 2012; Hovan et al., 2018; Modi & 

Dunbrack, 2016; Nugent et al., 2014).  

 

Non-server-based highly CPU intensive approaches are based on the generation of models running 

MD simulations utilising physics-based force fields, and smart restraints by taking advantage of 

parallel computing processing units (GPUs) and/or CPUs (Feig, 2017; Heo & Feig, 2018b; Hovan 

et al., 2018; Modi & Dunbrack, 2016; Nugent et al., 2014). MD-based protocols allow for the 
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elimination of atomic clashes, the examination of the molecular geometries and the usage of the 

combination of templates by way of force fields (Feig, 2017). Such methods have also reached an 

important stage in terms of using the knowledge of the available structures in CASP experiments 

(Chen & Brooks, 2007; Feig & Mirjalili, 2016; Jagielska et al., 2008; Joo et al., 2007; Mirjalili et 

al., 2014; Mirjalili & Feig, 2013).  

 

The Shaw group primarily developed an MD-based approach with the usage of a physics-based 

potential, and this protocol was also used for the refinement of CASP9 targets (Adiyaman & 

McGuffin, 2019; Lindorff-Larsen et al., 2011, 2012; Raval et al., 2012). However, the simulation 

time was found to be very long (100 µs) for a target, and flaws in the force field lead to substantial 

structural deviations from the native basin (Adiyaman & McGuffin, 2019; Lindorff-Larsen et al., 

2011, 2012; Mirjalili & Feig, 2013; Raval et al., 2012). 

 

The Feig group also developed an MD-based approach using C-alpha restraints to avoid structural 

deviations of refined models, the CHARMM force field; and an accuracy estimation to filter 

decoys (Chen & Brooks, 2007; Feig, 2017; Feig & Mirjalili, 2016; Mirjalili et al., 2014; Mirjalili 

& Feig, 2013). The method developed by Feig group was firstly tested in CASP10 and found to 

be the most successful refinement method due to the usage of an improved version of the force 

field, C-alpha restraints, and ensemble averaging stage in explicit solvent conditions (Chen & 

Brooks, 2007; Feig, 2017; Feig & Mirjalili, 2016; Mirjalili et al., 2014; Mirjalili & Feig, 2013). 

Nevertheless, the MD-based approach also requires highly intensive computational resources 

(75,000 core hours,12 days on 256 cores on average). This length of the simulation time may not 

be feasible for large-scale structures and refinement pipelines (Chen & Brooks, 2007; Feig, 2017; 

Feig & Mirjalili, 2016; Mirjalili et al., 2014; Mirjalili & Feig, 2013; Nugent et al., 2014).  

 

MD-based methods are a practical approach in case of a low number of small protein targets, but 

the practicality and the success rate decrease when the number of targets and/or model size 

increases. A high number of protein structures brings with it a high computational cost for MD-

based approaches, and so applying the approach routinely to multiple targets and models would be 

highly time-consuming and impractical. However, the increasing potential of optimised physics-

based force fields, parallel computing on the GPU and CPU and smart constraints, enables more 
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effective MD-based refinement protocols to become practical (Adiyaman & McGuffin, 2019; Best 

et al., 2008, 2012; Feig, 2017; Hovan et al., 2018; Huang et al., 2017; Lindorff-Larsen et al., 2010; 

Maier et al., 2015; Mirjalili & Feig, 2013; Robertson et al., 2015). MD-based approaches are 

widely used by prediction groups participating in recent CASP experiments due to these 

improvements, and eight of the top ten groups attended were using MD-based approaches in 

CASP12 (Best et al., 2008, 2012; Hovan et al., 2018; Huang et al., 2017; Lindorff-Larsen et al., 

2010; Maier et al., 2015; Mirjalili & Feig, 2013; Robertson et al., 2015). There is still a growing 

need to have faster and more consistent methods, which will enable the practical refinement of a 

large number of protein models. The accuracy of the force fields for simulating the structures is 

also an important factor to move 3D models towards experimental accuracy because force fields 

are used in MD-based protocols to determine atomic interactions in 3D models (Feig, 2017; 

MacKerell et al., 2001, 2004).  

 

Chemistry at Harvard Macromolecular Mechanics (CHARMM) c22/CMAP (MacKerell et al., 

2004) and c36 (Best et al., 2012) and the AMBER ff14SB (Maier et al., 2015) and 12SB 

(Ovchinnikov et al., 2016; Research Computing Documentation contributors, 2018) force fields 

are the most popular force fields used in the MD-based protocols to sample 3D models (Cheng et 

al., 2017; Heo & Feig, 2018b; Khoury et al., 2014; Ovchinnikov et al., 2018). The force field 

parameters are trained using the knowledge of native structures to model the structure. However, 

they still need further improvements in the parameterisation of potential energy functions to 

accurately simulate the interactions in the structures. Due to flaws in force fields, refinement 

processes may not always direct the models towards the native state (Adiyaman & McGuffin, 

2019; Feig, 2017; Jagielska et al., 2008; Mirjalili et al., 2014; Mirjalili & Feig, 2013; Summa & 

Levitt, 2007). 

 

Imperfect force fields may cause structural deviations from the native basin (Jagielska et al., 2008; 

Summa & Levitt, 2007). To avoid such deviations, different restraint strategies are applied to guide 

the MD-simulations towards the native basin (Mirjalili et al., 2014; Mirjalili & Feig, 2013). 

Unrestrained MD-based sampling strategies also result in quick deviations away from the native 

state (Chen & Brooks, 2007; Hovan et al., 2018; Mirjalili & Feig, 2013; Park et al., 2012; Raval 

et al., 2012; Summa & Levitt, 2007). It should be noted that the application of the restraint may 
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also limit the conformational space for the structures. Applying strong restraints on the initial 

structure may not allow as much improvement in the global quality as would be needed in order 

to reach near-experimental accuracy (Chen & Brooks, 2007; Hovan et al., 2018; Mirjalili & Feig, 

2013; Park et al., 2012; Raval et al., 2012; Summa & Levitt, 2007). For this reason, the 

determination of the magnitude of the restraint force has been a crucial parameter for the extent of 

MD simulations (Chen & Brooks, 2007; Feig, 2016; Feig & Mirjalili, 2016; Hovan et al., 2018; 

Mirjalili et al., 2014; Mirjalili & Feig, 2013; Park et al., 2012; Raval et al., 2012; Summa & Levitt, 

2007). 

 

Different prior knowledge has been utilised to restrain either the whole structure, or specific 

regions, during the MD simulations to prevent 3D models from undesired deviations. The 

determination of which regions to restrain and which to leave unrestrained is likely to be a major 

determinant of success (Cao et al., 2003; Feig, 2017; Ishitani et al., 2008; Xu & Zhang, 2011). 

Various restraint strategies have made significant progress in successive CASP experiments to 

generate improved 3D models compared to the initial structures (Cao et al., 2003; Feig, 2017; 

Ishitani et al., 2008; Liu et al., 2018; Seemayer et al., 2014; Xu & Zhang, 2011).  

 

1.7.2 Scoring Approaches in the Refinement Pipelines 

 

A significant part of refinement pipelines is the identification of the most improved models in 

comparison with the initial structure from among tens or hundreds of 3D models generated by the 

sampling approaches. The similarity between alternative 3D models that are sampled in the 

refinement pipeline is quite high due to the same initial structural properties. Therefore, the 

consistent selection of the most near-native conformations remains elusive using current 

approaches, such as energy functions and quality estimation tools (Adiyaman & McGuffin, 2019; 

Alford et al., 2017; Chen & Brooks, 2007; Feig, 2017; Feig & Mirjalili, 2016; Gront et al., 2012; 

Kumar et al., 2015; Larsen et al., 2014; Lee et al., 2016; Lu & Skolnick, 2003; Mirjalili & Feig, 

2013; Olson & Lee, 2014; Park et al., 2015; Rykunov & Fiser, 2010; Stumpff-Kane et al., 2007; 

Yang & Zhou, 2008a; Zhang et al., 2011; Zhang & Skolnick, 2004a, 2004b).  
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The concept of energy functions is based on Anfinsen’s hypothesis which states that the native 

state of a protein structure has the lowest free energy (Anfinsen, 1973; Heo & Feig, 2018b). 

Therefore, it is assumed that the conformations with lowest potential/free energies are near the 

native state. Different energy function-based methods including DFIRE (Yang & Zhou, 2008a), 

DDFIRE (Yang & Zhou, 2008a), RW+ (Zhang & Zhang, 2010), and Rosetta energy functions 

(Adiyaman & McGuffin, 2019; Alford et al., 2017; DiMaio et al., 2009; Feig, 2017; Feig & 

Mirjalili, 2016; Tyka et al., 2011; Zhang & Zhang, 2010) have been used to identify the most-

native like conformations generated in refinement pipelines (Adiyaman & McGuffin, 2019; Alford 

et al., 2017; DiMaio et al., 2009; Feig, 2017; Feig & Mirjalili, 2016; Tyka et al., 2011; Zhang & 

Zhang, 2010). Nevertheless, no energy function can be used to achieve clear and consistent 

selection of the improved models (Adiyaman & McGuffin, 2019; Alford et al., 2017; DiMaio et 

al., 2009; Han et al., 2008; Heo & Feig, 2018b; Kim et al., 2009; Kuhlman et al., 2003; Kuhlman 

& Baker, 2000; Leaver-Fay et al., 2013; Mirjalili & Feig, 2013; Park et al., 2016; Rohl et al., 2004; 

Tyka et al., 2011; Yang & Zhou, 2008a, 2008b; Zhou & Zhou, 2002) 

 

Although quality estimation tools, such as ProQ (Wallner & Elofsson, 2003), ProQ2 (Uziela & 

Wallner, 2016), SELECTpro (Randall & Baldi, 2008), and ModFOLD6 (Maghrabi & McGuffin, 

2017), have been designed to identify the most native-like conformations sampled by TBM and 

FM approaches, they have been also used to select improved models generated by the sampling 

approaches in refinement pipelines (Adiyaman & McGuffin, 2019; Cheng et al., 2017; Chopra et 

al., 2010; Shuid et al., 2017). While these tools are often successful at identifying the best 3D 

models from among alternative tertiary structure predictions servers, they have not shown as 

consistent performance when they are used to select the most improved refinement models. This 

is perhaps due to fact that the discrimination of the 3D refinement models is a much harder 

problem, due to the very high similarity among the alternative 3D models that are sampled in the 

refinement pipeline (Kryshtafovych et al., 2005, 2014; Larsson et al., 2009; McGuffin et al., 2013) 
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1.8. The Refinement Category in CASP  

 

The CASP refinement category was introduced to encourage prediction groups to further increase 

the accuracy of predicted 3D models after they had been generated in the regular prediction 

category, and it has been operating as a separate category since CASP8 (MacCallum et al., 2009, 

2011; Modi & Dunbrack, 2016). The best-predicted 3D models (generated via either TBM or FM 

approaches) were selected as the refinement targets by CASP assessors. The aim was to improve 

the local and global quality of these and to move the models as close to the native structures as 

possible (MacCallum et al., 2009, 2011; Modi & Dunbrack, 2016; Nugent et al., 2014). Increasing 

the accuracy of the best-predicted 3D models has been increasingly challenging as the 3D models 

may have already been once-refined in the prediction pipelines of the individual servers from 

which the models originate (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi 

& Dunbrack, 2016; Nugent et al., 2014). Increasing the accuracy of the refinement targets is an 

already difficult problem, so it is arguably one of the hardest categories of the CASP experiment.  

 

Up to five refined models can be submitted in preference order by each prediction group and then 

evaluated by CASP assessors (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi 

& Dunbrack, 2016; Nugent et al., 2014). Although the submission of five models enables testing 

of different approaches for each model, 5 models may not be adequate for a proper evaluation of 

the sampling and scoring approaches (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 

2011; Modi & Dunbrack, 2016; Nugent et al., 2014). For instance, MD-based sampling approaches 

may generate hundreds of models, thereby it is essential to identify the most improved models 

among hundreds of models. If the prediction groups did not manage to select improved models, 

they would be failed even if they generated improved models. Therefore, we suggest that the 

sampling and scoring approaches should be assessed separately under the CASP refinement 

category as in Figure 1.2 (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi & 

Dunbrack, 2016; Nugent et al., 2014) . 

 

Assessment criteria of the refinement protocols are established on the accuracy of backbone and 

side-chain contacts and the analysis of atomic clashes and geometry by using various 
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measurements determined by CASP (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; 

Modi & Dunbrack, 2016; Nugent et al., 2014). Since CASP9, assessors have been providing some 

useful information about the regions within the starting models that should be focused on, in order 

to assist prediction groups. However, in reality for automated approaches such information would 

not be available (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi & Dunbrack, 

2016; Nugent et al., 2014). 

 

There has been a significant increase in the success of refinement strategies since the category was 

introduced in CASP7. Although the success rate was very low in CASP8 and CASP9, the 

development of MD-based approaches has enabled considerable progress since CASP10 

(Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi & Dunbrack, 2016; Nugent 

et al., 2014). In addition, the MD-based refinement protocols have outperformed the automated 

approaches since CASP10 (Adiyaman & McGuffin, 2019; MacCallum et al., 2009, 2011; Modi & 

Dunbrack, 2016; Nugent et al., 2014). The numbers of targets and groups increased dramatically 

since CASP11, from 12 to 51 targets and 24 to 47 prediction groups participating in CASP14 

(Adiyaman & McGuffin, 2019; Hovan et al., 2018; MacCallum et al., 2009, 2011; Modi & 

Dunbrack, 2016; Nugent et al., 2014). 
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Figure 1. 2 Flowchart summarising a typical refinement protocol. 
The restrained or unrestrained regions are determined before the sampling strategies. The 3D models are also generated 

using different sampling approaches. After the generation of the 3D models, the 3D models are ranked using various 

scoring methods for the selection of improved models compared to the initial structure. The sampling and scoring 

methods can also be applied in an iterative cycle.  

 

1.9 Refinement Tools and Webservers 

 

Different refinement tools and web servers have been developed to increase the accuracy of the 

initial structures for biologists. Feig (Feig, 2017) and Adiyaman (Adiyaman & McGuffin, 2019) 

have also provided a comprehensive review of the protocols. A few of the best freely available 

methods were described in Table 1.3. 
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Table 1. 3 Summary list of popular refinement web servers. 

 

1.10. Project Aims and Objectives 

 

The major goal of the project is the development of an efficient refinement pipeline with the 

integration of quality estimation, protein-ligand binding site prediction and contact prediction 

tools. An overview of protein structure prediction approaches including the prediction of 3D 

models, the assessment of the predicted 3D models and the model refinement stage has been 

presented. The ReFOLD (Shuid et al., 2017) protocol including the hybrid combination of 

Name Method Definition URL 

PREFMD (Heo & Feig, 2018a) MD-based protocol tested in CASP11 http://feiglab.org/prefmd 

GalaxyRefine (Heo et al., 2013) Rebuilding side chains and structure 

relaxation by molecular dynamics 

simulation 

http://galaxy.seoklab.org/refine 

KoBaMIN (Rodrigues et al., 2012) Energy minimization using knowledge-

based potential 

http://csb.stanford.edu/kobamin 

Princeton_TIGRESS 2.0 (Khoury 

et al., 2017) 

Monte Carlo and molecular dynamics 

simulations 

http://atlas.engr.tamu.edu/refin

ement/ 

ModRefiner (Xu & Zhang, 2011) Molecular dynamics simulation using a 

composite of physics- and knowledge-

based force field 

http://zhanglab.ccmb.med.umic

h.edu/ModRefiner 

3DRefine (Bhattacharya et al., 

2016; Bhattacharya & Cheng, 

2013a, 2013b) 

Optimisation of hydrogen bonds and 

energy minimisation 

http://sysbio.rnet.missouri.edu/

3Drefine/ 

ReFOLD (Shuid et al., 2017) A modest MD-based protocol and the usage 

of quality estimation tool for the selection 

http://www.reading.ac.uk/bioin

f/ReFOLD/ 
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i3Drefine, MD-based protocol, and ModFOLD6 (Maghrabi & McGuffin, 2017) is a promising 

refinement strategy. The MD-based protocol is an important and distinctive part of the refinement 

process, and it enables simulation of large biological systems and can be run on normal desktop 

computers along with supercomputers (Phillips et al., 2005). The McGuffin group has managed to 

develop ReFOLD to refine predicted protein structures with far less computational effort (Shuid 

et al., 2017). Our aim is to develop ReFOLD in order to get higher accuracy in refined models by 

using the different restraint strategies, so that it may help direct the models towards the native 

basin, so that models will have great utility in further in silico studies.  

 

1.10.1 The Restraint Strategy Based on the Local Quality Estimation  

 

For the first objective of the study, we aimed to use the per-residue accuracy score produced by 

ModFOLD6 to guide the original MD-based protocol of ReFOLD by applying a threshold 

according to the distribution of the per-residue accuracy score. The predicted per-residue accuracy 

score of a 3D model is precious information and could be better utilised to help us decide which 

regions of the predicted models require the most refinement. The local quality assessment guided 

restraint strategy based on the per-residue accuracy score was developed to avoid structural 

deviations from the native basin. The performance of the local quality assessment guided restraint 

strategy was also compared with the original MD-based protocol of ReFOLD using many scoring 

methods. In Chapter 2, considerable progress is reported due to the usage of this new local quality 

assessment restraint strategy. 

 

1.10.2 The Application of the Gradual Restraint Strategy Based on the Local Quality 

Estimation  

 

Chapter 3 focuses on the development and investigation of the performance of the local quality 

assessment guided MD-based protocol. The local quality assessment guided restraint strategy was 

upgraded using ModFOLD7 (Maghrabi & McGuffin, 2019) for the selection of the improved 

models and providing the per-residue accuracy score. The performance of the upgraded version in 
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the CASP13 experiment was also analysed, presenting CASP13 official results. The local quality 

assessment guided strategy has consolidated the performance of our refinement protocol as in the 

top ten approaches in CASP13 among roughly a hundred prediction groups.  

 

After the investigation of CASP13 performance, a gradual restraint strategy based on the per-

residue accuracy score was developed as the application of a threshold based on the per-residue 

accuracy score was not found to be practical for large targets. A detailed comparison of the local 

quality assessment guided restraint strategy developed in CASP13 with the gradual restraint 

strategy based on the per-residue accuracy score is also described in the chapter. The gradual 

restraint strategy was also used to refine SARS-2-CoV protein structures as a part of the CASP 

Commons COVID-19 initiative. The performance of the gradual restraint strategy was investigated 

in terms of generating the improved models according to CASP initial results, and the gradual 

restraint strategy has provided a significant proportion of the top ten 3D models for the ten SARS-

2-CoV targets. The development of the gradual restraint strategy also enhanced the 

competitiveness of our refinement pipeline. 

 

1.10.3 The Binding Site-Focused Restraint Strategy 

 

The FunFOLD3 (Rhizobium, 2013; Roche & McGuffin, 2016a) server was developed by 

McGuffin group to predict protein-ligand interactions. For the fourth chapter, we aimed to increase 

the accuracy of the binding sites predicted by FunFOLD3 (Roche & McGuffin, 2016a) according 

to the observed scores such as GDT-HA (Zhang & Skolnick, 2005), the BDT (Roche et al., 2010) 

and MCC scores. The binding site-focused MD-based protocol, which is similar to the local quality 

assessment guided MD- based protocol developed in Chapter2, was proposed for the refinement 

of the predicted binding sites. The effectiveness of the binding site-focused MD-based protocol 

was also investigated using CASP12 and CASP13 targets in terms of improving the quality of the 

predicted binding sites. The integration of the binding site-focused MD-based protocol with the 

FunFOLD server may also provide highly accurate binding site predictions.   
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1.10.3 The Contact-Assisted MD-Based Protocol for the Refinement of Protein 3D Models 

 

The predicted residue-residue contacts have also made significant improvements to protein 

structure prediction strategies, particularly during the CASP13 experiment. This valuable 

information has helped to increase the accuracy of the predicted 3D models. Furthermore, accurate 

information regarding predicted pairwise distances might also provide very valuable guidance for 

a more consistent refinement. Highly accurate residue-residue contact predictions, using the 

DeepMetaPSICOV (Kandathil et al., 2019a) data from CASP13, were used to determine gradual 

restraints according to the distribution of the Contact Distance Agreement (CDA) scores 

(Maghrabi & McGuffin, 2017) These gradual restraints were applied during the MD simulations 

to improve the quality of the predicted structures to meet our fourth objective. The performance of 

the contact-assisted MD-based protocol was also compared with the original MD-based protocol 

of ReFOLD and the local quality assessment guided MD-based protocol in Chapter 5. 

 

A unique combination of the contact-assisted and gradual restraint strategies was used to increase 

the accuracy of the CASP14 targets in our refinement pipeline. The comparison of ModFOLD6, 

ModFOLD7 and ModFOLD8 in terms of the selection of the improved models generated by the 

combined protocols was also investigated for further improvements in the final part of the analysis.  
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Chapter 2 The Usage of Local Model Quality Estimates to 

Guide the MD-Based Protocol 
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Work presented in this chapter has been submitted in the following paper: 

 

Recep Adiyaman and Liam James McGuffin, 2020. Using Local Protein Model Quality Estimates 

to Guide a Molecular Dynamics Based Refinement Strategy. Submitted to Springer Nature. 
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2.1 Background 

 

The prediction of 3D models via TBM and/or FM methods may generate hundreds of 3D models 

in alternative conformations. The global scores produced by the Model Quality Assessment 

Programs (MQAPs) can be used for ranking models but may not always be adequate for the 

assessment of the decoys and the identification of the most native-like structures, especially in 

cases where models are very close in structure, such as alternative refinement models. For this 

reason, the local (or per-residue) quality assessment scores are also required in order to discover 

more about the finer details of predicted models, and many model quality estimation tools are also 

able to produce the per-residue accuracy scores besides the global scores.  

 

2.1.1 The Local Quality Estimation of 3D Models 

 

Early single-model based quality assessment programs producing the per-residue accuracy score 

were inaccurate in comparison with the actual distance among residues in the observed structures 

(McGuffin, 2010; Wallner & Elofsson, 2006). The clustering-based methods, which rely on 

comparing many varied models, were found to be more successful in producing the per-residue 

accuracy score compared to the single-model based approaches (McGuffin, 2010). Therefore, in 

the CASP experiments, most of the higher performance quality assessment programs producing 

the per-residue accuracy scores have been based on the clustering-based approach, because in 

CASP multiple varied models are always available. Pcons-local was one of the initial programs 

developed to calculate the per-residue accuracy scores (Wallner & Elofsson, 2006). The 

ModFOLDclust method (McGuffin, 2009, 2008c) has been also a leading per-residue clustering-

based program in CASP experiments, and its calculation relied on the S-score (see below). The 

ModFOLDclust method remains an important component method for the per-residue accuracy 

score calculation in the last version of ModFOLD server (Maghrabi & McGuffin, 2019, 2017). 
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The S-score used by ModFOLDclust is defined using the following equation (McGuffin, 2009, 

2010; McGuffin & Roche, 2010):  

𝑆𝑖 =
1

1 + (
𝑑𝑖
𝑑0
)
2 

Where Si is the S-score for residue i in a predicted model, di is the Euclidean distance between 

residues according to the TM-score (Zhang & Skolnick, 2004b) superposition and d0 is a distance 

threshold (3.9Å). The mean S-score is calculated: 

Sr =
1

N − 1
∑𝑆𝑖𝑎
𝑎∈𝐴

 

Where Sr is the residue accuracy for the assessed model, N is the number of assessed models, A is 

the set of alignments and 𝑆𝑖𝑎 is the Si score for a residue in a structural alignment (a). The size of 

set A is also equal to N-1 (McGuffin, 2009, 2010; McGuffin & Roche, 2010). The mean S-score 

is then used to convert to the per-residue error score or the distance of the residue from the native 

structure in Ångströms: 

𝑑𝑟 = 𝑑0√((
1

𝑆𝑟
) − 1) 

An upper limit of 15 Å is applied for 𝑑𝑟. The calculated per-residue accuracy score are inserted to 

the B-factor columns of each set of ATOM records, and the files including the per-residue accuracy 

score in the B-factor column in the PDB format are available for download on the ModFOLD 

server result page (Maghrabi & McGuffin, 2017; McGuffin, 2009, 2010; McGuffin et al., 2013; 

McGuffin & Roche, 2010, 2011; Roche et al., 2014). 

 

2.1.2 The ModFOLD Server  

 

The ModFOLD method was firstly introduced by the McGuffin group in CASP7, and the approach 

included a neural network with the combination of ProQ (Wallner et al., 2003), MODCHECK 

(Pettitt et al., 2005) and ModSSEA methods (McGuffin, 2007). The original ModFOLD server 

accommodated two different options of methods: ModFOLD which was able to produce a global 

score for a single model, and ModFOLDclust which enabled local and global scoring for multiple 
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models (McGuffin, 2008c). ModFOLDclust was the best quality assessment program in producing 

global scores in CASP8 (McGuffin, 2010). 

 

The quasi-single approach was later pioneered by the McGuffin group to improve versions 3 and 

4 of the server, in order to assess both single and multiple models (McGuffin et al., 2013). The 

quasi-single model approach worked by making use of reference sets of models, which were 

generated from the sequence by the IntFOLD server (McGuffin et al., 2015, 2019), for comparison 

with the model to be scored. The idea being that you could gain the accuracy of clustering-based 

methods, but you only needed to submit a single submitted model, rather than many varied models. 

Successive MoldFOLD versions have continued to use the quasi-single approach and have been 

the top performers program in the recent CASP experiments (Cheng et al., 2019). The ModFOLD6 

server was released as a novel hybrid combination of pure-single and quasi-single methods, and 

the approach has succeeded in distinguishing accurate models in the CASP12. The 3 different 

ModFOLD6 variants (ModFOLD6, ModFOLD6_rank and ModFOLD6_cor) by the McGuffin 

group were among the top few in the local scoring methods, and they were also among the top 3 

prediction groups for global scoring in CASP12 (Maghrabi & McGuffin, 2017; McGuffin, 2009, 

2010; McGuffin et al., 2013; McGuffin & Roche, 2010, 2011; Roche et al., 2014).  

 

The accuracy of the local scores produced by ModFOLD6 was increased by using six alternative 

local scoring methods, and the methods were also combined by using a neural network in the 

ModFOLD6 protocol (Maghrabi & McGuffin, 2017). The first method was a new pure-single 

method based on the Contact Distance Agreement (CDA) between the contact predictions, which 

were made using the MetaPSICOV method (Jones et al., 2015), and the contacts measured by the 

Euclidean distance between residues in the 3D models. The second component of the ModFOLD6 

local scoring protocol was utilising the Secondary Structure Agreement (SSA) between the 

residues in the secondary structures predicted by using PSIPRED and those in secondary structures 

of the 3D model according to Dictionary of Secondary Structures of Proteins (DSSP) (D. W. A. 

Buchan et al., 2013; Kabsch & Sander, 1983; Maghrabi & McGuffin, 2017). Local ProQ2 scores 

were also added as a part of the local scoring method (Uziela & Wallner, 2016). Another 

component method was the generation of the ModFOLD5_single local QA score, which 

comparing each model against the reference set of 130 models built by IntFOLD4, using quasi-
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single approach (Maghrabi & McGuffin, 2017; McGuffin et al., 2013). The 

ModFOLDclustQ_single local quality score was also calculated in comparison with the reference 

IntFOLD4 set, but this time employing the local Q-score approach (McGuffin, 2008c; McGuffin 

& Roche, 2010; Roche et al., 2012b; Torchala et al., 2013) and included in the combination of 

local quality estimation methods. Finally, the Disorder B-factor Agreement (DBA) score was 

additionally generated by a new quasi-single model method. The DBA score is a function of the 

agreement between the disordered residues predicted by DISOPRED3 (Jones & Cozzetto, 2015) 

and the per-residue accuracy score from ModFOLD5_single (Jones & Cozzetto, 2015; Maghrabi 

& McGuffin, 2017). A simple multilayer Neural Network (NN) was used to combine the six local 

scoring methods and then produce the final ModFOLD6 per-residue score. The mean per-residue 

accuracy scores produced by the six local scoring methods were also part of the calculation of the 

global score in ModFOLD6 (Maghrabi & McGuffin, 2017).  

 

2.1.3 Pcons, ProQ, ProQ2 and ProQ3 

 

Many MQAPs are available to score predicted models with local and global approaches. Pcons is 

one of the local quality assessment programs improved by means of a neural network, and the 

clustering-based methods were used to estimate the accuracy of a set of alternative models 

(Lundström et al., 2001; Wallner & Elofsson, 2007). The assessment of predicted models with 

Pcons was more accurate in comparison with the single-model methods in CASP7 (Larsson et al., 

2009). The ProQ method (which originated from the same group as the Pcons approach) was able 

to produce global and local (per-residue) quality assessment scores, and ProQ was one of the more 

successful single model approaches at recognising the correct models in CASP7 and CASP8. 

Machine learning and descriptive features of protein modelling were also utilised to get an accurate 

scoring function (Wallner & Elofsson, 2003, 2007). A support vector machine (SVM) was later 

used in the development of the next version, ProQ2, and the approach provided the evaluation of 

local and global error, using a single-model approach. The ProQ2 was integrated with Rosetta and 

performed well in CASP11 (Uziela & Wallner, 2016). ProQ3 was the subsequent upgrade, this 

time deploying a deep neural network instead of the super vector machine, which has performed 

better than other machine learning approaches tested. The approach has been improved by 
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combining different Rosetta energy functions implemented in ProQRosCen, ProQRosFA and 

ProQ2. Significant progress has been observed in the assessments of the same models via ProQ3 

compared to ProQ2 (Uziela, Hurtado, Wallner, & Elofsson, 2016; Uziela, Shu, Wallner, & 

Elofsson, 2016) 

 

2.1.4 Estimation of Model Accuracy in CASP Experiments 

 

The blind assessment of MQAPs was first conducted in the QA category introduced in CASP7, 

with the aim of encouraging the development of model quality assessment methods (Cozzetto et 

al., 2007; Moult et al., 2007). In the QA category, the predicted 3D models generated by tertiary 

structure prediction servers for each CASP target are then submitted to MQAP servers and 

standalone methods for quality scoring, prior to the availability of the solved structures (Cozzetto 

et al., 2007; Kryshtafovych et al., 2011; Roche et al., 2014). In CASP12, based on a benchmark of 

models for 70 protein targets, 42 MQAPs were evaluated in two subcategories: 1) QAglob: used 

for global assessments, 2) QAloc: introduced for the per-residue accuracy. 42 prediction groups 

produced scores in the QAglob category and 24 prediction groups produced scores in the QAloc 

category (Kryshtafovych et al., 2017). These categories have helped in evaluating performance of 

participating model quality assessment groups, and a significant progress was observed in the 

CASP12, particularly in the usage of the deep learning and residue-residue contacts. In CASP13, 

52 prediction groups including 41 automated servers were benchmarked in the quality estimation 

category. Again, in CASP13, the further development of the deep learning-based methods along 

with the utilisation of contact predictions has revealed the potential of the quality estimation tools 

for the identification of the highly accurate 3D models. 

 

2.1.5 ReFOLD  

 

The ReFOLD method was developed to refine predicted 3D models by the McGuffin group as a 

fully automated refinement server, and the program was firstly tested in CASP12. ReFOLD is a 

unique hybrid method including a combination of rapid iterative refinement with i3Drefine, 
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scalable molecular dynamics with Nanoscale Molecular Dynamics (NAMD) (Phillips et al., 2005), 

and ModFOLD6 (Maghrabi & McGuffin, 2017) have been used for the refinement of protein 

structures (Shuid et al., 2017). The approach aims to fix errors identified by ModFOLD6 in 

predicted 3D models, with modest computational resources required for the simulation of the 

protein structures, compared with other MD-based protocols (Maghrabi & McGuffin, 2017). The 

refinement process includes three steps to increase the local and global quality of the models to 

generate native-like structures. The first step is using a rapid iterative method by way of i3Drefine 

in 20 refinement cycles (Bhattacharya et al., 2016). After the iterative refinement, a MD-based 

(NAMD) protocol, inspired by that of Feig and Mirjalili (Feig & Mirjalili, 2016), is used to refine 

each predicted model. The second protocol includes the application of Cα restraints, the ensemble 

averaging of the models and interpolation between starting and refined models. NAMD is designed 

to do parallel high-performance simulations using AMBER (Götz et al., 2012; Lindorff-Larsen et 

al., 2010; Research Computing Documentation contributors, 2018) and CHARMM (Best et al., 

2012; Huang et al., 2017; MacKerell et al., 2001) functions and force fields, and the simulation 

program is primarily written in the C++ language and uses Charmm++ (MacKerell et al., 2001; 

Maier et al., 2015; Phillips et al., 2005). NAMD can be used in parallel platforms that include 

GPUs, and it can even be run on a desktop, as a low-cost approach (Phillips et al., 2005). In the 

last step, the 3D models generated by the two protocols are ranked by ModFOLD6 according to 

global quality scores. It is also possible to assess the local quality of all 3D models via ModFOLD6 

(Maghrabi & McGuffin, 2017; Shuid et al., 2017). 

 

The complex protocol can be run on the ReFOLD server via a simple web form and the results 

produced are also available via a user-friendly web interface. The only inputs required by the server 

are the amino acid sequence and a 3D model (in PDB format) of the target (Shuid et al., 2017). 

The output from the server showed a high-ranked performance and significantly improved the 

global quality scores of the models submitted by the McGuffin group in the TS category of 

CASP12 (Shuid et al., 2017).  
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2.2 Aims and Objectives 

 

MD-based methods are the most preferred approach by many prediction groups to refine predicted 

models. However, the approaches are highly computationally intensive, time-consuming, and 

often may result models drifting away from the native structure due to the lack of optimised force 

fields. Although, our group has managed to refine 3D models spending modest computational 

resources at the MD simulation stage after the development of the ReFOLD, undesired structural 

deviations from the native basin were still observed for the refinement of the of predicted 3D 

models, especially for TBM structures in CASP12. (Shuid et al., 2017). To avoid such deviations, 

different restraints could be applied in MD-based methods, to mitigate the effects of the imperfect 

force fields, but the problem is deciding which part of the structure should be restrained. 

 

The local quality estimation of model accuracy was proposed as a possible future guide for the 

original MD-based protocol of ReFOLD (Shuid et al., 2017), so that it may help direct the models 

towards the native structure. The ModFOLD6 method developed by the McGuffin group has been 

consistently ranked among the top MQAPs in CASP experiments in terms of accurately predicting 

the per-residue accuracy score in 3D models. Here, we aim to make use of the per-residue accuracy 

score identified by ModFOLD6, which are typically shown as the predicted C-alpha distances from 

the native structure and stored in the B-factor column of PDB formatted model files. It is also 

proposed that the distances can be used to determine and select poorly predicted regions, which 

may then be further refined to improve the quality of predicted 3D models. 

 

In the first stage, the study includes the identification of the per-residue accuracy score via 

ModFOLD6, and the determination of a threshold based on the per-residue accuracy score. The 

determined threshold is then applied to the predicted models in order to restrain the well-predicted 

regions, so that only the poorly predicted regions in the 3D models will be targeted for refinement, 

during the subsequent MD simulations. The 3D models are then refined with the application of the 

new local quality assessment guided MD-based protocol  
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The last step involves the detailed comparison of the new local quality assessment guided MD-

based protocol developed here versus the MD-based protocol used in the original ReFOLD 

pipeline, by using different metrics such as the GDT-HA (Zhang & Skolnick, 2005) and 

Molprobity (Chen et al., 2010; Davis et al., 2004) scores. Lastly, the performance of ModFOLD6 

was then analysed in terms of its ability to select the best-refined 3D model. 

 

2.3. Materials and Methods 

2.3.1 Data Collection  

 

The CASP12 regular (T0) and refinement (TR) targets were used to test the newly developed local 

quality assessment guided MD-based protocol. 42 refinement targets and 60 regular targets are 

publicly available from the CASP website (http://predictioncenter.org/download_area/CASP12/). 

Both the number of residues and starting model quality (high accuracy score - GDT-HA) of the 

refinement targets varies widely from 54 to 396 residues and from 0.23 to 0.76 respectively (Hovan 

et al., 2018). We also used the models refined by the original MD-based protocol of ReFOLD 

during CASP12 to compare with the new local quality assessment guided MD-based protocol 

developed in this study. The refined models were downloaded from our ReFOLD server results 

pages for each CASP12 target. 

 

2.3.2 Computational Design 

 

The computational protocol consists of the three main stages: i) the identification and the 

determination of the threshold (predicted C-alpha distance from native structure) based on the per-

residue accuracy score using ModFOLD6 for each target; ii) the application of the local quality 

assessment guided MD-based protocol; iii) the assessment of the local quality assessment guided 

MD-based protocol and its comparison with the original MD-based protocol of ReFOLD. The 

stages of the protocol were detailed in the flow chart (Figure 2.1). Starting models were 

downloaded from CASP12 website (http://predictioncenter.org/download_area/CASP12/), and 

then were submitted to ModFOLD6 
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(http://www.reading.ac.uk/bioinf/ModFOLD/ModFOLD6_form.html) to get the per-residue 

accuracy score for each starting model. The range of the per-residue accuracy scores, reported in 

the B-factor (temperature factor) column of each PDB file produced by ModFOLD6, is important 

for determining the thresholds which were applied to the 3D models in the MD simulation stage. 

The per-residue accuracy scores in the models assessed by ModFOLD6 were the predicted 

distances in Ångströms of each residue from the native structure. (Maghrabi & McGuffin, 2017).  

 

 

 

Figure 2. 1 Flow of data and methods developed in this chapter. 
The starting models were submitted to ModFOLD6 to get the predicted per-residue accuracy score and then the 

thresholds based on the predicted per-residue accuracy score were determined to selectively refine. The starting 

models were refined using the new local quality assessment guided MD-based protocol. The refined models were also 

evaluated using observed structures and then compared with models generated by the original MD-based protocol of 

ReFOLD in the following step. Finally, the 3D models generated by the local quality assessment guided MD-based 

protocol were ranked using ModFOLD6 and the performance of ModFOLD6 was analysed in terms of selecting 

optimal models.  
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The question is how to avoid deviations from the native structure or minimise the effect of 

undesired deviations from the native basin in MD simulations. The use of the restraint is a widely 

preferred method to prevent refined models generated by the MD-based protocol from structural 

drifts. In this stage, the per-residue accuracy score produced by ModFOLD6 may provide a reliable 

guidance towards the native structure. We observed that if the predicted per-residue accuracy score 

is below 3 Ångströms, then those particular residues should have been well-predicted in the model, 

thereby further refining the residues may not be needed (or indeed, be wise, as it may lead to 

degradation). However, if the per-residue accuracy score is predicted to be above 8 Ångströms, 

then the residues are more likely to be further away from the native state, so they should be refined 

further in order to improve the quality of the predicted 3D model. For this reason, we decided to 

apply three thresholds based on the per-residue accuracy scores at 3, 5 and 8 Ångströms and we 

aimed to restrain the residues below each determined threshold in the MD simulation. Varying the 

different thresholds and then repeating the simulations, helps us to determine the optimal distance 

cut-off in a systematic way. 

 

The thresholds based on the per-residue accuracy score were applied to the MD simulation as the 

major test variable in the study. Because of this, the same simulation parameters that were 

originally optimised in ReFOLD (Shuid et al., 2017) were used to control for the effect of using 

the local quality assessment guided restraint strategy on refined 3D models during the MD 

simulation. Thus, simulations were conducted using NAMD (Phillips et al., 2005), version 2.10 in 

GPU accelerated mode. To maintain normal cellular behaviour, the conditions were defined as a 

temperature of 298K and a pressure of 1 bar. The combination of the set of CHARMM22/27 force 

field parameters (MacKerell et al., 2001) and default TIP3P water model (Jorgensen et al., 1983) 

was used to simulate a water model (Feig & Mirjalili, 2016; Shuid et al., 2017). The system was 

also neutralised by inserting Na+ or Cl- ions to balance the net charge using Particle Mesh Ewald 

(PME) (Götz et al., 2012). The non-bonded interactions (mostly van der Waal’s) were cut off by 

12Å to the exclusion of bonded interactions by using CHARMM27 default parameter file with the 

switching distance of 10Å. (Shuid et al., 2017). Using pairlistdist function with 14Å distance 

between atom pairs for inclusion in pair lists enabled making the switching function more efficient. 

The rigidBonds functions were also used to rigidify hydrogen bonds with a 2fs timestep (Shuid et 

al., 2017). The system’s electrostatics and temperature was calculated by PME with the 
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temperature control using Langevin dynamics under the NTP conditions (constant number of 

particles, temperature, and pressure) (Loncharich et al., 1992). The maintenance of the biological 

system ensured by periodic boundary conditions to rationalise the simulation process. 

 

A weak harmonic positional restraint on all atoms below each determined threshold (based on the 

per-residue accuracy score) was applied with a force constant of 0.05kcal/mol/A2. As a different 

application from other restraint strategies, we applied the restraint on all atoms including C-alpha 

as the C-alphas above the determined threshold may need to be refined. The occupancy column of 

each atom below the determined threshold was assigned to a value of 1 to restrain, values of 0 

were assigned to indicate that the atoms should not be restrained during NAMD simulation stage 

(Phillips et al., 2005).  

 

The correction of clashes and the minimisation of the system were carried out by 1000 steps in the 

first step of the MD-based protocol. The minimisation step was followed by the implementation 

of the defined MD simulation to refine each target. Four parallel simulations were run for 2 ns, 

making 8 ns in total for a target as in the original MD-based protocol of ReFOLD (Shuid et al., 

2017). Four short trajectories (one million steps for each trajectory) were preferred rather than one 

long trajectory as optimized for the original version of ReFOLD (Shuid et al., 2017), and the same 

trajectory length was used for all MD-based protocols developed in this thesis. After the 

completion of the simulation run, 164 refined models were generated per target by taking a 

snapshot every 50 ps. The refinement protocol was performed on a machine using Intel® Core™ 

i7 processors and NVIDIA GeForce GTX 1070 Graphics Cards by taking advantage of GPU 

computing with 16GB RAM. The simulation time for a protein structure with roughly 100 residues 

takes almost 10 hours (Shuid et al., 2017)  

 

2.3.3 Evaluation Methods 

 

We used a wide range of assessment tools to evaluate the refinement approach developed here, in 

terms of both the global and local accuracies. We used scores based on comparisons of the refined 

3D models with the observed score (GDT-HA) and an analysis-based assessment tool 
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(Molprobity). The TM-score tool (Zhang & Skolnick, 2004b) was used to produce GDT-HA scores 

to evaluate refined models by comparing them with the released observed experimental structures 

by CASP. We also used the Molprobity method, which is a free assessment program to score 

refined models via a multi-criterion chart (Chen et al., 2010). The GDT-HA and Molprobity scores 

were used to measure the quality of the 3D models both before and after the refinement stage. 

These scores have also been used by the official CASP assessors in order to evaluate the 

performance of the prediction groups in both the regular prediction and refinement categories 

(Hovan et al., 2018; Modi & Dunbrack, 2016). We also used ModFOLD6 developed by McGuffin 

group to evaluate our ability to assess the quality of the refined models prior to the availability of 

the experimental structure, which will be critical for the practical application of the approach as a 

whole (Maghrabi & McGuffin, 2017). 

 

The GDT-HA score is a global score based on the multiple global positioning of C-alpha atoms 

using the superposition of the predicted or refined models with the observed structure (Zhang & 

Skolnick, 2004b). The TM-score tool uses a smaller cut off distance to calculate the GDT-HA 

score which allows for higher accuracy (hence, HA) in measurements (compared to the standard 

GDT-TS score) after the superposition. While there is a strong correlation between GDT-HA and 

GDT-TS scores, we preferred to use GDT-HA score which is more sensitive to evaluate the smaller 

changes in refined models. The GDT-HA score ranges from 0 to 1, with higher values indicating 

more accuracy (Zhang & Skolnick, 2004b).  

 

The Molprobity score is a measurement of the physical properties and local model quality of the 

3D models and it provides an all-atom contact analysis (Chen et al., 2010; Davis et al., 2004). The 

calculation of the Molprobity score is a non-native dependant scoring method that does not require 

the observed/solved structure to score predicted models. The Molprobity scores range from 0 

upwards, and models with lower scores are more stereochemically accurate than higher-scored 

models (Chen et al., 2010). 

 

For the statistical comparison of the MD-based protocols based on the GDT-HA score and 

Molprobity scores, Wilcoxon tests were run for the analysis of the data in Tables 2.1- 2.8, with R 

statistical package.  



Chapter 2 

 

48 

 

2.4. Results and Discussion 

 

Twenty-two regular (T0) and thirty-four refinement (TR) CASP12 targets were refined using our 

new MD-based protocol. 29 out of the 56 refined targets were predicted by TBM, 14 targets were 

predicted by FM and 13 targets were predicted by both prediction methods (TBM/FM). These 

results were compared in three ways: (1) according to the comparison of the local quality 

assessment guided MD-based protocol with the original MD-based protocol of ReFOLD, (2) 

according to the target prediction methods (i.e., the methods used to produce the starting models), 

and (3) according to the performance of ModFOLD6 on refined models, which was evaluated in 

terms of its ability to select improved models. 

 

Our initial aim is to develop the original MD-based protocol of ReFOLD by applying a new 

restraint strategy based on the per-residue accuracy score. ReFOLD was found to be less successful 

in the refinement of the structures predicted by TBM methods than for those using FM methods in 

CASP12, which we postulate was due to lack of a reliable guidance during the MD simulation 

(Shuid et al., 2017). Moreover, our group has also been one of the leading groups in terms of 

producing predicted per-residue accuracy score via the ModFOLD server in both the CAMEO and 

CASP experiments (Haas et al., 2018; Hovan et al., 2018; Maghrabi & McGuffin, 2017). 

Therefore, it is worth our while to attempt to utilise the accurate predicted per-residue accuracy 

scores to guide MD simulations, so as not to allow the refined models to drift from the native 

structure. The application of the local quality assessment restraint strategy is also summarised in 

Figure 2.2 

 

The refinement of the predicted protein structures aims to bring the refined model closer to the 

experimental accuracy. For this reason, the GDT-HA score was used as a major measurement score 

to benchmark the protocols, as it relies on the C-alpha atoms superposition of the refined model 

with the experimentally determined structure. The Molprobity score is also used to analyse the 

refined models as it is calculated taking account of all-atoms, not just C-alpha atoms which are 

used in the GDT-HA score. 
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Figure 2. 2 The application of the local quality assessment guided MD-based protocol on an 

FM/TBM CASP12 target. 
(A) The starting model for the CASP12 target TR896 coloured by the per-residue accuracy score produced by 

ModFOLD6. (B) The starting model coloured by the occupancy column, which based on the ModFOLD6 distance 

threshold, where blue regions represent the restrained regions and red regions represent the unrestrained regions during 

the MD simulation.  

 

The analysis of the results starts from the comparison of the local quality assessment guided MD-

based protocol versus the original MD-based protocol of ReFOLD. This is so we can quantify the 

usefulness of including restraints based on the predicted per-residue accuracy score. We also 

observed that the prediction methods that are used to generate the starting models are an important 

factor and should be taken into account for the comparison. The prediction methods that are used 

to generate starting models are based on the target difficulty. The target difficulty is determined 

by the CASP assessors based on fold similarity between the target structure and the known 

available structures. TBM based methods are generally favoured by predictors of 3D models in 

cases where good known template structures are available. Conversely, FM methods are generally 
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used when there is very low fold similarity or where the target has a novel fold. If the target 

sequence has some similar structural fragments that can be taken from experimentally determined 

structures, then a combination of TBM and FM methods may be used for the prediction of the 

target structure. The reliability of the predicted models by TBM is generally much higher than FM, 

because using knowledge from all available structures has historically been the better strategy and 

methods for this are more mature. There is a direct relationship between the accuracy of the per-

residue error score and the target difficulty/methods used (Maghrabi & McGuffin, 2017) . 

Therefore, the accuracy of the per-residue accuracy score is also related to the availability of 

known structures. Thus, the predicted per-residue accuracy scores of the TBM models are likely 

much more accurate compared to those for FM models. 

 

It is clear that the original MD-based protocol of ReFOLD performed better at refining the FM 

starting models compared to the local quality assessment guided MD-based protocol (denoted 

below as “local”) in terms of the cumulative maximum GDT-HA score for FM targets ( ∑∆GDT-

HAmax(ReFOLD)=0.3972, ∑∆GDT-HAmax(local)=0.1766) (Appendix 1). However, the 

cumulative mean GDT-HA and cumulative minimum GDT-HA scores of the FM models refined 

by the local quality assessment guided MD-based protocol is higher than those refined by the 

original MD-based protocol of ReFOLD (∑∆GDT-HAmean (ReFOLD)=-0.0906224, and 

∑∆GDT-HAmin (ReFOLD)=-0.5127 versus ∑∆GDT-HAmean(local)=-0.0510092, and ∑∆GDT-

HAmin(local)=-0.2495) ( Appendix 1 ).  

 

The effect of the usage of the per-residue accuracy score is clear in Figure 2.3-2.4 as the GDT-HA 

scores of the models refined by the local quality assessment guided MD-based protocol are 

observed to distribute in a narrower range with the majority greater than the starting model. In 

comparison, the GDT-HA scores for original MD-based protocol of ReFOLD produced models 

are distributed in a wider range compared to those produced by the local quality assessment guided 

MD-based protocol. The smaller ranges of GDT-HA scores resulted from the restraint strategy as 

a stricter restraint, which was applied in the local quality assessment guided MD-based protocol 

to avoid structural deviations. It is promising to see that both protocols showed a considerable 

increase in quality scores following the refinement of the FM targets, as there is plenty of room 

for improvement (Figure2.3-2.4, and Appendix 1-3). 
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A similar trend is observed for the FM/TBM targets; the local quality assessment guided MD-

based protocol has a narrower range of GDT-HA scores in comparison with the original MD-based 

protocol of ReFOLD (Figure 2.5-2.6 and Appendix 4-6). Again, the cumulative maximum GDT-

HA score of the original MD-based protocol of ReFOLD is also higher than for the local quality 

assessment guided MD-based protocol ( ∑∆GDT-HAmax(ReFOLD)=0.284 versus ∑∆GDT-

HAmax(local)=0.1495) ( Appendix 4 ), but the cumulative mean  and cumulative minimum GDT-

HA scores of the models refined by local quality assessment guided MD-based protocol is higher 

than the original MD-based protocol of ReFOLD ( ∑∆GDT-HAmean(ReFOLD)=-0.209902, and 

∑∆GDT-HAmin(ReFOLD)=-0.6187 versus ∑∆GDT-HAmean(local)=-0.097524, and ∑∆GDT-

HAmean(local)= -0.3045) (Appendix 4). Both protocols performed well on the FM/TBM CASP12 

targets in terms of improving the starting models. Nonetheless, it can be said that the local quality 

assessment guided MD-based protocol showed a better performance on the FM/TBM targets due 

to the higher cumulative mean and minimum GDT-HA scores (Figure 2.5-2.6, and Appendix 4-6). 

 

Historically it has been more challenging to improve the quality of TBM targets and highly 

accurate models in CASP experiments, which is understandable as there is less room for 

improvement and, therefore more potential to make those models worse. The original MD-based 

protocol of ReFOLD was also less successful on TBM targets during CASP12. Here we aim to 

increase the accuracy of the TBM targets with the guidance of the per-residue accuracy score using 

the philosophy “if it is not broken, then don’t fix it”. Thus, our new protocol will only attempt to 

improve the parts of a model that are likely to need improving, while the rest of the model is kept 

more or less fixed.  

 

The deterioration rate of the TBM models refined by the original MD-based protocol of ReFOLD 

is much higher than the local quality assessment guided MD-based protocol, and this can be seen 

from the mean , minimum GDT-HA scores, and Figure 2.7-2.8. (∑∆GDT-HAmean(ReFOLD)=-

1.262351, and ∑∆GDT-HAmin(ReFOLD)=-2.9414 versus ∑∆GDT-HAmean(local)=-0.558148, 

and ∑∆GDT-HAmin(local)=-1.3293) (Appendix 7). While, the local quality assessment guided 

MD-based protocol shows a similar behaviour on the TBM targets as for the FM and FM/TBM 

targets, most of the TBM models refined by the original MD-based protocol of ReFOLD have 
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deviated from the starting model (Figure 2.7-2.8, and Appendix 7-10). This is evidence that the 

use of the per-residue accuracy score has helped to prevent models from deviating further away 

from the native structure. However, again the original MD-based protocol of ReFOLD performed 

relatively better than the local quality assessment guided MD-based protocol according to the 

maximum GDT-HA score, as seen for the other targets (∑∆GDT-HAmax(ReFOLD)=0.50170.284, 

∑∆GDT-HAmax(local)=0.2801) (Appendix 7). The important criterion is improving the overall 

quality of refined models, so it is obvious from the higher cumulative mean GDT-HA score that 

the local quality assessment guided MD-based protocol performed better than the original MD-

based protocol of ReFOLD. The success of the local quality assessment guided MD-based protocol 

is also apparent in TBM targets, which may be due to the availability of more accurate per-residue 

accuracy scores compared with other targets. Despite the relatively high success of the local quality 

assessment guided MD-based protocol, a consistent improvement across all TBM targets is not 

observed (Figure 2.7-2.8, and Appendix 7-10). 

 

According to the Molprobity score, both protocols showed a significant improvement in 

comparison with the starting model. Note that lower Molprobity scores indicate higher accuracy, 

which is the opposite of the GDT_HA score. The local quality assessment guided MD-based 

protocol is found to be an improvement on the original MD-based protocol of ReFOLD according 

to the minimum and mean Molprobity scores for all targets as in Figure 2.9 and Appendix 11-14 

(∑∆Molprobity (the starting models) =115.14, ∑∆Molprobitymean (ReFOLD)=99.32419, and 

∑∆Molprobitymin (ReFOLD)=71.38, versus ∑∆Molprobitymean (local)=74.546925, and 

∑∆Molprobitymin (local)=54.46) (Figure 2.9 and Appendix 11-14). The Molprobity score is based 

on the consideration of all atoms, and the experimentally determined structure is not required 

knowledge of native structure. It is evident that the restraint strategy applied in the local quality 

assessment guided MD-based protocol is successful at improving Molprobity scores, perhaps due 

to the fact that all atoms below the threshold based on the per-residue accuracy score are restrained, 

not just C-alpha atoms. In addition to this, the clearer difference indicates that the GDT-HA score, 

which just considers the C-alphas, may not be an adequate measurement alone in order to assess 

refined models, and scores that consider all atoms should also be taken into consideration. It should 

be noted that the native structure is not considered in the calculation of Molprobity score, so the 

GDT-HA score is used as the main measurement by CASP and in this study.  
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The refinement targets that are used to measure the performance of the refinement approaches are 

carefully selected by the CASP assessors to be particularly difficult (i.e., already well modelled) 

or interesting cases (e.g., models with incorrectly folded regions). However, 3D models built using 

standard servers for the regular (T0) targets are perhaps a more appropriate “real-world” test of 

refinement, as in reality, the general biologist would be obtaining similar quality starting models 

from automated servers. It should be noted that the performance of the local quality assessment 

guided MD-based protocol on refinement (TR) targets is nevertheless relatively better than for the 

regular (T0) targets (Figure 2.3- 2.9, and Appendix 1-14). 

 

Three different thresholds, based on the per-residue accuracy scores were applied (3, 5 and 8 

Ångströms) in order to determine which threshold should be applied to result in an optimal 

protocol. However, we observed that the difference among the thresholds is negligible according 

to the minimum and maximum GDT-HA and Molprobity scores (Appendix 15-18). The 3 

Ångströms threshold appears to be applicable across all target difficulty categories (Appendix 15-

18). 

 

The results were reported using the observed structure to evaluate the local quality assessment 

guided MD-based protocol. ModFOLD6 was used to predict the global quality of the models 

refined by the local quality assessment guided MD-based protocol in the absence of the native 

structures, as previously used in the original ReFOLD (Shuid et al., 2017). The performance of 

ModFOLD6 was also evaluated using GDT-HA and Molprobity scores in terms of selecting the 

best model (Table 2.1). 38 out of 55 “best” models selected by ModFOLD6 were in fact 

deteriorated in quality compared to the starting models according to GDT-HA (Table 2.1). The 

cumulative GDT-HA score of the best model selected by ModFOLD6 is lower than the cumulative 

GDT-HA score of the starting models and maximum GDT-HA scores of the models refined by the 

local quality assessment guided MD-based protocol (Table 2.1). However, it is better than the 

cumulative mean GDT-HA score of the models refined by the local quality assessment guided 

MD-based protocol (∑GDT-HAmodFOLD6(best model)=23.0221, ∑GDT-

HAmax(local)=24.0583, ∑GDT-HAmean(local)=22.7597788 , and ∑GDT-HA(the starting 

models)=23.4559) (Table 2.1). Such results show that ModFOLD6 failed to select improved 
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models compared to the starting models. Nevertheless, using ModFOLD6 for selection resulted in 

better performance than the cumulative mean score of refined models according to GDT-HA, 

indicating that it is worthwhile and better than random. 

 

It is worthy of note that the MolProbity score of the best models selected by ModFOLD6 is much 

lower than the starting models, and lower Molprobity scores are likely to be more physically 

realistic. (∑∆Molprobity (the best model selected by ModFOLD6) =42.95, and ∑∆Molprobity (the 

starting models) =121.93) (Table 2. 1). ModFOLD6 was found to be highly successful in terms of 

the selection of the improved models according to Molprobity scores, and this also demonstrates 

that the improvement of all atoms can be detected by the method (Table 2.1). 
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Figure 2. 3 A comparison of the original MD-based protocol of ReFOLD and the local quality 

assessment guided MD-based protocol on an FM target 
Performance of methods on TR870 (an FM category CASP12 refinement target) according to GDT-HA score. The 

GDT-HA score of the starting model is 0.25 (with an applied threshold of 3 Ångströms). (A) The blue points indicate 

scores for the models generated using the local quality assessment guided MD-based protocol, the red points indicate 

scores for the models generated using the original MD-based protocol of ReFOLD, and the black line represents the 

starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line 

and yellow bars represent models generated using the original MD-based protocol of ReFOLD and the black line 

represents the starting model (higher GDT-HA scores are better) 
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Figure 2. 4 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based 

protocol on the CASP12 FM targets according to the GDT-HA score. 
The green bars represent the scores of models generated using the local quality assessment guided MD-based protocol, yellow bars represent models generated using 

the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, and the orange lines represent the starting model for each 

target (higher GDT-HA scores are better) 
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Figure 2. 5 A comparison of the original MD-based protocol of ReFOLD and the local quality 

assessment guided MD-based protocol on an FM/TBM target 
Performance of methods on TR890 (an FM/TBM category CASP12 refinement target) according to GDT-HA score 

(with an applied threshold of 8 Ångströms). The GDT-HA score of the starting model is 0.1742. (A) The blue points 

indicate scores for the models generated using the local quality assessment guided MD-based protocol, the red points 

indicate scores for the models generated using the original MD-based protocol of ReFOLD, and the black line 

represents the starting model score. The points above the black line indicate the improved models. (B) The blue line 

and green bars represent the scores of models generated using the local quality assessment guided MD-based protocol, 

the red line and yellow bars represent models generated using the original MD-based protocol of ReFOLD and the 

black line represents the starting model (higher GDT-HA scores are better)
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Figure 2. 6 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based 

protocol on the CASP12 FM/TBM targets according to the GDT-HA score. 
The green bars represent the scores of models generated using the local quality assessment guided MD-based protocol, yellow bars represent models generated using 

the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, and the orange lines represent the starting model for each 

target (higher GDT-HA scores are better) 
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Figure 2. 7 A comparison of the original MD-based protocol of ReFOLD and the local quality 

assessment guided MD-based protocol on a TBM target 
Performance of methods on TR882 (a TBM category CASP12 refinement target) according to GDT-HA score (with 

an applied threshold of 3 Ångströms). The GDT-HA score of the starting model is 0.6899. (A) The blue points indicate 

scores for the models generated using the local quality assessment guided MD-based protocol, the red points indicate 

scores for the models generated using the original MD-based protocol of ReFOLD, and the black line represents the 

starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line 

and yellow bars represent models generated using the original MD-based protocol of ReFOLD and the black line 

represents the starting model (higher GDT-HA scores are better)
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Figure 2. 8 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based 

protocol on the CASP12 TBM targets according to the GDT-HA score. 
The green bars represent the scores of models generated using the local quality assessment guided MD-based protocol, yellow bars represent models generated using 

the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, and the orange lines represent the starting model for each 

target (higher GDT-HA scores are better) 
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Figure 2. 9 A comparison of the original MD-based protocol of ReFOLD and the local quality 

assessment guided MD-based protocol according to Molprobity score. 
 Performance of methods on TR880 (an FM category CASP12 refinement target) according to Molprobity score (with 

an applied threshold of 5 Ångströms). The Molprobity score of the starting model is 3.08. (A) The blue points indicate 

scores for the models generated using the local quality assessment guided MD-based protocol, the red points indicate 

scores for the models generated using the original MD-based protocol of ReFOLD, and the black line represents the 

starting model score. The points below the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line 

and yellow bars represent models generated using the original MD-based protocol of ReFOLD and the black line 

represents the starting model (lower Molprobity scores are better)
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Target info.  GDT-HA score Molprobity Score 

Target ID by 

domain 

CASP 

Category  

Prediction 

Method 

selected top model 

ID 

Starting 

model 

Score of selected 

top model’s score 

 

Diff. score 

Maximum 

score 

Mean 

score 

Starting 

model 

selected the best 

model’s score 

Minimum 

Score 

Mean 

Score 

T0859 Regular FM 2000-TR859_8-

tra1.pdb 

0.1681 0.1659 -0.0022 0.1814 0.17192 2.88 1.72 1.17 1.65713 

T0862 Regular FM 2800-TR862_1-

tra1.pdb 

0.4032 0.4032 0 0.414 0.396678 2.72 1.93 1.56 1.71963 

T0866 Regular FM 900-TR866_3-

tra1.pdb 

0.2391 0.2413 0.0022 0.2565 0.241027 3.29 1.88 1.21 1.76933 

T0880 Regular FM 2700-TR880_3-

tra2.pdb 

0.0596 0.057 -0.0026 0.0622 0.0576659 3.08 1.90 1.26 1.74982 

T0886 Regular FM 1000-TR886_5-

tra3.pdb 

0.1681 0.1747 0.0066 0.1921 0.174943 3.23 1.78 1.52 1.78854 

T0897 Regular FM 3500-TR897_3-

tra3.pdb 

0.0582 0.0601 0.0019 0.062 0.0587799 1.03 1.21 0.89 1.23537 

T0904 Regular FM 0-TR904_3-

tra1.pdb 

0.2267 0.2267 0 0.2323 0.221043 3.16 1.91 1.44 1.6375 

T0915 Regular FM 2200-TR915_5-

tra1.pdb 

0.2808 0.2695 -0.0113 0.289 0.273628 1.82 1.49 0.76 1.17085 

T0890 Regular FM/TBM 3900-TR890_3-

tra3.pdb 

0.1742 0.1715 -0.0027 0.1769 0.168949 2.3 1.84 0.89 1.27024 

T0898 Regular FM/TBM 3300-TR898_8-

tra3.pdb 

0.1599 0.1584 -0.0015 0.1693 0.158659 3.24 1.56 1.28 1.61866 

T0909 Regular FM/TBM 1000-TR909_5-

tra1.pdb 

0.2703 0.2815 0.0112 0.2943 0.278384 3.18 1.86 1.21 1.76707 

T0872 Regular TBM 1100-TR872_3-

tra1.pdb 

0.4886 0.4688 -0.0198 0.5028 0.472564 2.62 1.38 1.21 1.76707 

T0882 Regular TBM 2800-TR882_5-
tra1.pdb 

0.5791 0.5918 0.0127 0.6297 0.588816 1.73 1.40 0.92 1.3414 

T0895 Regular TBM 1000-TR895_3-

tra2.pdb 

0.5167 0.5125 -0.0042 0.5292 0.501923 2.24 1.57 0.66 1.0686 

T0911 Regular TBM 0-TR911_5-

tra2.pdb 

0.2972 0.2947 -0.0025 0.3027 0.291071 3.24 1.55 0.88 1.50561 

T0913 Regular TBM 0-TR913_5-

tra4.pdb 

0.4149 0.4135 -0.0014 0.4142 0.398787 3.09 2.68 1.23 1.48238 

T0944 Regular TBM 0-TR944_8-
tra1.pdb 

0.5504 0.5524 0.002 0.5534 0.533065 1.91 1.54 1.62 1.86073 

T0946 Regular TBM 1900-TR946_3-

tra3.pdb 

0.2962 0.2808 -0.0154 0.2954 0.27321 3.74 1.84 1.13 1.43963 

T0948 Regular TBM 0-TR948_8-
tra3.pdb 

0.5235 0.5151 -0.0084 0.5268 0.495054 2.72 1.84 1.63 1.88628 

TR520 Refinement TBM 0-TR520_1-

tra1.pdb 

0.581 0.581 0 0.581 0.543085 1.91 1.32 0.9 1.28591 
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TR872 Refinement TBM 200-TR872_5-
tra3.pdb 

0.5682 0.5284 -0.0398 0.5739 0.541712 0.5 0.73 0.5 0.93372 

TR877 Refinement TBM 3500-TR877_1-

tra2.pdb 

0.4894 0.4648 -0.0246 0.4877 0.466093 1.41 1.33 0.77 1.23122 

TR879 Refinement TBM 2000-TR879_3-
tra1.pdb 

0.633 0.5977 -0.0353 0.6261 0.583705 3.07 1.82 1.31 1.65665 

TR881 Refinement TBM 300-TR881_3-

tra1.pdb 

0.479 0.4641 -0.0149 0.4802 0.452469 2.68 1.46 1.14 1.5203 

TR882 Refinement TBM 0-TR882_3-
tra4.pdb 

0.6899 0.7025 0.0126 0.75 0.71137 0.5 0.64 0.5 0.681037 

TR885 Refinement TBM 2600-TR885_3-

tra4.pdb 

0.7837 0.7909 0.0072 0.7909 0.747322 0.82 0.56 0.56 0.93878 

TR891 Refinement TBM 0-TR891_1-
tra1.pdb 

0.7567 0.7478 -0.0089 0.7589 0.721636 1.56 1.28 0.81 1.21762 

TR893 Refinement TBM 2500-TR893_3-

tra1.pdb 

0.6908 0.6642 -0.0266 0.6997 0.655179 1.51 0.96 0.68 1.05195 

TR895 Refinement TBM 0-TR895_5-

tra2.pdb 

0.5146 0.5083 -0.0063 0.5188 0.492889 2.22 1.17 0.87 1.21744 

TR913 Refinement TBM 2700-TR913_5-

tra4.pdb 

0.4534 0.4408 -0.0126 0.4586 0.436608 1.34 1.54 1.02 1.28902 

TR917 Refinement TBM 0-TR917_5-

tra1.pdb 

0.6535 0.6471 -0.0064 0.6618 0.637371 1.36 0.95 0.87 1.16061 

TR920 Refinement TBM 0-TR920_5-

tra4.pdb 

0.6039 0.5993 -0.0046 0.6016 0.568527 1.61 1.39 0.71 1.32872 

TR921 Refinement TBM 2600-TR921_1-

tra4.pdb 

0.4801 0.4728 -0.0073 0.4928 0.465543 1.61 1.42 0.9 1.3475 

TR922 Refinement TBM 2500-TR922_2-

tra1.pdb 

0.7581 0.754 -0.0041 0.8105 0.766796 1.07 1.5 0.65 1.23921 

TR928 Refinement TBM 2500-TR928_3-

tra4.pdb 

0.4274 0.3981 -0.0293 0.4245 0.396442 3.56 1.9 1.48 1.81598 

TR942 Refinement TBM 1000-TR942_3-

tra3.pdb 

0.3333 0.323 -0.0103 0.332 0.320707 2.32 1.54 1.34 1.53567 

TR944 Refinement TBM 2200-TR944_3-

tra4.pdb 

0.5603 0.5296 -0.0307 0.5583 0.529974 1.84 1.25 1.16 1.49024 

TR947 Refinement TBM 200-TR947_5-

tra4.pdb 

0.5157 0.5086 -0.0071 0.5329 0.511695 0.86 1.19 0.84 1.21372 

TR948 Refinement TBM 3100-TR948_3-

tra2.pdb 

0.5956 0.6007 0.0051 0.6242 0.594791 1.59 0.89 0.85 1.09707 

TR868 Refinement FM/TBM 4000-TR868_4-

tra1.pdb 

0.6143 0.5929 -0.0214 0.6548 0.604776 0.81 0.94 0.5 0.95 

TR890 Refinement FM/TBM 300-TR890_3-

tra2.pdb 

0.3245 0.3072 -0.0173 0.3271 0.305804 2.01 1.78 1.4 1.6928 

TR896 Refinement FM/TBM 3500-TR896_3-
tra1.pdb 

0.468 0.4506 -0.0174 0.4826 0.443089 2.14 1.5 1 1.31006 

TR898 Refinement FM/TBM 3800-TR898_4-

tra3.pdb 

0.2524 0.2453 -0.0071 0.2618 0.24816 0.66 0.68 0.5 0.827988 
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TR901 Refinement FM/TBM 0-TR901_4-
tra1.pdb 

0.3061 0.3072 0.0011 0.3161 0.30088 2.03 1.48 0.98 1.37665 

TR909 Refinement FM/TBM 2600-TR909_5-

tra1.pdb 

0.4257 0.4309 0.0052 0.4452 0.430218 3.26 1.67 1.2 1.62829 

TR945 Refinement FM/TBM 500-TR945_5-
tra1.pdb 

0.412 0.4 -0.012 0.412 0.396554 2.33 1.35 1.11 1.35579 

TR594 Refinement FM 500-TRTR594_3-

tra3.pdb 

0.3427 0.3427 0 0.3652 0.344157 2.91 1.83 1.2 1.72317 

TR862 Refinement FM 2500-TR862_3-
tra2.pdb 

0.4032 0.3817 -0.0215 0.422 0.394813 2.26 1.06 0.78 1.24848 

TR866 Refinement FM 1000-TR866_3-

tra4.pdb 

0.6082 0.601 -0.0072 0.6346 0.602386 1.56 1.13 1.07 1.45 

TR869 Refinement FM 2300-TR869_3-
tra2.pdb 

0.2885 0.2861 -0.0024 0.2909 0.276501 1.98 1.4 0.94 1.36421 

TR870 Refinement FM 1600-TR870_3-

tra3.pdb 

0.25 0.2661 0.0161 0.2729 0.257492 3.61 1.79 1.07 1.55659 

TR905 Refinement FM 900-TR905_3-

tra1.pdb 

0.3244 0.2924 -0.032 0.3223 0.298757 2.36 1.5 1.16 1.52951 

Cumulative 

Scores 

   
23.4559 23.0221 -0.4338 24.0583 22.7597788 121.93 42.95 79.44 108.260763 

 

Table 2. 1 Performance summary for the ModFOLD6 in terms of the selection of models generated by the local quality assessment guided 

MD-based protocol (higher GDT-HA scores are better, lower Molprobity scores are better). 
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2.5. Conclusions  

 

ReFOLD was developed by our group to improve the local and global quality of the predicted 3D 

models with lower computational costs compared to other MD-based protocols. Despite overall 

improvements in model quality for some targets in CASP12, significant structural deviations from 

the native basin were observed in refined modes for the TBM targets using the original ReFOLD 

protocol (Shuid et al., 2017). 

 

The predicted per-residue accuracy scores produced by ModFOLD6 indicate the likely C-alpha 

distances from the native structure, and this essential information was used to apply a new restraint 

strategy to improve upon the original MD-based protocol of ReFOLD. To selectively refine protein 

structures, the thresholds based on the per-residue accuracy score were applied during MD 

simulations. Using the per-residue accuracy score to guide the MD-based protocol has prevented 

the refined models from undesired structural deviations and this has been a step towards a more 

consistent refinement. The results presented in this chapter demonstrate that a more consistent 

refinement strategy has been achieved by applying the thresholds based on the per-residue 

accuracy score, compared to that used in the original ReFOLD method. 

 

The local quality assessment guided MD-based protocol was shown to perform better than the 

original ReFOLD according to both the GDT-HA and Molprobity scores. Although the models 

refined by the original MD-based protocol of ReFOLD have higher maximum GDT-HA scores 

compared to the local quality assessment guided MD-based protocol, the cumulative mean GDT-

HA scores of the models refined by the local quality assessment guided MD-based protocol is 

much higher than the models refined by the original MD-based protocol of ReFOLD. The higher 

cumulative mean GDT-HA score shows that the majority of the refined models are improved more 

than the models refined by ReFOLD, and the improvement is much clearer in TBM targets, which 

are often more difficult to refine (as they are often already of high quality), compared to the 

comparatively easier FM targets (where there is often more room for improvement).  
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It is also interesting that the local quality assessment guided MD-based protocol was found to be 

particularly successful according to the Molprobity scores, compared with ReFOLD and the 

starting models. This notable improvement highlights the importance of considering all atoms 

when measuring the quality of the refined models, as large improvements may be missed if C-

alpha distances were the sole criteria used for benchmarking methods. 

 

There have been many factors limiting the success of the refinement process, but two factors seem 

to be the most important determinants of the local quality assessment guided MD-based protocol. 

The first factor is the accuracy of the starting models, as it is hard to improve highly accurate 

models further compared to poorly predicted models – there is less room for improvement. The 

accuracy of the predicted per-residue accuracy score is also another factor affecting the 

improvement of refined models because more accurate per-residue accuracy scores improve the 

chance of selecting better restraints for refinement. 

 

The selection of the best refinement models is also a difficult task, but this is essential for the 

process in practical, real-world cases where native structures are unavailable. The ModFOLD6 

method was used to select improved models among the 3D models generated by the MD-based 

protocols prior to the knowledge of experimentally determined 3D structures. Unfortunately, the 

performance of ModFOLD6 was not completely satisfying and it failed in 38 out of 55 targets in 

terms of selecting the best model. Nevertheless, the cumulative GDT-HA score of models selected 

by ModFOLD6 is higher than the cumulative mean GDT-HA score. The failure might result from 

the high similarity between models for the same protein. The detection of very small differences 

between highly similar models is inherently hard and not what ModFOLD6 was trained to do, 

rather its main strength lies in the selection of good models from among a wide variety of tertiary 

structure prediction servers. In future, bespoke versions of ModFOLD could be developed which 

are specifically trained to detect smaller differences between refinement models. 

In the next chapter, the performance of the local quality assessment guided restraint strategy in 

CASP13 is given and evaluated by utilising the CASP13 official results. The application of a 

gradual restraint strategy based on the local quality estimation is proposed and its performance is 

also compared with the fixed restraint strategy which was used in this chapter. 
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3.1 Background 

 

The local quality assessment guided MD-based protocol developed in Chapter 2 was upgraded 

using the guidance of the improved per-residue accuracy score produced by ModFOLD version 7 

(Cheng et al., 2019; Maghrabi & McGuffin, 2019). The upgraded version of the local quality 

assessment guided restraint strategy played an important part in our CASP13 refinement pipeline. 

The refinement pipeline was used to refine the best-predicted server model selected by 

ModFOLD7, in the regular prediction category (T0), and the refinement target models, in the 

refinement category (TR).   

 

3.1.1 ModFOLD7 

 

The ModFOLD server was upgraded to the seventh version following CASP12, mainly by 

increasing the accuracy of the local scoring components. ModFOLD7 consists of multiple pure-

single and quasi-single methods to assess the quality of the predicted 3D models (Cheng et al., 

2019; Maghrabi & McGuffin, 2019). ModFOLD7 includes an important upgrade to the generation 

of the per-residue accuracy score, and it accommodates ten local scoring methods (Cheng et al., 

2019; Maghrabi & McGuffin, 2019): the Contact Distance Agreement (CDA) score (Cheng et al., 

2019; Maghrabi & McGuffin, 2019, 2017), the Secondary Structure Agreement (SSA) score 

(Cheng et al., 2019; Maghrabi & McGuffin, 2019, 2017), ProQ2 (Uziela & Wallner, 2016), 

ProQ2D (Uziela, Hurtado, et al., 2016), ProQ3D (Uziela, Hurtado, et al., 2016), and VoroMQA 

(Olechnovič & Venclovas, 2017) were used as pure-single model methods (Cheng et al., 2019; 

Maghrabi & McGuffin, 2019, 2017). In addition to the pure-single model methods, the following 

quasi-single model methods were also integrated: the Disorder “B-factor” Agreement (DBA) score 

(Cheng et al., 2019; Maghrabi & McGuffin, 2019, 2017), MF5s (Cheng et al., 2019; Maghrabi & 

McGuffin, 2019, 2017), ModFOLDclustQ_single (MFcQs) (Cheng et al., 2019; Maghrabi & 

McGuffin, 2019, 2017) and ResQ (Yang et al., 2016), which used the reference model sets 

generated by IntFOLD5 to produce the per-residue accuracy scores (Cheng et al., 2019; Maghrabi 

& McGuffin, 2019, 2017). 
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ModFOLD7 (Cheng et al., 2019; Maghrabi & McGuffin, 2019, 2017) was also trained using two 

separate functions: The superposition based on S-score (Levitt & Gerstein, 1998) which was also 

produced in the previous version and the residue contact-based lDDT score (Cheng et al., 2019; 

Maghrabi & McGuffin, 2019, 2017; Mariani et al., 2013). The usage of the lDDT score made a 

significant improvement in the accuracy of the per-residue error produced by ModFOLD7.  

 

The lDDT score assesses global and local accuracies of the models in terms of stereochemical 

quality (Mariani et al., 2013). Its calculation relies on the atom-atom distance between the 3D 

models considering all atoms, therefore it is independent of structural superpositions (Mariani et 

al., 2013). 

 

Multilayer perceptron (MLPs) were also utilised to combine the 10 local scoring methods to 

produce consensus local quality assessment score (Cheng et al., 2019; Maghrabi & McGuffin, 

2019, 2017; Mariani et al., 2013).  

 

The performance of the ModFOLD6 and ModFOLD7 is continuously independently evaluated as 

part of the Continuous Automated Model Evaluation (CAMEO) project (Cheng et al., 2019; 

Maghrabi & McGuffin, 2019, 2017; Mariani et al., 2013). From the results shown in Figure 3.1, it 

is clear that ModFOLD7 shows improved performance in comparison to ModFOLD6 (Cheng et 

al., 2019; Maghrabi & McGuffin, 2019, 2017; Mariani et al., 2013). ModFOLD6 was using six 

local scoring methods and ModFOLD7 was upgraded by integrating the new CDA score generated 

using DeepMetaPSICOV (Kandathil et al., 2019a), ProQ3D (Uziela, Hurtado, et al., 2016), and 

VoroMQA (Olechnovič & Venclovas, 2017), and ResQ (Yang et al., 2016) pure-single and quasi-

single local scoring methods. While ModFOLD6 was trained the superposition based on S-score 

(Levitt & Gerstein, 1998), ModFOLD7 was trained the S-score and the residue contact-based 

lDDT score. The integration of the four additional local scoring methods and training with the 

residue contact-based lDDT score boosted the performance of the quality assessment pipeline in 

terms of selecting the most native-like decoys and producing more accurate per-residue accuracy 

scores (Cheng et al., 2019; Maghrabi & McGuffin, 2019, 2017; Mariani et al., 2013). 
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ModFOLD7 was also assessed in CASP13 in Model Quality Estimation category and ranked 

among the top groups (Cheng et al., 2019; Maghrabi & McGuffin, 2019, 2017; Mariani et al., 

2013).  

 

Method ROC ROCnormalized 

AUC0,1 AUC*
0,0.2 AUC0,1 AUC*

0,0.2 

ModFOLD7 0.91 0.69 0.89 0.68 

ModFOLD6 0.87 0.59 0.84 0.57 

 

Table 3. 1 The performance comparison of ModFOLD7 and ModFOLD6 local model quality 

in the Continuous Automated Model Evaluation (CAMEO). 
AUC = Area Under the ROC Curve. ROC= Receiver Operating Characteristic. AUC 0-0.1 = Area Under the ROC 

curve with False Positive Rate ≤ 0.1. AUC 0-0.2 = Area Under the ROC curve with False Positive Rate ≤ 0.2. The 

table is sorted by the AUC score. Scores closer to 1 indicate higher performance. Data are from 

https://www.cameo3d.org/quality-estimation 

 

3.1.2 Iterative 3DRefine (i3Drefine) 

 

3Drefine was developed to optimise hydrogen bonds and contacts by applying energy 

minimisation using a physics and knowledge-based force field (Bhattacharya & Cheng, 2013b). 

Applying the fully automated iterative refinement protocol of 3Drefine to protein structures 

includes two steps. The first step is the optimisation of hydrogen bonds and their connections. The 

optimisation followed by energy minimisation based on physics and knowledge-based force fields 

with the help of the MESHI molecular modelling packages in the second step (Bhattacharya & 

Cheng, 2013a, 2013b). The novel algorithm and energy functions used by MESHI rely on five key 

packages as molecular elements, geometry, energy, optimisers and utilities (Bhattacharya & 

Cheng, 2013a, 2013b; Kalisman et al., 2005).  

 

The fully automated refinement program had been upgraded to include i3Drefine to refine 

structures with a strong composite physics and knowledge-based force field as a fast, free, and 

user-friendly web server utilities (Bhattacharya & Cheng, 2013a, 2013b; Kalisman et al., 2005). 

3Drefine was firstly tested in CASP8 refinement and has been found to be a reliable and 

constructive approach in the following CASP experiments. i3Drefine is a leading server-based 
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iterative refinement program and showed a better performance compared to many non-server-

based approaches in CASP10. Refining a model by i3Drefine is relatively fast and can take less 

than five minutes for small proteins utilities (Bhattacharya & Cheng, 2013a, 2013b; Kalisman et 

al., 2005). i3Drefine was also used to refine the 3D models to increase the accuracy of the initial 

structures in our CASP13 pipeline. 

 

3.2 Aims and Objectives  

 

The development of ModFOLD7 enabled us to upgrade the local quality assessment guided MD-

based strategy developed in Chapter 2, both for guiding the MD simulation and selecting the best-

refined models. The local quality assessment guided MD-based protocol was also tested as the 

distinctive part of our refinement pipeline in CASP13. The performance of the upgraded 

refinement pipeline in CASP13 refinement category was analysed according to GDT-TS (Zhang 

& Skolnick, 2005), GDT-HA (Zhang & Skolnick, 2005), Molprobity (Davis et al., 2004) and lDDT 

(Mariani et al., 2013) scores in this chapter.  

 

Unlike the previous CASP experiments, relatively larger multi-domain and oligomeric structures 

were assigned as the regular CASP13 targets (Adiyaman & McGuffin, 2019). Applying one 

threshold based on the per-residue accuracy score by considering the distribution of the per-residue 

accuracy score was not found to be applicable for multi-domain structures after CASP13. It was 

proposed that if the per-residue accuracy score was low, much stronger restraint should be applied 

to not deviate the residues from the native basin. On the other hand, if the per-residue accuracy 

score was high, the residues should be refined further compared to others. Therefore, here we 

described the first use of a gradual restraint strategy, based on the per-residue accuracy score 

produced by ModFOLD7, instead of applying one fixed threshold in this chapter. Meanwhile, 

ModFOLD7 was developed by our group and performed better than ModFOLD6 in terms of 

producing per-residue accuracy scores. Therefore, ModFOLD7 was preferred for the generation 

of the predicted per-residue accuracy and MoldFOLD7 was also the best available tool to provide 

an automated approach with our refinement pipeline. The performance of the local quality 
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assessment guided fixed restraint strategy (from Chapter 2) was compared in terms of performance 

versus the new gradual restraint-based strategy, using the CASP13 target data.  

 

3.2.1 Participation in the CASP Commons COVID-19 Initiative 

 

At the time of writing this chapter, the COVID-19 pandemic has affected all aspects of our lives. 

As a part of the CASP Commons COVID-19 initiative, our group played an important part in the 

prediction of SARS-CoV-2 targets using our IntFOLD and ModFOLD methods. We also applied 

our ReFOLD methods to increase the accuracy of the top predicted 3D models using the gradual 

restraint strategy which was developed for this chapter. Therefore, here we also report on our initial 

results for the predictions that we made for the CASP Commons COVID-19 initiative. 

 

3.3 Materials and Methods 

3.3.1 Data Collection 

 

The performance of our upgraded the local quality assessment guided MD-based protocol was 

independently evaluated during CASP13 experiment as part of the refinement category. The local 

quality assessment guided fixed and gradual restraint strategies were also compared using the 

regular CASP13 target models which were downloaded from 

(http://predictioncenter.org/download_area/CASP13). The 3D server models were scored using 

ModFOLD7 and the resulting local quality assessment data was used to guide the fixed and gradual 

restraint strategies. 

 

3.3.2 Computational Design 

 

The performance of our full refinement pipeline in CASP13 refinement category was firstly 

analysed using the observed structures (Figure 3.2). The comparison of the local quality 

assessment guided, and gradual restraints based on the per-residue accuracy score was also 
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investigated by refining the top ranked CASP13 server models for the regular (T0) targets, which 

were scored using ModFOLD7.  

 

For the refinement category, our pipeline in CASP13 consisted of three protocols, which were 

similar to those used in CASP12 (Figure 3.2) (Adiyaman & McGuffin, 2019; Shuid et al., 2017). 

The first protocol used a rapid iterative strategy (i3Drefine) (Bhattacharya & Cheng, 2013a) with 

ten cycles and the second employed the newly upgraded version of the local quality assessment 

guided MD-based protocol, described in Chapter 2, to refine each starting model. Thus the major 

difference for the CASP13 refinement pipeline, compared with CASP12, was the modification of 

the second protocol, which included the introduction of molecular dynamics simulations that were 

guided by the per-residue accuracy scores produced by ModFOLD7 (Maghrabi & McGuffin, 

2019).  

 

The per-residue accuracy scores were used to identify the poorly predicted regions, which were 

then targeted for refinement to improve the overall model quality. The local quality assessment 

guided restraint strategy was applied by putting a threshold based on the per-residue accuracy 

scores (either 2, 3 or 5 Å) during the molecular dynamic simulation (Mirjalili & Feig, 2013; Shuid 

et al., 2017). For each starting model, the threshold was determined by considering the distribution 

of the per-residue accuracy scores. 

 

Refined models generated from the second protocol were then assessed and ranked using the 

ModFOLD7_rank global score (which was optimised for selecting the best top model) (Maghrabi 

& McGuffin, 2019). The third protocol was the further refinement of the top-ranked model from 

the second protocol using i3Drefine. Finally, all the refined models generated by each of these 

protocols and the starting model were pooled and re-ranked again using ModFOLD7_rank and the 

final top 5 models were selected and submitted (Figure 3.2). 
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Figure 3. 1 Flowchart of our CASP13 refinement pipeline. 
The refinement of the starting model using i3Drefine (Protocol 1), the local quality assessment guided MD-based 

protocol (Protocol 2), and the second round of i3Drefine iterative refinement strategy (Protocol 3), and. All refined 

models were ranked by the MoldFOLD7 server using the ModFOLD7_rank option (optimised for selecting the best 

top model). 

 

The local quality assessment guided fixed and gradual restraints were also compared in terms of 

improving the quality of the best-predicted server models (Figure 3.3). The application of the 

restraint strategies starts with obtaining the global and local accuracy scores by submitting the 3D 

server models to ModFOLD7. After the identification of the poorly and well-predicted regions in 

the initial structure (the top selected model), a fixed restraint threshold was determined by 

considering the distribution of the per-residue accuracy errors (Figure 3.3 A2).  
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For the gradual restraint strategy, it was assumed that the regions identified as highly accurate 

should be restrained by applying a stronger harmonic positional restraint so as not to let them 

deviate from the native basin. A weaker restraint was also applied to the poorly predicted regions 

to allow for increases in the accuracy of these regions towards the experimental accuracy (Figure 

3.3 B2) Thus, the gradual restraint ranges from weak (0.05 kCal/mol/Å2) to strong (1 kCal/mol/Å2) 

harmonic positional restraints on all atoms including C-alphas according to the distribution of the 

per- residue accuracy scores produced by ModFOLD7 (Table 3.1 and Figure 3.3) (Adiyaman & 

McGuffin, 2019; Maghrabi & McGuffin, 2019; Mirjalili & Feig, 2013; Read et al., 2019; Shuid et 

al., 2017). Different ranges of the force constant and per-residue accuracy scores were also applied, 

such as from 0.05 kCal/mol/Å2 to 10 kCal/mol/Å2. Nevertheless, the application of gradual 

restraint defined in Table 3.2 was found to be more effective in terms of the simulation execution, 

computational cost, and improving the initial structure (Adiyaman & McGuffin, 2019; Maghrabi 

& McGuffin, 2019; Mirjalili & Feig, 2013; Read et al., 2019; Shuid et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 2 The application of the gradual restraint strategy based on the per-residue accuracy 

score produced by ModFOLD7. 

 

The MD simulations for both strategies were conducted using NAMD 2.10 (Phillips et al., 2005) 

with the same parameters optimised for the original MD-based protocol of ReFOLD for the 

refinement of protein 3D models, as detailed in Chapter 2, to provide a fair comparison of the 

restraint strategies (Mirjalili et al., 2014; Mirjalili & Feig, 2013; Shuid et al., 2017). 

The per-residue 

accuracy score (Å) 

The force constant 

(kcal/mol/Å2) 

0-2 1 

2-4 0.5 

4-6 0.1 

6-8 0.05 

8 and above 0 
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Figure 3. 2 The comparison of the local quality assessment guided fixed (A) and gradual (B) 

restraint strategies based on the initial per-residue accuracy scores 
(A) The application of the fixed restraint strategy. 1) The best-predicted model (the CASP13 regular target T0953s2) 

is coloured using the per-residue accuracy score. 2) The initial structure is coloured using the occupancy column, 

where blue regions indicate unrestrained regions and red regions indicate restrained regions during the MD simulation. 

3) The superposition of the initial structure (cyan), the best model generated by the local quality assessment guided 

MD-based protocol (magenta), and native structure (green). The initial structure versus the best model, a GDT_HA 

improvement from 0.1321 to 0.1452. (B) The application of the gradual restraint strategy. 1) The best-predicted model 

(the CASP13 regular target T0953s2); is coloured using the per-residue accuracy score. 2) The initial structure is 

coloured using the occupancy column, where red and green regions applied strong restraints and blue and light blue 

regions applied weaker restraints depending on the per-residue accuracy score during the MD simulation.  

 

Following CASP13, once the native structure was released, the observed scores (mainly GDT-HA 

and Molprobity, but also GDT-TS and lDDT) were also used to compare the fixed and gradual 

restraint strategies. One-tailed unpaired Wilcoxon tests were also used to determine if differences 

in performance were statistically significant.  

3.3.2.1 Use of Gradual Restraints and ModFOLD Version 8 for CASP Commons COVID-19 

 

Prior to CASP14, as part of the CASP Commons COVID-19 initiative, the upgraded gradual 

restraint strategy was utilised in the same pipeline to increase the accuracy of models for the SARS-

CoV-2 targets, but in this case the per-residue accuracy scores used for determining the restraints 
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were provided by ModFOLD version 8 (Figure 3.4). ModFOLD8 was also employed for the 

selection of the best-refined 3D models using the global scores from the ModFOLD8_rank option. 

 

 

Figure 3. 3 The application of the gradual restraint strategy based on the per-residue 

accuracy score produced by ModFOLD8 for SARS-CoV-2 targets. 
A) The best-predicted model (the SARS-CoV-2 target C1908 (ORF8)); is coloured using the per-residue accuracy 

score. B) The initial structure is coloured using the occupancy column, where red and green regions applied strong 

restraint and blue and light blue regions applied less strong restraint depending on the per-residue accuracy score 

during the MD simulation. C) The superposition of the initial structure (cyan) with the best model generated by the 

gradual restraint strategy (magenta).  
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3.4 Results and Discussion 

 

In the refinement category of CASP, the assessors often select the best-predicted models as a 

specialised set of refinement targets, which are then used to evaluate the performance of refinement 

approaches. Further to this, our refinement pipeline in CASP13 was also used to refine our models 

submitted in the regular prediction categories. Here we report on the official CASP13 results along 

with a detailed assessment and discussion of our pipeline (Read et al., 2019). In addition, we carry 

out a comparison of the fixed and gradual restraint strategies using the CASP13 regular targets as 

a benchmark set. Finally, we report the on the initial results of the refinement of the SARS-CoV-

2 proteins using the gradual restraint strategy for the CASP commons COVID-19 initiative. 

  

3.4.1 The Performance of the Refinement Pipeline in CASP13  

3.4.1.1 Performance in the Regular Category 

 

Even though the refinement pipelines aim at improving the quality of the refinement targets (TR 

targets), we also used it to increase the quality of the best-predicted model selected by ModFOLD7 

in the regular prediction category (T0 targets). This is an important competitive advantage of our 

manual group (called McGuffin) during the CASP13 experiment – we were able to both predict 

3D models using the IntFOLD5 server (McGuffin et al., 2019) and identify the best-predict server 

models using ModFOLD7 (Maghrabi & McGuffin, 2019), which produced local and global scores 

for every models. The local quality assessment score produced by ModFOLD7 were then utilised 

to further improve the quality of the best-predicted server model by employing the local quality 

assessment guided MD-based protocol in our prediction pipeline. Overall, in the regular target 

prediction category, our group was ranked 6th out of 146 prediction groups on the both the TBM 

(Table 3.2) and TBM+TBM/FM domains (Template-based modelling/Free modelling domain) 

(Table 3.3), 9th out of 146 prediction groups for the FM+TBM/FM domains (Table 3.4), and 13th 

for FM (free modelling domain), according to the official assessor’s formulae (Table 3.5).  
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3.4.1.2 Performance in the Refinement Category  

 

In the refinement category, our refinement pipeline ranked 9th out of 37 methods according to the 

overall results based on the GDT-TS scores (Table 3.6). The performance of the refinement 

protocol was also analysed for each individual refinement target by way of a comparison of the 

refined model versus the starting models provided by the CASP assessors (Table 3.7). These data 

also provide a more detailed analysis of ModFOLD7 in terms of its ability to select the best-refined 

3D model. The cumulative GDT-TS and GDT-HA scores of starting models provided by CASP 

were slightly higher than the best-refined 3D model selected by ModFOLD7 (∑GDT-TSstarting 

of 2083.05 versus ∑GDT-TSbest-refined of 2076.33 and ∑GDT-HAstarting of 1537.19 versus 

∑GDT-HAbest-refined of 1523.31) (Table 3.7). It is evident that the refinement pipeline did not 

improve upon every starting model in the refinement category, and its performance was better in 

terms of GDT-TS scores compared to the GDT-HA score. This may be a consequence of the 

optimisation of ModFOLD7_rank, which was developed to select the 3D models with optimal 

GDT-TS scores. Nevertheless, ModFOLD7 successfully selected 14 improved models compared 

to the starting models according to the GDT-TS score, and 12 improved models according to the 

GDT-HA scores from among the 29 CASP13 refinement targets (Table 3.7). Although 

ModFOLD7 did not manage to select improved models for all targets, it can be said that it managed 

to select improved models for around half of the targets according to the GDT-TS scores. It must 

be restated that the ModFOLD server has never been specifically designed for the selection of 

refinement models which are much more similar to each other in terms of structures compared to 

the variety of alternative models produced in the conventional prediction pipeline.   

 

Despite the partial success in the refinement category measured according to the GDT-TS and 

GDT-HA scores, it should be noted that the 3D models submitted by our group have higher 

cumulative lDDT scores and lower cumulative Molprobity scores compared to the starting models 

(∑lDDTstarting of 18.04 versus ∑lDDTbest-refined of 18.06 and ∑Molprobitystarting of 69.78 

versus ∑Molprobitybest-refined of 68.33) (Table 3.7). Thus, it is clear that the refinement pipeline 

was indeed successful in increasing the overall quality of the starting models, according to both 

the lDDT and Molprobity scores. It is also noteworthy that both lDDT and Molprobity scoring 
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measurements take all atoms into consideration to produce the scores, unlike the GDT-HA and 

GDT-TS scores, which only consider the backbone. 
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Table 3. 3 Official CASP13 results for TBM domains according to the CASP assessor ‘s formula (GDT_HA + (SG+IDDT+CAD)/3 + ASE) 

for the top 20 groups. 
The table is sorted by SUM Zscore (>-2.0). GDT High Accuracy (GDT_HA) (Zhang & Skolnick, 2005), Sphere Grinder Score (SG) (Antczak et al., 2015) , local Distance 

Difference Test (lDDT) (Mariani et al., 2013), Contact Area Difference Score (CAD) (Olechnovič et al., 2013), and ASE (Accuracy Self Estimate) (Moult et al., 2009; Read et 

al., 2019)Data are from http://www.predictioncenter.org/casp13/   

Ranking Group 

Code 

GR 

name 

Domains 

Count 

SUM 

Zscore 

(>-2.0) 

Rank SUM 

Zscore 

(>-2.0) 

AVG 

Zscore 

(>-2.0) 

Rank AVG 

Zscore (>-

2.0) 

SUM 

Zscore 

(>0.0) 

Rank SUM 

Zscore(>0.0) 

AVG 

Zscore 

(>0.0) 

Rank AVG 

Zscore(>0.0) 

1 322 Zhang 61 52.5838 1 0.862 1 52.7222 1 0.8643 1 

2 222 Seok-refine 61 43.605 4 0.7148 4 47.4017 2 0.7771 2 

3 261 Zhang-Server 61 46.1863 2 0.7572 2 46.6378 3 0.7646 3 

4 43 A7D 61 26.9878 17 0.4424 20 46.1911 4 0.7572 4 

5 145 QUARK 61 44.8207 3 0.7348 3 44.9771 5 0.7373 5 

6 460 McGuffin 61 36.0543 10 0.5911 12 43.8806 6 0.7194 6 

7 324 RaptorX-DeepModeller 61 40.9172 5 0.6708 5 42.7321 7 0.7005 8 

8 55 VoroMQA-select 61 40.2589 6 0.66 6 42.7009 8 0.7 9 

9 221 RaptorX-TBM 61 38.9471 7 0.6385 7 41.5778 9 0.6816 10 

10 135 SBROD 59 33.3417 12 0.6329 8 41.3783 10 0.7013 7 

11 156 Seok-server 61 37.2846 8 0.6112 10 40.1255 11 0.6578 13 

12 89 MULTICOM 61 36.297 9 0.595 11 40.0499 12 0.6566 14 

13 86 BAKER 60 31.571 15 0.5595 14 39.6372 13 0.6606 12 

14 68 Seok 61 32.19 13 0.5277 15 38.5935 14 0.6327 15 

15 344 Kiharalab 61 25.3614 20 0.4158 22 37.3525 15 0.6123 16 

16 354 wfAll-Cheng 61 34.8482 11 0.5713 13 36.592 16 0.5999 17 

17 390 Bhattacharya 61 31.9754 14 0.5242 16 36.1383 17 0.5924 19 

18 368 BAKER-

ROSETTASERVER 

61 26.5875 18 0.4359 21 35.9077 18 0.5887 20 

19 197 MESHI 61 22.4941 22 0.3688 27 35.8494 19 0.5877 21 

20 196 Grudinin 61 30.531 16 0.5005 17 35.4646 20 0.5814 23 

http://www.predictioncenter.org/casp13/
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Table 3. 4 Official CASP13 results for TBM + TBM/FM domains according to the CASP assessor ‘s formula (GDT_HA + 

(SG+IDDT+CAD)/3 + ASE) for the top 20 groups. 
The table is sorted by SUM Zscore (>-2.0). GDT High Accuracy (GDT_HA) (Zhang & Skolnick, 2005), Sphere Grinder Score (SG) (Antczak et al., 2015) , local Distance 

Difference Test (lDDT) (Mariani et al., 2013), Contact Area Difference Score (CAD) (Olechnovič et al., 2013), and Accuracy Self Estimate (ASE) (Moult et al., 2009; Read et 

al., 2019)Data are from http://www.predictioncenter.org/casp13/ 

  

Ranking Group 

code 

Group 

name 

Domains 

Count 

SUM 

Zscore 

(>-2.0) 

Rank SUM 

Zscore 

(>-2.0) 

AVG 

Zscore 

(>-2.0) 

Rank AVG 

Zscore 

(>-2.0) 

SUM 

Zscore 

(>0.0) 

Rank SUM 

Zscore 

(>0.0) 

AVG 

Zscore 

(>0.0) 

Rank AVG 

Zscore 

(>0.0) 

1 322 Zhang 73 62.7432 1 0.8595 1 63.2734 1 0.8668 1 

2 43 A7D 73 42.4062 10 0.5809 12 62.4677 2 0.8557 2 

3 222 Seok-refine 73 51.1219 4 0.7003 4 56.0224 3 0.7674 3 

4 261 Zhang-Server 73 55.1437 2 0.7554 2 55.9167 4 0.766 4 

5 145 QUARK 73 54.0746 3 0.7407 3 54.6177 5 0.7482 5 

6 460 McGuffin 73 44.8183 8 0.6139 9 53.5764 6 0.7339 6 

7 55 VoroMQA-select 73 49.633 5 0.6799 5 52.6498 7 0.7212 7 

8 324 RaptorX-DeepModeller 73 48.1794 6 0.66 6 51.9211 8 0.7112 8 

9 89 MULTICOM 73 47.7389 7 0.654 7 51.8728 9 0.7106 9 

10 135 SBROD 71 40.5003 12 0.6268 8 50.2808 10 0.7082 10 

11 221 RaptorX-TBM 73 44.1652 9 0.605 10 48.4121 11 0.6632 13 

12 86 BAKER 71 36.1806 17 0.5659 14 48.3697 12 0.6813 11 

13 68 Seok 73 39.2428 14 0.5376 16 46.7455 13 0.6403 14 

14 344 Kiharalab 73 33.5382 18 0.4594 22 46.1782 14 0.6326 15 

15 390 Bhattacharya 73 39.5471 13 0.5417 15 45.4523 15 0.6226 17 

16 354 wfAll-Cheng 73 42.3676 11 0.5804 13 44.6591 16 0.6118 19 

17 368 BAKER-

ROSETTASERVER 

72 32.8749 19 0.4844 20 44.4382 17 0.6172 18 

18 156 Seok-server 73 36.5969 15 0.5013 17 44.3329 18 0.6073 20 

19 214 wfRosetta-ModF7 71 30.9113 21 0.4917 19 44.2282 19 0.6229 16 

20 197 MESHI 73 28.7632 22 0.394 25 43.8485 20 0.6007 21 
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Table 

3. 5 Official CASP13 results for FM + TBM/FM domains according to the CASP assessor ‘s formula (GDT_TS + QCS) for the top 20 

groups. 
The table is sorted by SUM Zscore (>-2.0). Global Distance Test Total Score (GDT_TS) (Zhang & Skolnick, 2005), Quality Control Score (QCS) (Cong et al., 2011) 

http://www.predictioncenter.org/casp13/ 

  

Ranking Group  

code 

Group 

name 

Domains 

Count 

SUM 

Zscore 

(>-2.0) 

Rank SUM 

Zscore 

(>-2.0) 

AVG 

Zscore 

(>-2.0) 

Rank AVG 

Zscore 

(>-2.0) 

SUM 

Zscore 

(>0.0) 

Rank SUM 

Zscore 

(>0.0) 

AVG 

Zscore 

(>0.0) 

Rank AVG 

Zscore 

(>0.0) 

1 43 A7D 43 70.3397 1 1.6358 1 70.3397 1 1.6358 1 

2 322 Zhang 43 53.6861 2 1.2485 2 54.0428 2 1.2568 2 

3 89 MULTICOM 43 49.905 3 1.1606 3 50.265 3 1.169 3 

4 145 QUARK 43 46.1771 4 1.0739 4 46.5848 4 1.0834 4 

5 261 Zhang-Server 43 43.1437 5 1.0033 5 43.6174 5 1.0144 5 

6 224 Destini 43 39.5602 6 0.92 6 40.9142 6 0.9515 6 

7 354 wfAll-Cheng 43 37.2083 7 0.8653 7 39.5994 7 0.9209 7 

8 196 Grudinin 43 36.0588 8 0.8386 8 38.0391 8 0.8846 9 

9 460 McGuffin 43 35.6027 9 0.828 9 37.6625 10 0.8759 11 

10 117 Jones-UCL 43 34.9813 10 0.8135 10 36.0997 13 0.8395 14 

11 135 SBROD 43 34.9431 11 0.8126 11 37.8881 9 0.8811 10 

12 197 MESHI 43 34.4519 12 0.8012 12 37.0062 11 0.8606 12 

13 324 RaptorX-

DeepModeller 

43 33.6144 13 0.7817 14 36.0591 14 0.8386 15 

14 498 RaptorX-Contact 43 32.4165 14 0.7539 15 36.2038 12 0.8419 13 

15 55 VoroMQA-select 43 32.333 15 0.7519 16 35.2287 16 0.8193 17 

16 208 KIAS-Gdansk 43 30.932 16 0.7193 17 34.5881 17 0.8044 18 

17 418 Seder3nc 43 30.126 17 0.7006 18 35.4041 15 0.8234 16 

18 274 MUFold 43 27.0439 18 0.6289 21 30.8619 20 0.7177 22 

19 457 Wallner 43 27.0115 19 0.6282 22 29.9949 24 0.6976 27 

20 44 ProQ2 43 25.7608 20 0.5991 23 30.7989 21 0.7163 24 

http://www.predictioncenter.org/casp13/
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Ranking Group 

code 

Group 

name 

Domains 

Count 

SUM 

Zscore 

(>-2.0) 

Rank SUM 

Zscore 

(>-2.0) 

AVG 

Zscore 

(>-2.0) 

Rank AVG 

Zscore 

(>-2.0) 

SUM 

Zscore 

(>0.0) 

Rank SUM 

Zscore 

(>0.0) 

AVG 

Zscore 

(>0.0) 

Rank AVG 

Zscore 

(>0.0) 

1 43 A7D 31 54.9935 1 1.774 1 54.9935 1 1.774 1 

2 322 Zhang 31 42.7836 2 1.3801 2 42.8133 2 1.3811 2 

3 145 QUARK 31 36.2191 3 1.1684 3 36.2827 4 1.1704 4 

4 89 MULTICOM 31 36.1782 4 1.167 4 36.5381 3 1.1786 3 

5 261 Zhang-Server 31 33.2515 5 1.0726 5 33.4101 5 1.0777 5 

6 224 Destini 31 31.9069 6 1.0293 6 32.7036 6 1.055 6 

7 498 RaptorX-Contact 31 29.6487 7 0.9564 7 30.707 7 0.9905 8 

8 197 MESHI 31 27.7536 8 0.8953 9 29.0389 9 0.9367 10 

9 354 wfAll-Cheng 31 27.4311 9 0.8849 10 29.8221 8 0.962 9 

10 196 Grudinin 31 27.4111 10 0.8842 11 28.5938 10 0.9224 11 

11 324 RaptorX-

DeepModeller 

31 26.9495 11 0.8693 12 27.6441 11 0.8917 12 

12 117 Jones-UCL 31 25.9528 12 0.8372 13 26.7971 13 0.8644 14 

13 460 McGuffin 31 25.5098 13 0.8229 14 26.5964 14 0.8579 15 

14 135 SBROD 31 25.204 14 0.813 15 27.5029 12 0.8872 13 

15 208 KIAS-Gdansk 31 23.7414 15 0.7659 16 26.2444 15 0.8466 16 

16 55 VoroMQA-select 31 22.7581 16 0.7341 17 25.5219 17 0.8233 18 

17 418 Seder3nc 31 22.1343 17 0.714 18 25.5574 16 0.8244 17 

18 457 Wallner 31 20.1724 18 0.6507 19 22.3701 22 0.7216 23 

19 192 Elofsson 31 20.15 19 0.65 20 23.6015 18 0.7613 19 

20 44 ProQ2 31 19.7657 20 0.6376 21 23.0521 19 0.7436 20 

 

Table 3. 6 Official CASP13 results for FM domains according to the CASP assessor ‘s formula (GDT_TS + QCS) for the top 20 groups. 
The table is sorted by SUM Zscore (>-2.0). Global Distance Test Total Score (GDT_TS) (Zhang & Skolnick, 2005), Quality Control Score (QCS) (Cong et al., 2011) 

http://www.predictioncenter.org/casp13/ 

  

http://www.predictioncenter.org/casp13/


Chapter 3 

85 

 

Ranking Group 

code 

Group 

name 

Domains 

Count 

SUM 

Zscore 

(>-2.0) 

Rank SUM 

Zscore 

(>-2.0) 

AVG 

Zscore 

(>-2.0) 

Rank AVG 

Zscore 

(>-2.0) 

SUM 

Zscore 

(>0.0) 

Rank SUM 

Zscore 

(>0.0) 

AVG 

Zscore 

(>0.0) 

Rank AVG 

Zscore 

(>0.0) 

1 356 FEIGLAB 29 30.467 1 1.0506 1 31.434 1 1.0839 1 

2 86 BAKER 29 21.8224 2 0.7525 2 24.4866 2 0.8444 2 

3 425 BAKER-

AUTOREFINE 

29 20.1455 3 0.6947 3 22.9743 3 0.7922 3 

4 156 Seok-server 29 17.907 4 0.6175 4 18.3973 4 0.6344 4 

5 390 Bhattacharya 29 14.1785 5 0.4889 5 14.2819 5 0.4925 5 

6 117 Jones-UCL 29 9.6293 9 0.332 11 13.7515 6 0.4742 7 

7 102 Bhattacharya-Server 29 13.1079 6 0.452 7 13.4647 7 0.4643 8 

8 344 Kiharalab 29 12.8538 8 0.4432 9 13.1466 8 0.4533 9 

9 460 McGuffin 29 13.0312 7 0.4494 8 13.1346 9 0.4529 10 

10 174 Zhang-Refinement 27 8.5455 12 0.4646 6 12.9981 10 0.4814 6 

11 68 Seok 29 8.5765 11 0.2957 13 12.3752 11 0.4267 12 

12 312 MUFold_server 27 1.5804 16 0.2067 15 12.0316 12 0.4456 11 

13 190 DC_refine 29 8.2978 13 0.2861 14 11.4749 13 0.3957 14 

14 217 Boniecki_pred 28 7.6 14 0.3429 10 11.4674 14 0.4095 13 

15 433 AIR 29 9.3973 10 0.324 12 10.9292 15 0.3769 15 

16 4 YASARA 28 2.0243 15 0.1437 16 8.5517 16 0.3054 16 

17 270 Huang 29 -2.5068 17 -0.0864 17 7.0247 17 0.2422 18 

18 208 KIAS-Gdansk 29 -10.4628 19 -0.3608 21 6.4424 18 0.2222 19 

19 112 AWSEM 27 -9.8841 18 -0.2179 20 5.8188 19 0.2155 20 

20 457 Wallner 19 -22.2482 22 -0.1183 19 5.2959 20 0.2787 17 

 

Table 3. 7 Official CASP13 results for all refinement targets according to the GDT-TS based scores for the top 20 groups. 
The table is sorted by SUM Zscore (>-2.0).Global Distance Test Total Score (GDT_TS) (Zhang & Skolnick, 2005), Data are from http://www.predictioncenter.org/casp13/ 

  

http://www.predictioncenter.org/casp13/
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CASP ID GDT-TS score GDT_HA score Molprobity score lDDT score 

Target 
ID 

Model starting  
model 

submitted 
model 

Diff starting  
model 

submitted 
model 

Diff. starting  
model 

submitted  
model 

Diff. starting  
model 

submitted  
model 

Diff. 

R0949 R0949TS460_1 64.53 62.4 -2.13 49.03 46.12 -2.91 2.99 2.7 0.29 0.53 0.52 -0.01 

R0957s2 R0957s2TS460_1-
D1 

60.97 61.13 0.16 39.35 39.68 0.33 3.48 2.96 0.52 0.57 0.57 0 

R0959 R0959TS460_1 64.55 64.68 0.13 44.71 44.84 0.13 0.72 1.41 0.69 0.62 0.62 0 

R0962 R0962TS460_1 80.51 80.08 -0.43 62.99 62.01 -0.98 2.73 2.23 -0.5 0.7 0.69 -0.01 

R0968s1 R0968s1TS460_1 66.74 67.16 0.42 45.13 44.7 -0.43 0.82 1.79 0.97 0.61 0.6 -0.01 

R0968s2 R0968s2TS460_1 71.3 71.74 0.44 50.43 50.87 0.44 1.04 2.81 1.77 0.6 0.61 0.01 

R0974s1 R0974s1TS460_1 84.78 86.59 1.81 65.58 69.2 3.62 0.77 2.1 1.33 0.69 0.72 0.03 

R0976-

D1 

R0976-D1TS460_1 86.25 85 -1.25 68.96 66.25 -2.71 3.68 2.96 0.72 0.74 0.73 -0.01 

R0976-

D2 

R0976-D2TS460_1 83.06 82.06 -1 64.92 61.7 -3.22 3.71 2.98 -0.7 0.73 0.73 0 

R0977-

D2 

R0977-D2TS460_1 75 75.73 0.73 54.54 54.29 -0.25 3.28 2.6 0.68 0.65 0.65 0 

R0979 R0979TS460_1 70.65 70.92 0.27 55.43 55.98 0.55 0.71 0.71 0 0.84 0.84 0 

R0981 R0981-D3TS460_1 52.46 51.85 -0.61 31.77 31.28 -0.49 3.93 3.59 0.34 0.43 0.42 -0.01 

R0981 R0981-D4TS460_1 62.39 64.19 1.8 45.05 46.17 1.12 1.33 2.64 1.31 0.51 0.52 0.01 

R0981-

D5 

R0981-D5TS460_1 60.83 60.63 -0.2 42.32 41.93 -0.39 3.2 3.02 0.18 0.48 0.48 0 

R0982-
D2 

R0982-D2TS460_1 68.75 67.42 -1.33 49.81 47.35 -2.46 3.52 2.15 1.37 0.52 0.5 -0.02 

R0986s1 R0986s1TS460_1 80.16 78.8 -1.36 59.24 57.88 -1.36 0.55 1.35 0.8 0.69 0.69 0 

R0986s2 R0986s2TS460_1 70.48 68.71 -1.77 49.35 47.74 -1.61 1.66 1.26 -0.4 0.61 0.59 -0.02 

R0989-

D1 

R0989-D1TS460_1 50.75 48.69 -2.06 34.33 32.09 -2.24 3.41 2.23 1.18 0.49 0.44 -0.05 

R0992 R0992TS460_1 81.78 80.84 -0.94 65.42 63.32 -2.1 0.86 1.6 0.74 0.68 0.67 -0.01 

R0993s2 R0993s2TS460_1 71.94 71.17 -0.77 50.77 50 -0.77 3 2.66 -0.3 0.53 0.6 0.07 

R0996-

D4 

R0996-D4TS460_1 70.3 67.86 -2.44 52.63 50 -2.63 3.43 2.46 0.97 0.6 0.6 0 

R0996-

D5 

R0996-D5TS460_1 73.55 73.97 0.42 55.99 55.37 -0.62 3.14 2.23 0.91 0.64 0.65 0.01 

R0996-

D7 

R0996-D7TS460_1 71.07 71.61 0.54 54.65 55.72 1.07 2.83 2.5 0.33 0.63 0.63 0 
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R0997 R0997TS460_1 64.32 65.68 1.36 41.76 43.38 1.62 3.49 3.51 0.02 0.55 0.55 0 

R0999-
D3 

R0999-D3TS460_1 75.14 73.75 -1.39 54.44 52.23 -2.21 3.2 2.51 0.69 0.66 0.66 0 

R1001 R1001TS460_1 73.02 73.2 0.18 52.7 53.05 0.35 0.7 1.07 0.37 0.69 0.69 0 

R1002 R1002-D2TS460_1 88.14 88.98 0.84 72.88 74.16 1.28 3.38 3.22 -0.6 0.69 0.7 0.01 

R1004-

D2 

R1004-D2TS460_1 78.57 81.17 2.6 60.39 64.61 4.22 3.34 2.65 0.69 0.65 0.68 0.03 

R1016 R1016TS460_1 81.06 80.32 -0.74 62.62 61.39 -1.23 0.88 2.43 1.55 0.71 0.71 0 

 
The cumulative 

scores 

2083.05 2076.33 -6.72 1537.19 1523.31 13.88 69.78 68.33 1.45 18.04 18.06 0.02 

 

Table 3. 8 The performance of our refinement pipeline for all refinement targets according to the GDT-TS, GDT-HA, Molprobity and 

lDDT scores versus the starting model. 
The 3D models were generated by our refinement pipeline, and the best-refined 3D model selected by ModFOLD7 was submitted during CASP13. Higher GDT-HA, GDT-

TS, lDDT and lower Molprobity scores are better. Data are from http://www.predictioncenter.org/casp13/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 9 Calculated pairwise p-values for the score of submitted models versus the score of starting models on the CASP13 refinement 

targets according to the GDT-TS, GDT-HA, Molprobity and lDDT scores 
Ho: The scores of submitted models are equal or lower in quality than the score of starting models. H1: The scores of submitted models are higher quality models than the score 

of starting models. P-values ≤ 0.05 indicate significant statistical differences (in boldface, higher GDT-TS, GDT-HA, lDDT scores and lower Molprobity scores are better). 

CASP Target Category Submitted vs Starting 

GDT_TS Score 0.906 

GDT-HA Score     0.9682 

Molprobity Score 0.2548 

lDDT Score 0.4614 

http://www.predictioncenter.org/casp13/
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3.4.2 The Comparison of the Different Restraint Strategies 

 

The fixed and gradual local quality assessment guided restraint strategies were compared in 

terms of performance using the 32 regular targets (with publicly available structures), 

according to the GDT-HA, Molprobity and lDDT scores. Of the regular targets, 12 out of 32 

targets were designated as TBM targets, 11 as TBM/FM and 9 as FM. As we saw in Chapter 

2, the target categories of the initial structures were also found here to be a significant factor 

affecting the performance of the restraint strategies, in terms of the determination of the 

restraint and unrestrained regions. Therefore, performance of the restraint strategies was also 

analysed according to the target categories.  

 

Using the local quality assessment guided fixed restraints prevented more of the 3D models 

from deviating from the native basin and increased the quality of the initial structures compared 

to the original MD-based protocol of ReFOLD, as shown in Chapter 2. The application of the 

local quality assessment guided restraint strategy is based on the determination of a threshold 

by taking into consideration the distribution of the per-residue error score produced by the 

ModFOLD server. In CASP13, it was noticed that applying the local quality assessment guided 

fixed restraint strategy may not be sufficient for certain FM/TBM targets. For FM/TBM targets, 

one or more domains may be designated as TBM targets, while others may be designated as 

FM. In this situation it is hard to determine a one-size-fits-all threshold. The per-residue error 

scores produced by the ModFOLD server are predictions of the likely distances for each residue 

(in Ångströms) from the native structure. In other words, if the per-residue error score is low 

in one domain or region, then the residues are much closer to the native state compared to the 

higher per-residue error scores in another domain/region. Therefore, the gradual restraint was 

proposed as the restraint should be applied according to the degree of need for each residue in 

each domain. 

 

The fixed and gradual restraints strategies performed quite similar to each other for the 

FM/TBM targets according to the cumulative minimum, mean, and maximum GDT-HA scores 

(∑GDT-HAmin of 3.2011, ∑GDT-HAmean of 3.3788, and ∑GDT-HAmax of 3.5394 versus 

∑GDT-HAmin of 3.1952, ∑GDT-HAmean of 3.3686, and ∑GDT-HAmax of 3.5594 versus 

∑GDT-HAstarting of 3.4118) (Appendix 19). Both protocols also managed to improve the 

quality of all starting models (Figure 3.4-3.5 and Appendix 19-21).  
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In Figure 3.5, it can also be seen that despite having similar performances according to the 

observed scores, the population of the improved models generated by the gradual restraint 

strategy (~25.89%) is much higher than the fixed restraint strategy (~15.90%) compared to the 

starting models for the FM/TBM targets (Appendix 19). Therefore, for the population of 

models generated by the gradual restraint strategy there is a higher probability of randomly 

selecting an improved 3D model in comparison with the population of models generated by the 

fixed restraint strategy, due to the higher population of the improved models (Appendix 19).  

 

Both restraint protocols showed similar characteristics in their ability to increase the accuracy 

of the FM and TBM targets according to the cumulative minimum, mean, and maximum GDT-

HA scores as in Figure 3.6-3.7, and Appendix 22-28. It is also worthy of note that the gradual 

restraint strategy performed much better than the fixed restraint protocol in terms of the 

population improved 3D models for FM targets (~45.0% versus ~40.45%) (Figure 3.6, and 

Appendix 25-28) and TBM targets (~34.14% versus ~32.063%) (Figure 3.7, and Appendix 22-

24). The gradual restraint performed better for FM targets, and roughly half of the generated 

models are improved compared to the starting models. This result implies that the gradual 

restraint strategy may boost the performance of our overall prediction pipeline for the 

prediction of FM targets (Figure 3.6, and Appendix 25-28). Furthermore, using the gradual 

restraints also increased the population of the improved models for the TBM targets, which are 

notably more challenging targets for refinement approaches (Figure 3.7, and Appendix 22-24).  

 

The GDT-HA score based on the C-alphas superposition of the native structure with the 

predicted structures, and it has been used as the major scoring method in the refinement pipeline 

by CASP. However, all atoms are not taken into account for the calculation of the GDT-HA 

score. Therefore, the Molprobity score was used to compare the restraint strategies by 

considering all atoms. Both protocols managed to increase the accuracy of all targets compared 

to the starting models, and the gradual restraint strategy showed a better performance than the 

local quality assessment guided MD-based protocol as in Appendix 29-32. 
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Figure 3. 4 A comparison of the gradual restraint strategy and fixed restraint strategy on 

an FM/TBM targets according to the GDT-HA score. 
Performance of methods on T0963 (an FM/TBM category CASP13 target) according to GDT-HA score. The 

purple line represents the gradual restraint models, the red line represents the fixed restraint models, and the orange 

vertical line represents the initial structure (the GDT-HA score of the initial structure is 0.1511, and higher GDT 

HA scores are better)
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Figure 3. 5 A comparison of the fixed restraint strategy and the gradual restraint strategy on the CASP13 FM/TBM targets according to 

the GDT-HA score. 
The red bars represent the scores of models generated using the fixed restraint strategy, purple bars represent models generated using the gradual restraint strategy, the black 

lines represent the median values within each box, and the orange lines represent the starting model for each target (higher GDT-HA scores are better)  
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Figure 3. 6 A comparison of the fixed restraint strategy and the gradual restraint strategy on the CASP13 FM targets according to the 

GDT-HA score. 
The red bars represent the scores of models generated using the fixed restraint strategy, purple bars represent models generated using the gradual restraint strategy, the black 

lines represent the median values within each box, and the orange lines represent the starting model for each target (higher GDT-HA scores are better)  
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Figure 3. 7 A comparison of the fixed restraint strategy and the gradual restraint strategy on the CASP13 TBM targets according to the 

GDT-HA score. 
The red bars represent the scores of models generated using the fixed restraint strategy, purple bars represent models generated using the gradual restraint strategy, the black 

lines represent the median values within each box, and the orange lines represent the starting model for each target (higher GDT-HA scores are better) 
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3.4.3 The Refinement of SARS-COV-2 Protein Models for CASP Commons COVID-19 

2020, and Using the Gradual Restraint Strategy  

 

The COVID-19 pandemic is an unprecedented global challenge. In 2020, the final year of this 

PhD project, the worldwide scientific community has been working relentlessly to better 

understand SARS-CoV-2, its molecular mechanisms and find viable vaccines and treatments. 

The CASP Community has focused on the prediction of the structures of SARS-CoV-2 proteins 

and domains where no experimental data or obvious templates exist. Therefore, each of the ten 

CASP Commons targets were classified as FM targets. The aim of the initiative is to provide 

more complete knowledge of the structures so we can better understand their functions for the 

development of possible treatments, drug targeting methods and vaccines. Our group 

contributed to the effort; we provided 3D models using our IntFOLD server, and we quality 

assessed the predicted models from all groups using ModFOLD8. For each of the 10 SARS-

CoV-2 target proteins, the best-predicted 3D model identified by ModFOLD8 was refined 

using the gradual restraint strategy in an attempt to further improve the quality. The top five 

refined models for each of the ten targets were then selected by ModFOLD8 and submitted by 

our “McGuffin” group.  

 

The CASP assessors also used a pair-wise comparison based on LDDT and GDT-TS scores for 

the evaluation of the 3D models due to non-availability of the native structure. The global 

consensus LDDT and GDT-TS scores were also calculated using the similarity between each 

pair of models and considering the cumulative similarity of a model to all other models. The 

CASP assessors noted that their higher evaluation scores do not necessarily always mean better 

models, but they are a good indication of quality and they show high similarity to others. 

 

According to the CASP assessment of model accuracy, our refinement pipeline performed well 

at modelling the ten SARS-CoV-2 targets, using both the global consensus LDDT and GDT-

TS scores. The refinement protocol also managed to provide half of the top 10 models for 

C1901, C1902, C1903, C1904, and C1905, and almost a quarter of the top 20 models for 

C1906, C1908, and C1909 according to the initial CASP official estimates of model accuracy 

(Tables 3.10-3.17). These initial results indicate that our pipeline, which includes the gradual 

restraint strategy, is competitive with the many different approaches that participated in the 

CASP Commons COVID-19 2020 initiative. 
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The refinement of the ten SARS-CoV-2 targets highlights the importance of applying protein 

structure prediction pipelines to tackle real-world problems. Based on this it is likely that our 

McGuffin group pipeline, which integrates the gradual restraint strategy, has provided some of 

the most accurate models of the unknown SARS-CoV-2 proteins to date (Tables 3.10-3.17). 
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 
 

MULTICOM 0.285 0.14 

2 C1901TS044_1 FEIGLAB 0.287 0.14 

3 C1901TS213_1  McGuffin 0.291 0.139 

4 C1901TS213_3  McGuffin 0.29 0.139 

5 C1901TS213_5  McGuffin 0.29 0.139 

6 C1901TS213_2  McGuffin 0.29 0.139 

7 C1901TS213_4  McGuffin 0.289 0.139 

8 C1901TS228_1 DellaCorteLab 0.288 0.136 

9 C1901TS273_1 Takeda-Shitaka-Lab 0.284 0.128 

10 C1901TS215_5 PerezLab_Gators 0.252 0.111 

11 C1901TS215_3 PerezLab_Gators 0.251 0.111 

12 C1901TS215_4 PerezLab_Gators 0.247 0.111 

13 C1901TS215_1 PerezLab_Gators 0.248 0.11 

14 C1901TS215_2 PerezLab_Gators 0.249 0.11 

15 C1901TS438_5 Destini 0.248 0.108 

16 C1901TS438_2 Destini 0.241 0.107 

17 C1901TS438_1 Destini 0.246 0.107 

18 C1901TS438_4 Destini 0.245 0.107 

19 C1901TS152_2 MULTICOM 0.276 0.105 

20 C1901TS413_3 TFold-server 0.273 0.105 

 

Table 3. 10 Official CASP results for C1901 (638 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 

 

  

https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS044_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS228_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS273_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS215_5
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS215_3
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS215_4
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS215_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS215_2
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS438_2
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS438_4
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1901/C1901TS413_3
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Table 3. 11 Official CASP results for C1902 (500 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

  

Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1902TS413_4 TFold-server 0.344 0.187 

2 C1902TS213_1  McGuffin 0.347 0.182 

3 C1902TS213_2  McGuffin 0.348 0.182 

4 C1902TS213_4  McGuffin 0.347 0.182 

5 C1902TS213_3  McGuffin 0.348 0.181 

6 C1902TS213_5  McGuffin 0.346 0.181 

7 C1902TS152_4 MULTICOM 0.346 0.18 

8 C1902TS152_2 MULTICOM 0.346 0.173 

9 C1902TS413_1 TFold-server 0.348 0.173 

10 C1902TS273_2 Takeda-Shitaka-Lab 0.33 0.169 

11 C1902TS413_3 TFold-server 0.331 0.168 

12 C1902TS152_3 MULTICOM 0.332 0.168 

13 C1902TS438_3 Destini 0.369 0.168 

14 C1902TS438_4 Destini 0.352 0.167 

15 C1902TS413_2 TFold-server 0.336 0.167 

16 C1902TS152_5 MULTICOM 0.352 0.167 

17 C1902TS413_5 TFold-server 0.345 0.167 

18 C1902TS438_1 Destini 0.36 0.167 

19 C1902TS438_2 Destini 0.37 0.167 

20 C1902TS438_5 Destini 0.362 0.165 

https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS413_4
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS152_4
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS413_1
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS273_2
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS413_3
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS152_3
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS438_3
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS438_4
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS413_2
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS152_5
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS413_5
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS438_2
https://predictioncenter.org/caspcommons/MODELS/C1902/C1902TS438_5
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Table 3. 12 Official CASP results for C1903 (290 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

 

  

Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1903TS044_1 FEIGLAB 0.345 0.212 

2 C1903TS301_1 FEIGLAB-S 0.345 0.212 

3 C1903TS213_5  McGuffin 0.348 0.21 

4 C1903TS213_4  McGuffin 0.349 0.21 

5 C1903TS213_2  McGuffin 0.347 0.21 

6 C1903TS213_1  McGuffin 0.347 0.21 

7 C1903TS438_1 Destini 0.353 0.209 

8 C1903TS438_4 Destini 0.352 0.209 

9 C1903TS438_5 Destini 0.353 0.209 

10 C1903TS438_3 Destini 0.35 0.209 

11 C1903TS213_3  McGuffin 0.347 0.209 

12 C1903TS438_2 Destini 0.351 0.207 

13 C1903TS228_1 DellaCorteLab 0.347 0.207 

14 C1903TS152_2 MULTICOM 0.363 0.203 

15 C1903TS413_5 TFold-server 0.356 0.203 

16 C1903TS152_1 MULTICOM 0.358 0.203 

17 C1903TS247_1 AWSEM-Suite-Commons 0.339 0.201 

18 C1903TS247_2 AWSEM-Suite-Commons 0.339 0.2 

19 C1903TS413_3 TFold-server 0.356 0.2 

20 C1903TS152_3 MULTICOM 0.342 0.199 

https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS044_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS301_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS438_4
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS438_3
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS438_2
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS228_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS413_5
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS152_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS247_1
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS247_2
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS413_3
https://predictioncenter.org/caspcommons/MODELS/C1903/C1903TS152_3
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1904TS401_1 FEIGLAB-R 0.347 0.183 

2 C1904TS273_1 Takeda-Shitaka-Lab 0.31 0.151 

3 C1904TS044_1 FEIGLAB 0.312 0.151 

4 C1904TS213_2  McGuffin 0.314 0.15 

5 C1904TS213_4  McGuffin 0.313 0.15 

6 C1904TS213_5 McGuffin 0.314 0.15 

7 C1904TS152_2 MULTICOM 0.309 0.15 

8 C1904TS213_3  McGuffin 0.313 0.15 

9 C1904TS213_1  McGuffin 0.314 0.149 

10 C1904TS228_1 DellaCorteLab 0.312 0.146 

11 C1904TS215_5 PerezLab_Gators 0.271 0.122 

12 C1904TS215_2 PerezLab_Gators 0.266 0.121 

13 C1904TS215_4 PerezLab_Gators 0.264 0.12 

14 C1904TS413_5 TFold-server 0.298 0.119 

15 C1904TS152_3 MULTICOM 0.298 0.119 

16 C1904TS215_3 PerezLab_Gators 0.265 0.117 

17 C1904TS438_5 Destini 0.301 0.117 

18 C1904TS215_1 PerezLab_Gators 0.264 0.117 

19 C1904TS438_1 Destini 0.303 0.117 

20 C1904TS438_3 Destini 0.303 0.117 

 

Table 3. 13 Official CASP results for C1904 (686 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

  

https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS401_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS273_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS044_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS228_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS215_5
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS215_2
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS215_4
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS413_5
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS152_3
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS215_3
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS215_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1904/C1904TS438_3
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1905TS413_1 TFold-server 0.275 0.201 

2 C1905TS213_4 McGuffin 0.285 0.2 

3 C1905TS213_5 McGuffin 0.287 0.2 

4 C1905TS213_3 McGuffin 0.287 0.2 

5 C1905TS213_2 McGuffin 0.286 0.199 

6 C1905TS213_1 McGuffin 0.287 0.199 

7 C1905TS401_1 FEIGLAB-R 0.298 0.198 

8 C1905TS413_3 TFold-server 0.274 0.196 

9 C1905TS152_1 MULTICOM 0.266 0.19 

10 C1905TS413_5 TFold-server 0.264 0.19 

11 C1905TS152_2 MULTICOM 0.259 0.188 

12 C1905TS413_4 TFold-server 0.257 0.188 

13 C1905TS413_2 TFold-server 0.267 0.187 

14 C1905TS438_5 Destini 0.307 0.178 

15 C1905TS438_3 Destini 0.305 0.178 

16 C1905TS301_1 FEIGLAB-S 0.311 0.177 

17 C1905TS044_1 FEIGLAB 0.311 0.177 

18 C1905TS152_3 MULTICOM 0.279 0.176 

19 C1905TS196_1 ntsu 0.283 0.175 

20 C1905TS102_2 D-Haven 0.283 0.175 

 

Table 3. 14 Official CASP results for C1905 (275 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

  

https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS413_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS401_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS413_3
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS152_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS413_5
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS413_4
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS413_2
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS438_3
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS301_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS044_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS152_3
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS196_1
https://predictioncenter.org/caspcommons/MODELS/C1905/C1905TS102_2
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1906TS301_1 FEIGLAB-S 0.438 0.327 

2 C1906TS044_1 FEIGLAB 0.438 0.327 

3 C1906TS152_3 MULTICOM 0.434 0.327 

4 C1906TS438_3 Destini 0.43 0.324 

5 C1906TS213_4  McGuffin 0.438 0.324 

6 C1906TS152_2 MULTICOM 0.428 0.323 

7 C1906TS213_3  McGuffin 0.439 0.323 

8 C1906TS438_2 Destini 0.43 0.323 

9 C1906TS213_1  McGuffin 0.437 0.323 

10 C1906TS438_1 Destini 0.433 0.323 

11 C1906TS213_2  McGuffin 0.439 0.323 

12 C1906TS438_5 Destini 0.43 0.323 

13 C1906TS152_1 MULTICOM 0.427 0.322 

14 C1906TS413_1 TFold-server 0.418 0.322 

15 C1906TS413_2 TFold-server 0.413 0.321 

16 C1906TS413_3 TFold-server 0.424 0.321 

17 C1906TS438_4 Destini 0.428 0.32 

18 C1906TS213_5  McGuffin 0.438 0.32 

19 C1906TS413_4 TFold-server 0.421 0.319 

20 C1906TS299_5 FALCON-DeepFolder 0.442 0.317 

 

Table 3. 15 Official CASP results for C1906 (222 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

  

https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS301_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS044_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS152_3
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS438_3
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS438_2
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS152_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS413_1
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS413_2
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS413_3
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS438_4
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS413_4
https://predictioncenter.org/caspcommons/MODELS/C1906/C1906TS299_5
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1908TS152_2 MULTICOM 0.314 0.315 

2 C1908TS413_3 TFold-server 0.313 0.314 

3 C1908TS152_1 MULTICOM 0.316 0.313 

4 C1908TS273_2 Takeda-Shitaka-Lab 0.312 0.311 

5 C1908TS413_2 TFold-server 0.313 0.311 

6 C1908TS413_5 TFold-server 0.312 0.309 

7 C1908TS438_1 Destini 0.315 0.309 

8 C1908TS213_5  McGuffin 0.326 0.309 

9 C1908TS273_3 Takeda-Shitaka-Lab 0.311 0.309 

10 C1908TS213_2  McGuffin 0.327 0.309 

11 C1908TS213_4  McGuffin 0.327 0.309 

12 C1908TS299_5 FALCON-DeepFolder 0.309 0.308 

13 C1908TS278_5 FALCON 0.309 0.308 

14 C1908TS213_3  McGuffin 0.326 0.308 

15 C1908TS438_3 Destini 0.314 0.308 

16 C1908TS213_1  McGuffin 0.326 0.307 

17 C1908TS413_1 TFold-server 0.304 0.307 

18 C1908TS438_2 Destini 0.316 0.307 

19 C1908TS438_4 Destini 0.312 0.306 

20 C1908TS438_5 Destini 0.313 0.306 

 

Table 3. 16 Official CASP results for C1908 (121 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

  

https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS413_3
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS152_1
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS273_2
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS413_2
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS413_5
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS438_1
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS273_3
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS299_5
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS278_5
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS438_3
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS413_1
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS438_2
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS438_4
https://predictioncenter.org/caspcommons/MODELS/C1908/C1908TS438_5
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Ranking  Model Name Predictor LDDT_cons GDT_TS_cons 

1 C1909TS438_5 Destini 0.453 0.534 

2 C1909TS123_1 IntFOLD6 0.439 0.533 

3 C1909TS278_1 FALCON 0.447 0.533 

4 C1909TS299_1 FALCON-DeepFolder 0.447 0.533 

5 C1909TS213_1  McGuffin 0.449 0.53 

6 C1909TS123_3 IntFOLD6 0.441 0.53 

7 C1909TS152_4 MULTICOM 0.444 0.53 

8 C1909TS158_2 FALCON-TBM 0.438 0.529 

9 C1909TS369_1 Yang 0.42 0.527 

10 C1909TS213_4  McGuffin 0.45 0.526 

11 C1909TS309_1 Zhang-TBM 0.435 0.526 

12 C1909TS213_5  McGuffin 0.447 0.525 

13 C1909TS213_3  McGuffin 0.448 0.525 

14 C1909TS309_5 Zhang-TBM 0.435 0.525 

15 C1909TS369_5 Yang 0.429 0.525 

16 C1909TS213_2  McGuffin 0.451 0.525 

17 C1909TS369_4 Yang 0.416 0.524 

18 C1909TS299_4 FALCON-DeepFolder 0.445 0.523 

19 C1909TS152_2 MULTICOM 0.444 0.523 

20 C1909TS278_4 FALCON 0.445 0.523 

 

Table 3. 17 Official CASP results for C1909 (38 residues) according to the consensus GDT-TS and LDDT scores for the top 20 models. 
The table is sorted by GDT_TS_cons score. Data are from https://predictioncenter.org/caspcommons/models_consensus2.cgi 

 

https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS438_5
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS123_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS278_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS299_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS213_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS123_3
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS152_4
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS158_2
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS369_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS213_4
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS309_1
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS213_5
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS213_3
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS309_5
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS369_5
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS213_2
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS369_4
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS299_4
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS152_2
https://predictioncenter.org/caspcommons/MODELS/C1909/C1909TS278_4
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3.5 Conclusions 

 

The original ReFOLD (Shuid et al., 2017) method was developed by the McGuffin group to 

increase the accuracy of the predicted 3D models through the integration of a rapid MD-based 

protocol, inspired by that of Feig and Mirjalili (Feig & Mirjalili, 2016; Mirjalili et al., 2014; 

Mirjalili & Feig, 2013). However, significant deviations from the native structure were observed 

for the refinement of many of the predicted 3D models, particularly for TBM targets, due to lack 

of reliable guidance during the MD simulations. The per-residue accuracy score produced by 

ModFOLD6 (Maghrabi & McGuffin, 2017) was proposed to be used as a guide for the original 

MD-based protocol of ReFOLD, in order to avoid such structural deviations. The local quality 

assessment guided fixed restraint strategy was therefore devised (Chapter 2), which managed to 

prevent the MD models from structural drifts by applying a single restraint threshold that was 

based on the distribution of the per-residue accuracy score produced by ModFOLD6 .  

 

The fixed restraint MD-based protocol was further upgraded using ModFOLD7 (Maghrabi & 

McGuffin, 2019) to guide the MD simulations and select the best-predicted 3D model. This 

upgraded version of ReFOLD (ReFOLD2) was used to improve the quality of 3D models for both 

the CASP13 regular and refinement targets and it played a key role in the success of the McGuffin 

group in the competition. 

 

Our CASP13 prediction pipeline consisted of three main stages; the prediction of the 3D models 

by the IntFOLD server (McGuffin et al., 2019), the local and global assessment of the predicted 

3D server models by ModFOLD7 (Maghrabi & McGuffin, 2019), and the refinement of the best-

predicted server models and refinement targets using the upgraded version of ReFOLD including 

the fixed restraint MD-based protocol. The refinement pipeline also performed well in terms of 

improving the quality of the TBM and FM domains and it ranked in the top 10 approaches in the 

regular prediction and refinement CASP13 categories (Read et al., 2019). Although ModFOLD7 

was not specifically developed for the selection of the improved models in the refinement pipeline, 

the performance of MoldFOLD7 with regard to the selection of the refined models was evaluated. 
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It is promising that ModFOLD7 managed to identify improved models in comparison with the 

initial structure for roughly half of the refinement targets, according to the CASP13 official results.  

 

The CASP13 regular targets included multi-domain proteins that were relatively larger compared 

to the previous CASP experiments (Read et al., 2019). Therefore, the determination of a fixed 

restraint threshold for the application of the local quality assessment guided MD-based protocol is 

less applicable. For the multi-domain structures especially for FM/TBM targets the one-size-fits-

all approach used by the fixed restraints is less appropriate. For instance, a domain predicted by 

TBM is probably more accurate compared to FM due to usage of available structures, thereby 

applying a fixed threshold according to the distribution of the per-residue accuracy scores may not 

be suitable. For this reason, we proposed a gradual restraint strategy based on the per-residue 

accuracy score, which considered the degree of refinement required for each residue during the 

MD simulations.  

 

The fixed and gradual restraint strategies showed good performance with both approaches 

successfully increasing the accuracy of the initial structures according to the GDT-HA scores. The 

application of the gradual restraints improved more models overall compared to the fixed restraint 

strategy, particularly for the FM/TBM targets, with ~25.89% of models improved versus ~15.90% 

respectively. For all targets, the overall percentage of the improved models was also higher using 

the gradual restraint strategy, with ~34.36% of models improved versus ~28.86% using fixed 

restraints.  

 

Beyond the CASP experiments, our protein structure prediction methods are used by researchers 

worldwide to predict structures that will help to solve real-world biological problems. The 

IntFOLD server (McGuffin et al., 2019) was developed to predict 3D models, the ModFOLD 

server (Maghrabi & McGuffin, 2019) is used to evaluate of the predicted 3D models by providing 

local and global scores and ReFOLD aims at improving the quality of the best-predicted 3D models 

which includes automation of a rapid MD based protocol. The automation of more accurate MD-

based protocols will play an important part in the improvement of our servers and will make more 

accurate models available for biological research. From the results in this chapter, it is evident that 

the application of the gradual restraint is found to be more effective than using a fixed restraint 
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strategy. Therefore, we plan to upgrade the ReFOLD server with the integration of the gradual 

restraint strategy in the short-term.  

 

The value of in silico modelling of protein tertiary structures was emphasised by its application in 

CASP Commons to shed light on the difficult unknown structures of the SARS-CoV-2 virus. This 

community wide effort aims to take a more comprehensive look at the structures to comprehend 

their functions and interactions within the cells. Our group participated in the prediction of the 

SARS-CoV-2 targets using the IntFOLD server, assessment of the predicted 3D models by 

ModFOLD8, and the refinement of the best-predicted server model selected by ModFOLD8 

utilising the gradual restraint strategy described in this chapter. Our manual prediction group 

(McGuffin) provided a significant number of the top 10 models for the SARS-CoV-2 targets 

according to the official CASP estimates of model accuracy. The gradual restraint strategy was 

also used in our manual prediction pipelines for the CASP14 experiment (at the time of writing 

the prediction part of the experiment is over but the results are not yet available). 

 

The fixed and gradual restraint strategies based on the local quality estimation were applied for the 

refinement of the whole protein structures. The next chapter will focus on the refinement of the 

predicted protein-ligand binding site rather than the whole structure in order to improve the quality 

of the specific regions. 
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Chapter 4 The Refinement of Predicted Protein-Ligand 

Binding Sites 
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4.1 Background 

 

Complete understanding of the biological functions of proteins is directly related to our knowledge 

of their interacting partners. Protein-ligand interactions play a critical role in the functionality of 

the protein structures, as well as other larger interacting partners. Determining protein-ligand 

binding sites allows us to progress towards elucidating molecular mechanisms and improves our 

understanding of protein interactions with drugs (Rhizobium, 2013; Roche et al., 2012a, 2013a; 

Roche, Buenavista, et al., 2011; Roche, Tetchner, et al., 2011). The determination of the protein-

ligand interactions via in vitro methods can be costly and time-consuming (McGuffin, 2008a; 

Moult et al., 2007, 2016; Roche et al., 2014; Roche & McGuffin, 2016b; Schmidt et al., 2011). In 

addition, in some situations it may not be practical or possible to bridge the protein sequence-

structure knowledge gap using experimental methods. The use of in silico methods can help us to 

predict the function of the proteins and their interactions with ligands and may be a useful 

alternative approach to aid the discovery of treatment pathways for human and animal diseases. 

 

In silico methods for the prediction of the protein-ligand binding sites can be divided into two main 

categories: sequence-based and structure-based methods (Rhizobium, 2013; Roche et al., 2012a, 

2013a; Roche, Buenavista, et al., 2011; Roche, Tetchner, et al., 2011). Sequence-based methods 

are based on the sequence similarity of homologous proteins and data from evolutionary 

conservation by means of different sequence alignments, including pairwise and multiple sequence 

alignment (MSA) (Chen et al., 2014; Sankararaman et al., 2009, 2010; Wass & Sternberg, 2008; 

Wierschin et al., 2015; Ye et al., 2008; Yu et al., 2013, 2015). Most of the sequence-based methods 

rely on the interpretation of the MSA data for each residue function to identify conserved residues 

(Chen et al., 2014; López et al., 2007; Roche et al., 2015; Roche & McGuffin, 2016a, 2016b; 

Sankararaman et al., 2009, 2010; Talavera et al., 2009; Wass & Sternberg, 2008; Ye et al., 2008; 

Yu et al., 2013).  

 

Structure-based methods additionally utilise the 3D information from predicted or experimentally 

determined 3D structures to predict protein-ligand binding sites. Structure-based methods can also 

be sub categorised as geometric-based methods and energetic-based approaches (Roche et al., 
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2015; Roche & McGuffin, 2016a). While the principle of geometric-based methods is the 

identification of binding site pockets, energetic-based approaches identify the pockets by 

considering interaction energies (Brylinski & Skolnick, 2008; Cao & Li, 2014; Erdin et al., 2010; 

Fuller et al., 2015; Heo et al., 2014; Hernandez et al., 2009; Huang & Schroeder, 2006; Izidoro et 

al., 2015; Madabushi et al., 2002; Roche et al., 2013b; Roche, Tetchner, et al., 2011; Roche et al., 

2012a; Yang, Roy, Zhang, et al., 2013; Zhu et al., 2014). 

 

4.1.1 The FunFOLD Server 

 

The McGuffin group developed the FunFOLD server to predict the protein-ligand binding sites as 

a structural template-based method. FunFOLD version 3, which is the current version of the 

FunFOLD server (Roche et al., 2012a, 2013b; Roche, Tetchner, et al., 2011) integrates the quality 

estimate scores from the FunFOLDQA method (see further description below) (Roche et al., 

2012a). FunFOLD makes use of the top selected 3D model predicted for the target sequence by 

the latest version of the IntFOLD server (McGuffin et al., 2015, 2019) along with the list of 

identified structural templates. The main assumption of the FunFOLD method is that proteins with 

similar folds will often have similarly located binding sites. Thus, the fold templates identified 

within the modelling process are used in the prediction of the protein-ligand interaction sites. In 

the first stage, FunFOLD (Roche, Tetchner, et al., 2011) utilises the 3D model and the template 

lists (PDB IDs) generated by the IntFOLD (McGuffin et al., 2019) server as inputs, superposing 

the target 3D model with each of the structural templates that contain biologically relevant ligands. 

The TM-align (Zhang & Skolnick, 2005) method is used for the structural super positioning and 

the BioLip database (Yang, Roy, & Zhang, 2013) is used to identify ligands in the templates that 

are considered to be biologically relevant. The BioLip database combines computational and 

manual examinations of biologically relevant ligand entries including binding residues in the 

database, ligand-binding affinity (Yang, Roy, & Zhang, 2013), EC numbers and GO terms . For 

the superpositions only templates with TM-scores higher than 0.4 are considered. Next, the 

potential binding sites are detected by determining the contact distance between the target 3D 

structure and possible ligands including Van der Waals bonds less than 0.5 Å (Roche et al., 2012a, 
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2013b, 2015; Roche, Tetchner, et al., 2011; Roche & McGuffin, 2016a; Yang, Roy, & Zhang, 

2013; Zhang & Skolnick, 2005).  

 

There are some caveats when using structure-based approaches, such as FunFOLD, for the 

prediction of the protein-ligand interactions (Roche et al., 2015; Roche & McGuffin, 2016a). The 

first obvious limitation is if no predicted 3D models or experimental structures are available, and 

so in this case purely sequence-based methods might still be used, if sequence MSA profiles can 

provide sufficient information. Another issue is if none of the identified templates contain 

biologically relevant ligands even if templates exist that have the same folds with the target 

structure (Roche et al., 2015; Roche & McGuffin, 2016a). The prediction of the best quality 

structure may not always be possible by the prediction servers (such as IntFOLD), so this may also 

affect the accuracy of the predicted binding sites. Despite having these limitations, structure-based 

methods have made progress over the years and continue to play a role in function prediction from 

structure (Roche et al., 2015; Roche & McGuffin, 2016a).  

 

4.1.2 Scoring Protein Ligand Binding Site Predictions 

 

The Binding-site Distance Test (BDT) score and the Matthews Correlation  Coefficient (MCC) 

scores have been used to assess the performance of predicted protein-ligand binding sites in the 

CASP (Gallo Cassarino et al., 2014; Schmidt et al., 2011) and CAMEO (Haas et al., 2013, 2018) 

experiments. The CASP category for the prediction of ligand binding site was introduced in 

CASP8 to predict binding site residues with the possible biologically relevant ligands (López et 

al., 2009). In CASP10, 13 out of 97 targets were found to be with biologically relevant ligands and 

the number of targets with the biologically relevant ligands was a limiting factor for the evaluation 

of the binding site prediction methods. Due to the lack of targets, the CASP category was 

subsequently moved to become part of the CAMEO experiment (López et al., 2009). Typically, 

CAMEO released 10-20 targets every week between January 2012 and April 2016 (Gallo 

Cassarino et al., 2014; Haas et al., 2013, 2018, 2019; López et al., 2009; Wu et al., 2018). 

Unfortunately, CAMEO-LB category was discontinued since 2016. However, CAMEO is 
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planning to start a new category which covers the modelling of protein complexes including the 

ligand-binding site prediction (Haas et al., 2018, 2019). 

4.1.3 Observed Quality Scores 

 

The MCC score is based on a statistical comparison of the list of observed binding residues with 

the list of predicted residues considering solely the residue numbers within the sequence, which 

are either assigned as true positives, false positives, true negatives, and false negatives (Matthews, 

1975; Roche et al., 2010). The MCC score ranges from -1 to 1, and the scores around 0 indicate 

random selections. Higher MCC scores also represent better predictions. Using the MCC score 

may not be adequate for the predictions made by structure-based methods as the 3D structural 

information is not taken into consideration for its calculation (Matthews, 1975; Roche et al., 2010, 

2015; Roche & McGuffin, 2016a).To consider the 3D observed structures, the BDT score 

developed by the McGuffin group was utilised for the investigation of improvements in ligand-

binding site predictions (Roche et al., 2010). 

 

The BDT score was developed by the McGuffin group for the assessment of the predicted protein-

ligand binding site predictions by considering the actually structural distance between predicted 

binding residues and observed binding residues according to the information in the observed 3D 

structure (Matthews, 1975; Roche et al., 2010, 2015; Roche & McGuffin, 2016a). Unlike the MCC 

score, the BDT score is also calculated utilising the observed 3D structure coordinates. The range 

of the BDT score is from 0 to 1, and the score close to 1 indicates a more accurate binding site 

prediction (Matthews, 1975; Roche et al., 2010, 2015; Roche & McGuffin, 2016a) . The BDT 

score was used in CASP9 (Schmidt et al., 2011) and CASP10 (Gallo Cassarino et al., 2014) along 

with the MCC score and is also used as a standard measurement in CAMEO. It is only possible to 

produce both the MCC and BDT scores when the observed structure is available with the bound 

ligand, hence these are observed measures of binding site model quality (Matthews, 1975; Roche 

et al., 2010, 2015; Roche & McGuffin, 2016a).  
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4.1.4 Predicted Quality Scores 

 

FunFOLDQA (Roche et al., 2012a) was also developed to assess the quality of the binding sites 

predicted by FunFOLD (Roche, Tetchner, et al., 2011) prior to the availability of experimental 

structures, by combining numerous sequence and structure based metrics using an artificial neural 

network and training it to learn the observed quality of the models according to the Binding-site 

Distance Test (BDT) (Roche et al., 2010) and Matthews Correlation Coefficient (MCC) 

(Matthews, 1975) scores. For the neural network architecture of FunFOLDQA (Roche et al., 

2012a), three layers and five features and eleven neurons were utilised (Roche et al., 2012a). The 

FunFOLD server provides the estimates of binding site accuracy according along with models of 

the predicted protein-ligand interactions (Roche & McGuffin, 2016a).  

 

4.2 Aims and Objectives 

 

The accuracy of predicted protein-ligand binding sites plays an important part in the wider 

adoption of 3D models of protein structures. FunFOLD3 provides a detailed prediction of the 

ligands and binding residues, which can be used to infer the function of modelled structures. 

Nevertheless, the accuracy of the modelled binding sites themselves may not always be adequate 

in order to accurately elucidate protein functions. Therefore, improving the quality of the modelled 

binding site regions might be a useful step towards a more complete atomic-level understanding 

of protein interactions.  

 

The aim of the work presented in this chapter is to increase the accuracy of the FunFOLD3 

predicted binding sites in protein 3D models by utilising the MD-based refinement protocol, which 

was initially developed in Chapter 2. The MD-based protocol will be used to improve the quality 

of the modelled binding site residues in order to fine tune the predicted interactions between 

residues and ligands. The predicted binding residues and their neighbouring residues will be the 

main focus in this refinement pipeline. It is postulated that by refining the local model quality of 

the binding residues and their neighbouring residues in the 3D models, which are used as inputs to 

FunFOLD3, we can likewise improve the observed quality of the FunFOLD3 binding site 
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predictions. Hence, the predicted binding site residues and their neighbouring residues in 3D 

models were highlighted for focused refinement, while the rest of the protein structure was 

restrained during the MD-simulations. The performance of the binding site refinement protocol 

was tested on CASP12 and CASP13 targets and we used the BDT and MCC scores to analyse the 

improvement in the quality of the predicted binding sites (Matthews, 1975; Roche et al., 2010, 

2015; Roche & McGuffin, 2016a; Zhang & Skolnick, 2005). The GDT-HA scores to measure the 

global effect on model quality (Matthews, 1975; Roche et al., 2010, 2015; Roche & McGuffin, 

2016a; Zhang & Skolnick, 2005).  

 

Refined 3D models with targeted improvements in the quality of the binding sites may help us to 

more accurately determine the nature of the protein-ligand interactions and therefore shed light on 

protein functionality. Following the performance evaluation presented here, this novel binding site 

refinement pipeline will be integrated with future versions the FunFOLD and IntFOLD servers, 

providing improved binding site predictions in our freely accessible servers.  

 

4.3 Materials and Methods 

4.3.1 Data Collection 

 

The 64 CASP12 and 82 CASP13 regular targets were used to test the new refinement protocol of 

the predicted protein-ligand binding sites. The best-predicted server models for the targets and 

their sequence and template lists (PDB IDs) were used to predict the protein-ligand binding sites 

using FunFOLD3. The best-predicted input server models were identified by the ModFOLD server 

and their template lists were generated by the IntFOLD server during CASP12 and CASP13 

experiments. The amino acid sequences and the native structures were obtained from the CASP 

website (http://predictioncenter.org/download_area/). The TM-score and BDT score tools were 

also utilised to produce the GDT-HA, BDT, and MCC scores in order to evaluate the performance 

of the binding site-focused MD-based protocol (Matthews, 1975; Roche et al., 2010, 2015; Roche 

& McGuffin, 2016a; Zhang & Skolnick, 2005).   

 

http://predictioncenter.org/download_area/
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4.3.2 Computational Design 

 

Our benchmarking of the refinement of the predicted binding sites in 3D models consists of three 

main stages: 1. the identification of the predicted and observed binding residues using FunFOLD3, 

2. the refinement of the predicted binding sites in 3D models using the binding site focused MD-

based protocol, and 3. the analysis of the resulting 3D models generated by the MD-based protocol 

using the different scoring measurements (Figure 4.1).  

 

In the first stage, the FunFOLD3 standalone method (executable JAR file from 

https://www.reading.ac.uk/bioinf/downloads/FunFOLD3Package.tar.gz) was used to predict the 

protein-ligand interactions for each of the CASP12 and CASP13 regular targets during the time 

frames of the prediction experiments. Recent versions of Java, PyMOL (Delano L.W., 2002), the 

TM-align tool (Zhang & Skolnick, 2005) and the most updated the CIF chemical components files 

and the Biolip databases (Yang, Roy, & Zhang, 2013) were required to run FunFOLD3 method 

locally. The best-predicted server models ranked by the ModFOLD server (Maghrabi & McGuffin, 

2017), the template list files (containing PDB IDs) generated by the IntFOLD server (McGuffin et 

al., 2019) , and the target sequences in FASTA format were all used as inputs for the FunFOLD3 

standalone method. The FunFOLD3 method provides the lists of predicted binding residues and 

possible ligands which are likely to interact with the initial structure, along with 3D models of the 

protein-ligand complexes as its output. The proLigContacts standalone tool was also run on the 

native structures with ligands to identify observed binding residues 

(https://www.reading.ac.uk/bioinf/downloads/proLigContacts2.jar).  
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Figure 4. 1 Flowchart summarising the application of the binding site-focused MD-based 

protocol. 
For each target, the best-predicted server model was firstly identified using the latest ModFOLD servers during the 

CASP12 and CASP13 experiments. The top models were then used as the initial input structures for FunFOLD3, 

which was then run to predict the binding site. The initial predicted binding site (the binding residues plus their 

neighbouring residues) was then located in the model. Following the determination of the binding site, the binding 

site-focused MD-based protocol was then applied to refine the site. Subsequently, FunFOLD3 was re-run, this time 

using the top refined 3D models as inputs, and new sets of binding residues were then predicted for each model. The 

predicted and the observed residues were then compared using the BDT and MCC scores and global model quality 

was scored using GDT-HA scores in the final stage. 

 

After the prediction of the binding site using the initial 3D model, their neighbouring residues 

within 5 Å were determined, using a PyMOL script, in order to define the full binding site to be 

targeted for refinement. In order to focus the refinement process on the binding site in the initial 
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structure, a weak harmonic positional restraint (0.05 kCal/mol/Å2) was applied to the rest of the 

protein structure, thereby allowing more movement in the binding site during the MD simulation 

(Mirjalili et al., 2014; Mirjalili & Feig, 2013). The MD simulations were carried out using NAMD 

2.10 (Phillips et al., 2005) and the parameters which were optimised for the original MD-based 

protocol of ReFOLD, as described in Chapter 2 (Mirjalili et al., 2014; Mirjalili & Feig, 2013; Shuid 

et al., 2017). 164 refined 3D models were generated for each target using the binding-site focused 

MD-based protocol. Subsequently, FunFOLD3 was re-run in order to predict the binding residues 

for each refined model.  

 

Following the prediction of the binding residues for each refined 3D model, the predicted binding 

residues and ligands were compared to the observed binding residues for the targets which had 

experimentally solved structures containing biologically relevant ligands. The biological relevance 

of ligands within solved structures was determined by investigating the available structure data, 

the ligand databases and literature.  

 

The BDT tool (https://www.reading.ac.uk/bioinf/downloads/BDT.jar) was used to produce the 

BDT and MCC scores (Matthews, 1975; Roche et al., 2010) in order to assess the accuracy of the 

binding site residue predictions, based on each refined 3D model, compared with the observed 

binding residues. The GDT-HA score was also produced using the TM-score tool (Zhang & 

Skolnick, 2005) to analyse the accuracy of the 3D models compared with the native structures. 

 

4.4 Results and Discussion 

 

The CASP12 and CASP13 targets were analysed in terms of their biologically relevant binding 

sites using their observed structures, which were released in Protein Data Bank (PDB). After the 

analysis of the available observed structures, 9 targets were found to have coordinates for 

biologically relevant bound ligands, so these were analysed with regards to the refinement of the 

modelled binding sites. These targets were T0909 (5g5n), T0911 (6e9n), T0912 (5mqp), T0953s2 

(6f45), T0954 (6cvz), T1009 (6dru), T1011 (6m9t), T1016 (6e4b) and T1018 (6n91). The observed 

binding site residues versus the initial predicted and the best refined binding site residues according 
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to the MCC score are compared in Table 4.1. More than one predicted and observed binding sites 

were determined for T0953s2, T0954, T1009, T1011, T1016, and T1018 and the best initial 

prediction was chosen for further refinement (Table 4.1).  

The predicted binding sites were targeted for refinement using the binding site-focused MD-based 

protocol and the resulting residue prediction accuracy (BDT, MCC) and model quality scores 

(GDT-HA) are shown in Table 4.2, and Figure 4.2. The binding sites identified by FunFOLD3 for 

T0909, T0912, T0954 and T1011 were poorly predicted compared to those of T0911, T0953s2, 

T1009, T1016 and T1018 according to the BDT and MCC scores (Table 4.2 and Appendix 33-

37). These targets and their binding sites will be investigated in this section in order to analyse the 

performance of the binding site-focused MD-based protocol.  

 

Despite the low initial accuracy of the binding site residues predicted by FunFOLD3 for T0909, 

T0912, T0954 and T1011, following the targeted refinement of the modelled binding sites, the 

subsequent binding residue accuracy was increased according to the BDT and MCC scores (Table 

4.1, Table 4.2). Although T0954 and T1011 were defined by the assessors as TBM targets, the 

lower BDT and MCC score might indicate the lack of availability of suitable templates with bound 

ligand, which are required to generate the binding site predictions (Table 4.2 and Appendix 35-

36). T0909 and T0912 were categorised as FM/TBM targets, so the low accuracy of the binding 

site might be also related to the lack of the templates. Nonetheless, the binding site-focused MD-

based protocol managed to generate improved models, for example, the T0909 refined models 

show better scores versus the initial models according to the BDT, MCC and GDT-HA scores 

(BDTmax of 0.03, MCCmax of -0.00605 and GDT-HAmax of 0.2913 versus BDTstarting of 

0.0253, MCCstarting of -0.0067 and GDT-HAstarting of 0.2703 ) (Table 4.2, Figure 4.3, and 

Figure 4.4).  

 

The higher GDT-HA maximum scores for most of the refined models indicate that the binding 

site-focused MD-based strategy can act to improve the global model quality even though the 

binding site residue predictions themselves are not highly accurate. However, it should be noted 

that the MD-based protocol failed to improve the starting model of T0912 according to GDT-HA 

score despite improving the predicted binding site (BDTmax of 0.0241, MCCmax of -0.0047 and 

GDT-HAmax of 0.326 versus BDTstarting of 0.0122, MCCstarting of -0.0058 and GDT-
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HAstarting of 0.3285 ) (Table 4.2, Figure 4.5, and Figure 4.6). In light of this comparison, the 

binding-site focused MD-based protocol showed promising performance in terms of increasing the 

accuracy of the focused region during the MD simulation in spite of the low initial accuracy of the 

binding site predictions. 

 

 

Figure 4. 2 The refinement of a CASP13 target T1016 by the binding site-focused MD-based 

protocol. 
 (A) The best-predicted initial server model (green) with the binding site predicted by FunFOLD3 (red sticks) and 

predicted ligand (yellow spheres). (B) The best-refined model (cyan) with the new predicted binding site (red sticks) 

and predicted ligand (yellow spheres). (C) The observed structure (green), the observed binding site (red sticks) and 

observed ligand (yellow spheres). The initial structure versus the best model shows a GDT_HA improvement from 

0.6015 to 0.6176, a BDT improvement from 0.227 to 0.235, and an MCC improvement from 0.522 to 0.661.  
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The binding site predictions for T0911, T0953s2, T1009, T1016, and T1018 have higher BDT and 

MCC scores compared to other targets (Table 4.2, and Appendix 33-34,37). These targets were 

defined as TBM targets by the CASP assessors except for T0953s2, which was designated 

FM/TBM, so it is likely that these targets had better information from more available templates. 

The initial binding site prediction for T1018 is the best one among the targets studied, and the 

targeted refinement further improved the quality according to the BDT, MCC scores and GDT-

HA scores (BDTmax of 0.528, MCCmax of 0.661 and GDT-HAmax of 0.5989 versus BDTstarting 

of 0.487, MCCstarting of 0.522 and GDT-HAstarting of 0.5666 ) (Table 4.2, and Figure 4.7-4.8). 

Although the accuracy of the predicted binding site for T1009 was increased according to the BDT 

and MCC scores (BDTmax of 0.489, MCCmax of 0.372 and versus BDTstarting of 0.462, 

MCCstarting of 0.337), the 3D models generated by the MD-based protocol were not improved 

according to the GDT-HA score (GDT-HAmax of 0.4359 versus GDT-HAstarting of 0.4352) 

(Table 4.2, Figure 4.9, and Figure 4.10). 

 

Although the 3D models generated by the binding site-focused MD-based protocol have a slightly 

lower cumulative mean BDT and MCC scores compared to the starting models (∑BDTmean of 

1.5774, and ∑MCCmean of 1.35033 versus ∑BDTstarting of 1.7064, and ∑MCCstarting of 

1.4614) (Table 4.2), the cumulative maximum BDT and MCC scores are higher when the refined 

models are used to generate the FunFOLD3 predictions compared with using the initial models 

(∑BDTmax of 1.9838, and ∑MCCmax of 1.96005) (Table 4.2). It is evident that the binding site-

focused refinement protocol increased accuracy of the predicted binding sites for all targets, 

according to the maximum BDT and MCC scores (Table 4.1, Table 4.2, and Appendix 33-37). 

 

The GDT-HA score measurement was also used to evaluate the effect of the binding site-focused 

MD-based protocol on the overall or global quality of the resulting models. Despite using a focused 

refinement on the predicted binding site during the MD simulations, the strategy also had the 

beneficial effect of increasing the maximum global accuracy for most targets except for T0912 

and T1009. The 3D models generated by the binding site-focused MD-based protocol have higher 

GDT-HA maximum scores compared to the starting model, despite lower cumulative mean and 

minimum scores (∑GDT-HAmax of 3.5015,  ∑GDT-HAmean of 3.3285, and ∑GDT-HAmin of 
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3.2088 versus ∑GDT-HA score of starting model 3.4298) (Table 4.2, Figure 4.3-4.10 and 

Appendix 33-37).  
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CASP ID PDB 

ID 

CASP 

category  

The observed binding residues  The initial predicted binding residues  The best-predicted binding residues  

T0909 5g5n FM/TBM 159 146, 147, 169, 170, 208 146, 147, 170, 208 

T0911 6e9n TBM 47,79,137,161,264,271,272,370,371,372,373,374,397,272, 

370, 371, 372, 373, 374, 397,272, 370, 371, 372, 373, 374, 

397 

44, 160, 164, 165, 168, 271, 

272, 301, 366, 393 

44, 47, 164, 165, 168, 271, 272, 301, 

366 

T0912 5mqp FM 155,262,264,268 521, 522, 553  521,553 

T0953s2 6f45 FM/TBM 164 120, 121, 122, 123, 124, 125, 126, 156, 157, 158, 

159, 164, 165, 166, 167, 170, 174, 198 

119, 120, 121, 122, 123, 124, 125, 126, 

156, 157, 158, 164, 165, 166, 198 

T0954 6cvz TBM-hard 123, 124, 129, 130, 131 77, 119, 231, 273, 274, 275 77, 274 

T1009 6dru TBM-hard 527,534,286,357,396,404,406,409,257,520 ,559] 173, 257, 286, 325, 393, 395, 396, 470, 484, 487, 

520, 557 

257, 286, 325, 393, 395, 396, 470, 484, 

487, 520 

T1011 6m9t TBM-hard 64,67,115,116,119,123,146,149,150,215 

,216,218,455,489,492,493,496,499 

11, 48, 146, 220, 221, 223, 462 48, 146, 220, 221, 222, 223, 455, 482, 

492 

T1016 6e4b TBM-easy 81,82,84,106,107,110,151,168,169,132, 

133,135,136,139,186 

7,8,14,19,20,21,57,81,84,149,150 8, 19, 20, 21, 57, 81, 84, 149, 150 

T1018 6n91 TBM-easy 12,14,197,278 14, 56, 59, 98, 170, 197, 278, 279 12, 14, 59, 60, 98, 170, 197, 221, 278 

 

Table 4. 1 Predicted, observed and the best-refined binding residues for the CASP12 and CASP13 targets. The best-refined binding 

residues is given according to MCC score. 
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Table 4. 2 The performance of the binding site-focused MD-based protocol according to the BDT, MCC and GDT-HA scores (higher 

scores better). 

 

 

 

 

 

 

 

 

 

 

Table 4. 3 Calculated pairwise p-values for the maximum score versus the score of starting models on the CASP13 refinement targets 

according to the BDT, MCC and GDT-HA scores. 
Ho: The maximum score is equal or lower in quality than the score of starting models. H1: The maximum score is higher quality models than the score of starting models. P-

values ≤ 0.05 indicate significant statistical differences (in boldface, higher scores are better). 

CASP TARGET BDT score MCC score GDT-HA score 

CASP ID PDB 

ID 

CASP 

category 

starting 

model 

minimum Mean 

Score 

Maximum 

Score 

starting 

model 

minimum Mean 

Score 

Maximum  

Score 

starting 

model 

minimum Mean 

Score 

Maximum  

Score 

T0909 5g5n FM/TBM 0.0253 0.0212 0.026 0.03 -0.0067 -0.008 -0.00655 -0.00605 0.2703 0.2673 0.278317 0.2913 

T0911 6e9n TBM 0.258 0.128 0.191 0.2938 0.2049 0.0589 0.127 0.3027 0.2972 0.2763 0.289635 0.3009 

T0912 5mqp FM/TBM 0.0122 0.0078 0.0157 0.0241 -0.0058 -0.0106 -0.0066 -0.0047 0.3285 0.298 0.298 0.326 

T0953s2 6f45 FM/TBM 0.1345 0.099 0.125 0.168 0.227 -0.016 0.21668 0.25 0.1321 0.127 0.134762 0.1452 

T0954 6cvz TBM-hard 0.0255 0.01 0.0217 0.0279 -0.016 -0.016 -0.0136 -0.0093 0.4379 0.4247 0.435821 0.4532 

T1009 6dru TBM-hard 0.462 0.388 0.456 0.489 0.337 0.238 0.331 0.372 0.4359 0.4008 0.413282 0.4352 

T1011 6m9t TBM-hard 0.0749 0.022 0.102 0.188 0.101 -0.019 0.127 0.2726 0.3598 0.33 0.342918 0.3632 

T1016 6e4b TBM-easy 0.227 0.209 0.226 0.235 0.098 0.079 0.0994 0.1218 0.6015 0.5705 0.598789 0.6176 

T1018 6n91 TBM-easy 0.487 0.307 0.414 0.528 0.522 0.303 0.476 0.661 0.5666 0.5142 0.537011 0.5689 

The Cumulative 

score  

  
1.7064 1.192 1.5774 1.9838 1.4614 0.6093 1.35033 1.96005 3.4298 3.2088 3.328535 3.5015 

The Score Maximum vs Starting 

BDT score 0.0009766 

MCC score 0.000976 

GDT-HA Score 0.006836 
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Figure 4. 3 The refinement of a CASP13 target T0909 by the binding site-focused MD-

based protocol. 
(A) The best-predicted initial server model (green) with the binding site predicted by FunFOLD3 (red sticks) and 

predicted ligand (yellow spheres). (B) The best-refined model (cyan) with the new predicted binding site (blue 

sticks) and predicted ligand (yellow spheres). (C) The observed structure (green), the observed binding site (red 

sticks) and observed ligand (yellow spheres). The initial structure versus the best model shows a GDT_HA 

improvement from 0.2703 to 0.2913, a BDT improvement from 0.0253 to 0.03, and an MCC improvement from 

-0.0067 to -0.00605.   
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Figure 4. 4 The performance of the binding site-focused MD-based protocol for T0909 

models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based 

protocol and the orange line represents the starting model score. (B) the black line represents the BDT scores of 

3D models generated by the binding site-focused MD-based protocol and the orange line represents the starting 

model score. (C) and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score 

(higher scores are better)  

A 
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Figure 4. 5 The refinement of a CASP13 target T0912 by the binding site-focused MD-

based protocol. 
(A)The best-predicted initial server model (green) with the binding site predicted by FunFOLD3 (red sticks) and 

predicted ligand (yellow spheres). (B) The best-refined model (cyan) with the new predicted binding site (red 

sticks) and predicted ligand (yellow spheres). (C) The observed structure (green), the observed binding site (red 

sticks) and observed ligand (yellow spheres). The initial structure versus the best model shows a BDT 

improvement from 0.0122 to 0.0241, and an MCC improvement from -0.0058 to -0.0047. 
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Figure 4. 6 The performance of the binding site-focused MD-based protocol for T0912 

models. 
 (A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based 

protocol and the orange line represents the starting model score. (B) the black line represents the BDT scores of 

3D models generated by the binding site-focused MD-based protocol and the orange line represents the starting 

model score. (C) and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score 

(higher scores are better)   
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Figure 4. 7 The refinement of a CASP13 target T1018 by the binding site-focused MD-

based protocol. 
 (A) The best-predicted initial server model (green) with the binding site predicted by FunFOLD3 (red sticks) and 

predicted ligand (yellow spheres). (B) The best-refined model (cyan) with the new predicted binding site (blue 

sticks) and predicted ligand (yellow spheres). (C) The observed structure (green), the observed binding site (red 

sticks) and observed ligand (yellow spheres). The initial structure versus the best model shows a GDT_HA 

improvement from 0.5666 to 0.5689, a BDT improvement from 0.487 to 0.528, and an MCC improvement from 

0.522 to 0.661.  
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Figure 4. 8 The performance of the binding site-focused MD-based protocol for T1018 

models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based 

protocol and the orange line represents the starting model score. (B) the black line represents the BDT scores of 

3D models generated by the binding site-focused MD-based protocol and the orange line represents the starting 

model score. (C) and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score 

(higher scores are better)  
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Figure 4. 9 The refinement of a CASP13 target T1009 by the binding site-focused MD-

based protocol. 
 (A) The best-predicted initial server model (green) with the binding site predicted by FunFOLD3 (red sticks) and 

predicted ligand (yellow spheres). (B) The best-refined model (cyan) with the new predicted binding site (blue 

sticks) and predicted ligand (yellow spheres). (C) The observed structure (green), the observed binding site (red 

sticks) and observed ligand (yellow spheres). The initial structure versus the best model a BDT improvement from 

0.462 to 0.489, and an MCC improvement from 0.337 to 0.372.   
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Figure 4. 10 The performance of the binding site-focused MD-based protocol for T1009 

models. 
 (A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based 

protocol and the orange line represents the starting model score. (B) the black line represents the BDT scores of 

3D models generated by the binding site-focused MD-based protocol and the orange line represents the starting 

model score. (C) and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score 

(higher scores are better) 
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4.5 Conclusions  

 

The prediction of the protein-ligand binding sites is crucial in terms of understanding the function 

of the protein structures, particularly in cases where native structures are unavailable. The 

interactions between proteins and ligands may further our knowledge of the mechanisms of action 

and their effects. Determining the atomic details of protein-ligand interactions using experimental 

methods may not always be feasible to bridge the sequence-structure-function knowledge gap. 

However, in silico methods are an alternative way to elucidate the protein functions and model 

protein-ligand interactions starting with amino acid sequence information.  

 

FunFOLD3 was developed by the McGuffin group to predict protein-ligand binding sites from 

sequences utilising a template-based modelling approach. The BDT and MCC scores were also 

developed for the evaluation of the binding site prediction performance based on the comparisons 

of predicted and observed binding residues. In this chapter, our aim was to increase the accuracy 

of the binding site predictions made by FunFOLD3 by utilising a binding site-focused MD-based 

refinement protocol. The performance of this protocol was analysed in terms of: 1. its ability to 

help improve binding site residue predictions through improvement of the input model binding 

site (evaluated using the BDT, MCC scores), and, 2. its ability to also improve the global quality 

of the initial model (evaluated using the GDT-HA scores).  

 

The MCC and BDT scores were used to analyse specifically the improvement of the binding site 

prediction. The calculation of the MCC score is based on a statistical comparison of the observed 

and predicted binding residues, and the BDT score is also calculated considering the distance 

between the predicted and observed binding residues in the native structure. Therefore, GDT-HA 

score, which relies on the superposition of the entire predicted 3D model with the observed 

structure, was also used to analyse the improvements to the global quality. It is also worthy of note 

that although the MD-based protocol was used to refine the predicted binding site, it performed 

well in terms of improving the quality of the 3D models according to GDT-HA score.  
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It is promising that the binding site-focused refinement strategy managed to improve all predicted 

binding sites, whether they were initially highly accurate or less-accurate according to the BDT 

and MCC scores. It was also observed that the target difficulty is an important factor governing 

the accuracy of the initial model and predicted binding site. The binding site predictions for TBM 

targets are much more accurate compared to the FM/TBM targets, with the exception of T0954 

and T1011. This is likely to be related to the availability of appropriate template structures with 

bound ligands. Therefore, it can be said that the binding site predictions made by FunFOLD3 for 

the TBM targets are likely to be more reliable and provide more helpful information in terms of 

functionality and the role of the interactions. The binding site-focused MD-based strategy may 

boost the performance of FunFOLD3 by further improving the quality of the input 3D models used 

to make predictions.  

 

Although the results presented here are promising, for a more thorough analysis of the performance 

of the MD-based protocol, it will be tested with further targets when they are available. Despite 

scanning all CASP12, CASP13 targets, only 9 targets with publicly released structures were found 

to contain biologically relevant ligands. The FunFOLD3 predictions will continue be made by the 

McGuffin group for all of the CASP14 targets, and these can be added into the analyses to further 

test the approach in future. Nevertheless, the analysis shows that the binding-site focused MD-

based protocol has potential to increase the accuracy of the predicted binding sites towards the 

native structure. The approach will be considered for integration with future versions of FunFOLD 

and the IntFOLD server. 

 

Residue-residue contact prediction methods have shown considerable potential in the contact 

prediction categories of recent CASP experiments. In the next chapter, as the first attempt, this 

prior knowledge is utilised to improve the quality of the initial structures in the refinement pipeline. 
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Chapter 5 The Utilisation of Residue-Residue Contact 

Predictions to Provide Guidance to the MD-Based 

Refinement Protocol 
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5.1 Background  

 

The development of advanced deep learning methods along with the increase in the sizes of 

sequence families have dramatically increased the potential of the residue-residue contact 

prediction methods in recent years. The predicted contacts between amino acids have been an 

important part of in silico protein modelling, and the accuracy of the residue-residue contacts 

plays a critical role in the quality of 3D models and function predictions (Gromiha & Selvaraj, 

2004). The idea of building 3D models by utilising predicted residue-residue contact maps 

emerged 20 years ago (Adhikari et al., 2015; Adhikari & Cheng, 2016; Mirny & Domany, 

1996; Vendruscolo & Domany, 2000). Nevertheless, it is only relatively recently that 

advancements in residue-residue contact predictions, and have reached a reasonable enough 

accuracy in order to become a mainstay in modelling pipelines (Adhikari & Cheng, 2016; 

Jones, 2001; Rohl et al., 2004; Vitkup et al., 2001). Residue-residue contact predictions have 

been primarily used to build 3D models, (Jones 2001; Marks et al. 2011), followed by drug 

design, (Kliger et al., 2009), and model quality estimation (Miller & Eisenberg, 2008; Z. Wang 

et al., 2011). Predicting contacts for the construction of ab initio protein 3D models for FM 

targets is still unsolved, but considerable progress has been made in recent years to increase 

the accuracy of methods (Adhikari & Cheng, 2016). Since CASP13, deep learning methods for 

prediction of residue distances have arguably become the major step forward in improving the 

quality of 3D models predicted for FM targets.  

 

Contact prediction methods can be categorised according to the usage of the information in the 

prediction process. Methods can be (1) coevolution-derived, (2) machine learning, (3) 

template-based, (4) physicochemical-based, and (5) hybrid methods (Adhikari & Cheng, 2016; 

Schneider & Brock, 2014; Yachdav et al., 2014). The methods can also be more broadly 

classified as correlated mutation-based or machine learning-based methods (Adhikari & 

Cheng, 2016; Björkholm et al., 2009; Di Lena et al., 2012; Schneider & Brock, 2014). The top-

performing machine learning-based approaches are based on the usage of the deep learning 

architectures, and some of the methods also utilise correlated mutation information (Björkholm 

et al., 2009; Cheng et al., 2009; Cheng & Baldi, 2007; Di Lena et al., 2012; Eickholt & Cheng, 

2013; Fariselli et al., 2001; Michel et al., 2014; Shackelford & Karplus, 2007; Skwark et al., 

2014; Vullo et al., 2006; Z. Wang et al., 2009; Wu & Zhang, 2008). Many different kinds of 

information including residue type, secondary structure, and the sequence profiles are used by 
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the machine learning-based approaches in order to predict the residue-residue contacts 

(Adhikari & Cheng, 2016; Bacardit et al., 2012; Björkholm et al., 2009; Cheng & Baldi, 2007; 

Fariselli et al., 2001; Li et al., 2011; Vullo et al., 2006; Z. Wang et al., 2009; Wu & Zhang, 

2008). Coevolution-derived methods focus on the mutations, which are linked with other 

residue mutations, and so contact predictions that are made by coevolution-derived methods 

usually make use of multiple sequence alignments (MSAs) for identifying correlated mutations 

(Adhikari & Cheng, 2016; Buslje et al., 2009; Ekeberg et al., 2013; Göbel et al., 1994; Jeong 

& Kim, 2012; Jones et al., 2015; Kamisetty et al., 2013; Lapedes et al., 1999; Olmea & 

Valencia, 1997; Schneider & Brock, 2014; Shindyalov et al., 1994; Tetchner et al., 2014; Weigt 

et al., 2009).  

 

MSA, also known as `sequence profile` is aimed to collect and align multiple protein sequence 

of the target sequence. MSAs contains sequences provide a substantial data about motifs, 

conserved positions to modelling of protein structures and function prediction (Zhang et al., 

2020). For the protein modelling, MSA is initially used for the secondary structure prediction 

(Jones, 1999; Wu & Zhang, 2008), then residue-residue contact prediction (Adhikari et al., 

2018; Hanson et al., 2018; He et al., 2017; S. Wang et al., 2017), template-based modelling 

(Söding, 2005; Wu & Zhang, 2008; Zhang et al., 2020; Zheng et al., 2019), and ligand binding 

site predictions (Gil & Fiser, 2019; Yu et al., 2013). Therefore, developing the MSA tools plays 

a critical role for the bioinformatics tools. Contact prediction methods use different MSA tools 

for residue covariation besides the whole chain (De Juan et al., 2013). While PSI-BLAST has 

been widely used for the sequence profile generation (Altschul et al., 1997), different 

combinations of HHblits (Remmert et al., 2012), HH-suite (Steinegger & Söding, 2018), 

Jackhmmer and HMMER suite (Eddy, 1998) are among the popular MSA tools for the residue-

residue contact prediction methods (D. W. A. A. Buchan & Jones, 2018; Di Lena et al., 2012; 

Greener et al., 2019; Kandathil et al., 2019a; Ovchinnikov et al., 2017; Schaarschmidt et al., 

2018; Y. Wang et al., 2019; Wu et al., 2011)  

 

Residue-residue contacts are defined as pairs of close residues, usually within 8 Å of each other 

within the 3D structure. The residue distance is measured between carbon-betas (carbon-alphas 

in case of glycine) using the x, y, and z coordinates of the atoms in the PDB structure files 

(Adhikari & Cheng, 2016; Duarte et al., 2010). The threshold based on the distance also 

determines the number of residues which are in contact in a 3D model. The determination of 
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which residues are in contact is a key to reconstructing the protein fold (Adhikari & Cheng, 

2016; Niggemann & Steipe, 2000). The residue contacts are divided into three main categories 

- short-range, medium-range, and long-range - depending on the distance between residues in 

3D models (Adhikari & Cheng, 2016; Schaarschmidt et al., 2018). The accuracy of the 

prediction of long-range contacts is crucial for the reconstruction of 3D models, but it is also 

quite hard to predict them with high accuracy compared to others. Therefore, the long-range 

contacts are often considered as a separate category in the assessment of contact prediction 

methods (Adhikari & Cheng, 2016; Eickholt & Cheng, 2013; Kryshtafovych et al., 2011; 

Monastyrskyy et al., 2014). The distribution and coverage of contacts is also a critical factor in 

building 3D models, for methods that rely on predicted contacts (Adhikari & Cheng, 2016; 

Eickholt & Cheng, 2013; Kryshtafovych et al., 2011; Monastyrskyy et al., 2014). For instance, 

if most of the predicted contacts with high accuracy are only gathered in a particular region, 

then the prediction of highly accurate structures may require additional information about the 

rest of the structures. As a result, the proportion of the contacts is also traditionally evaluated 

with the top L/2 or just the top L/5 predicted contacts (where L is the sequence length) 

(Adhikari & Cheng, 2016; Eickholt & Cheng, 2013; Kryshtafovych et al., 2011; Monastyrskyy 

et al., 2014). 

 

5.1.1 The Residue-Residue (RR) Contact Predictions Category in CASP 

 

The contact prediction category was first introduced in CASP2 to assess the ability of methods 

to predict residue-residue contacts (Aloy et al., 2003; Bohr et al., 1993; Ezkurdia et al., 2009; 

Graña et al., 2005; Kryshtafovych et al., 2016; Lesk, 1997; Lesk et al., 2001; Orengo et al., 

1999; Rangwala & Karypis, 2010; Skolnick et al., 1997; Taylor et al., 2014). It was proposed 

that the long-range contacts can be utilised for ab initio modelling by constraining the contacts 

in 3D models (Schaarschmidt et al., 2018; Skolnick et al., 1997; Taylor et al., 2014). Therefore, 

the prediction of 3D models which were assisted by contacts has been included as a separate 

evaluation category since CASP10 (Schaarschmidt et al., 2018; Skolnick et al., 1997; Taylor 

et al., 2014). Nevertheless, the low accuracy of residue-residue contact predictions had limited 

the success of contact-assisted structure prediction approaches (Schaarschmidt et al., 2018). 

CASP also gives more importance to the accuracy of the long-range contacts compared to 

short-range and medium-range contacts, as the prediction of the short-range and medium-range 



Chapter 5 

 

137 

 

contacts is not as hard as long-range contacts. The top L/5 contacts might be highly accurate, 

but the coverage of the predicted contacts may be too low for the accurate reconstruction of the 

protein fold (Adhikari et al., 2015; Adhikari & Cheng, 2016; Eickholt & Cheng, 2013; Marks 

et al., 2011; Michel et al., 2014). 

 

The contact prediction methods which made use of machine learning and coevolution-derived 

approaches have shown better performance in the recent CASP blind assessments. FM 

modelling targets are usually used for the evaluation of the contact prediction methods as such 

methods are of most use when no templates are available to predict the protein 3D models 

(Adhikari & Cheng, 2016; Kryshtafovych et al., 2016; Schaarschmidt et al., 2018; Shrestha et 

al., 2019). 

 

Although residue-residue contacts have been assessed since CASP2, significant progress was 

not observed until CASP11 (Schaarschmidt et al., 2018). The accuracy of the contact prediction 

fluctuated at around 20% of precision until CASP11 (Schaarschmidt et al., 2018; Shrestha et 

al., 2019). An average precision of 27% was reached in CASP11, and this improvement was 

roughly doubled by an average precision of 47% in CASP12 as a remarkable milestone of the 

contact prediction category with the application of deep neural network (DNN) (Jones et al., 

2015; Kryshtafovych et al., 2016; Schaarschmidt et al., 2018). The application of various DNN 

methods have been the mainstay of the bioinformatics tools in recent CASP experiments 

particularly Convolutional Neural Network (CNN) in CASP13. DNN approaches has been 

successful where no homologs can be found (Greener et al., 2019; Kandathil et al., 2019b). 

While the traditional neural networks (NN) have usually consisted of a single hidden layer, 

CNN methods are able to make the use of multiple layers up to 20 layers for the contact 

predictions (Greener et al., 2019; Kandathil et al., 2019b).    

 

The MetaPSICOV developed by the David Jones group from UCL was one of the methods that 

showed a noticeable performance improvement for the prediction of residue-residue contacts 

compared to previous methods (Jones et al., 2015; Kryshtafovych et al., 2016; Schaarschmidt 

et al., 2018). Although this major leap was achieved by numerous groups and there was not a 

huge gap in terms of precision performance between the top prediction groups in CASP12 

(Jones et al., 2015; Kryshtafovych et al., 2016; Schaarschmidt et al., 2018).  

 



Chapter 5 

 

138 

 

CASP13 saw a further major leap in performance in the contact prediction category, with the 

top-performing groups reached up to 70% precision using deep neural network algorithms 

(Shrestha et al., 2019). After the 20 years of contact prediction in CASP experiments, the 

prediction groups have reached a sufficient accuracy residue-residue contacts for further in 

silico studies (Schaarschmidt et al., 2018; Shrestha et al., 2019). Many of the top-performing 

Free Modelling groups in CASP13 were also performing well in contact prediction 

(Schaarschmidt et al., 2018; Shrestha et al., 2019). 

 

5.1.2 DeepMetaPSICOV 

 

MetaPSICOV was developed with the aim of increasing the accuracy of the predicted contacts 

derived from multiple sequence alignments by using a combination of different machine 

learning algorithms as a meta-predictor (Jones et al., 2015; Kosciolek & Jones, 2016). The 

method also combines the direct-co-evolution with statistical approaches and the evaluation of  

“classic” protein properties using two tandem neural networks (Jones et al., 2015; Kosciolek 

& Jones, 2016). The first stage is based on the generation of the initial contact maps utilising 

672 features in total to predict the likelihood of residue i and j being in contact using three 

windows (Jones et al., 2015).. In the second stage, the initial contact map was analysed to 

eliminate outliers and fill the gaps taking advantage of 731 features to correlate the output from 

the first stage using two windows of 11 alignment columns (Jones et al., 2015). MetaPSICOV 

utilised also combination of three different coevolution methods including: PSICOV (Jones et 

al., 2012), mfDCA (Kaján et al., 2014), and GREMLIN (Jones et al., 2015; Kamisetty et al., 

2013; Kosciolek & Jones, 2016; Seemayer et al., 2014) 

 

MetaPSICOV (the server was registered as CONSIP2 in CASP11) reached an average 

precision of 27% as the best contact prediction method in CASP11 (Jones et al., 2015; 

Kosciolek & Jones, 2016).  

 

MetaPSICOV2 was subsequently upgraded using a wider neural network and input window of 

15 residues instead of 9-residue window originally used (D. W. A. A. Buchan & Jones, 2018). 

This version of MetaPSICOV2 was tested in CASP12 and achieved an average precision of 

43% (D. W. A. A. Buchan & Jones, 2018). The next milestone was the development of fully 
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convolutional neural networks (FCN), which were successfully applied to predict the whole 

contact maps using the architecture of DeepCov instead of generating initial contact maps with 

MetaPSICOV (Jones & Kandathil, 2018; Kandathil et al., 2019a).   

 

In CASP13 we saw that the application of deep neural networks had boosted the performance 

of contact prediction methods (Kandathil et al., 2019a). The DeepMetaPSICOV (DMP) 

(Kandathil et al., 2019a) method was a further development, which used a deep, fully 

convolutional residual neural network. DMP includes the combination of input features used 

in MetaPSICOV and DeepCov (Jones & Kandathil, 2018) as well as the outputs from PSICOV 

(Jones et al., 2012), CCMpred (Seemayer et al., 2014) and FreeContact (Kaján et al., 2014). 

These features are converted into 2D maps (Kandathil et al., 2019a) and DMP has the capacity 

of predicting residue-residue contacts for a wide range of proteins such as membrane proteins, 

even if the initial MSA are relatively shallow (Kandathil et al., 2019a). DMP was among top 5 

contact prediction methods and it reached an average precision of ~60% in CASP13 (Jones & 

Kandathil, 2018; Kandathil et al., 2019a; Shrestha et al., 2019) 

 

The MetaPSICOV method was previously used for the calculation of the Contact Distance 

Agreement (CDA) score, which was a novel component of the ModFOLD6 global and local 

quality scoring method (Jones et al., 2015; Maghrabi & McGuffin, 2017). The CDA score 

based on the agreement between the residue contacts predicted by MetaPSICOV and the 

contacts measured according to the Euclidean distance (in Å) between residues in a predicted 

3D model, and the generation of the CDA score explained in details in section 5.3.2 (Maghrabi 

& McGuffin, 2017).  

5.2 Aims and Objectives 

 

After the impressive performance of DeepMetaPSICOV in CASP13, it is proposed to utilise 

the CDA score based on the agreement between the DeepMetaPSICOV predicted contacts and 

the contacts in the starting model, in order to guide the MD-based refinement protocol 

(Kandathil et al., 2019a; Shuid et al., 2017). DeepMetaPSICOV method is also one of the top-

performing methods available for local installation, so DeepMetaPSICOV was preferred to 

guide the MD-based protocol. The contact-assisted MD-based protocol may be able to generate 

3D models that are closer to the native structure by restraining the highly accurate residue-
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residue contacts predicted by DeepMetaPSICOV, during the MD simulation (Kandathil et al., 

2019a; Shuid et al., 2017). In other words, the unrestrained refinement of the highly accurate 

residue-residue contacts may lead to a deterioration in the quality of 3D models, thereby the 

contacts should be restrained to avoid unnecessary deviations away from the native structure. 

In Chapters 2 and 3 the fixed local quality assessment score produced by the ModFOLD server 

was used in order to guide the MD-based refinement protocol. In this chapter, the contact-

assisted restraint strategy will be evaluated and compared with our previous fixed restraint 

strategy based on the local quality estimation (Kandathil et al., 2019a; Shuid et al., 2017).  

 

5.3 Material and Methods 

5.3.1 Data Collection  

 

The CASP13 regular targets were used to evaluate the performance of the new contact-assisted 

MD-based refinement protocol and compare its performance with the original MD-based 

protocols of ReFOLD and the fixed restraint strategy which is based on the local quality 

estimation (see Chapter 2) (Kandathil et al., 2019a; Shrestha et al., 2019; Shuid et al., 2017). 

Contact predictions, which were made by the DMP group (491) using DeepMetaPSICOV 

(DMP) during CASP13, were obtained from CASP13 download website 

(http://predictioncenter.org/download_area/CASP13/predictions/) (Kandathil et al., 2019a; 

Shrestha et al., 2019; Shuid et al., 2017). The TM-score and Molprobity tools were also used 

to produce GDT-HA (Zhang & Skolnick, 2005) and Molprobity scores (Davis et al., 2004) for 

the models generated by the three MD-based protocols. 

5.3.2 Computational Design 

 

The benchmarking of the contact-assisted MD-based protocol included three main stages: 1) 

the generation of the CDA score, 2) the application of gradual restraints based on the CDA 

score during the MD simulation to generate refined 3D models, and 3) the assessment of the 

refined 3D models using observed model quality scores (Figure 5. 1) (Kandathil et al., 2019a; 

Shuid et al., 2017).  
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Figure 5. 1 Flowchart showing the workflow for the application of the contact-assisted 

MD-based protocol. 
After obtaining the best predicted initial 3D model, the CDA score was generated, and then a gradual restraint 

strategy based on the CDA score was applied during the MD simulation. The 3D models generated by the contact-

assisted MD-based protocol were scored versus the native structures. The performance of the contact-assisted 

MD-based protocol was compared with the original MD-based protocols of ReFOLD and the fixed local quality 

assessment guided MD-based protocol. 

 

The first stage included the generation of the CDA scores using the residue-residue contacts 

which were made using the DMP method in CASP13. The residue-residue contacts predicted 

by DMP were used to produce the CDA score, which ranges from 0 to 1, by utilising: the target 

protein sequence in FASTA format, the best predicted 3D model, and the contact prediction 

file. The CDA score was originally developed for use in ModFOLD6, but here we used the 

DeepMetaPSICOV predictions instead of MetaPSICOV, and scored all pairs of residues in 

each model which were measured to be within 8Å (Kandathil et al., 2019a; Shuid et al., 2017). 

For instance, if a residue i was in contact with both residue j and k in the predicted 3D model, 

then the DeepMetaPSICOV scores were obtained for ij and ik contacts (Kandathil et al., 2019a; 

Shuid et al., 2017). The CDA score was then calculated by taking the mean DeepMetaPSICOV 

score for the contacts for each residue, using the formula, CDA=(∑ p)/c, where p is the 
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DeepMetaPSICOV score for each contacting pair and c is the number of contacts for the residue 

(within 8Å) in the predicted 3D model where the DeepMetaPSICOV score exists (Kandathil et 

al., 2019a; Maghrabi & McGuffin, 2019, 2017; Shuid et al., 2017).  

 

After the calculation of the CDA score for each residue in the predicted 3D model, a gradual 

restraint strategy based on the CDA score was applied in the MD simulation stage. It was also 

postulated that if the CDA score was high, a stronger restraint should be applied to keep the 

residues in contact in the predicted 3D model (Kandathil et al., 2019a; Mirjalili & Feig, 2013; 

Shuid et al., 2017). A low CDA score suggests that the residue may be further away from the 

native structure (because the contacts for that residue in the model do not agree so much with 

those predicted by DeepMetaPSICOV), and so it should be refined in order to improve the 

overall quality of the predicted 3D model. Therefore, a gradual restraint strategy, which varied 

between weak (0.05 kCal/mol/Å2) and strong (1 kCal/mol/Å2) harmonic positional restraints 

on all atoms including C-alphas, was applied by considering the distribution of the CDA score 

during the MD simulation (Table 5.1 and Figure 5.2) (Kandathil et al., 2019a; Shuid et al., 

2017). The range of the force constant was optimized for the application of the gradual restraint 

based on the local quality estimation as from 0.05 kCal/mol/Å2 to 1 kCal/mol/Å2 in Chapter3. 

Here, we tried to apply different ranges of the CDA score. For instance, strong restraint (1 

kCal/mol/Å2) was applied to the residues with the CDA score from 0.8 to 1.0. The CDA score 

ranges defined in Table 5.1 were found to be more successful in terms of increasing the 

population of the improved 3D models and simulation execution. (Adiyaman & McGuffin, 

2019; Maghrabi & McGuffin, 2019; Mirjalili & Feig, 2013; Read et al., 2019; Shuid et al., 

2017) 

 

The CDA score The force constant (kcal/mol/Å2) 

0.9-1 1 

0.7-0.9 0.5 

0.5-0.7 0.1 

0.3-0.5 0.05 

0-0.3 0 

 

Table 5. 1 The application of the gradual restraint strategy based on the CDA score.  



Chapter 5 

 

143 

 

The molecular dynamics simulations were conducted using NAMD 2.10 (Phillips et al., 2005) 

in GPU mode and the same parameters that were optimised for the original MD protocol for 

ReFOLD (Chapter 2) were used in order to gauge the effects of the gradual restraint strategy 

based on the CDA score (Kandathil et al., 2019a; Shuid et al., 2017).  

 

The contact-assisted MD-based protocol was compared with the original MD-based protocols 

of ReFOLD and the fixed local quality assessment guided MD-based protocol using the 

CASP13 targets. One-tailed unpaired Wilcoxon tests were performed based on the differences 

in the observed quality, which was measured using the GDT-HA and Molprobity scores. 

 

 

 

Figure 5. 2 The refinement of a CASP13 target using the contact-assisted MD-based 

protocol. 
The gradual restraint strategy based on the CDA score was applied during the MD simulation. (A) The best 

predicted model (the CASP13 regular target T1006); is coloured using the CDA scores. (B) The red and pink 

regions indicate where strong restraints were applied, and the grey and green regions show where weaker restraints 

were applied during the MD simulation based on the CDA score. (C) Superposition of the initial structure (cyan), 

the best model generated by the contact-assisted MD-based protocol (magenta), and the native structure (green). 

The refinement process improved the model with the GDT_HA score increasing from 0.8701 to 0.8831.  



Chapter 5 

 

144 

 

5.4 Results and Discussion 

 

Forty-four regular CASP13 targets were used to analyse the performance of the contact-

assisted restraint strategy. Of the targets, 20 out of 44 were designated TBM targets, 11 were 

FM targets and 13 were FM/TBM targets. Subsequently, performance on the same dataset was 

compared with the fixed local quality assessment guided restraint strategy, which was 

developed in Chapter 2 and tested in CASP13, and the original MD-based protocol of ReFOLD 

(Shuid et al., 2017).  

 

In this chapter, state of the art residue-residue contact predictions were utilised in order to guide 

the MD-based refinement protocol, and the performance of this contact-assisted restraint 

strategy was analysed (Shuid et al., 2017). Significant progress in our refinement pipeline has 

been already made by using the local model quality assessment scores to inform restraints in 

order to guide the MD simulations (Chapter 2 and 3) (Shuid et al., 2017). For the fixed local 

quality assessment guided restraint strategy, a threshold based on the predicted per-residue 

accuracy score produced by ModFOLD7 (Maghrabi & McGuffin, 2019) was applied in 

Chapter 2. Further to this, after witnessing the success of the contact prediction for prediction 

of 3D models in CASP13, it was postulated that residue-residue contacts from improved 

methods such as DMP, may also be used to provide guidance to the MD-based protocol to 

avoid undesired structural deviations (Kandathil et al., 2019a; Shuid et al., 2017). A gradual 

restraint strategy based on the CDA score was also postulated to show a better performance 

rather than a fixed threshold, so we also chose to apply gradual restraints in this case, in a 

similar way to that used for the local model quality estimation as in Chapter 3. 

 

It is also known that contact prediction methods are able to predict highly accurate residue-

residue contacts, even in cases where there is low similarity between the target and available 

structures. In light of such information, it is possible to postulate that using contact prediction 

methods may boost the performance of the MD-based protocol in particular for FM targets and 

domains. Therefore, the performance of the three MD-based protocols was analysed according 

to the prediction methods of initial structures. 

 

For TBM-easy and TBM-hard targets, the three MD-based protocols showed similar 

performance, thus here the prediction methods were combined under the single TBM category 
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(Figure 5.3-3.4 and, and Appendix 38-40). TBM-easy targets were categorised by CASP if 

there is a good homologous proteins in the PDB database for TBM targets. The contact-assisted 

MD-based protocol and fixed local quality assessment guided MD-based protocol were close 

in performance to each other and both better than the original MD-based protocol of ReFOLD 

in terms of the cumulative minimum GDT-HA score (∑GDT-HAmin of 9.3105 and 9.286 

versus 8.4731, respectively) (Appendix 38), the cumulative mean GDT-HA score (∑GDT-

HAmean of 9.7513442 and 9.754875 versus 9.5123675, respectively) (Figure 5.3-5.4 and, and 

Appendix 38-40). This means that the contact-assisted and the fixed local quality assessment 

guided restraint strategies were more successful at preventing structural deviations from the 

native basin compared with the original MD-based protocol of ReFOLD for TBM targets 

(Figure 5.3-5.4 and, and Appendix 38-40).  

 

In Figure 5.3 it is apparent that the models generated by the contact-assisted and the fixed local 

quality assessment guided MD-based protocols are closer to that of the starting model than the 

models generated by the original MD-based protocol of ReFOLD have a wider range of GDT-

HA models due to the application of the weaker restraint on C-alphas (see also Figure 5.3-3.4 

and, and Appendix 38-40). The cumulative maximum GDT-HA scores of models generated by 

the contact-assisted MD-based protocol and the fixed local quality assessment guided MD-

based protocol are lower than the cumulative maximum GDT-HA score of the models 

generated by the original MD-based protocol of ReFOLD (∑GDT-HAmax of 10.2563 and 

10.2657 versus 10.5197) (Appendix 38). However, the likelihood of selecting the best-

generated model is low even where QA methods are used. Therefore, it is pertinent to aim for 

methods that increase the mean quality of the population of models so as to increase the odds 

of selecting an improved model. 

 

Although the contact-assisted MD-based protocol performed similarly to the fixed local quality 

assessment guided protocol, the percentage of improved models generated by the contact-

assisted MD-based protocol (~34.45%) is higher than the fixed local quality assessment guided 

protocol (~33.14%) and the original MD-based protocol of ReFOLD (~26.55%) for TBM 

targets (Figure 5.4, and Appendix 38). The higher proportion of the improved models from the 

contact-assisted MD-based protocol increases the chances of the selection of improved models. 

It is also important that the contact-assisted restraint strategy was able to generate more 

improved models for TBM targets, because the refinement of the TBM targets has been 
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challenging historically. They are also more likely to deteriorate in quality compared to the 

initial structures. The accuracy of the contact predictions might be higher for TBM targets due 

to the usage of the available structures, and this may also boost the performance of the contact-

assisted MD-based protocol compared to the fixed local quality assessment score produced by 

ModFOLD7. Therefore, we observe that the contact-assisted restraint strategy has provided the 

most reliable guidance to the MD-based protocol for the TBM targets. 

 

The three MD-based protocols showed a similar trend for FM/TBM targets in terms of the 

cumulative minimum, mean and maximum GDT-HA scores (∑GDT-HAmin(contact) 

=3.6736,∑GDT-HAmin(local)=3.6729), ∑GDT-HAmin(ReFOLD)=3.3332, ∑GDT-

HAmean(contact)=3.887622, ∑GDT-HAmean(local)=3.898057, ∑GDT-HAmean(ReFOLD 

)=3.743523), ∑GDT-HAmax(contact)=4.1217, ∑GDT-HAmax(local)=4.0941), ∑GDT-

HAmean(ReFOLD )= 4.2023) (Appendix 41). While approximately 25% of the models 

generated by the contact-assisted MD-based protocol are improved, almost 22% of the models 

generated by the original MD-based protocol of ReFOLD and roughly 15% of the models by 

the fixed local quality assessment guided MD-based protocol are improved compared to the 

initial structure (Figure 5.5-5.6, and Appendix 41-43). It is clear that the contact-assisted MD-

based outperformed the other two protocols according to the population of improved models, 

and the original MD-based protocol of ReFOLD performed much better than the fixed local 

quality assessment guided MD-based protocol, contrary to the data for the TBM targets.  

 

The application of the gradual restraint based on the CDA score also made a considerable 

progress for the FM/TBM targets compared to the other two protocols, particularly the fixed 

local quality assessment guided MD-based protocol. For the application of the fixed local 

quality assessment guided restraint strategy, a threshold based on the predicted per-residue 

accuracy score produced by ModFOLD7 was determined by considering the distribution of the 

scores (see Chapter 2). However, the determination of the threshold was not quite applicable 

for FM/TBM as the domains were predicted by different prediction methods as TBM and FM. 

Therefore, the gradual restraint strategy based on the CDA score produced by using DMP 

performed much better to generate improved models in comparison with the other two 

protocols. 
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The three MD-based protocols managed to increase the accuracy of the starting models 

predicted by FM. Although the original MD based protocol of ReFOLD did not show improved 

performance compared with the other two protocols according to the cumulative minimum and 

mean GDT-HA scores ( ( ∑GDT-HAmin(contact) =2.9282,∑GDT-HAmin(local)= 2.9359), 

∑GDT-HAmin(ReFOLD)=2.7558),∑GDT-HAmean(contact)=3.1095539,∑GDT-HAmean 

(local)= 3.1142502) ,∑GDT-HAmean(ReFOLD )= 3.098978)) (Appendix 44), it showed a 

better performance on the FM targets compared to the FM/TBM and TBM targets (Appendix 

38-47). It is also worthy of note that almost half of the models generated by the three MD-

based protocols were improved compared to the initial structure, perhaps as there is much more 

room for improvement with FM target models (Figure 5.7-5.8 , and Appendix 44-47). 

Furthermore, the population of the models generated by the contact-assisted MD-based 

protocol (~51.13%) is higher than the fixed local quality assessment guided MD-based protocol 

(~47.3%) and the original MD-based protocol of ReFOLD (~48.5%) (Figure 5.7-5.8 , and 

Appendix 44-47). 

 

The Molprobity score was also used to compare the three MD-based protocols. Molprobity is 

a native structure independent scoring method and all atoms are considered for its calculation, 

unlike the GDT-HA score. The three MD-based protocols managed to improve the quality of 

the initial structures according to the cumulative minimum, mean, and maximum scores 

(Appendix 48-51). This also means that all 3D models generated by the three protocols are 

improved according to the Molprobity score. Although the original MD-based protocol of 

ReFOLD outperformed the other two MD-based protocols, the contact-assisted MD-based 

protocol performed better than the fixed local quality assessment guided MD-based protocol 

(Figure 5.9, Appendix 48-51).   
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Figure 5. 3 A comparison of the contact-assisted MD-based protocol with the original 

MD-based protocol of ReFOLD and the fixed local quality assessment guided MD-based 

protocol on a TBM target. 
Performance of methods on T0965 (a TBM-hard CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment 

guided MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical 

line represents the initial structure (the GDT-HA score of the initial structure was 0.4073 and higher GDT HA 

scores are better). 
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Figure 5. 4 A comparison of the contact-assisted MD-based protocol with the original MD-based protocol of ReFOLD and the fixed local 

quality assessment guided MD-based protocol on the CASP13 TBM targets according to the GDT-HA score. 
The blue bars represent the scores of models generated using the contact-assisted MD-based protocol, the red bars represent the scores of models generated using the fixed 

restraint strategy, the green bars represent models generated using the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, 

and the orange lines represent the starting model for each target (higher GDT-HA scores are better) 
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Figure 5. 5 A comparison of the contact-assisted MD-based protocol with the original 

MD-based protocol of ReFOLD and the fixed local quality assessment guided MD-based 

protocol an FM/TBM target. 
Performance of methods on T0963 (an FM/TBM-hard CASP13 target) according to GDT-HA score. The blue 

line represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment 

guided MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical 

line represents the initial structure (the GDT-HA score of the initial structure was 0.1511 and higher GDT HA 

scores are better). 
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Figure 5. 6 A comparison of the contact-assisted MD-based protocol with the original MD-based protocol of ReFOLD and the fixed local 

quality assessment guided MD-based protocol on the CASP13 FM/TBM targets according to the GDT-HA score. 
The blue bars represent the scores of models generated using the contact-assisted MD-based protocol, the red bars represent the scores of models generated using the fixed 

restraint strategy, the green bars represent models generated using the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, 

and the orange lines represent the starting model for each target (higher GDT-HA scores are better) 
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Figure 5. 7 A comparison of the contact-assisted MD-based protocol with the original 

MD-based protocol of ReFOLD and the fixed local quality assessment guided MD-based 

protocol an FM target. 
Performance of methods on T0968s2 (an FM CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment 

guided MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical 

line represents the initial structure (the GDT-HA score of the initial structure was 0.4043  and higher GDT HA 

scores are better).
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Figure 5. 8 A comparison of the contact-assisted MD-based protocol with the original MD-based protocol of ReFOLD and the fixed local 

quality assessment guided MD-based protocol on the CASP13 FM targets according to the GDT-HA score. 
The blue bars represent the scores of models generated using the contact-assisted MD-based protocol, the red bars represent the scores of models generated using the fixed 

restraint strategy, the green bars represent models generated using the original MD-based protocol of ReFOLD, the black lines represent the median values within each box, 

and the orange lines represent the starting model for each target (higher GDT-HA scores are better) 
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Figure 5. 9 A comparison of the contact-assisted MD-based protocol with the original 

MD-based protocol of ReFOLD and the fixed local quality assessment guided MD-based 

protocol a TBM target according to Molprobity score. 
Performance of methods on T1015s2 (a TBM CASP13 target) according to Molprobity score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment 

guided MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical 

line represents the initial structure (the Molprobity score of the initial structure was 2.75 and lower Molprobity 

scores are better). 
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5.5 Conclusions 

 

In this Chapter, prior knowledge from contact prediction data and local quality scores has been 

applied in refinement pipelines in order to increase the accuracy of the 3D models beyond that of 

the initial structures. Predicted residue-residue contacts have been used in order to build 3D models 

for over two decades (Schaarschmidt et al. 2018; Skolnick, Kolinski, and Ortiz 1997; Taylor et al. 

2014). In recent years, the contact prediction methods based on the machine learning and 

coevolution-derived approaches have made significant progress towards higher accuracy. In 

CASP13, the top-performing groups managed to reach around 70% precision. The integration of 

such contact prediction methods in refinement pipelines may be a major contributor towards more 

consistent sampling. Therefore, here we describe the first attempt at using predicted contacts to 

provide a reliable guide to the MD-based refinement protocol. 

 

Although the restraint strategy based on the fixed local quality assessment score has made 

significant progress in terms of preventing refinement models from structural deviations, it was 

worth investigating the potential of integrating state-of-the-art contact predictions. The contact 

predictions made by MetaPSICOV were used to produce the original CDA score method used by 

ModFOLD6 by considering the distance between residues in the predicted 3D model and predicted 

contacts. In this chapter, the CDA scoring method was upgraded using DMP (Kandathil et al., 

2019a; Maghrabi & McGuffin, 2017). 

 

The CDA method was then used to guide the original MD-based protocol of ReFOLD via gradual 

restraints based on the distribution of scores. The CDA score also varies from 0 to 1, therefore a 

gradual restraint strategy could be applied with the magnitude of restraints depending on the CDA 

score. Here we chose to apply a gradual restraint based on the CDA score as we previously learned 

that using a fixed threshold for the whole structure was not always appropriate, particularly in the 

case of FM/TBM targets (Chapter 3).  

 

In the final stage, the performance of the new contact-assisted MD-based protocol was 

benchmarked using to GDT-HA and Molprobity scores to measure improvements in observed 
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model quality. The performance of the contact-assisted MD-based protocol was then compared 

with the fixed local quality assessment guided protocol, which was tested in CASP13, and the 

original MD-based protocol of ReFOLD, which was tested in CASP12. 

  

The contact-assisted MD-based protocol showed roughly similar performance to the fixed local 

quality assessment guided according to the cumulative minimum, and mean GDT-HA scores, and 

both protocols performed much better than the original MD-based protocol of ReFOLD in terms 

of preventing 3D models from undesired structural deviations. It is evident that the contact-assisted 

and the fixed local quality assessment guided restraint strategies managed to prevent more 3D 

models from detrimental structural deviations compared to the weak harmonic restraint on all C-

alphas applied during the original MD-based protocol of ReFOLD.  

 

The percentage of the improved models is also an important criteria for the refinement pipeline, as 

higher populations of better models allow for better odds in the scoring and selection stage. It was 

discovered that the contact-assisted MD-based protocol managed to generate more improved 

models in contrast with the two other protocols. The percentage of improved models increased 

from 29.53% to 31.31% by applying the fixed local quality assessment guided restraint strategy, 

and this further increased to 35.73% with the application of the contact-assisted restraint strategy 

for all targets. The contact-assisted restraint strategy provided more consistent refinement 

compared to the fixed local quality assessment guided restraint strategy. This is likely due to the 

fact that the contact prediction methods may be relatively more accurate than local QA scoring 

methods in cases of low similarity between the target and known structures and sequences (i.e., 

FM targets or domains).  
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Chapter 6 Synthesis, Conclusions and Next Directions 
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Work presented in this chapter has been submitted in the following paper: 

 

Recep Adiyaman and Liam James McGuffin, 2021. ReFOLD3: refinement of 3D protein models 

with gradual restraints based on predicted local quality and residue contacts. Submitted to Nucleic 

Acid Research (Web Server Issue 2021). 
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6.1 Synopsis of Study 

 

The incorporation of MD-based protocols for the refinement of the predicted 3D structures has 

been effective since CASP10, and such approaches have showed promising performance in 

consistently increasing the accuracy of refinement targets. Our group developed the ReFOLD 

server to refine predicted 3D models with much less computational effort in comparison with other 

MD-based protocols tested in CASP12. Nevertheless, undesired structural deviations from the 

native structure were seen in 3D models generated by ReFOLD during the CASP12 experiment 

(Shuid et al., 2017). This thesis has focused on the further development of ReFOLD by exploiting 

our knowledge of predicted local model quality scores and residue contacts to guide the refinement 

of 3D models towards the native basin.  

 

6.1.1 The Usage of the Local Quality Assessment to Provide Guidance to the Original MD-

Based Protocol of ReFOLD 

 

Model Quality Assessment Programs (MQAPs) are used to identify the most native like structure 

among decoys generated by TBM and/or FM methods. These programs are also capable of 

producing local quality estimation scores along with the global score. The local quality estimation 

of predicted structures aims to provide the accuracy of each residue in 3D models versus the native 

structure. The ModFOLD server, developed by our group, has been continuously tested in the 

CASP and CAMEO experiments and it ranks among the top few groups in terms of assessing the 

global and local quality of the predicted 3D models (Maghrabi & McGuffin, 2019, 2017). The per-

residue accuracy score produced by the ModFOLD server shows the predicted C-alpha distance 

of each residue in a 3D model from the equivalent residue in the native structure. In the first part 

of the study, the per-residue accuracy score was used to provide reliable guidance to the original 

MD-based protocol of ReFOLD, directing models closer towards the native basin.  

 

In Chapter 2, the local quality assessment guided restraint strategy was applied by determining a 

threshold according to the distribution of the per-residue accuracy scores produced by ModFOLD6 

scores were used identify the poorly predicted regions in 3D models for selective refinement, while 



Chapter 6 

 

160 

 

restraints were imposed on the well-predicted regions, during MD simulations (Maghrabi & 

McGuffin, 2017; Shuid et al., 2017). The performance of the local quality assessment guided 

restraint strategy was also compared with the original MD-based protocol of ReFOLD for the 

generation of improved targets on CASP12 initial structures. It is clear that the 3D models 

generated by our local quality assessment guided MD-based protocol are much closer to the native 

basin than those from the original MD-based protocol of ReFOLD, according to the observed 

quality scores, especially for TBM targets or domains. This means that the per-residue accuracy 

score produced by ModFOLD6 can be used to successfully direct the generation of the 3D models 

towards the native basin. The work presented in Chapter 2 describes the very first attempt to utilise 

local model quality predictions in order to guide an MD-based refinement pipeline to produce 

models that are closer to native structures.  

 

6.1.2 The Performance of Our Refinement Pipeline in CASP13 and the Gradual Restraint 

Strategy Based on the Local Quality Estimation  

 

The accuracy of the local quality estimation score was significantly improved in ModFOLD7 by 

our group (Maghrabi & McGuffin, 2019). Therefore, ModFOLD7 was used to upgrade the local 

quality assessment guided MD-based protocol to guide the MD simulation and identify the most-

native like structures. The upgraded version of the MD-based protocol was also used to refine 

CASP13 structures in the regular prediction and refinement categories, as described in Chapter 3. 

The refinement pipeline was ranked among the top 10 approaches in CASP13. This shows that our 

deployment of local quality scores to guide our rapid MD-based protocol had enabled us to be 

more competitive. 

 

ModFOLD7 was also used to select the most improved models among the 3D models generated 

by our refinement pipeline in CASP13. While ModFOLD6 selected the improved 3D models 

compared to the initial structure for 31% of the targets, which were refined in the study of Chapter 

2, ModFOLD7 managed to select the improved models for 41% of the refinement targets in 

CASP13, according to the GDT-HA scores. This means that the upgraded version of the 
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ModFOLD server performed much better in terms of the identification of the optimal model from 

among those generated by the local quality assessment guided restraint strategy.  

 

The local quality assessment guided restraint strategy was implemented by applying a threshold 

based on the per-residue accuracy score in CASP13. It should be noted that the CASP13 targets 

were relatively larger multi-domain structures in comparison with the previous CASP targets. 

Furthermore, the domains might have been predicted by different prediction methods depending 

on the usage of available templates. For this reason, we developed a gradual restraint based on the 

per-residue accuracy score to consider the required level of refinement for each residue rather than 

the application of a blanket threshold to the whole structure. Our application of these gradual 

restraints has also been a unique pioneering strategy for MD-simulations.  

 

Although the gradual and the fixed restraint strategy based on the local quality estimation showed 

similar performances according to the observed scores, the population of the improved models had 

increased from ~28.86% to ~34.36% following the application of the gradual restraint strategy. 

Our prediction pipeline, including the IntFOLD, ModFOLD, FunFOLD and ReFOLD servers, has 

been designed to provide an understanding of protein structures and functions. The application of 

the gradual restraint strategy may also boost the overall performance of the prediction pipeline in 

terms of increasing the accuracy of the predicted 3D structures. 

 

The gradual restraint strategy was also used to refine the SARS-CoV-2 targets with the usage of 

ModFOLD8 to generate the per-residue accuracy score and identify the improved models for the 

CASP Commons COVID-19 initiative. Our independent pipeline has helped us to generate the 

initial models for the SARS-CoV-2 targets using the IntFOLD server, identify the best predicted 

3D models using the ModFOLD server, and then refine the best-predicted structures using the 

gradual restraint strategy. Using our complete pipeline, we managed to provide a considerable 

proportion of the top 10 predicted structures for the SARS-CoV-2 targets according to the initial 

CASP official estimates of model accuracy (official results according to the observed score are not 

yet available at the time of writing this section). This success highlights the importance of the role 

of our prediction pipelines for the elucidation of the structures for key protein targets whose 

experimental structures are not yet solved.  
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6.1.3 Increasing the Accuracy of the Predicted Protein-Ligand Binding Sites  

 

The determination of the protein-ligand binding sites is a vital part of the elucidation of protein 

functions. The FunFOLD server was developed by the McGuffin group for the prediction of the 

protein-ligand binding sites, utilising the knowledge of the available structures (Roche et al., 

2012a, 2013b; Roche, Tetchner, et al., 2011; Roche & McGuffin, 2016a). In Chapter 4, we 

developed the binding-site focused MD-based protocol to improve the local quality of the binding 

sites rather than the whole structure. For the application of the binding-site focused MD-based 

protocol, the binding sites predicted by FunFOLD3 were further refined by restraining the rest of 

the structure during the MD-simulations. The MCC and BDT scores were also produced to 

investigate the improvement in the predicted binding site residues compared with the observed 

binding site residues. 

 

The binding site-focused MD-based performed well in terms of increasing the accuracy of all 

predicted binding site regions, whether they were initially well or poorly predicted according to 

the BDT and MCC scores (Roche et al., 2010). The prediction methods used for generating the 

initial structures were found to be a determinant of the quality of the predicted binding sites, as 

well as the availability of templates, yet the binding site-focused strategy showed a considerable 

improvement across TBM and FM target categories. The development of the binding site-focused 

MD-based protocol shows promise, but it should be tested on additional data sets (e.g. CASP14) 

to further evaluate the significance its reliability across a larger number of targets.  

 

6.1.4 The Development of the Contact-Assisted MD-Based Protocol 

 

Although the contact prediction category was introduced in CASP2, the residue-residue contact 

prediction methods had only reached a useful level of accuracy by CASP11, through the utilisation 

of machine learning and coevolution-derived approaches (Schaarschmidt et al., 2018; Shrestha et 

al.,2019). The contact prediction methods based on the deep neural network algorithms have 

pushed the accuracy further, reaching up to 70% precision in the last CASP experiment (Shrestha 

et al., 2019). Contact predictions have been useful for the prediction of the 3D models, drug design 
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(Kliger et al., 2009), and model quality estimation (Miller & Eisenberg, 2008; Z. Wang et al., 

2011).  

 

The residue-residue contact predictions were first used for the generation of the Contact Distance 

Agreement (CDA) score by ModFOLD6 for the quality estimation of the 3D protein models in our 

prediction pipeline (Maghrabi & McGuffin, 2017). The CDA score relies on the agreement 

between the contact predictions made by MetaPSICOV and the contacts measured according to 

the Euclidean distance (in Å) between residues in the predicted 3D model (Jones et al., 2015; Jones 

& Kandathil, 2018; Kosciolek & Jones, 2016; Maghrabi & McGuffin, 2017).  

 

DeepMetaPSICOV (DMP), which is the upgraded version of MetaPSICOV, was ranked among 

the top 5 contact prediction approaches and achieved an average precision of ~60% in CASP13 

(Kandathil et al., 2019a). We proposed to utilise the CDA score, which was generated using DMP, 

to provide guidance for the original MD-based protocol. A gradual restraint strategy was also 

applied to restrain the accurate contact predictions, according to the CDA scores, by considering 

the degree of refinement required for each residue. The performance of the contact-assisted MD-

based protocol was also compared with the fixed local quality assessment guided MD-based 

protocol, which was tested in CASP13, and the original MD-based protocol of ReFOLD which 

was tested in CASP12.  

 

The fixed local quality assessment guided restraint strategy managed to prevent the 3D models 

from the structural drifts which were observed in the 3D models generated by the original MD-

based protocol of ReFOLD (see Chapter 2). The contact-assisted MD-based protocol also 

performed similarly according to the observed scores. The application of the contact-assisted MD-

based protocol made significant progress in terms of the population of the improved models. The 

percentage of the improved models generated by the original MD-based protocol of ReFOLD was 

29.53%, and this increased to 31.31% with the application of the fixed local quality assessment 

guided restraint strategy. The improvement was also further increased to 35.73% by the contact-

assisted MD-based protocol for all CASP13 targets. Thus, it is evident that the contact-assisted 

MD-based protocol significantly increased the population of the improved models, and this enables 

a higher probability of identifying improving models in the scoring stage.  
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6.1.5 The Participation of Our Refinement Pipeline in CASP14 

 

Our refinement pipeline was also tested in CASP14 from May to September in 2020, but the 

official result was not released by CASP at the time of writing this section. For the refinement of 

3D models of proteins, we used a modified version of our automated ReFOLD method. Our new 

refinement pipeline, ReFOLD3, consisted of four protocols that were also similar to the protocol 

in CASP13 (see Chapter 3). The major improvement for ReFOLD version 3 was the 

accommodation of the two MD-based strategies developed in Chapter 3 and Chapter 5 (Figure 

6.1). The first protocol used a rapid iterative strategy (i3Drefine), and the second and third 

protocols both employed a more CPU/GPU intensive molecular dynamic simulation strategy. 

 

The second protocol included the application of the gradual restraint strategy, which was guided 

by the per-residue accuracy scores obtained from ModFOLD8. The per-residue accuracy scores 

were used for the identification of the poorly modelled regions, which were then targeted for 

refinement to increase the accuracy of the 3D model, as described in Chapter 3.  

 

For the third protocol, the contact-assisted MD-based protocol was applied to refine the initial 

structures (see Chapter 5). DeepMetaPSICOV was also run for each target sequence, and then the 

Contact Distance Agreement (CDA) scores were generated for each model to guide the MD-based 

protocol. Another gradual restraint strategy was implemented by considering the distribution of 

the CDA scores during the MD simulation, as described in Chapter5.  

 

Refined models generated from the first three protocols were then assessed and ranked using 

ModFOLD8_rank. The fourth protocol was a combination of the approaches, where the top-ranked 

model from the 2nd and 3rd protocol was then further refined using i3Drefine. Finally, all the 

refined models generated by each of these protocols and the starting model were pooled and re-

ranked again using ModFOLD8_rank, and then the final top 5 models were submitted. All of the 

refined models were additionally ranked by ModFOLD6_rank and ModFOLD7_rank. This is so 

that we can compare the performance of the different ModFOLD versions in terms of the selection 

of refinement models, when the native structures are released by the CASP assessors (at the time 
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of writing the prediction part of the experiment is over, but the results based in the observed 

structures are not yet available).  

 

 

 

 

Figure 6. 1 Flowchart of our CASP14 refinement pipeline. 
The refinement of the starting model using i3Drefine (Protocol 1), the gradual restraint strategy based on the local 

quality estimation (Protocol 2), the contact-assisted MD-based protocol (Protocol 3), and the second round of 

i3Drefine iterative refinement strategy (Protocol 4). All refined models were ranked by the MoldFOLD8 server using 

the ModFOLD8_rank option (optimised for selecting the best top model).   

  



Chapter 6 

 

166 

 

6.2 Conclusions  

 

The ReFOLD server was developed to refine 3D protein models without requiring the huge 

computational-resources typically required by other MD-based protocols. This progress has made 

the refinement of thousands of structures possible with less computational effort. Through our 

server we provide free access to rapid refinement to researchers all around the world. However, 

despite many initial successes using the original MD-based protocol of ReFOLD, some undesired 

structural deviations from the native basin were observed in many of the 3D models that were 

generated during CASP12 experiment.  

 

Our initial aim was to prevent 3D models from structural deviations by utilising the per-residue 

accuracy scores produced by the ModFOLD server. The initial aim was met by applying a 

threshold that was based on the distribution of the per-residue accuracy scores to selectively refine 

the poorly predicted regions during the MD simulations. It is clear that the usage of the local quality 

estimation has provided a reliable guidance to the MD-based protocol, producing models that are 

closer to the observed structures (Chapter 2). The local quality assessment guided MD-based 

protocol also showed a competitive performance when it was tested in the CASP13 experiment, 

where it ranked among the top 10 refinement approaches.  

 

Following our analysis of the CASP13 results, we found that the determination of a single 

threshold based on the per-residue accuracy score was less applicable in the case of multi-domain 

targets, particularly those with a mixture of domains of different difficulty and/or those with large 

deviations in model quality. For this reason, a gradual restraint strategy was first proposed to 

consider a more targeted level of refinement that would be appropriate for each residue in the 3D 

models. The application of the gradual restraint strategy based on the local quality estimation had 

the effect of increasing the population of the improved models. The population of the improved 

models generated by the original MD-based protocol of ReFOLD was 29.53%, following the 

application of the fixed restraint strategy this increased by ~2% to 31.31%, and applying the 

gradual restraint strategy based on the local quality estimation managed to increase it by a further 

3% to 34.36%. The gradual restraint based on the local quality estimation was also used to refine 
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our 3D models of the SARS-CoV-2 targets as part of the CASP Commons COVID-19 initiative. 

A significant proportion of the top 10 scoring models were submitted by our group, according to 

the CASP official quality estimations results, so our overall pipeline showed impressive 

performance compared with the many different approaches in the initiative. 

 

Highly accurate contact predictions have also boosted the performance of many prediction 

pipelines since CASP13. In this thesis, we also described the first attempt to utilize the contact 

predictions in a refinement pipeline to direct the generation of the 3D models closer towards 

experimental accuracy. Although the contact-assisted MD-based protocol performed similarly to 

the local quality assessment guided restraint strategies, according to the observed scores, the 

population of the improved models was further increased to 35.73% for all targets. Therefore, it 

can be said that the contact-assisted MD-based protocol outperformed the local quality assessment 

guided MD-based protocol, in terms of increasing the population of improved models. With the 

application of the contact-assisted MD-based protocol we have seen considerable progress towards 

a more consistent refinement pipeline. Contact predictions may provide more reliable guidance for 

refinement where there is low similarity between the target sequence and known structures, such 

as in the case of targets containing FM domains.  

 

Unlike other MD-based protocols developed in this study, the binding site-focused MD-based 

protocol was developed to refine the binding site regions rather than the whole protein structure. 

It should be noted that the quality of all predicted binding sites was improved by the binding site-

focused MD-based protocol. The integration of the binding-site MD-based protocol with the 

FunFOLD server may also provide a more accurate prediction of protein-ligand binding site 

regions to elucidate protein-ligand interactions at an atomic level.   

 

6.3 Future Directions 

 

Overall, three different MD-based protocols were developed for the refinement of the whole 

structure, and one protocol was developed for the refinement of the predicted binding sites. A more 

consistent refinement of 3D models has also been achieved utilising the local quality estimation 
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and contact prediction methods to guide the original MD-based protocol of ReFOLD. 

Nevertheless, there are still many ways that we may be able to further improve the performance of 

the refinement pipeline that can be considered as our future goals: 

 

The gradual restraint strategy based on the per-residue accuracy score produced by ModFOLD8 

and the contact-assisted MD-based protocol were used to refine the 3D models in CASP14, so that 

the our newly developed protocols could be blind tested by independent assessors. After the 

official results are released by the assessors, the performance of the MD-based protocol will be 

analysed on the CASP14 dataset. In the short term, the ReFOLD server can be updated with one 

of or both of these MD-based protocols by considering their relative performance in CASP14 and 

the computational resource availability. 

 

The weak harmonic positional and gradual restraint strategies were also applied during MD 

simulations, but the strength of the restraints seems to be an important parameter for a successful 

refinement. Therefore, other kinds of restraint parameters could be explored in order to more fully 

develop the restraint strategy.  

 

Several parameters, such as temperature, duration of the simulation and force field parameters 

from the original ReFOLD methods were kept fixed and were also used by the new MD-based 

protocols. This was so we could control for these parameters and fairly test our new restraint 

strategies. However, these parameters may also need to be optimised, and this optimisation might 

contribute further to the improvement in the quality of refined models. 

 

We proposed that an iterative MD-based protocol with gradual restraint strategy may show a better 

performance to avoid structural deviations, but it is worthy of note that the usage of restraints may 

also limit the extent of refinement. Such structural deviations might have also been caused by force 

field inaccuracies. The latest versions of CHARMM (Huang et al., 2017) and Amber (Maier et al., 

2015) force fields might have the potential for directing the generation of the 3D models closer 

towards the native basin. The MD simulations were also run using NAMD (Phillips et al., 2005). 

The performance of the latest version of the force fields and other software for molecular 
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mechanics modelling such as OpenMM (Eastman et al., 2013, 2017) and GROMACS (Abraham 

et al., 2015) can be investigated further. 

 

The residue-residue contact predictions made by DeepMetaPSICOV were utilised to produce the 

CDA score (Kandathil et al., 2019a; Maghrabi & McGuffin, 2017), then guide the original MD-

based protocol of ReFOLD. Other contact prediction methods or a consensus method for the 

prediction of residue-residue contacts should be investigated in order to provide more reliable 

guidance to the MD-based protocol. 

 

There are also many different local quality assessment approaches along with the ModFOLD 

server that should be tested to guide the MD-based protocols. Therefore, the potential of the quality 

assessment approaches such as ProQ4 (Hurtado et al., 2018), and QMEANDisCo (Studer et al., 

2020) could be explored to provide better guidance as an alternative to the ModFOLD server for 

providing reliable guidance, ranking and selection of the final refined models. 

 

When the restraints were applied, the generation of the improved models becomes better, but the 

reliable selection of improved models is still challenging. The ReFOLD method involves the 

submission of the refined models to ModFOLD6 to assess the quality of the refined models. In 

CASP14, we also submitted the 3D models generated by the refinement pipeline to ModFOLD6, 

7 and 8 to compare the performance of these versions when the native structures are released by 

CASP (at the time of writing this section the native structures are not available yet).  

 

Although ModFOLD7 performed better than ModFOLD6 in terms of the selection of the improved 

models generated in the refinement pipeline, the ModFOLD server was trained to identify the most 

native-like structures generated in the main prediction pipeline, which included a variety of models 

with a large range of quality, rather than the refinement pipeline, which include very similar 

models with a narrow range of quality (see Chapter 2 and Chapter 3). Nevertheless, the ModFOLD 

server has not found to be sufficiently successful to select optimal models as in the prediction 

pipeline. Furthermore, alternative versions of ModFOLD may also be developed specifically for 

the selection of improved models, generated by the MD-based refinement approaches, which may 

have smaller differences. Different energy function-based methods have also been used to rank the 
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3D models by many prediction groups in the refinement category of CASP experiments. It should 

be noted that the ModFOLD servers regular outperforms all of these older energy-based functions 

in quality estimation benchmarks (see CAMEO website). A special optimised version of the 

ModFOLD server for use with refinement pipelines, may have the potential of outperforming the 

energy functions further still.  

 

With the development of the binding site-focused MD-based protocol, we successfully improved 

the quality of the binding sites predicted by the FunFOLD server, which may provide a better 

understanding of protein-ligand binding site interactions. The binding-site focused MD-based 

protocol may also be integrated with the FunFOLD and IntFOLD servers, to enable more accurate 

binding site predictions (Roche et al., 2013a; Roche & McGuffin, 2016a). 

 

The CASP assessors have sometimes provided predictors with clues about the focused regions, 

which need to be refined in certain targets, and we can also start to use that information for a more 

targeted refinement strategy in the next CASP experiments. In the past, we have shied away from 

using such information for the development of our automated tools, which are intended to be 

integrated into server pipelines, as most general users would not have such information. However, 

there is the possibility of developing servers that can take this information from user inputs, as 

some advanced users may know which regions of their model/s they wish to target for further 

refinement. For example, we were successful in refining the specific regions of the 3D models 

with the application of our binding site-focused MD-based protocol. So, we can also provide the 

option of the refinement of the user-selected regions rather than the whole 3D model, for the cases 

where users may need more targeted refinement for different purposes. 

 

Finally, the IntFOLD5 server was integrated with the original ReFOLD server, providing users 

with an option for refinement of the generated 3D models via a simple “refinement button” 

(McGuffin et al., 2019). The ReFOLD server will be upgraded to use the MD-based protocols 

developed in this study and will also be integrated with future versions of the IntFOLD server. 
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Appendix 1 

 GDT-HA score  

CASP TARGET  The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol (threshold is 3 Ångströms) Wilcoxon test 

Target ID 

by 

domain 

CASP 

Category  

Starting 

model 

Minimum 

Score 

Diff. 

Min 

Mean Score Diff. Mean 

Maximu

m Score 

Diff. 

Max 

Minimum 

Score 

Diff. Min 

Mean 

Score Diff. Mean 

Maximu

m Score 

Diff. 

Max 

Significance 

T0859 Regular 0.1681 0.1571 -0.011 0.18277 0.01467 0.2146 0.0465 0.1615 -0.0066 0.17192 0.00382 0.1814 0.0133 *** 

T0862 Regular 0.4032 0.3575 -0.0457 0.390687 -0.012513 0.4328 0.0296 0.371 -0.0322 0.396678 -0.006522 0.414 0.0108 * 

T0866 Regular 0.2391 0.187 -0.0521 0.222985 -0.016115 0.2543 0.0152 0.2304 -0.0087 0.241027 0.001927 0.2565 0.0174 *** 

T0880 Regular 0.0596 0.0544 -0.0052 0.0597755 0.0001755 0.0674 0.0078 0.0544 -0.0052 0.0576659 -0.0019341 0.0622 0.0026 *** 

T0886 Regular 0.1681 0.1638 -0.0043 0.179839 0.011739 0.1987 0.0306 0.1627 -0.0054 0.174943 0.006843 0.1921 0.024 *** 

T0897 Regular 0.0582 0.0534 -0.0048 0.0595611 0.0013611 0.0687 0.0105 0.0563 -0.0019 0.0587799 0.0005799 0.062 0.0038 * 

T0904 Regular 0.2267 0.1752 -0.0515 0.213548 -0.013152 0.2508 0.0241 0.2122 -0.0145 0.221043 -0.005657 0.2323 0.0056 *** 

T0915 Regular 0.2808 0.2451 -0.0357 0.268702 -0.012098 0.3068 0.026 0.2614 -0.0194 0.273628 -0.007172 0.289 0.0082 *** 

TR594 Refinement 0.3427 0.323 -0.0197 0.352589 0.009889 0.3876 0.0449 0.3287 -0.014 0.344157 0.001457 0.3652 0.0225 ** 

TR862 Refinement 0.4032 0.3495 -0.0537 0.397913 -0.005287 0.457 0.0538 0.3656 -0.0376 0.394813 -0.008387 0.422 0.0188 * 

TR866 Refinement 0.6082 0.5433 -0.0649 0.597188 -0.011012 0.6587 0.0505 0.5769 -0.0313 0.602386 -0.005814 0.6346 0.0264 *** 

TR869 Refinement 0.2885 0.2476 -0.0409 0.272706 -0.015794 0.2933 0.0048 0.262 -0.0265 0.276501 -0.011999 0.2909 0.0024 *** 

TR870 Refinement 0.25 0.2064 -0.0436 0.249615 -0.000385 0.305 0.055 0.2431 -0.0069 0.257492 0.007492 0.2729 0.0229 *** 

TR905 Refinement 0.3244 0.2448 -0.0796 0.282299 -0.042101 0.3223 -0.0021 0.2851 -0.0393 0.298757 -0.025643 0.3223 -0.0021 *** 

The 

Cumulati

ve scores 

 3.8208 3.3081 -0.5127 3.7301776 -0.0906224 4.218 0.3972 3.5713 -0.2495 3.7697908 -0.0510092 3.9974 0.1766 

Table S. 1 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 FM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality assessment 

guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by the local 

quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate significant 

statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA 

scores are better). 
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Figure S. 1 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on an FM target. 
Performance of methods on TR866 (an FM category CASP12 refinement target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for 

the models generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based 

protocol of ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the 

original MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity 

Score (lower scores are better).  

A 

C D 

B 
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 Appendix 3 

Figure S. 2 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on an FM target. 
Performance of methods on T0904 (an FM category CASP12 target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for the models 

generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based protocol of 

ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars represent 

the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the original 

MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity Score 

(lower scores are better).  
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Appendix 4 

 

Table S. 2 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 FM/TBM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality assessment 

guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by the local 

quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate significant 

statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA 

scores are better). 

 

 

  

 GDT-HA score  

CASP TARGET  The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol (threshold is 3 Ångströms) Wilcoxon test 

Target ID by 

domain 

CASP 

Category  

Starting 

model 

Minimum 

Score 

 

Diff. Min 

Mean 

Score 

Diff. Mean Maximum 

Score 

Diff. Max Minimum 

Score 

 

Diff. Min 

Mean 

Score 

Diff. Mean Maximum 

Score 

Diff. Max Significance 

T0890 Regular 0.1742 0.1516 -0.0226 0.162086 -0.012114 0.1769 0.0027 0.1609 -0.0133 0.168949 -0.005251 0.1769 0.0027 *** 

T0898 Regular 0.1599 0.1242 -0.0357 0.140154 -0.019746 0.163 0.0031 0.1475 -0.0124 0.158659 -0.001241 0.1693 0.0094 *** 

T0899 Regular 0.1628 0.1347 -0.0281 0.152224 -0.010576 0.1707 0.0079 0.1448 -0.018 0.153423 -0.009377 0.1664 0.0036 *** 

T0909 Regular 0.2703 0.268 -0.0023 0.303593 0.033293 0.3341 0.0638 0.268 -0.0023 0.278384 0.008084 0.2943 0.024 *** 

T0945 Regular 0.3493 0.3167 -0.0326 0.355063 0.005763 0.378 0.0287 0.3327 -0.0166 0.34364 -0.00566 0.3587 0.0094 ** 

TR694 Refinement 0.2376 0.2129 -0.0247 0.233538 -0.004062 0.2538 0.0162 0.212 -0.0256 0.22704 -0.01056 0.2414 0.0038 *** 

TR868 Refinement 0.6143 0.5095 -0.1048 0.568945 -0.045355 0.6738 0.0595 0.5738 -0.0405 0.604776 -0.009524 0.6548 0.0405 ** 

TR890 Refinement 0.3245 0.2434 -0.0811 0.281735 -0.042765 0.3285 0.004 0.2899 -0.0346 0.305804 -0.018696 0.3271 0.0026 ** 

TR896 Refinement 0.468 0.3837 -0.0843 0.421912 -0.046088 0.468 0 0.407 -0.061 0.443089 -0.024911 0.4826 0.0146 *** 

TR898 Refinement 0.2524 0.2123 -0.0401 0.245933 -0.006467 0.2901 0.0377 0.2358 -0.0166 0.24816 -0.00424 0.2618 0.0094 *** 

TR901 Refinement 0.3061 0.2388 -0.0673 0.273182 -0.032918 0.315 0.0089 0.2836 -0.0225 0.30088 -0.00522 0.3161 0.01 *** 

TR909 Refinement 0.4257 0.3566 -0.0691 0.393724 -0.031976 0.4399 0.0142 0.4159 -0.0098 0.430218 0.004518 0.4452 0.0195 *** 

TR945 Refinement 0.412 0.386 -0.026 0.415109 0.003109 0.4493 0.0373 0.3807 -0.0313 0.396554 -0.015446 0.412 0 *** 

The Cumulative 

scores 

 4.1571 3.5384 -0.6187 3.947198 -0.209902 4.4411 0.284 3.8526 -0.3045 4.059576 -0.097524 4.3066 0.1495 
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Appendix 5 

 

Figure S. 3 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on an FM/TBM target. 
Performance of methods on TR868 (an FM/TBM CASP12 refinement target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for 

the models generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based 

protocol of ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the 

original MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity 

Score (lower scores are better).   
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 Appendix 6 

 

Figure S. 4 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on an FM/TBM target. 
Performance of methods on TR890 (an FM/TBM CASP12 refinement target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for 

the models generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based 

protocol of ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars 

represent the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the 

original MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity 

Score (lower scores are better).  
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Appendix 7 

Table S. 3 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 TBM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality assessment 

guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by the local 

quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate significant 

statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA 

scores are better).  

 GDT-HA score  

CASP TARGET  The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol (threshold is 3 Ångströms) Wilcoxon 
test 

Target ID by 
domain 

CASP 
Category  

Starting 
model 

Minimum 
Score 

Diff. 
Min 

Mean 
Score 

Diff. Mean Maximum 
Score 

Diff. Max Minimum 
Score 

Diff. Min Mean Score Diff. Mean Maximum 
Score 

Diff. Max Significance  

T0872 Regular 0.4886 0.3977 0.0909 0.437362 -0.051238 0.4943 0.0057 0.4432 -0.0454 0.472564 -0.016036 0.5028 0.0142 *** 

T0882 Regular 0.5791 0.5538 0.0253 0.621886 0.042786 0.6994 0.1203 0.557 -0.0221 0.588816 0.009716 0.6297 0.0506 *** 

T0895 Regular 0.5167 0.4229 0.0938 0.473702 -0.042998 0.525 0.0083 0.4771 -0.0396 0.501923 -0.014777 0.5292 0.0125 *** 

T0911 Regular 0.2972 0.1961 0.1011 0.226078 -0.071122 0.28 -0.0172 0.2794 -0.0178 0.291071 -0.006129 0.3027 0.0055 *** 

T0913 Regular 0.4149 0.3232 0.0917 0.353898 -0.061002 0.412 -0.0029 0.3802 -0.0347 0.398787 -0.016113 0.4142 -0.0007 *** 

T0944 Regular 0.5504 0.4545 0.0959 0.512469 -0.037931 0.5514 0.001 0.5 -0.0504 0.533065 -0.017335 0.5534 0.003 *** 

T0946 Regular 0.2962 0.2166 0.0796 0.240111 -0.056089 0.2945 -0.0017 0.2551 -0.0411 0.27321 -0.02299 0.2954 -0.0008 *** 

T0947 Regular 0.4814 0.4143 0.0671 0.453246 -0.028154 0.5086 0.0272 0.4329 -0.0485 0.459048 -0.022352 0.4771 -0.0043 *** 

T0948 Regular 0.5235 0.4144 0.1091 0.477226 -0.046274 0.5352 0.0117 0.4698 -0.0537 0.495054 -0.028446 0.5268 0.0033 *** 

TR520 Refinement 0.581 0.4315 0.1495 0.523768 -0.057232 0.5818 0.0008 0.5156 -0.0654 0.543085 -0.037915 0.581 0 *** 

TR872 Refinement 0.5682 0.4716 0.0966 0.552178 -0.016022 0.6307 0.0625 0.5199 -0.0483 0.541712 -0.026488 0.5739 0.0057 *** 

TR877 Refinement 0.4894 0.4155 0.0739 0.453761 -0.035639 0.4842 -0.0052 0.4472 -0.0422 0.466093 -0.023307 0.4877 -0.0017 *** 

TR879 Refinement 0.633 0.4341 0.1989 0.497477 -0.135523 0.6261 -0.0069 0.5614 -0.0716 0.583705 -0.049295 0.6261 -0.0069 *** 

TR881 Refinement 0.479 0.3205 0.1585 0.410781 -0.068219 0.4715 -0.0075 0.4257 -0.0533 0.452469 -0.026531 0.4802 0.0012 *** 

TR882 Refinement 0.6899 0.6013 0.0886 0.668846 -0.021054 0.7437 0.0538 0.6677 -0.0222 0.71137 0.02147 0.75 0.0601 *** 

TR885 Refinement 0.7837 0.6418 0.1419 0.706848 -0.076852 0.7885 0.0048 0.6995 -0.0842 0.747322 -0.036378 0.7909 0.0072 *** 

TR891 Refinement 0.7567 0.6071 0.1496 0.693176 -0.063524 0.7701 0.0134 0.683 -0.0737 0.721636 -0.035064 0.7589 0.0022 *** 

TR893 Refinement 0.6908 0.605 0.0858 0.661648 -0.029152 0.7219 0.0311 0.6272 -0.0636 0.655179 -0.035621 0.6997 0.0089 ** 

TR895 Refinement 0.5146 0.3896 -0.125 0.450184 -0.064416 0.4917 -0.0229 0.4688 -0.0458 0.492889 -0.021711 0.5188 0.0042 *** 

TR913 Refinement 0.4534 0.3587 0.0947 0.401011 -0.052389 0.4482 -0.0052 0.4164 -0.037 0.436608 -0.016792 0.4586 0.0052 *** 

TR917 Refinement 0.6535 0.5799 0.0736 0.628904 -0.024596 0.6829 0.0294 0.61 -0.0435 0.637371 -0.016129 0.6618 0.0083 *** 

TR920 Refinement 0.6039 0.484 0.1199 0.548031 -0.055869 0.6279 0.024 0.5434 -0.0605 0.568527 -0.035373 0.6016 -0.0023 *** 

TR921 Refinement 0.4801 0.4203 0.0598 0.477502 -0.002598 0.5236 0.0435 0.4402 -0.0399 0.465543 -0.014557 0.4928 0.0127 *** 

T0922 Refinement 0.7581 0.5766 0.1815 0.709603 -0.048497 0.8024 0.0443 0.7177 -0.0404 0.766796 0.008696 0.8105 0.0524 *** 

TR928 Refinement 0.4274 0.3087 0.1187 0.356789 -0.070611 0.4267 -0.0007 0.3783 -0.0491 0.396442 -0.030958 0.4245 -0.0029 *** 

TR942 Refinement 0.3333 0.2752 0.0581 0.304669 -0.028631 0.3424 0.0091 0.3081 -0.0252 0.320707 -0.012593 0.332 -0.0013 *** 

TR944 Refinement 0.5603 0.4684 0.0919 0.51819 -0.04211 0.5642 0.0039 0.501 -0.0593 0.529974 -0.030326 0.5583 -0.002 *** 

TR947 Refinement 0.5157 0.4557 -0.06 0.502683 -0.013017 0.5357 0.02 0.49 -0.0257 0.511695 -0.004005 0.5329 0.0172 *** 

TR948 Refinement 0.5956 0.5352 0.0604 0.591222 -0.004378 0.6527 0.0571 0.5705 -0.0251 0.594791 -0.000809 0.6242 0.0286 *** 

The Cumulative 
scores 

 15.7156 12.7742 -2.944 14.453249 -1.262351 16.2173 0.5017 14.3863 -1.3293 15.157452 -0.558148 15.9957 0.2801 
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Appendix 8 

Figure S. 5 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on a TBM target. 
Performance of methods on TR520 (a TBM CASP12 refinement target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for the 

models generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based protocol 

of ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars represent 

the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the original 

MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity Score 

(lower scores are better).  
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 Appendix 9 

 

Figure S. 6 A comparison of the original MD-based protocol of ReFOLD and the local quality assessment guided MD-based protocol 

on a TBM target. 
Performance of methods on TR879 (a TBM CASP12 refinement target) according to GDT-HA score and Molprobity Score. (A) The blue points indicate scores for the 

models generated using the local quality assessment guided MD-based protocol, the red points indicate scores for the models generated using the original MD-based protocol 

of ReFOLD, and the black line represents the starting model score. The points above the black line indicate the improved models. (B) The blue line and green bars represent 

the scores of models generated using the local quality assessment guided MD-based protocol, the red line and yellow bars represent models generated using the original 

MD-based protocol of ReFOLD and the black line represents the starting model (higher GDT-HA scores are better), (C) and (D) ditto but according to the Molprobity Score 

(lower scores are better).  
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Table S. 4 Calculated pairwise p-values for the local quality assessment guided MD-based protocol versus the original ReFOLD 

protocol on the CASP12 targets according to GDT-HA score. 
Ho: The scores of the targets refined by the local quality assessment guided MD-based protocol are equal or lower in quality than those refined by the original MD-based 

protocol of ReFOLD. H1: The scores of targets refined by the local quality assessment guided MD-based protocol are higher quality models than those refined by the 

original MD-based protocol of ReFOLD. The maximum score of the models generated by the local quality assessment guided MD-based protocol were also compared 

with the score of the starting models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical differences (in boldface, higher GDT-HA scores are better) 
  

CASP Target Category Minimum vs Minimum Mean vs Mean Maximum vs Maximum Maximum vs Starting 

FM 0.03571 0.07571 0.9995 6.104e-05 

TBM 9.115e-07 3.459e-06 0.9415 0.0005068 

FM/TBM 0.001662 0.04529     0.9787 0.0008281 

ALL 1.383e-10 7.007e-06 0.9998 1.267e-08 
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Appendix 11 

 

 

Table S. 5 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 FM targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality assessment 

guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by the local 

quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate significant 

statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity 

scores are better). 

  

 Molprobity score  

CASP TARGET  The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol 
Threshold is 3 Ångströms 

Wilcoxon 
test 

Target ID 
by domain 

CASP 
Category 

Starting 
model 

Mean 
Score 

Diff. 
Mean 

Minimum 
Score 

Diff. 
Min 

Maximum 
Score 

Diff. 
Max 

Mean 
Score 

Diff. 
Mean 

Minimum 
Score 

Diff. 
Min 

Maximum 
Score 

Diff. 
Max 

Significance 

T0859 Regular 2.88 1.91043 0.96957 1.04 1.84 3.03 0.15 1.65713 1.22287 1.17 1.71 2 0.88 *** 

T0862 Regular 2.72 1.984 0.736 1.62 1.1 2.43 0.29 1.71963 1.00037 1.56 1.16 1.79 0.93 *** 

T0866 Regular 3.29 2.03113 1.25887 1.59 1.7 2.87 0.42 1.76933 1.52067 1.21 2.08 2.15 1.14 *** 

T0880 Regular 3.08 2.31331 0.76669 1.55 1.53 2.7 0.38 1.74982 1.33018 1.26 1.82 1.81 1.27 *** 

T0886 Regular 3.23 2.15975 1.07025 1.54 1.69 3.21 0.02 1.78854 1.44146 1.52 1.71 2.17 1.06 *** 

T0897 Regular 1.03 1.83235 0.80235 1.02 0.01 0.97 0.06 1.23537 0.20537 0.89 0.14 0.8 0.23 *** 

T0904 Regular 3.16 2.14509 1.01491 1.8 1.36 2.86 0.3 1.6375 1.5225 1.44 1.72 1.91 1.25 *** 

T0915 Regular 1.82 1.5254 0.2946 0.94 0.88 2.09 0.27 1.17085 0.64915 0.76 1.06 1.87 -0.05 *** 

TR594 Refinement 2.91 1.85626 1.05374 1.22 1.69 2.45 0.46 1.72317 1.18683 1.2 1.71 2.01 0.90 *** 

TR862 Refinement 2.26 1.42969 0.83031 0.56 1.7 2.19 0.07 1.24848 1.01152 0.78 1.48 1.55 0.71 *** 

TR866 Refinement 1.56 1.9038 -0.3438 0.96 0.6 2.23 0.67 1.45 0.11 1.07 0.49 1.73 -0.17 *** 

TR869 Refinement 1.98 1.7692 0.2108 1.01 0.97 2.24 0.26 1.36421 0.61579 0.94 1.04 1.72 0.26 *** 

TR870 Refinement 3.61 1.98092 1.62908 1.4 2.21 3.13 0.48 1.55659 2.05341 1.07 2.54 1.86 1.75 *** 

TR905 Refinement 2.36 2.09521 0.26479 1.68 0.68 2.43 0.07 1.52951 0.83049 1.16 1.2 1.7 0.66 *** 

The 
Cumulative 

scores 

 35.89 26.93654 10.55816 17.93 17.96 34.83 3.9 21.60013 14.70061 16.03 19.86 25.07 10.82 
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Appendix 12 

 

  
Molprobity Score 

 

CASP TARGET The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol 
Threshold is 3 Ångströms 

Wilcoxon 
Test 

Target ID by 
domain 

CASP 
Category 

Starting 
model 

Mean 
Score 

Diff. 
Mean 

Minimum 
Score 

Diff. 
Min 

Maximum 
Score 

Diff. 
Max! 

Mean 
Score 

Diff. Mean Minimum 
Score 

Diff. 
Min 

Maximum 
Score 

Diff. 
Max! 

Significance 

T0872 Regular 2.62 1.79524 0.82476 0.86 1.76 2.3 0.32 1.3414 1.2786 0.92 1.7 1.8 0.82 *** 

T0882 Regular 1.73 1.53706 0.19294 0.63 1.1 1.95 -0.22 1.0686 0.6614 0.66 1.07 1.31 0.42 *** 

T0895 Regular 2.24 1.96374 0.27626 1.18 1.06 2.26 -0.02 1.50561 0.73439 0.88 1.36 1.71 0.53 *** 

T0911 Regular 3.24 1.91684 1.32316 1.63 1.61 2.46 0.78 1.48238 1.75762 1.23 2.01 1.65 1.59 *** 

T0913 Regular 3.09 2.27877 0.81123 1.94 1.15 2.71 0.38 1.86073 1.22927 1.62 1.47 2.14 0.95 *** 

T0944 Regular 1.91 1.94301 0.03301 1.52 0.39 2.07 -0.16 1.43963 0.47037 1.13 0.78 1.53 0.38 *** 

T0946 Regular 3.74 2.3346 1.4054 1.81 1.93 3.41 0.33 1.88628 1.85372 1.63 2.11 2.19 1.55 *** 

T0948 Regular 2.72 1.79963 0.92037 1.3 1.42 2.64 0.08 1.62841 1.09159 1.31 1.41 1.9 0.82 *** 

TR520 Refinement 1.91 1.94304 0.03304 1.56 0.35 2.08 -0.17 1.28591 0.62409 0.9 1.01 1.44 0.47 *** 

TR872 Refinement 0.5 1.4008 -0.9008 0.66 -0.16 2.13 -1.63 0.93372 -0.43372 0.5 0 1.34 -0.84 *** 

TR877 Refinement 1.41 1.82299 0.41299 1.16 0.25 2.35 -0.94 1.23122 0.17878 0.77 0.64 1.42 -0.01 *** 

TR879 Refinement 3.07 2.10135 0.96865 1.61 1.46 2.55 0.52 1.65665 1.41335 1.31 1.76 1.79 1.28 *** 

TR881 Refinement 2.68 1.96253 0.71747 1.32 1.36 2.41 0.27 1.5203 1.1597 1.14 1.54 1.74 0.94 *** 

TR882 Refinement 0.5 1.31957 0.81957 2.33 -1.83 2.28 -1.78 0.681037 -0.181037 0.5 0 1.74 -1.24 *** 

TR885 Refinement 0.82 1.54018 0.72018 2.12 -1.3 2.07 -1.25 0.93878 -0.11878 0.56 0.26 1.22 -0.40 *** 

TR891 Refinement 1.56 1.64976 0.08976 1 0.56 2.11 -0.55 1.21762 0.34238 0.81 0.75 1.55 0.01 *** 

TR893 Refinement 1.51 1.63485 0.12485 1.14 0.37 1.99 -0.48 1.05195 0.45805 0.68 0.83 1.27 0.24 *** 

TR895 Refinement 2.22 1.71413 0.50587 1.19 1.03 2.04 0.18 1.21744 1.00256 0.87 1.35 1.51 0.71 *** 

TR913 Refinement 1.34 1.98595 0.64595 1.63 -0.29 2.37 -1.03 1.28902 0.05098 1.02 0.32 1.49 -0.15 *** 

TR917 Refinement 1.36 1.71256 0.35256 1.17 0.19 2.17 -0.81 1.16061 0.19939 0.87 0.49 1.44 -0.08 *** 

TR920 Refinement 1.61 1.76282 0.15282 1.26 0.35 2.06 -0.45 1.32872 0.28128 0.71 0.9 1.63 -0.02 *** 

TR921 Refinement 1.61 1.99675 0.38675 1.36 0.25 2.45 -0.84 1.3475 0.2625 0.9 0.71 1.53 0.08 *** 
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T0922 Refinement 1.07 1.77311 0.70311 1.07 0 2.51 -1.44 1.23921 -0.16921 0.65 0.42 1.62 -0.55 *** 

TR928 Refinement 3.56 2.45543 1.10457 2.1 1.46 3.24 0.32 1.81598 1.74402 1.48 2.08 1.93 1.63 *** 

TR942 Refinement 2.32 1.79681 0.52319 1.36 0.96 2.56 -0.24 1.53567 0.78433 1.34 0.98 1.83 0.49 *** 

TR944 Refinement 1.84 1.97859 0.13859 1.44 0.4 2.21 -0.37 1.49024 0.34976 1.16 0.68 1.67 0.17 *** 

TR947 Refinement 0.86 1.71117 0.85117 1.14 -0.28 2.13 -1.27 1.21372 -0.35372 0.84 0.02 1.47 -0.61 *** 

TR948 Refinement 1.59 1.60567 0.01567 1.03 0.56 2.04 -0.45 1.09707 0.49293 0.85 0.74 1.32 0.27 *** 

The 
Cumulative 

scores 

 
54.63 51.43695 3.19305 38.52 16.11 65.55 10.92 37.465407 17.164593 27.24 27.39 45.18 9.45 

 

Table S. 6 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 TBM targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality assessment 

guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by the local 

quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate significant 

statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity 

scores are better). 
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 Table S. 7 Performance summary for the local quality assessment guided MD-based protocol versus the original ReFOLD protocol 

on the CASP12 FM/TBM targets according to Molprobity score. 
Table 2.7 One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target. Ho: The scores of the models generated by the local quality 

assessment guided MD-based protocol are equal or lower in quality than those generated by the original ReFOLD protocol. H1: The scores of the models generated by 

the local quality assessment guided MD-based protocol are higher quality models than those generated by the original ReFOLD protocol. P-values ≤ 0.05 indicate 

significant statistical differences (*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower 

Molprobity scores are better). 

  

 Molprobity score  

CASP TARGET  The original MD-based protocol of ReFOLD The local quality assessment guided MD-based protocol 
Threshold is 3 Ångströms 

Wilcoxon test 

Target ID by 
domain 

CASP 
Category 

Starting model Mean 
Score 

Diff. 
Mean 

Minimum 
Score 

Diff. 
Min 

Maximum 
Score 

Diff. 
Max 

Mean 
Score 

Diff. 
Mean 

Minimum 
Score 

Diff. Min Maximum 
Score 

Diff. Max Significance 

T0890 Regular 2.3 1.74699 0.55301 1.23 1.07 2.04 0.26 1.27024 1.02976 0.89 1.41 1.51 0.79 *** 

T0898 Regular 3.24 2.18706 1.05294 1.74 1.5 2.67 0.57 1.61866 1.62134 1.28 1.96 1.87 1.37 *** 

T0909 Regular 3.18 2.29656 0.88344 1.97 1.21 2.7 0.48 1.76707 1.41293 1.21 1.97 1.87 1.31 *** 

TR694 Refinement 2.66 2.04141 0.61859 1.52 1.14 3.27 -0.61 1.68384 0.97616 1.12 1.54 1.83 0.83 *** 

TR868 Refinement 0.81 1.49301 -
0.68301 

0.95 -0.14 1.97 -1.16 0.95 -0.14 0.5 0.31 1.33 -0.52 *** 

TR890 Refinement 2.01 2.04604 -
0.03604 

1.28 0.73 2.4 -0.39 1.6928 0.3172 1.4 0.61 1.82 0.19 *** 

TR896 Refinement 2.14 1.84524 0.29476 1.1 1.04 2.31 -0.17 1.31006 0.82994 1 1.14 1.8 0.34 *** 

TR898 Refinement 0.66 1.33908 -
0.67908 

0.66 0 2.06 -1.4 0.827988 0.167988 0.5 0.16 1.36 -0.70 *** 

TR901 Refinement 2.03 1.89329 0.13671 1.38 0.65 2.15 -0.12 1.37665 0.65335 0.98 1.05 1.68 0.35 *** 

TR909 Refinement 3.26 2.24025 1.01975 1.75 1.51 2.67 0.59 1.62829 1.63171 1.2 2.06 1.83 1.43 *** 

TR945 Refinement 2.33 1.82177 0.50823 1.35 0.98 2.21 0.12 1.35579 0.97421 1.11 1.22 1.54 0.79 *** 

The 
Cumulative 

scores 

 
24.62 20.9507 3.6693 14.93 9.69 26.45 -1.83 15.481388 9.138612 11.19 13.43 18.44 6.18 
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Table S. 8 Calculated pairwise p-values for the local quality assessment guided MD-based protocol versus the original ReFOLD 

protocol on the CASP12 targets according to Molprobity score. 
Ho: The scores of the targets refined by the local quality assessment guided MD-based protocol are equal or lower in quality than those refined by the original MD-based 

protocol of ReFOLD. H1: The scores of targets refined by the local quality assessment guided MD-based protocol are higher quality models than those refined by the 

original MD-based protocol of ReFOLD. The minimum score of the models generated by the local quality assessment guided MD-based protocol were also compared 

with the score of the starting models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical differences (in boldface. lower Molprobity scores are better). 
 

CASP Target Category Minimum vs Minimum Mean vs Mean Maximum vs Maximum Minimum vs Starting 

FM 0.01242 3.052e-05 3.052e-05 0.0003624 

TBM 3.093e-06 1.863e-09 1.348e-06 2.967e-06 

FM/TBM 0.002089 0.0002441 0.0002441 0.0002441 

ALL 4.693e-09 1.228e-10 1.226e-10 2.649e-10 
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Table S. 9 Performance summary for the local quality assessment guided MD-based protocol 

with the varying threshold on the CASP12 FM targets according to GDT-HA score. (higher 

GDT-HA scores are better). 

 

 

 

  

CASP TARGET The local quality 

assessment guided MD-

based protocol 

Threshold is 3 Ångströms 

The local quality 

assessment guided MD-

based protocol 

Threshold is 5 

Ångströms 

The local quality assessment 

guided MD-based protocol 

Threshold is 8 Ångströms 

Target ID by 

domain 

CASP 

Category 

Starting 

model Mean Score 

Maximum 

Score 

Mean 

Score 

Maximum 

Score 

Mean 

Score 

Maximum 

Score 

T0859 Regular 0.1681 0.17192 0.1814 0.172224 0.1814 0.172508 0.1858 

T0862 Regular 0.4032 0.396678 0.414 0.396597 0.422 0.396843 0.4194 

T0866 Regular 0.2391 0.241027 0.2565 0.241905 0.2565 0.239828 0.2543 

T0880 Regular 0.0596 0.0576659 0.0622 0.0576896 0.0622 0.0573884 0.0609 

T0886 Regular 0.1681 0.174943 0.1921 0.176126 0.1921 0.176764 0.1889 

T0897 Regular 0.0582 0.0587799 0.062 0.0586067 0.063 0.0588317 0.0639 

T0904 Regular 0.2267 0.221043 0.2323 0.221234 0.2307 0.219848 0.2299 

T0915 Regular 0.2808 0.273628 0.289 0.274235 0.2922 0.27428 0.2873 

TR594 Refinement 0.3427 0.344157 0.3652 0.344991 0.3708 0.346089 0.3708 

TR862 Refinement 0.4032 0.394813 0.422 0.391551 0.422 0.394994 0.4194 

TR866 Refinement 0.6082 0.602386 0.6346 0.607648 0.6346 0.604145 0.6322 

TR869 Refinement 0.2885 0.276501 0.2909 0.276018 0.2885 0.275846 0.2885 

TR870 Refinement 0.25 0.257492 0.2729 0.254413 0.2775 0.251428 0.2752 

TR905 Refinement 0.3244 0.298757 0.3223 0.2985 0.3202 0.298863 0.3223 

The 

Cumulative 

Scores 

 3.8208 3.7697908 3.9974 3.7717383 4.0137 3.7676561 3.9988 
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CASP TARGET The local quality assessment 

guided MD-based protocol 

Threshold is 3 Ångströms 

The local quality assessment 

guided MD-based protocol 

Threshold is 5 Ångströms 

The local quality assessment 

guided MD-based protocol 

Threshold is 8 Ångströms 

Target ID by 

domain 

CASP Category Starting 

model Mean Score 

Maximum 

Score 

Mean Score Maximum 

Score 

Mean Score Maximum 

Score 

T0872 Regular 0.4886 0.472564 0.5028 0.473605 0.5057 0.474388 0.5 

T0882 Regular 0.5791 0.588816 0.6297 0.588486 0.6234 0.587465 0.6203 

T0895 Regular 0.5167 0.501923 0.5292 0.502213 0.5312 0.504132 0.5312 

T0911 Regular 0.2972 0.291071 0.3027 0.289913 0.3009 0.290695 0.307 

T0913 Regular 0.4149 0.398787 0.4142 0.399257 0.4157 0.396969 0.4149 

T0944 Regular 0.5504 0.533065 0.5534 0.531242 0.5573 0.532495 0.5524 

T0946 Regular 0.2962 0.27321 0.2954 0.272807 0.2954 0.274359 0.2954 

T0947 Regular 0.4814 0.459048 0.4771 0.459429 0.4829 0.456725 0.48 

T0948 Regular 0.5235 0.495054 0.5268 0.496905 0.5268 0.499658 0.5235 

TR520 Refinement 0.581 0.543085 0.581 0.543085 0.581   

TR872 Refinement 0.5682 0.541712 0.5739 0.543152 0.5767 0.544709 0.5767 

TR877 Refinement 0.4894 0.466093 0.4877 0.466093 0.4877   

TR879 Refinement 0.633 0.583705 0.6261 0.583759 0.6239 0.584782 0.625 

TR881 Refinement 0.479 0.452469 0.4802 0.452277 0.4777   

TR882 Refinement 0.6899 0.71137 0.75 0.711462 0.7468   

TR885 Refinement 0.7837 0.747322 0.7909 0.747527 0.7885 0.74688 0.7837 

TR891 Refinement 0.7567 0.721636 0.7589 0.720423 0.75   

TR893 Refinement 0.6908 0.655179 0.6997 0.652946 0.6982   

TR895 Refinement 0.5146 0.492889 0.5188 0.490015 0.5104   

TR913 Refinement 0.4534 0.436608 0.4586 0.4402 0.4615 0.436949 0.4564 

TR917 Refinement 0.6535 0.637371 0.6618 0.637931 0.6586   

TR920 Refinement 0.6039 0.568527 0.6016 0.569101 0.6005 0.568023 0.6039 

TR921 Refinement 0.4801 0.465543 0.4928 0.465543 0.4928   

T0922 Refinement 0.7581 0.766796 0.8105 0.766796 0.8105   

TR928 Refinement 0.4274 0.396442 0.4245 0.396137 0.4245 0.398646 0.4245 

TR942 Refinement 0.3333 0.320707 0.332 0.322513 0.3359 0.321614 0.3333 

TR944 Refinement 0.5603 0.529974 0.5583 0.52953 0.5583 0.529345 0.5593 

TR947 Refinement 0.5157 0.511695 0.5329 0.51118 0.5343 0.510245 0.5343 

TR948 Refinement 0.5956 0.594791 0.6242 0.592882 0.6225 0.59376 0.6242 

The Cumulative 

Scores 

 15.7156 15.157452 15.9957 15.156409 15.9796   

 

Table S. 10 Performance summary for the local quality assessment guided MD-based 

protocol with the varying threshold on the CASP12 TBM targets according to GDT-HA 

score (higher GDT-HA scores are better).  
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CASP TARGET The local quality 

assessment guided MD-

based protocol 

Threshold is 3 

Ångströms 

The local quality 

assessment guided MD-

based protocol 

Threshold is 5 

Ångströms 

The local quality 

assessment guided MD-

based protocol 

Threshold is 8 

Ångströms 

Target ID 

by domain 

CASP 

Category 

Starting 

model 

Mean 

Score 

Maximum 

Score 

Mean 

Score 

Maximum 

Score 

Mean 

Score 

Maximum 

Score 

T0890 Regular 0.1742 0.168949 0.1769 0.168869 0.1769 0.169681 0.1809 

T0898 Regular 0.1599 0.158659 0.1693 0.159651 0.1708 0.15673 0.1661 

T0899 Regular 0.1628 0.153423 0.1664 0.153287 0.1628 0.15414 0.1635 

T0909 Regular 0.2703 0.278384 0.2943 0.27786 0.2905 0.277429 0.2958 

T0945 Regular 0.3493 0.34364 0.3587 0.344235 0.3607 0.345565 0.3633 

TR694 Refinement 0.2376 0.22704 0.2414 0.224509 0.2395 0.227157 0.2405 

TR868 Refinement 0.6143 0.604776 0.6548 0.603366 0.6381   

TR890 Refinement 0.3245 0.305804 0.3271 0.307387 0.3271 0.308702 0.3271 

TR896 Refinement 0.468 0.443089 0.4826 0.442043 0.4826 0.446423 0.4826 

TR898 Refinement 0.2524 0.24816 0.2618 0.24881 0.2618 0.249028 0.2618 

TR901 Refinement 0.3061 0.30088 0.3161 0.301688 0.3139   

TR909 Refinement 0.4257 0.430218 0.4452 0.42827 0.4414 0.43115 0.4474 

TR945 Refinement 0.412 0.396554 0.412 0.39668 0.416 0.395927 0.4113 

The 

Cumulativ

e Scores 

 4.1571 4.059576 4.3066 4.056655 4.2821   

 

Table S. 11 Performance summary for the local quality assessment guided MD-based 

protocol with the varying threshold on the CASP12 FM/TBM targets according to GDT-HA 

score (higher GDT-HA scores are better) 
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CASP TARGET The local quality 

assessment guided MD-

based protocol Threshold is 
3 Ångströms 

The local quality assessment 

guided MD-based protocol 

Threshold is 5 Ångströms 

The local quality assessment 

guided MD-based protocol 

Threshold is 8 Ångströms 

Target ID by 

domain 

Prediction 
Method 

Starting 

model 

Mean 

Score 

Minimum 

Score 

Mean Score Minimum 
Score 

Mean Score Minimum 
Score 

TR520 TBM 1.91 1.28591 0.9     

TR872 TBM 0.5 0.93372 0.5 0.927927 0.5 0.897439 0.5 

TR877 TBM 1.41 1.23122 0.77     

TR879 TBM 3.07 1.65665 1.31 1.60463 1.11 1.64085 1.3 

TR881 TBM 2.68 1.5203 1.14 1.53646 1.14   

TR882 TBM 0.5 0.681037 0.5     

TR885 TBM 0.82 0.93878 0.56 0.963293 0.5 0.963963 0.5 

TR891 TBM 1.56 1.21762 0.81     

TR893 TBM 1.51 1.05195 0.68 1.08378 0.75   

TR895 TBM 2.22 1.21744 0.87 1.2189 0.87   

TR913 TBM 1.34 1.28902 1.02 1.31677 0.95 1.29927 1.01 

TR917 TBM 1.36 1.16061 0.87 1.13957 0.84   

TR920 TBM 1.61 1.32872 0.71 1.32317 0.93 1.35988 0.96 

TR921 TBM 1.61 1.3475 0.9     

T0922 TBM 1.07 1.23921 0.65     

TR928 TBM 3.56 1.81598 1.48 1.79451 1.59 1.79616 1.59 

TR942 TBM 2.32 1.53567 1.34 1.5578 1.34 1.52945 1.37 

TR944 TBM 1.84 1.49024 1.16 1.48555 1.21 1.50567 1.32 

TR947 TBM 0.86 1.21372 0.84 1.2003 0.94 1.19878 0.86 

TR948 TBM 1.59 1.09707 0.85 1.06445 0.85 1.10622 0.81 

TR694 FM/TBM 2.66 1.68384 1.12 1.66591 1.35 1.67689 1.4 

TR868 FM/TBM 0.81 0.95 0.5 0.933171 0.5   

TR890 FM/TBM 2.01 1.6928 1.4 1.64177 1.27 1.65805 1.35 

TR894 FM/TBM        

TR896 FM/TBM 2.14 1.31006 1 1.31 1 1.3003 0.9 

TR898 FM/TBM 0.66 0.827988 0.5 0.868902 0.5 0.854146 0.5 

TR901 FM/TBM 2.03 1.37665 0.98     

TR909 FM/TBM 3.26 1.62829 1.2 1.62152 1.24 1.63793 1.28 

TR945 FM/TBM 2.33 1.35579 1.11 1.3522 0.94 1.33561 0.96 

TR594 FM 2.91 1.72317 1.2 1.71494 1.14 1.68695 1.14 

TR862 FM 2.26 1.24848 0.78 1.27518 0.64 1.29433 0.79 

TR866 FM 1.56 1.45 1.07 1.41488 1.03 1.4503 1.07 

TR869 FM 1.98 1.36421 0.94 1.31354 0.98 1.34043 0.9 

TR870 FM 3.61 1.55659 1.07 1.52744 1.08 1.57677 1.19 

Table S. 12 Performance summary for the local quality assessment guided MD-based 

protocol with the varying threshold on the CASP12 targets according to Molprobity Score 

(lower Molprobity Score are better).
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Table S. 13 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 FM/TBM 

targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (higher GDT-HA scores are better). Ho: The scores of the models generated 

by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated by the 

gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences (*, 

**, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 GDT-HA score   

CASP 

TARGETS 

 The fixed restraint strategy The gradual restraint strategy 

 

The percentage of the improved 

modes 

Wilcoxon 

Test gradual 

vs fixed  

Target ID  

by domain 

Starting 

model 

Minimum 

 Score 

 

Mean 

Score 

Maximum 

Score 

Minimum 

 Score 
Mean 

Score 

Maximum 

Score 

Fixed Gradual Significance  

T0953s2 0.1321 0.128 0.136705 0.1452 0.126 0.134213 0.1421 19.51219512 70.12195122 *** 

T0955 0.6707 0.622 0.665286 0.6951 0.622 0.664013 0.7073 23.7804878 23.7804878   n.s. 

T0957s1 0.2191 0.2037 0.214349 0.2299 0.2037 0.214104 0.2284 7.926829268 7.926829268 n.s. 

T0958 0.4481 0.4286 0.452396 0.4773 0.4253 0.450811 0.4838 6.707317073 56.09756098 n.s. 

T0960 0.1457 0.137 0.145227 0.1531 0.1357 0.145476 0.1524 35.97560976 42.68292683 n.s. 

T0963 0.1511 0.1401 0.146997 0.1566 0.1387 0.148177 0.1587 4.268292683 15.24390244 *** 

T0981 0.11 0.1058 0.109509 0.1129 0.1042 0.109356 0.1149 33.53658537 35.36585366 n.s. 

T0984 0.319 0.3008 0.311644 0.3222 0.2996 0.310373 0.3194 3.048780488 1.219512195 n.s. 

T0992 0.6355 0.6005 0.627206 0.6542 0.5981 0.624749 0.6565 16.46341463 14.02439024 n.s. 

T1005 0.2991 0.2745 0.29365 0.3037 0.2784 0.292325 0.3044 13.41463415 8.536585366 n.s. 

T1022s1 0.2814 0.2601 0.275921 0.2892 0.2635 0.275068 0.2915 10.36585366 9.756097561 n.s. 

The Cumulative 

Scores 

3.4118 3.2011 3.37889 3.5394 3.1952 3.368665 3.5594 15.90909091 25.88691796 
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Figure S. 7 A comparison of the gradual restraint strategy and fixed restraint strategy on an 

FM/TBM target. 
Performance of methods on T0953s1 (an FM/TBM category CASP13 target) according to GDT-HA score. The purple 

line represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical 

line represents the initial structure (the GDT-HA score of the initial structure is 0.2639, and higher GDT HA scores 

are better) 
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Figure S. 8 A comparison of the gradual restraint strategy and fixed restraint strategy on an 

FM/TBM target. 
Performance of methods on T0957s1 (an FM/TBM category CASP13 target) according to GDT-HA score. The purple 

line represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical 

line represents the initial structure (the GDT-HA score of the initial structure is 0.2191, and higher GDT HA scores 

are better) 
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Table S. 14 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 TBM 

targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (higher GDT-HA scores are better). Ho: The scores of the models generated 

by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated by the 

gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences (*, 

**, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 

 GDT-HA score   

CASP 

TARGETS 

 The fixed restraint strategy The gradual restraint strategy The percentage of the improved 

modes 

Wilcoxon 

Test gradual vs 

fixed 

Target ID by 

domain 

Starting model Minimum 

 Score 

 

Mean 

Score 

Maximum 

Score 

Minimum 

 Score 
Mean 

Score 

Maximum 

Score 

Fixed Gradual Significance 

T1011 0.3598 0.326 0.341817 0.3637 0.3271 0.342325 0.3643 2.43902439 2.43902439 * 

T1015s2 0.4632 0.4089 0.445853 0.4729 0.3992 0.446031 0.4922 9.756097561 10.36585366 n.s. 

T1021s1 0.448 0.4211 0.448493 0.4782 0.4279 0.449331 0.4748 50.6097561 50.6097561 n.s. 

T1021s2 0.4678 0.4427 0.459936 0.4721 0.442 0.459395 0.4742 6.707317073 9.146341463 n.s. 

T1022s2 0.3626 0.3537 0.363856 0.374 0.3547 0.363826 0.3745 53.65853659 57.92682927 n.s. 

T0974s1 0.6558 0.6413 0.676316 0.7283 0.6232 0.67778 0.7319 87.19512195 88.41463415 n.s. 

T0993s1 0.4601 0.4344 0.454698 0.4715 0.4392 0.455711 0.4743 21.34146341 31.70731707 * 

T0993s2 0.4796 0.4337 0.458144 0.4847 0.4362 0.461614 0.4949 2.43902439 6.097560976 ** 

T0995 0.5442 0.5331 0.559068 0.582 0.541 0.557066 0.5797 96.95121951 98.7804878 * 

T1004 0.4087 0.3791 0.394914 0.4125 0.381 0.396075 0.4175 4.268292683 6.707317073 n.s. 

T1013 0.6422 0.6078 0.631066 0.6534 0.6052 0.629155 0.6491 13.41463415 9.756097561 * 

T1016 0.6015 0.5743 0.598407 0.63 0.5743 0.5955 0.6262 35.97560976 37.80487805 n.s. 

The Cumulative 

Scores 

5.8935 5.5561 5.832568 6.1233 5.551 5.833809 6.1536 32.06300813 34.14634146 
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Figure S. 9 A comparison of the gradual restraint strategy and fixed restraint strategy on a 

TBM target. 
Performance of methods on T0993s1 (a TBM category CASP13 target) according to GDT-HA score. The purple line 

represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure is 0.3598, and higher GDT HA scores are 

better) 
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Figure S. 10 A comparison of the gradual restraint strategy and fixed restraint strategy on a 

TBM target. 
Performance of methods on T1011 (a TBM category CASP13 target) according to GDT-HA score. The purple line 

represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure is 0.3598, and higher GDT HA scores are 

better)
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Table S. 15 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 FM targets 

according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (higher GDT-HA scores are better). Ho: The scores of the models generated 

by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated by the 

gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences (*, 

**, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 

 

 GDT-HA score   

CASP 

TARGETS 

 The fixed restraint strategy The gradual restraint strategy 

 

The percentage of the 

improved modes 

Wilcoxon 

Test gradual vs 

fixed 

Target ID 

 by domain 

Starting 

model 

Minimum 

 Score 

 

Mean 

Score 

Maximum 

Score 

Minimum 

 Score 

Mean 

Score 

Maximum 

Score 

Fixed Gradual Significance  

T0950 0.1842 0.1798 0.188403 0.1966 0.1791 0.188167 0.1952 86.58536585 85.36585366 n.s. 

T0953s1 0.2639 0.2431 0.284723 0.316 0.2569 0.286506 0.3125 95.73170732 98.7804878 n.s. 

T0975 0.3256 0.2998 0.316833 0.3292 0.3007 0.316083 0.331 5.487804878 5.487804878 * 

T0987 0.1247 0.1175 0.122284 0.1273 0.1161 0.12283 0.1306 17.07317073 18.29268293 ** 

T0989 0.1524 0.1413 0.151349 0.1596 0.1413 0.149756 0.1575 6.707317073 17.07317073 *** 

T0991 0.1462 0.1314 0.143451 0.1547 0.1398 0.143461 0.1547 14.63414634 21.34146341 n.s. 

T1001 0.5126 0.5018 0.522794 0.545 0.4982 0.523411 0.5504 87.19512195 87.19512195 n.s. 

T1010 0.2083 0.1881 0.200436 0.2119 0.1881 0.199572 0.2119 1.829268293 4.87804878 n.s. 

T1015s1 0.1989 0.1903 0.201427 0.2216 0.1875 0.200058 0.2216 48.7804878 66.46341463 * 

The Cumulative 

 Scores 

2.1168 1.9931 2.1317 2.2619 2.0077 2.129844 2.2654 40.44715447 44.98644986 
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Figure S. 11 A comparison of the gradual restraint strategy and fixed restraint strategy on 

an FM target. 
Performance of methods on T0953s1 (an FM category CASP13 target) according to GDT-HA score. The purple line 

represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure is 0.3598, and higher GDT HA scores are 

better) 
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Figure S. 12 A comparison of the gradual restraint strategy and fixed restraint strategy on 

an FM target. 
Performance of methods on T0975 (an FM category CASP13 target) according to GDT-HA score. The purple line 

represents the gradual restraint models, the red line represents the fixed restraint models, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure is 0.3598, and higher GDT HA scores are 

better)
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Table S. 16 Calculated pairwise p-values for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 

targets according to GDT-HA score. 
Ho: The scores of the models generated by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The 

scores of the models generated by the gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate 

significant statistical differences. The maximum score of the models generated by the gradual restraint strategy were also compared with the score of the starting 

models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical differences (in boldface, higher GDT-HA scores are better). 

 

 

 

 

  

CASP Target 

Category 

Minimum vs 

Minimum 

Mean vs Mean Maximum vs 

Maximum 

Maximum vs 

Starting 

FM 0.2643 0.8623 0.2234 0.0009766 

TBM    0.4844 0.3177 0.1082 0.0001221 

FM/TBM 0.8689 0.9954    0.09768 0.001258 

ALL 0.541 0.9595 0.02171 1.293e-07 
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Table S. 17 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 TBM 

targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated 

by the gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences 

(*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better). 

  

 Molprobity Score  

CASP 

TARGETS 

 The fixed restraint  strategy The gradual restraint strategy  Wilcoxon 

Test gradual 

vs fixed 

Target ID by 

domain 

Starting 

model 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Significance  

T1011 2.79 1.12 1.55383 1.93 1.06 1.39753 1.58 * 

T1015s2 2.75 1.35 1.97463 2.51 1.4 1.80527 2.08 * 

T1021s1 1.03 0.87 1.38191 1.63 0.78 1.26234 1.69 ** 

T1021s2 1.26 0.97 1.52043 1.97 0.99 1.40012 1.63 ** 

T1022s2 1.27 0.99 1.51787 1.83 1.01 1.37766 1.63 ** 

T0974s1 0.92 0.5 1.145 1.66 0.5 1.06623 1.59 n.s. 

T0993s1 0.73 0.56 1.2483 1.68 0.56 1.16922 1.51 n.s. 

T0993s2 3.05 1.07 1.70585 2.16 0.88 1.54862 1.87 *** 

T0995 3.18 1.18 1.67777 2.08 1.16 1.52369 1.74 *** 

T1004 0.81 0.85 1.19484 1.7 0.85 1.10476 1.41 * 

T1013 2.76 1.36 1.71824 1.99 1.38 1.57641 1.83 * 

T1016 1.26 0.81 1.2208 1.55 0.67 1.09768 1.5 * 

The 

Cumulative 

 Scores 

21.81 11.63 17.85947 22.69 11.24 16.32953 20.06 
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Table S. 18 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 FM targets 

according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated 

by the gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences 

(*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better).  

 Molprobity Score  

CASP 

TARGETS 

 The fixed restraint  strategy The gradual restraint strategy  Wilcoxon 

Test gradual 

vs fixed 

Target ID by 

domain 

Starting 

model 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Significance  

T0950 1.06 0.82 1.32861 1.84 0.82 1.25217 1.47 n.s. 

T0953s1 2.8 1.01 1.69016 2.57 0.8 1.48572 2 * 

T0975 3.82 1.84 2.21681 2.89 1.85 2.00593 2.26 n.s. 

T0987 3.74 1.79 2.15803 2.68 1.74 1.96331 2.28 n.s. 

T0989 3.31 1.58 2.10321 2.55 1.53 1.88849 2.29 n.s. 

T0991 2.86 1.51 1.97899 2.51 1.47 1.84719 2.11 * 

T1001 1.17 0.5 1.07787 1.43 0.5 0.996527 1.48 * 

T1010 3.49 1.7 2.17787 2.76 1.59 1.97898 2.28 * 

T1015s1 0.5 0.57 0.933404 1.55 0.5 0.861497 1.44 * 

The 

Cumulative 

 Scores 

22.75 11.32 15.664954 20.78 10.8 14.279814 17.61 
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Table S. 19 Performance summary for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 FM/TBM 

targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the restraint strategies for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The scores of the models generated 

by the gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate significant statistical differences 

(*, **, *** indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better). 

  

 Molprobity Score  

CASP 

TARGETS 

 The fixed restraint  strategy The gradual restraint strategy  Wilcoxon 

Test gradual 

vs fixed 

Target ID by 

domain 

Starting 

model 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Mean 

Score 

Minimum 

Score 

Maximum 

Score 

Significance 

T0953s2  3.36 1.75 2.13267 2.48 1.57 1.90108 2.25 *** 

T0955 2.29 0.86 1.41527 1.72 0.86 1.21443 1.73 n.s. 

T0957s1 0.64 0.5 0.978032 1.4 0.5 0.866506 1.27 *** 

T0958 0.85 0.54 1.05612 1.9 0.54 0.979281 1.69 * 

T0960 1.13 0.83 1.42101 2.05 0.89 1.27795 1.56 *** 

T0963 3.16 1.65 2.02383 2.44 1.63 1.84838 2.08 *** 

T0981 3.76 1.95 2.2691 2.84 1.92 2.0403 2.38 ** 

T0984 3.51 1.55 1.88665 2.2 1.51 1.68783 2.07 ** 

T0992 1 0.88 1.29766 1.6 0.8 1.27084 1.68 n.s. 

T1005 3.35 1.73 2.10399 2.52 1.71 1.93018 2.2 * 

T1022s1 2.67 1.12 1.74436 2.33 1.08 1.55934 1.85 * 

The 

Cumulative 

 Scores 

25.72 13.36 18.328692 23.48 13.01 16.576117 20.76 
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Table S. 20 Calculated pairwise p-values for the gradual restraint strategy versus the fixed restraint strategy on the CASP13 

targets according to Molprobity score. 
Ho: The scores of the models generated by the gradual restraint strategy are equal or lower in quality than those generated by the fixed restraint strategy. H1: The 

scores of the models generated by the gradual restraint strategy are higher quality models than those generated by the fixed restraint strategy. P-values ≤ 0.05 indicate 

significant statistical differences. The minimum score of the models generated by the gradual restraint strategy were also compared with the score of the starting 

models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical differences (in boldface, and lower Molprobity scores are better). 

 

 

CASP Target 

Category 

Minimum vs 

Minimum 

Mean vs Mean Maximum vs 

Maximum 

Minimum vs 

Starting 

FM 0.0009766 0.01035 0.001953 0.009766 

TBM 0.0001221 0.06265 0.00132 0.07324 

FM/TBM 0.0002441 0.02879 0.001221 0.0105 

ALL 2.328e-10 0.0009091 1.469e-06 0.0004186 
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Figure S. 13 The performance of the binding site-focused MD-based protocol for T0911 

models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based protocol 

and the orange line represents the starting model score. (B) the black line represents the BDT scores of 3D models 

generated by the binding site-focused MD-based protocol and the orange line represents the starting model score. (C) 

and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score (higher scores are better)   

  

  

  

A 
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Figure S. 14 Figure 4. 6 The performance of the binding site-focused MD-based protocol for 

T0953s2 models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based protocol 

and the orange line represents the starting model score. (B) the black line represents the BDT scores of 3D models 

generated by the binding site-focused MD-based protocol and the orange line represents the starting model score. (C) 

and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score (higher scores are better) 
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Figure S. 15 Figure 4. 6 The performance of the binding site-focused MD-based protocol for 

T0954 models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based protocol 

and the orange line represents the starting model score. (B) the black line represents the BDT scores of 3D models 

generated by the binding site-focused MD-based protocol and the orange line represents the starting model score. (C) 

and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score (higher scores are better)  
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Figure S. 16 The performance of the binding site-focused MD-based protocol for T1011 

models. 
(A) The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based protocol 

and the orange line represents the starting model score. (B) the black line represents the BDT scores of 3D models 

generated by the binding site-focused MD-based protocol and the orange line represents the starting model score. (C) 

and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score (higher scores are better)   
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Figure S. 17 The performance of the binding site-focused MD-based protocol for T1016 

models. 
(A)The black points represent the BDT scores of 3D models generated by the binding site-focused MD-based protocol 

and the orange line represents the starting model score. (B) the black line represents the BDT scores of 3D models 

generated by the binding site-focused MD-based protocol and the orange line represents the starting model score. (C) 

and (D) ditto but according to the MCC score. (E) and (F) ditto according to GDT-HA score (higher scores are better) 
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Table S. 21 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 TBM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (higher GDT-HA scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 

 

 GDT-HA score  Wilcoxon Tests 

CASP 

TARGET

S 

 The contact-assisted MD-based 

protocol 

The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

The percentage of the improved 

models  

Significance  

Target ID Starting 

model 

Minimu

m Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Contact Local ReFOLD Contact 

vs Local 

Contact vs  

ReFOLD 

Local vs 

ReFOLD 

T0954 0.4379 0.4254 0.4382612 0.4518 0.4196 0.4389604 0.4569 0.3969 0.428642 0.4547 47.56 48.17 18.29 n.s. *** *** 

T0959 0.4405 0.4312 0.449549 0.4722 0.4299 0.449423 0.4749 0.4087 0.458736 0.5278 84.14 81.098 79.26 n.s. *** *** 

T0964 0.5947 0.5421 0.574515 0.6079 0.5474 0.575708 0.6263 0.5105 0.56555 0.6342 6.703 4.87 10.97 
n.s. *** *** 

T0965 0.4073 0.3826 0.399764 0.4161 0.385 0.399831 0.4161 0.3339 0.367456 0.4026 9.75 17.07 0 n.s. *** *** 

T0966 0.3821 0.3653 0.378603 0.3892 0.3674 0.379289 0.3892 0.3171 0.359113 0.3963 24.39 26.21 6.09 n.s. ** *** 

T1011 0.3598 0.3266 0.342546 0.3643 0.326 0.341817 0.3637 0.29 0.318816 0.3643 2.439 2.43 2.43 * *** *** 

T1015s2 0.4632 0.4128 0.443472 0.4787 0.4089 0.445853 0.4729 0.4167 0.46261 0.5039 7.92 9.75 46.34 n.s. ** *** 

T1021s2 0.4678 0.4484 0.460195 0.4756 0.4427 0.459936 0.4721 0.4019 0.452318 0.4928 11.58 6.70 15.85 n.s. *** *** 

T1022s2 0.3626 0.3522 0.364468 0.377 0.3537 0.363856 0.374 0.3135 0.348521 0.3765 64.63 53.65 15.85 
* *** *** 

T0973 0.3067 0.2872 0.307886 0.328 0.2872 0.307517 0.3245 0.2713 0.304115 0.3369 51.21 48.17 39.63 n.s. ** ** 

T0974s1 0.6558 0.6486 0.679824 0.721 0.6413 0.676316 0.7283 0.5507 0.682384 0.7754 89.02 87.19 75.60 n.s. n.s. n.s. 

T0993s1 0.4601 0.4306 0.456712 0.4762 0.4344 0.454698 0.4715 0.4192 0.4603 0.5057 34.75 21.34 46.95 
n.s. * ** 

T0993s2 0.4796 0.4362 0.460664 0.4898 0.4337 0.458144 0.4847 0.3827 0.459719 0.5153 6.70 2.43 25.60 ** n.s. n.s. 

T0995 0.5442 0.5347 0.559795 0.5828 0.5331 0.559068 0.582 0.5 0.535818 0.5686 98.17 96.95 23.17 ** *** ** 

T1004 0.4087 0.3778 0.395595 0.4181 0.3791 0.394914 0.4125 0.3249 0.367283 0.4162 5.48 4.26 3.65 n.s. *** *** 

T1006 0.8701 0.789 0.833411 0.8831 0.7857 0.835857 0.8831 0.7078 0.810686 0.8961 4.87 6.70 6.09 n.s. *** *** 

T1013 0.6422 0.6052 0.629155 0.6491 0.6078 0.631066 0.6534 0.5241 0.58507 0.65 10.36 13.41 2.43 n.s. *** *** 

T1016 0.6015 0.5743 0.596896 0.625 0.5743 0.598407 0.63 0.5743 0.597623 0.6262 29.87 35.97 31.70 
n.s. n.s. n.s. 

T1017s1 0.55 0.4818 0.504881 0.5568 0.4727 0.510317 0.5568 0.4295 0.497176 0.5682 2.43 1.82 4.26 * *** *** 

T1020 0.4625 0.4585 0.475152 0.4936 0.4561 0.4738976 0.4928 0.3994 0.4504315 0.508 96.95 94.51 32.92 * *** *** 

The 

Cumulativ

e scores 

9.8973 9.3105 9.7513442 10.2563 9.286 9.754875 10.2657 8.4731 9.5123675 10.5197 
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Figure S. 18 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on a TBM target. 
Performance of methods on T1004 (a TBM-easy CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided 

MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure was 0.4087 and higher GDT HA scores are 

better).  
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Figure S. 19 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on a TBM target. 
Performance of methods on T1011 (a TBM-hard CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided 

MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure was 0.3598 and higher GDT HA scores are 

better). 
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Table S. 22 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 FM/TBM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (higher GDT-HA scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 

 GDT-HA score  Wilcoxon Tests 

CASP 

TARGET

S 

 The contact-assisted MD-based protocol The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

The percentage of the improved 

models  

Significance 

Target ID Starting 

model 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Contact Local ReFOLD Contact 

vs Local 

Contact vs  

ReFOLD 

Local vs 

ReFOLD 

T0953s2  0.1321 0.129 0.135504 0.1442 0.128 0.136705 0.1452 0.1149 0.127758 0.1442 79.26 19.51 23.78 * ** *** 

T0955 0.6707 0.622 0.663787 0.7012 0.622 0.665286 0.6951 0.5488 0.62531 0.6951 25 23.78 6.70 n.s. ** *** 

T0957s1 0.2191 0.2037 0.214382 0.2269 0.2037 0.214349 0.2299 0.2022 0.225586 0.2562 10.97 7.92 61.58 n.s. *** *** 

T0958 0.4481 0.4416 0.452806 0.487 0.4286 0.452396 0.4773 0.3994 0.452514 0.5065 61.58 6.70 53.04 n.s. n.s. n.s. 

T0960 0.1457 0.1357 0.145476 0.1524 0.137 0.145227 0.1531 0.1229 0.135504 0.1559 39.63 35.97 57.92 n.s. *** *** 

T0963 0.1511 0.1408 0.147979 0.1566 0.1401 0.146997 0.1566 0.1229 0.138704 0.1559 15.85 4.26 3.65 *** *** *** 

T0970 0.3118 0.2706 0.294296 0.3176 0.2735 0.296382 0.3176 0.2559 0.289021 0.3206 2.43 2.43 2.43 n.s. *** *** 

T0981 0.11 0.1046 0.109555 0.1149 0.1058 0.109509 0.1129 0.0935 0.102878 0.1182 35.97 33.53 10.97 n.s. *** *** 

T0984 0.319 0.3012 0.311407 0.3194 0.3008 0.311644 0.3222 0.2726 0.295018 0.3226 3.65 3.048 4.26 n.s. *** *** 

T0992 0.6355 0.5864 0.624764 0.6589 0.6005 0.627206 0.6542 0.5327 0.591867 0.6519 17.07 16.46 5.48 n.s. *** *** 

T1005 0.2991 0.2753 0.29181 0.3021 0.2745 0.29365 0.3037 0.2339 0.268402 0.3137 6.70 13.41 6.70 n.s. *** *** 

T1019s1 0.2284 0.2026 0.22145 0.2457 0.1983 0.222785 0.2371 0.2026 0.217466 0.2543 8.53 16.46 12.19 n.s. *** *** 

T1022s1 0.2814 0.2601 0.274406 0.2948 0.2601 0.275921 0.2892 0.2309 0.273495 0.3072 10.976 10.36 29.87 * *** n.s. 

The 

Cumulativ

e scores 

3.952 3.6736 3.887622 4.1217 3.6729 3.898057 4.0941 3.3332 3.743523 4.2023 
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Figure S. 20 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on an FM/TBM target. 
Performance of methods on T0958 (an FM/TBM-hard CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided 

MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure was 0.4481 and higher GDT HA scores are 

better).  
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Figure S. 21 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on an FM/TBM target. 
Performance of methods on T1019s1 (an FM/TBM-hard CASP13 target) according to GDT-HA score. The blue line 

represents the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided 

MD-based protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line 

represents the initial structure (the GDT-HA score of the initial structure was 0.2284 and higher GDT HA scores are 

better). 
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Table S. 23 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 FM targets according to GDT-HA score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (higher GDT-HA scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and higher GDT-HA scores are better). 

 

 

 GDT-HA score  Wilcoxon Tests 

CASP 

TARGET

S 

 The contact-assisted MD-based protocol The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

The percentage of the improved 

models  

Significance  

Target ID Starting 

model 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Contact Local ReFOLD Contact 

vs Local 

Contact vs  

ReFOLD 

Local vs 

ReFOLD 

T0950 0.1842 0.1806 0.188219 0.1966 0.1798 0.188403 0.1966 0.1864 0.196828 0.2171 85.36 86.58 93.90 n.s. *** *** 

T0953s1 0.2639 0.2569 0.280822 0.3056 0.2431 0.284723 0.316 0.2292 0.268832 0.3125 96.95 95.73 52.43 *** *** *** 

T0968s1 0.3877 0.3559 0.3782509 0.3983 0.3602 0.3774952 0.4025 0.3686 0.424481 0.4915 10.97 7.31 89.02 n.s. *** *** 

T0968s2 0.4043 0.3913 0.408798 0.4283 0.3913 0.408709 0.4239 0.3717 0.404225 0.4435 72.56 71.34 47.56 n.s. *** *** 

T0975 0.3256 0.2936 0.316117 0.3336 0.2998 0.316833 0.3292 0.2758 0.31969 0.3577 6.70 5.48 39.02 *** *** *** 

T0989 0.1524 0.1433 0.15147 0.1596 0.1413 0.151349 0.1596 0.1209 0.140116 0.1585 32.31 6.70 1.82 n.s. *** *** 

T0991 0.1462 0.1314 0.143726 0.1525 0.1314 0.143451 0.1547 0.1229 0.146705 0.1674 29.87 14.63 47.56 n.s. *** *** 

T1000 0.3132 0.306 0.318578 0.3282 0.3088 0.31863 0.3276 0.2877 0.311263 0.3431 95.73 94.51 38.41 n.s. *** *** 

T1001 0.5126 0.4964 0.523345 0.5486 0.5018 0.522794 0.545 0.4658 0.521675 0.5701 80.48 87.80 74.39 n.s. n.s. n.s. 

T1010 0.2083 0.1881 0.199473 0.2119 0.1881 0.200436 0.2119 0.1393 0.161854 0.2048 2.43 1.82 0 n.s. *** *** 

T1015s1 0.1989 0.1847 0.200755 0.2159 0.1903 0.201427 0.2216 0.1875 0.203309 0.2216 51.82 48.78 49.39 n.s. *** *** 

The 

cumulative 

Score 

3.0973 2.9282 3.1095539 3.2791 2.9359 3.1142502 3.2886 2.7558 3.098978 3.4878 
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Figure S. 22 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on an FM target. 
Performance of methods on T0953s1 (an FM CASP13 target) according to GDT-HA score. The blue line represents 

the contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided MD-based 

protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line represents the 

initial structure (the GDT-HA score of the initial structure was 0.2639 and higher GDT HA scores are better). 
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Figure S. 23 A comparison of the contact-assisted MD-based protocol with the original MD-

based protocol of ReFOLD and the fixed local quality assessment guided MD-based protocol 

on an FM target. 
Performance of methods on T0989 (an FM CASP13 target) according to GDT-HA score. The blue line represents the 

contact-assisted MD-based protocol, the red line represents the fixed local quality assessment guided MD-based 

protocol, the green line represents the MD-based protocol of ReFOLD, and the orange vertical line represents the 

initial structure (the GDT-HA score of the initial structure was 0.1524 and higher GDT HA scores are better). 

 

 



Appendices 

244 

 

Appendix 47 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Table S. 24 Calculated pairwise p-values for comparison of the contact-assisted, the fixed local quality assessment guided MD-

based protocols and the original MD-based protocol of ReFOLD on the CASP13 targets according to GDT-HA score. 
Ho: The scores of the models generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality 

assessment guided and the original MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher 

quality models than those generated by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. The maximum score of the models 

generated by the contact-assisted MD-based protocol were also compared with the starting models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical 

differences (in boldface, higher GDT-HA scores are better). 

 

 

 

  

 The contact-assisted  guided MD-based protocol  versus the 

fixed local quality assessment guided MD-based protocol   

The contact-assisted  guided MD-based protocol  

versus the original MD-based protocol of 

ReFOLD   

The fixed local quality assessment guided MD-

based protocol  versus the original MD-based 

protocol of ReFOLD   

CASP Target 

Category 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

Maximum vs 

Starting 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

FM 0.9037 0.8669 0.8286 0.0002441 0.004639 0.2119 0.9983 0.002441 0.2119 0.9928 

TBM 0.05825 0.6711 0.6027 4.768e-07 5.579e-05 0.0008001 0.9985 5.579e-05 0.0009294 0.9979 

FM/TBM 0.4823 0.9877 0.04584 6.104e-05 0.0008308 0.002014 0.9873 0.0008459 0.002625 0.9951 

ALL 0.4038 0.9229 0.228 5.684e-14 2.872e-08 8.482e-05 1 2.031e-08 0.0001171 1 



Appendices 

245 

 

Appendix 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S. 25 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 TBM targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better).  

 Molprobity score Wilcoxon Tests 

CASP 

TARGETS 

 The contact-assisted MD-based 

protocol 

The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

Significance 

Target ID Starting 

model 

Minimu

m Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Contact vs 

Local 

Contact vs 

ReFOLD 

Local vs 

ReFOLD 

T0954 1.32 1.05 1.49922 1.68 1.01 1.6417 2.28 1.03 1.42958 1.64 n.s. n.s. n.s. 

T0959 0.72 0.5 0.999699 1.42 0.5 1.05877 1.48 0.67 1.00807 1.42 n.s. n.s. n.s. 

T0964 2.59 0.88 1.29355 1.66 0.9 1.44894 2.06 0.91 1.28536 1.65 ** n.s. n.s. 

T0965 2.99 1.54 1.73422 2.06 1.46 1.89144 2.4 1.32 1.59934 2.07 n.s. n.s. n.s. 

T0966 0.82 0.83 1.2009 1.47 0.83 1.27957 1.71 0.83 1.19819 1.49 n.s. n.s. n.s. 

T1011 2.79 1.15 1.415 1.62 1.12 1.55383 1.93 0.98 1.33814 1.65 n.s. n.s. n.s. 

T1015s2 2.75 1.33 1.78205 2.07 1.35 1.97463 2.51 0.8 1.39814 2.06 *** n.s. n.s. 

T1021s2 1.26 1 1.39867 1.67 0.97 1.52043 1.97 0.96 1.33102 1.6 *** n.s. n.s. 

T1022s2 1.27 0.96 1.38 1.61 0.99 1.51787 1.83 0.96 1.35701 1.64 *** n.s. n.s. 

T0973 0.88 0.88 1.26114 1.74 0.92 1.35202 1.78 0.84 1.23102 1.6 n.s. n.s. n.s. 

T0974s1 0.92 0.5 1.0791 1.73 0.5 1.145 1.66 0.5 1.06251 1.64 n.s. n.s. n.s. 

T0977 3.46 1.52 1.68422 1.83 1.24 1.74974 2.15 1.19 1.50923 1.74 n.s. n.s. n.s. 

T0983 0.81 0.57 0.986627 1.38 0.55 1.01404 1.31 0.64 1.21922 1.64 n.s. *** *** 

T0993s1 0.73 0.56 1.1582 1.49 0.56 1.2483 1.68 0.56 1.26066 1.6 n.s. *** *** 

T0993s2 3.05 1.02 1.53443 1.9 1.07 1.70585 2.16 0.7 1.31904 1.75 ** n.s. n.s. 

T0995 3.18 0.99 1.49569 1.69 1.18 1.67777 2.08 1.02 1.43443 1.71 *** n.s. n.s. 

T1003 0.75 0.69 1.13741 1.43 0.7 1.24261 1.5 0.66 1.1488 1.44 *** n.s. n.s. 

T1004 0.81 0.81 1.10317 1.39 0.85 1.19484 1.7 0.85 1.15048 1.45 n.s. *** n.s. 

T1013 2.76 1.35 1.56193 1.82 1.36 1.71824 1.99 1.02 1.39443 1.81 *** n.s. n.s. 

T1014 2.58 1.39 1.67404 2.5 1.35 1.8309 2.22 0.97 1.38892 1.99 *** 1 n.s. 

T1016 1.26 0.78 1.07765 1.51 0.81 1.2208 1.55 0.77 1.07874 1.5 *** n.s. n.s. 

T1018 2.6 1.4 1.5997 1.77 1.23 1.74973 1.73 0.92 1.40168 1.7 n.s. n.s. n.s. 

T1020 3.53 1.82 1.95458 2.21 1.79 2.12963 2.54 1.53 1.72663 2.21 n.s. n.s. n.s. 

The 

Cumulative 

Score 

43.83 23.52 32.011196 39.65 23.24 34.86665 44.22 20.63 30.27064 39 
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Table S. 26 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 FM/TBM targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better). 

  

 Molprobity score Wilcoxon Tests 

CASP 

TARGETS 

 The contact-assisted MD-based protocol The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

Significance 

Target ID Starting 

model 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximu

m Score 

Contact vs 

Local 

Contact vs 

ReFOLD 

Local vs 

ReFOL

D 

T0949 3.3 1.59 1.91482 2.27 1.06 1.88595 2.57 1.02 1.54012 2.26 n.s. n.s. n.s. 

T0953s2 3.36 1.47 1.91096 2.26 1.75 2.13267 2.48 1.22 1.66813 2.26 *** n.s. n.s. 

T0955 2.29 0.86 1.22645 1.73 0.86 1.41527 1.72 0.86 1.18295 1.66 n.s. n.s. n.s. 

T0957s1 0.64 0.5 0.888563 1.3 0.5 0.978032 1.4 0.5 0.952335 1.38 ** ** n.s. 

T0958 0.85 0.53 0.976886 1.44 0.54 1.05612 1.9 0.54 1.10066 1.58 * ** n.s. 

T0960 1.13 0.77 1.29145 1.64 0.83 1.42101 2.05 0.92 1.30693 1.58 *** n.s. n.s. 

T0963 3.16 1.63 1.84042 2.07 1.65 2.02383 2.44 1.27 1.65783 2.1 *** n.s. n.s. 

T0970 1.33 0.88 1.23145 1.73 0.79 1.33553 1.9 0.87 1.18199 1.69 * n.s. n.s. 

T0981 3.76 1.92 2.05641 2.37 1.95 2.2691 2.84 1.62 1.82928 2.37 *** n.s. n.s. 

T0984 3.51 1.42 1.67331 2.06 1.55 1.88665 2.2 1.09 1.44355 2.08 *** n.s. n.s. 

T0992 1 0.84 1.2644 1.74 0.88 1.29766 1.6 0.81 1.28497 1.73 n.s. n.s. n.s. 

T1005 3.35 1.68 1.89976 2.2 1.73 2.10399 2.52 1.21 1.61024 2.19 ** n.s. n.s. 

T1019s1 1.4 0.87 1.23012 1.83 0.87 1.3841 2.03 0.87 1.3841 2.03 ** ** * 

T1022s1 2.67 1.27 1.5603 1.8 1.12 1.74436 2.33 1.07 1.49934 1.82 * n.s. n.s. 

The 

Cumulative 

Score 

31.75 16.23 20.965299 26.44 16.08 22.934272 29.98 13.87 19.642425 26.73 
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Table S. 27 Performance comparison of the contact-assisted, the fixed local quality assessment guided MD-based protocols and 

the original MD-based protocol of ReFOLD on the CASP13 FM targets according to Molprobity score. 
One-tailed Wilcoxon tests were also used to compare the MD-based protocols for each target (lower Molprobity scores are better). Ho: The scores of the models 

generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality assessment guided and the original 

MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher quality models than those generated 

by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. P-values ≤ 0.05 indicate significant statistical differences (*, **, *** 

indicate statistical significance at p < 0.05, p<0.01 and p<0.001, respectively, while n.s. indicates not significant, and lower Molprobity scores are better). 

  

 Molprobity score Wilcoxon Tests 

CASP 

TARGETS 

 The contact-assisted MD-based 

protocol 

The fixed local quality assessment 

guided MD-based protocol 

The original the original MD-based 

protocol of ReFOLD 

Significance 

Target ID Starting 

model 

Minimu

m Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Minimum 

Score 

Mean 

Score 

Maximum 

Score 

Contact vs 

Local 

Contact vs  

ReFOLD 

Local vs 

ReFOLD 

T0950 1.06 0.91 1.25545 1.52 0.82 1.32861 1.84 0.88 1.1944 1.52 n.s. n.s. n.s. 

T0953s1 2.8 0.89 1.41211 1.96 1.01 1.69016 2.57 0.66 1.26801 1.96 *** n.s. n.s. 

T0968s1 1.32 0.65 1.11217 1.54 0.7 1.17973 1.51 0.52 1.11988 1.63 n.s. n.s. n.s. 

T0968s2 1.04 0.68 1.07952 1.55 0.5 1.25426 2.04 0.53 1.13569 1.64 *** ** n.s. 

T0969 3.81 1.9 2.08114 2.38 1.94 2.29176 2.89 1.59 1.79958 2.38 *** n.s. n.s. 

T0975 3.82 1.79 1.99211 2.27 1.84 2.21681 2.89 1.4 1.6882 2.29 ** n.s. n.s. 

T0989 3.31 1.68 1.90313 2.27 1.58 2.10321 2.55 1.31 1.67614 2.29 *** n.s. n.s. 

T0991 2.86 1.18 1.80305 2.17 1.51 1.97899 2.51 0.98 1.50581 2.16 * n.s. n.s. 

T1000 1.37 0.97 1.4306 1.63 0.97 1.51681 2.1 1 1.34861 1.59 n.s. n.s. n.s. 

T1001 1.17 0.5 1.00331 1.44 0.5 1.07787 1.43 0.66 1.13401 1.59 n.s. ** *** 

T1010 3.49 1.68 1.98006 2.3 1.7 2.17787 2.76 1.19 1.67928 2.29 n.s. n.s. n.s. 

T1015s1 0.5 0.5 0.845783 1.38 0.57 0.933404 1.55 0.5 0.879341 1.42 * * n.s. 

T1017s2 2.87 1.07 1.67476 2.08 1.08 1.82686 2.31 0.89 1.35892 2.1 n.s. n.s. n.s. 

The 

Cumulative 

Score 

29.42 14.4 19.573193 24.49 14.72 21.576344 28.95 12.11 17.787871 24.86 
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Table S. 28 Calculated pairwise p-values for comparison of the contact-assisted, the fixed local quality assessment guided MD-

based protocols and the original MD-based protocol of ReFOLD on the CASP13 targets according to Molprobity score. 
Ho: The scores of the models generated by the contact-assisted MD-based protocol are equal or lower in quality than those generated by the fixed local quality 

assessment guided and the original MD-based protocol of ReFOLD. H1: The scores of the models generated by the contact-assisted MD-based protocol are higher 

quality models than those generated by the fixed local quality assessment guided and the original MD-based protocol of ReFOLD. The minimum score of the models 

generated by the contact-assisted MD-based protocol were also compared with the starting models in the Wilcoxon tests. P-values ≤ 0.05 indicate significant statistical 

differences (in boldface, lower Molprobity scores are better) 

 

 The contact-assisted  guided MD-based protocol  versus the 

fixed local quality assessment guided MD-based protocol   

The contact-assisted  guided MD-based 

protocol  versus the original MD-based 

protocol of ReFOLD   

The fixed local quality assessment guided 

MD-based protocol  versus the original 

MD-based protocol of ReFOLD   

CASP Target 

Category 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

Minimum vs 

Starting 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

Minimum vs 

Minimum 

Mean vs 

Mean 

Maximum vs 

Maximum 

FM 0.1448 6.104e-05 0.0003052 0.03925 0.9971 0.9966 0.01806 0.9958 0.9999 0.9997 

TBM 0.7494 5.96e-08 0.0002197 0.06042 0.9958 0.9978 0.8916 0.9984 1 1 

FM/TBM 0.4844 6.104e-05 0.0002136 0.02063 0.9962 0.9823 0.1471 0.9853 0.9992 0.999 

ALL 0.2542 4.399e-10 1.676e-08 0.003338 1 0.9999 0.2933 1 1 1 




