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Abstract
We obtain asymptotic formulae for the Steklov eigenval-
ues and eigenfunctions of curvilinear polygons in terms
of their side lengths and angles. These formulae are quite
precise: the errors tend to zero as the spectral param-
eter tends to infinity. The Steklov problem on planar
domains with corners is closely linked to the classical
sloshing and sloping beach problems in hydrodynam-
ics; as we show it is also related to quantum graphs.
Somewhat surprisingly, the arithmetic properties of the
angles of a curvilinear polygon have a significant effect
on the boundary behaviour of the Steklov eigenfunc-
tions. Our proofs are based on an explicit construction
of quasimodes. We use a variety of methods, including
ideas from spectral geometry, layer potential analysis,
and some new techniques tailored to our problem.
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1 INTRODUCTION

1.1 Preliminaries

Let Ω ⊂ ℝ2 be a bounded connected planar domain with connected Lipschitz boundary 𝜕Ω, and
let |𝜕Ω| denote its perimeter. Consider the Steklov eigenvalue problem

Δ𝑢 = 0 in Ω, 𝜕𝑢
𝜕𝑛

= 𝜆𝑢 on 𝜕Ω, (1.1)

with 𝜆 being the spectral parameter, and 𝜕𝑢
𝜕𝑛

being the exterior normal derivative. The spectral
problem (1.1) may be understood in the sense of the normalised quadratic form

‖ grad 𝑢‖2
𝐿2(Ω)‖𝑢‖2

𝐿2(𝜕Ω)

, 𝑢 ∈ 𝐻1(Ω).

Let

Ω ∶ 𝐻
1∕2(𝜕Ω) → 𝐻−1∕2(𝜕Ω), Ω𝑓 ∶=

𝜕Ω𝑓

𝜕𝑛

||||Ω
denote the Dirichlet-to-Neumann map, where Ω𝑓 stands for the harmonic extension of 𝑓 to Ω.
The spectrum ofΩ coincides with that of the Steklov problem. The spectrum is discrete,

0 = 𝜆1(Ω) < 𝜆2(Ω) ⩽⋯ ⩽ 𝜆𝑚(Ω) ⩽ … ,

with the only limit point at +∞. The corresponding eigenfunctions 𝑢𝑚 have the property that
their boundary traces 𝑢𝑚|𝜕Ω form an orthogonal basis in 𝐿2(𝜕Ω). If the boundary 𝜕Ω is piecewise
𝐶1, the Steklov eigenvalues have the following asymptotics [1]:

𝜆𝑚 =
𝜋𝑚|𝜕Ω| + 𝑜(𝑚) as𝑚 → +∞. (1.2)

Moreover, if the boundary is smooth, then Ω is a pseudodifferential operator of order one, and
the remainder estimate could be significantly improved [12, 45]:

𝜆2𝑚 = 𝜆2𝑚+1 + 𝑂(𝑚
−∞) =

2𝜋𝑚|𝜕Ω| + 𝑂(𝑚−∞), 𝑚 → +∞ (1.3)

(see also [17] for the case of a disconnected 𝜕Ω).
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F IGURE 1 A curvilinear polygon

The asymptotic formula (1.3) immediately implies the following.

Proposition 1.1. Let ΩI and ΩII be two smooth simply connected planar domains of the same
perimeter. Then

𝜆𝑚(ΩI) − 𝜆𝑚(ΩII) = 𝑂(𝑚
−∞), (1.4)

For non-smooth domains such as polygons, formula (1.3) andProposition 1.1 are no longer valid,
see, for example, [18, section 3]. Building upon the approach introduced in [33], in the present
paper we develop the techniques that allow to improve the asymptotic formula (1.2) significantly
when Ω is a curvilinear polygon.

1.2 Curvilinear polygons: Exceptional and special angles

To fix notation, let  = (𝜶,𝓵) be a (simply connected) curvilinear polygon in ℝ2 with 𝑛 ver-
tices𝑉1,… , 𝑉𝑛 numbered clock-wise, corresponding internal angles 0 < 𝛼𝑗 < 𝜋 at𝑉𝑗 , and smooth
sides 𝐼𝑗 of length 𝓁𝑗 joining 𝑉𝑗−1 and 𝑉𝑗 . Here, 𝜶 = (𝛼1, … , 𝛼𝑛) ∈ Π𝑛, where

Π ∶= (0, 𝜋),

𝓵 = (𝓁1, … ,𝓁𝑛) ∈ ℝ𝑛+, and we will use cyclic subscript identification 𝑛 + 1 ≡ 1. Our choice of ori-
entation ensures that an internal angle 𝛼𝑗 is measured from 𝐼𝑗 to 𝐼𝑗+1 in the counter-clockwise
direction, as in Figure 1. The perimeter of  is |𝜕| = 𝓁1 +⋯ + 𝓁𝑛.
In what follows we will have to distinguish the cases when some of the polygon’s angles belong

to the sets of exceptional and special angles.

Definition 1.2. Let 𝛼 = 𝜋
𝑗
, 𝑗 ∈ ℕ. We say that the angle 𝛼 is exceptional if 𝑗 is even, and special if

𝑗 is odd, and denote the corresponding sets

 =
{
𝜋
2𝑘

|||| 𝑘 ∈ ℕ
}
,  =

{
𝜋

2𝑘 + 1

|||| 𝑘 ∈ ℕ
}
.
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We call an exceptional angle 𝛼 = 𝜋
2𝑘

odd or even depending on whether 𝑘 is odd or even,
respectively, and define its parity (𝛼) to be

(𝛼) ∶= cos
(
𝜋2

2𝛼

)
= (−1)𝑘.

Similarly, we call a special angle 𝛼 = 𝜋
2𝑘 + 1

odd or even depending on whether 𝑘 is odd or even,
respectively, and define its parity (𝛼) to be

(𝛼) ∶= sin
(
𝜋2

2𝛼

)
= (−1)𝑘.

Definition 1.3. A curvilinear polygon without any exceptional angles will be called a
non-exceptional polygon, otherwise it will be called an exceptional polygon.

1.3 Main results

The main purpose of this paper is to describe sharp asymptotic behaviour as 𝑚 → ∞ of the
Steklov eigenvalues 𝜆𝑚 of a curvilinear polygon  = (𝜶,𝓵). More precisely, we show that the
Steklov spectrum can be approximated as 𝑚 → ∞ by a sequence of quasi-eigenvalues 𝜎𝑚, which
are computable in terms of side lengths 𝓵 and angles 𝜶.
The quasi-eigenvalues 𝜎𝑚 can in fact be defined in several equivalent ways, each having its

own merit. Originally they are defined in Section 2 in terms of the so-called vertex and side
transfer matrices, in two different ways depending on the presence of exceptional angles. This
is done according to Definitions 2.3 and 2.6 in the non-exceptional case, and according to Defi-
nitions 2.10 and 2.13 in the exceptional case. This is the most natural definition arising from the
construction of corresponding quasimodes. Later, Theorems 2.16 and 2.17 state that the quasi-
eigenvalues can be found as roots of some explicit trigonometric polynomials which also depend
only upon the geometry of the curvilinear polygon. This approach is the most convenient com-
putationally. Theorem 2.24 states that 𝜎𝑚 can be viewed alternatively as the square roots of the
eigenvalues of a particular quantum graph Laplacian. Here the metric graph is cyclic and is mod-
elled on the boundary of  , while the matching conditions at the vertices are determined by the
angles. This interpretation allows us to relate to the well-developed theory of quantum graphs,
see [6] and references therein, and also [7, 26, 30]. It also leads to another one, variational, inter-
pretation of quasi-eigenvalues, see Remark 2.23, and allows us an easy proof of Theorem 2.16.
We note that in a different but somewhat reminiscent setting of a periodic problem involving
Dirichlet-to-Neumann type maps, a relation to a quantum graph problem was already observed
in [29], see also [28]. We emphasise, however, that we do not directly use the quantum graph
analogy in the construction of our quasimodes, see Remark 2.26. Finally, yet another equiv-
alent way to define the quasi-eigenvalues is presented in Subsections 5.6 and 5.7 in terms
of the lifts of the vertex and side transfer matrices acting on the universal cover ℂ̂∗ of the
punctured plane, see Subsection 5.2. This definition is indispensable for the delicate analy-
sis required to establish the correct enumeration of quasi-eigenvalues and their monotonicity
properties.
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With the definitions of quasi-eigenvalues in place, our main result is the following.

Theorem 1.4. Let  = (𝜶,𝓵) be a curvilinear polygon. Let {𝜎𝑚} denote the sequence of quasi-
eigenvalues ordered increasingly with account of multiplicities. Then there exists 𝜀0 > 0 such that for
any 𝜀 ∈ (0, 𝜀0), the Steklov eigenvalues of  satisfy

𝜆𝑚 = 𝜎𝑚 + 𝑂(𝑚
−𝜀) as𝑚 → ∞.

Remark 1.5. We give an explicit formula for 𝜀0, depending only on the angles of , in Remark 4.21.
As an immediate consequence of Theorem 1.4, we obtain the following.

Corollary 1.6. Let I(𝜶,𝓵) and II(𝜶,𝓵) be two curvilinear polygons with the same angles 𝜶 and
the same side lengths 𝓵. Then

𝜆𝑚(I) − 𝜆𝑚(II) = 𝑂(𝑚−𝜀) as𝑚 → +∞.

We also describe the asymptotic behaviour of the Steklov eigenfunctions on the boundary. Up
to a small error, they are given by trigonometric functions of frequency 𝜎𝑚 along each edge.

Theorem 1.7. Fix 𝛿 > 0. Then there exists 𝐶 > 0 such that for all𝑚 with 𝜎𝑚−1 + 𝛿 ⩽ 𝜎𝑚 ⩽ 𝜎𝑚+1 −

𝛿, there exist constants 𝑎𝑚,𝑗 and 𝑏𝑚,𝑗 such that for all 𝑗,

‖(𝑢𝑚|𝐼𝑗 )(𝑠𝑗) − 𝑎𝑚,𝑗 cos(𝜎𝑚𝑠𝑗) − 𝑏𝑚,𝑗 sin(𝜎𝑚𝑠𝑗)‖𝐿2(𝐼𝑗) ⩽ 𝐶𝑚−𝜀,

where 𝑠𝑗 is an arc length coordinate along 𝐼𝑗 , and 𝜀 is as in Theorem 1.4.

Remark 1.8. The assumption on𝑚 is made only so that the theorem is easy to state, as it removes
the possibility of clustering of eigenvalues and quasi-eigenvalues. Theorem 4.31 is a more general
version, without this assumption.

Remark 1.9. The coefficients 𝑎𝑚,𝑗 and 𝑏𝑚,𝑗 are related to each other by imposing matching con-
ditions at the vertices, and may be found explicitly in the same way as the quasi-eigenvalues. See
Subsection 4.2 for details.

1.4 Examples

The following examples give the flavour of the main results; they are further discussed in more
detail and illustrated by numerics in Section 9.

Example 1.10 (Each angle is either special or exceptional). Let (𝜶,𝓵) be a curvilinear 𝑛-gon
in which each angle is either special or exceptional in the sense of Definition 1.2. In this case,
we can use Theorem 1.4 together with Definitions 2.3 and 2.10 directly without the use of
trigonometric polynomials. We will distinguish two cases.



ASYMPTOTICS OF STEKLOV EIGENVALUES 7

(a) All angles are special, that is𝛼𝑗 =
𝜋

2𝑘𝑗 + 1
, 𝑘𝑗 ∈ ℕ, 𝑗 = 1,… , 𝑛. In this case, we have the quasi-

eigenvalues

𝜎1 = 0, 𝜎2𝑚 = 𝜎2𝑚+1 =
2𝜋𝑚|𝜕| , 𝑚 ∈ ℕ, if

𝑛∑
𝑗=1

𝑘𝑗 is even,

𝜎2𝑚−1 = 𝜎2𝑚 =
2𝜋
(
𝑚 − 1

2

)
|𝜕| , 𝑚 ∈ ℕ, if

𝑛∑
𝑗=1

𝑘𝑗 is odd.

(1.5)

(b) Suppose that there are 𝐾 exceptional angles 𝛼𝜅 = 𝛼𝐸𝜅 =
𝜋
2𝑘𝜅

, with 𝑘𝜅 ∈ ℕ, 𝜅 = 1,… , 𝐾, 1 ⩽
𝐸1 < 𝐸2 < ⋯ < 𝐸𝐾 ⩽ 𝑛, and all the other angles are special. We assume the cyclic enumera-
tion of exceptional angles 𝐸𝐾+1 = 𝐸1. Let us denote also by 𝐿𝜅 the total length of the boundary
pieces between exceptional angles 𝛼

𝜅−1
and 𝛼𝜅 .

Let

𝔎odd ∶=
{
𝜅 ∈ {1, … , 𝐾} ∶ (𝛼𝜅 ) ≠ (𝛼𝜅−1)},

be the set of indices 𝜅 such that 𝑘𝜅 − 𝑘𝜅−1 is odd, and let

𝔎even ∶=
{
𝜅 ∈ {1, … , 𝐾} ∶ (𝛼𝜅 ) = (𝛼𝜅−1)}.

Then 𝜎 = 0 is a quasi-eigenvalue of multiplicity #𝔎odd
2

, and the positive quasi-eigenvalues 𝜎
form the set

⎛⎜⎜⎝
⋃

𝜅∈𝔎even

{
𝜋
𝐿𝜅

(
𝑚 −

1
2

)
∣ 𝑚 ∈ ℕ

}⎞⎟⎟⎠ ∪
⎛⎜⎜⎝
⋃

𝜅∈𝔎odd

{
𝜋
𝐿𝜅
𝑚 ∣ 𝑚 ∈ ℕ

}⎞⎟⎟⎠,
with account of multiplicities.

Example 1.14 and Proposition 1.15 also show strikingly different asymptotic behaviour of
eigenfunctions in these two cases.
As an illustration, we consider the following two particular cases of right-angled triangles (see

also cases (a3) and (b4) in Example 1.12, and Example 1.14):

(𝑇1) The isosceles right-angled triangle 𝑇1 = ((𝜋
4
, 𝜋
4
, 𝜋
2
), (1,

√
2, 1)). All angles are exceptional,

two of them even, and one odd. There is a single quasi-eigenvalue at 𝜎 = 0, a subsequence
of quasi-eigenvalues 𝜎 = 𝜋𝑚,𝑚 ∈ ℕ of multiplicity two, and a subsequence of single quasi-
eigenvalues 𝜎 = 𝜋√

2
(𝑚 − 1

2
),𝑚 ∈ ℕ.

(𝑇2) The right-angled triangle 𝑇2 = ((𝜋
3
, 𝜋
6
, 𝜋
2
), (1, 2,

√
3)). Two angles are odd exceptional and

one is odd special. There are two subsequences of single quasi-eigenvalues

𝜎 =
𝜋
3

(
𝑚 −

1
2

)
and 𝜎 =

𝜋√
3

(
𝑚 −

1
2

)
, 𝑚 ∈ ℕ.

Remark 1.11. Note that even special angles do not affect the quasi-eigenvalues in both cases
considered in Example 1.10. In particular, in case (a) with all even special angles the quasi-
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eigenvalues 𝜎 are the same as for a smooth domain with the same perimeter, compare with
(1.3). This remains true for any curvilinear polygon — a vertex with an even special angle
can be removed and the two adjacent sides treated as a single side without affecting the
quasi-eigenvalues.

Example 1.12 (Quasi-regular curvilinear polygon). Consider a quasi-regular curvilinear 𝑛-gon
 = 𝑛(𝛼,𝓁), namely, a curvilinear polygon whose angles are all equal to 𝛼 and all sides have
the same length 𝓁. Its perimeter is obviously |𝜕| = 𝑛𝓁. Then we have the following two cases
depending on whether 𝛼 is exceptional.

(a) 𝛼 ∉  . Then we have the following proposition.
Proposition 1.13. Let  = 𝑛(𝛼,𝓁) be a quasi-regular curvilinear 𝑛-gon with a non-exceptional
angle 𝛼. Then the set of quasi-eigenvalues 𝜎 is given by

⎧⎪⎨⎪⎩
±arccos

(
sin

(
𝜋2

2𝛼

)
cos

(
2𝜋𝑞

𝑛

))
+ 2𝜋𝑚

𝓁
, 𝑚 ∈ ℕ ∪ {0}, 𝑞 = 0, 1, … ,

[
𝑛
2

]⎫⎪⎬⎪⎭ ∩ [0, +∞)
(understood as a set of unique values without multiplicities). All the quasi-eigenvalues should be
taken with multiplicity two, except in the following cases when they are single.

(i) 𝛼 is not special and 𝑞 = 0.
(ii) 𝛼 is not special, 𝑛 is even, and 𝑞 = 𝑛

2
.

(iii) 𝛼 is even special, 𝑞 = 0, and𝑚 = 0, which corresponds to the quasi-eigenvalue 0.
(iv) 𝛼 is odd special, 𝑛 is even, 𝑞 = 𝑛

2
, and𝑚 = 0, which corresponds to the quasi-eigenvalue 0.

The proof of Proposition 1.13 is presented in Section 9.

(b) 𝛼 ∈  . This case is already covered by Example 1.10(b) with 𝐾 = 𝐾even = 𝑛: all the quasi-
eigenvalues have multiplicity 𝑛 and are given by

𝓁𝜎𝑛(𝑚−1)+1 = 𝓁𝜎𝑛(𝑚−1)+2 =⋯ = 𝓁𝜎𝑛𝑚 = 𝜋
(
𝑚 −

1
2

)
, 𝑚 ∈ ℕ.

The following particular cases are illustrative.

(a1) 1(𝛼, 1), a one-gon (a droplet) with the angle 𝛼 and perimeter one. Then the set of quasi-
eigenvalues is {

±

(
𝜋
2
−
𝜋2

2𝛼

)
+ 2𝜋𝑚,𝑚 ∈ ℕ ∪ {0}

}
∩ [0, +∞).

The same formula works also in the case 𝛼 ∈  .
(a3) 3(𝜋3 , 1), the equilateral triangle of side one (this case is also covered by Example 1.10(a) as

all angles are odd special). Then

𝜎2𝑚−1 = 𝜎2𝑚 =
(2𝑚 − 1)𝜋

3
, 𝑚 ∈ ℕ.
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(b4) 4(𝜋2 , 1), the square of side one (this case is also covered by Example 1.10(b) as all angles are
even exceptional). Then

𝜎4𝑚−3 = 𝜎4𝑚−2 = 𝜎4𝑚−1 = 𝜎4𝑚 =
(
𝑚 −

1
2

)
𝜋, 𝑚 ∈ ℕ.

(a5) 5( 3𝜋5 , 1), the regular pentagon of side one. Then there are four subsequences of quasi-
eigenvalues of multiplicity two,

𝜎 = −arccos

(
±
√
5−1

8

)
+ 2𝜋𝑚, 𝑚 ∈ ℕ,

𝜎 = arccos

(
±
√
5−1

8

)
+ 2𝜋𝑚, 𝑚 ∈ ℕ ∪ {0},

and two subsequences of quasi-eigenvalues of multiplicity one,

𝜎 = −𝜋
3
+ 2𝜋𝑚, 𝑚 ∈ ℕ,

𝜎 = 𝜋
3
+ 2𝜋𝑚, 𝑚 ∈ ℕ ∪ {0}.

The case (b4) agrees with the results of [18, section 3] obtained by separation of variables.

Example 1.14 (Eigenfunction behaviour). The cases of all-special and all-exceptional angles
also illustrate the dependence of the boundary behaviour of eigenfunctions on the arithmetic
properties of the angles, via the following:

Proposition 1.15. Let  be a curvilinear polygon.

(a) If all angles are special, then the boundary eigenfunctions 𝑢𝑚|𝜕 are equidistributed in the sense
that for any arc 𝐼 ⊆ 𝜕 , not necessarily a side,

lim
𝑚→∞

‖𝑢𝑚‖𝐿2(𝐼)‖𝑢𝑚‖𝐿2(𝜕) = |𝐼||𝜕| .
(b) If all angles are exceptional, then the boundary traces of eigenfunctions, 𝑢𝑚|⨐𝑃, are not

equidistributed in the following sense. Pick 𝛿 > 0. Then for all𝑚 with

𝜎𝑚−1 + 𝛿 ⩽ 𝜎𝑚 ⩽ 𝜎𝑚+1 − 𝛿, (1.6)

there exists an edge 𝐼𝑀(𝑚) such that

‖𝑢𝑚‖𝐿2(𝜕⧵𝐼𝑀(𝑚)) = 𝑂(𝑚−2𝜀
)
,

with an implied constant in the right-hand side depending upon 𝛿.

For the proof of Proposition 1.15, see the end of Subsection 4.7.

Remark 1.16. There are other versions of Proposition 1.15(b) if some (at least two) but not all
angles are exceptional. To state these versions, we would need to use the language of exceptional
components in Subsection 2.3, see, for example, Theorem 4.31 and Corollary 4.32.
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F IGURE 2 Boundary traces of 𝑢18 and 𝑢19 for the equilateral triangle

Remark 1.17. If all angles are exceptional and all lengths are pairwise incommensurable, then it
is easy to show that the proportion of quasi-eigenvalues 𝜎𝑚 which do not satisfy the hypothesis of
(b) tends to zero as 𝛿 → 0.

Remark 1.18. Condition (1.6) is essential in Proposition 1.15(b). Indeed, let  be a two-gon with
two exceptional angles, and suppose that  is symmetric with respect to the line 𝑉1𝑉2. Then
each eigenfunction is either symmetric or anti-symmetric with respect to this line and therefore
cannot concentrate on one side. This happens because each quasi-eigenvalue𝜎 ≠ 0has in this case
multiplicity two. The boundary behaviour of eigenfunctions of the right-angled isosceles triangle
𝑇1, shown below, gives another example demonstrating this phenomenon.

We illustrate Proposition 1.15 by showing, in Figures 2 and 3, the numerically computed bound-
ary traces𝑢𝑚|⨐𝑃 for the equilateral triangle3 fromExample 1.12(a3) (all angles are special) and for
the right-angled isosceles triangle 𝑇1 from Example 1.10 (all angles are exceptional); see Subsec-
tion 9.1 for details of the numerical procedure. In both cases, we plot two eigenfunctions 𝑢18 and
𝑢19. For the equilateral triangle, these eigenfunctions correspond to the eigenvalues 𝜆18 ≈ 17.8023
and 𝜆19 ≈ 19.8968, which in turn correspond to the quasi-eigenvalues 𝜎18 =

17𝜋
3

and 𝜎19 =
19𝜋
3

(both of which are in fact double, 𝜎17 = 𝜎18 and 𝜎19 = 𝜎20). For the right-angled isosceles trian-
gle, these eigenfunctions correspond to the eigenvalues 𝜆18 ≈ 15.708 and 𝜆19 ≈ 16.6608, which
in turn correspond to the quasi-eigenvalues 𝜎18 = 5𝜋 (which is in fact double, 𝜎17 = 𝜎18) and
𝜎19 =

15𝜋

2
√
2
(which is single).

It is easily seen that in the case of the equilateral triangle the eigenfunctions are more or less
equally distributed on all sides, whereas in the exceptional case in Figure 3 the eigenfunction
𝑢18 is mostly concentrated on the union of two sides (and not on one side, cf. Remark 1.18 and
Corollary 4.32; note that the corresponding quasi-eigenvalue is double), and the eigenfunction
𝑢19 is mostly concentrated on the hypothenuse.

1.5 Plan of the paper and further directions

We begin in Section 2 by defining and studying the sequence {𝜎𝑚} of quasi-eigenvalues which
appears in Theorem 1.4. The quasi-eigenvalues and, importantly, theirmultiplicities are originally
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defined in terms of a combination of vertex transfermatrices 𝙰(𝛼𝑗) and side transfermatrices 𝙱(𝓁𝑗),
which play a central role throughout the paper; see Definitions 2.3, 2.6, 2.10, and 2.13.We then give
two alternative characterisations of this sequence. On one hand, the quasi-eigenvalues coincide
with the roots of certain trigonometric polynomials, see Theorems 2.16 and 2.17. On the other
hand, the sequence of quasi-eigenvalues is also the spectrum of a particular eigenvalue prob-
lem on the boundary of our polygon, viewed as a quantum graph, see Theorem 2.24. Section 2
also includes statements of the results on Riesz means and the heat trace, see Theorem 2.31 and
Corollary 2.32, as well as a discussion of quasi-eigenvalues of auxiliary zigzag domains.
The rest of the paper principally includes the proofs of the main results.
In Section 3, we recall from [33] the construction of the Peters solutions [40] of sloping beach

problems (that is, mixed Robin–Neumann and Robin–Dirichlet problems) in an infinite sector.
These solutions are then combined, via symmetry, to give so called scattering Peters solutions of
a pure Robin problem, see Theorem 3.1. This naturally gives rise to the previously defined vertex
transfer matrices 𝙰(𝛼).
Section 4 describes the quasimode construction, and finally makes apparent the reasons for

our definitions of quasi-eigenvalues {𝜎𝑚}. We construct approximate Steklov eigenfunctions on
a curvilinear polygon, first in the straight boundary case, then in the partially curvilinear case
(with boundary straight in a neighbourhood of each corner), and finally in the fully curvilinear
case. The arguments use the Peters solutions of Section 3 as building blocks. We conclude by
proving that near each sufficiently large quasi-eigenvalue 𝜎𝑚 there exists a distinct Steklov eigen-
value 𝜆𝑖𝑚 , see Theorem 4.1, and by stating and proving Theorem 4.31 on the boundary behaviour
of eigenfunctions.
In Section 5, we address the delicate issue of enumeration of quasi-eigenvalues, namely, by prov-

ing that wemay take 𝑖𝑚 = 𝑚. Note that this does not follow fromquantumgraph or any previously
discussed techniques (see also Remark 2.26), and requires development of a new machinery. In
Section 5, we concentrate on the case of partially curvilinear polygons and prove that for such
polygons |𝜎𝑚 − 𝜆𝑚| = 𝑜(1). A key element of the proof is the lifting of vectors and matrices onto
the universal cover ℂ̂∗ of the punctured complex plane and a construction based on the change
of argument on ℂ̂∗. The proof proceeds via a gluing construction: we cut our polygon through its
side into a union of zigzag domains, establish correct enumeration for each of those by compari-
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son with eigenvalue asymptotics for the Steklov–Dirichlet and Steklov–Neumann problems [33],
see Definition 5.5 and Proposition 5.10, and then glue zigzag domains together via the Dirichlet–
Neumann bracketing. Note that cutting a polygon through the vertices rather than through the
sides may appear more natural. However, comparing the contribution from corners to the eigen-
value asymptotics for mixed Steklov–Dirichlet and Steklov–Neumann problems, one can see that
the bracketing in that case does not yield accurate enough estimates.
Sections 6 and 7 explore various consequences of the alternative characterisations of {𝜎𝑚}. In

the former, we prove Theorem 2.17 by explicitly writing down the trigonometric polynomials
whose roots are 𝜎𝑚. In the latter, we establish the quantum graph analogy, and use it to prove
Theorem 2.16, as well as the results on the Riesz means.
In Section 8, we extend our results to fully curvilinear polygons. This is done by taking

advantage of the well-known relationship between the Dirichlet-to-Neumann operator and layer
potentials. A careful analysis of the kernels of single- and double-layer potential operators on
curvilinear polygons, inspired by the work of Costabel [9], allows us to show that a small change
in the boundary curvature and its derivatives induces only a small change in the Steklov spectrum.
From there, we use a deformation argument to complete the proof.
Finally, Section 9 includes some numerical calculations of the Steklov spectrum in specific

examples, which provide an illustration of our results and suggest further avenues for exploration.
We want to emphasise that the most crucial and novel points of this paper are the construction

of the scattering Peters solutions in Section 3, and the enumeration argument of Section 5 based on
step-by-step comparison between zigzag problems and the sloshing problem of [33]. Subsections
4.3–4.8 and Section 8 include mostly fine-tuned technical details and may be omitted in the first
reading.

Remark 1.19. The present article is the second in a series of papers concerned with the study
of Steklov-type eigenvalue problems on planar domains with corners. Our preceding work [33]
focused on spectral asymptotics for the sloshing problem. As was mentioned above, the methods
and results of [33] have been instrumental for a number of arguments used in this article.
In a separate publication [27],written jointlywith S. Krymski,we apply the results of the present

article to the study of the inverse spectral problem for curvilinear polygons. In particular, we show
there that, generically, the side lengths of a curvilinear polygon and some information about its
angles can be reconstructed from its Steklov spectrum.

Remark 1.20. The results and most of the methods of this paper are specifically two-dimensional.
For some related recent advances in higher dimensions, see [16, 23].

2 QUASI-EIGENVALUES: DEFINITIONS AND FURTHER
STATEMENTS

2.1 Vertex and side transfer matrices

Given an angle 𝛼, set

𝜇𝛼 ∶=
𝜋2

2𝛼
. (2.1)
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For 𝛼 ∉  , set

𝑎1(𝛼) ∶= cosec 𝜇𝛼 = cosec
𝜋2

2𝛼
, 𝑎2(𝛼) ∶= cot 𝜇𝛼 = cot

𝜋2

2𝛼
, (2.2)

and consider the matrix

𝙰(𝛼) ∶=

(
𝑎1(𝛼) −i𝑎2(𝛼)

i𝑎2(𝛼) 𝑎1(𝛼)

)
=
⎛⎜⎜⎝
cosec 𝜋

2

2𝛼
−i cot 𝜋

2

2𝛼

i cot 𝜋
2

2𝛼
cosec 𝜋

2

2𝛼

⎞⎟⎟⎠ . (2.3)

For the reasons that will be explained later, the matrix 𝙰(𝛼) is called a vertex transfer matrix at the
corner with angle 𝛼.

Remark 2.1. Note that

(a) for exceptional angles 𝛼 ∈  , the vertex transfer matrix is not defined since its entries blow
up;

(b) for a non-exceptional 𝛼 ∉  , det 𝙰(𝛼) = 1, 𝙰∗(𝛼) = 𝙰(𝛼), and (𝙰(𝛼))−1 = 𝙰(𝛼);
(c) for special angles 𝛼 ∈  the vertex transfer matrix is equal to (𝛼) Id, see Definition 1.2;
(d) the eigenvalues of 𝙰(𝛼) are

𝜂1(𝛼) ∶= 𝑎1(𝛼) − 𝑎2(𝛼) = tan
𝜇𝛼
2
= tan

𝜋2

4𝛼
,

𝜂2(𝛼) ∶= 𝑎1(𝛼) + 𝑎2(𝛼) = cot
𝜇𝛼
2
= cot

𝜋2

4𝛼
=

1

𝜂1(𝛼)
,

(2.4)

and the corresponding eigenvectors do not depend on 𝛼, see Remark 2.9.

Given a side of length 𝓁, define the side transfer matrix

𝙱(𝓁, 𝜎) ∶=
(
exp(i𝓁𝜎) 0

0 exp(−i𝓁𝜎)

)
, (2.5)

where 𝜎 is a real parameter.

Remark 2.2. Similarly to Remark 2.1(b), we have, for any 𝓁 > 0 and 𝜎 ∈ ℝ, det 𝙱(𝓁, 𝜎) = 1, and
(𝙱(𝓁, 𝜎))−1 = 𝙱(𝓁, 𝜎).

Set

𝙲(𝛼,𝓁, 𝜎) ∶= 𝙰(𝛼)𝙱(𝓁, 𝜎) =

⎛⎜⎜⎜⎝
cosec

(
𝜋2

2𝛼

)
exp(i𝓁𝜎) −i cot

(
𝜋2

2𝛼

)
exp(−i𝓁𝜎)

i cot
(
𝜋2

2𝛼

)
exp(i𝓁𝜎) cosec

(
𝜋2

2𝛼

)
exp(−i𝓁𝜎)

⎞⎟⎟⎟⎠ . (2.6)

Given a non-exceptional polygon (𝜶,𝓵), we construct the matrix
𝚃(𝜶,𝓵, 𝜎) ∶= 𝙲(𝛼𝑛,𝓁𝑛, 𝜎)𝙲(𝛼𝑛−1,𝓁𝑛−1, 𝜎)⋯ 𝙲(𝛼1,𝓁1, 𝜎). (2.7)
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2.2 Quasi-eigenvalues, non-exceptional polygons

Definition 2.3. Let  = (𝜶,𝓵) be a non-exceptional curvilinear polygon. A non-negative num-
ber 𝜎 is called a quasi-eigenvalue of the Steklov problem on  if the matrix 𝚃(𝜶,𝓵, 𝜎) has an
eigenvalue 1.

Remark 2.4. We note that although the matrix 𝚃(𝜶,𝓵, 𝜎) depends upon our choice of an
enumeration of polygon vertices, it is easily checked that the definition of quasi-eigenvalues
is invariant.

The following result immediately follows from Remarks 2.1(b) and 2.2, and Equation (2.7).

Lemma 2.5.

(a) The matrix 𝚃 = 𝚃(𝜶,𝓵, 𝜎) has eigenvalue 1 if and only if

Tr 𝚃 = 2. (2.8)

(b) The eigenvalue 1 of 𝚃 always has algebraic multiplicity two. It has geometric multiplicity two if
and only if 𝚃 = Id.

(c) The corresponding eigenvector(s) may be chosen from

ℂ2
conj

∶=

{(
𝑐

𝑐

) ||||| 𝑐 ∈ ℂ
}
.

Definition 2.6. In the absence of exceptional angles, themultiplicity of a quasi-eigenvalue 𝜎 > 0
is defined as the geometric multiplicity of the eigenvalue 1 of the matrix 𝚃(𝜶,𝓵, 𝜎). If 𝜎 = 0 is a
quasi-eigenvalue, itsmultiplicity is defined to be one.

Remark 2.7. It follows immediately from Lemma 2.5 that a quasi-eigenvalue of a non-exceptional
curvilinear polygon has multiplicity at most two.

2.3 Quasi-eigenvalues, exceptional polygons

For curvilinear polygons having exceptional angles, the definition of quasi-eigenvalues is more
involved. Let  be a curvilinear 𝑛-gon with 𝐾 exceptional angles 𝛼

1
= 𝛼𝐸1 =

𝜋
2𝑘1
, … , 𝛼

𝐾
=

𝛼𝐸𝐾 =
𝜋
2𝑘𝐾

, where 1 ⩽ 𝐾 ⩽ 𝑛, and 1 ⩽ 𝐸1 < 𝐸2 <⋯ < 𝐸𝐾 ⩽ 𝑛. Without loss of generality, we
can take 𝐸𝐾 = 𝑛 and identify 𝐸0 with 𝐸𝐾 , and 𝐸𝐾+1 with 𝐸1. These exceptional angles split
the boundary of the polygon into 𝐾 parts, which we will call exceptional (boundary) compo-
nents, each consisting of either one smooth side or more smooth sides joined at non-exceptional
angles.
Let 𝑛𝜅 = 𝐸𝜅 − 𝐸𝜅−1, 𝜅 = 1,… , 𝐾, denote the number of smooth boundary pieces between two

consecutive exceptional angles. Obviously, 𝑛1 + 𝑛2 +⋯ + 𝑛𝐾 = 𝑛. Re-label the full sequence of
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F IGURE 4 An example of re-labelling for a pentagon with two exceptional angles and therefore two
exceptional boundary components, one exceptional component (solid lines) consisting of two pieces, and the
other (dashed lines) consisting of three pieces

angles 𝛼1, … , 𝛼𝑛 as

𝛼(1)
1
, … , 𝛼(1)

𝑛1−1
, 𝛼(1)𝑛1 =∶ 𝛼


1 ,

𝛼(2)
1
, … , 𝛼(2)

𝑛2−1
, 𝛼(2)𝑛2 =∶ 𝛼


2 ,

…

𝛼(𝐾−1)
1

, … , 𝛼(𝐾−1)
𝑛𝐾−1−1

, 𝛼(𝐾−1)𝑛𝐾−1
=∶ 𝛼𝐾−1,

𝛼(𝐾)
1
, … , 𝛼(𝐾)

𝑛𝐾−1
, 𝛼(𝐾)𝑛𝐾

=∶ 𝛼𝐾.

The vertices of the polygon will be re-labelled in the same manner. We also re-label the full
sequence of side lengths 𝓁1, … ,𝓁𝑛 (recall that the side 𝐼𝑗 of length 𝓁𝑗 joins the vertices 𝑉𝑗−1 and
𝑉𝑗) as

𝓁(1)
1
, … ,𝓁(1)𝑛1 ,𝓁

(2)
1
, … ,𝓁(2)𝑛2 , … ,𝓁

(𝐾)
1
, … ,𝓁(𝐾)𝑛𝐾

,

so that the exceptional vertex 𝑉
𝜅 has adjoint sides of lengths 𝓁(𝜅)𝑛𝜅 and 𝓁(𝜅+1)

1
, see Figure 4 for

an example.
Denote also, for 𝜅 = 1,… , 𝐾,

𝜶′
(𝜅)
=
(
𝛼(𝜅)
1
, … , 𝛼(𝜅)

𝑛𝜅−1

)
,

𝜶(𝜅) =
(
𝛼(𝜅)
1
, … , 𝛼(𝜅)

𝑛𝜅−1
, 𝛼𝜅

)
,

𝓵(𝜅) =
(
𝓁(𝜅)
1
, … ,𝓁(𝜅)

𝑛𝜅−1
,𝓁(𝜅)𝑛𝜅

)
.
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We will be denoting an exceptional boundary component joining exceptional vertices 𝑉
𝜅−1

and
𝑉
𝜅 by 𝜅 = (𝜶(𝜅),𝓵(𝜅)).
Set

𝚄
(
𝜶′
(𝜅)
,𝓵(𝜅), 𝜎

)
= 𝙱

(
𝓁(𝜅)𝑛𝜅 , 𝜎

)
𝙰
(
𝛼(𝜅)
𝑛𝜅−1

)
𝙱
(
𝓁(𝜅)
𝑛𝜅−1

, 𝜎
)
⋯ 𝙰

(
𝛼(𝜅)
1

)
𝙱
(
𝓁(𝜅)
1
, 𝜎
)
. (2.9)

By (2.7) and (2.6),

𝚄
(
𝜶′
(𝜅)
,𝓵(𝜅), 𝜎

)
∶= 𝙱

(
𝓁(𝜅)𝑛𝜅 , 𝜎

)
𝚃
(
𝜶′
(𝜅)
,𝓵′(𝜅), 𝜎

)
, (2.10)

where 𝓵′(𝜅) = (𝓁(𝜅)
1
, … ,𝓁(𝜅)

𝑛𝜅−1
).

Set also

𝐗even =
1√
2

(
e−i𝜋∕4

ei𝜋∕4

)
, 𝐗odd =

1√
2

(
ei𝜋∕4

e−i𝜋∕4

)
, (2.11)

and, for an exceptional angle 𝛼 ∈  ,

𝐗(𝛼) ∶=

{
𝐗even if (𝛼) = 1,
𝐗odd if (𝛼) = −1. (2.12)

Remark 2.8. We note that

𝐗even = 𝐗odd, and 𝐗even ⋅ 𝐗odd = 0, (2.13)

and we therefore set

𝐗⟂even ∶= 𝐗odd, 𝐗⟂
odd

∶= 𝐗even, 𝐗⟂(𝛼) ∶= (𝐗(𝛼))⟂ =

{
𝐗odd if (𝛼) = 1,
𝐗even if (𝛼) = −1. . (2.14)

In (2.13), and throughout this paper, the dot product in ℂ2 is understood in the usual sense:(
𝑢1
𝑢2

)
⋅
(
𝑣1
𝑣2

)
= 𝑢1𝑣1 + 𝑢2𝑣2.

Remark 2.9. It is easily checked that 𝐗odd and 𝐗even are eigenvectors of the matrix 𝙰(𝛼)
corresponding to the eigenvalues 𝜂1(𝛼) and 𝜂2(𝛼), respectively, for any 𝛼 ∉  .
Definition 2.10. Let be a curvilinear polygon with exceptional angles 𝛼𝐸1 =

𝜋
2𝑘1
, … , 𝛼𝐸𝐾 =

𝜋
2𝑘𝐾

as defined above. We say that 𝜎 ⩾ 0 is a quasi-eigenvalue of  if there exists 1 ⩽ 𝜅 ⩽ 𝐾, such that
𝜎 is a solution of the equation

𝚄
(
𝜶′
(𝜅)
,𝓵(𝜅), 𝜎

)
𝐗
(
𝛼𝐸𝜅−1

)
⋅ 𝐗
(
𝛼𝐸𝜅

)
= 0. (2.15)
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Remark 2.11. Condition (2.15) can be equivalently restated as

𝚄
(
𝜶′
(𝜅)
,𝓵(𝜅), 𝜎

)
𝐗
(
𝛼𝐸𝜅−1

)
is proportional to 𝐗⟂

(
𝛼𝐸𝜅

)
. (2.16)

Definition 2.12. Wewill call an exceptional boundary component𝜅 which joins two exceptional
angles 𝛼𝐸𝜅−1 and 𝛼𝐸𝜅 an even exceptional component if the parities (𝛼𝐸𝜅−1) and (𝛼𝐸𝜅 ) are equal,
and an odd exceptional component if these parities differ.

Definition 2.13. In the presence of exceptional angles, themultiplicity of a quasi-eigenvalue𝜎 > 0
is defined as the number of distinct values 𝜅 for which 𝜎 is a solution of (2.15). The multiplicity
of quasi-eigenvalue 𝜎 = 0 is defined as half the number of sign changes in the cyclic sequence of
exceptional angle parities (𝛼𝐸1), … , (𝛼𝐸𝐾 ), (𝛼𝐸1), or equivalently as half the number of odd
exceptional boundary components (see Definition 2.12) joining the exceptional vertices.

Remark 2.14. It is easy to see that the definition of multiplicity of a quasi-eigenvalue 𝜎 = 0 in the
exceptional case is consistent — it always produces an integer as there is always an even number
of odd exceptional boundary components.

Remark 2.15. Let us compare Definitions 2.3 and 2.10. In the former, the quasi-eigenvalues are
defined in the terms of thewhole boundary 𝜕 . In the latter, the exceptional angles split the bound-
ary into a number of exceptional boundary components, each producing its own independent
sequence of quasi-eigenvalues.

2.4 Quasi-eigenvalues as roots of trigonometric polynomials

We can re-formulate the quasi-eigenvalue equations (2.8) and (2.15) as the conditions that 𝜎
is a root of some explicit trigonometric polynomials. To define these polynomials, we need to
introduce some combinatorial notation. Let

ℨ𝑛 = {±1}𝑛,

and for a vector 𝜻 = (𝜁1, … , 𝜁𝑛) ∈ ℨ𝑛 with cyclic identification 𝜁𝑛+1 ≡ 𝜁1, let
𝐂𝐡(𝜻) ∶= {𝑗 ∈ {1, … , 𝑛} ∣ 𝜁𝑗 ≠ 𝜁𝑗+1} (2.17)

denote the set of indices of sign change in 𝜻 , for example,

𝐂𝐡((1, 1, 1)) = ∅; 𝐂𝐡((−1,−1, 1, 1)) = {2, 4}.

Given a curvilinear polygon (𝜶,𝓵), we now define the following trigonometric polynomials
in real variable 𝜎: firstly, we set

𝐹even(𝜶,𝓵, 𝜎) ∶=
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 cos(𝓵 ⋅ 𝜻𝜎), (2.18)
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where

𝔭𝜻 = 𝔭𝜻 (𝜶) ∶=
∏

𝑗∈𝐂𝐡(𝜻)

cos

(
𝜋2

2𝛼𝑗

)
, (2.19)

and we assume the convention
∏
∅
= 1.

We further define

𝐹 (𝜶,𝓵, 𝜎) ∶= 𝐹even(𝜶,𝓵, 𝜎) −
𝑛∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
, (2.20)

which differs from (2.18) only in the constant term.
In either exceptional or non-exceptional case, we have the following theorem.

Theorem 2.16. Let(𝜶,𝓵) be a curvilinear polygon. Then 𝜎 ⩾ 0 is a quasi-eigenvalue if and only if
it is a root of the trigonometric polynomial 𝐹 (𝜶,𝓵, 𝜎). The multiplicity of a quasi-eigenvalue 𝜎 > 0
coincides with its multiplicity as a root of (2.20), and the multiplicity of the quasi-eigenvalue 𝜎 = 0
is half its multiplicity as a root of (2.20).

The following result is more convenient for the actual computation of quasi-eigenvalues in the
exceptional case, and also simplifies the calculation of multiplicities.

Theorem 2.17.

(a) Let (𝜶,𝓵) be a non-exceptional curvilinear polygon. Then a root 𝜎 > 0 of (2.20) is a quasi-
eigenvalue of multiplicity two if additionally 𝜎 is a root of

𝐹odd(𝜶,𝓵, 𝜎) ∶=
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 sin(𝓵 ⋅ 𝜻𝜎), (2.21)

otherwise it has multiplicity one.
(b) Let(𝜶,𝓵) be a curvilinear polygonwith exceptional angles 𝛼𝐸1 = 𝜋

2𝑘1
, … , 𝛼𝐸𝐾 =

𝜋
2𝑘𝐾

. Then 𝜎 ⩾
0 is a quasi-eigenvalue if and only if it is a root of one of the trigonometric polynomials

𝐹even∕odd

(
𝜶(𝜅),𝓵(𝜅), 𝜎

)
, 𝜅 = 1,… , 𝐾, (2.22)

corresponding to an exceptional boundary component (𝜶(𝜅),𝓵(𝜅)). Here, 𝐹even∕odd stands for
𝐹even if the exceptional boundary component(𝜶(𝜅),𝓵(𝜅)) is even (or equivalently if(𝛼𝐸𝜅−1) =(𝛼𝐸𝜅 )), and for 𝐹odd if (𝜶(𝜅),𝓵(𝜅)) is odd (or equivalently if (𝛼𝐸𝜅−1) = −(𝛼𝐸𝜅 )), cf.
Definition 2.12.
The multiplicity of 𝜎 > 0 is equal to the number of trigonometric polynomials (2.22) for which

it is a root, and the multiplicity of 𝜎 = 0 is equal to half the number of times 𝐹odd is chosen in
(2.22).
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We prove Theorem 2.17 directly from the definitions of quasi-eigenvalues in Section 6; the proof
of Theorem 2.16, which uses the quantum graph analogy discussed below in Subsection 2.5, is
given in Subsection 7.2.

Remark 2.18. According to the definition, the quasi-eigenvalue 𝜎 = 0 in the non-exceptional case
always has multiplicity one if present. Moreover, as will be seen from the proof of Theorem 2.24
in Subsection 7.1, 𝜎 = 0 is a quasi-eigenvalue in the non-exceptional case if and only if

𝑛∏
𝑗=1

tan
𝜋2

4𝛼𝑗
=

𝑛∏
𝑗=1

cot
𝜋2

4𝛼𝑗
= 1.

Remark 2.19. In the exceptional case, the set of roots of equations (2.22) can be equivalently re-
written as a set of roots of a single trigonometric equation∏

𝜅∈𝔎even

𝐹even(𝜶
(𝜅),𝓵(𝜅); 𝜎) ×

∏
𝜅∈𝔎odd

𝐹odd(𝜶
(𝜅),𝓵(𝜅); 𝜎) = 0, (2.23)

where

𝔎odd ∶=
{
𝜅 ∈ {1, … , 𝐾} ∶ (𝛼𝜅 ) = −(𝛼𝜅−1)},

𝔎even ∶=
{
𝜅 ∈ {1, … , 𝐾} ∶ (𝛼𝜅 ) = (𝛼𝜅−1)}.

The multiplicity of a positive quasi-eigenvalue is then equal to an algebraic multiplicity of it as a
root of (2.23), and the multiplicity of 𝜎 = 0 is #𝔎odd

2
.

Since the multiplicities of quasi-eigenvalues are finite, Theorem 2.16 immediately implies the
following.

Proposition 2.20. The quasi-eigenvalues of a curvilinear polygon form a discrete set with the
accumulation points only at +∞.

Indeed, (2.20) is an analytic functions of a real variable 𝜎, and zeros of analytic functions are
isolated.

Remark 2.21. It is easily seen that the real roots 𝜎 of (2.20) are symmetric with respect to 𝜎 = 0, and
therefore the algebraic multiplicity of 𝜎 = 0 is always even. This, in principle, would also allow us
to consider all real quasi-eigenvalues in both non-exceptional and exceptional cases, and not just
the non-negative ones as in Definitions 2.3 and 2.10, cf. also Remark 2.40. Such an approach will
be sometimes advantageous, and we will make clear when we use it.

2.5 An eigenvalue problem on a quantum graph

Consider the boundary of the polygon (𝜶,𝓵) as a cyclic metric graph (𝓵) with 𝑛 vertices
𝑉1,… , 𝑉𝑛 and𝑛 edges 𝐼𝑗 (joining𝑉𝑗−1 and𝑉𝑗 , with𝑉0 identifiedwith𝑉𝑛) of length𝓁𝑗, 𝑗 = 1,… , 𝑛.
Let 𝑠 be the arc-length parameter on (𝓵) starting at 𝑉1 and going in the clockwise direction, see
Figure 5.
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F IGURE 5 A quantum graph

Consider the spectral problem for a quantum graph Laplacian on  (see [6], and references
therein),

−
d2𝑓

d𝑠2
= 𝜈𝑓,

with matching conditions

sin

(
𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗+0 = cos( 𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗−0,

cos

(
𝜋2

4𝛼𝑗

)
𝑓′|𝑉𝑗+0 = sin( 𝜋2

4𝛼𝑗

)
𝑓′|𝑉𝑗−0.

(2.24)

Hereinafter at each vertex 𝑉𝑗 , 𝑗 = 1,… , 𝑛, g|𝑉𝑗−0 and g|𝑉𝑗+0 denote the limiting values of a quan-
tity g(𝑠) as 𝑠 approaches the vertex𝑉𝑗 from the left and from the right, respectively, in the direction
of 𝑠.

Remark 2.22. For 𝛼𝑗 ∉  , we can re-write the matching conditions as

𝑓|𝑉𝑗+0 = cot( 𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗−0,

𝑓′|𝑉𝑗+0 = tan( 𝜋2

4𝛼𝑗

)
𝑓′|𝑉𝑗−0.

(2.25)
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For 𝛼𝑗 ∈  , the matching conditions are given by
{
𝑓|𝑉𝑗−0 = 𝑓′|𝑉𝑗+0 = 0 if (𝛼𝑗) = 1,
𝑓|𝑉𝑗+0 = 𝑓′|𝑉𝑗−0 = 0 if (𝛼𝑗) = −1. (2.26)

We will denote the operator 𝑓 ↦ −d
2𝑓

d𝑠2
subject to matching conditions (2.24) by Δ. It is easy to

check that Δ is self-adjoint and non-negative. Therefore, its spectrum is given by a sequence of
non-negative real eigenvalues

0 ⩽ 𝜈1 ⩽ 𝜈2 ⩽ …𝜈𝑚 ⩽⋯↗ +∞,

listed with the account of multiplicities.

Remark 2.23. The eigenvalues 𝜈𝑚 also satisfy a standard variational principle: if

Dom(𝑄) ∶=
{
𝑓 ∈

𝑛⨁
𝑗=1

𝐻1(𝐼𝑗) ∶ sin

(
𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗+0 = cos( 𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗−0

}

denotes the domain of the quadratic form

𝑄[𝑓] ∶=
𝑛∑
𝑗=1

∫𝐼𝑗 (𝑓
′(𝑠))2 𝑑𝑠

of Δ, then

𝜈𝑚 = inf
𝑆⊂Dom(𝑄)
dim𝑆=𝑚

sup
0≠𝑓∈𝑆

𝑄[𝑓]
𝑛∑
𝑗=1

∫𝐼𝑗 (𝑓(𝑠))2 𝑑𝑠
.

It turns out the eigenvalues 𝜈𝑚 are precisely the squares of the quasi-eigenvalues of the Steklov
problem on the polygon (𝜶,𝓵) as defined by Definitions 2.3 and 2.10.
Theorem 2.24. Let 𝜎𝑚, 𝑚 ⩾ 1, be the Steklov quasi-eigenvalues of a curvilinear polygon (𝜶,𝓵),
and let 𝜈𝑚,𝑚 ⩾ 1, be the eigenvalues of Δ, in both cases ordered non-decreasingly with account of
multiplicities. Then 𝜎2𝑚 = 𝜈𝑚 for all𝑚 ⩾ 1.

Remark 2.25. Theorem 2.16 will be derived from Theorem 2.24: we will demonstrate in Subsection
7.2 that the quantum graph eigenvalues 𝜈 = 𝜈𝑚 are the roots of the graph secular equation (7.8),
which is equivalent to 𝐹 (𝜶,𝓵,√𝜈) = 0.
Remark 2.26. We would like to emphasise that the eigenfunctions of Δ are not the quasimodes
of the Dirichlet-to-Neumann map Ω; moreover, they do not even belong to the domain of Ω.
What rather happens is that each eigenfunction of Ω carries enough information to construct
a corresponding proper Dirichlet-to-Neumann quasimode. Note also that we cannot deduce the
completeness of the set of eigenfunctions of Ω corresponding to quasimodes directly from the
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completeness of the set of eigenfunctions of Δ. Indeed, while the eigenfunctions ofΩ could in
principle be viewed as perturbations of the eigenfunctions of Δ, the error is too big to guarantee
the completeness of the perturbed set via the standard Bary–Krein lemma [33, Lemma 4.8].

The proof of Theorem 2.24 is postponed until Section 2.5. It uses an alternative formulation of
the quantum graph problem which, although more complicated to state, is more closely related
to the Steklov problem.We consider the eigenvalue problem for the following Dirac-type operator
on (𝓵):

𝔇 =

(
−i d

d𝑠
0

0 i d
d𝑠

)
, (2.27)

acting on vector functions 𝐟 (𝑠) =
(
𝑓1(𝑠)

𝑓2(𝑠)

)
; here 𝑠 is the arc-length coordinate on (𝓵), see

Figure 5. For 𝛼𝑗 ∉  , we impose matching conditions at 𝑉𝑗 given by
𝐟 |𝑉𝑗+0 = 𝙰(𝛼𝑗)𝐟 |𝑉𝑗−0, (2.28)

where 𝙰(𝛼𝑗) is the vertex transfer matrix defined by (2.3). If 𝛼𝑗 ∈  we set
𝐟 |𝑉𝑗−0 is proportional to 𝐗(𝛼𝑗)⟂
𝐟 |𝑉𝑗+0 is proportional to 𝐗(𝛼𝑗), (2.29)

where 𝐗(𝛼𝑗) is defined by (2.12).
We have the following proposition.

Proposition 2.27. The operator 𝔇, with the domain consisting of vector-functions 𝐟 (𝑠) such that
their restrictions to the edge 𝐼𝑗 are in (𝐻1(𝐼𝑗))2 and they satisfy thematching conditions above, is self-
adjoint in (𝐿2())2. Moreover, withmultiplicity, its eigenvalues are the real solutions of equation (2.8)
(provided 𝛼𝑗 ∉  , 𝑗 = 1,… , 𝑛), or of equation (2.15) if there exists 𝛼𝑗 ∈  .
Proposition 2.27 will be proved in Section 7. Along with Theorem 2.24, it shows that the squares

of the eigenvalues of𝔇 are precisely the eigenvalues 𝜈𝑚 of our quantum graph Laplacian.

Remark 2.28. Note that in the case of a graph Dirac operator, we need to consider all solutions of
the characteristic equations, not just non-negative ones as inDefinitions 2.3 and 2.10.Moreover, in
view of Remark 2.21 and Definitions 2.6 and 2.13, the spectrum of𝔇may be represented as {±𝜎𝑚},
with the same multiplicities as for quasi-eigenvalues of  if 𝜎𝑚 > 0 and twice the multiplicity of
an eigenvalue 𝜎𝑚 = 0. In other words, the multiplicity of 𝜎2 in the spectrum of𝔇2 coincides with
twice the multiplicity of 𝜎 as a quasi-eigenvalue of  .

2.6 Riesz mean and heat trace asymptotics

Let {𝑠𝑚},𝑚 = 1, 2, … , be a non-decreasing sequence of nonnegative real numbers.
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Definition 2.29. The function  ({𝑠𝑚}; 𝑧) ∶= #{𝑚 ∈ ℕ | 𝑠𝑚 ⩽ 𝑧} is called the counting function
for the sequence {𝑠𝑚}, and the function

({𝑠𝑚}; 𝑧) = 1({𝑠𝑚}; 𝑧) ∶= ∫
𝑧

0
 ({𝑠𝑚}; 𝑡) 𝑑𝑡 =

∞∑
𝑚=1

(𝑧 − 𝑠𝑚)+ (2.30)

is called the first Riesz mean (or simply the Riesz mean) of {𝑠𝑚}. Here 𝑧+ = max(𝑧, 0).

The asymptotics of the Riesz mean often captures more refined features of the distribution of
the sequence {𝑠𝑛} than the asymptotics of the counting function. In particular, it is a standard tool
to study eigenvalue asymptotics, see, for instance, [21, 47].
Let  (𝜆) ∶= ({𝜆𝑚}; 𝜆) and  (𝜆) ∶= ({𝜆𝑚}; 𝜆) be, respectively, the eigenvalue counting

function and the Rieszmean for the Steklov eigenvalues on a curvilinear polygon .We first prove
a basic Weyl law. Observe that due to Theorem 2.24, if ({𝜎𝑚}; 𝜎) is the counting function for the
quasi-eigenvalues 𝜎𝑚, we have by [6, Lemma 3.7.4] that

 ({𝜎𝑚}; 𝜎) =
|𝜕|
𝜋
𝜎 + 𝑂(1). (2.31)

This can be easily combined with Theorem 1.4 to yield the following Weyl law, which was proved
in [33, Corollary 1.11] but only for straight polygons.

Proposition 2.30. For any curvilinear polygon  with angles less than 𝜋,

 (𝜆) =
|𝜕|
𝜋
𝜆 + 𝑂(1) as 𝜆 → +∞. (2.32)

As a consequence, one expects (see [47]) that

 (𝜆) =
|𝜕|
2𝜋

𝜆2 + 𝑐1𝜆 + 𝑜(𝜆) (2.33)

for some constant coefficient 𝑐1.

Theorem 2.31. Let  be a curvilinear polygon with 𝑛 sides of lengths 𝓁1, …𝓁𝑛. Let �̃� ∈ (0, 𝜀0) ∩
(0, 1

2𝑛+1
], with 𝜀0 as in Theorem 1.4. Then the Riesz mean for the Steklov eigenvalues of satisfies the

asymptotics

 (𝜆) =
|𝜕|
2𝜋

𝜆2 + 𝑂(𝜆1−�̃�) as 𝜆 → +∞. (2.34)

In particular, the formula (2.33) holds with the coefficient 𝑐1 = 0.

Theorem 2.31 immediately implies the following.

Corollary 2.32. The Steklov heat trace on a curvilinear polygon  satisfies an asymptotic formula

∞∑
𝑘=1

e−𝑡𝜆𝑘 =
|𝜕|
𝜋 𝑡

+ 𝑂(𝑡�̃�) as 𝑡 → 0+. (2.35)
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Indeed, this follows by a direct computation from awell-known relation between the heat trace
and the Riesz mean.

∞∑
𝑘=1

e−𝑡𝜆𝑘 = 𝑡2 ∫
∞

0
(𝜆𝑘; 𝑧) 𝑒−𝑧𝑡 𝑑𝑧.

Remark 2.33. It would be interesting to establish the existence of a complete asymptotic expansion
for the Steklov heat trace on a curvilinear polygon, similarly to the smooth case, see [41, Formula
(1.2.2)]. Formula (2.35) implies that the first heat invariant is zero, since the constant term on the
right-hand side of (2.35) vanishes. Note that the same result holds for smooth planar domains, see
[41, Remark 1.4.5]). The fact that the constant term in the Steklov heat trace is the same for poly-
gons and for smooth domains is somewhat surprising, as it is not the case for the heat invariants
arising from the boundary value problems for the Laplacian, see [35, 38].

Remark 2.34. In view of Theorem 2.24, one could also deduce the expansion (2.35) from the heat
asymptotics for the eigenvalues of a quantum graph [46] using the standard results relating the
heat traces of an operator and of its power via the zeta function (see [15, 20]).

2.7 Zigzags

The notation and results of this section may seem rather esoteric. Although they are auxiliary,
they are absolutely essential for proving the main theorems of the paper.

Definition 2.35. Let 𝑛 ∈ ℕ, 𝓵 = (𝓁1, … ,𝓁𝑛) ∈ ℝ𝑛+, and 𝜶 = (𝛼1, … , 𝛼𝑛−1) ∈ Π
𝑛−1. A curvilinear

𝑛 piece zigzag  = (𝜶,𝓵) is a piecewise smooth continuous non-self-intersecting curve in ℝ2
with vertices 𝑉0,… , 𝑉𝑛 and smooth arcs 𝐼𝑗 of length 𝓁𝑗 joining 𝑉𝑗−1 and 𝑉𝑗 , 𝑗 = 1,… , 𝑛. The arcs
𝐼𝑗 and 𝐼𝑗+1meet at𝑉𝑗 at an angle 𝛼𝑗 (measured from 𝐼𝑗 to 𝐼𝑗+1 counterclockwise), 𝑗 = 1,… , 𝑛 − 1,
see Figure 6. The vertices 𝑉0 and 𝑉𝑛 will be called the start and end points of , respectively (or
just end points if we do not need to distinguish them).
We will call a zigzag straight if its arcs 𝐼1, … , 𝐼𝑛, are straight-line intervals, and partially

curvilinear if the arcs are straight in a neighbourhood of each vertex.
We will call a zigzag non-exceptional or exceptional if 𝜶 ∈ (Π ⧵ )𝑛−1 or if there exists 𝛼𝑗 ∈ , respectively.

Definition 2.36. Let  be a zigzag. A -zigzag domain Ω ⊂ ℝ2 (or just a zigzag domain) is an
open bounded simply connected set whose boundary 𝜕Ω =  ∪ , where a piecewise smooth
non-self-intersecting curvemeets only at the start and end points of forming interior angles
𝜋
2
.

Let Ω be a zigzag domain with boundary 𝜕Ω =  ∪ . We consider in Ω generalised mixed
Dirichlet–Neumann–sloshing eigenvalue problems of the type

Δ𝑢 = 0 in Ω, 𝜕𝑢
𝜕𝑛

= 𝜆𝑢 on , 𝑢
𝜕𝑢
𝜕𝑛

= 0 on , (2.36)
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F IGURE 6 A zigzag  and a zigzag domain Ω

The last condition is understood in the following sense: we represent  as a closure of a finite
union of non-intersecting open arcs, and impose either Dirichlet or Neumann condition on each
arc. We will write

Ω, ∶ 𝑢|↦ 𝜕𝑢
𝜕𝑛

|||| subject to Δ𝑢 = 0 in Ω, 𝑢𝜕𝑢
𝜕𝑛

= 0 on (2.37)

for the corresponding (partial) Dirichlet-to-Neumann map on .
Each such generalised mixed Dirichlet–Neumann–sloshing problem has a discrete spectrum

of eigenvalues 𝜆1 < 𝜆2 ⩽ … accumulating to +∞.
We will term (2.36) a Dirichlet–Dirichlet zigzag problem (or 𝐷𝐷-zigzag for short) and refer to it

as (2.36)𝐷𝐷 if the Dirichlet boundary condition is imposed on in neighbourhoods of both start
and end points of , independently of the boundary conditions on the rest of  . Similarly, we
will term (2.36) a Neumann–Dirichlet zigzag problem (or 𝑁𝐷-zigzag for short) and refer to it as
(2.36)𝑁𝐷 if the Neumann boundary condition is imposed on  in a neighbourhood of the start
point of , and the Dirichlet boundary condition in a neighbourhood of the end point of . The
𝐷𝑁-zigzags and𝑁𝑁-zigzags are defined analogously. In general, wewill writeℵℶ-zigzag, or(ℵℶ),
withℵ,ℶ ∈ {𝐷,𝑁}, and refer to (2.36) as (2.36)ℵℶ to indicate the boundary conditions imposed on near the start and end point of (ℵℶ).
Define the vectors

𝐍 ∶=

(
1

1

)
, 𝐃 ∶=

(
i

−i

)
. (2.38)

Note that the vectors𝐍,𝐃 are orthogonal, andwewill set𝐍⟂ ∶= 𝐃 and𝐃⟂ ∶= 𝐍.Wewill write
ℵ,ℶ to indicate any of the vectors𝐍,𝐃.



26 LEVITIN et al.

F IGURE 7 A path 

Definition 2.37. Let  = (𝜶,𝓵) be a non-exceptional zigzag. Let ℵ,ℶ ∈ {𝐷,𝑁}. A real number
𝜎 is called a quasi-eigenvalue of the ℵℶ-zigzag  if 𝜎 is a solution of the equation

𝚄(𝜶,𝓵, 𝜎)ℵ ⋅ ℶ⟂ = 0, (2.39)

where 𝚄 is defined in (2.9).

Remark 2.38. Condition (2.39) can be equivalently restated as

𝚄(𝜶,𝓵, 𝜎)ℵ is proportional to ℶ, (2.40)

cf. Remark 2.11.

The enumeration of zigzag quasi-eigenvalues is much more delicate than in the Steklov prob-
lem, but with an appropriate choice of the so-called natural enumeration, see Section 5, we have
the following theorem.

Theorem 2.39. Let be a partially curvilinear zigzag with all non-exceptional angles 𝛼1, … , 𝛼𝑛−1,
and letΩbe any-zigzag domain. Forℵ,ℶ ∈ {𝐷,𝑁}, let𝜆(ℵℶ)𝑚 denote the eigenvalues of (2.36)ℵℶ enu-
merated in increasing order with account of multiplicities, and let 𝜎(ℵℶ)𝑚 denote the quasi-eigenvalues
of the ℵℶ-zigzag  in the natural enumeration. Then

𝜆(ℵℶ)𝑚 = 𝜎(ℵℶ)𝑚 + 𝑜(1) as𝑚 → ∞.

Remark 2.40. There is a distinction between the quasi-eigenvalue Definitions 2.3 and 2.10 for
polygons and Definition 2.37 for zigzag domains — the former include only non-negative quasi-
eigenvalues, whereas the latter allow for all the real ones, cf. also Remark 2.21. This is not
an oversight but a deliberate choice, although a forced one. The reason for that is that the
natural enumeration for zigzag domains mentioned above sometimes takes into account some
negative quasi-eigenvalues.

An analog of Theorem 2.39 exists for exceptional zigzags, but we postpone the statement until
Section 5.
There is also a quantum graph analogy of Proposition 2.27 for an ℵℶ-zigzag problem. Let us

associate with a non-exceptional zigzag (ℵ,𝓵) a path  joining the vertex 𝑉0 to the vertex 𝑉𝑛
through 𝑉1,… , 𝑉𝑛−1, see Figure 7. The length of each edge 𝐼𝑗 joining 𝑉𝑗−1 to 𝑉𝑗 , 𝑗 = 1,… , 𝑛, is
taken to be 𝓁𝑗 , and let 𝑠 be the coordinate on .
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F IGURE 8 Sectors𝔖𝛼 and𝔖𝛼∕2

Consider the Dirac operator (2.27) on  acting on vector functions 𝐟 (𝑠) with the matching
conditions (2.28) at internal vertices 𝑉1,… , 𝑉𝑛−1 and with the boundary conditions

𝐟 |𝑉0+ ⋅ ℵ⟂ = 𝐟 |𝑉𝑛− ⋅ ℶ⟂ = 0. (2.41)

We have the following.

Proposition 2.41. The operator𝔇 on the path, with the domain consisting of vector-functions 𝐟 (𝑠)
such that their restrictions to the edge 𝐼𝑗 are in (𝐻1(𝐼𝑗))2 and they satisfy thematching and boundary
conditions above, is self-adjoint in (𝐿2())2. Moreover, with multiplicity, its eigenvalues are the real
solutions of equation (2.39).

The proof of Proposition 2.41 is almost identical to that of Proposition 2.27 and is omitted.

3 AUXILIARY PROBLEMS IN A SECTOR: PETERS SOLUTIONS

3.1 Plane wave solutions in a sector

Let (𝑥, 𝑦) be Cartesian coordinates in ℝ2, let 𝑧 = 𝑥 + i𝑦 ∈ ℂ, and let (𝜌, 𝜃) denote polar coordi-
nates so that 𝑧 = 𝜌ei𝜃. Consider the sector 𝔖𝛼 = {−𝛼 < 𝜃 < 0}, where 0 < 𝛼 ⩽ 𝜋, and denote its
boundary components by 𝐼in = {𝜃 = −𝛼} and 𝐼out = {𝜃 = 0}. Let 𝐼 = {𝜃 = −𝛼∕2} denote its bisec-
tor. Let us additionally introduce the natural coordinate 𝑠 on 𝐼in ∪ 𝐼out so that 𝑠 is zero at the vertex,
negative on 𝐼in and positive on 𝐼out, see Figure 8.
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Let, for 𝑡 ∈ ℝ,

𝐞(𝑡) ∶=

(
e−i𝑡

ei𝑡

)
. (3.1)

For any fixed vector 𝐡 =
(
ℎ1
ℎ2

)
∈ ℂ2, define the harmonic plane waves (which wewill call outgoing

and incoming plane waves)

𝑊𝐡
out,𝛼(𝑧) ∶= e

𝑦(𝐡 ⋅ 𝐞(𝑥)) = e𝑦
(
ℎ1e

i𝑥 + ℎ2e
−i𝑥
)
, 𝑊𝐡

in,𝛼
(𝑧) ∶= 𝑊𝐡′

out,𝛼(𝛼(𝑧)),

where 𝐡′ =
(
ℎ2
ℎ1

)
and𝛼 ∶ (𝜌, 𝜃) ↦ (𝜌, 𝛼 − 𝜃) is the operator of reflection across the bisector 𝐼.

It is important to observe that

𝑊𝐡
out,𝛼(𝑧)

|||𝐼out = 𝐡 ⋅ 𝐞(𝑠), 𝑊𝐡
in,𝛼
(𝑧)
|||𝐼in = 𝐡 ⋅ 𝐞(𝑠), (3.2)

and that𝑊𝐡
out,𝛼(𝑧) and𝑊

𝐡
in,𝛼
(𝑧) are bounded inside the sector.

Consider the Robin boundary value problem

ΔΦ = 0 in𝔖𝛼,
𝜕Φ
𝜕𝑛

= Φ on 𝜕𝔖𝛼 (3.3)

in the sector 𝔖𝛼, cf. [24, 25]. We are interested in solutions of (3.3) which approximately behave
as a combination of an incoming and an outgoing plane wave, that is, as

Φ(𝑧) = Φ
(𝐡in,𝐡out)
𝛼 (𝑧) ∶= 𝑊

𝐡out
out,𝛼(𝑧) +𝑊

𝐡in
in,𝛼
(𝑧) + 𝑅

𝐡in,𝐡out
𝛼 (𝑧), (3.4)

with some vectors 𝐡in and 𝐡out ∈ ℂ2, where the remainder 𝑅 = 𝑅
𝐡in,𝐡out
𝛼 (𝑧) is decreasing, together

with its gradient, away from the corner, in the sense that

|𝑅(𝑧)| + ‖𝜌∇(𝑥,𝑦)𝑅(𝑧)‖ ⩽ 𝐶 𝜌−𝑟 (3.5)

for all 𝑧 ∈ 𝔖𝛼 with |𝑧| sufficiently large, with some constant 𝑟 > 0 depending on the angle 𝛼, and
some constant 𝐶 > 0 which may additionally depend on ‖𝐡in‖ and ‖𝐡out‖. In particular, we are
interested in sufficient conditions on 𝐡in and 𝐡out for the existence of a solution (3.4). The next
result, which is the main statement of this section, shows that these sufficient conditions differ
depending upon exceptionality of the angle 𝛼.
Throughout the rest of this section, let

𝜇 = 𝜇𝛼∕2 =
𝜋
𝛼
,

𝜒𝑁 = 𝜒𝛼∕2,𝑁 =
𝜋
4
(1 − 𝜇) =

𝜋
4
−
𝜋2

4𝛼
,

𝜒𝐷 = 𝜒𝛼∕2,𝐷 =
𝜋
4
(1 + 𝜇) =

𝜋
4
+
𝜋2

4𝛼
.

(3.6)

This notation is chosen to match [33].
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Theorem 3.1.

(a) Let𝛼 be non-exceptional, that is, 𝛼 ∉  . Then for any vector𝐡in ∈ ℂ2, there exists a vector𝐡out ∈
ℂ2 and a solution (3.4) of (3.3) satisfying (3.5) with 𝑟 = 𝜇𝛼∕2 and 𝐶 = 𝐶𝛼‖𝐡in‖, where 𝐶𝛼 > 0 is
some constant depending only on 𝛼.
Moreover, in this case

𝐡out = 𝙰(𝛼)𝐡in, (3.7)

where 𝙰(𝛼) is the matrix defined in (2.3).
(b) If 𝛼 = 𝛼 is exceptional, 𝛼 = 𝜋

2𝑘
∈  , 𝑘 ∈ ℕ, then for any two vectors 𝐡in and 𝐡out ∈ ℂ2

additionally satisfying

𝐡in ⋅ 𝐗(𝛼) = 𝐡out ⋅ 𝐗
⟂(𝛼) = 0 (3.8)

(with 𝐗(𝛼) defined by (2.12), see also (2.11) and (2.14)), there exists a solution (3.4) of (3.3) again
satisfying (3.5) with 𝑟 = 𝜇𝛼∕2 and 𝐶 = 𝐶𝛼(‖𝐡in‖ + ‖𝐡out‖), where 𝐶𝛼 > 0 is some constant
depending only on 𝛼.

Remark 3.2. In both the non-exceptional and exceptional angle cases, we obtain the existence
of a solution Φ(𝐡in,𝐡out)𝛼 by fixing two out of the four components of the vectors 𝐡in and 𝐡out. The
difference is that in the non-exceptional case we fix the two components of the same vector and
find the other vector from (3.7) (it does not in fact matter whether we fix either of the two vectors
as 𝙰(𝛼) is invertible), whereas in the exceptional case we fix exactly one component of each of 𝐡in
and 𝐡out, and recover the other ones from (3.8).

Remark 3.3. Conditions (3.8) can be equivalently rewritten as

𝐡in ∈ Span
{
𝐗⟂(𝛼)

}
, 𝐡out ∈ Span {𝐗(𝛼)}.

Remark 3.4. Note that our proof of Theorem 3.1 does not work for 𝛼 ⩾ 𝜋 for reasons explained in
[33, Remark 2.4].

3.2 Sloping beach problems and Peters solutions

Consider, in the half sector𝔖𝛼∕2, a mixed Robin–Neumann problem

ΔΦ = 0 in𝔖𝛼∕2,

(
𝜕Φ
𝜕𝑦

− Φ

)|||||𝐼out = 0, 𝜕Φ
𝜕𝑛

||||𝐼 = 0, (3.9)

and a similar mixed Robin–Dirichlet problem

ΔΦ = 0 in𝔖𝛼∕2,

(
𝜕Φ
𝜕𝑦

− Φ

)|||||𝐼out = 0, Φ|𝐼 = 0, (3.10)
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These two problems, called the sloping beach problems and arising in hydrodynamics, have spe-
cial solutions, originally due to Peters [40] in the Neumann case, are written down, with some
improvements on the remainder terms, in [33, Theorem 2.1].We now define two specific solutions
Φ𝛼,𝑁 and Φ𝛼,𝐷 of the problem (3.3) in the full sector 𝔖𝛼, which we call the symmetric/anti-
symmetric Peters solutions in𝔖𝛼. To obtainΦ𝛼,𝑁 , we take the even (with respect to 𝐼) extension of
Peters sloping beach solution of (3.9). To obtainΦ𝛼,𝐷 , we take the odd (with respect to 𝐼) extension
of Peters sloping beach solution of (3.10).
The key properties of Φ𝛼,𝑁 and Φ𝛼,𝐷 now follow quickly from [33, Theorem 2.1].

Lemma 3.5. We have, for ℵ ∈ {𝑁,𝐷},

Φ𝛼,ℵ(𝑧) = 𝑊
𝐠out,ℵ
out,𝛼 (𝑧) +𝑊

𝐠in,ℵ
in,𝛼

(𝑧) + 𝑅𝛼,ℵ(𝑧),

with

𝐠out,𝑁 =
1
2

(
e−i𝜒𝑁

ei𝜒𝑁

)
, 𝐠in,𝑁 = 𝐠out,𝑁,

𝐠out,𝐷 =
1
2

(
e−i𝜒𝐷

ei𝜒𝐷

)
, 𝐠in,𝐷 = −𝐠out,𝐷,

(3.11)

and the remainder terms 𝑅 = 𝑅𝛼,ℵ(𝑧) satisfy (3.5) with some constants 𝐶 > 0 depending only on 𝛼,
and with 𝑟 = 𝜇 in the case ℵ = 𝑁 and 𝑟 = 2𝜇 in the case ℵ = 𝐷.

Proof. We prove this for the Neumann solution and for −𝛼∕2 ⩽ 𝜃 ⩽ 0. By [33, Theorem 2.1], the
Peters solution for (3.9) in𝔖𝛼∕2 is equal to

e𝑦 cos(𝑥 − 𝜒𝑁) + 𝑅𝑁(𝑥, 𝑦),

where 𝑅 = 𝑅𝑁 satisfies (3.5) with 𝑟 = 𝜇. Converting the cosine term to a complex exponential, we
obtain, with account of (3.11),

e𝑦 cos(𝑥 − 𝜒𝑁) = e
𝑦 e

−i𝜒𝑁ei𝑥 + ei𝜒𝑁e−i𝑥

2
= e𝑦𝐠out,𝑁 ⋅ 𝐞(𝑥),

which is precisely𝑊𝐠out,𝑁
out,𝛼 (𝑧). The other term,𝑊

𝐠in,𝑁
in,𝛼

(𝑧), decays exponentially in the distance from
𝑧 to 𝐼in. In {−𝛼 ⩽ 𝜃 ⩽ 0}, this distance is bounded below by a positive multiple of 𝜌, so this term
decays exponentially in 𝜌 and may therefore be absorbed into the remainder.
The case where −𝛼 ⩽ 𝜃 ⩽ −𝛼∕2 follows by symmetry, and the Dirichlet case is similar. □

3.3 Proof of Theorem 3.1

Now we consider arbitrary linear combinations of the symmetric and anti-symmetric solutions.
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Proposition 3.6. Consider, for 𝐅 =
(
𝐹𝑁
𝐹𝐷

)
∈ ℂ2, a linear combination Φ(𝑧) = 𝐹𝑁Φ𝛼,𝑁(𝑧) +

𝐹𝐷Φ𝛼,𝐷(𝑧). Let

𝙶out(𝛼) ∶=
1
2

(
e−i𝜒𝑁 e−i𝜒𝐷

ei𝜒𝑁 ei𝜒𝐷

)
, 𝙶in(𝛼) ∶=

1
2

(
ei𝜒𝑁 −ei𝜒𝐷

e−i𝜒𝑁 −e−i𝜒𝐷

)
,

𝐡out = 𝙶out(𝛼)𝐅, 𝐡in = 𝙶in(𝛼)𝐅. (3.12)

Then we have

Φ(𝑧) = 𝑊
𝐡out,𝛼
out,𝛼 (𝑧) +𝑊

𝐡in,𝛼
in,𝛼

(𝑧) + 𝑅𝛼,𝐅(𝑧),

where 𝑅 = 𝑅𝛼,𝐅 satisfies (3.5) with 𝑟 = 𝜇 and 𝐶 = 𝐶𝛼‖𝐅‖ with some constant 𝐶𝛼 depending only on
𝛼.

Proof. Since𝑊𝐡
out,𝛼 and𝑊

𝐡
in,𝛼

are linear in 𝐡, the proof follows instantaneously from Lemma 3.5
and linear algebra. Note that in the remainder estimatewe obtain theweaker, Neumann, exponent
for an arbitrary linear combination. □

We proceed to the proof of Theorem 3.1. At least in the case 𝛼 ∉  , we would like to start with
an arbitrary 𝐡in ∈ ℂ2 and apply Proposition 3.6 with

𝐅 = (𝙶in(𝛼))
−1𝐡in, 𝐡out = 𝙶out(𝛼)(𝙶in(𝛼))

−1𝐡in.

Indeed, this gives us everything we want, including the remainder estimate, as long as 𝙶in(𝛼) is
invertible. By a direct computation, we find

det 𝙶out(𝛼) = det 𝙶in(𝛼) =
i
2
sin

(
𝜋2

2𝛼

)
.

Therefore, 𝙶out(𝛼) and 𝙶in(𝛼) are invertible if and only if𝛼 is not exceptional. Observing that, again
by a direct calculation,

𝙰(𝛼) = 𝙶out(𝛼)(𝙶in(𝛼))
−1,

leads to (3.7).
Now suppose 𝛼 ∈  . In this case, given 𝐡in and 𝐡out satisfying (3.8), we want to find 𝐅 such that

we have (3.12). We will use the following.

Lemma 3.7. Let 𝛼 = 𝜋
2𝑘

∈  . Consider 𝙶out(𝛼) and 𝙶in(𝛼) as linear mappings ℂ2 → ℂ2. Then

Range 𝙶out(𝛼) = Spanℂ {𝐗(𝛼)}, Range 𝙶in(𝛼) = Spanℂ
{
𝐗⟂(𝛼)

}
.

and

Ker 𝙶out(𝛼) = Spanℂ {𝐊(𝛼)}, Ker 𝙶in(𝛼) = Spanℂ
{
𝐊⟂(𝛼)

}
,
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where

𝐊(𝛼) ∶=
1√
2

(
1

(𝛼)
)
=

1√
2

(
1

(−1)𝑘

)
, 𝐊⟂(𝛼) ∶=

1√
2

(
1

−(𝛼)
)
=

1√
2

(
1

(−1)𝑘+1

)
.

Proof of Lemma 3.7. We have in this case

𝙶out(𝛼) = e
−i𝜋∕4ei𝜋𝑘∕2

(
1 (−1)𝑘

i(−1)𝑘 i

)
, 𝙶in(𝛼) = e

−i𝜋∕4ei𝜋𝑘∕2
(
i(−1)𝑘 −i

1 −(−1)𝑘

)
,

and the statement follows by a direct computation and comparison with (2.12), (2.11) and
(2.14). □

By Lemma 3.7, the conditions (3.8) (or their equivalent form, see Remark 3.3), are the necessary
conditions for the solvability of (3.12). We can now assume 𝐡in = ℎin𝐗⟂(𝛼), 𝐡out = ℎout𝐗(𝛼)with
some constants ℎin, ℎout ∈ ℂ. Taking now

𝐅 =
ℎin

𝙶in(𝛼)𝐊(𝛼) ⋅ 𝐗⟂(𝛼)
𝐊(𝛼) +

ℎout
𝙶out(𝛼)𝐊

⟂(𝛼) ⋅ 𝐗(𝛼)
𝐊⟂(𝛼)

gives the desired result. Indeed, applying Lemma 3.7 again, we obtain

𝐺in(𝛼)𝐅 ⋅ 𝐗⟂(𝛼) = ℎin = 𝐡in ⋅ 𝐗
⟂(𝛼), 𝐺out(𝛼)𝐅 ⋅ 𝐗(𝛼) = ℎout = 𝐡out ⋅ 𝐗(𝛼),

and therefore (3.12).
We have now found a vector 𝐅 with the desired properties, and moreover ‖𝐅‖ ⩽ 𝐶𝛼(‖𝐡in‖ +‖𝐡out‖) for some constant 𝐶𝛼 depending only on 𝛼. Applying Proposition 3.6 with this vector 𝐅

completes the proof of Theorem 3.1.

Remark 3.8. Conditions (3.7) or (3.8) are not just sufficient but also necessary for the existence of
a solution (3.4) of (3.3), see [33, Remark 2.2].

Remark 3.9. The effects observed in Theorem 3.1 are similar to scattering. In fact, if we define

𝚂𝚌(𝛼) ∶=
⎛⎜⎜⎝
i cos 𝜋

2

2𝛼
sin 𝜋2

2𝛼

sin 𝜋2

2𝛼
i cos 𝜋

2

2𝛼

⎞⎟⎟⎠ , (3.13)

then 𝚂𝚌(𝛼) can be thought of as the scattering matrix for the Peters solutions: in the sense of
Theorem 3.1, we have (

ℎin,1
ℎout,2

)
= 𝚂𝚌(𝛼)

(
ℎin,2
ℎout,1

)
.

Then at exceptional angles the scattering is fully reflective and at special angles there is no
reflection at all. Therefore, we will from now on call the solutions (3.4) the scattering Peters
solutions.
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4 CONSTRUCTION OF QUASIMODES

4.1 General approach

The main purpose of this section is to prove the following theorem, which establishes that the
quasi-eigenvalues introduced in Definitions 2.3 and 2.10 are indeed approximate eigenvalues of
the Steklov problem (1.1).

Theorem4.1. Let be a curvilinear polygon, and let {𝜎𝑚} be its sequence of quasi-eigenvalues. Then
there exists a non-decreasing sequence {𝑖𝑚} and a sequence of positive real numbers {𝜀𝑚} approaching
zero such that

|𝜎𝑚 − 𝜆𝑖𝑚 | ⩽ 𝜀𝑚 for all𝑚.

We will prove Theorem 4.1 by constructing an appropriate sequence of quasimodes which we
first define in a very general setting.
Let be a curvilinear polygonwith all angles inΠ. Suppose that 𝜕 is decomposed in the union

𝜕𝑆 ⊔ 𝜕𝐷 ⊔ 𝜕𝑁 , where each of 𝜕𝑆 , 𝜕𝐷 and 𝜕𝑁 are unions of the boundary arcs (and thus
meet only at the vertices), with 𝜕𝑆 being non-empty.
Consider in  a mixed Steklov–Dirichlet–Neumann eigenvalue problem

Δ𝑢 = 0 in  , 𝜕𝑢
𝜕𝑛

= 𝜆𝑢 on 𝜕𝑆 , 𝑢 = 0 on 𝜕𝐷 , 𝜕𝑢
𝜕𝑛

= 0 on 𝜕𝑁 , (4.1)

and denote its eigenvalues and the corresponding eigenvectors by 𝜆𝑚, 𝑢𝑚, where𝑚 = 1, 2, … , and

‖𝑢𝑚‖𝐿2(𝜕𝑆) = 1.
Remark 4.2. Zigzag problems (2.36) are just special cases of (4.1), and we can define the partial
Dirichlet-to-Neumann map ,𝜕𝑆 for (4.1) analogously to (2.37).

Definition 4.3. A sequence of functions {𝑣𝑚} ⊂ 𝐻2()with ‖𝑣𝑚‖𝐿2(𝜕𝑆) = 1, is called a sequence
of quasimodes corresponding to amonotonically converging to+∞ sequence of quasi-eigenvalues
{𝜎𝑚} for the problem (4.1) if the three non-negative number sequences 𝜀(𝑗)𝑚 , 𝑗 = 1, 2, 3, defined by

𝜀(1)𝑚 ∶=
‖‖‖‖𝜕𝑣𝑚𝜕𝑛 − 𝜎𝑚𝑣𝑚

‖‖‖‖𝐿2(𝜕𝑆),
𝜀(2)𝑚 ∶=

‖‖‖‖𝜕𝑣𝑚𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑁) + ‖𝑣𝑚‖𝐻1(𝜕𝐷),
𝜀(3)𝑚 ∶= (𝜎𝑚 + 1)‖Δ𝑣𝑚‖𝐿2(),

all converge to zero as𝑚 → ∞. Moreover, for 𝛿𝑚 a given sequence converging to zero, we say {𝑣𝑚}
are quasimodes of order 𝛿𝑚 if there exists a constant 𝐶 > 0 independent of𝑚 such that

𝜀(1)𝑚 + 𝜀(2)𝑚 + 𝜀(3)𝑚 ⩽ 𝐶𝛿𝑚.
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The point of this definition is the following approximation result:

Theorem 4.4. Suppose that there exist sequences of quasi-eigenvalues {𝜎𝑚} and quasimodes {𝑣𝑚},
of order 𝛿𝑚, for the problem (4.1). Then there exist a sequence {𝑖𝑚} of non-negative integers and a
sequence of functions {𝑢𝑚} such that

|𝜎𝑚 − 𝜆𝑖𝑚 | ⩽ 𝐶𝛿𝑚 and ‖𝑣𝑚 − 𝑢𝑚‖𝐿2(𝜕𝑆) ⩽ 𝐶√𝛿𝑚,
with 𝐶 > 0 a constant independent of 𝑚, and with each 𝑢𝑚 being a linear combination of
eigenfunctions of (4.1) with eigenvalues in the interval [𝜎𝑚 − 𝐶

√
𝛿𝑚, 𝜎𝑚 + 𝐶

√
𝛿𝑚].

Remark 4.5. Later on in Sections 5 and 8, we will prove, for Steklov curvilinear polygons and
zigzag domains, that 𝑖𝑚 = 𝑚 under an appropriate choice of enumeration.

Assuming that quasimodes have been constructed, Theorem 4.4 almost immediately implies
Theorem 4.1. The only detail that remains is to show that the sequence {𝑖𝑚}may be chosen non-
decreasing. This can be done via the following manoeuvre: let

𝜀𝑚 ∶= sup
𝑘⩾𝑚

𝐶𝛿𝑘,

with 𝐶 as in Theorem 4.4. Observe that 𝜀𝑚 is now a decreasing sequence converging to zero. Now,
for each 𝑚, the interval (𝜎𝑚 − 𝜀𝑚, 𝜎𝑚 + 𝜀𝑚) must include at least one 𝜆𝑖 , and we redefine 𝑖𝑚 by
letting 𝑖𝑚 be the minimal index among such 𝜆𝑖 . We claim that {𝑖𝑚}, defined in this way, is a non-
decreasing sequence. Indeed since {𝜎𝑚} is increasing then 𝜎𝑚−1 − 𝜀𝑚−1 ⩽ 𝜎𝑚 − 𝜀𝑚. Therefore, the
interval (𝜎𝑚 − 𝜀𝑚, 𝜎𝑚 + 𝜀𝑚) cannot include any 𝜆𝑖 which both fails to be an element of (𝜎𝑚−1 −
𝜀𝑚−1, 𝜎𝑚−1 + 𝜀𝑚−1) and which is smaller than all 𝜆𝑖 in the latter interval. Thus, 𝑖𝑚 ⩾ 𝑖𝑚−1, so {𝑖𝑚}
is non-decreasing.
The proof of Theorem 4.1 has thus been reduced to the proof of Theorem 4.4 and the

construction of quasimodes for  satisfying Definition 4.3.

4.2 Boundary quasimodes: Justification of quasi-eigenvalue
definitions

Before proceeding to the proof of Theorem 4.1, we give a semi-informal justification of the quasi-
eigenvalueDefinitions 2.3 and 2.10, in the case of a purely Steklov polygon𝑃 = 𝑃(𝜶,𝓵)with 𝜕𝐷𝑃 =
𝜕𝑁𝑃 = ∅.
We introduce on 𝜕𝑃 near each vertex𝑉𝑗 the local coordinate 𝑠𝑗 such that 𝑠𝑗 is zero at𝑉𝑗 , negative

on the side 𝐼𝑗 , and positive on the side 𝐼𝑗+1. Note that on each side 𝐼𝑗 joining 𝑉𝑗−1 and 𝑉𝑗 we
have effectively two coordinates: the coordinate 𝑠𝑗 running from−𝓁𝑗 to 0, and the coordinate 𝑠𝑗−1
running from 0 to 𝓁𝑗 , related as

𝑠𝑗 = 𝑠𝑗−1 − 𝓁𝑗. (4.2)

Let 𝑗 be the orientation-preserving isometry of the complex plane which maps the sector
𝑉𝑗−1𝑉𝑗𝑉𝑗+1 into the sector𝔖𝛼𝑗

with the vertex at the origin. We will seek the quasimode waves
𝑣𝜎(𝑧) of our problem (1.1).
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F IGURE 9 A straight polygon with local coordinates

We first consider the situation when all angles are non-exceptional. Near each vertex 𝑉𝑗 , 𝑣𝜎(𝑧)
will be closely approximated by a specific scattering Peters solution constructed in Section 3.
Specifically we will have, for 𝑧 in a neighbourhood of 𝑉𝑗 ,

𝑣𝜎(𝑧) = Φ
(𝐜𝑗,in,𝐜𝑗,out)
𝛼𝑗

(𝜎𝑗𝑧) + 𝑜(1) as 𝜎 → ∞, (4.3)

where suitable values of the quasi-eigenvalues 𝜎 and the coefficients 𝐜𝑗,in, 𝐜𝑗,out ∈ ℂ2 are to be
determined. By Theorem 3.1(a), the vectors 𝐜𝑗,in, 𝐜𝑗,out should be related by

𝐜𝑗,out ∶= 𝙰(𝛼𝑗)𝐜𝑗,in (4.4)

to ensure the existence of the scattering Peters solutions. Note that these rescaled scattering Peters
solutions satisfy Steklov boundary conditions on the sides 𝐼𝑗 and 𝐼𝑗+1 with parameter 𝜎.
As a consequence of (3.2) and Theorem 3.1,

𝑣𝜎||𝜕Ω = Ψ + 𝑜(1) as 𝜎 → ∞,

where

Ψ|𝐼𝑗 (𝑠𝑗) =∶ Ψ𝑗(𝑠𝑗) = 𝐜𝑗,in ⋅ 𝐞(𝜎𝑠𝑗), (4.5)

or, alternatively, using the coordinate 𝑠𝑗−1,

Ψ𝑗(𝑠𝑗−1) = 𝐜𝑗−1,out ⋅ 𝐞(𝜎𝑠𝑗−1). (4.6)

If we want (4.5) and (4.6) to match, we must have, with account of (4.2),

𝐜𝑗,in = 𝙱(𝓁𝑗, 𝜎)𝐜𝑗−1,out. (4.7)

We call (4.5), or equivalently the vector 𝐜𝑗,in, the boundary quasi-wave incoming into 𝑉𝑗 (from
𝑉𝑗−1) and (4.6), or equivalently the vector 𝐜𝑗−1,out, the boundary quasi-wave outgoing from 𝑉𝑗−1
(towards 𝑉𝑗). In order for our scattering Peters solutions on 𝐼𝑗 to match, these must be related by
(4.7).
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This formulation allows us to think of our problem as a transfer problem. Consider a boundary
quasi-wave 𝐛 ∶= 𝐜𝑛,out outgoing from the vertex 𝑉𝑛 towards 𝑉1. It arrives at the vertex 𝑉1 as an
incoming quasi-wave 𝐜1,in = 𝙱(𝓁1, 𝜎)𝐛 and, according to Section 3 and (4.3), leaves 𝑉1 towards 𝑉2
as an outgoing quasi-wave

𝐜1,out = 𝙰(𝛼1)𝐜1,in = 𝙰(𝛼1)𝙱(𝓁1, 𝜎)𝐛.

It then arrives at 𝑉2 as an incoming quasi-wave

𝐜2,in = 𝙱(𝓁2, 𝜎)𝙰(𝛼1)𝙱(𝓁1, 𝜎)𝐛,

and leaves 𝑉2 towards 𝑉3 as an outgoing quasi-wave

𝐜2,out = 𝙰(𝛼2)𝙱(𝓁2, 𝜎)𝙰(𝛼1)𝙱(𝓁1, 𝜎)𝐛.

Continuing the process, we conclude that it arrives at 𝑉𝑛 as an incoming quasi-wave

𝐜𝑛,in = 𝙱(𝓁𝑛, 𝜎)
1∏

𝑗=𝑛−1

𝙰(𝛼𝑗)𝙱(𝓁𝑗, 𝜎)𝐛

and leaves 𝑉𝑛 towards 𝑉1 as an outgoing quasi-wave

𝐜𝑛,out =
1∏
𝑗=𝑛

𝙰(𝛼𝑗)𝙱(𝓁𝑗, 𝜎)𝐛.

This must match the original outgoing quasi-wave 𝐛, which imposes a quantisation condition on
𝜎:

𝚃(𝜶,𝓵, 𝜎)𝐛 = 𝐛,

thus justifying Definition 2.3.
Let us now deal with the situation when there are 𝐾 exceptional angles 𝛼𝐸1 , … , 𝛼𝐸𝐾 = 𝛼𝑛.

We will seek the quasimodes again in the form (4.3). At an exceptional vertex 𝑉𝐸𝜅 , 𝜅 = 1,… , 𝐾
the incoming and outgoing boundary quasi-waves must satisfy, according to Theorem 3.1, the
conditions (3.8), see also Remark 3.3, which take the form

𝐜𝐸𝜅,in ⟂ Spanℂ

{
𝐗
(
𝛼𝐸𝜅

)}
, 𝐜𝐸𝜅,out ∈ Spanℂ

{
𝐗
(
𝛼𝐸𝜅

)}
. (4.8)

Noting that the transfer along each exceptional boundary component joining𝑉𝐸𝜅−1 and𝑉𝐸𝜅 leads,
with account of re-labelling as in Section 2, to

𝐜𝐸𝜅,in = 𝚄(𝜶
′(𝜅),𝓵(𝜅), 𝜎)𝐜𝐸𝜅−1,out,

we arrive at (2.15), thus justifying Definition 2.10.
Although this justification was done in case of an exact polygon 𝑃, it also gives the correct

heuristics for a curvilinear polygon. The construction of quasimodes is more difficult, but as we
see in the next few sections, it can be done.
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To assist in this construction, we define some new notation. Observe that for each 𝑚 ∈ ℕ, the
quantisation condition gives a quasi-eigenvalue 𝜎𝑚, and also a corresponding collection of vectors
𝐜𝑗,in and 𝐜𝑗,out (which also depend on𝑚) which satisfy the transfer conditions (4.7) along each side
and either (4.4) or (4.8) at each corner depending onwhether or not the angle is exceptional. These
vectors 𝐜𝑗,in and 𝐜𝑗,out are the solutions of a system of linear equations, and if themultiplicity of 𝜎𝑚
is one then they are determined up to an overall multiplicative constant. These define a boundary
quasi-wave.

Definition 4.6. For each𝑚 ∈ ℕ, let Ψ(𝑚) be a boundary quasi-wave, defined by (4.5), associated
to the quasi-eigenvalue 𝜎𝑚, normalised so that ‖Ψ(𝑚)‖𝜕𝑃 = 1. The restrictions to 𝐼𝑗 of each Ψ(𝑚)
are denoted by Ψ(𝑚)

𝑗
.

Observe this definition may also be applied if the multiplicity of 𝜎𝑚 is greater than one, as then
the quasi-waves form a linear space of dimension greater than one. In this situation we simply
pick Ψ(𝑚) to be any boundary quasi-wave which is in that space, is normalised, and is orthogonal
to all previous choices of boundary quasi-waves for the same quasi-eigenvalue.

Remark 4.7. We note that all the vectors 𝐜𝑗,in and 𝐜𝑗,out may be chosen from ℂ2
conj

. In the non-
exceptional case, this is true for 𝐛 ∶= 𝐜𝑛,out by Lemma 2.5(c), and for the rest of the vectors by the
fact that matrices 𝙰(𝛼) and 𝙱(𝓁) preserve ℂ2

conj
. The exceptional case is similar.

Remark 4.8. Using a similar scheme, we may also define quasi-frequencies 𝜎𝑚 and boundary
quasi-wavesΨ(𝑚) for the mixed problem (4.1). The quasi-wavesΨ(𝑚) are supported on 𝜕𝑆 ∪ 𝜕𝑁
and vanish on 𝜕𝐷 . Suppose for the moment that 𝜕𝑆 is a single connected component, without
loss of generality beginning at vertex 𝑉1 and ending at vertex 𝑉𝑘. We define Ψ(𝑚) by specifying
collections 𝐜𝑗,in and 𝐜𝑗,out as before and then using (4.5). Along each side, we have the transfer
conditions (4.7), and at each non-end point vertex we have either (4.4) or (4.8) depending on
whether or not the angle is exceptional.
However, at the end point vertices 𝑉1 and 𝑉𝑘, something different happens: our Ψ(𝑚) must

be chosen to match the appropriate Peters sloping beach solution, either Dirichlet or Neumann.
Note that these are sloping beach solutions in a sector 𝔖𝛼 rather than 𝔖𝛼∕2, so the terminology
in Lemma 3.5 needs to be adjusted. Specifically, we consider the vectors obtained by taking (3.11)
and replacing 𝛼 with 2𝛼 throughout. These are

𝐠out,𝑁,2𝛼 =
⎛⎜⎜⎝
e−i(

𝜋
4
−𝜋

2

8𝛼
)

ei(
𝜋
4
−𝜋

2

8𝛼
)

⎞⎟⎟⎠ , 𝐠out,𝐷,2𝛼 =
⎛⎜⎜⎝
e−i(

𝜋
4
+𝜋

2

8𝛼
)

ei(
𝜋
4
+𝜋

2

8𝛼
)

⎞⎟⎟⎠ , (4.9)

with, as in (3.11),

𝐠in,𝑁,2𝛼 = 𝐠out,𝑁,2𝛼, 𝐠in,𝐷,2𝛼 = −𝐠out,𝑁,2𝛼.

Now suppose that 𝑉1 ∈ 𝜕ℵ and 𝑉𝑘 ∈ 𝜕ℶ , with ℵ,ℶ ∈ {𝑁,𝐷}. We require
𝐜1,out ∈ spanℝ(𝐠out,ℵ,2𝛼), 𝐜𝑘,in ∈ spanℝ(𝐠in,ℶ,2𝛼). (4.10)

Imposing the conditions (4.10), in addition to all the conditions previously discussed for the sides
and the non-end point vertices, leads to a quantisation condition for 𝜎, which yields a sequence of
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quasi-eigenvalues 𝜎𝑚, eachwith an accompanying collection of 𝐜𝑗,in and 𝐜𝑗,out. Thesemay then be
used to define Ψ(𝑚) as before. In the event that 𝜕𝑆 consists of multiple connected components,
each component is treated separately and independently.

4.3 Proof of Theorem 4.4

Lemma 4.9. Let  be a curvilinear polygon with all angles inΠ and the same conditions as before:
namely, that 𝜕 = 𝜕𝑆 ⊔ 𝜕𝐷 ⊔ 𝜕𝑁 , where each of 𝜕𝑆 , 𝜕𝐷 and 𝜕𝑁 are the unions of the
boundary arcs (and thus meet only at the vertices), with 𝜕𝑆 being non-empty.
Then the under-determined problem

⎧⎪⎨⎪⎩
Δ𝑤 = 𝑓1(𝑧) on  ,
𝜕𝑤
𝜕𝑛
= 𝑓2(𝑧) on 𝜕𝑁 ,

𝑤 = 𝑓3(𝑧) on 𝜕𝐷 ,
(4.11)

where 𝑓1 ∈ 𝐿2(), 𝑓2 ∈ 𝐿2(𝜕𝑁), and 𝑓3 ∈ 𝐻1(𝜕𝐷), has a solution 𝑤(𝑧) which satisfies the
following estimates on 𝜕𝑆 ,

‖𝑤‖𝐻1(𝜕𝑆) ⩽ 𝐶‖𝑓1‖𝐿2(), (4.12)

‖‖‖‖𝜕𝑤𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑆) ⩽ 𝐶
(‖𝑓1‖𝐿2() + ‖𝑓2‖𝐿2(𝜕𝑁) + ‖𝑓3‖𝐻1(𝜕𝐷)), (4.13)

where 𝐶 are constants depending only on  , 𝜕𝑆 , 𝜕𝑁 , and 𝜕𝐷 . In fact, the constant in (4.12)
depends only on the diameter of  .
Proof. Throughout, we let 𝐶 be various constants depending only on  , 𝜕𝑆 , 𝜕𝑁 , and 𝜕𝐷 . The
proof proceeds by first dealing with 𝑓1(𝑧), then with 𝑓2(𝑧) and 𝑓3(𝑧).
Let 𝐵 be a large disk compactly containing  , and let 𝑓1(𝑧) be the extension by zero of 𝑓1(𝑧) to

a function on 𝐵. Then certainly ‖𝑓1‖𝐿2(𝐵) = ‖𝑓1‖𝐿2(). By the usual elliptic estimate for the solu-
tion of the Poisson problem on a disk with Dirichlet boundary conditions, there exists a function
𝑤1(𝑧) ∈ 𝐻

2(𝐵) vanishing on the boundary 𝜕𝐵, with Δ𝑤1(𝑧) = 𝑓1(𝑧) and

‖𝑤1‖𝐻2(𝐵) ⩽ 𝐶‖𝑓1‖𝐿2().
Now let 𝐺 be any smooth non-self-intersecting arc in the interior of 𝐵. Let 𝐧𝐺 be a unit normal
vector field along 𝐺. Then let 𝐕 be a vector field on 𝐵 whose restriction to 𝐺 is 𝐧𝐺 and which is
bounded in the sense that 𝐕 ∶ 𝐻2(𝐵) → 𝐻1(𝐵) is bounded. By the trace theorem,

‖𝑤1‖𝐻1(𝐺) + ‖‖‖‖𝜕𝑤1𝜕𝑛 ‖‖‖‖𝐿2(𝐺) ⩽ 𝐶
(‖𝑤1‖𝐻3∕2(𝐵) + ‖‖𝐕𝑤1‖‖𝐻1∕2(𝐵)) ⩽ 𝐶(‖𝑤1‖𝐻2(𝐵) + ‖‖𝐕𝑤1‖‖𝐻1(𝐵)).

Therefore, by the definition of Sobolev norms and the elliptic estimate above,

‖𝑤1‖𝐻1(𝐺) + ‖‖‖‖𝜕𝑤1𝜕𝑛 ‖‖‖‖𝐿2(𝐺) ⩽ 𝐶‖𝑓1‖𝐿2(). (4.14)
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We note that (4.14) still holds if 𝐺 is a finite disjoint union of smooth non-self-intersecting
arcs 𝐺1,… , 𝐺𝑖 , and we interpret 𝐻1(𝐺) as the direct sum 𝐻1(𝐺1) ⊕⋯⊕𝐻1(𝐺𝑖). This applies, in
particular, with 𝐺 = 𝜕𝑆 , 𝜕𝑁 , and 𝜕𝐷 , so by combining all three estimates we certainly have

‖𝑤1‖𝐻1(𝜕) + ‖‖‖‖𝜕𝑤1𝜕𝑛 ‖‖‖‖𝐿2(𝜕) ⩽ 𝐶‖𝑓1‖𝐿2(). (4.15)

Now we would like to find a function 𝑤2 on  satisfying

⎧⎪⎪⎨⎪⎪⎩

Δ𝑤2 = 0 on  ,
𝜕𝑤2
𝜕𝑛

= 𝑓4(𝑧) ∶= 𝑓2(𝑧) −
𝜕𝑤1
𝜕𝑛

(𝑧) on 𝜕𝑁 ,
𝑤2 = 𝑓5(𝑧) ∶= 𝑓3(𝑧) − 𝑤1(𝑧) on 𝜕𝐷 ,
𝑤2 = 0 on 𝜕𝑆 .

(4.16)

Assuming such a function exists,𝑤 = 𝑤1 + 𝑤2 solves (4.11) and𝑤 = 𝑤1 on 𝑆, and we will see that
this 𝑤 satisfies (4.12) and (4.13).
To construct𝑤2, we can use the theory of boundary value problems on Lipschitz domains devel-

oped by Brown [8]. We have Dirichlet data on 𝜕𝐷 ∪ 𝜕𝑆 and Neumann datum on 𝜕𝑁 , so our
assumption on vertex angles tells us that the angles between components with Dirichlet data and
components with Neumann data are less than𝜋. This is precisely what is needed for the estimates
in [8] to hold. Specifically, since 𝜕𝑆 ∪ 𝜕𝐷 , the Dirichlet portion of the boundary, is nonempty,
the problem (4.16) has a unique solution [8, Theorem 2.1]. Moreover, by the same theorem and
the discussion after [8, formula (2.12)], we have the estimate

‖∇𝑤2‖2𝐿2(𝜕) ⩽ 𝐶(‖𝑓4‖2𝐿2(𝜕𝑁) + ‖∇tan𝑓5‖2𝐿2(𝜕𝐷)) + ‖𝑓5‖2𝐿2(𝜕𝐷)),
where ∇tan denotes a tangential derivative along 𝜕𝑁 . Note that we have omitted the portion of
this estimate involving 𝜕𝑆 because our Dirichlet datum on 𝜕𝑆 is trivial. Using the definition of
the𝐻1 norm, and restricting to 𝜕𝑆 ⊂ 𝜕 on the left-hand side, we obtain

‖‖‖‖𝜕𝑤2𝜕𝑛 ‖‖‖‖
2

𝐿2(𝜕𝑆)
⩽ 𝐶

(‖𝑓4‖2𝐿2(𝜕𝑁) + ‖𝑓5‖2𝐻1(𝜕𝐷)). (4.17)

This translates to‖‖‖‖𝜕𝑤2𝜕𝑛 ‖‖‖‖
2

𝐿2(𝜕𝑆)
⩽ 𝐶

(‖‖‖‖𝑓2 − 𝜕𝑤1𝜕𝑛 ‖‖‖‖
2

𝐿2(𝜕𝑁)
+ ‖𝑓3 − 𝑤1‖2𝐻1(𝜕𝐷)

)
. (4.18)

Removing the squares, using
√
𝑎2 + 𝑏2 ⩽ 𝑎 + 𝑏, gives

‖‖‖‖𝜕𝑤2𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑆) ⩽ 𝐶
(‖𝑓2‖𝐿2(𝜕𝑁) + ‖‖‖‖𝜕𝑤1𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑁) + ‖𝑓3‖𝐻1(𝜕𝐷) + ‖𝑤1(𝑧)‖𝐻1(𝜕𝐷)

)
.

Applying (4.14) with 𝐺 = 𝜕𝑁 and 𝐺 = 𝜕𝐷 gives

‖‖‖‖𝜕𝑤2𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑆) ⩽ 𝐶
(‖𝑓2‖𝐿2(𝜕𝑁) + ‖𝑓3‖𝐻1(𝜕𝐷) + ‖𝑓1‖𝐿2()). (4.19)
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Since 𝑤 = 𝑤1 on 𝜕𝑆 , (4.12) is instantaneous from (4.15). And (4.13) follows from 𝑤 = 𝑤1 + 𝑤2,
(4.15), and (4.19). This completes the proof of Lemma 4.9. □

Now we prove Theorem 4.4.

Proof of Theorem 4.4. The idea is to take a sequence of quasimodes, use Lemma 4.9 to correct them
to harmonic functions, then use some general linear algebra for the mixed Dirichlet-to-Neumann
operator developed in [33] to prove existence of nearby eigenvalues and eigenfunctions of (4.1).
So, let {𝑣𝑚} be a sequence of quasimodes of order 𝛿𝑚 for the problem (4.1), with the usual

assumptions on  . For each 𝑚 we use Lemma 4.9 to produce a function 𝑤𝑚 with Δ𝑤𝑚 = −Δ𝑣𝑚
on  , 𝜕

𝜕𝑛
𝑤𝑚 = −

𝜕
𝜕𝑛
𝑣𝑚 on 𝜕𝑁 , and 𝑤𝑚 = −𝑣𝑚 on 𝜕𝐷 . As a result, the functions

𝑣𝑚 ∶= 𝑣𝑚 + 𝑤𝑚

are harmonic on , satisfy Neumann boundary conditions on 𝜕𝑁 , and satisfy Dirichlet boundary
conditions on 𝜕𝐷 . Therefore, if we let 𝜙𝑚 = 𝑣𝑚|𝜕𝑆 , we have

 ,𝜕𝑆𝜙𝑚 =
𝜕𝑣𝑚
𝜕𝑛

.

By direct computation, on 𝜕𝑆 ,
 ,𝜕𝑆𝜙𝑚 − 𝜎𝑚𝜙𝑚 =

𝜕𝑣𝑚
𝜕𝑛

− 𝜎𝑚𝜙𝑚 =

(
𝜕𝑣𝑚
𝜕𝑛

− 𝜎𝑚𝑣𝑚

)
+
𝜕𝑤𝑚
𝜕𝑛

− 𝜎𝑚𝑤𝑚.

Using the triangle inequality,

‖ ,𝜕𝑆𝜙𝑚 − 𝜎𝑚𝜙𝑚‖𝐿2(𝜕𝑆) ⩽ ‖‖‖‖𝜕𝑣𝑚𝜕𝑛 − 𝜎𝑚𝑣𝑚
‖‖‖‖𝐿2(𝜕𝑆) + ‖𝜕𝑤𝑚𝜕𝑛 ‖𝐿2(𝜕𝑆) + ‖𝜎𝑚𝑤𝑚‖𝐿2(𝜕𝑆).

We can apply the estimates of Lemma 4.9 to bound the second and third terms on the right-hand
side. Using (4.13) and (4.12), respectively, along with the definition of 𝑤𝑚, yields

‖ ,𝜕𝑆𝜙𝑚 − 𝜎𝑚𝜙𝑚‖𝐿2(𝜕𝑆) ⩽ ‖‖‖‖𝜕𝑣𝑚𝜕𝑛 − 𝜎𝑚𝑣𝑚
‖‖‖‖𝐿2(𝜕𝑆)

+ 𝐶

(||Δ𝑣𝑚||𝐿2() + ‖‖‖‖𝜕𝑣𝑚𝜕𝑛 ‖‖‖‖𝐿2(𝜕𝑁) + ‖𝑣𝑚‖𝐻1(𝜕𝐷)
)

+ 𝐶𝜎𝑚‖Δ𝑣𝑚‖𝐿2().
(4.20)

But {𝑣𝑚} are quasimodes of order 𝛿𝑚. So, using the terminology of Definition 4.3, we have

‖ ,𝜕𝑆𝜙𝑚 − 𝜎𝑚𝜙𝑚‖𝐿2(𝜕𝑆) ⩽ 𝜀(1)𝑚 + 𝐶
(
𝜀(3)𝑚 + 𝜀(2)𝑚

)
+ 𝐶𝜀(3)𝑚 ⩽ 𝐶𝛿𝑚.

Since 𝛿𝑚 approaches zero as𝑚 → ∞, wemay apply [33, Theorem4.1], which gives the existence of
sequences {𝑖𝑚} and {𝑢𝑚}, with satisfying the eigenvalue bounds in Theorem4.4. Aswe are applying
that theorem to 𝜙𝑚 rather than to 𝑣𝑚 directly, the obtained eigenfunction bound appears slightly
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F IGURE 10 Boundary orthogonal coordinates for a curvilinear boundary

different from the one we want. We know

‖𝜙𝑚 − 𝑢𝑚‖𝐿2(𝜕𝑆) ⩽ 𝐶√𝛿𝑚.
We want to replace 𝜙𝑚 with 𝑣𝑚. However, (4.12) in Lemma 4.9 shows that

‖𝑣𝑚 − 𝜙𝑚‖𝐿2(𝜕𝑆) = ‖𝑤𝑚‖𝐿2(𝜕𝑆) ⩽ ‖𝑤𝑚‖𝐻1(𝜕𝑆) ⩽ 𝐶‖Δ𝑣𝑚‖𝐿2() ⩽ 𝐶𝜀(3)𝑚 ⩽ 𝐶𝛿𝑚 ⩽ 𝐶
√
𝛿𝑚.

Combining these last two equations using the triangle inequality yields the eigenfunction bound,
and with it Theorem 4.4. □

Remark 4.10. We can also consider ‘keyhole domains’  , that is, domains which have all the
same requirements on the angles but for which some components of 𝜕 coincide with each other,
with opposite orientations. An example is an annulus with a single, straight cut from the outside
to the inside. For these domains we may define quasimodes as in Definition 4.3. We claim that
Theorem 4.4 and Theorem 4.1 still hold in this setting. Indeed, the only difficulty is in the proof
of Lemma 4.9, which cannot be repeated verbatim as the argument with the larger disk does not
make sense. However, a keyhole domain may be conformallymapped to a non-keyhole domain,
with a conformal factor bounded above and below on  . In the case of an annulus with a single
straight cut along the negative real axis, this conformal map can be chosen to be the inverse of the
map 𝑧 ↦ 𝑧2. Applying Lemma 4.9 to the conformally related problem there and then pulling the
solution back to , absorbing the various conformal factors by possibly increasing the constant𝐶,
yields the result. The remainder of the arguments in this section, and in the proof of Theorem 4.1,
apply to keyhole and ordinary domains alike.

4.4 Quasimodes near a curved boundary

In this section, we construct functions that will be used to approximate our Steklov eigenfunctions
away from the corners but near a curved boundary.
Consider a domain Ω ⊂ ℝ2 with a boundary parameterised by arc length. Assume for the

moment that the boundary is smooth. Consider a patch (𝑠, 𝑡) of boundary orthogonal coordinates,
where 𝑠 is the coordinate along the boundary and 𝑡 is the normal coordinate, positive into the
interior. Ideally, we would like to find functions 𝑤𝜎(𝑠, 𝑡) that are harmonic, satisfy the Steklov
boundary condition with parameter 𝜎, and for which 𝑤𝜎(𝑠, 0) = e𝜎i𝑠 (see Figure 10). Our ansatz
will be of the form

𝑤𝜎(𝑠, 𝑡) = e
𝜎𝜔(𝑠,𝑡),
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where 𝜔(𝑠, 𝑡) is a complex-valued function with 𝜔(𝑠, 0) = i𝑠. By immediate computation, under
these assumptions, the Steklov boundary condition with parameter 𝜎 is precisely

𝜕𝜔
𝜕𝑡
(𝑠, 0) = −1. (4.21)

Now we write out the Laplacian. Let 𝛾(𝑠) be the signed curvature of the boundary. Set

Γ(𝑠, 𝑡) ∶= 1 + 𝑡𝛾(𝑠).

Then from [11], the expression for the Laplacian in our orthogonal coordinates is

Δ ∶= Γ−1∕2
(
−
𝜕
𝜕𝑠
Γ−2

𝜕
𝜕𝑠
−
𝜕2

𝜕𝑡2

)
Γ1∕2 −

𝛾2

4Γ2
+
𝑡𝛾′′

2Γ3
−
5𝑡2(𝛾′)2

4Γ4
.

By direct computation, collecting powers of 𝜎,

Δ𝑤𝜎 = −𝜎
2

((
𝜕𝜔
𝜕𝑡

)2
+ Γ−2

(
𝜕𝜔
𝜕𝑠

)2)
𝑤𝜎

−𝜎

(
𝜕2𝜔

𝜕𝑡2
+ Γ−1

𝜕𝜔
𝜕𝑡
𝜕Γ
𝜕𝑡
+ Γ−2

𝜕2𝜔

𝜕𝑠2
− Γ−3

𝜕𝜔
𝜕𝑠
𝜕Γ
𝜕𝑠

)
𝑤𝜎.

This may be rewritten in a ‘factorised’ form:

Δ𝑤𝜎 = − 𝜎2
(
𝜕𝜔
𝜕𝑡
+ iΓ−1

𝜕𝜔
𝜕𝑠

)(
𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
𝑤𝜎

− 𝜎

(
𝜕
𝜕𝑡
+ iΓ−1

𝜕
𝜕𝑠
+ Γ−1

𝜕Γ
𝜕𝑡

)(
𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
𝑤𝜎.

(4.22)

Therefore, 𝑤𝜎(𝑠, 𝑡) is harmonic for all 𝜎 if and only if

⎧⎪⎪⎨⎪⎪⎩

(
𝜕𝜔
𝜕𝑡
+ iΓ−1

𝜕𝜔
𝜕𝑠

)(
𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
= 0;(

𝜕
𝜕𝑡
+ iΓ−1

𝜕
𝜕𝑠
+ Γ−1

𝜕Γ
𝜕𝑡

)(
𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
= 0.

(4.23)

Proposition 4.11. Suppose that 𝜔(𝑠, 𝑡) satisfies the initial value problem{
𝜕𝜔
𝜕𝑡

= iΓ−1
𝜕𝜔
𝜕𝑠
,

𝜔(𝑠, 0) = i𝑠,
(4.24)

in a patchwith coordinates (𝑠, 𝑡). Then𝑤𝜎(𝑠, 𝑡) = e𝜎i𝜔(𝑠,𝑡) is harmonic for all 𝜎 and satisfies a Steklov
boundary condition with parameter 𝜎.

Proof. The Steklov boundary condition (4.21) is automatic from (4.24) and the fact that Γ(𝑠, 0) = 1,
and (4.23) follows instantly from (4.24) as well. □
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Now consider the problem (4.24). In the setting where the boundary is analytic, then the cur-
vature 𝛾(𝑠) is analytic, and hence Γ(𝑠, 𝑡) is analytic. By the Cauchy–Kovalevskaya theorem the
problem (4.24) has a unique solution in that setting, and the coefficients of its power series in 𝑡
may be determined recursively. However, if the curvature 𝛾(𝑠) is only assumed 𝐶∞ or less, the
problem may have no solution; there is always a power series expansion, but it may not converge
for any positive 𝑡.
Nevertheless, approximate solutions may be constructed by truncation of the formal power

series expansion. Define a set of functions {𝜔𝑗(𝑠)} recursively by

𝜔0(𝑠) ∶= 𝑖𝑠; 𝜔𝑗(𝑠) ∶=
i
𝑗
𝜔′𝑗−1(𝑠) −

𝑗 − 1

𝑗
𝛾(𝑠)𝜔𝑗−1(𝑠) for 𝑗 ⩾ 1. (4.25)

Note that this process works to produce𝜔𝑀(𝑠) for an integer𝑀 ⩾ 0 as long as 𝛾(𝑠) is (𝑀 − 2) times
differentiable, that is, as long as the boundary is 𝐶𝑀 . Then set

𝜔𝑀(𝑠, 𝑡) ∶=
𝑀∑
𝑗=0

𝜔𝑗(𝑠)𝑡
𝑗 and 𝜔𝑀(𝑠) ∶= 𝑀𝜔𝑀(𝑠) − i𝜔

′
𝑀(𝑠), (4.26)

with the latter definition making sense as long as 𝛾(𝑠) is (𝑀 − 1) times differentiable. If addi-
tionally 𝛾(𝑠) is 𝐶𝑀−1, that is, the boundary is 𝐶𝑀+1, then 𝜔𝑀(𝑠) is a continuous function of
𝑠.

Proposition 4.12. Suppose the curvature 𝛾(𝑠) is (𝑀 − 1) times differentiable. Then the function
𝜔𝑀(𝑠, 𝑡) defined by (4.26) satisfies(

𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
𝜔𝑀(𝑠, 𝑡) = Γ

−1𝜔𝑀(𝑠)𝑡
𝑀

and thus may be interpreted as an order-𝑀 approximate solution of (4.24).

Proof. We compute, multiplying by Γ (bounded above and below in a neighbourhood of the
boundary) for convenience:

Γ

(
𝜕
𝜕𝑡
− iΓ−1

𝜕
𝜕𝑠

) 𝑀∑
𝑗=0

𝜔𝑗(𝑠)𝑡
𝑗 =

𝑀∑
𝑗=1

𝑗𝜔𝑗(𝑠)(1 + 𝑡𝛾(𝑠))𝑡
𝑗−1 −

𝑀∑
𝑗=0

i𝜔′𝑗(𝑠)𝑡
𝑗.

Rearranging and re-labelling,

Γ

(
𝜕
𝜕𝑡
− iΓ−1

𝜕
𝜕𝑠

) 𝑀∑
𝑗=0

𝜔𝑗(𝑠)𝑡
𝑗 =

𝑀−1∑
𝑗=0

(𝑗 + 1)𝜔𝑗+1(𝑠)𝑡
𝑗 +

𝑀∑
𝑗=1

𝑗𝜔𝑗(𝑠)𝛾(𝑠)𝑡
𝑗 −

𝑀∑
𝑗=0

i𝜔′𝑗(𝑠)𝑡
𝑗.

We may as well add 𝑗 = 0 to the second sum, since it is zero. Rearranging yet again, we see that
the recursion relation causes most of the terms to cancel, yielding

Γ

(
𝜕𝜔
𝜕𝑡
− iΓ−1

𝜕𝜔
𝜕𝑠

)
𝜔𝑀(𝑠, 𝑡) = 𝑀𝜔𝑀(𝑠)𝛾(𝑠)𝑡

𝑀 − i𝜔′𝑀(𝑠)𝑡
𝑀. (4.27)

The proposition then follows from the definition of 𝜔𝑀(𝑠). □



44 LEVITIN et al.

Now, formally, assuming that 𝛾(𝑠) is (𝑀 − 2) times differentiable, we set

𝑤𝜎,𝑀(𝑠, 𝑡) = e
𝜎𝜔𝑀(𝑠,𝑡). (4.28)

This function immediately satisfies a Steklov boundary condition with parameter 𝜎, and further:

Proposition 4.13. There exist constants 𝐶 < ∞ and 𝑐 > 0, and a sufficiently small 𝑡0, such that in
our patch (𝑠, 𝑡) with 𝑡 < 𝑡0,

|𝑤𝜎,𝑀(𝑠, 𝑡)| ⩽ 𝐶e−𝜎𝑐𝑡. (4.29)

If 𝛾(𝑠) is (𝑀 − 1) times differentiable, we have similar constants such that

|∇𝑤𝜎,𝑀(𝑠, 𝑡)| ⩽ 𝐶𝜎e−𝜎𝑐𝑡. (4.30)

Finally if 𝛾(𝑠) is𝑀 times differentiable with𝑀 ⩾ 1, then also𝑤𝜎,𝑀 is approximately harmonic in the
sense that

|Δ𝑤𝜎,𝑀(𝑠, 𝑡)| ⩽ 𝐶(𝜎2𝑡𝑀 + 𝜎𝑡𝑀−1)e−𝜎𝑐𝑡. (4.31)

Proof. The estimate on |𝑤𝜎,𝑀| is immediate since 𝜔𝑀 is simply a polynomial in 𝑡 with the leading
terms (i𝑠 − 𝑡). Indeed, with a sufficiently small neighbourhood, 𝑐 and 𝐶may be chosen arbitrarily
close to one.
Taking a derivative in 𝑠 or 𝑡 multiplies 𝑤𝜎,𝑀 by 𝜎 times the appropriate derivative of 𝜔𝑀(𝑠, 𝑡).

That derivative is again a polynomial in 𝑡 with coefficients that may depend on, now, (𝑀 − 1)

derivatives of curvature. Its leading term is either i for an 𝑠-derivative or−1 for a 𝑡-derivative. The
result follows.
To compute Δ𝑤𝜎,𝑀(𝑠, 𝑡), we use (4.22) and Proposition 4.12 to obtain

Δ𝑤𝜎,𝑀(𝑠, 𝑡)

𝑤𝜎,𝑀(𝑠, 𝑡)
= −𝜎2

(
𝜕𝜔
𝜕𝑡
+ iΓ−1

𝜕𝜔
𝜕𝑠

)
Γ−1𝜔𝑀(𝑠)𝑡

𝑀

−𝜎

(
𝜕
𝜕𝑡
+ iΓ−1

𝜕
𝜕𝑠
+ Γ−1

𝜕Γ
𝜕𝑡

)
Γ−1𝜔𝑀(𝑠)𝑡

𝑀.

(4.32)

When computed, each term is a fraction with denominator some power of 𝑚 and numerator a
polynomial in 𝑡 with coefficients depending on curvature. The number of derivatives of curvature
that appear is at mostmax{1,𝑀}, the𝑀 from taking 𝜔′

𝑀
(𝑠) and the 1 from taking 𝜕Γ

𝜕𝑠
. The leading

order terms are 𝜎2𝑡𝑀 and 𝜎𝑡𝑀−1, yielding the result. □

4.5 Quasimodes for a partially curvilinear polygon or zigzag

We recall that a polygon or a zigzag is called partially curvilinear if all the sides are straight in
some neighbourhoods of the vertices. In this subsection, we construct quasimodes for partially
curvilinear polygons, proving the following theorem:
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Theorem 4.14. Let  be a partially curvilinear polygon, and consider the mixed Steklov–Dirichlet–
Neumann problem (4.1). Assume additionally that 𝜕𝑆 ≠ ∅, and that the curvature of each side in
𝜕𝑆 is𝑀 times differentiable with𝑀 ⩾ 3. Finally, assume 𝛿 > 1, where

𝛿 = min

({
𝜋
𝛼𝑘

∶ 𝑉𝑘 ∉ (𝜕𝐷 ∪ 𝜕𝑁)
}

∪

{
𝜋
2𝛼𝑘

∶ 𝑉𝑘 ∈ (𝜕𝑆) ∩ (𝜕𝐷 ∪ 𝜕𝑁), 𝛼𝑘 ≠ 𝜋∕2
}
∪
{
𝑀 −

3
2

})
.

(4.33)

Then there exists a sequence of quasimodes {𝑣𝑚} for the problem (4.1), of order 𝜎−𝛿+1𝑚 .

Remark 4.15. The condition that 𝛿 > 1 is implied by the following: all Steklov–Dirichlet and
Steklov–Neumann angles are less than or equal to 𝜋∕2, and each side with a Steklov boundary
condition has at least 𝐶5 regularity. Sides in 𝜕𝐷 ∪ 𝜕𝑁 need only be differentiable.

Remark 4.16. This theorem covers the case of zigzag domains.

Using Theorem 4.4, and applying the same argument as in the proof of Theorem 4.1, see the
paragraph after Theorem 4.4, we immediately obtain as a consequence:

Corollary 4.17. For a partially curvilinear polygon that satisfies the assumptions of Theorem 4.14,
there is a non-decreasing sequence {𝑖𝑚} and a constant 𝐶 > 0 such that

|𝜎𝑚 − 𝜆𝑖𝑚 | ⩽ 𝐶𝜎−𝛿+1𝑚 for all𝑚 ∈ ℕ,

where the 𝜆𝑖𝑚 are eigenvalues of the problem (4.1). There is also a sequence of 𝑢𝑚 as in Theorem 4.4,
with 𝛿𝑚 = 𝜎−𝛿+1𝑚 .

To begin the quasimode construction for  , first define a partition of unity
1 = 𝜒𝑉(𝑧) + 𝜒𝐼(𝑧) + 𝜒0(𝑧),

such that (see Figure 11)

∙ 𝜒𝑉 is supported in a union of pairwise disjoint neighbourhoods of each vertex in which  is
isometric to an exact wedge;

∙ 𝜒𝐼 is supported in a union of pairwise disjoint neighbourhoods of the portion of each edge away
from the vertices;

∙ 𝜒0 has support compactly contained in the interior of  ;
∙ ∇𝜒𝑉 (and therefore ∇𝜒𝐼) is perpendicular to the normal vector 𝐧 on the boundary 𝜕 , that is,
each of our cut-off functions has zero normal derivative on 𝜕 .
A partition of unity with the required properties can be constructed, for example, in the follow-

ing manner. First, let 𝜒(𝑥) be a standard smooth nonnegative cut-off function defined on [0, +∞)
such that

𝜒(𝑥) = 1 or 𝑥 ∈ [0, 1], 𝜒(𝑥) = 0 for 𝑥 ∈ [2,∞). (4.34)
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F IGURE 11 Partition of unity and boundary coordinates in a neighbourhood of 𝑉𝑗

Then, working in local polar coordinates (𝜌𝑗, 𝜃𝑗) in the vicinity of each vertex 𝑉𝑗 , set 𝜒𝑉𝑗 =
𝜒(𝜌𝑗∕𝜀𝑗), choosing the parameters 𝜀𝑗 > 0 in such away that supp𝜒𝑉𝑗 does not intersect the curved
part of the boundary, and that supp𝜒𝑉𝑗 ∩ supp𝜒𝑉𝑘 = ∅ for 𝑘 ≠ 𝑗, and define

𝜒𝑉 ∶=
𝑛∑
𝑗=1

𝜒𝑉𝑗 .

Further, working in the vicinity of each side 𝐼𝑗 in local coordinates (𝑠𝑗, 𝑡𝑗), as shown in Figure 11,
set 𝜒𝐼𝑗 = 𝜒(𝑡𝑗∕𝛿𝑗)(1 − 𝜒𝑉) and

𝜒𝐼 ∶=
𝑛∑
𝑗=1

𝜒𝐼𝑗 ,

again choosing the parameters 𝛿𝑗 > 0 in order to make sure that supp𝜒𝐼𝑗 ∩ supp𝜒𝐼𝑘 = ∅ for 𝑘 ≠
𝑗. Finally, set

𝜒0 ∶= 1 − 𝜒𝑉 − 𝜒𝐼.

Now, for each𝑚 ∈ ℕ, recall that we have an eigenvalue 𝜎𝑚 and a boundary quasi-waveΨ(𝑚)(𝑠).
We use these data to define two functions 𝑣𝑚,𝑉(𝑧) and 𝑣𝑚,𝐼(𝑧)which are supported on the supports
of 𝜒𝑉 and 𝜒𝐼 , respectively. To define 𝑣𝑚,𝑉(𝑧), we need to prescribe its value for 𝑧 in a neigh-
bourhood of each vertex 𝑉𝑗 . So, fix a 𝑗 and suppose that 𝑧 is in a small neighbourhood of 𝑉𝑗 .
The boundary quasi-wave Ψ(𝑚)(𝑠) gives coefficients 𝐜𝑗,in and 𝐜𝑗,out which satisfy the appropriate
transfer conditions at 𝑉𝑗 . We may therefore let, as in (4.3),

𝑣𝑚,𝑉(𝑧) ∶= Φ
(𝐜𝑗,in,𝐜𝑗,out)
𝛼𝑗

(𝜎𝑚𝑗𝑧). (4.35)

Putting these together for each 𝑗 gives a full definition of 𝑣𝑚,𝑉(𝑧).
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To define 𝑣𝑚,𝐼(𝑧), we localise to the edge 𝐼𝑗 . We assume without loss of generality that the
boundary orthogonal coordinates (𝑠𝑗, 𝑡𝑗) are valid on the connected component of the support of
𝜒𝐼 which intersects 𝐼𝑗 (if not, take 𝜒𝐼 supported closer to the boundary). In this neighbourhood,
we expect 𝑣𝑚,𝐼(𝑠𝑗, 0) to equal Ψ

(𝑚)
𝑗
(𝑠𝑗). So, we use a solution of the form (4.28), namely, for some

𝑀 to be chosen later,

𝑣𝑚,𝐼(𝑧) ∶= Re(𝑤𝜎𝑚,𝑀(𝑠𝑗 + 𝛽, 𝑡𝑗)),

where the shift 𝛽 is chosen so that

Re(𝑤𝜎𝑚,𝑀(𝑠𝑗 + 𝛽, 0)) = Ψ
(𝑚)
𝑗
(𝑠𝑗).

Our overall quasimode is obtained by gluing these together in the obvious way:

𝑣𝑚(𝑧) ∶= 𝜒𝑉(𝑧)𝑣𝑚,𝑉(𝑧) + 𝜒𝐼(𝑧)𝑣𝑚,𝐼(𝑧).

We now claim that {𝑣𝑚} is a sequence of quasimodes for (4.1), of order 𝜎−𝛿+1𝑚 . Indeed, using the
terminology of Definition 4.3, we see that 𝜀(2)𝑚 = 0, as because ∇𝜒𝑉 and ∇𝜒𝐼 are perpendicular to
the normal to the boundary, the functions {𝑣𝑚} satisfy all Dirichlet and Neumann conditions of
(4.1). Moreover, for the same reason, together with the fact that 𝑣𝑚,𝑉(𝑧) and 𝑣𝑚,𝐼(𝑧) both satisfy
the Steklov conditions of (4.1) on 𝜕𝑆 , with frequency𝜎𝑚, we have 𝜀(1)𝑚 (𝑧) = 0. Thus, the only issue
is 𝜀(3)𝑚 and indeed this is nonzero, as 𝑣𝑚 may not be harmonic. We may compute its Laplacian and
use the fact that 𝑣𝑚,𝑉(𝑧) is harmonic to obtain

Δ𝑣𝑚(𝑧) = 2∇𝑣𝑚,𝑉(𝑧) ⋅∇𝜒𝑉(𝑧) + 𝑣𝑚,𝑉(𝑧)Δ𝜒𝑉(𝑧) + Δ𝑣𝑚,𝐼(𝑧)𝜒𝐼(𝑧)

+ 2∇𝑣𝑚,𝐼(𝑧) ⋅∇𝜒𝐼(𝑧) + 𝑣𝑚,𝐼(𝑧)Δ𝜒𝐼(𝑧).
(4.36)

The third term of (4.36) is nonzero on the support of𝜒𝐼(𝑧). However, by Proposition 4.13, we have

|Δ𝑣𝑚,𝐼(𝑧)| ⩽ 𝐶(𝜎2𝑚𝑡𝑀 + 𝜎𝑚𝑡𝑀−1)e−𝜎𝑚𝑐𝑡.
By a direct calculation, the 𝐿2 norm of this term over the support of 𝜒𝐼(𝑧), indeed all the way out
to 𝑡 = ∞, is bounded by a universal constant 𝐶 times 𝜎3∕2−𝑀𝑚 , and thus by 𝐶𝜎−𝛿𝑚 .
Thus, we may turn our attention to estimating the other four terms of (4.36), which are only

nonzero on the transition regions where the gradients of some elements of the partition of unity
are nonzero. These regions have two types: the ones contained in the support of 𝜒0(𝑧), and the
ones where only 𝜒𝑉(𝑧) and 𝜒𝐼(𝑧) are nonzero. We consider each in turn.
First consider the support of𝜒0(𝑧), which is compactly contained in the interior of . By Propo-

sition 4.13, the fourth and fifth terms of (4.36) decay uniformly exponentially in𝑚 on this region.
As for the first two terms, recall (4.35), which identifies 𝑣𝑚(𝑧) with a function Φ. The function Φ
is a linear combination of plane waves with frequency 𝜎𝑚 and remainder terms 𝑅(𝜎𝑚𝑗𝑧), with
𝑅(𝑧) satisfying (3.5) for various values of 𝑟 depending on the boundary conditions. On the support
of 𝜒0(𝑧), the plane waves decay uniformly exponentially in 𝑚 as well (and are zero away from
neighbourhoods of each vertex, as there 𝜒𝑉(𝑧) is zero). The decay of the remainder terms can be
computed using the chain rule, scaling, and (3.5). Using these and the fact that 𝑑(𝑧, 𝑉𝑗) is bounded
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uniformly above and below on these regions, we have that on the support of 𝜒0(𝑧),

|𝑅(𝜎𝑚𝑗𝑧)| + |∇𝑧𝑅(𝜎𝑚𝑗𝑧)| ⩽ 𝐶𝜎−𝑟𝑚 . (4.37)

The same estimate therefore applies to the 𝐿2 norm of each term. Not that the constant 𝐶 a priori
may depend on Ψ(𝑚), in particular on the norms of various Ψ(𝑚)

𝑗
. However, the normalisation

condition on Ψ(𝑚) implies that these norms are universally bounded independent of𝑚, and thus
𝐶 may be taken independent of𝑚.
As for the exponent 𝑟, it depends on the angle. If𝑉𝑗 ∉ (𝜕𝐷 ∪ 𝜕𝑁), we have a Steklov–Steklov

corner andwe extract 𝑟 = 𝜇𝛼𝑗∕2 = 𝜋∕𝛼𝑗 . If𝑉𝑗 ∈ 𝜕𝑆 ∩ 𝜕𝐷 or𝑉𝑗 ∈ 𝜕𝑆 ∩ 𝜕𝑁 , we get 𝑟 = 𝜇𝛼𝑗 =
𝜋∕(2𝛼𝑗), unless𝛼𝑗 = 𝜋∕2, inwhich case the remainder termvanishes, since a sloping beach Peters
solution in this case is a pure plane wave. If 𝑉𝑗 ∉ 𝜕𝑆 , then 𝑣𝑚(𝑧) is identically zero and we do
not care about it. Overall, from our observations and (4.37), we obtain precisely that

‖Δ𝑣𝑚(𝑧)‖𝐿2(supp𝜒0) ⩽ 𝐶𝜎−𝛿𝑚 ,
where 𝛿 is given by (4.33).
Finally, consider the first, second, fourth, and fifth terms of (4.36) in a region where 𝜒𝑉(𝑧) and

𝜒𝐼(𝑧) are nonzero — specifically assume we are along some edge 𝐼𝑗 , without loss of generality
near a vertex 𝑉𝑗 rather than 𝑉𝑗−1. By our geometric assumptions, in this region, the boundary
is a straight line. Therefore, 𝑣𝑚,𝐼(𝑧) is equal to a plane wave with frequency 𝜎𝑚 and boundary
phase Ψ(𝑚)

𝑗
. Moreover, by (4.35), 𝑣𝑚,𝑉(𝑧) is a solution Φ which equals a plane wave along 𝐼𝑗 with

phase 𝐜𝑗,in, plus a plane wave along 𝐼𝑗+1 with phase 𝐜𝑗,out, plus a remainder term 𝑅(𝜎𝑚𝑗(𝑧))
for some 𝑗. By definition of Ψ(𝑚)

𝑗
, the plane wave along 𝐼𝑗 is exactly 𝑣𝑚,𝐼(𝑧). We also observe that

∇𝜒𝐼(𝑧) = −∇𝜒𝑉(𝑧) and Δ𝜒𝐼(𝑧) = −Δ𝜒𝑉(𝑧). This allows us to combine the first, second, fourth,
and fifth terms of (4.36) as

2∇𝑅(𝜎𝑚𝑗(𝑧)) ⋅∇𝜒𝐼(𝑧) + 𝑅(𝜎𝑚𝑗(𝑧))Δ𝜒𝑉(𝑧), (4.38)

plus two further terms from the planewave along 𝐼𝑗+1, which both decay exponentially, uniformly
on our region. Estimating the 𝑅 terms may now be handled precisely as it was on the support of
𝜒0, and the 𝐿2 norm here is no worse than 𝐶𝜎−𝛿𝑚 .
Overall, putting everything together, we have proven that for some constant 𝐶 independent of

𝑚,

‖Δ𝑣𝑚(𝑧)‖𝐿2() ⩽ 𝐶𝜎−𝛿𝑚 .
This shows that we may take 𝜀(𝑚)

3
= 𝐶(𝜎𝑚 + 1)𝜎

−𝛿
𝑚 ⩽ 𝐶𝜎−𝛿+1𝑚 in Definition 4.3, which completes

the proof of the results in this section.
There is an important special case in which we get enumeration as well.

Corollary 4.18. Suppose that  is a partially curvilinear polygon satisfying the conditions of The-
orem 4.14, with𝑀 ⩾ 4 (so that the boundary is 𝐶6). Suppose further that 𝜕𝑆 is a single boundary
arc, and that the angle at each end is 𝜋∕2. Then there exists a constant 𝐶 > 0 such that for all𝑚,

|𝜎𝑚 − 𝜆𝑚| ⩽ 𝐶𝜎−𝑀+52𝑚 .
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Proof. First observe that Theorem 4.14 applies with 𝛿 = 𝑀 − 3
2
, in particular with 𝛿 > 2. Consider

our quasimodes 𝑣𝑚. Since the two angles at each end of 𝜕𝑆 are 𝜋∕2, the sloping beach Peters
solutions are exact plane waves and the remainders 𝑅(𝑧) are all zero. By construction, in this
case, the restrictions 𝜙𝑚 = 𝑣𝑚|𝜕𝑆 are exact trigonometric functions, of frequency 𝜎𝑚, satisfying
Dirichlet or Neumann conditions at each end. Moreover, again by direct calculation, {𝜎𝑚} are
precisely the eigenvalues, and {𝜙𝑚} the eigenfunctions, of the one-dimensional Laplacian Δ𝜕𝑆
with Dirichlet or Neumann boundary conditions at each end as appropriate. Each 𝜎𝑚 is simple
and a (half-)integer multiple of 𝜋∕𝐿, and they form an arithmetic progression.
Consider the set {𝑢𝑚} given by Corollary 4.17. Each 𝑢𝑚 is a linear combination of true

eigenfunctions of (4.1), with eigenvalues within 𝐶𝜎
(−𝑀+5

2
)∕2

𝑚 of 𝜎𝑚, and we also have

‖𝑢𝑚 − 𝜙𝑚‖𝐿2(𝜕𝑆) ⩽ 𝐶𝜎(−𝑀+52 )∕2𝑚 .

Since 𝑀 ⩾ 4, the sequence ‖𝑢𝑚 − 𝜙𝑚‖𝐿2(𝜕𝑆) is square summable. Hence, there is an 𝑀0 such
that

∞∑
𝑘=𝑀0+1

‖𝑢𝑘 − 𝜙𝑘‖2𝐿2(𝜕𝑆) < 1.
Additionally, since 𝜎𝑚+1 − 𝜎𝑚 is bounded away from zero, at some point the intervals

𝐸𝑚 ∶=
[
𝜎𝑚 − 𝐶𝜎

−𝛿+1
𝑚 , 𝜎𝑚 + 𝐶𝜎

−𝛿+1
𝑚

]
,

where 𝐶 and 𝛿 are as in Corollary 4.17, become disjoint from all preceding intervals. In other
words, there exists𝑀1 ∈ ℕ such that𝑚 ⩾ 𝑀1 implies

𝐸𝑚 ∩ 𝐸𝑘 = ∅ (4.39)

for all 𝑘 ∈ ℕ, 𝑘 ≠ 𝑚. For that𝑀1, all the functions 𝑢𝑚,𝑚 ⩾ 𝑀1, are linear combinations of eigen-
functions of (4.1) corresponding to non-intersecting spectral windows, and therefore aremutually
orthogonal. Now let 𝑀2 = max{𝑀0,𝑀1}, pick any 𝑚 such that 𝑚 ⩾ 𝑀2, and consider the two
subspaces

span{𝜙𝑚+1, 𝜙𝑚+2, …} and span{𝑢𝑚+1, 𝑢𝑚+2, …}.

By the version of the Bary–Krein lemma given in [33, Lemma 4.8], and the fact that 𝑚 ⩾

𝑀0, these two subspaces have the same codimension. Since {𝜙𝑚} are the eigenfunctions of a
one-dimensional problem, they form a complete orthonormal basis of 𝐿2(𝜕𝑆), and hence

codim(span{𝑢𝑚+1, 𝑢𝑚+2, …}) = codim(span{𝜙𝑚+1, 𝜙𝑚+2, …}) = 𝑚.

Thismeans in particular that atmost finitelymany𝑢𝑗 can be linear combinations ofmore than one
eigenfunction of (4.1), otherwise the codimensionwould be infinite. So, there exists𝑀3 ⩾ 𝑀2 such
that 𝑗 ⩾ 𝑀3 implies that𝑢𝑗 is a pure eigenfunction of (4.1), that is,𝑢𝑗 = 𝑢Λ(𝑗) for some functionΛ ∶
{𝑀3 + 1,𝑀3 + 2,…} → ℕ. As a consequence of (4.39), this function is strictly increasing, and the
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complement of its range has𝑀3 elements. So, the complement of its range has a largest element,
and beyond that we must have Λ(𝑗) = 𝑗. Therefore, for sufficiently large𝑚, 𝑢𝑚 = 𝑢𝑚.
Thus, the eigenvalue 𝜆𝑚 is within 𝐶

√
𝜎𝑚 of 𝜎𝑚 for sufficiently large 𝑚, and is a bounded dis-

tance away from each other 𝜎𝑚. Therefore, in Corollary 4.17 we have to have 𝑖𝑚 = 𝑚 for large
enough𝑚. Since any finite set of indices is irrelevant, Corollary 4.18 follows. □

4.6 Quasimodes for a fully curvilinear polygon

Here, we generalise and construct quasimodes for a curvilinear polygon, not necessarily straight
near the corners. However, we are now only interested in the fully Steklov problem rather than
the mixed problem.

Theorem 4.19. Let  be a curvilinear polygon which is piecewise 𝐶5. Let

𝛿 = min

({
𝜋
𝛼𝑘

∶ 𝑘 ∈ {1, … , 𝑛}

}
∪
{
3
2

})
, (4.40)

and observe that 𝛿 > 1. Then there is a sequence {𝑣𝑚} of quasimodes for the Steklov problem on  ,
corresponding to the previously constructed sequence of quasi-eigenvalues {𝜎𝑚}, such that they are of
order 𝜎−𝛿+1𝑚 for any 𝛿 < 𝛿.

Remark 4.20. In this case, as opposed to the partially curvilinear case, it is not possible to increase
the 3

2
in (4.40) by increasing the smoothness of the boundary arcs. This term is due to the influence

of the curvature at the corners.

Remark 4.21. With 𝛿 as defined here, Theorem 1.4 holds with 𝜀0 ∶=
1
2
(𝛿 − 1).

As in the previous subsection, there is the usual corollary, with an identical proof:

Corollary 4.22. For a curvilinear polygon with any 𝛿 < 𝛿, there is a non-decreasing sequence {𝑖𝑚}
and a constant 𝐶 > 0 such that

|𝜎𝑚 − 𝜆𝑖𝑚 | ⩽ 𝐶𝜎−𝛿+1𝑚 for all𝑚 ∈ ℕ,

where the 𝜆𝑖𝑚 are Steklov eigenvalues of  . There is also a sequence of 𝑢𝑚 as in Theorem 4.4, with
𝛿𝑚 = 𝜎

−𝛿+1
𝑚 .

Our quasimode construction in this section will proceed by ‘straightening out’ a neighbour-
hood of each corner with a conformal map, then applying a partition of unity argument as in the
previous subsection. One subtlety is that we only use the conformalmap tomodify the remainders
in the scattering Peters solutions, rather than the solutions themselves. So, rather than the sum
of two plane waves and a remainder, our models near each vertex will be the sum of the curved
boundary models along each adjacent side, plus a conformally mapped remainder.
For each 𝑗, we use the Riemann mapping theorem to define a conformal map Θ𝑗 from a small

neighbourhood𝑈𝑗 of 𝑉𝑗 into a small neighbourhood of the origin in𝔖𝛼𝑗
, with 𝑉𝑗 mapped to the
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origin, and with |𝐷Θ𝑗(𝑉𝑗)| = 1. By [39], no matter what our choice of Θ𝑗 , the map Θ𝑗 is in the
Hölder class 𝐶1,𝛾 for any 𝛾 < 1. So, 𝐷Θ𝑗 is a continuous function, and thus in a sufficiently small
neighbourhood of 𝑉𝑗 (without loss of generality, 𝑈𝑗), we have |𝐷Θ𝑗| ⩾ 2∕3 and in the image of
that neighbourhood we have |𝐷Θ−1

𝑗
| ⩾ 1∕2.

Now we define a partition of unity 1 = 𝜒𝑉 + 𝜒𝐼 + 𝜒0 precisely as in the previous section, with
the property that each𝜒𝑉𝑗 (𝑧) is supported in a compact subset of𝑈𝑗 , andwith the gradient of each
cut-off function perpendicular to 𝐧 at every point of 𝜕 . We will define two functions 𝑣𝑚,𝑉(𝑧) and
𝑣𝑚,𝐼(𝑧). In fact, the definition of 𝑣𝑚,𝐼(𝑧) is identical to the one in the previous subsection: near the
edge 𝐼𝑗 we have

𝑣𝑚,𝐼𝑗 (𝑧) ∶= Re(𝑤𝜎𝑚,𝑀(𝑠𝑗 + 𝛽, 𝑡𝑗)),

where the shift 𝛽 is chosen so that the restriction to the boundary of 𝑣𝑚,𝐼(𝑧) is Ψ
(𝑚)
𝑗
(𝑠𝑗). Then

𝑣𝑚,𝐼(𝑧) is the sum of these over 𝑗. To define 𝑣𝑚,𝑉(𝑧)we have to work a little harder. We would like
to use (4.35) but cannot because the sector is not straight. Instead, we use Proposition 3.6 to write

Φ
(𝐜𝑗,in,𝐜𝑗,out)
𝛼𝑗

(𝑧) = 𝑊
𝐜𝑗,in
out,𝛼𝑗

(𝑧) +𝑊
𝐜𝑗,in
in,𝛼𝑗

(𝑧) + 𝑅𝑗(𝑧), (4.41)

where the𝑊 terms are pure plane waves and 𝑅𝑗(𝑧) is the remainder. We define

𝑣𝑚,𝑉𝑗 (𝑧) ∶= 𝑣𝑚,𝐼𝑗 (𝑧) + 𝑣𝑚,𝐼𝑗+1(𝑧) + 𝑅𝑗(𝜎𝑚Θ𝑗(𝑧)). (4.42)

The first two terms here are the curvilinear, approximately harmonic functions along the incom-
ing and outgoing edges from 𝑉𝑗 , respectively (again, without loss of generality we assume that
𝑈𝑗 is a small enough neighbourhood so these are defined). The third term is the remainder term
in the appropriate scattering Peters solution, pulled back. As before, we let 𝑣𝑚,𝑉(𝑧) be the sum of
these over all 𝑗, and then set, in full,

𝑣𝑚(𝑧) ∶= 𝑣𝑚,𝑉(𝑧)𝜒𝑉(𝑧) + 𝑣𝑚,𝐼(𝑧)𝜒𝐼(𝑧).

We need to prove that these are quasimodes. This requires estimating 𝜀(𝑖)𝑚 , 𝑖 = 1, 2, 3, in Def-
inition 4.3. Since 𝜕𝑁 = 𝜕𝐷 = ∅, we may take 𝜀(2)𝑚 = 0. To address 𝜀(3)𝑚 , we use a very similar
argument to that in the previous subsection. The formula (4.36) still holds, and the analysis pro-
ceeds analogously, with the plane waves replaced by 𝑣𝑚,𝐼𝑗 (𝑧) and 𝑣𝑚,𝐼𝑗−1(𝑧) and the remainders
𝑅(𝜎𝑚𝑗(𝑧)) replaced by 𝑅𝑗(𝜎𝑚Θ𝑗(𝑧)). Since Θ𝑗(𝑧) has derivative bounded away from zero on 𝑈𝑗 ,
the analogue of the decay estimate (4.37), with the above replacement, still holds away from the
vertices. Moreover, the functions 𝑣𝑚,𝐼𝑗 (𝑧) decay exponentially in 𝜎𝑚 away from 𝐼𝑗 . This allows the

argument to proceed unchanged, and we may as before take 𝜀(𝑚)
3

⩽ 𝐶𝜎−𝛿+1𝑚 , which is enough.
It remains only to estimate 𝜀(1)𝑚 . To do this, we introduce a new piece of terminology: for a family

of functions 𝑣𝑚(𝑧) on , we define their ‘Steklov defect’ to be the functions on the boundary given
by

SD(𝑣𝑚)(𝑧) ∶=
𝜕𝑣𝑚
𝜕𝑛

(𝑧) − 𝜎𝑚𝑣𝑚(𝑧).
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Our goal is to find an upper bound for the 𝐿2 norms of SD(𝑣𝑚)(𝑧). Since all cut-off functions
have zero normal derivative at the boundary, and the functions 𝑣𝑚,𝐼(𝑧) satisfy an exact Steklov
boundary condition,

SD(𝑣𝑚)(𝑧) = SD(𝑣𝑚,𝑉)(𝑧)𝜒𝑉(𝑧) + SD(𝑣𝑚,𝐼)(𝑧)𝜒𝐼(𝑧) = SD(𝑣𝑚,𝑉)(𝑧)𝜒𝑉(𝑧).

This is supported in a union of 2𝑛 regions, one on each side of each vertex, and we can consider
the 𝐿2 norm over each separately. So, fix 𝑗, and consider a short segment along 𝐼𝑗+1 in which
𝜒𝑉,𝑗(𝑧)|𝐼𝑗+1 is supported. Note that 𝑠𝑗+1 is the coordinate here, and this segment is contained in
[0, 𝜀] for some 𝜀 > 0. So, we need to bound

‖SD(𝑣𝑚,𝑉𝑗 )‖𝐿2[0,𝜀].
We will do this via comparison with a non-curvilinear case. Our function 𝑣𝑚,𝑉𝑗 (𝑧) is given by

(4.42). If the sides were straight near the corner, then wewould instead have the function 𝑣𝑚,𝑉𝑗 (𝑧)
given by:

𝑣𝑚,𝑉𝑗 (𝑧) = 𝑊
𝐜𝑗,in
in,𝛼𝑗

(𝜎𝑚𝑧) +𝑊
𝐜𝑗,out
out,𝛼𝑗

(𝜎𝑚𝑧) + 𝑅𝑗(𝜎𝑚𝑧). (4.43)

Of course, the values of 𝑧 in (4.42) and (4.43) do not have the same domain. Nevertheless, we
can compare the Steklov defects of these two functions, as 𝑠𝑗+1 is a legitimate coordinate along
the boundary of each. Moreover, the Steklov defect of 𝑣𝑚,𝑉𝑗 (𝑧) is zero since it is an exact (scaled)
scattering Peters solution. Thus, it suffices to bound

‖SD(𝑣𝑚,𝑉𝑗 ) − SD(𝑣𝑚,𝑉𝑗 )‖𝐿2[0,𝜀].
This involves comparing (4.42) and (4.43) termby term.Observe that sincewe are along 𝐼𝑗+1 rather
than 𝐼𝑗 , the Steklov defect of 𝑣𝑚,𝐼𝑗+1(𝑧) is zero by the observation before Proposition 4.13. The

Steklov defect of the outgoing plane wave𝑊
𝐜𝑗,out
out,𝛼𝑗

(𝜎𝑚𝑧) is also zero. So, we just need to compare
the first and third terms, and it suffices to bound

‖SD(𝑣𝑚,𝐼𝑗 ) − SD(𝑊
𝐜𝑗,in
in,𝛼𝑗

(𝜎𝑚𝑧))‖𝐿2[0,𝜀] + ‖SD(𝑅𝑗(𝜎𝑚Θ𝑗(𝑧))) − SD(𝑅𝑗(𝜎𝑚𝑧))‖𝐿2[0,𝜀]. (4.44)

Both of these can be handled with direct calculations. In all we claim that the expression (4.44) is
bounded by 𝐶𝜎1−𝛿. Assuming this claim, we can take 𝜀(1)𝑚 = 𝜀(3)𝑚 = 𝐶𝜎1−𝛿𝑚 in Definition 4.3, which
proves Theorem 4.19. It therefore remains only to prove the needed bounds on (4.44).
We begin by analysing the remainder term of (4.44). Recall that 𝑅𝑗(𝑧) is a remainder term in a

scattering Peters solution, defined on an infinite sector. For 𝑥 ∈ [0,∞), define

𝑓(𝑥) ∶= 𝑅𝑗(𝑥, 0); g(𝑥) ∶=
𝜕𝑅𝑗

𝜕𝑦
(𝑥, 0).

Bounds on these functions and on their 𝑥-derivatives, for both large 𝑥 and small 𝑥, may be
extracted from [33, Theorem 2.1] and the usual angle-doubling reflection argument. Note that
our normalisation condition ensures that the constants 𝐶 may be chosen independent of𝑚. The
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bounds we obtain, with 𝜇 = 𝜋∕𝛼𝑗 (note that 𝜇 ⩾ 𝛿 > 1), are:

2|𝑓(𝑥)| ⩽ 𝐶(1 + 𝑥)−𝜇; |𝑓′(𝑥)| ⩽ 𝐶(1 + 𝑥)−𝜇−1;
|g(𝑥)| ⩽ 𝐶(1 + 𝑥)−𝜇−1; |g ′(𝑥)| ⩽ 𝐶min{𝑥𝜇−2, 𝑥−𝜇−2}. (4.45)

Now let 𝜃 be the restriction ofΘ to the edge 𝐼𝑗+1, in the coordinate 𝑠𝑗+1. Observe that 𝜃′(0) = 1
and both 𝜃 and 𝜃−1 have derivatives bounded below by 1∕2 and above by 2 on [0, 𝜀]. Moreover,
by [39], 𝜃 is 𝐶1,𝛾 and 𝜃′ is 𝐶0,𝛾 for every 𝛾 < 1. The remainder term of (4.44) is, with all this
terminology,

‖(𝜎𝑚|𝜃′(𝑠𝑗+1)|g(𝜎𝑚𝜃(𝑠𝑗+1)) − 𝜎𝑚𝑓(𝜎𝑚𝜃(𝑠𝑗+1))) − (𝜎𝑚g(𝜎𝑚𝑠𝑗+1) − 𝜎𝑚𝑓(𝜎𝑚𝑠𝑗+1))‖𝐿2[0,𝜀]. (4.46)
We bound the differences of the g terms and the 𝑓 terms separately. For the difference of 𝑓

terms, we write

|𝜎𝑚(𝑓(𝜎𝑚𝑠𝑗+1) − 𝑓(𝜎𝑚𝜃(𝑠𝑗+1))| ⩽ 𝜎𝑚 max
𝑥∈[𝜎𝑚𝑠𝑗+1,𝜎𝑚𝜃(𝑠𝑗+1)]

|𝑓′(𝑥)| ⋅ |𝜎𝑚𝑠𝑗+1 − 𝜎𝑚𝜃(𝑠𝑗+1)|
⩽ 𝜎2𝑚|𝑠𝑗+1 − 𝜃(𝑠𝑗+1)| max

𝑥∈[𝜎𝑚𝑠𝑗+1∕2,2𝜎𝑚𝑠𝑗+1]
|𝑓′(𝑥)|.

The function 𝑠𝑗+1 − 𝜃(𝑠𝑗+1) is𝐶1,𝛾 for all 𝛾 < 1, and both the function and its derivative are zero at
𝑠𝑗+1 = 0, so in fact |𝑠𝑗+1 − 𝜃(𝑠𝑗+1)| ⩽ 𝐶𝑠1+𝛾𝑗+1

for all 𝛾 < 1. As for |𝑓′(𝑥)|, since 𝑥 ∈ 𝜎𝑚𝑠𝑗+1[1∕2, 2],
we can bound it using (4.45). In all, we conclude

|𝜎𝑚(𝑓(𝜎𝑚𝑠𝑗+1) − 𝑓(𝜎𝑚𝜃(𝑠𝑗+1)))| ⩽ 𝐶𝜎2𝑚𝑠1+𝛾𝑗+1
(1 + 𝜎𝑚𝑠𝑗+1)

−𝜇−1.

The square of the 𝐿2 norm of the right-hand side, using the substitution 𝑤 = 𝜎𝑚𝑠𝑗+1, is

𝐶𝜎
1−2𝛾
𝑚 ∫

𝜎𝑚𝜀

0
𝑤2+2𝛾(1 + 𝑤)−2𝜇−2 𝑑𝑤 ⩽ 𝐶𝜎

1−2𝛾
𝑚 ∫

𝜎𝑚𝜀

0
(1 + 𝑤)−2𝜇+2𝛾 𝑑𝑤. (4.47)

Using 𝜇 ⩾ 𝛿, as long as we avoid choosing 𝛾 = 𝜇 − 1
2
, this is bounded by

𝐶𝜎
1−2𝛾
𝑚 |𝜎−2𝛿+2𝛾+1𝑚 + 1| ⩽ 𝐶𝜎1−2𝛾𝑚 + 𝐶𝜎2−2𝛿𝑚 .

Taking square roots to get the 𝐿2 norm and using
√
𝑎 + 𝑏 ⩽

√
𝑎 +

√
𝑏, we have

‖|𝜎𝑚(𝑓(𝜎𝑚𝑠𝑗+1) − 𝑓(𝜎𝑚𝜃(𝑠𝑗+1))‖𝐿2[0,𝜀] ⩽ 𝐶𝜎 1
2
−𝛾

𝑚 + 𝐶𝜎1−𝛿𝑚 .

Since 𝛿 < 𝛿 ⩽ 3∕2, we can choose 𝛾 sufficiently close to 1 so that both terms are bounded by𝐶𝜎1−𝛿𝑚 ,
as desired.
Now for the difference of g terms. By adding and subtracting 𝜎𝑚g(𝜎𝑚𝜃(𝑠𝑗+1)) we can write it

as

𝜎𝑚(|𝜃′(𝑠𝑗+1)| − 1)g(𝜎𝑚𝜃(𝑠𝑗+1)) + 𝜎𝑚(g(𝜎𝑚𝜃(𝑠𝑗+1)) − g(𝜎𝑚𝑠𝑗+1)). (4.48)
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The first of these two terms, again using Hölder continuity of 𝜃, (4.45), and 𝑠𝑗+1∕2 ⩽ 𝜃(𝑠𝑗+1) ⩽
2𝑠𝑗+1, is bounded by

𝐶𝜎𝑚𝑠
𝛾
𝑗+1
(1 + 𝜎𝑚𝑠𝑗+1)

−𝜇−1.

Using the exact same argument as for the 𝑓 terms we can show that the square of the 𝐿2 norm
of this quantity is bounded by (4.47), except with (1 + 𝑤)−2𝜇+2𝛾−2 instead of (1 + 𝑤)−2𝜇+2𝛾. This
makes the integral smaller rather than larger, so the same 𝐶𝜎1−𝛿𝑚 bound holds. As for the second
of the two terms, by similar arguments as before, it is less than

𝜎𝑚 max
𝑥∈[𝜎𝑚𝑠𝑗+1∕2,2𝜎𝑚𝑠𝑗+1]

|g ′(𝑥)| ⋅ |𝜎𝑚𝜃(𝑠𝑗+1) − 𝜎𝑚𝑠𝑗+1|
⩽ 𝐶𝜎2𝑚𝑠

1+𝛾
𝑗+1

min
{
(𝜎𝑚𝑠𝑗+1)

−𝜇−2, (𝜎𝑚𝑠𝑗+1)
𝜇−2)

}
.

The 𝐿2 norm squared is thus bounded, using the substitution𝑤 = 𝜎𝑚𝑠𝑗+1 again, alongwith 𝜇 ⩾ 𝛿,
by

𝐶𝜎
1−2𝛾
𝑚

(
∫

1

0
𝑤2+2𝛾𝑤2𝜇−4 𝑑𝑤 + ∫

𝜎𝑚𝜀

1
𝑤2+2𝛾𝑤−2𝛿−4 𝑑𝑤

)
.

Since 𝜇 > 1, for 𝛾 sufficiently close to 1, the exponent in the first term is positive and the integral is
bounded by 1. For the second term, we have (without the pre-factor) a bound of 𝐶𝜎2𝛾−2𝛿−1𝑚 . After
incorporating the pre-factor and taking square roots, the 𝐿2 norm is bounded by

𝐶𝜎
1
2
−𝛾

𝑚 + 𝐶𝜎−𝛿𝑚 ,

which as before is bounded by 𝐶𝜎1−𝛿𝑚 for 𝛾 sufficiently close to 1. This proves the necessary bound
for the remainder term of (4.44).
It remains only to analyse the first term in (4.44). To do this, let (𝑠, 𝑡) = (𝑠𝑗+1, 𝑡) be the curvilin-

ear coordinates along 𝐼𝑗+1, and let (�̃�, �̃�) be the curvilinear coordinates along the adjacent edge 𝐼𝑗 ,
so that �̃� = 𝐿𝑗 − 𝑠𝑗 . For the exact sector of angle 𝛼 = 𝛼𝑗 , we have, for some shift 𝛽 depending on
𝐜𝑗,in,

𝑊
𝐜𝑗,in
in,𝛼𝑗

(𝜎(�̃�, �̃�)) = Re(e𝜎(i(�̃�+𝛽)−�̃�))),

and for a curvilinear sector, we have, for the same 𝛽,

𝑣𝑚,𝐼𝑗 (�̃�, �̃�) = Re(e
𝜎𝑓𝑀(�̃�,̃𝑡)) = Re(e𝜎(i(�̃�+𝛽)−�̃�+𝑂(̃𝑡

2))).

We need to compute the Steklov defects of each of these functions in the coordinates along 𝐼𝑗+1.
To do this, first compute the gradients of each:

∇𝑣𝑚,𝐼𝑗 (�̃�, �̃�) = 𝜎 Re

(
(i + 𝑂(̃𝑡2))e𝜎(i(�̃�+𝛽)−�̃�+𝑂(̃𝑡

2))

(−1 + 𝑂(̃𝑡))e𝜎(i(�̃�+𝛽)−�̃�+𝑂(̃𝑡
2))

)
, (4.49)

with the same expression, without the error terms, for ∇𝑊.
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We will need to take 𝐿2 norms in 𝑠, so we need to discuss how the coordinates are related. For

an exact sector, we have
(
�̃�

�̃�

)
=

(
𝑠 cos 𝛼

𝑠 sin 𝛼

)
, and the normal vector 𝐧 to the opposite edge 𝐼𝑗 , as

a function of 𝑠, is 𝐧(𝑠) =
(
sin 𝛼

− cos 𝛼

)
. For the curvilinear sector, we have errors of the following

types: (
�̃�

�̃�

)
=

(
𝑠 cos 𝛼

𝑠 sin 𝛼

)
+ 𝑂(𝑠2); 𝐧(𝑠) =

(
sin 𝛼

− cos 𝛼

)
+ 𝑂(𝑠).

So, the difference of Steklov defects we need to consider is

𝜎 Re
(
(e𝜎(i(𝑠 cos 𝛼+𝛽)−𝑠 sin 𝛼))

)
− Re

(
e𝜎(i(𝑠 cos 𝛼+𝛽)−𝑠 sin 𝛼+𝑂(𝑠

2))))
)

−

((
sin 𝛼

− cos 𝛼

)
⋅∇𝑊

𝐜𝑗,in
in,𝛼𝑗

(𝜎(�̃�(𝑠), �̃�(𝑠))

)
−

((
sin 𝛼

− cos 𝛼

)
+ 𝑂(𝑠)) ⋅∇𝑣𝑚,𝐼𝑗 (�̃�(𝑠), �̃�(𝑠))

)
.

(4.50)

Consider first the difference of terms without gradients in (4.50) and take its absolute value. It
is ||||−𝜎Re(e𝜎(i(𝑠 cos 𝛼+𝛽)−𝑠 sin 𝛼))(e𝜎𝑂(𝑠2) − 1)|||| ⩽ 𝜎e𝜎(−𝑠 sin 𝛼)(e𝐶𝜎𝑠2 − 1). (4.51)

Use the fact that e𝑥 − 1 ⩽ 𝑥e𝑥, then use the fact that sin 𝛼 > 0, to see that there exists 𝑐 > 0 such
that for 𝑠 sufficiently small, this is bounded by

𝐶𝜎2𝑠2e−𝑐𝜎𝑠.

The 𝐿2 norm of this function can be computed directly via the usual change of variables 𝑤 = 𝜎𝑠,
and is bounded by 𝐶𝜎−1∕2. Since 𝛿 < 3∕2 this is bounded by 𝐶𝜎1−𝛿 as desired.
Now analyse the gradient terms in (4.50). First examine the 𝑂(𝑠) term in (4.50). Using (4.49),

and the equivalence of the 𝓁2 and 𝓁1 norms on ℝ2, a bound for the absolute value of this term is

𝐶𝜎𝑠
(
(1 + 𝑂(𝑠2))e−𝜎𝑠 sin 𝛼+𝑂(𝑠

2) + (1 + 𝑂(𝑠))e−𝜎𝑠 sin 𝛼+𝑂(𝑠
2)
)
.

As with the terms without gradients, there exists 𝑐 > 0 such that this is bounded by 𝐶𝜎𝑠e−𝑐𝜎𝑠, and
then the same 𝐿2 norm computation gives the same bound. The remainder of the terms are given
by

−

(
sin 𝛼

− cos 𝛼

)
⋅
(
∇𝑊

𝐜𝑗,in
in,𝛼𝑗

(𝜎�̃�(𝑠), 𝜎�̃�(𝑠)) − ∇𝑣𝑚,𝐼𝑗 (�̃�(𝑠), �̃�(𝑠))
)
.

Using (4.49) again and the usual adding/subtracting trick, we have a bound of

𝐶𝜎
(
𝑂(𝑠)e−𝜎𝑠 sin 𝛼+𝑂(𝑠

2)
)
+ 𝐶𝜎

(
e−𝜎𝑠 sin 𝛼+𝑂(𝑠

2) − e−𝜎𝑠 sin 𝛼
)
.
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The first term is again bounded by 𝐶𝜎𝑠e−𝑐𝜎𝑠 and may be taken care of as before. The second term
satisfies the bound (4.51) and therefore can be treated the same way as well. This shows that all
terms are bounded by 𝐶𝜎1−𝛿𝑚 , completing the proof of Theorem 4.19.
For later use, we also record a corollary:

Corollary 4.23. As𝑚 → ∞, the quasimodes 𝑣𝑚 on the boundary, as well as the corresponding linear
combinations 𝑢𝑚 of Steklov eigenfunctions, get closer to Ψ(𝑚) in the sense that

‖𝑣𝑚 − Ψ(𝑚)‖𝐿2(𝜕Ω) = 𝑂(𝑚−1∕2), ‖𝑢𝑚 − Ψ(𝑚)‖𝐿2(𝜕Ω) = 𝑂(𝑚1
2
(1−𝛿)). (4.52)

Proof. First consider 𝑣𝑚, for which the difference is zero off the support of 𝜒𝑉 . On the support of
𝜒𝑉 , near a vertex 𝑉𝑗 , the restriction of the term 𝑣𝑚,𝐼𝑗+1(𝑧) to the edge 𝐼𝑗+1 is precisely Ψ

(𝑚). The
other two terms in (4.42) both have 𝐿2 norms which go to zero as𝑚 → ∞ and do so, via a scaling
argument and direct integration, at order 𝜎−1∕2𝑚 . An analogous argument works along the edge 𝐼𝑗 ,
and adding up the contributions from the finitely many vertices completes the proof for 𝑣𝑚. The
statement for 𝑢𝑚 follows immediately from the statement for 𝑣𝑚 and Corollary 4.22. □

4.7 Almost orthogonality and its consequences

In statements such as Theorem 4.1, we showed that near each quasi-eigenvalue 𝜎𝑚 there exists a
true eigenvalue 𝜆𝑖𝑚 . We did not, however, show that there is a distinct true eigenvalue near each
quasi-eigenvalue. That is, we did not show the map𝑚 ↦ 𝑖𝑚 is injective. We now remedy this, but
at a small cost.

Theorem 4.24. Let  be a curvilinear polygon with all angles less than 𝜋. Let 1 < 𝛿 < 𝛿, where 𝛿 is
defined by (4.40). Then there exists amap 𝑗 ∶ ℕ → ℕwhich is strictly increasing for large arguments,
and there exists a constant 𝐶, such that

|𝜎𝑚 − 𝜆𝑗(𝑚)| ⩽ 𝐶𝑚1
2
(1−𝛿).

Remark 4.25. The cost is simply the extra factor of 1
2
in the exponent. This shows up as a conse-

quence of an abstract linear algebra result [33, Theorem 4.1]. It may be able to be removed in our
setting, but for simplicity we have not done so.

To begin the proof, first we show that the boundary plane waves Ψ(𝑚) are nearly orthogonal.
We do this by taking advantage of the relationship between Ψ(𝑚) and the eigenfunctions of the
quantum graph Dirac operator𝔇 defined in (2.27). AlthoughΨ(𝑚) turn out not to be orthonormal
in 𝐿2(), inner products of distinct boundary plane waves are nevertheless small.
Proposition 4.26. There exists a constant 𝐶 such that for all𝑚, 𝑙 ∈ ℕ with𝑚 ≠ 𝑙,

|⟨Ψ(𝑚), Ψ(𝑙)⟩| ⩽ 𝐶(𝜎𝑚 + 𝜎𝑙)−1.
Proof. Recall from Proposition 2.27 that𝔇, with thematching conditions (2.24), is self-adjoint and
that its set of non-negative eigenvalues is precisely {𝜎𝑚} ⧵ {0}. As a consequence of self-adjointness,
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its basis eigenfunctions 𝐟𝑚,± =
(
𝑓𝑚,±,1
𝑓𝑚,±,2

)
corresponding to eigenvalues ±𝜎𝑚 can be chosen to be

orthonormal in (𝐿2())2. We note that the eigenfunctions can be chosen in the form

𝐟𝑚,±|𝑗 = (
𝑑𝑚,𝑗,±,1e

±i𝜎𝑚𝑠

𝑑𝑚,𝑗,∓,2e
∓i𝜎𝑚𝑠

)
,

with some constants 𝑑𝑚,𝑗,±,𝑝 ∈ ℂ, 𝑝 = 1, 2. Moreover, by the same reasoning as in Remark 4.7 we
can choose

𝑑𝑚,𝑗,±,2 = 𝑑𝑚,𝑗,±,1.

We will be mostly interested in eigenfunctions 𝐟𝑚,± from now now. Comparing these eigen-
functions with the boundary quasi-waves Ψ(𝑚),of the Steklov problem and their restrictions Ψ(𝑚)

𝑗
on 𝐼𝑗 , see Definition 4.6 and equation (4.5), we immediately conclude that up to a scaling factor

Ψ(𝑚)
𝑗

= 𝑓𝑚,+,1 + 𝑓𝑚,+,2||𝐼𝑗 = 2Re
(
𝑓𝑚,+,1

)|||𝐼𝑗 ,
and therefore we may write

⟨Ψ(𝑚), Ψ(𝑙)⟩ = ⟨𝑓𝑚,+,1, 𝑓𝑙,+,1⟩ + ⟨𝑓𝑚,+,2, 𝑓𝑙,+,2⟩ + ⟨𝑓𝑚,+,1, 𝑓𝑙,+,2⟩ + ⟨𝑓𝑚,+,2, 𝑓𝑙,+,1⟩.
Since we have𝑚 ≠ 𝑙, and the basis eigenfunctions 𝐟𝑚,+ are orthonormal in (𝐿2())2, the first two
terms of this sum add to zero, leaving only the last two terms to estimate.
Thus, remembering that we have a complex conjugate on the second entry in our inner product,

and setting 𝑑𝑚,𝑗 ∶= 𝑑𝑚,𝑗,+,1, we have

⟨𝑓𝑚,+,1, 𝑓𝑙,+,2⟩ = 𝑛∑
𝑗=1

∫𝐼𝑗 𝑑𝑚,𝑗e
i𝜎𝑚𝑠𝑑𝑙,𝑗e

i𝜎𝑙𝑠 𝑑𝑠 =
𝑛∑
𝑗=1

𝑑𝑚,𝑗𝑑𝑙,𝑗 ∫𝐼𝑗 e
i(𝜎𝑚+𝜎𝑙)𝑠 𝑑𝑠,

where 𝑛 is the number of vertices. By explicit integration by parts, each such integral, in absolute
value, is bounded by 2(𝜎𝑚 + 𝜎𝑙)−1. Thus,

|⟨𝑓𝑚,+,1, 𝑓𝑙,+,2⟩| ⩽ 2(𝜎𝑚 + 𝜎𝑙)−1 𝑛∑
𝑗=1

|||𝑑𝑚,𝑗𝑑𝑙,𝑗||| ⩽ 2(𝜎𝑚 + 𝜎𝑙)−1
(

𝑛∑
𝑗=1

|||𝑑𝑚,𝑗|||2
)1∕2( 𝑛∑

𝑗=1

|𝑑𝑙,𝑗|2)1∕2,
which by normalisation of the Dirac eigenfunctions is 2(𝜎𝑚 + 𝜎𝑙)−1. A similar analysis works for
the other nonzero term, showing that in fact

|⟨Ψ(𝑚), Ψ(𝑙)⟩| ⩽ 4(𝜎𝑚 + 𝜎𝑙)−1,
proving Proposition 4.26. □

Corollary 4.27. For any 𝜀 > 0 there exists 𝑀 ∈ ℕ such that 𝑚, 𝑙 ⩾ 𝑀 with 𝑚 ≠ 𝑙 implies|⟨𝑢𝑚, 𝑢𝑙⟩| < 𝜀.
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Proof. This is an immediate consequence of Proposition 4.26 and Corollary 4.23. □

Corollary 4.28. Pick any 𝑁 ∈ ℕ. There exists 𝑀 ∈ ℕ such that any 𝑁 of the functions {𝑢𝑚}𝑚⩾𝑀
form a linearly independent set.

Proof. As𝑚 → ∞, ‖𝑢𝑚‖→ 1 by Corollary 4.23, and all inner products go to zero by Corollary 4.27.
So, there is an𝑀 such that if𝑚, 𝑙 ⩾ 𝑀 with𝑚 ≠ 𝑙, ‖𝑢𝑚‖ ⩾√ 1

2
and |⟨𝑢𝑚, 𝑢𝑙⟩| ⩽ 1

2𝑁
. Now select𝑁

of the {𝑢𝑚}— call them 𝑢𝑚1, … , 𝑢𝑚𝑁 —with all 𝑚𝑗 ⩾ 𝑀. Suppose for contradiction they are not
linearly independent; then there exists a nontrivial relation among them, which without loss of
generality may be written

𝑢𝑚1 = 𝑎2𝑢𝑚2 +⋯ + 𝑎𝑁𝑢𝑚𝑁 ,

with all |𝑎𝑖| ⩽ 1. Now take inner products with 𝑢𝑚1 and use the triangle inequality, obtaining

‖𝑢𝑚1‖2 ⩽ 𝑁∑
𝑖=2

|⟨𝑢𝑚𝑖 , 𝑢𝑚1⟩|.
But this means 1

2
⩽
𝑁−1
2𝑁

, a contradiction which completes the proof. □

Now we complete the argument. By Corollary 4.22, for each 𝑚, 𝑢𝑚 is a linear combination of
eigenfunctions with eigenvalues in the interval

𝑚 ∶=
(
𝜎𝑚 − 𝐶𝑚

1
2
(1−𝛿), 𝜎𝑚 + 𝐶𝑚

1
2
(1−𝛿)

)
.

Proposition 4.29. There exists an𝑁 > 0 such that nomore than𝑁 of the intervals 𝑚 overlap (that
is, have a connected union).

Proof. By Theorem 2.24, the quasi-eigenvalues 𝜎𝑚 are the square roots of the eigenvalues of a
quantum graph Laplacian with non-Robin boundary conditions [6], and as such, obey aWeyl law
with bounded remainder [6, Lemma 3.7.4]. This means that there exists an 𝑁0 > 0 such that the
number of𝜎𝑚 in any interval of length 1 is less than𝑁0. As a result, the sequence {𝜎𝑚} cannot go𝑁0
terms without a gap of size at least 1∕𝑁0. Now the length |𝑚|→ 0 as𝑚 → ∞, so for sufficiently
large𝑚, each gap of size 1∕𝑁0 will cause

⋃𝑚 to be disconnected. Thus, for sufficiently large𝑚,
at most 𝑁0 intervals 𝑚 may overlap. □

Now let𝑘 be the 𝑘th connected component of⋃𝑚, let𝑁𝑘 be the number of quasi-eigenvalues
it contains, and let 𝜎𝑚𝑘 be the smallest quasi-eigenvalue it contains. By our work to this point
we have 1 ⩽ 𝑁𝑘 ⩽ 𝑁 and thus 𝑘 ⩽ 𝑚𝑘 ⩽ 𝑁𝑘. Further, the length of 𝑘 is at most 𝑁|𝑚𝑘 | =
2𝐶𝑁𝑚

1
2
(1−𝛿)

𝑘
. For sufficiently large 𝑘, by Corollary 4.28, the functions 𝑢𝑚 associated to each of the

𝑁𝑘 quasi-eigenvalues in 𝑘 are linearly independent. Since each of them is a linear combination
of eigenfunctions with eigenvalues in 𝑘, we see that 𝑘 must contain (at least) 𝑁𝑘 eigenvalues.
We construct 𝑗(𝑚) for𝑚 ∈ 𝑘 by listing these in increasing order. As a result, the map𝑚 ↦ 𝑗(𝑚)



ASYMPTOTICS OF STEKLOV EIGENVALUES 59

is injective on 𝑘. Further, if 𝜎𝑚 ∈ 𝑘,

|𝜎𝑚 − 𝜆𝑗(𝑚)| ⩽ 𝓁(𝑘) = 2𝐶𝑁𝑚
1
2
(1−𝛿)

𝑘
⩽ 4𝐶𝑁𝑚

1
2
(1−𝛿),

where we have used that 𝑚
1
2
(1−𝛿)

𝑘
⩽ 2𝑚

1
2
(1−𝛿) for large enough 𝑘 and 𝑚 ∈ 𝑘. This proves

Theorem 4.24.
Additionally, we observe that the natural analogue of Theorem 4.24 holds for a zigzag as well,

by precisely the same arguments, see (4.33).

Theorem 4.30. Let  be a partially curvilinear zigzag domain such that 𝛿 > 1, where 𝛿 is defined
by (4.33). Then there exists a map 𝑗 ∶ ℕ → ℕwhich is strictly increasing beyond a certain point (that
is, for𝑚 greater than some threshold value), and there exists a constant 𝐶, such that

|𝜎𝑚 − 𝜆𝑗(𝑚)| ⩽ 𝐶𝑚1
2
(1−𝛿).

This is proved in an almost identical way, using Corollary 4.17 as the replacement for Corol-
lary 4.22. There is still a self-adjoint Dirac operator on a quantum path  whose eigenvalues
coincide with the quasi-eigenvalues of , see Proposition 2.41. We cannot use Proposition 4.29
at this stage because the square of this Dirac operator cannot be decomposed as a direct sum of
two quantum graph (non-Robin) Laplacians, but we can use Proposition 5.37 instead. In addition,
the analogue of Corollary 4.23 still holds for a zigzag, by an even easier argument.

4.8 Asymptotics of eigenfunctions

We note that we have not yet proved Theorem 1.4 stating in particular that each true eigenvalue
corresponds to a quasi-eigenvalue. Assume, however, for the rest of this section that it holds. We
can deduce the following generalisation of Theorem 1.7.

Theorem 4.31. For any curvilinear polygon  , there exists 𝐶 > 0 such that the restrictions of the
eigenfunctions 𝑢𝑚 to the boundary 𝜕 satisfy

‖𝑢𝑚|𝜕 − Ψ̃(𝑚)‖ = 𝑂(𝑚−𝜀), (4.53)

where Ψ̃(𝑚) is a linear combination of the functionsΨ(𝑙) corresponding to quasi-eigenvalues 𝜎𝑙 in the
interval [𝜎𝑚 − 𝐶𝑚−𝜀, 𝜎𝑚 + 𝐶𝑚

−𝜀].

Note that Theorem 4.31 immediately implies Theorem 1.7, since under the assumptions of the
latter wemust have Ψ̃(𝑚) equal to a multiple ofΨ(𝑚) itself, andΨ(𝑚) is a trigonometric polynomial
of frequency 𝜎𝑚 along each edge. It also implies the following slight variation:

Corollary 4.32. Suppose that a curvilinear polygon  has 𝐾 ⩾ 2 exceptional angles (and therefore
𝐾 exceptional boundary components𝜅, 𝜅 = 1,… , 𝐾). Let𝐶 be as in Theorem 4.31, let 𝜎𝑚 be a quasi-
eigenvalue, and let

𝔎𝑚 ∶=
⋃
𝜅

𝜅,
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where the union is taken over all 𝜅 such that (2.22) has a root 𝜎 in the interval [𝜎𝑚 − 𝐶𝑚−𝜀, 𝜎𝑚 +

𝐶𝑚−𝜀]. Then

‖𝑢𝑚|𝜕⧵𝔎𝑚‖ = 𝑂(𝑚−𝜀).

In other words, Corollary 4.32 states that in the exceptional case the boundary values of
Steklov eigenfunctions are asymptotically concentrated on the unions of exceptional components
contributing to the particular clusters of eigenvalues.

Proof of Theorem 4.31. By the clustering argument above, the quasi-eigenvalues {𝜎𝑚} separate
into clusters of width bounded by 𝐶𝑚−𝜀. By Theorem 1.4, the same is true for the eigenvalues
{𝜆𝑚}. At the cost of possibly increasing 𝐶, we may assume the clusters for both the eigenvalues
and quasi-eigenvalues are the same.
Now pick a cluster 𝑘 with𝑁𝑘 eigenvalues and𝑁𝑘 quasi-eigenvalues, with indices from𝑚 = 𝑎

to 𝑚 = 𝑏 = 𝑎 + 𝑁𝑘 − 1. For each 𝑚 with 𝜎𝑚 ∈ 𝑘, by Corollary 4.23, Ψ(𝑚) is within 𝐶𝑚−𝜀 of a
linear combination 𝑢𝑚 of eigenfunctions with eigenvalues in 𝑘. Note that Ψ(𝑚) has norm 1 and
therefore each 𝑢𝑚 has norm within 𝐶𝑚−𝜀 of 1 (and is therefore within 𝐶𝑚−𝜀 of its normalised
version). This shows that there exist two 𝑁𝑘-by-𝑁𝑘 matrices 𝐺𝑘 and𝐻𝑘 for which

⎛⎜⎜⎝
𝑢𝑎
⋮
𝑢𝑏

⎞⎟⎟⎠ = 𝐺𝑘
⎛⎜⎜⎝
Ψ(𝑎)

⋮
Ψ(𝑏)

⎞⎟⎟⎠ + 𝑂(𝑚−𝜀),
⎛⎜⎜⎝
𝑢𝑎
⋮
𝑢𝑏

⎞⎟⎟⎠ = 𝐻𝑘
⎛⎜⎜⎝
𝑢𝑎
⋮
𝑢𝑏

⎞⎟⎟⎠ + 𝑂(𝑚−𝜀).

However, byCorollary 4.28,𝐻𝑘 is invertible for sufficiently large𝑘, and byCorollary 4.27 its inverse
is uniformly bounded. We deduce

⎛⎜⎜⎝
𝑢𝑎
⋮
𝑢𝑏

⎞⎟⎟⎠ = 𝐻−1𝑘 𝐺𝑘
⎛⎜⎜⎝
Ψ(𝑎)

⋮
Ψ(𝑏)

⎞⎟⎟⎠ + 𝑂(𝑚−𝜀),

which is precisely Theorem 4.31. □

We also prove Proposition 1.15, which now becomes very simple.

Proof of Proposition 1.15. If all angles are special, the quasi-eigenvalues are given by (1.5), with
each nonzero eigenvalue having multiplicity two. The corresponding Ψ(𝑚) may be taken to be√

2|𝜕| sin(𝜎𝑚𝑠),
√

2|𝜕| cos(𝜎𝑚𝑠),
where 𝑠 is an arc length coordinate along the boundary; note that these functions are orthogonal
for each 𝑚. Therefore, the functions Ψ̃(𝑚) are linear combinations of Ψ(𝑚), and each has norm
1 + 𝑂(𝑚−𝜀) by (4.53). An immediate calculation shows that these are equidistributed and in fact
that the error is 𝑂(𝑚−𝜀). On the other hand, if all angles are exceptional, for all𝑚 we may choose
Ψ(𝑚) to have support on just one side. If 𝜎𝑚 is isolated in the sense of Proposition 1.15, then for
sufficiently large 𝑚 we have Ψ̃(𝑚) = Ψ(𝑚) + 𝑂(𝑚−𝜀), thus 𝑢𝑚 = Ψ(𝑚) + 𝑂(𝑚−𝜀), from which the
result follows. □
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5 ENUMERATION OF QUASI-EIGENVALUES

5.1 Matrix groups

Let 𝛼 be a non-exceptional angle and let 𝙰 ∶= 𝙰(𝛼) and 𝙱 ∶= 𝙱(𝓁, 𝜎) be the vertex and side transfer
matrices defined by equations (2.3) and (2.5), see also (2.1), (2.2) and Remarks 2.1, 2.2, and 2.9.
Define

1 =

{
𝙼 =

(
𝑝 𝑞

𝑞 𝑝

) |||||𝑝, 𝑞 ∈ ℂ, det 𝙼 = |𝑝|2 − |𝑞|2 = 1},

1,𝙰 =

{
𝙼 =

(
𝑝 −i𝑟

i𝑟 𝑝

) |||||𝑝, 𝑟 ∈ ℝ, det 𝙼 = 𝑝2 − 𝑟2 = 1
}
⊂1,

1,𝙱 =

{
𝙼 =

(
𝑝 0

0 𝑝

) |||||𝑝 ∈ ℂ, det 𝙼 = |𝑝|2 = 1} ⊂1,

It is easy to check that 1 is a group with respect to matrix multiplication, 1,𝙰 and 1,𝙱 are
subgroups of1, and that 𝙰(𝛼) ∈1,𝙰 for any 𝛼 ∉  , and 𝙱(𝓁, 𝜎) ∈1,𝙱 for any real 𝓁 and 𝜎.
It is also easy to check that any matrix from1 maps the (real) linear subspace ℂ2conj of ℂ

2 onto
itself. Therefore, this is also true for the matrices 𝚃 and 𝚄 defined by (2.7) and (2.9), respectively.

5.2 Representation of vectors and matrices on the universal cover

We can naturally identify vectors 𝐛 =
(
𝑏

𝑏

)
∈ ℂ2

conj
with vectors 𝐛♯ =

(
Re 𝑏

Im𝑏

)
considered as ele-

ments ofℝ2 (or just elements 𝑏 of ℂ). As an illustration, the vectors𝐍 and𝐃 defined in (2.38) give
rise to

𝐍♯ =

(
1

0

)
, 𝐃♯ =

(
0

1

)
. (5.1)

The mapping ℝ2 → ℂ2
conj

is defined by 𝐛 = 𝙹𝐛♯, with

𝙹 =

(
1 i

1 −i

)
. (5.2)

Matrices 𝙼 ∈1 therefore act on ℝ2 as

(𝙼𝐛)♯ = 𝙹−1𝙼𝐛 = 𝙹−1𝙼𝙹𝐛♯,

where

𝙹−1 =
1
2

(
1 1

−i i

)
,

and we set

𝙼♯ ∶= 𝙹−1𝙼𝙹.
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It is straightforward to check that the mapping 𝙼 ↦ 𝙼♯ sends 1 into the space ♯
1
of all

real 2 × 2 matrices with determinant one. Moreover, it maps the subgroup 1,𝙰 ⊂1 into
the subgroup ♯ ⊂♯

1
of all symmetric real 2 × 2 matrices with determinant one and equal

diagonal entries, and the subgroup 1,𝙱 ⊂1 into the subgroup ♯ ⊂♯
1
of all real 2 × 2

rotation matrices.
The matrices in ♯ are characterised by a single parameter, the angle of rotation, and we will

denote them by

𝚁♯(𝜓) ∶=

(
cos(𝜓) − sin(𝜓)

sin(𝜓) cos(𝜓)

)
∈ ♯.

In particular, we have

(𝙱(𝓁, 𝜎))♯ = 𝚁♯(𝜎𝓁).

The matrices in ♯ always have normalised eigenvectors

𝐗♯even =
1√
2

(
1

−1

)
, 𝐗♯

odd
=

1√
2

(
1

1

)
.

Thus, any 𝚂♯ ∈ ♯ may be characterised by one eigenvalue 𝜏 (the other eigenvalue being 1
𝜏
) and a

corresponding normalised eigenvector𝐰♯ ∈ {±𝐗♯even, ±𝐗
♯
odd
}, and we will write

𝚂♯ = 𝚂♯(𝜏,𝐰♯).

This representation is not unique:

𝚂♯(𝜏,𝐰♯) = 𝚂♯(𝜏, −𝐰♯) = 𝚂♯(1∕𝜏, (𝐰♯)⟂) = 𝚂♯(1∕𝜏, −(𝐰♯)⟂),

where (𝐰♯)⟂ is a normalised eigenvector perpendicular to𝐰♯.
In particular, for

𝙰(𝛼) =

(
𝑎1(𝛼) −i𝑎2(𝛼)

i𝑎2(𝛼) 𝑎1(𝛼)

)
with eigenvalues 𝜂𝑗(𝛼) defined in (2.4), we have

𝙰♯(𝛼) ∶= (𝙰(𝛼))♯ =

(
𝑎1(𝛼) −𝑎2(𝛼)

−𝑎2(𝛼) 𝑎1(𝛼)

)
= 𝚂♯

(
𝜂1(𝛼), 𝐗

♯
odd

)
= 𝚂♯

(
𝜂1(𝛼), −𝐗

♯
odd

)
= 𝚂♯

(
𝜂2(𝛼), 𝐗

♯
even

)
= 𝚂♯

(
𝜂2(𝛼), −𝐗

♯
even

)
.

(5.3)

The matrix 𝙰♯(𝛼) is positive or negative depending on the sign of sin(𝜇𝛼).
Throughout this section, it will be useful to deal, instead of vectors 𝐛 ∈ ℂ2

conj
⧵ {𝟎} or 𝐛♯ ∈

ℝ2 ⧵ {𝟎}, with vectors �̂� on theuniversal cover ℂ̂∗ of the punctured complex plane, that is, of the log-
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arithmic surface. The elements �̂� ∈ ℂ̂∗ have positive moduli and arguments arg �̂� ∈ (−∞,+∞).
Let 𝚷 ∶ ℂ̂∗ → ℝ2 ⧵ {𝟎} be the projection which preserves the modulus but takes argument mod-
ulo 2𝜋 in such a way that arg(𝚷�̂�) ∈ (−𝜋, 𝜋]. Any element �̂� ∈ ℂ̂∗ such that𝚷�̂� = 𝐛♯ ∈ ℝ2 ⧵ {𝟎}
will be called a lift of 𝐛♯ onto ℂ̂∗. We will distinguish the principal lift 𝚷−1 ∶ ℝ2 ⧵ {𝟎} → ℂ̂∗ such
that arg(𝚷−1𝐛♯) ∈ (−𝜋, 𝜋]. This allows us to lift previously defined vectors to the universal cover:

�̂� = 𝚷−1𝐍♯, �̂� = 𝚷−1𝐃♯, �̂�even = 𝚷
−1𝐗♯even, �̂�odd = 𝚷

−1𝐗♯
odd
. (5.4)

We now need to define the analogues of matrices 𝙼♯ ∈ ♯ and 𝙼♯ ∈ ♯ acting on the universal
cover. Theywill bemaps �̂� from ℂ̂∗ to ℂ̂∗, whichwewill call liftedmatrices, defined in the following
way. Firstly, we require, for any �̂� ∈ ℂ̂∗,

𝚷
(
�̂��̂�
)
∶= 𝙼♯𝚷�̂� = 𝙼♯𝐛♯. (5.5)

The relation (5.5) defines the modulus of �̂��̂� uniquely, and its argument modulo 2𝜋. We prescribe
the exact value of arg �̂��̂� in two distinct ways depending on whether 𝙼♯ ∈ ♯ or 𝙼♯ ∈ ♯.
In the former case 𝙼♯ = 𝚁♯(𝜓), we set

arg
(
�̂�(𝜓)̂𝐛

)
∶= arg �̂� + 𝜓.

We remark that although thematrix-valued function 𝚁♯(𝜓) is 2𝜋-periodic in 𝜓 ∈ ℝ, themaps �̂�(𝜓)
and �̂�(𝜓 + 2𝜋) are different, and therefore �̂�(𝜓) should not be viewed as a ‘lift’ of 𝚁♯(𝜓) onto the
universal cover, but rather as an independent object depending on the parameter 𝜓.
In the latter case, we note that any 𝙼♯ = 𝚂♯(𝜏,𝐰♯) ∈ ♯ is either positive definite or negative

definite, and we deal first with the positive ones, requesting that, for any �̂� ∈ ℂ̂∗,||||arg(�̂��̂�) − arg �̂�|||| < 𝜋
2
. (5.6)

The conditions (5.5) and (5.6) define �̂��̂� uniquely. A more explicit formula for arg(�̂��̂�) is given
below in Lemma 5.1.
If 𝚂♯ is negative, we choose

arg
(
�̂��̂�
)
= arg

(
(̂−𝚂)̂𝐛

)
+ 𝜋. (5.7)

If 𝚂♯ = 𝚂♯(𝜏,𝐰♯) ∈ ♯, and �̂� is any lift of 𝐰♯, we will denote the corresponding map on the
universal cover as �̂� = �̂�(𝜏, �̂�) and call �̂� an eigenvector of �̂� corresponding to the eigenvalue
𝜏. Of course such a representation is not unique. We will say that �̂� is positive or negative if the
corresponding 𝚂♯ (or 𝜏) is positive or negative, respectively.
Let us introduce the set

̂ ∶=
{
�̂� ∈ ℂ̂∗ ∶ 𝚷�̂� ∈

{
±𝐗♯even, ±𝐗

♯
odd

}}
=
{
�̂� ∈ ℂ̂∗ ∶ |�̂�| = 1, arg �̂� =

𝜋
4

(mod
𝜋
2
)
}
.

(5.8)
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The set ̂ consists of all the lifts onto the universal cover of all normalised eigenvectors ofmatrices
𝚂♯. The elements of ̂ divide ℂ̂∗ into quadrants of argument width

𝜋
2
: for any �̂� ∈ ℂ̂∗ there exist

the elements �̂�1, �̂�2 ∈ ̂ (which depend on �̂�) such that

arg �̂�1 ⩽ arg �̂� < arg �̂�2 = arg �̂�1 + 𝜋∕2.

The following lemma gives an explicit expression for arg �̂��̂� in terms of arg �̂� and arg �̂�1.

Lemma 5.1. Let 𝚂♯ ∈ ♯ be positive, let �̂� ∈ ℂ̂∗, and let �̂�𝑗 ∈ ̂ , 𝑗 = 1, 2 and �̂� = �̂�(𝜏, �̂�1) as above.
Then

arg
(
�̂��̂�
)
= arg �̂�1 + arctan

(
1

𝜏2
tan

(
arg �̂� − arg �̂�1

))
(5.9)

Proof. Let 𝐛♯ = 𝚷�̂� and 𝐰♯
𝑗
= 𝚷�̂�𝑗 , 𝑗 = 1, 2. Write 𝐛♯ in the basis 𝐰♯

1
, 𝐰♯

2
: 𝐛♯ = 𝑐1𝐰

♯
1
+ 𝑐2𝐰

♯
2
.

Then 𝚂♯𝐛♯ = 𝑐1𝜏𝐰
♯
1
+ 𝑐2𝜏

−1𝐰♯
2
. The result then follows by some elementary trigonometry and by

lifting 𝚂♯𝐛♯ back to �̂��̂� with account of (5.6). □

We have the following important monotonicity result.

Lemma 5.2. Let �̂�1, �̂�2 ∈ ℂ̂∗ with arg �̂�1 < arg �̂�2. Then for any �̂� = �̂�(𝜏, �̂�) ∈ ̂ we have

arg
(
�̂��̂�1

)
< arg

(
�̂��̂�2

)
. (5.10)

Proof. Without loss of generality, we can assume �̂� to be positive (that is, take 𝜏 > 0) , otherwise
we just consider−�̂� and add 𝜋 to both arguments in (5.10). If �̂�1, �̂�2 lie in different quadrants with
respect to eigenvectors ±�̂�, ±�̂�⟂ of �̂�, the result is immediate by our definition of the action of �̂�
on ℂ̂∗. Suppose they lie in the same quadrant

arg �̂�1 ⩽ arg �̂�1 < arg �̂�2 ⩽ arg �̂�2 = arg �̂�1 +
𝜋
2
,

where �̂�1, �̂�2 are two orthogonal eigenvectors of �̂� corresponding to eigenvalues 𝜏 > 0 and 1∕𝜏,
respectively. Then the result follows from (5.9) applied to �̂� = �̂�𝑖 as both tan and arctan are
monotone increasing on (0, 𝜋∕2), (0, +∞), respectively. □

Let 𝑛 ⩾ 1, 𝜶 = (𝛼1, … , 𝛼𝑛), 𝜶′ = (𝛼1, … , 𝛼𝑛−1), 𝓵 = (𝓁1, … ,𝓁𝑛), and consider now the matri-
ces 𝚃 = 𝚃(𝜶,𝓵, 𝜎) defined by (2.7) and 𝚄 = 𝚄(𝜶′,𝓵, 𝜎) defined by (2.9). When acting on ℂ̂∗ they
become

�̂� = �̂�(𝜶,𝓵, 𝜎) = �̂�(𝛼𝑛)�̂�(𝜎𝓁𝑛)⋯ �̂�(𝛼1)�̂�(𝜎𝓁1),

and

�̂� = �̂�(𝜶′,𝓵, 𝜎) = �̂�(𝜎𝓁𝑛)�̂�(𝛼𝑛−1)�̂�(𝜎𝓁𝑛−1)⋯ �̂�(𝛼1)�̂�(𝜎𝓁1),

and we have
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Lemma 5.3. Let �̂�1, �̂�2 ∈ ℂ̂∗ with arg �̂�1 < arg �̂�2. Then

arg
(
�̂�(𝜶,𝓵, 𝜎)�̂�1

)
< arg

(
�̂�(𝜶,𝓵, 𝜎)�̂�2

)
for any 𝜎, (5.11)

and for any 𝜎1 < 𝜎2,

arg
(
�̂�(𝜶,𝓵, 𝜎1)�̂�

)
< arg

(
�̂�(𝜶,𝓵, 𝜎2)�̂�

)
for any 𝝃 ∈ ℂ̂∗. (5.12)

Moreover, arg(�̂�(𝜶,𝓵, 𝜎)�̂�) is continuous in 𝜎 for any 𝝃 ∈ ℂ̂∗.
All these statements remain true if �̂�(𝜶,𝓵, 𝜎) is replaced by �̂�(𝜶′,𝓵, 𝜎).

Proof. To prove (5.11), we just note that any rotation matrix increases the argument by the same
amount, and apply Lemma 5.2 when acting by each matrix �̂�(𝛼𝑗). To prove (5.12) we note that the
rotation matrices increase the arguments of vectors they act upon monotonically in 𝜎, and the
matrices �̂� are 𝜎-independent. The continuity statement is obvious. □

5.3 Enumeration of quasi-eigenvalues for non-exceptional zigzags

Let  = (ℵℶ) = (ℵℶ)(𝜶,𝓵) be a non-exceptional zigzag and let �̂�(𝜎) ∶= �̂�(𝜶,𝓵, 𝜎) be the cor-
responding zigzag matrix acting on the universal cover ℂ̂∗. Recall that the quasi-eigenvalues of
are defined by equation (2.39), see also (2.40). Let us give an equivalent definition in terms of the
action of the matrix �̂� on the vectors ℵ̂, ℶ̂ ∈ {�̂�, �̂�}.

Remark 5.4. For the rest of this section, we will assume that all the matrices �̂�(0) (which are
products of symmetric matrices) are positive. If this is not the case, we can just formally replace
�̂�(𝜎) by −�̂�(𝜎), and the vector ℶ̂ by −ℶ̂ throughout. (Similarly to (5.7), we understand −ℶ̂ as
�̂�(𝜋)ℶ̂, so that −(−ℶ̂) is ℶ̂ rotated by 2𝜋 rather than ℶ̂.)

A real number 𝜎 is a quasi-eigenvalue of a ℵℶ-zigzag  if and only if

arg
(
�̂�(𝜎) ℵ̂

)
= arg ℶ̂ (mod 𝜋), (5.13)

which should be used together with (5.4). Equivalently, (5.13) may be re-stated as

−arg
(
�̂�−1 (𝜎) ℶ̂

)
= −arg ℵ̂ (mod 𝜋), (5.14)

or, if we set

𝜑(𝜎) = 𝜑(ℵℶ) (𝜎) ∶=
arg

(
�̂�(𝜎) ℵ̂

)
− arg ℶ̂

𝜋
,

𝜑(𝜎) = 𝜑(ℵℶ) (𝜎) ∶=
−arg

(
�̂�−1 (𝜎) ℶ̂

)
+ arg ℵ̂

𝜋
,

(5.15)
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as

𝜑(𝜎) ∈ ℤ or 𝜑(𝜎) ∈ ℤ. (5.16)

Similarly to Proposition 2.20, one can show that the solutions of any of the equations (5.13)
form a discrete set. Therefore, the set of such solutions could be viewed as a sequence of real
numbers {𝜎(ℵℶ)𝑚 }+∞𝑚=−∞ which ismonotone increasingwith𝑚. To fix enumeration of this sequence,
we need to specify the element 𝜎(ℵℶ)

1
. Alternatively, we can prescribe the definitions of zigzag

quasi-eigenvalue counting functions

 𝑞

(ℵℶ) (𝜎) = #{𝑚 ∈ ℕ ∣ 𝜎(ℵℶ)𝑚 ⩽ 𝜎},

which are only defined a priori modulo addition of an integer. This is done according to the
following:

Definition 5.5. The natural enumeration of the quasi-eigenvalues of a zigzag(ℵℶ) is defined by
setting

 𝑞

(ℵℶ) (𝜎) ∶=
{[

𝜑(ℵℶ) (𝜎)
]
+ 1, if ℵ = 𝑁,[

𝜑(ℵℶ) (𝜎)
]
, if ℵ = 𝐷,

where [⋅] denotes the integer part.

To reformulateDefinition 5.5 in terms of specifying the element𝜎(ℵℶ)
1

, we need to look at the val-
ues of 𝜑(ℵℶ) (0). We recall that the corresponding zigzagmatrix �̂�(0) is just a product of symmetric
matrices �̂�(𝛼𝑛−1)⋯ �̂�(𝛼1) and therefore has eigenvectors±�̂�even and±�̂�odd whose arguments are
odd multiples of 𝜋

4
. Thus, applying definition (5.6) and (5.7), and recalling Remark 5.4 we deduce

that

arg
(
�̂�(0) �̂�

)
∈
(
−
𝜋
4
,
𝜋
4

)
and arg

(
�̂�(0) �̂�

)
∈
(
𝜋
4
,
3𝜋
4

)
.

We now consider four zigzag problems separately.

Proposition 5.6.

(i) For an 𝑁𝑁-zigzag, if arg(�̂�(0) �̂�) ⩾ 0, then 𝜎(𝑁𝑁)1
is the first non-positive quasi-eigenvalue

(that is, the non-positive quasi-eigenvalue with the smallest absolute value), otherwise 𝜎(𝑁𝑁)
1

is
the first positive quasi-eigenvalue.

(ii) For an𝑁𝐷-zigzag, 𝜎(𝑁𝐷)
1

is the first positive quasi-eigenvalue.
(iii) For a 𝐷𝑁-zigzag, 𝜎(𝐷𝑁)

1
is the first positive quasi-eigenvalue.

(iv) For a𝐷𝐷-zigzag, if arg(�̂�(0) �̂�) ⩾ 𝜋
2
, then𝜎(𝐷𝐷)

1
is the first positivequasi-eigenvalue, otherwise

𝜎(𝐷𝐷)
1

is the second positive quasi-eigenvalue.

Proof. It is sufficient to check that the counting functions induced by the choice of 𝜎1 in the
statements matches Definition 5.5 at one value of 𝜎, say, 𝜎 = 0.
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(i) For an 𝑁𝑁-zigzag, the formula (5.15) and Definition 5.5 yield

 𝑞

(𝑁𝑁) (0) =
⎧⎪⎨⎪⎩
1, if arg

(
�̂�(0) �̂�

)
⩾ 0,

0, if arg
(
�̂�(0) �̂�

)
< 0,

implying the result.
(ii) For an 𝑁𝐷-zigzag, by (5.15) and Definition 5.5,

 𝑞

(𝑁𝐷) (0) = 0,

hence the result.
(iii) Similarly, for a 𝐷𝑁-zigzag,

 𝑞

(𝐷𝑁) (0) = 0.

(iv) For a 𝐷𝐷-zigzag, again by formula (5.15) and Definition 5.5,

 𝑞

(𝐷𝐷) (0) =
⎧⎪⎨⎪⎩
0, if arg

(
�̂�(0) �̂�

)
⩾
𝜋
2
,

−1, if arg
(
�̂�(0) �̂�

)
< 𝜋

2
,

implying the result.

□

The following result will be useful for expressing the quasi-eigenvalues counting functions in
terms of 𝜑(𝜎).

Lemma 5.7. Consider a zigzag (ℵℶ). Then for all 𝜎 ∈ ℝ,[
𝜑(ℵℶ) (𝜎)

]
=
[
𝜑(ℵℶ) (𝜎)

]
.

Proof. By (5.16), the two expressions may differ only by an integer as they have jumps at the same
points. Therefore, it is enough to check the equality for 𝜎 = 0. This is done exactly in the same
manner as in the proof of Proposition 5.6. □

In general, the functions 𝜑(ℵℶ) (𝜎) and 𝜑(ℵℶ) (𝜎) are not the same, although their integer parts
coincide. It is easy to check that both functions are smooth. Moreover, they are strictly mono-
tone with the derivatives bounded away from zero. Namely, we have the following result which
strengthens Lemma 5.2.

Lemma 5.8. There exist constants 𝐶1, 𝐶2 > 0 such that 𝐶1 ⩽ 𝜑′(ℵℶ) (𝜎) < 𝐶2 and 𝐶1 < 𝜑
′
(ℵℶ) (𝜎) <

𝐶2 for all 𝜎 > 0.
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Proof. We will work with the function 𝜑(ℵℶ) (𝜎); the reasoning for 𝜑(ℵℶ) (𝜎) will be similar. In
view of the definition of the matrix �̂�, the function 𝜑(ℵℶ) (𝜎) is equal to the cumulative changes
of the argument under the action of rotation matrices �̂�(𝜎𝓁𝑖) and symmetric matrices belonging
to ̂ which are independent of 𝜎. The rotation matrices increase the argument linearly in 𝜎. Now
apply formula (5.9) with �̂� = �̂�(𝛼1) and �̂� = �̂�(𝜎𝓁1)ℵ̂ together with the chain rule. This leads to
the bound

𝐶1,1 ⩽
𝑑
𝑑𝜎

arg
(
�̂�(𝛼1)�̂�(𝜎𝓁1)ℵ̂

)
< 𝐶1,2

for some constants 0 < 𝐶1,1 < 𝐶1,2. Applying this observation iteratively to the matrices arising in
the representation of �̂�, we obtain the desired inequalities. □

We immediately have:

Corollary 5.9. The difference 𝜎𝑚+1 − 𝜎𝑚 for a non-exceptional zigzag is bounded away from zero.

Our next goal is to prove Theorem 2.39. The result follows from the following two propositions.

Proposition 5.10. Theorem2.39 holds for partially curvilinear zigzagswith one side and for straight
zigzags with two equal sides.

Proposition 5.11. Let ∶= 𝑍(ℵℶ)
𝑃𝑄

be a partially curvilinear zigzag with end points 𝑃 and𝑄, and let
𝑊 ∈  be a point which is not a vertex and such that the zigzag is straight in some neighbourhood
of𝑊. The point𝑊 splits  into two partially curvilinear zigzags 𝑃𝑊 , starting at 𝑃 and ending at
𝑊, and 𝑊𝑄, starting at 𝑊 and ending at 𝑄. Impose a boundary condition ℸ ∈ {𝐷,𝑁} at 𝑊. If
Theorem 2.39 holds for bothI ∶= (ℵℸ)

𝑃𝑊
andII ∶= (ℸℶ)

𝑊𝑄
then it also holds for(ℵℶ)

𝑃𝑄
.

To prove Theorem 2.39 for an arbitrary partially curvilinear zigzag, it remains simply to note
that any partially curvilinear zigzag can be represented as a union of partially curvilinear zigzags
with one side and straight zigzags with two equal sides, see Figure 12.

5.4 Proof of Proposition 5.10

Consider first a zigzag 1 consisting of one side of length 𝓁. The corresponding matrix is given
by

�̂�1 = �̂�(𝓁𝜎),
and therefore

𝜑(ℵℶ)
1

(𝜎) = 𝓁𝜎 + arg ℵ̂ − arg ℶ̂,

leading, by Definition 5.5, to

 𝑞

(𝑁𝑁)
1

(𝜎) = [𝓁𝜎] + 1,  𝑞

(𝐷𝐷)
1

(𝜎) = [𝓁𝜎],  𝑞

(𝑁𝐷)
1

(𝜎) = 𝑞

(𝐷𝑁)
1

(𝜎) =
[
𝓁𝜎 +

1
2

]
. (5.17)
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F IGURE 1 2 Decomposition of a three-arc partially curvilinear zigzag into the union of two two-piece
straight zigzags with equal sides (solid lines) and three partially curvilinear one-piece zigzags (dashed lines)

At the same time, it follows from Corollary 4.18 (which is applicable since, according to Defini-
tion 2.36, zigzag domains always have angles 𝜋∕2 at the ends of the corresponding zigzag, see
Figure 6) that 𝜆(ℵℶ)𝑚 − 𝜎(ℵℶ)𝑚 = 𝑜(1), where

𝓁𝜎(𝑁𝑁)𝑚 = 𝜋(𝑚 − 1), 𝓁𝜎(𝐷𝐷)𝑚 = 𝜋𝑚, 𝓁𝜎(𝑁𝐷)𝑚 = 𝓁𝜎(𝐷𝑁)𝑚 = 𝜋
(
𝑚 −

1
2

)
, 𝑚 ∈ ℕ,

which is in agreement with (5.17). This proves Proposition 5.10 for a one-sided zigzag.
Consider now a zigzag 2 ∶= ((𝛼), (𝓁,𝓁)) with two equal straight sides of length 𝓁 and the

angle 𝛼 between them. The corresponding zigzag matrix is given by

�̂�2 (𝜎) = �̂�(𝓁𝜎)�̂�(𝛼)�̂�(𝓁𝜎),

and a direct calculation gives

�̂�2 (𝜎)�̂� = cosec(𝜇𝛼)

(
cos(2𝓁𝜎)

− cos(𝜇𝛼) + sin(2𝓁𝜎)

)
(5.18)

and

�̂�2 (𝜎)�̂� = cosec(𝜇𝛼)
(
−cos(𝜇𝛼) − sin(2𝓁𝜎)

cos(2𝓁𝜎)

)
. (5.19)

We note additionally that

arg
(
�̂�2 (0)�̂�

)
= arg

(
cosec(𝜇𝛼)

− cot(𝜇𝛼)

)
(mod 𝜋)
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F IGURE 13 Symmetric decomposition of Steklov–Neumann symmetric zigzag domain. Solid lines denote
Steklov conditions, dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions.

and therefore

arg
(
�̂�2 (0)�̂�

)
∈
[
0,
𝜋
4

)
⟺ 𝜇𝛼 ∈

[
𝜋
2
,
3𝜋
2

]
(mod 2𝜋) ⟺

{𝜇𝛼
2𝜋

}
∈
[
1
4
,
3
4

]
, (5.20)

where {⋅} denotes the fractional part. Similarly,

arg
(
�̂�2 (0)�̂�

)
= arg

(
−cot(𝜇𝛼)

cosec(𝜇𝛼)

)
(mod 𝜋).

and therefore

arg
(
�̂�2 (0)�̂�

)
∈
(
𝜋
4
,
𝜋
2

)
⟺ 𝜇𝛼 ∈

(
𝜋
2
,
3𝜋
2

)
(mod 2𝜋) ⟺

{𝜇𝛼
2𝜋

}
∈
(
1
4
,
3
4

)
. (5.21)

Consider first the Neumann–Neumann case. By (5.18), a real 𝜎 is a quasi-eigenvalue whenever

−cos(𝜇𝛼) + sin(2𝓁𝜎) = 0,

that is, when

2𝜎𝓁 ∈
{
2𝜋𝑚 −

3𝜋
2
± 𝜇𝛼 ∣ 𝑚 ∈ ℤ

}
. (5.22)

At the same time, symmetrising the zigzag 2 along the bisector, one can represent the eigen-
value problem on a corresponding zigzag domain as the union of two mixed Steklov–Neumann
and Steklov–Neumann–Dirichlet eigenvalue problems (with either Neumann or Dirichlet condi-
tion imposed on the bisector, see Figure 13). The eigenvalue asymptotics for these problems are
known due to the results of [33, Propositions 1.3 and 1.13]: the quasi-eigenvalues are given by

2𝜎𝓁 ∈
{
2𝜋𝑚 −

3𝜋
2
± 𝜇𝛼 ∣ 𝑚 ∈ ℕ

}
. (5.23)

We need to show that for sufficiently large 𝜎 the enumeration defined by (5.23) and the natural
enumeration of (5.22) are the same. The natural enumeration of (5.22) means starting counting



ASYMPTOTICS OF STEKLOV EIGENVALUES 71

F IGURE 14 Symmetric decomposition of Steklov–Dirichlet symmetric zigzag domain. Solid lines denote
Steklov conditions, dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions.

from𝑚± = [
3
4
∓
𝜇𝛼
2𝜋
] + 1 instead of starting counting from 1, giving the total loss of

[
3
4
+
𝜇𝛼
2𝜋

]
+
[
3
4
−
𝜇𝛼
2𝜋

]
=

{
1, if

{
𝜇𝛼
2𝜋

}
∈
[
1
4
, 3
4

]
,

0, otherwise.
(5.24)

Therefore, if the condition {
𝜇𝛼
2𝜋
} ∈ [1

4
, 3
4
] is satisfied, we must start counting from the first

non-positive quasi-eigenvalue to ensure correct enumeration. But this is exactly the condition
(5.20), which with account of Proposition 5.6(i) guarantees that the enumeration imposed by
Definition 5.5 is correct, thus proving Theorem 2.39 for a symmetric straight 𝑁𝑁-zigzag with
two sides.
Consider now the case of the Dirichlet–Dirichlet boundary conditions. By (5.19), a real 𝜎 is a

quasi-eigenvalue whenever

−cos(𝜇𝛼) − sin(2𝓁𝜎) = 0,

that is, when

2𝜎𝓁 ∈
{
2𝜋𝑚 −

𝜋
2
± 𝜇𝛼 ∣ 𝑚 ∈ ℤ

}
. (5.25)

Symmetrising as above (see Figure 14) and using [33, Propositions 1.8 and 1.13], we know that the
quasi-eigenvalues will be correctly enumerated if we count over𝑚 ∈ ℕ in (5.25).
Similarly to the Neumann–Neumann case, we compare this to counting only positive quasi-

eigenvalues in (5.25). In the latter case, the total loss is now given (after some simplifications) by

[
1
4
+
𝜇𝛼
2𝜋

]
+
[
1
4
−
𝜇𝛼
2𝜋

]
=

{
−1, if

{
𝜇𝛼
2𝜋

}
∈
(
1
4
, 3
4

)
,

0, otherwise.
(5.26)

Comparing with (5.21) and using Proposition 5.6(iv) guarantees that the enumeration imposed
by Definition 5.5 is correct, thus proving Theorem 2.39 for a symmetric straight 𝐷𝐷-zigzag with
two sides.
Finally, consider the Neumann–Dirichlet or Dirichlet–Neumann boundary conditions on the

zigzag 2. In either case, the set of real quasi-eigenvalues is given by
2𝜎𝓁 ∈

{
−
𝜋
2
+ 𝜋𝑚 ∣ 𝑚 ∈ ℤ

}
,
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F IGURE 15 Two isospectral Steklov–Neumann–Dirichlet problems. Solid lines denote Steklov conditions,
dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions.

see (5.18) and (5.19). However, the boundary conditions are no longer symmetric with respect
to the bisector, therefore a direct comparison to a sloshing problem is impossible, and a different
approach is needed.Wewill use the following isospectrality result. Let𝐴𝐵𝐶 = 2 = ((𝛼), (𝓁,𝓁))
be a zigzagwith two equal straight sides𝐴𝐵 and𝐵𝐶 of length 𝓁 joined at an angle 𝛼, and let𝐴𝐵𝐶𝐹
be a 𝑁𝐷-zigzag domain, with the straight line intervals 𝐹𝐴 and 𝐹𝐶 being orthogonal to 𝐴𝐵 and
𝐵𝐶, respectively. Also, let 𝐴′𝐶′𝐹′ be an isosceles triangle with the base 𝐴′𝐶′ of length 2𝓁 and
angles 𝛼∕2 between the base and the sides, see Figure 15.

Lemma 5.12. The Steklov–Neumann–Dirichlet eigenvalue problem

−Δ𝑢 = 0 in 𝐴𝐵𝐶𝐹,
(
𝜕𝑢
𝜕𝑛

− 𝜆𝑢

)|||||𝐴𝐵𝐶 = 0, 𝜕𝑢
𝜕𝑛

||||𝐴𝐹 = 0, 𝑢|𝐶𝐹 = 0
is isospectral to the Steklov–Neumann–Dirichlet eigenvalue problem

−Δ𝑢 = 0 in 𝐴′𝐶′𝐹′,
(
𝜕𝑢
𝜕𝑛

− 𝜆𝑢

)|||||𝐴′𝐶′ = 0, 𝜕𝑢
𝜕𝑛

||||𝐴′𝐹′ = 0, 𝑢|𝐶′𝐹′ = 0.
Proof of Lemma 5.12. The lemma follows froma direct application of the transplantation argument
of [32, Theorem 3.1]. In our case, the construction block 𝐾 is the triangle 𝐴𝐵𝐹, the line 𝑎 is the
side𝐴𝐹, and the line 𝑏 is 𝐵𝐹. Note that although [32, Theorem 3.1] is stated for the Laplacian with
mixed Dirichlet–Neumann boundary conditions, its proof applies verbatim in our case, see also
[19]. □

Using Lemma 5.12 and applying [33, Proposition 1.13] to the isosceles triangle constructed in
the lemma, we immediately obtain that

2𝓁𝜎(𝑁𝐷)𝑚 = −
𝜋
2
+ 𝜋𝑘,𝑚 = 1, 2, … ,

and therefore 𝜎(𝑁𝐷)
1

is the first positive quasi-eigenvalue as prescribed by Definition 5.5. Exactly
the same argument works for 𝜎(𝐷𝑁)

1
. This completes the proof of Proposition 5.10.
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5.5 Proof of Proposition 5.11

The proof is based on theDirichlet–Neumann bracketing. Given some boundary conditionsℵ and
ℶ at the points𝑃 and𝑄, respectively,we impose theDirichlet orNeumannboundary conditionℸ at
the point𝑊 anduse the assumption that Theorem2.39 holds for two partsI ∶= (ℵℸ)

𝑃𝑊
andII ∶=

(ℸℶ)
𝑊𝑄

of  with ℸ ∈ {𝐷,𝑁}. We then show that the only enumeration of eigenvalues on the big
zigzag(ℵℶ) that agreeswith theDirichlet–Neumann bracketing is the one given byDefinition 5.5.
Indeed, let(𝜎),I (𝜎),II (𝜎) be the eigenvalue counting functions (that is, the number

of eigenvalues less or equal than 𝜎) for the zigzags,I andII with given boundary conditions
at the end points. Similarly, let  𝑞

(𝜎),  𝑞
I (𝜎),  𝑞

II (𝜎) be the corresponding quasi-eigenvalue
counting functions, where the quasi-eigenvalues are enumerated according to Definition 5.5. The
following key lemma holds.

Lemma 5.13. Fix ℵ,ℶ, ℸ ∈ {𝐷,𝑁}. There exists 𝛿 > 0 such that for any 𝑀 > 0 there exists an
interval 𝑀ℎ ⊂ (𝑀,+∞) of length 𝛿 such that

 𝑞

(ℵℸ)
I

(𝜎) + 𝑞

(ℸℶ)
II

(𝜎) = 𝑞

(ℵℶ) (𝜎) for any 𝜎 ∈ 𝑀. (5.27)

Before proving Lemma 5.13, let us show first how it implies Proposition 5.11.

Proof of Proposition 5.11. Consider a zigzag domain corresponding to the zigzag . It can
be represented as a union of two zigzag domains corresponding to the zigzags I, II. By
Dirichlet–Neumann bracketing, for all 𝜎 > 0 we have

(ℵ𝐷)
I

(𝜎) +(𝐷ℶ)
II

(𝜎) ⩽(ℵℶ) (𝜎) ⩽(ℵ𝑁)
I

(𝜎) +(𝑁ℶ)
II

(𝜎). (5.28)

At the same time, by our assumption, the natural enumeration holds for the zigzags I and II.
Therefore, the eigenvalue counting functions and the corresponding quasimode counting func-
tions of these zigzags coincide away from a union of intervals of lengths tending to zero. Let us
combine this observation with Lemma 5.13 and formula (5.28). We deduce that there exists a pos-
itive number 𝛿′ such that for any𝑀 > 0 there exist intervals 𝑁

𝑀
,𝐷
𝑀
⊂ (𝑀,+∞) of length 𝛿′ on

which the following inequalities hold:

(ℵℶ) (𝜎) ⩽ 𝑞

(ℵℶ) (𝜎), 𝜎 ∈ 𝑁𝑀;
(ℵℶ) (𝜎) ⩾ 𝑞

(ℵℶ) (𝜎), 𝜎 ∈ 𝐷𝑀.
(5.29)

At the same time, it follows from Theorem 4.30 that there exists a limit (possibly equal to +∞)

lim
𝜎→∞
𝜎∉𝑆

((ℵℶ) (𝜎) − 𝑞

(ℵℶ) (𝜎)
)
, (5.30)

where 𝑆 is a union of intervals of lengths tending to zero. In fact this also follows directly from
Corollaries 4.17 and 5.9. Clearly, (5.30) implies that both inequalities in (5.29) are equalities.
Therefore, the natural enumeration holds for the zigzag (ℵℶ) which completes the proof of
Proposition 5.11. □
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It remains to prove Lemma 5.13. The following abstract proposition will be used in the proof of
the lemma.

Proposition 5.14. Let 𝜑1, 𝜑2 ∈ 𝐶1(ℝ) be two monotone increasing functions such that 0 < 𝐶1 <
𝜑′
1
, 𝜑′
2
< 𝐶2 for some constants 𝐶1, 𝐶2 > 0. Then there exists 𝛿 > 0 such that for any 𝑀 ∈ ℕ there

exist intervals ,′ ⊂ (𝑀,+∞) of length 𝛿 such that
[𝜑1(𝜎)] + [𝜑2(𝜎)] + 1 = [𝜑1(𝜎) + 𝜑2(𝜎)], 𝜎 ∈ . (5.31)

[𝜑1(𝜎)] + [𝜑2(𝜎)] = [𝜑1(𝜎) + 𝜑2(𝜎)], 𝜎 ∈ ′. (5.32)

We postpone the proof of Proposition 5.14 and proceed with the proof of Lemma 5.13.

Proof of Lemma 5.13. We start by making the following observation: 𝜎 is a quasi-eigenvalue of
(ℵℶ) if and only if

𝜑(ℵℸ)
I

(𝜎) + 𝜑(ℸℶ)
II

(𝜎) ∈ ℤ, ℸ ∈ {𝐷,𝑁}. (5.33)

Indeed, for 𝜎 to be a quasi-eigenvalue we must have

𝚄II (𝜎) 𝚄I (𝜎)ℵ is proportional to ℶ

⇕

arg
(
𝚄I (𝜎)ℵ

)
= arg

(
𝚄−1II (𝜎)ℶ

)
(mod 𝜋)

⇕

arg
(
𝚄I (𝜎)ℵ

)
− arg(ℸ) + arg(ℸ) − arg

(
𝚄−1II (𝜎)ℶ

)
= 0 (mod 𝜋),

and then recall the definitions (5.15) giving us (5.33).
Therefore, the quasi-eigenvalue counting function 𝑞

(ℵℶ) (𝜎) may only differ from the integer
part of the left-hand side of (5.33) by addition of an integer 𝑚0 independent of 𝜎. To find 𝑚0 it is
enough to consider 𝜎 = 0.
We further assert that for any ℵ,ℶ, ℸ ∈ {𝐷,𝑁}, we have

[
𝜑(ℵℶ) (0)

]
=

[
𝜑(ℵℸ)

I

(0) + 𝜑(ℸℶ)
II

(0)

]
. (5.34)

We prove (5.34) in the caseℵ = ℶ = ℸ = 𝑁. Recall that all matrices 𝚄(0) are symmetric andwe can
therefore write 𝚄I (0) = �̂�(1∕𝜏I, �̂�even) and 𝚄II (0) = �̂�(1∕𝜏II, �̂�even) with some 𝜏I, 𝜏II ∈ ℝ. Using
(5.15) and (5.9), we obtain

[
𝜑(𝑁𝑁) (0)

]
=

[
arctan

(
𝜏2
I
𝜏2
II

)
𝜋

−
1
4

]
=

{
−1, if 𝜏2

I
𝜏2
II
< 1,

0, if 𝜏2
I
𝜏2
II
⩾ 1.

(5.35)
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On the other hand,[
𝜑(𝑁𝑁)

I

(0) + 𝜑(𝑁𝑁)
II

(0)

]
=

[
arctan

(
𝜏2
I

)
− arctan

(
𝜏−2
II

)
𝜋

]
,

thus coinciding with the right-hand side of (5.35) and proving (5.34) in the case ℵ = ℶ = ℸ = 𝑁.
The other cases of (5.34) are treated similarly.
But now the combination of (5.34), Definition 5.5, and Lemma 5.7 allows us to find the integer

𝑚0 in each case. We arrive at the following table:

ℵ ℶ ℸ  𝑞

(ℵℶ) (𝜎)  𝑞

(ℵℸ)
I

(𝜎)  𝑞

(ℸℶ)
II

(𝜎)

𝑁 𝑁 𝑁

[
𝜑(𝑁𝑁)

I

(𝜎) + 𝜑(𝑁𝑁)
II

(𝜎)

]
+ 1

[
𝜑(𝑁𝑁)

I

(𝜎)

]
+ 1

[
𝜑(𝑁𝑁)

II

(𝜎)

]
+ 1

𝑁 𝑁 𝐷

[
𝜑(𝑁𝑁)

I

(𝜎) + 𝜑(𝐷𝑁)
II

(𝜎)

]
+ 1

[
𝜑(𝑁𝐷)

I

(𝜎)

]
+ 1

[
𝜑(𝐷𝑁)

II

(𝜎)

]
𝑁 𝐷 𝑁

[
𝜑(𝑁𝑁)

I

(𝜎) + 𝜑(𝑁𝐷)
II

(𝜎)

]
+ 1

[
𝜑(𝑁𝑁)

I

(𝜎)

]
+ 1

[
𝜑(𝑁𝐷)

II

(𝜎)

]
+ 1

𝑁 𝐷 𝐷

[
𝜑(𝑁𝐷)

I

(𝜎) + 𝜑(𝐷𝐷)
II

(𝜎)

]
+ 1

[
𝜑(𝑁𝐷)

I

(𝜎)

]
+ 1

[
𝜑(𝐷𝐷)

II

(𝜎)

]
𝐷 𝑁 𝑁

[
𝜑(𝐷𝑁)

I

(𝜎) + 𝜑(𝑁𝑁)
II

(𝜎)

] [
𝜑(𝐷𝑁)

I

(𝜎)

] [
𝜑(𝑁𝑁)

II

(𝜎)

]
+ 1

𝐷 𝑁 𝐷

[
𝜑(𝐷𝐷)

I

(𝜎) + 𝜑(𝐷𝑁)
II

(𝜎)

] [
𝜑(𝐷𝐷)

I

(𝜎)

] [
𝜑(𝐷𝑁)

II

(𝜎)

]
𝐷 𝐷 𝑁

[
𝜑(𝐷𝑁)

I

(𝜎) + 𝜑(𝑁𝐷)
II

(𝜎)

] [
𝜑(𝐷𝑁)

I

(𝜎)

] [
𝜑(𝑁𝐷)

II

(𝜎)

]
+ 1

𝐷 𝐷 𝐷

[
𝜑(𝐷𝐷)

I

(𝜎) + 𝜑(𝐷𝐷)
II

(𝜎)

] [
𝜑(𝐷𝐷)

I

(𝜎)

] [
𝜑(𝐷𝐷)

II

(𝜎)

]
Recalling Lemma 5.8, the proof of Lemma 5.13 now follows by the application of Proposition 5.14,
which applies in all eight of these cases. □

We conclude this subsection by the proof of Proposition 5.14.

Proof of Proposition 5.14. Assume without loss of generality that 𝐶2 = 𝐶 and 𝐶1 = 1∕𝐶, for some
𝐶 > 1. Let us first prove the assertion (5.31). Let 𝜔1(𝜎) = {𝜑1(𝜎)}, 𝜔2(𝜎) = {𝜑2(𝜎)} denote the frac-
tional parts of 𝜑1(𝜎), 𝜑2(𝜎), respectively. Note that the equality in (5.31) is equivalent to the
inequality

𝜔1(𝜎) + 𝜔2(𝜎) ⩾ 1. (5.36)

Choose an integer number𝑁 > 𝑀 and let 𝑠 be the value for which 𝜑1(𝑠) + 𝜑2(𝑠) = 𝑁. If𝜔1(𝑠) =
𝜔2(𝑠) = 0 then the result trivially follows for the interval (𝑠 − 𝛿, 𝑠) and 𝛿 = 1

2𝐶
. Therefore, we
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may suppose that𝜔1(𝑠) + 𝜔2(𝑠) = 1, and assumewithout loss of generality that𝜔2(𝑠) ⩾
1
2
⩾ 𝜔1(𝑠).

There are two cases.
Suppose first that 𝜔1(𝑠) ⩽

1
3𝐶2

. Then since 𝜑′
1
> 1

𝐶
, there exists (precisely one) 𝑠′ ∈ (𝑠 − 1

3𝐶
, 𝑠)

for which 𝜔1(𝑠′) = 0. On the other hand, since 𝜑′2 < 𝐶, 𝜑2(𝑠
′) ⩾ 𝜑2(𝑠) −

1
3
, and since 𝜔2(𝑠) ⩾ 1 −

1
3𝐶2

⩾
2
3
, we must have 𝜔2(𝑠′) ⩾

1
3
. Therefore, (𝜔1 + 𝜔2)(𝑠′) ⩾

1
3
. Our inequality (5.36) then holds

on the interval (𝑠′ − 1
6𝐶
, 𝑠′), which is a subset of (𝑠 − 2

3𝐶
, 𝑠).

On the other hand, suppose that 𝜔1(𝑠) >
1
3𝐶2

. Then 𝜔2(𝑠) < 1 −
1
3𝐶2

, and so on the interval
(𝑠, 𝑠 + 1

3𝐶3
), 𝜔2 remains less than 1, as does 𝜔1. Since both are still increasing, (5.36) holds on

the interval (𝑠, 𝑠 + 1
3𝐶3
).

In either case, the interval (𝑠 − 2
3𝐶
, 𝑠 + 2

3𝐶
) contains an interval of length at least 1

6𝐶3
where

(5.36) holds. Since there are infinitely many values of 𝑠, (5.31) follows.
The relation (5.32) is proved in a similar manner. □

5.6 Enumeration of quasi-eigenvalues for non-exceptional polygons

Let  ∶= (𝜶,𝓵) be a partially curvilinear non-exceptional polygon and let �̂�(𝜎) ∶= �̂�(𝜶,𝓵, 𝜎)
be the lifted corresponding matrix defined in Subsection 5.1 acting on the universal cover ℂ̂∗.
Recall that a real number 𝜎 ⩾ 0 is a quasi-eigenvalue of the polygon  if the matrix 𝚃(𝜶,𝓵, 𝜎)
has eigenvalue one. Equivalently, this means that there exists a vector 0 ≠ �̂� ∈ ℂ̂∗ such that |�̂�| =|�̂�(𝜎)�̂�| and

arg
(
�̂�(𝜎)�̂�

)
= arg �̂� (mod 2𝜋). (5.37)

Let us for the moment switch back to the representation of vectors and matrices on ℝ2. Given
that det(𝚃♯(𝜎)) = 1, for each 𝜎 there exist two linearly independent vectors 𝔱♯

1
= 𝔱♯

1
(𝚃♯(𝜎)) and

𝔱♯
2
= 𝔱♯

2
(𝚃♯(𝜎)) such that

|||𝚃♯(𝜎)𝔱♯𝑗||| = |||𝔱♯𝑗|||, 𝑗 = 1, 2.

Indeed, by polar decomposition thematrix 𝚃♯(𝜎) could be represented as a product of a symmetric
matrix and a rotation; the latter does not change length, and for a symmetric matrix the statement
is easy to check. (Interestingly, the problem of finding the vectors whose length is preserved under
the action of a given matrix has other unexpected applications, see [49].) Moreover, the vectors
𝔱♯
1
and 𝔱♯

2
are uniquely defined up to multiplication by a constant or up to a swap, unless 𝚃♯(𝜎) is

a pure rotation, in which case one could take any pair of linearly independent vectors. To fix the
argument, we shall assume that

0 ⩽ arg 𝔱♯
𝑗
< 𝜋, 𝑗 = 1, 2. (5.38)

Set now

�̂�𝑗 ∶= 𝚷
−1𝔱♯

𝑗
, 𝑗 = 1, 2,
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and

𝔡𝑗(�̂�(𝜎)) ∶= arg
(
�̂�(𝜎)̂𝖙𝑗

)
− arg

(
�̂�𝑗

)
, 𝑗 = 1, 2. (5.39)

Note that 𝔡𝑗(�̂�(𝜎)) is always well-defined: if �̂�(𝜎) is a rotation by an angle 𝜓, then 𝔡𝑗(�̂�(𝜎)) = 𝜓 for
any choice of �̂�𝑗 . The following proposition is an immediate consequence of Definition 2.3.

Proposition 5.15. Anumber 𝜎 ⩾ 0 is a quasi-eigenvalue of the polygon if and only if 𝔡𝑗(�̂�(𝜎)) = 0
(mod 2𝜋) for either 𝑗 = 1 or 𝑗 = 2. If 𝜎 > 0 and 𝔡𝑗(�̂�(𝜎)) = 0 (mod 2𝜋) for both 𝑗 = 1, 2, then 𝜎 is
a quasi-eigenvalue of multiplicity two.

Remark 5.16. The matrix �̂�(𝜎) corresponding to a polygon  is defined up to similarity: it depends
on the choice of enumeration of vertices of the polygon  . As a consequence, the vectors �̂�𝑗 and
the functions 𝔡𝑗(𝜎), 𝑗 = 1, 2, depend on this choice as well. To simplify notation, in what follows
we write �̂�𝑗(𝜎) ∶= �̂�𝑗(�̂�(𝜎)) and 𝔡𝑗(𝜎) ∶= 𝔡𝑗(�̂�(𝜎)), when the choice of the matrix �̂� is clear from
the context. Note also that by Proposition 5.15, the values of 𝜎 such that 𝔡𝑗(�̂�(𝜎)) = 0 (mod 2𝜋)
depend only on the polygon  but not on the choice of the matrix �̂�, cf. Remark 2.4.

The following regularity properties of the functions 𝔡𝑗(�̂�(𝜎)), 𝑗 = 1, 2may be deduced from the
structure of the matrices �̂�(𝜎).

Lemma5.17. The function 𝔡𝑗(�̂�(𝜎)) is a continuous function in𝜎, 𝑗 = 1, 2.Moreover, if �̂�(𝜎0) is not a
rotation, then 𝔡𝑗(�̂�(𝜎)) is differentiable at 𝜎 = 𝜎0; otherwise, left and right derivatives at 𝜎 = 𝜎0 exist.

Proof. Let uswrite down the polar decomposition for �̂�(𝜎) explicitly. First, observe by a direct com-
putation that �̂�(𝜏, �̂�)�̂�(𝜓) = �̂�(𝜓)�̂�(𝜏, �̂�(−𝜓)�̂�), where �̂� is a symmetric matrix and �̂� is a rotation
as defined in Subsection 5.2. Iterating this relation and taking into account (5.3), we obtain

�̂�(𝜎) = �̂�(𝜶,𝓵, 𝜎) = �̂�(𝐿𝜎)�̂�𝑛(𝜎)�̂�𝑛−1(𝜎)⋯ �̂�1(𝜎), (5.40)

where 𝐿𝑗 =
∑𝑗
𝑘=1

𝓁𝑘, 𝐿 = 𝐿𝑛, and

�̂�𝑗(𝜎) = �̂�(𝑎1(𝛼𝑗) − 𝑎2(𝛼𝑗), �̂�(−𝐿𝑗𝜎)�̂�odd).

It follows from (5.40) that �̂�(𝜎) is a rotation if and only if

�̂�𝑛(𝜎)�̂�𝑛−1(𝜎)⋯ �̂�1(𝜎) = ±Îd. (5.41)

Moreover, note that the entries of �̂�(𝜎) are real analytic functions of 𝜎. Hence, for a given 𝜎 = 𝜎0
there are three possibilities.

(i) �̂�(𝜎) is not a rotation in some neighbourhood of 𝜎0. Then the vectors �̂�𝑗(𝜎), 𝑗 = 1, 2, are
uniquely defined for each 𝜎 in this neighbourhood and 𝔡𝑗(𝜎) depends smoothly on 𝜎.

(ii) �̂�(𝜎) is a rotation in some neighbourhood of 𝜎0. Then 𝔡𝑗(𝜎) is a linear function in 𝜎 in this
neighbourhood.
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(iii) �̂�(𝜎0) is a rotation, but 𝑇(𝜎) is not a rotation in some punctured neighbourhood of 𝜎0. In this
case 𝜎 = 𝜎0 corresponds to a double eigenvalue. However, we claim the left and right deriva-
tives of 𝔡𝑗(𝜎), which are defined a priori only for 𝜎 ≠ 𝜎0, in fact exist at 𝜎 = 𝜎0. Indeed, this
follows from a standard perturbation theory result of Rellich [43]. The matrix �̂�𝑛(𝜎)… �̂�1(𝜎)
is a symmetric matrix, all of whose coefficients have analytic dependence on 𝜎. By [43, p.
42, Theorem 1], its eigenvalues and eigenvectors may be chosen to have analytic depen-
dence on 𝜎 in a neighbourhood of 𝜎 = 𝜎0, with 𝜎 = 𝜎0 corresponding to an intersection
of analytic branches. By a direct calculation, the unit vectors whose length is preserved
by �̂�𝑛(𝜎)… �̂�1(𝜎) have analytic dependence on the eigenvalues and eigenvectors, and hence
themselves depend analytically on 𝜎. However, by (5.40), these vectors are precisely �̂�𝑗(𝜎),
𝑗 = 1, 2. The result follows.

This completes the proof of the lemma. □

The next proposition is important for our analysis.

Proposition 5.18. The functions 𝔡𝑗(�̂�(𝜎)) are monotone increasing in 𝜎 and

0 < 𝐶1 ⩽
𝑑± 𝔡𝑗(�̂�(𝜎))

𝑑𝜎
⩽ 𝐶2,

where 𝑑
±

𝑑𝜎
denotes one-sided derivatives.

Proof. We consider separately the cases (i)–(iii) above. Consider first case (i). Then 𝔡𝑗(�̂�𝜎) depends
smoothly on 𝜎 and

𝑑 𝔡𝑗(�̂�(𝜎))

𝑑𝜎

||||||𝜎=𝜎0 =
𝑑
𝑑𝜎

||||𝜎=𝜎0 arg(�̂�(𝜎))̂𝖙𝑗(𝜎) − 𝑑
𝑑𝜎

||||𝜎=𝜎0 arg �̂�𝑗(𝜎)
=

𝑑
𝑑𝜎

||||𝜎=𝜎0 arg(�̂�(𝜎))̂𝖙𝑗(𝜎0)
+

(
𝑑
𝑑𝜎

||||𝜎=𝜎0 arg(�̂�(𝜎0))̂𝖙𝑗(𝜎) − 𝑑
𝑑𝜎

||||𝜎=𝜎0 arg �̂�𝑗(𝜎)
)
.

Set

𝐷1(𝜎) =
𝑑
𝑑𝜎

||||𝜎=𝜎0 arg(�̂�(𝜎))̂𝖙𝑗(𝜎0)
and

𝐷2(𝜎) =
𝑑
𝑑𝜎

||||𝜎=𝜎0 arg(�̂�(𝜎0))̂𝖙𝑗(𝜎) − 𝑑
𝑑𝜎

||||𝜎=𝜎0 arg �̂�𝑗(𝜎).
Arguing in the same way as in the proof of of Lemma 5.8 one can check that there exist constants
𝐶1, 𝐶2 > 0 such that 𝐶1 ⩽ 𝐷1(𝜎) ⩽ 𝐶2. The proof of Proposition 5.18 in case (i) then follows from
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the following claim:

𝐷2(𝜎) = 0. (5.42)

To prove (5.42), let us assume without loss of generality that 𝑗 = 1 and |̂𝖙1(𝜎0)| = 1. For 𝜎 close to
𝜎0, let

�̂�1(𝜎) = �̂�1(𝜎0) + (𝜎 − 𝜎0)�̂�
∥
1 + (𝜎 − 𝜎0)�̂�

⟂
1 + 𝑜(𝜎 − 𝜎0),

where �̂�∥1 is a vector in the same direction as �̂�1(𝜎0) and the angle between �̂�
∥
1 and �̂�

⟂
1 is equal to

𝜋∕2. It is easy to see that

𝑑
𝑑𝜎

||||𝜎=𝜎0 arg �̂�1(𝜎) = |||�̂�⟂1 |||. (5.43)

Let �̂�′
1 = �̂�(𝜎0)�̂�

∥
1 and �̂�

′′
1 = �̂�(𝜎0)�̂�

⟂
1 . By definition of �̂�1(𝜎0), we have |�̂�(𝜎0)̂𝖙1(𝜎0)| = |̂𝖙1(𝜎0)|

and therefore |�̂�′
1| = |�̂�∥1|. At the same time, det �̂�(𝜎0) = 1, and therefore the areas of the parallel-

ograms generated by the pairs of vectors (�̂�∥1, �̂�
⟂
1 ) and (�̂�

′
1, �̂�

′′
1 ) are the same.Hence, the projection

of �̂�′′
1 on (�̂�

′
1)
⟂ has the same length as �̂�⟂1 . One can check that the length of this projection is equal

to 𝑑
𝑑𝜎
|𝜎=𝜎0 arg(�̂�(𝜎0))̂𝖙1(𝜎). Hence, taking into account (5.43), one obtains (5.42).

This completes the proof of Proposition 5.18 in case (i). In case (iii), the argument is exactly the
same with the derivative replaced by one-sided derivatives. Consider now the remaining case (ii).
Then, as follows from (5.40) and (5.41), the function 𝔡𝑗(�̂�𝜎) is linear in 𝜎 and its derivative is equal
to 𝐿, which immediately implies the proposition. □

Let us now define the natural enumeration for polygons. Let now {𝜎𝑚()},𝑚 ∈ ℤ, be the
sequence of all real quasi-eigenvalues of the polygon  repeated with multiplicities, which is
monotone increasing with 𝑚, see Remark 2.21. Recall that a quasi-eigenvalue 𝜎 has multiplicity
two if 𝔡𝑗(�̂�(𝜎)) = 0 (mod 2𝜋) for both 𝑗 = 1, 2.

Definition 5.19. The first quasi-eigenvalue 𝜎1() is defined as the first non-negative element
the sequence {𝜎𝑚()}. Moreover, if 𝜎1() = 0 then 𝜎2() > 0, that is, a zero quasi-eigenvalue is
counted only once.

We can now state the main result of this subsection that the natural enumeration of quasi-
eigenvalues yields the correct enumeration of Steklov eigenvalues for partially curvilinear
polygons without exceptional angles.

Theorem 5.20. Theorem 1.4 holds for partially curvilinear non-exceptional polygons.

Proof. Let be a partially curvilinear polygon. Take any point𝑉0 on a straight piece of the bound-
ary and make a straight cut perpendicular to 𝜕 at this point into the interior of  ; at the top of
the cut we add another small circular cut, see Figure 16.
Imposing Neumann or Dirichlet conditions on the cut we may consider the polygon with a cut

as a zigzag domain cut corresponding to the zigzag  =  = 𝜕 with the same start and end
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F IGURE 16 A polygon with a cut

point 𝑉0. The assumptions of Lemma 4.9 are satisfied for this zigzag domain (note that the cir-
cular cut was added precisely to avoid having an angle greater than 𝜋 at the top of the vertical
cut), and therefore the quasimode construction applies. Denote by (𝜎) the eigenvalue count-
ing function on a polygon, and by (𝐷𝐷) (𝜎) and (𝑁𝑁) (𝜎) the eigenvalue counting functions
of zigzag  with, respectively, the Dirichlet and Neumann condition on the cut. Denote also by
 𝑞

 (𝜎), 𝑞

(𝐷𝐷) (𝜎) and 𝑞

(𝑁𝑁) (𝜎) the corresponding quasi-eigenvalue counting functions. By the
Dirichlet–Neumann bracketing we have for all positive 𝜎

(𝐷𝐷) (𝜎) ⩽ (𝜎) ⩽(𝑁𝑁) (𝜎). (5.44)

In view of Remark 5.16, we need to fix the choice of the matrix �̂� corresponding to the polygon  .
From now on, we choose it to be thematrix corresponding to the zigzag . This could be done by
introducing an auxiliary vertex at 𝑉0 with the angle equal to 𝜋 , and use this vertex as the starting
point for enumeration of the vertices of  . Note that the vertex transfer matrix at 𝑉0 is equal to
identity and therefore does not affect �̂�.
Consider the functions

𝜓𝑗(𝜎) =
𝔡𝑗(𝜎)

2𝜋
, 𝑗 = 1, 2. (5.45)

Remark 5.21. In what follows we shall assume that �̂�(0) is a positive matrix. If �̂�(0) is negative, the
proof follows along the same lines with minor modifications which will be indicated later.

Lemma 5.22. The following formula holds:

 𝑞
 (𝜎) = [𝜓1(𝜎)] + [𝜓2(𝜎)] + 1.

Proof. We first note that the right-hand side is a step function that has discontinuities precisely at
the quasi-eigenvalues. Moreover, the jump at a discontinuity is equal to one if the corresponding
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quasi-eigenvalue is simple, and is equal to two if the corresponding quasi-eigenvalue is double.
Therefore, it remains to check the equality for 𝜎 = 0.
Note that the vectors �̂�1(0) and �̂�2(0) can be chosen to be symmetric reflections of each other

about one of the eigenvectors of the matrix �̂�(0). Moreover, one can easily check that �̂�(0)̂𝖙1(0)
and �̂�(0)̂𝖙2(0) remain symmetric with respect to the same vector. Therefore, either 𝔡𝑗(0), 𝑗 = 1, 2,
have opposite signs, or 𝔡1(0) = 𝔡2(0) = 0. In both cases, the equality

 𝑞
 (0) = [𝜓1(0)] + [𝜓2(0)] + 1

follows from Definitions 2.3 and 2.6. This completes the proof of the lemma. □

Let us go back to the proof of Theorem 5.20. We recall that by Definition 5.5,

 𝑞

(𝑁𝑁) (𝜎) =
[
𝜑(𝑁𝑁) (𝜎)

]
+ 1,  𝑞

(𝐷𝐷) (𝜎) =
[
𝜑(𝐷𝐷) (𝜎)

]
,

where by (5.15)

𝜑(𝑁𝑁) (𝜎) =
arg

(
�̂�(𝜎)�̂�

)
𝜋

, 𝜑(𝐷𝐷) (𝜎) =
arg

(
�̂�(𝜎)�̂�

)
𝜋

−
1
2
. (5.46)

By Theorem 2.39 applied to the , we have that
(𝑁𝑁) (𝜎) = 𝑞

(𝑁𝑁) (𝜎) and (𝐷𝐷) (𝜎) = 𝑞

(𝐷𝐷) (𝜎)

for all 𝜎 except some intervals of lengths tending to zero as 𝜎 → ∞. Using Theorem 4.24 to obtain
an analogue of (5.30), we may argue as in the proof of Proposition 5.11. We need to show that for 𝜎
belonging to some intervals of lengths bounded below and located arbitrarily far away on the real
line,

 𝑞
 (𝜎) = 𝑞

(𝑁𝑁) (𝜎), (5.47)

and for another collection of intervals with the same properties,

 𝑞
 (𝜎) = 𝑞

(𝐷𝐷) (𝜎). (5.48)

To prove (5.47), we will need the following proposition.

Proposition 5.23. Let ℵ ∈ {𝐷,𝑁} and 𝑗 ∈ {1, 2}. There exists 𝜀 > 0 such that for all 𝜎 > 0,

|||2𝜓𝑗(𝜎) − 𝜑(ℵℵ) (𝜎)||| ⩽ 1 − 𝜀. (5.49)

Let us postpone the proof of the proposition and proceedwith the proof of (5.47) for 𝜎 belonging
to intervals of length bounded below located arbitrary far on the real line. In view of Lemma 5.22,
we need to show that for such 𝜎

[𝜓1(𝜎)] + [𝜓2(𝜎)] + 1 =
[
𝜑(𝑁𝑁) (𝜎)

]
; (5.50)
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similarly, (5.48) is equivalent to

[𝜓1(𝜎)] + [𝜓2(𝜎)] =
[
𝜑(𝐷𝐷) (𝜎)

]
. (5.51)

Let us prove (5.50) first. For any 𝑘 ∈ ℕ, choose 𝜎𝑘 so that 𝜑(𝑁𝑁) (𝜎𝑘) = 2𝑘 + 1. This is possi-
ble to achieve since 𝜑(𝑁𝑁) has a positive derivative bounded away from zero, see Lemma 5.8. By
Proposition 5.23, we have

|||2𝜓𝑗(𝜎𝑘) − 𝜑(𝑁𝑁) (𝜎𝑘)||| ⩽ 1 − 𝜀, 𝑗 = 1, 2.

Therefore,

𝑘 +
𝜀
2
⩽ 𝜓𝑗(𝜎𝑘) ⩽ 𝑘 + 1 −

𝜀
2
, 𝑗 = 1, 2. (5.52)

Since the derivatives of 𝜓𝑗(𝜎) and 𝜑(𝑁𝑁) (𝜎) are uniformly bounded, there exists an inter-
val (𝑁𝑁)

𝑘
= (𝜎𝑘, 𝜎

′
𝑘
) of length uniformly bounded away from zero such that [𝜓𝑗(𝜎)] = 𝑘 and

[𝜑(𝑁𝑁) ((𝜎)] = 2𝑘 + 1 for all 𝜎 ∈ (𝑁𝑁)
𝑘

and 𝑗 = 1, 2. This proves (5.50).
Equality (5.51) is obtained using a similar argument. As above, choose 𝜎𝑘 such that𝜑(𝐷𝐷) (𝜎𝑘) =

2𝑘 + 1 and use again Proposition 5.23 to obtain (5.52). In view of the uniform boundedness of the
derivatives of 𝜓𝑗(𝜎) and 𝜑(𝐷𝐷) (𝜎), we deduce that there exist intervals (𝐷𝐷)𝑘

= (𝜎′′
𝑘
, 𝜎𝑘) of length

uniformly bounded below such that for any 𝜎 ∈ (𝐷𝐷)
𝑘

, [𝜓𝑗(𝜎)] = 𝑘, 𝑗 = 1, 2, and [𝜑(𝐷𝐷) (𝜎)] = 2𝑘.
This implies (5.51), completing the proof of Theorem 5.20 modulo the proof of Proposition 5.23.
Let us nowprove Proposition 5.23.Wewill need the following elementary linear algebra lemma.

Lemma 5.24. There exists a constant 𝐶 > 0 such that

| arg(�̂�(𝜎)�̂�1) − arg(�̂�(𝜎)�̂�2)| < 𝐶| arg �̂�1 − arg �̂�2|
for any �̂�1, �̂�2 ∈ ℂ̂∗ and any 𝜎 ⩾ 0.

Proof. The matrices �̂�(𝜎) are products of rotations depending on 𝜎 and symmetric matrices inde-
pendent of 𝜎. The rotations preserve the angles and could be therefore ignored. It is therefore
sufficient to verify the statement of the lemma for a single symmetric matrix of determinant one.
Changing coordinates, we may assume that the matrix is symmetric with eigenvalues 𝜏 and 1∕𝜏.
The result then follows from an explicit computation that is left to the reader. □

It remains to prove Proposition 5.23.

Proof of Proposition 5.23. It suffices to prove the inequality (5.49) for 𝑗 = 1 and ℵ = 𝑁, all other
cases are proved similarly. Choose 𝜀 > 0 small enough so that

𝜀 <
1

𝐶 + 2
, (5.53)

where 𝐶 is from Lemma 5.24. For brevity we will denote in this proof

𝛼(𝜎) ∶= arg(̂𝖙1(𝜎)), 𝛽(𝜎) ∶= arg(�̂�(𝜎)̂𝖙1(𝜎)), 𝛾(𝜎) ∶= arg(�̂�(𝜎)�̂�);
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then

𝜓(𝜎) =
𝛽(𝜎) − 𝛼(𝜎)

2𝜋
, 𝜑(𝑁𝑁) (𝜎) =

𝛾(𝜎)

𝜋
. (5.54)

We recall also that by assumption (5.38),

0 ⩽ 𝛼(𝜎) < 𝜋. (5.55)

By Lemma 5.2, the matrix �̂�(𝜎) preserves the order of vectors in terms of their arguments. Re-
write (5.55) as

arg(�̂�) ⩽ 𝛼(𝜎) < arg(−�̂�),

then by this monotonicity

𝛾(𝜎) ⩽ 𝛽(𝜎) < 𝛾(𝜎) + 𝜋.

Subtracting 𝛼(𝜎) + 𝛾(𝜎) from these inequalities, dividing by 𝜋 and re-arranging with account of
(5.54) yields

−
𝛼(𝜎)

𝜋
⩽ 2𝜓(𝜎) − 𝜑(𝑁𝑁) (𝜎) < 1 −

𝛼(𝜎)

𝜋
,

which implies (5.49) assuming

𝜀 ⩽
𝛼(𝜎)

𝜋
⩽ 1 − 𝜀. (5.56)

To finish the proof, we need to consider the situation when (5.56) is not satisfied. Suppose that
0 ⩽ 𝛼(𝜎) < 𝜋𝜀. Applying Lemma 5.24 with �̂�1 = �̂�1(𝜎) and �̂�2 = �̂�, we obtain

−𝐶𝜀𝜋 < 𝛽(𝜎) − 𝛾(𝜎) < 𝐶𝜀𝜋,

or, equivalently, subtracting 𝛼(𝜎), dividing by 𝜋, and using (5.54),

−(𝐶 + 1)𝜀 < −𝐶𝜀 −
𝛼(𝜎)

𝜋
< 2𝜓(𝜎) − 𝜑(𝑁𝑁) (𝜎) < 𝐶𝜀 −

𝛼(𝜎)

𝜋
⩽ 𝐶𝜀,

and (5.49) then follows since we have chosen 𝜀 satisfying (5.53).
The case 1 − 𝜋𝜀 < 𝛼(𝜎) < 𝜋 is dealt with in the same way, the only difference being that �̂�2 =

−�̂� is used when applying Lemma 5.24. □

We have therefore proved Theorem 5.20 under the assumption that the matrix �̂�(0) is positive,
see Remark 5.21. If �̂�(0) is negative the argument is analogous. Indeed, as follows fromRemark 5.4,
we need to account for an additional rotation by the angle 𝜋 and thus subtract −1∕2 from each of
the two functions 𝜓1(𝜎), 𝜓2(𝜎), and−1 from 𝜑(ℵℵ) (𝜎) in order to get the analogue of Lemma 5.22.
The rest of the argument remains the same. This completes the proof of Theorem 5.20. □
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We conclude this subsectionwith two corollaries of the results obtained above.We present their
proofs assuming that  and  ′ are non-exceptional. The proof for exceptional polygons could be
obtained by a simple modification of this argument using the results of Subsection 5.7 and is left
to the reader.
The first corollary provides a way to control the Steklov quasi-eigenvalues under perturbations

of side lengths, provided all the angles remain the same. Note that this result is used in the proof
of Theorem 2.31.

Corollary 5.25. Let(𝜶,𝓵) and ′(𝜶,𝓵′) be two curvilinear 𝑛-gons with the same respective angles
and side lengths satisfying |𝓁𝑖 − 𝓁′

𝑖
| ⩽ 𝜀 for all 𝑖 = 1, … , 𝑛 and some 𝜀 > 0. Let 𝜎𝑚 and 𝜎′𝑚, 𝑚 =

1, 2, … , be the quasi-eigenvalues of  and  ′, respectively. There exists a constant 𝐶 > 0 depending
only on 𝜶 such that for all 𝜎𝑚 <

1
𝜀
,

|𝜎𝑚 − 𝜎′𝑚| ⩽ 𝐶𝜎𝑚𝜀. (5.57)

Proof. Assume first that |𝓁1 − 𝓁′
1
| ⩽ 𝜀 and 𝓁𝑖 = 𝓁′

𝑖
, 𝑖 = 2, … , 𝑛. Without loss of generality we may

also assume that 𝓁′
1
⩾ 𝓁1. Let 𝑉′ be a point on the side 𝐼′1 of the curvilinear polygon  ′ which is

at the distance 𝓁1 from 𝑉1. Let �̂�(𝜎) be the lifted matrix corresponding to the polygon  with the
starting point at 𝑉1, and �̂�′(𝜎) be the similar matrix for  ′ with the starting point at 𝑉′ (which
could be viewed as an auxiliary vertex with angle 𝜋). Then it is immediate that �̂�′(𝜎) = �̂�((𝑙′

1
−

𝑙1)𝜎) �̂�(𝜎). Therefore, one may choose the vectors �̂�𝑗(𝜎) and �̂�
′

𝑗(𝜎), 𝑗 = 1, 2, for the polygons  and

 ′ in such a way that �̂�𝑗(𝜎) = �̂�′𝑗(𝜎), 𝑗 = 1, 2, for all 𝜎 > 0. Moreover, for any 𝜎𝑚 < 1∕𝜀 we have:

|𝔡 ′𝑗 (𝜎𝑚) − 2𝜋𝑘| = 𝜎(𝑙′1 − 𝑙1) ⩽ 𝜎𝑚𝜀, (5.58)

for some 𝑘 ∈ ℕ, where 𝔡 ′
𝑗
(𝜎) is the function defined by formula (5.39) corresponding to the poly-

gon ′. Therefore, applying Propositions 5.15 and 5.18 we conclude that there is a quasi-eigenvalue
𝜎′
𝑀
of  ′ such that 𝔡 ′

𝑗
(𝜎′
𝑀
) = 2𝜋𝑘 and |𝜎𝑚 − 𝜎′𝑀| ⩽ 𝐶𝜎𝑘𝜀. At the same time, since 𝜎𝑚𝜀 < 1 < 𝜋,

the index 𝑀 is uniquely defined, and there is a natural one-to-one correspondence between the
solutions of the equations 𝔡 ′

𝑗
(𝜎) = 0 (mod 2𝜋) and 𝔡

𝑗
(𝜎) = 0 (mod 2𝜋). Therefore,𝑚 = 𝑀, and

we arrive at (5.57). The fact that the constant 𝐶 on the right-hand side of (5.57) depends only on 𝜶

follows by inspection of the proofs of Proposition 5.18 and Lemma 5.8.
Consider now the general case, and choose a sequence of polygons  (𝑘)(𝜶,𝓵(𝑘)), 𝑘 = 1,… , 𝑛,

such that 𝓵(𝑘) = (𝓁′
1
, …𝓁′

𝑘
,𝓁𝑘+1, … ,𝓁𝑛). Note that  (𝑛) =  ′. The result then follows by induc-

tion in 𝑘. Indeed, the argument above implies (5.57) for 𝑘 = 1. The inductive step from 𝑘 to 𝑘 + 1
follows from a simple observation that we may always reorder the vertices so that the (𝑘 + 1)-st
side is counted first, and choose the starting point 𝑉′(𝑘) appropriately so that the corresponding
matrices �̂�(𝑘)(𝜎) and �̂�(𝑘+1)(𝜎) differ by a composition with rotation as before. This completes the
proof of the corollary. □

The second corollary could be viewed as domain monotonicity for Steklov quasi-eigenvalues
with respect to the side lengths of curvilinear polygons.

Corollary 5.26. Let (𝜶,𝓵) and  ′(𝜶,𝓵′) be two curvilinear polygons with the same respective
angles and side lengths satisfying 𝓁𝑖 ⩽ 𝓁′

𝑖
for all 𝑖 = 1, … , 𝑛. Then 𝜎𝑚 ⩾ 𝜎′𝑚,𝑚 = 1, 2, … , where 𝜎𝑚

and 𝜎′𝑚 are the quasi-eigenvalues of  and  ′, respectively.
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Proof. Using the same inductive argument as in the proof of Corollary 5.25, it suffices to prove
the result if 𝓁1 ⩽ 𝓁′

1
and 𝓁𝑖 = 𝓁′

𝑖
, 𝑖 = 2, … , 𝑛. As above, we choose the matrices �̂�(𝜎) and �̂�′(𝜎)

corresponding to the polygons  and  ′ in such a way that �̂�′(𝜎) = �̂�((𝑙′
1
− 𝑙1)𝜎) �̂�(𝜎). It then

follows that 𝔡 ′
𝑗
(𝜎) ⩾ 𝔡

𝑗
(𝜎) for all 𝜎 > 0, 𝑗 = 1, 2. The result then immediately follows from

Propositions 5.15 and 5.18. □

5.7 Enumeration of quasi-eigenvalues for exceptional polygons and
zigzags

In this subsection, we explain how to modify the arguments of Subsection 5.6 to the case of
polygons and zigzags with exceptional angles. Wewill follow the same outline: decompose a poly-
gon into zigzag domains, establish natural enumeration for ‘basic’ zigzags and show that natural
enumeration is preserved under gluing.
To proceed with this scheme, we first need to define the quasi-eigenvalues of an excep-

tional zigzag. Let (ℵℶ) be a zigzag with end points 𝑃, 𝑄 and exceptional angles at the vertices
𝑉
1
= 𝑉𝐸1, … , 𝑉


𝐾
= 𝑉𝐸𝐾 . This zigzag can be represented as a union of exceptional components𝜅 = 𝜅(𝜶(𝜅),𝓵(𝜅)), 𝜅 = 2,… , 𝐾, joining the exceptional vertices 𝑉

𝜅−1
and 𝑉

𝜅 (see Subsec-
tion 2.3 for notation), and two end point exceptional components  (ℵ)

1
=  (ℵ)

1
(𝜶(1),𝓵(1)) and

 (ℶ)
𝐾+1

=  (ℶ)
𝐾+1

(𝜶(𝐾+1),𝓵(𝐾+1)), joining 𝑃 to 𝑉
1
and 𝑉

𝐾
to 𝑄, respectively, with the boundary

condition ℵ, ℶ imposed at 𝑃, 𝑄, respectively. Here, 𝓵(1) = (𝓁(1)
1
, … ,𝓁(1)𝑛1 ) is the vector of 𝑛1

lengths of curvilinear pieces between 𝑃 and 𝑉
1
, 𝜶′(1) = (𝛼(1)

1
, … , 𝛼(1)

𝑛1−1
) is the vector of 𝑛1 − 1

non-exceptional angles between these pieces, and 𝜶(1) = (𝛼(1)
1
, … , 𝛼(1)

𝑛1−1
, 𝛼
1
). Similarly, 𝓵(𝐾+1) =

(𝓁(𝐾+1)
1

, … ,𝓁(𝐾+1)𝑛𝐾+1
) are the 𝑛𝐾+1 lengths of curvilinear pieces between 𝑉

𝐾
and 𝑄, 𝜶′(𝐾+1) =

(𝛼(𝐾+1)
1

, … , 𝛼(𝐾+1)
𝑛𝐾+1−1

) is the vector of 𝑛𝐾+1 − 1 non-exceptional angles between these pieces, and

𝜶(𝐾+1) = (𝛼
𝐾
, 𝛼(𝐾+1)
1

, … , 𝛼(𝐾+1)
𝑛𝐾+1−1

).
We have already, in essence, defined by equation (2.15) the subsequences of quasi-eigenvalues

‘generated’ by the exceptional components 𝜅, 𝜅 = 2,… , 𝐾. We need now to define the quasi-
eigenvalues generated by end point exceptional components 1 and 𝐾+1.
Consider the equations

𝚄(𝜶′
(1)
,𝓵(1), 𝜎)ℵ ⋅ 𝐗(𝛼1 ) = 0, (5.59)

and

𝚄(𝜶′
(𝐾+1)

,𝓵(𝐾+1), 𝜎)𝐗(𝛼𝐾) ⋅ ℶ⟂ = 0, (5.60)

where 𝐗(𝛼 ) depends on the parity of 𝛼 and is defined by (2.12).

Definition 5.27. A number 𝜎 ⩾ 0 is called a quasi-eigenvalue of an exceptional zigzag if 𝜎 is a
solution of an equation (2.15) with 𝜅 = 2,… , 𝐾, corresponding to one of the exceptional compo-
nents, or the equation (5.59) corresponding to the end point exceptional component 1, or the
equation (5.60) corresponding to the end point exceptional component 𝐾+1.
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Let us rewrite equations (2.15), (5.59), and (5.60) in terms of thematrices acting on the universal
cover ℂ̂∗. By analogy with (5.13), 𝜎 ⩾ 0 is a quasi-eigenvalue of an exceptional zigzag (ℵℶ) if it is
a solution of one of the equations

arg
(
�̂�(𝜶′

(1)
,𝓵(1), 𝜎)ℵ̂

)
= arg(�̂�⟂(𝛼1 )) (mod 𝜋), (5.61)

arg
(
�̂�(𝜶′

(𝜅)
,𝓵(𝜅), 𝜎)�̂�(𝛼𝜅−1)

)
= arg(�̂�⟂(𝛼𝜅 )) (mod 𝜋), 𝜅 = 2,… , 𝐾, (5.62)

arg
(
�̂�(𝜶′

(𝐾+1)
,𝓵(𝐾+1), 𝜎)�̂�(𝛼𝐾)

)
= arg(ℶ̂) (mod 𝜋). (5.63)

To define the natural enumeration for exceptional zigzags, let us introduce the functions

𝜑 (ℵ)
1

(𝜎) ∶=
arg

(
�̂�(𝜶′(1),𝓵(1), 𝜎)ℵ̂

)
− arg(�̂�⟂(𝛼

1
))

𝜋
, (5.64)

𝜑𝜅 (𝜎) ∶=
arg

(
�̂�(𝜶′(𝜅),𝓵(𝜅), 𝜎)�̂�(𝛼

𝜅−1
)
)
− arg(�̂�⟂(𝛼𝜅 ))

𝜋
, 𝜅 = 2,… , 𝐾, (5.65)

𝜑 (ℶ)
𝐾+1

(𝜎) ∶=
arg

(
�̂�(𝜶′(𝐾+1),𝓵(𝐾+1), 𝜎)�̂�(𝛼

𝐾
)
)
− arg(ℶ̂)

𝜋
. (5.66)

Obviously, the functions (5.64)–(5.66) experience jumps at those and only those real values of 𝜎
which solve (5.61)–(5.63), respectively. To define the natural enumeration of quasi-eigenvalues for
thewhole zigzag,we first introduce below thenatural enumeration of quasi-eigenvalues for excep-
tional and end point exceptional components. We want to emphasise that this will be done for
auxiliary purposes only.While the quasi-eigenvalues of an exceptional or an end point exceptional
component are well-defined (they are the real solutions of one of the equations (5.61)–(5.63)),
one cannot associate true eigenvalues to such components. Indeed, exceptional and end point
components are not zigzags, as they do not correspond to any zigzag domain.

Definition 5.28. The quasi-eigenvalue counting functions of exceptional and end point
exceptional components are defined by setting

 𝑞
𝜅 (𝜎) ∶=

⎧⎪⎨⎪⎩
[𝜑𝜅 (𝜎)], if both 𝛼

𝜅−1
and 𝛼𝜅 are odd,

[𝜑𝜅 (𝜎)] +
1
2
, if 𝛼

𝜅−1
and 𝛼𝜅 are of different parity,

[𝜑𝜅 (𝜎)] + 1, if both 𝛼
𝜅−1

and 𝛼𝜅 are even,
(5.67)

for 𝜅 = 2,… , 𝐾,

 𝑞

 (ℵ)
1

(𝜎) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[𝜑 (ℵ)
1

(𝜎)] − 1
2
, if ℵ = 𝐷 and 𝛼𝜅 is odd,

[𝜑 (ℵ)
1

(𝜎)], if ℵ = 𝐷 and 𝛼𝜅 is even,
[𝜑 (ℵ)

1

(𝜎)] + 1
2
, if ℵ = 𝑁 and 𝛼𝜅 is odd,

[𝜑 (ℵ)
1

(𝜎)] + 1, if ℵ = 𝑁 and 𝛼𝜅 is even,

(5.68)
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and

 𝑞

 (ℶ)
𝐾+1

(𝜎) ∶=

⎧⎪⎨⎪⎩
[𝜑 (ℶ)

𝐾+1

(𝜎)] + 1
2
, if 𝛼𝜅 is odd,

[𝜑 (ℶ)
𝐾+1

(𝜎)] + 1, if 𝛼𝜅 is even,
(5.69)

(where in (5.69) the formulae are the same for ℵ = 𝐷,𝑁).

Remark 5.29. In view of Definition 5.28, the quasi-eigenvalue counting functions could be inter-
preted similarly to Proposition 5.6 in the following way. For an exceptional component 𝜅, we
count all positive solutions of (5.62) if 𝛼

𝜅−1
and 𝛼

𝜅−1
are of the same parity, and all positive solu-

tions plus a half if the parity is different. For the end point exceptional components  (ℵ)
1

and
 (ℶ)
𝐾+1

, we count all positive solutions of (5.61) and (5.63), respectively, if the exceptional vertex is
even, all positive solutions plus a half if the exceptional vertex is odd and the boundary condition
at the other end is Neumann, and all positive solutionsminus a half if the exceptional vertex is odd
and the boundary condition at the other end is Dirichlet. This is checked directly by evaluating
the quasi-eigenvalue counting functions at 𝜎 = 0.

We can now define the natural enumeration for an exceptional zigzag.

Definition 5.30. The natural enumeration of the quasi-eigenvalues of a zigzag (ℵℶ) with 𝐾
exceptional angles is defined by setting

 𝑞

(ℵℶ) (𝜎) ∶= 𝑞

 (ℵ)
1

(𝜎) +
𝐾∑
𝜅=2

 𝑞

𝜅
(𝜎) + 𝑞

 (ℶ)
𝐾+1

(𝜎).

The following analogue of Theorem 2.39 holds.

Theorem 5.31. Let  be a partially curvilinear exceptional zigzag, and let Ω be any -zigzag
domain. For ℵ,ℶ ∈ {𝐷,𝑁}, let 𝜆(ℵℶ)𝑚 denote the eigenvalues of the mixed eigenvalue problem
(2.36)ℵℶ enumerated in increasing order with account of multiplicities, and let 𝜎(ℵℶ)𝑚 denote the
quasi-eigenvalues of the ℵℶ-zigzag in the natural enumeration given by Definition 5.30. Then

𝜆(ℵℶ)𝑚 = 𝜎(ℵℶ)𝑚 + 𝑜(1) as𝑚 → ∞.

Proof. Theorem 5.31 is proved similarly to Theorem 2.39, see Subsection 5.3. Below we outline the
main steps of the argument and leave the details to the reader.
We start with the follwing proposition.

Proposition 5.32. Theorem 5.31 holds for zigzags consisting of two equal straight sides and an
exceptional angle between them.

Proof. Proposition 5.32 is proved similarly to Proposition 5.10. The problem is reduced to counting
mixed Steklov–Neumann and Steklov–Dirichlet eigenvalues using either symmetry with respect
to the bisector or the isospectral transformation described in Lemma 5.12. The result then follows
by explicitly computing the total loss of quasi-eigenvalues as in the proof of Proposition 5.10 using
the results of [33]. □
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The following two propositions are proved using a straightforward adaptation of the proof of
Proposition 5.13.

Proposition 5.33. Let 𝜅 be an exceptional component joining vertices 𝑉
𝜅−1

and 𝑉
𝜅 of a partially

curvilinear zigzagwith exceptional angles, and let𝑊 ∈ 𝜅 be a pointwhich is not a vertex and such
that the zigzag is straight in some neighbourhood of𝑊. Let the boundary condition ℸ ∈ {𝐷,𝑁} be
imposed at𝑊, which splits the exceptional component𝜅 into two end point exceptional components: (ℸ)
𝜅,I

starting at 𝑉
𝜅−1

and ending at𝑊, and  (ℸ)
𝜅,II

starting at𝑊 and ending at 𝑉
𝜅 .

Then there exists 𝛿 > 0 such that for any𝑀 > 0 there exists an interval 𝑀 ⊂ (𝑀,+∞) of length
𝛿 such that

 𝑞

 (ℸ)
𝜅,I

(𝜎) + 𝑞

 (ℸ)
𝜅,II

(𝜎) = 𝑞
𝜅 (𝜎)

for any 𝜎 ∈ 𝑀 .
Proposition 5.34. Let  (ℵ)

1
be the end point exceptional component joining the vertices 𝑃 and 𝑉

1
of a partially curvilinear exceptional zigzag , with the boundary condition ℵ ∈ {𝐷,𝑁} imposed at
its start point 𝑃. Let𝑊 ∈  (ℵ)

1
be a point which is not a vertex and such that the zigzag is straight

in some neighbourhood of 𝑋. Let the boundary condition ℸ ∈ {𝐷,𝑁} be imposed at𝑊, which splits
the end point exceptional component  (ℵ)

1
into the zigzag(ℵℸ)

1,I
starting at 𝑃 and ending at𝑊 and

the end point exceptional component  (ℸ)
1,II

starting at𝑊 and ending at 𝑉
1
.

Then there exists 𝛿 > 0 such that for any𝑀 > 0 there exists an interval ℵ,ℸ
𝑀

⊂ (𝑀,+∞) of length
𝛿 such that

 𝑞

(ℵℸ)
1,I

(𝜎) + 𝑞

 (ℸ)
1,II

(𝜎) = 𝑞

 (ℵ)
1

(𝜎)

for any 𝜎 ∈ ℵ,ℸ
𝑀

. An analogous result holds for the end point exceptional component  (ℶ)
𝐾+1

.

Propositions 5.33 and 5.34 imply the analogue of Proposition 5.11 for partially curvilinear zigzags
with exceptional angles. This result combined with Proposition 5.32 yields Theorem 5.31 in the
same way as Propositions 5.10 and 5.11 yield Theorem 2.39. □
We can now prove the main result of this subsection.

Theorem 5.35. Theorem 1.4 holds for partially curvilinear exceptional polygons.

Proof. Let  be a partially curvilinear exceptional polygon as defined in Subsection 2.3. In view
of Definitions 2.10 and 2.13, the quasi-eigenvalue counting function for the polygon  is given by

 𝑞
 (𝜎) =

𝐾∑
𝜅=1

𝜅 (𝜎), (5.70)

where 𝜅 are the exceptional boundary components of  .
Let usmake a cut inside the polygon precisely as in the proof of Theorem 5.20 (see Figure 16). As

before, the cut produces a zigzag domainwith exceptional angles and identified end points at some
point 𝑉0 on a straight part of the boundary 𝜕 . Imposing either Dirichlet or Neumann boundary
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condition at 𝑉0 and arguing in the same way as in the proof of Theorem 5.20, we observe that the
result follows by Dirichlet–Neumann bracketing from an analogue of equalities (5.47) relating the
quasi-eigenvalue counting functions of and of the corresponding zigzags. Such an analogue can
be easily deduced from Proposition 5.33, Definition 5.30, and formula (5.70). This completes the
proof of the theorem. □

Remark 5.36. Recall that new tools were required to deduce Theorem 1.4 from Theorem 2.39,
see Subsection 5.6. The reason is that the quasi-eigenvalue condition (5.37) for non-exceptional
polygons is a vector-valued condition, unlike the Dirichlet and Neumann boundary conditions
for zigzags. On the other hand, the quasi-eigenvalue condition (5.70) for an exceptional polygon
is scalar and very closely related to the condition (5.62) for an exceptional zigzag. This explains
why Theorem 5.35 is much easier to prove, essentially a direct corollary of Theorem 5.31.

Results of this subsection, together with Corollary 5.9, also imply the following analogue of
Proposition 4.29.

Proposition 5.37. There exists a 𝑑 > 0 and an𝑁 > 0 such that any interval of the real line of length
𝑑 contains not more than𝑁 quasi-eigenvalues of a zigzag.

6 QUASI-EIGENVALUES AS ROOTS OF TRIGONOMETRIC
POLYNOMIALS

6.1 Explicit expressions for the entries of 𝚃(𝜶,𝓵, 𝝈)

In this section, we will prove Theorem 2.17; we start, however, by finding explicit expressions for
the matrices 𝚃(𝜶,𝓵, 𝜎).
We recall that for a binary vector 𝜻 = (𝜁1, … , 𝜁𝑛) ∈ ℨ𝑛 = {±1}𝑛 with cyclic identification 𝜁𝑛+1 ≡

𝜁1, we let

𝐂𝐡(𝜻) ∶= {𝑗 ∈ {1, … , 𝑛} ∣ 𝜁𝑗 ≠ 𝜁𝑗+1} (6.1)

denote the set of indices of sign change in 𝜻 .
Let additionally

𝐂𝐡(𝜻) ∶= 𝐂𝐡((𝜁1, … , 𝜁𝑛, −1)) ∩ {1, … , 𝑛}. (6.2)

To clarify, in order to obtain 𝐂𝐡(𝜻), we pad 𝜻 by adding an additional component −1, compute
the set of sign changes for the resulting vector, and drop 𝑛 + 1 from the result if present (that is,
if 𝜁1 = 1).
Let 𝑛 ⩾ 1, let 𝜶 = (𝛼1, … , 𝛼𝑛) ∈ (Π ⧵ )𝑛 be a vector of non-exceptional angles, and let 𝓵 =

(𝓁1, … ,𝓁𝑛) ∈ ℝ
𝑛
+ be a vector of lengths. We have already established in Subsection 5.1 that the

matrix 𝚃𝑛 ∶= 𝚃(𝜶,𝓵, 𝜎) belongs to the class1, and therefore we have

𝚃𝑛 =

(
𝑝𝑛(𝜶,𝓵, 𝜎) 𝑞𝑛(𝜶,𝓵, 𝜎)
𝑞𝑛(𝜶,𝓵, 𝜎) 𝑝𝑛(𝜶,𝓵, 𝜎)

)
(6.3)
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for some functions 𝑝𝑛 and 𝑞𝑛 such that |𝑝𝑛|2 − |𝑞𝑛|2 = 1; we use subscript 𝑛 to emphasise the
dependence upon the length of vectors 𝜶 and 𝓵.

Theorem 6.1. We have

𝑝𝑛(𝜶,𝓵, 𝜎) =
1

𝑛∏
𝑗=1
sin

(
𝜋2

2𝛼𝑗

) ∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 exp(i𝓵 ⋅ 𝜻𝜎), (6.4)

and

𝑞𝑛(𝜶,𝓵, 𝜎) =
−i

𝑛∏
𝑗=1
sin

(
𝜋2

2𝛼𝑗

) ∑
𝜻∈ℨ𝑛

𝜁1=1

𝔮𝜻 exp(−i𝓵 ⋅ 𝜻𝜎), (6.5)

where

𝔭𝜻 = 𝔭𝜻 (𝜶) ∶=
∏

𝑗∈𝐂𝐡(𝜻)

cos

(
𝜋2

2𝛼𝑗

)

is already defined in (2.19), and we additionally set

𝔮𝜻 = 𝔮𝜻 (𝜶) ∶=
∏

𝑗∈𝐂𝐡(𝜻)

cos

(
𝜋2

2𝛼𝑗

)
, (6.6)

assuming the convention
∏
∅
= 1.

Proof. We remark, first of all, that the functions 𝑝𝑛 and 𝑞𝑛 obey the recurrence relations

𝑝1 =
1

sin
(
𝜋2

2𝛼1

) exp(i𝓁1𝜎), 𝑞1 =
−i

sin
(
𝜋2

2𝛼1

) cos( 𝜋2

2𝛼1

)
exp(−i𝓁1𝜎), (6.7)

𝑝𝑛+1 =
1

sin
(

𝜋2

2𝛼𝑛+1

)(exp(i𝓁𝑛+1𝜎)𝑝𝑛 − i cos( 𝜋2

2𝛼𝑛+1

)
exp(−i𝓁𝑛+1𝜎)𝑞𝑛

)
, (6.8)

𝑞𝑛+1 =
1

sin
(

𝜋2

2𝛼𝑛+1

)(exp(i𝓁𝑛+1𝜎)𝑞𝑛 − i cos( 𝜋2

2𝛼𝑛+1

)
exp(−i𝓁𝑛+1𝜎)𝑝𝑛

)
, (6.9)

which follows immediately by re-writing (2.6) and (2.7) as(
𝑝𝑛+1 𝑞𝑛+1
𝑞𝑛+1 𝑝𝑛+1

)

=
1

sin
(
𝜋2

2𝛼1

) ⎛⎜⎜⎝
exp(i𝓁𝑛+1𝜎) −i cos

(
𝜋2

2𝛼𝑛+1

)
exp(−i𝓁𝑛+1𝜎)

i cos
(

𝜋2

2𝛼𝑛+1

)
exp(i𝓁𝑛+1𝜎) exp(−i𝓁𝑛+1𝜎)

⎞⎟⎟⎠
(
𝑝𝑛 𝑞𝑛
𝑞𝑛 𝑝𝑛

)
.

We now prove (6.4)–(6.5) by induction in 𝑛.
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For 𝑛 = 1, the only vector in ℨ1 with the first (and only) positive coordinate is (1), with
𝐂𝐡((1)) = ∅ and 𝐂𝐡((1)) = {1}. Thus, 𝔭(1) = 1 and 𝔮(1) = cos(

𝜋2

2𝛼1
), and the statement of the

theorem matches (6.7).
Assume that the statements hold for some 𝑛 ⩾ 1. Denote 𝓵∗ = (𝓵,𝓁𝑛+1) ∈ ℝ𝑛+1+ and 𝜻∗ =

(𝜻 , 𝜁𝑛+1) ∈ ℨ
𝑛+1. Then by (6.8),

𝑝𝑛+1

𝑛+1∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)

=
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 exp(i𝓵 ⋅ 𝜻𝜎 + i𝓁𝑛+1𝜎) + cos
(

𝜋2

2𝛼𝑛+1

) ∑
𝜻∈ℨ𝑛

𝜁1=1

𝔮𝜻 exp(i𝓵 ⋅ 𝜻𝜎 − i𝓁𝑛+1𝜎)

=
∑

𝜻∗∈ℨ𝑛+1

𝜁1=𝜁𝑛+1=1

𝔭𝜻 exp(i𝓵∗ ⋅ 𝜻∗𝜎) + cos
(

𝜋2

2𝛼𝑛+1

) ∑
𝜻∈ℨ𝑛

𝜁1=−𝜁𝑛+1=1

𝔮𝜻 exp(i𝓵∗ ⋅ 𝜻∗𝜎).

A careful analysis of definitions (6.1) and (6.2) shows that we have

𝔭𝜻∗ =

⎧⎪⎨⎪⎩
𝔭𝜻 if 𝜁1 = 𝜁𝑛+1 = 1,
cos

(
𝜋2

2𝛼𝑛+1

)
𝔮𝜻 if 𝜁1 = −𝜁𝑛+1 = 1,

and therefore

𝑝𝑛+1

𝑛+1∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
=

∑
𝜻∗∈ℨ𝑛+1

𝜁1=1

𝔭𝜻∗ exp(i𝓵∗ ⋅ 𝜻∗𝜎),

thus proving (6.4).
Similarly by (6.9),

𝑞𝑛+1

𝑛+1∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)

= −i
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔮𝜻 exp(−i𝓵 ⋅ 𝜻𝜎 + i𝓁𝑛+1𝜎) − i cos
(

𝜋2

2𝛼𝑛+1

) ∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 exp(−i𝓵 ⋅ 𝜻𝜎 − i𝓁𝑛+1𝜎)

= −i
∑

𝜻∗∈ℨ𝑛+1

𝜁1=−𝜁𝑛+1=1

𝔮𝜻 exp(−i𝓵∗ ⋅ 𝜻∗𝜎) − i cos
(

𝜋2

2𝛼𝑛+1

) ∑
𝜻∈ℨ𝑛

𝜁1=𝜁𝑛+1=1

𝔭𝜻 exp(−i𝓵∗ ⋅ 𝜻∗𝜎).

Once more, an analysis of definitions (6.1) and (6.2) gives

𝔮𝜻∗ =

⎧⎪⎨⎪⎩
cos

(
𝜋2

2𝛼𝑛+1

)
𝔭𝜻 if 𝜁1 = 𝜁𝑛+1 = 1,

𝔮𝜻 if 𝜁1 = −𝜁𝑛+1 = 1,
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and therefore

𝑞𝑛+1

𝑛+1∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
= −i

∑
𝜻∗∈ℨ𝑛+1

𝜁1=1

𝔮𝜻∗ exp(−i𝓵∗ ⋅ 𝜻∗𝜎),

thus proving (6.5). □

6.2 Proof of Theorem 2.17(a)

We start by making the following simple observation, which follows immediately by comparing
(2.18), (2.21), and (6.4).

Proposition 6.2. Let 𝑛 ⩾ 1, let𝜶 = (𝛼1, … , 𝛼𝑛) ∈ (Π ⧵ )𝑛 be a vector of non-exceptional angles, let
𝓵 = (𝓁1, … ,𝓁𝑛) ∈ ℝ𝑛+, and let the matrix 𝚃 = 𝚃𝑛 ∶= 𝚃(𝜶,𝓵, 𝜎) be written in the form (6.3). Then

𝑝𝑛(𝜶,𝓵, 𝜎)
𝑛∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
= 𝐹even(𝜶,𝓵, 𝜎) + i𝐹odd(𝜶,𝓵, 𝜎).

Theorem 2.17(a) now follows easily. Indeed, Definition 2.3 and Lemma 2.5(a) imply that 𝜎 is a
quasi-eigenvalue if and only if Tr 𝚃𝑛 = 2Re𝑝𝑛 = 2which is equivalent to 𝜎 being a root of (2.20).
Moreover, in this case, by Definition 2.6 and Lemma 2.5(b), 𝜎 > 0 is a double quasi-eigenvalue if
and only if Im𝑝𝑛 = 0, and therefore (2.21) holds.

6.3 Proof of Theorem 2.17(b)

Before proceeding to the actual proof of Theorem 2.17(b), we introduce some extra notation. Let
𝑛 ⩾ 1, and let 𝜶 ∈ Π𝑛, 𝓵 ∈ ℝ𝑛+. We set, using (2.18) and (2.21),

𝐹𝑛(𝜶,𝓵, 𝜎) ∶= 𝐹even(𝜶,𝓵, 𝜎) + i𝐹odd(𝜶,𝓵, 𝜎) =
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔭𝜻 (𝜶) exp(i𝓵 ⋅ 𝜻𝜎) (6.10)

using the subscript to emphasise the dependence upon the length 𝑛 of vectors 𝜶, 𝓵. We also
introduce, by analogy with (6.10), the function

𝐹𝑛(𝜶,𝓵, 𝜎) ∶= −i
∑
𝜻∈ℨ𝑛

𝜁1=1

𝔮𝜻 (𝜶) exp(−i𝓵 ⋅ 𝜻𝜎), (6.11)

and set additionally

𝐹0 ∶= 1, 𝐹0 ∶= 0.

We note that if 𝜶 does not contain any exceptional angles, then by Theorem 6.1 and
Proposition 6.2,

𝐹𝑛(𝜶,𝓵, 𝜎) = 𝑝𝑛(𝜶,𝓵, 𝜎)
𝑛∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
, 𝐹𝑛(𝜶,𝓵, 𝜎) = 𝑞𝑛(𝜶,𝓵, 𝜎)

𝑛∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

)
. (6.12)
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However, unlike 𝑝𝑛 and 𝑞𝑛, the functions 𝐹𝑛 and 𝐹𝑛 are defined in the presence of exceptional
angles as well, and we have the following generalisation of recurrence relations (6.8) and (6.9),
with the identical proof:

Proposition 6.3. Let 𝑛 ⩾ 1, let 𝜶 = (𝛼1, … , 𝛼𝑛) ∈ Π𝑛, 𝓵 = (𝓁1, … ,𝓁𝑛) ∈ ℝ𝑛+, and let additionally
𝜶′ = (𝛼1, … , 𝛼𝑛−1) ∈ Π

𝑛−1, 𝓵′ = (𝓁1, … ,𝓁𝑛−1) ∈ ℝ𝑛−1+ (or both empty if 𝑛 = 1). Then

𝐹𝑛(𝜶,𝓵, 𝜎) = exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎) − i cos
(
𝜋2

2𝛼𝑛

)
exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎), (6.13)

𝐹𝑛(𝜶,𝓵, 𝜎) = exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎) − i cos
(
𝜋2

2𝛼𝑛

)
exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎), (6.14)

We can now proceed with the proof of Theorem 2.17(b) proper. Assume the notation of Propo-
sition 6.3, and consider one exceptional boundary component consisting of 𝑛 ⩾ 1 smooth pieces
joining exceptional angles 𝛼0 and 𝛼𝑛; the 𝑛 − 1 non-exceptional angles between the pieces are
collected in the vector 𝜶′. We need to show that

𝚄
(
𝜶′,𝓵, 𝜎

)
𝐗(𝛼0) ⋅ 𝐗(𝛼𝑛) = 0 ⟺ 𝐹even∕odd(𝜶,𝓵, 𝜎) = 0, (6.15)

where

𝚄
(
𝜶′,𝓵, 𝜎

)
∶= 𝙱(𝓁𝑛, 𝜎)𝚃

(
𝜶′,𝓵′, 𝜎

)
, (6.16)

cf. (2.10), 𝐗(𝛼) is defined by (2.12) and (2.11), and

𝐹even∕odd(𝜶,𝓵, 𝜎) =

{
𝐹even(𝜶,𝓵, 𝜎) = Re (𝐹𝑛(𝜶,𝓵, 𝜎)) if (𝛼0) = (𝛼𝑛),
𝐹odd(𝜶,𝓵, 𝜎) = Im (𝐹𝑛(𝜶,𝓵, 𝜎)) if (𝛼0) ≠ (𝛼𝑛).

Using (6.16), (2.5), (6.3), and (6.12), we re-write the left equation in (6.15) as

1
𝑛−1∏
𝑗=1

sin

(
𝜋2

2𝛼𝑗

) (
exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶

′,𝓵′, 𝜎) exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶
′,𝓵′, 𝜎)

exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎) exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎)

)
𝐗(𝛼0) ⋅ 𝐗(𝛼𝑛) = 0,

(6.17)
and drop the non-zero product in the denominator from now on.
We now have to consider four cases:

(i) 𝛼0 even, 𝛼𝑛 even;
(ii) 𝛼0 even, 𝛼𝑛 odd;
(iii) 𝛼0 odd, 𝛼𝑛 even;
(iv) 𝛼0 odd, 𝛼𝑛 odd.

In cases (i) and (ii), we substitute 𝐗(𝛼0) = 𝐗even =
e−i𝜋∕4√

2

(
1

i

)
into (6.17) to get

e−i𝜋∕4√
2

(
exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶

′,𝓵′, 𝜎) + i exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎)
exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎) + i exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎)

)
⋅ 𝐗(𝛼𝑛) = 0. (6.18)
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In case (i), substituting further 𝐗(𝛼𝑛) = 𝐗even =
e−i𝜋∕4√

2

(
1
i

)
(and recalling that our definition of

the dot product involves complex conjugation of the second argument) we obtain, after minimal
simplifications,

Re
(
exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶

′,𝓵′, 𝜎) − i exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎)
)
= 0.

Using now (6.13) with account of cos( 𝜋
2

2𝛼𝑛
) = (𝛼𝑛) = 1, we arrive at the required equivalent

equation Re(𝐹𝑛(𝜶,𝓵, 𝜎)) = 0, thus proving (6.15) in case (i).
Similarly, in case (ii), substituting 𝐗(𝛼𝑛) = 𝐗odd =

ei𝜋∕4√
2

(
1
−i

)
into (6.18), we obtain after

simplifications

Im
(
exp(i𝓁𝑛𝜎)𝐹𝑛−1(𝜶

′,𝓵′, 𝜎) + i exp(−i𝓁𝑛𝜎)𝐹𝑛−1(𝜶′,𝓵′, 𝜎)
)
= Im(𝐹𝑛(𝜶,𝓵, 𝜎)) = 0,

(where we again used (6.13) but now with cos( 𝜋
2

2𝛼𝑛
) = (𝛼𝑛) = −1), proving (6.15) in case (ii).

The cases (iii) and (iv) are similar and are left to the reader.

6.4 Zigzag quasi-eigenvalues as roots of trigonometric polynomials

In this subsection, we briefly discuss trigonometric equations whose roots give the quasi-
eigenvalues of zigzags and zigzag domains.
Let 𝑛 ⩾ 1, let 𝜶 = 𝜶′ = (𝛼1, … , 𝛼𝑛−1) ∈ (Π ⧵ )𝑛−1, let 𝓵 = (𝓁1, … ,𝓁𝑛) ∈ ℝ𝑛+, and let  =

(𝜶,𝓵) be a curvilinear 𝑛 piece zigzag (domain). The quasi-eigenvalues of a corresponding
ℵℶ-zigzag (ℵℶ) are prescribed by Definition 2.37. Set additionally 𝓵′ = (𝓁1, … ,𝓁𝑛−1) ∈ ℝ𝑛−1+ .

Theorem 6.4. The quasi-eigenvalues of a ℵℶ-zigzag (ℵℶ), ℵ,ℶ ∈ {𝑁,𝐷}, are the non-negative
roots of the trigonometric polynomials∑

𝜻∈ℨ𝑛−1

𝜁1=1

𝔭𝜻 (𝜶
′) sin

(
(𝓵′ ⋅ 𝜻 + 𝓁𝑛)𝜎

)
− 𝔮𝜻 (𝜶

′) cos
(
(𝓵′ ⋅ 𝜻 − 𝓁𝑛)𝜎

)
if ℵ = 𝑁,ℶ = 𝑁,

∑
𝜻∈ℨ𝑛−1

𝜁1=1

𝔭𝜻 (𝜶
′) cos

(
(𝓵′ ⋅ 𝜻 + 𝓁𝑛)𝜎

)
− 𝔮𝜻 (𝜶

′) cos
(
(𝓵′ ⋅ 𝜻 − 𝓁𝑛)𝜎

)
if ℵ = 𝑁,ℶ = 𝐷,

∑
𝜻∈ℨ𝑛−1

𝜁1=1

𝔭𝜻 (𝜶
′) cos

(
(𝓵′ ⋅ 𝜻 + 𝓁𝑛)𝜎

)
+ 𝔮𝜻 (𝜶

′) cos
(
(𝓵′ ⋅ 𝜻 − 𝓁𝑛)𝜎

)
if ℵ = 𝐷,ℶ = 𝑁,

∑
𝜻∈ℨ𝑛−1

𝜁1=1

𝔭𝜻 (𝜶
′) sin

(
(𝓵′ ⋅ 𝜻 + 𝓁𝑛)𝜎

)
+ 𝔮𝜻 (𝜶

′) cos
(
(𝓵′ ⋅ 𝜻 − 𝓁𝑛)𝜎

)
if ℵ = 𝐷,ℶ = 𝐷,

(6.19)

where 𝔭𝜻 and 𝔮𝜻 are defined by (2.19) and (6.6).
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Proof. We act as in the proof of Theorem 2.17(b): we first use (6.16) and then arrive at the analogue
of (6.17), in which 𝐗(𝛼0) and 𝐗(𝛼𝑛) should be replaced by ℵ and ℶ⟂, respectively. Polynomials
(6.19) are obtained directly from there after substituting in the expressions (6.10) and (6.11), and
some elementary manipulations. □

7 A QUANTUMGRAPH INTERPRETATION OF
QUASI-EIGENVALUES AND THE RIESZMEAN

7.1 Proof of Theorem 2.24

We begin by proving Proposition 2.27.

Proof of Proposition 2.27. We give the proof in the case when there are no exceptional angles;
the exceptional case is treated similarly, cf. Subsection 4.2. We first check that 𝔇 is symmetric
by the following direct calculation for 𝐟 and 𝐠 in the domain of 𝔇, using integration by parts,
matching conditions (2.28), and the properties of matrices 𝙰(𝛼) from Remark 2.1, and denoting
𝙳 =

(
1 0
0 −1

)
= 𝙳∗, yielding

(𝔇𝐟 , 𝐠)(𝐿2())2 − (𝐟 ,𝔇𝐠)(𝐿2())2 = −i
𝑛∑
𝑗=1

𝙳𝐟 ⋅ 𝐠||𝑉𝑗+1−0𝑉𝑗+0

= i
𝑛∑
𝑗=1

(
𝙳𝙰(𝛼𝑗)𝐟 ⋅ 𝙰(𝛼𝑗)𝐠 − 𝙳𝐟 ⋅ 𝐠

)|||𝑉𝑗−0
= i

𝑛∑
𝑗=1

(
𝙰(𝛼𝑗)𝙳𝙰(𝛼𝑗) − 𝙳

)
𝐟 ⋅ 𝐠|||𝑉𝑗−0 = 0

(since 𝙰(𝛼𝑗)𝙳𝙰(𝛼𝑗) = 𝙳). The self-adjointness of𝔇 now follows by standard techniques similar to
[6].
To prove the second part of the statement, suppose that 𝜎 is an eigenvalue of𝔇; then a restric-

tion of the corresponding eigenfunction 𝐟 (𝑠) to an edge 𝐼𝑗 has the form
(
𝑑𝑗,1e

i𝜎𝑠

𝑑𝑗,2e
−i𝜎𝑠

)
with some

constants 𝑑𝑗,1, 𝑑𝑗,2 ∈ ℂ (which can be chosen so that 𝑑𝑗,2 = 𝑑𝑗,1, cf. Remark 4.7 and the discussion
in the proof of Proposition 4.26). Set

𝐜𝑗 ∶= 𝐟 (𝑠)||𝑉𝑗+0.
Then it is easily checked that the vectors 𝐜𝑗 satisfy

𝐜𝑗+1 = 𝙰(𝛼𝑗)𝙱(𝜎𝓁𝑗)𝐜𝑗.

Repeating now word by word the arguments of Subsection 4.2 we see that the eigenvalues 𝜎 of
are indeed the roots of (2.8). □
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We now proceed to the proof of Theorem 2.24. Note that the vectors 𝐗odd and 𝐗even defined by
(2.11) are the eigenvectors of the matrix 𝙰(𝛼) with the eigenvalues 𝜂1(𝛼) = tan(

𝜋2

4𝛼
) and 𝜂2(𝛼) =

cot(𝜋
2

4𝛼
), respectively. Therefore, the matrix 𝙰(𝛼) in the basis{

1√
2
𝐗odd,

1√
2
𝐗even

}
takes the diagonal form ⎛⎜⎜⎝

tan
(
𝜋2

4𝛼

)
0

0 cot
(
𝜋2

4𝛼

)⎞⎟⎟⎠ .
Let us calculate the operator𝔇 in the same basis. The transition matrix is given by

𝚆 =
1
2

(
1 + i 1 − i

1 − i 1 + i

)
,

and therefore the operator𝔇 in the new basis is given by the matrix

𝚆−1𝔇𝚆 =

(
0 − d

d𝑠
d
d𝑠

0

)
and its square𝔇2 by the matrix

𝚆−1𝔇2𝚆 =

(
− d2

d𝑠2
0

0 − d2

d𝑠2

)
.

Now, every 𝐟 ∈ (𝐿2())2 can be uniquely written as
𝐟 = 𝑓odd𝐗odd + 𝑓even𝐗even,

with 𝑓odd, 𝑓even ∈ 𝐿2(). In other words, we have a direct sum decomposition,

(𝐿2())2 = 𝐋2
odd
() ⊕ 𝐋2even(),

where

𝐋2
odd
() ∶= 𝐗odd𝐿2(), 𝐋2even() ∶= 𝐗even𝐿2().

It is easily seen that both spaces 𝐋2
odd∕even

() are invariant for the operator𝔇2, and therefore the
spectrum of𝔇2 is the union of the spectra of

𝔇2
odd∕even

∶= 𝔇2|||𝐋2
odd∕even

().

We claim that the spectra of𝔇2
odd

and𝔇2
even are the same, and both coincide with the spectrum

of Δ. Obviously, 𝑓odd𝐗odd is in the domain of 𝔇2 if and only if both it and 𝔇(𝑓odd𝐗odd) are in
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the domain of𝔇. A straightforward calculation shows that this happens exactly when conditions
(2.24) are satisfied with 𝑓 = 𝑓odd, and we then have

𝔇2
odd(𝑓odd𝐗odd) =

(
Δ𝑓odd

)
𝐗odd.

Thus, the spectrum of𝔇2
odd

coincides with the spectrum of Δ.
A similar argument shows that the domain of 𝔇2

even consists of vector functions 𝑓even𝐗even
satisfying the ‘dual’ matching conditions

cos

(
𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗+0 = sin( 𝜋2

4𝛼𝑗

)
𝑓|𝑉𝑗−0,

sin

(
𝜋2

4𝛼𝑗

)
𝑓′|𝑉𝑗+0 = cos( 𝜋2

4𝛼𝑗

)
𝑓′|𝑉𝑗−0

(7.1)

(with 𝑓 = 𝑓even); these conditions are obtained from (2.24) by simply swapping sines and cosines.
Denoting the quantum graph Laplacian subject to matching conditions (7.1) by Δ′ , we conclude
that

𝔇2
even(𝑓even𝐗even) =

(
Δ′𝑓even

)
𝐗even,

and the spectrum of𝔇2
even coincides with the spectrum of Δ′ .

It remains to show that the spectra ofΔ andΔ′ coincide. It is easy to see that if𝑓(𝑠) is an eigen-
function of Δ corresponding to a non-zero eigenvalue (and therefore not a piecewise constant)
then 𝑓′(𝑠) is an eigenfunction of Δ′ corresponding to the same eigenvalue. The same also holds
the other way round. It is now enough to show that the multiplicities of eigenvalue zero coincide.
By the variational principle, see Remark 2.23, and its analogue for Δ′ , the only possible eigen-

functions corresponding to eigenvalue zero are piecewise constants. In the non-exceptional case,
it is easily checked from matching conditions (2.26) or (7.1) that zero is in the spectrum of either
operator if and only if

𝑛∏
𝑗=1

tan

(
𝜋2

4𝛼𝑗

)
=

𝑛∏
𝑗=1

cot

(
𝜋2

4𝛼𝑗

)
= 1,

and then it is a simple eigenvalue of either Δ or Δ′ . In the exceptional case, as follows from
(2.26) and (7.1), the only exceptional components𝜅whichhave theNeumann conditions at either
end are those for which(𝛼

𝜅−1
) = −(𝛼𝜅 ) = 1 in the case of Δ and(𝛼𝜅−1) = −(𝛼𝜅 ) = −1 in

the case of Δ′ . In both cases the number of such components, and therefore the multiplicity of
eigenvalue zero, is #𝔎odd

2
, see also Remark 2.19.

This completes the proof of Theorem 2.24.

7.2 Proof of Theorem 2.16

Asmentioned in Remark 2.25, we prove Theorem 2.16 by explicitly constructing the secular equa-
tion for the eigenvalues of the quantum graph  and invoking Theorem 2.24. The method we use
is standard, and we mostly follow [5, 6, 26, 30] and a private communication from P. Kurasov.
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Suppose that 𝜈 = 𝜎2 > 0 is an eigenvalue of Δ. We write a corresponding eigenfunction 𝑓(𝑠)
on the edges 𝐼𝑗 and 𝐼𝑗+1 adjacent to the vertex 𝑉𝑗 , 𝑗 = 1,… , 𝑛, using the local coordinate 𝑠𝑗 such
that 𝑠𝑗|𝑉𝑗 = 0 (the coordinates near adjacent vertices are related by (4.2); cf. Figure 9):

𝑓|𝐼𝑗 (𝑠𝑗) = 𝑎(𝑗)1 ei𝜎𝑠𝑗 + 𝑏(𝑗)1 e−i𝜎𝑠𝑗 , (7.2)

𝑓|𝐼𝑗+1(𝑠𝑗) = 𝑏(𝑗)2 ei𝜎𝑠𝑗 + 𝑎(𝑗)2 e−i𝜎𝑠𝑗 , (7.3)

with some constants 𝑎(𝑗)
𝑘
, 𝑏
(𝑗)
𝑘
∈ ℂ, 𝑘 = 1, 2. Substituting (7.2)–(7.3) into matching conditions

(2.24), resolving with respect to 𝑎(𝑗)
1
, 𝑎
(𝑗)
2
, and combining the results for 𝑗 = 1,… , 𝑛, shows that

the vectors

𝐚 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎(1)
1

𝑎(1)
2

⋮

𝑎(𝑛)
1

𝑎(𝑛)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ ℂ2𝑛 and 𝐛 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑏(1)
1

𝑏(1)
2

⋮

𝑏(𝑛)
1

𝑏(𝑛)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ ℂ2𝑛

are related by the vertex scattering matrix

𝚂𝚌v = 𝚂𝚌v(𝜶) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−cos 𝜋
2

2𝛼1
sin 𝜋2

2𝛼1

sin 𝜋2

2𝛼1
cos 𝜋

2

2𝛼1

− cos 𝜋
2

2𝛼2
sin 𝜋2

2𝛼2

sin 𝜋2

2𝛼2
cos 𝜋

2

2𝛼2
⋱

−cos 𝜋2

2𝛼𝑛
sin 𝜋2

2𝛼𝑛

sin 𝜋2

2𝛼𝑛
cos 𝜋2

2𝛼𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.4)

as

𝐚 = 𝚂𝚌v𝐛. (7.5)

We note that 𝚂𝚌v is unitary and that det 𝚂𝚌v = (−1)𝑛. Note also that the blocks of the vertex scat-
teringmatrix (7.4) differ from the Peters solution scatteringmatrix (3.13) due to the change of basis
given by 𝚆.
We now re-write (7.2) in the variable 𝑠𝑗−1 using (4.2):

𝑓|𝐼𝑗 = 𝑏(𝑗−1)2
ei𝜎𝑠𝑗−1 + 𝑎

(𝑗−1)
2

e−i𝜎𝑠𝑗−1 = 𝑏
(𝑗−1)
2

ei𝜎𝓁𝑗 ei𝜎𝑠𝑗 + 𝑎
(𝑗−1)
2

e−i𝜎𝓁𝑗 e−i𝜎𝑠𝑗 .

Comparing this with (7.2), resolving the resulting equations with respect to 𝑏(𝑗−1)
2

, 𝑏(𝑗)
1
, and again

combining the results for 𝑗 = 1,… , 𝑛 gives a relation

𝐛 = 𝚂𝚌e𝐚, (7.6)
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where 𝚂𝚌e is the edge scattering matrix

𝚂𝚌e = 𝚂𝚌e(𝓵) ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e−i𝜎𝓁1

0 e−i𝜎𝓁2

e−i𝜎𝓁2 0

⋱

0 e−i𝜎𝓁𝑛

e−i𝜎𝓁𝑛 0

e−i𝜎𝓁1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.7)

Note that 𝚂𝚌e is also unitary.
Combining (7.5) and (7.6), we arrive at the secular equation for the quantum graph ,

det(𝚂𝚌v𝚂𝚌e − Id) = 0. (7.8)

It is well-known, see references above, that the positive roots of (7.8) are equal to the square roots
of the positive eigenvalues of Δ; moreover, the multiplicity of 𝜎 > 0 as a root of (7.8) coincides
with the multiplicity of 𝜈 = 𝜎2 as an eigenvalue of Δ.
We now proceed with evaluating the determinant in (7.8). We remark that due to unitarity of

𝚂𝚌v and the fact that it is Hermitian, we have

det(𝚂𝚌v𝚂𝚌e − Id) =
det

(
𝚂𝚌e − (𝚂𝚌v)−1

)
det

(
(𝚂𝚌v)−1

) = (−1)𝑛 det
(
𝚂𝚌v − 𝚂𝚌e

)
. (7.9)

Thematrix 𝚂𝚌v − 𝚂𝚌e is a tridiagonal circulant 2𝑛 × 2𝑛matrix, and determinants of suchmatrices
can be evaluated using, for example, [37, Formula (1)], which in our case after some simplifications
reads

det
(
𝚂𝚌v − 𝚂𝚌e

)
= (−1)𝑛e−i𝜎

∑𝑛
𝑗=1 𝓁𝑗

(
−2

𝑛∏
𝑗=1

sin
𝜋2

2𝛼𝑗
+ Tr

(
𝙲(𝛼𝑛,𝓁𝑛, 𝜎)𝙲(𝛼𝑛−1,𝓁𝑛−1, 𝜎)⋯ 𝙲(𝛼1,𝓁1, 𝜎)

))
,

(7.10)

where the matrices

𝙲(𝛼,𝓁, 𝜎) ∶=

(
exp(i𝓁𝜎) −i cos 𝜋

2

2𝛼
exp(−i𝓁𝜎)

i cos 𝜋
2

2𝛼
exp(i𝓁𝜎) exp(−i𝓁𝜎)

)

are related to the matrices 𝙲(𝛼,𝓁, 𝜎) defined in (2.6) by

𝙲(𝛼,𝓁, 𝜎) =
1

sin 𝜋2

2𝛼

𝙲(𝛼,𝓁, 𝜎).
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Repeating nowword by word the proofs of Theorem 6.1 and Proposition 6.2 and dropping the sine
factors in denominators gives

Tr
(
𝙲(𝛼𝑛,𝓁𝑛, 𝜎)𝙲(𝛼𝑛−1,𝓁𝑛−1, 𝜎)⋯ 𝙲(𝛼1,𝓁1, 𝜎)

)
= 2𝐹even(𝜶,𝓵, 𝜎),

and (7.9) becomes, with account of (7.10),

det(𝚂𝚌v𝚂𝚌e − Id) = 2e
−i𝜎

∑𝑛
𝑗=1 𝓁𝑗

(
𝐹even(𝜶,𝓵, 𝜎) −

𝑛∏
𝑗=1

sin
𝜋2

2𝛼𝑗

)
= 2e−i𝜎

∑𝑛
𝑗=1 𝓁𝑗𝐹 (𝜶,𝓵, 𝜎).

The first two statements of Theorem 2.16 now follow by dropping the non-zero factor 2e−i𝜎
∑𝑛
𝑗=1 𝓁𝑗

and using Theorem 2.24.
To prove the last statement of Theorem 2.16 concerning themultiplicity of the quasi-eigenvalue

𝜎 = 0, we again useTheorem2.24 and [13, Corollary 23]which states that the algebraicmultiplicity
�̃� of 𝜎 = 0 as a root of the secular equation (7.8) and the multiplicity𝑁0 of 𝜈 = 0 as an eigenvalue
of Δ are related by

�̃� = 2𝑁0 − |𝐸| + 𝐷,
where |𝐸| is the number of edges of the graph, and 𝐷 is the number of Dirichlet conditions. Since
in our case |𝐸| = 𝐷 = 𝑛, the result follows immediately.
7.3 Proof of Theorem 2.31

First, note that for any 𝜀 < 𝜀0,

 (𝜆) −𝑞
 (𝜆) = 𝑂(𝜆1−𝜀), (7.11)

where𝑞
 (𝜆) ∶= ({𝜎𝑚}; 𝜆) denotes the first Riesz mean for the sequence {𝜎𝑚} quasi-eigenvalues

of  . Indeed, by Theorem 1.4 we have the estimate |𝜎𝑚 − 𝜆𝑚| = 𝑂(𝑚−𝜀). At the same time, by
Weyl’s law (2.32), there are 𝑂(𝜆) terms in the sums on the right-hand side of (2.30) for either
 (𝜆) or 𝑞

 (𝜆), and moreover 𝑂(𝑚−𝜀) is equivalent to 𝑂(𝜆−𝜀𝑚 ). Putting this all together, we get
(7.11). Therefore, it suffices to prove that

𝑞
 (𝜆) =

|𝜕|
2𝜋

𝜆2 + 𝑂(𝜆
2𝑛
2𝑛+1 ). (7.12)

Let us assume first that all the side lengths of the curvilinear polygon  are (rationally) com-
mensurable. Then it follows from equations (2.20) and (2.23) that the sequence 𝜎𝑚 is periodic:
there exist 𝑇,𝑀 > 0 such that 𝜎𝑚+𝑀 = 𝜎𝑚 + 𝑇 for all 𝑚 ⩾ 1 (in what follows, we refer to 𝑇 as
the period of the sequence 𝜎𝑚). Moreover, in view of Remark 2.21, the roots of equations (2.20)
and (2.23) are symmetric with respect to 𝜎 = 0. The algebraic multiplicity of 𝜎 = 0 is always
even, and according to Definitions 2.6 and 2.13 exactly half of these zeros are counted as quasi-
eigenvalues. This leads to the following observation: on any interval [𝑗𝑇, (𝑗 + 1)𝑇], 𝑗 = 0, 1, 2, … ,
the quasi-eigenvalues are located symmetrically with respect to the centre of the interval, that is,
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the midpoint of the period. Therefore, the sum of all the quasi-eigenvalues on each such interval
is equal to (2𝑗+1)𝑀𝑇

2
. Note that if 𝑗𝑇, 𝑗 ⩾ 1, is a quasi-eigenvalue of some multiplicity (which is

necessarily even in view of the observation above regarding the multiplicity of 𝜎 = 0), then we
assume that half of these eigenvalues contribute to the interval [(𝑗 − 1), 𝑗𝑇] and the other half to
the interval [𝑗𝑇, (𝑗 + 1)𝑇].
Assume that 𝜆 = 𝑘𝑇 for some 𝑘 ∈ ℕ. Then the previous discussion implies that

𝑞
 (𝑘𝑇) = 𝑀𝑇

𝑘−1∑
𝑗=0

2𝑗 + 1

2
=
𝑀𝑇𝑘2

2
=
𝑀
2𝑇
𝜆2, (7.13)

which proves (7.12) in this case. Note that the equality 𝜋𝑀
𝑇
= |𝜕| can be easily deduced from

Weyl’s law (2.32).
Suppose now that 𝜆 = 𝑘𝑇 + 𝜀 for some 0 < 𝜀 < 𝑇. Then we have

𝑞
 (𝜆) = ∫

𝑘𝑇

0
 ({𝜎𝑚}; 𝑡) 𝑑𝑡 + ∫

𝜆

𝐾𝑇
 ({𝜎𝑚}; 𝑡) 𝑑𝑡 =

𝑀𝑇𝑘2

2
+ ∫

𝜆

𝐾𝑇

𝑀
𝑇
𝑡 𝑑𝑡 + 𝑂(𝑇) =

𝑀
2𝑇
𝜆2 + 𝑂(𝑇).

Here we have used (7.13) as well as (2.32) to obtain the second equality. This completes the
proof of (7.12) (in fact, in this case the remainder is 𝑂(𝑇)), and thus of (2.34) if all 𝓁1, … ,𝓁𝑛
are commensurable.
Next, suppose that 𝓁1, … ,𝓁𝑛 are arbitrary real numbers. By the simultaneous version of Dirich-

let’s approximation theorem (in the form obtained via Minkowski’s theorem, see [34]), for any
real 𝑑 > 1 there exist a 𝜁 = 𝜁(𝑑) ∈ ℕ ∩ (𝑑, 4𝑑), and 𝜉𝑗 ∈ ℕ, 𝑗 = 1,… , 𝑛, such that with 𝓁′

𝑗
∶=

𝜉𝑗
𝜁

we have

|𝓁𝑗 − 𝓁′𝑗| < 1

𝑑
1
𝑛 𝜁

<
1

𝑑
𝑛+1
𝑛

, 𝑗 = 1,… , 𝑛. (7.14)

Later on, we will choose 𝑑 depending on the parameter 𝜆 and will write 𝑑 = 𝑑(𝜆).
Denote by 𝜎′𝑚 the quasi-eigenvalues of a curvilinear polygon  ′ with the side lengths 𝓁′

1
, … ,𝓁′𝑛

and the same respective angles as  . Assume
𝑑(𝜆)

𝑛+1
𝑛 > 𝜆. (7.15)

Applying Corollary 5.25, we have

||𝜎𝑚 − 𝜎′𝑚|| < 𝐶𝜆

𝑑(𝜆)
𝑛+1
𝑛

(7.16)

for all 𝜎𝑚 < 𝜆 and some constant 𝐶 > 0.
Inequality (7.16) together with Weyl’s law (2.32) implies that

𝑞
 (𝜆) =

∑
𝜎𝑚⩽𝜆

(𝜆 − 𝜎′𝑚) + (𝜎
′
𝑚 − 𝜎𝑚) = 𝑞

 ′ (𝜆) + 𝑂
(

𝜆2

𝑑(𝜆)
𝑛+1
𝑛

)
. (7.17)
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At the same time, consider the polygon  ′. The lengths of all its sides are rational numbers with
the common denominator 𝜁 < 4𝑑(𝜆). Let 𝑇′ be the period of the sequence 𝜎′𝑚. It is easy to check
from equations (2.20) and (2.23) that 𝑇′ = 𝑂(𝑑(𝜆)). Therefore, by the result that we have already
established for curvilinear polygons with rationally commensurable sides,

𝑞

 ′ (𝜆) =
||𝜕 ′||
2𝜋

𝜆2 + 𝑂(𝑑(𝜆)) =
|𝜕|
2𝜋

𝜆2 + 𝑂

(
𝜆2

𝑑(𝜆)
𝑛+1
𝑛

)
+ 𝑂(𝑑(𝜆)), (7.18)

where the last equality follows from (7.14). Combining (7.17) and (7.18), we get

𝑞
 (𝜆) =

|𝜕|
2𝜋

𝜆2 + 𝑂

(
𝜆2

𝑑(𝜆)
𝑛+1
𝑛

)
+ 𝑂(𝑑(𝜆)). (7.19)

Let us now balance the error terms by choosing 𝑑(𝜆) = 𝜆
2𝑛
2𝑛+1 , which satisfies (7.15). Substituting

this into (7.19), we obtain

𝑞
 (𝜆) =

|𝜕|
2𝜋

𝜆2 + 𝑂
(
𝜆

2𝑛
2𝑛+1

)
.

With account of (7.11), this completes the proof of Theorem 2.31.

8 LAYER POTENTIALS

8.1 Layer potential operators

The aim of Section 8 is to extend the results obtained so far for partially curvilinear polygons to
the fully curvilinear case. Throughout this section, we assume that Ω0, Ω, and Ω̃ are curvilinear
polygons, all with the same angles in Π and the same side lengths in the same order. We also
assume thatΩ0 is partially curvilinear. The boundaries of all three domains are thus homoeomor-
phic to the circle of length 𝐿, denoted 𝕊1

𝐿
, where 𝐿 is the common perimeter of Ω0, Ω, and Ω̃. In

this section, with a slight abuse of notation, we identify the sides 𝐼𝑗 ofΩ0 of length 𝓁𝑗 , 𝑗 = 1,… , 𝑛,
with their images 𝐼𝑗 ⊂ 𝕊1𝐿 (which are arcs of length 𝓁𝑗) under the above homeomorphism. Since
the sides ofΩ and Ω̃ are of the same length as the sides ofΩ0, the intervals 𝐼𝑗 of 𝕊1𝐿 correspond to
the sides of these curvilinear polygons as well.
Let 𝑠 be a common arc length parameter, with the same orientation and with 𝑠 = 0 at the same

vertex, on all three boundaries 𝜕Ω0, 𝜕Ω, and 𝜕Ω̃. Let 𝑞0(𝑠), 𝑞(𝑠), and 𝑞(𝑠) be clockwise arc length
parameterisations of the three boundaries, with outward unit normals 𝐧0(𝑠), 𝐧(𝑠), and �̃�(𝑠). Also
let 𝛾0(𝑠), 𝛾(𝑠), and 𝛾(𝑠) be the three (signed) curvatures. Our assumptions thus mean that 𝛾0 van-
ishes in a neighbourhood of each vertex. We will be interested in a situation when 𝑞 and 𝑞 (and
thus 𝛾 and 𝛾) are close to each other in some 𝐶𝑙 norm. The outward normals and curvatures are
defined at all points except the finitely many vertices.
Wewill be comparing the Steklov spectra of these polygons, so let0,, and ̃ be theDirichlet-

to-Neumann operators on each, with eigenvalues {𝜆0,𝑚}, {𝜆𝑚}, and {𝜆𝑚}. We will assume, as we
can, that all these operators act in the same Hilbert space 𝐿2(𝕊1

𝐿
). Throughout, we write 𝑘 or

𝑘(𝕊1
𝐿
), with 𝑘 = 0 or 𝑘 = 1, for the direct sum 𝐶𝑘(𝐼1) ⊕⋯⊕𝐶𝑘(𝐼𝑛); in particular, a function in
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0(𝕊1
𝐿
) need not be continuous at the ends of the intervals 𝐼𝑗 . At the same time, the Sobolev space

𝐻1(𝕊1
𝐿
) is defined in the usual manner.

Theorem 8.1. Fix a domain Ω of the type described above and let Ω̃ vary within that class. Then
there exist constants 𝐶, 𝛿 > 0, depending only on the geometry of Ω, such that if Ω̃ satisfies the
condition

‖𝛾 − 𝛾‖1(𝕊1
𝐿
) ⩽ 𝛿, (8.1)

then − ̃ is bounded as an operator 𝐿2(𝕊1
𝐿
) → 𝐿2(𝕊1

𝐿
) and further

‖ − ̃‖𝐿2→𝐿2 ⩽ 𝐶‖𝛾 − 𝛾‖1 .
Remark 8.2. This theorem states that within each class of curvilinear polygons we con-
sider here, the dependence of the Dirichlet-to-Neumann operator (with respect to the operator
norm) on the curvature of the boundary (with respect to the 𝐶1 norm) is locally Lipschitz
continuous.

Remark 8.3. Repeated applications of Theorem 8.1 imply that even without assumption (8.1), −

̃ is still bounded from 𝐿2(𝕊1
𝐿
) to 𝐿2(𝕊1

𝐿
).

The proof of this theorem will occupy the remainder of the section. But first we explain how to
use this theorem to extend the results proved in previous sections for partially curvilinear polygons
to the fully curvilinear case. The following proposition can be viewed as a sort of a bootstrap
argument.

Proposition 8.4. Suppose that Ω and Ω̃ are curvilinear polygons as described above. Suppose fur-
ther that ‖ − ̃‖ < 𝜋∕(6𝐿), and let 𝛿 > 1 be as in Corollary 4.22. Then |𝜎𝑚 − 𝜆𝑚| = 𝑜(1) implies|𝜎𝑚 − 𝜆𝑚| = 𝑂(𝑚1

2
(1−𝛿)).

Proof. The proof begins with the observation that the sequence {𝜎𝑚}must have repeated spectral
gaps of size greater than 𝜋∕2𝐿. Indeed, if this is not the case, then for all sufficiently large 𝜆, the
counting function for {𝜎𝑚} would be at least

2𝐿
𝜋
𝜆, contradicting the Weyl law [6, Lemma 3.7.4].

Nowpartition the sequence {𝜎𝑚} into clusters {𝜎𝑎𝑘 , … , 𝜎𝑏𝑘 }, ending each cluster at the first newgap
of size greater than𝜋∕(2𝐿), so that 𝑎𝑘+1 = 𝑏𝑘 + 1 and 𝜎𝑎𝑘+1 − 𝜎𝑏𝑘 > 𝜋∕(2𝐿). Since |𝜎𝑚 − 𝜆𝑚|→ 0,
the disjoint intervals (

𝜎𝑎𝑘 −
𝜋
12𝐿

, 𝜎𝑏𝑘 +
𝜋
12𝐿

)
,

must eventually contain 𝜆𝑎𝑘 , … , 𝜆𝑏𝑘 , andno other eigenvalues of. On the other hand, ‖ − ̃‖ <
𝜋
6𝐿
. So, every element of {𝜆𝑚}must be within a distance

𝜋
6𝐿
of some element of {𝜆𝑚}, which means

that, for sufficiently large 𝑘, the intervals(
𝜎𝑎𝑘 −

𝜋
4𝐿
, 𝜎𝑏𝑘 +

𝜋
4𝐿

)
,

which are still disjoint, must contain 𝜆𝑎𝑘 , … , 𝜆𝑏𝑘 , and no other eigenvalues of ̃.
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F IGURE 17 A familyΩ′𝑡 (dotted boundary) near a vertex, with the original fully curvilinear polygonΩ = Ω
′
1

(solid boundary) and a constructed partially curvilinearΩ′
0
(dashed boundary; the black dots indicate the ends of

the straight parts of the boundary)

We also note that, by Theorem 4.24, there is a map 𝑗 ∶ ℕ → ℕ which is eventually strictly
increasing and forwhich |𝜎𝑚 − 𝜆𝑗(𝑚)| ⩽ 𝐶𝑚1

2
(1−𝛿) → 0. These two observations imply that 𝑗(𝑚) =

𝑚 for sufficiently large𝑚. □

Now we deduce the correct enumeration for any Ω from the correct enumeration forΩ0 using
a continuity argument. The key is the following proposition.

Proposition 8.5. LetΩ be a fully curvilinear polygon. There exists a continuous family of curvilin-
ear polygons Ω𝑡 , 𝑡 ∈ [0, 1], all with the same angles and side lengths, with Ω1 = Ω, and Ω0 being
partially curvilinear.

Proof. We proceed in three steps. First, we build a family Ω′𝑡 with all the required properties
except possibly for the preservation of the side lengths. This is easy to do by working locally in a
neighbourhood of each vertex: assume that a vertex is at the origin, and that Ω in the vicinity of
the vertex coincides with {

(𝑥, 𝑦) ∶ 𝑥 > 0, 𝑦1,−(𝑥) < 𝑦 < 𝑦1,+(𝑥)
}
,

where 𝑦±(0) = 0, see Figure 17.
Let𝜒(𝑥) denote a smooth nonnegative cut-off function satisfying (4.34). We now set, with 𝜀 > 0

small enough,

𝑦0,±(𝑥) ∶= 𝜒(𝑥∕𝜀)𝑦
′
1,±(0)𝑥 + (1 − 𝜒(𝑥∕𝜀))𝑦1,±(𝑥)

(so that these functions are linear near the origin), and choose Ω′
0
to coincide locally with{

(𝑥, 𝑦) ∶ 𝑥 > 0, 𝑦0,−(𝑥) < 𝑦 < 𝑦0,+(𝑥)
}
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(so its partially curvilinear), and Ω′𝑡, 𝑡 ∈ [0, 1], to coincide locally with{
(𝑥, 𝑦) ∶ 𝑥 > 0, (1 − 𝑡)𝑦0,−(𝑥) + 𝑡𝑦1,−(𝑥) < 𝑦 < (1 − 𝑡)𝑦0,+(𝑥) + 𝑡𝑦1,+(𝑥)

}
.

On the second step, let 𝜌𝑡 be the maximum ratio of the corresponding side lengths of Ω′𝑡 and
Ω = Ω′

1
,

𝜌𝑡 ∶= max

{
𝓁1(Ω

′
𝑡)

𝓁1(Ω)
, … ,

𝓁𝑛(Ω
′
𝑡)

𝓁𝑛(Ω)

}
,

with 𝜌1 = 1. We now construct the continuous family of curvilinear polygons Ω′′𝑡 as copies of Ω
′
𝑡

scaled by a linear factor 𝜌−1𝑡 ; this ensures that each side length 𝓁𝑗(Ω
′′
𝑡 ) of the resulting family is

less than or equal to the corresponding side length 𝓁𝑗(Ω).
Finally, we adjust the domainsΩ′′𝑡 to increase, if required, the side lengths 𝓁𝑗(Ω

′′
𝑡 ) = 𝜌

−1
𝑡 𝓁𝑗(Ω

′
𝑡)

back to 𝓁𝑗(Ω) for all 𝑗, while leaving a neighbourhood of each vertex unchanged. This may be
done, for example, by adding smooth oscillationswith the appropriate 𝑡-dependent amplitude and
frequency to each side away from the corners. The result is a continuous familyΩ𝑡 of curvilinear
polygonswithΩ1 = Ω, andΩ0 partially curvilinear, allΩ𝑡 having the same angles and side lengths
as Ω. □

Along such a familyΩ𝑡, the curvature depends continuously on 𝑡 in the 1-norm, and therefore
by Theorem 8.1, the operator 𝑡 depends continuously on 𝑡 in the 𝐿2 norm. Since 𝑡 ∈ [0, 1] and
[0, 1] is compact, this dependence is uniformly continuous, so there exists 𝜀 > 0 such that |𝑡 − 𝑡′| ⩽
𝜀 implies that ‖ − ̃‖ < 𝜋∕(6𝐿). Finally, by Theorem 1.4 for the partially curvilinear polygon
Ω0, which we proved in Section 5, we know that for Ω0, |𝜎𝑚 − 𝜆𝑚(Ω0)| = 𝑜(1). So, by one use of
Proposition 8.4, we conclude that for all 𝑡 ∈ [0, 𝜀],

|𝜎𝑚 − 𝜆𝑚(Ω𝑡)| = 𝑂(𝑚(−𝛿+1)∕2).

But then a second use gets us the same for all 𝑡 ∈ [0, 2𝜀], and so on until we reach 1 in finitely
many steps. Therefore, we have:

Theorem 8.6. For any curvilinear polygonΩ,

|𝜎𝑚 − 𝜆𝑚| = 𝑂(𝑚(−𝛿+1)∕2),

where 𝛿 is defined as in Corollary 4.22.

Our approach uses the theory of layer potentials. So, we let 𝐒𝐋 and𝐃𝐋 be the single- and double-
layer potential operators on the boundary of our domain Ω. Throughout, we use 𝐒𝐋, 𝐒𝐋0, and
analogous expressions to denote the same operators on Ω̃ and Ω0, respectively. Recall that these
operators are defined as follows:

𝐒𝐋(𝑓)(𝑠) = ∫𝕊1
𝐿

𝐾𝐒𝐋(𝑠, 𝑠
′)𝑓(𝑠′) 𝑑𝑠′; 𝐃𝐋(𝑓)(𝑠) = ∫𝕊1

𝐿

(
𝜕

𝜕𝑛(𝑠′)
𝐾𝐒𝐋(𝑠, 𝑠

′)

)
𝑓(𝑠′) 𝑑𝑠′,

𝐾𝐒𝐋(𝑠, 𝑠
′) =

1
2𝜋

log |𝑞(𝑠) − 𝑞(𝑠′)|,
where 𝑛(𝑠′) is the outward unit normal and the integral for 𝐃𝐋 is a principal value integral.
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We now collect some basic facts about these operators. First, we have the Calderon jump rela-
tions, stated in [48, chapter 7, (11.35)] in the smooth context but also true in the general setting of
Lipschitz domains (see, for example, [2]):

𝐒𝐋 = −
1
2
(Id−𝐃𝐋). (8.2)

Nowwe give some information about the boundedness properties of these operators, which again
hold for Lipschitz domains. Although we cite [39], some of these results are originally due to
Verchota [51].

Proposition 8.7 [39, section 2 and Lemma 3.1]. The operators

𝐒𝐋 ∶ 𝐿2(𝜕Ω) → 𝐻1(𝜕Ω), 𝐃𝐋 ∶ 𝐿2(𝜕Ω) → 𝐿2(𝜕Ω), 𝐃𝐋 ∶ 𝐻1(𝜕Ω) → 𝐻1(𝜕Ω)

are all bounded. Moreover, 𝐒𝐋 is invertible as long as the capacity of the domain Ω is not equal to
one.

Remark 8.8. The capacity of a domain (also called the logarithmic capacity) scales lin-
early with the domain itself, and is bounded below by the inradius. We may thus safely
assume that the capacity of each of our domains is greater than one. If not, to prove a the-
orem such as Theorem 8.1, we simply scale up the domain(s) so that all inradii and thus
all capacities are greater than one, apply the result there, and transform back. Since  is
homogeneous under scaling, the result follows for all domains. This allows us to make the
assumption, which we do throughout, that our single-layer operators 𝐒𝐋, 𝐒𝐋0, and 𝐒𝐋 are
all invertible.

8.2 Proof of Theorem 8.1

Our first goal is to reduce the proof of Theorem8.1 to the proof of the following lemma,which gives
bounds on the differences of the single- and double-layer potential operators acting on different
domains.

Lemma 8.9. There exist constants 𝐶 and 𝛿 depending only on the geometry ofΩ such that if

‖𝛾(𝑠) − 𝛾(𝑠)‖1 ⩽ 𝛿,
then

(1) 𝐒𝐋 − 𝐒𝐋 is bounded from𝐻−1(𝕊1
𝐿
) → 𝐻1(𝕊1

𝐿
), and ‖𝐒𝐋 − 𝐒𝐋‖𝐻−1→𝐻1 ⩽ 𝐶‖𝛾 − 𝛾‖1 .

(2) 𝐃𝐋 − 𝐃𝐋 is bounded from 𝐿2(𝕊1
𝐿
) → 𝐻1(𝕊1

𝐿
), and ‖𝐃𝐋 − 𝐃𝐋‖𝐿2→𝐻1 ⩽ 𝐶‖𝛾 − 𝛾‖1 .

We defer the proof of this Lemma to future subsections and now give the proof of Theorem 8.1.

Proof of Theorem 8.1. The point is that the Calderon jump relations (8.2) for Ω and Ω̃ allow us
to write  − ̃ in terms of 𝐒𝐋 − 𝐒𝐋 and 𝐃𝐋 − 𝐃𝐋. Specifically, since we assume 𝐒𝐋 is invertible,
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subtracting the jump relation for Ω̃ from that for Ω and rearranging yields

 − ̃ = 𝐒𝐋−1
(
1
2
(𝐃𝐋 − 𝐃𝐋) − (𝐒𝐋 − 𝐒𝐋)̃). (8.3)

We want the only tildes on the right to be in the differences of layer potential operators, and so a
little more rearrangement yields the following formal expression:

 − ̃ =
(
𝐼 − 𝐒𝐋−1(𝐒𝐋 − 𝐒𝐋)

)−1
𝐒𝐋−1

(
1
2
(𝐃𝐋 − 𝐃𝐋) − (𝐒𝐋 − 𝐒𝐋)). (8.4)

This formal expression can now be justified. First, by Proposition 8.7 and the bounded inverse
theorem, 𝐒𝐋−1 is bounded from𝐻1 to 𝐿2. By the same proposition, 1

2
(Id−𝐃𝐋) is bounded from𝐻1

to itself, and thus by the Calderon jump relation, is bounded from𝐻1 to 𝐿2. By self-adjointness
and duality, is also bounded from 𝐿2 to𝐻−1. By Lemma 8.9, the operator

𝐒𝐋−1((𝐃𝐋 − 𝐃𝐋) − (𝐒𝐋 − 𝐒𝐋))
is bounded from 𝐿2 to 𝐿2. Further, its operator norm is bounded by ‖𝛾 − 𝛾‖1 times a constant
depending only on the geometry ofΩ (this absorbs the norms of and 𝐒𝐋−1, both ofwhich depend
only on Ω).
Finally, as long as 𝛿 is chosen smaller than (2𝐶‖𝐒𝐋−1‖𝐻1→𝐿2)−1, which depends only on the

geometry of Ω, we have that

‖‖‖𝐒𝐋−1(𝐒𝐋 − 𝐒𝐋)‖‖‖𝐿2→𝐿2 ⩽ ‖‖‖𝐒𝐋−1(𝐒𝐋 − 𝐒𝐋)‖‖‖𝐻−1→𝐿2 ⩽ 12 .
Therefore, 𝐼 − 𝐒𝐋−1(𝐒𝐋 − 𝐒𝐋) is invertible on 𝐿2, with inverse bounded by 2. The required
statement for  − ̃ now follows immediately from (8.4), and the proof of Theorem 8.1 is
complete. □

8.3 Proof of Lemma 8.9

The proof proceeds via a careful analysis of the Schwartz kernels of the operators 𝐒𝐋 − 𝐒𝐋 and
𝐃𝐋 − 𝐃𝐋. These kernels are 𝐾𝐒𝐋−𝐒𝐋 and 𝐾𝐃𝐋−𝐃𝐋, respectively, and of course the difference of
kernels is the kernel of the difference. Each of these operators therefore has an extremely explicit
Schwartz kernel which is conducive to direct analysis.
Our Schwartz kernels live on 𝕊1

𝐿
× 𝕊1

𝐿
, and have input and output variables which we denote 𝑠

and 𝑠′, respectively.We decompose𝕊1
𝐿
× 𝕊1

𝐿
as a union of rectangles of the form 𝐼𝑗 × 𝐼𝑘 and analyse

each kernel on each rectangle separately. The critical results we need are as follows.

Lemma 8.10. There exist constants 𝐶 and 𝛿 depending only on the geometry of Ω so that if ||𝛾 −
𝛾||1 ⩽ 𝛿, then the three operators with Schwartz kernels

𝐾𝐒𝐋−𝐒𝐋, 𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋, 𝐾𝐃𝐋−𝐃𝐋

have the following properties.
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(1) For each 𝑗 and 𝑘, each operator is bounded from 𝐿2(𝐼𝑘) → 𝐻1(𝐼𝑗), with the norm bounded by
𝐶‖𝛾 − 𝛾‖1 .

(2) For each 𝑗 and 𝑘, each operator kernel is bounded on the rectangle 𝐼𝑗 × 𝐼𝑘 .
(3) For each 𝑗, each operator kernel is continuous on 𝐼𝑗 × 𝕊1𝐿, with the possible exception of the two

points 𝑉 × 𝑉 where 𝑉 is an end point of 𝐼𝑗 . In particular, as long as the first variable 𝑠 is in the
interior of 𝐼𝑗 , none of these kernels have a jump discontinuity as the second variable 𝑠′ crosses a
corner.

Now we complete the proof of Lemma 8.9, given Lemma 8.10.

Proof. First, we claim that each of the three operators in Lemma 8.10 in fact defines a bounded
operator from 𝐿2(𝐼𝑘) → 𝐻1(𝕊1

𝐿
) for each 𝑘, with normbounded by𝐶‖𝛾 − 𝛾‖1 . Each of these oper-

ators is the direct sum of the corresponding operators from 𝐿2(𝐼𝑘) to 𝐻1(𝐼𝑗). The output of such
an operator may not be in 𝐻1(𝕊1

𝐿
) a priori, as it might not be continuous at the vertices. How-

ever, we claim that for any input in 𝐿2(𝐼𝑘), the output is continuous at the vertices. Assuming this
continuity, the 𝐻1(𝕊1

𝐿
) norm of the output is the sum of the 𝐻1(𝐼𝑗) norms of each piece, which

is enough.
Indeed, the continuity follows from Lemma 8.10. Let g(𝑠) be any function in 𝐿2(𝐼𝑘). The output

is ∫𝐼𝑘 𝐾(𝑠, 𝑠′)g(𝑠′) 𝑑𝑠′, and its continuity is a real analysis exercise. Specifically, break this integral
into a small ball around each end point and a large middle section. The middle integral is con-
tinuous since, by part 3 of Lemma 8.10, 𝐾(𝑠, 𝑠′) is continuous for all values of 𝑠′ not at the end
points. And since 𝐾(𝑠, 𝑠′) is bounded by part 2 of the Lemma, the end point integrals are small, so
a standard 𝜀∕3 argument completes the proof of continuity.
It is now immediate that each of the three operators in fact is bounded from 𝐿2(𝕊1

𝐿
) → 𝐻1(𝕊1

𝐿
)

with the same norm bounds (up to a factor of 𝑛), as their output is simply the sum of the outputs
of the operators from 𝐿2(𝐼𝑘) → 𝐻1(𝕊1

𝐿
). This proves the second statement in Lemma 8.9.

For the first statement in Lemma 8.9, part 1 of Lemma 8.10 shows that it is sufficient to prove
that

‖𝐒𝐋 − 𝐒𝐋‖𝐻−1→𝐻1 ⩽ 𝐶(‖𝐾𝐒𝐋−𝐒𝐋‖𝐿2→𝐻1 + ‖𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋‖𝐿2→𝐻1), (8.5)

with 𝐶 a constant depending only on the geometry of Ω, and where the norms on the right-hand
side are, in an abuse of notation, the operator norms of the operators with those kernels (so that,
in particular, the operator denoted by 𝐾𝐒𝐋−𝐒𝐋 in the right-hand side is the same as 𝐒𝐋 − 𝐒𝐋 in the
left-hand side).
To this end, let  be a Fourier multiplier operator on 𝕊1

𝐿
, multiplying each basis element

e2𝜋i𝑚𝑠∕𝐿 by 1 + |𝑚|. Then, up to a factor of 𝐿 which we ignore as it can be absorbed into 𝐶, 
is an isometric isomorphism from 𝐿2 to𝐻−1. Thus,

‖𝐒𝐋 − 𝐒𝐋‖𝐻−1→𝐻1 = ‖(𝐒𝐋 − 𝐒𝐋)‖𝐿2→𝐻1 = sup
𝑓∈𝐿2,‖𝑓‖=1

‖‖‖‖‖∫𝕊1𝐿 𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠′)(𝑓)(𝑠′) 𝑑𝑠′
‖‖‖‖‖𝐻1.

Write out the Fourier expansions of𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠
′) and of𝑓(𝑠′), ignoring all normalisation constants

(which can be absorbed):

𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠
′) =

∑
𝑚∈ℤ

𝑐𝑚(𝑠)e
i𝑚𝑠′ , 𝑓(𝑠′) =

∑
𝑚∈ℤ

𝑑𝑚e
i𝑚𝑠′ .
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Then by a direct calculation,

‖‖‖𝐒𝐋 − 𝐒𝐋‖‖‖𝐻−1→𝐻1 = sup
𝑑𝑚∶

∑
𝑑2𝑚=1

‖‖‖‖‖
∑
𝑚∈ℤ

(1 + |𝑚|)𝑑−𝑚𝑐𝑚(𝑠)‖‖‖‖‖𝐻1
⩽ sup
𝑑𝑚∶

∑
𝑑2𝑚=1

‖‖‖‖‖
∑
𝑚∈ℤ

𝑑−𝑚𝑐𝑚(𝑠)
‖‖‖‖‖𝐻1 + sup

𝑑𝑚∶
∑
𝑑2𝑚=1

‖‖‖‖‖
∑
𝑚∈ℤ

|𝑚|𝑑−𝑚𝑐𝑚(𝑠)‖‖‖‖‖𝐻1.
(8.6)

But also by direct calculations,

‖‖𝐾𝐒𝐋−𝐒𝐋‖‖𝐿2→𝐻1 = sup
𝑑𝑚∶

∑
𝑑2𝑚=1

‖‖‖‖‖
∑
𝑚∈ℤ

𝑑−𝑚𝑐𝑚(𝑠)
‖‖‖‖‖𝐻1,

‖‖𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋‖‖𝐿2→𝐻1 = sup
𝑑𝑚∶

∑
𝑑2𝑚=1

‖‖‖‖‖
∑
𝑚∈ℤ

(−𝑚)𝑑−𝑚𝑐𝑚(𝑠)
‖‖‖‖‖𝐻1.

Although it does not initially look identical, this second norm is the same as the second term of
(8.6), as the signs of the coefficients 𝑑𝑚 may be multiplied by −1 × 𝑚. The equation (8.5) follows
immediately, and with it Lemma 8.9. □

8.4 Proof of Lemma 8.10: Kernel expressions

The starting point for our proof of Lemma 8.10 is work of Costabel [9]. Costabel analyses kernels of
operators of the form 𝐒𝐋 − 𝐒𝐋0 and𝐃𝐋 − 𝐃𝐋0, comparing a curvilinear polygon to a polygonwith
straight edges near the corners. From [9], one extracts that each of the three operator kernels in
Lemma 8.10 is continuous on 𝐼𝑗 × 𝐼𝑘, except when 𝑘 = 𝑗 ± 1, in which case there is a singularity
at 𝑉 × 𝑉. Costabel carefully analyses the asymptotics of the kernels at each singular point and
in fact, from his work one can deduce boundedness of each kernel in this singular case as well
(we will also see it directly). By writing 𝐒𝐋 − 𝐒𝐋 = (𝐒𝐋 − 𝐒𝐋0) − (𝐒𝐋 − 𝐒𝐋0), this proves part 2 of
Lemma 8.10. As for part 3, this almost follows from Costabel, except that we need to prove the
following:

Proposition 8.11. If 𝑠 is a vertex and 𝑠′ is not, then the kernels𝐾𝐒𝐋−𝐒𝐋, 𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋, and𝐾𝐃𝐋−𝐃𝐋 are
continuous at (𝑠, 𝑠′).

This will follow from our explicit expressions for the kernels and therefore we postpone the
proof for the moment, but once it is done, part 3 of Lemma 8.10 follows immediately.
To prove part 1, and also complete the proof of Proposition 8.11, we must analyse the kernels

directly. To show part 1, we take advantage of the definition of the 𝐻1 norm, and observe that it
suffices to show the following six kernels induce bounded operators from 𝐿2(𝐼𝑘) → 𝐿2(𝐼𝑗) for each
𝑗 and 𝑘, with norms bounded by 𝐶‖𝛾 − 𝛾‖1 :

𝐾𝐒𝐋−𝐒𝐋, 𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋, 𝜕𝑠𝐾𝐒𝐋−𝐒𝐋, 𝜕𝑠𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋, 𝐾𝐃𝐋−𝐃𝐋, 𝜕𝑠𝐾𝐃𝐋−𝐃𝐋.



110 LEVITIN et al.

We will do this by showing explicitly that the absolute value of each of these kernels is bounded
by ‖𝛾 − 𝛾‖1 times a simple function which induces a bounded operator from 𝐿2(𝐼𝑘) → 𝐿2(𝐼𝑗). In
the case when 𝑘 ≠ 𝑗 ± 1, this function may be chosen to be a constant, but if 𝑘 = 𝑗 ± 1 we must
choose this function to be (mildly) singular at 𝑉 × 𝑉.
To do this, we write out the six kernels in question. Up to normalising constants which we

ignore as they are not relevant to the argument,

𝐾𝐒𝐋(𝑠, 𝑠
′) = log |𝑞(𝑠) − 𝑞(𝑠′)|; (8.7)

𝜕𝑠𝐾𝐒𝐋(𝑠, 𝑠
′) =

(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠)|𝑞(𝑠) − 𝑞(𝑠′)|2 ; (8.8)

𝜕𝑠′𝐾𝐒𝐋(𝑠, 𝑠
′) = −

(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 ; (8.9)

𝜕𝑠𝜕𝑠′𝐾𝐒𝐋(𝑠, 𝑠
′) = −

�̇�(𝑠) ⋅ �̇�(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 + 2((𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠))((𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠′))|𝑞(𝑠) − 𝑞(𝑠′)|4 ; (8.10)

𝐾𝐃𝐋(𝑠, 𝑠
′) = −

(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ 𝐧(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 ; (8.11)

𝜕𝑠𝐾𝐃𝐋(𝑠, 𝑠
′) = −

�̇�(𝑠) ⋅ 𝐧(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 + 2((𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠))((𝑞(𝑠) − 𝑞(𝑠′)) ⋅ 𝐧(𝑠′))|𝑞(𝑠) − 𝑞(𝑠′)|4 . (8.12)

The six kernelsweneed are these expressionsminus the corresponding expressionswith tildes. All
dots denote derivatives. Note that here𝐧(𝑠′) is a 90ž rotation of �̇�(𝑠′) (the sign is usually irrelevant)
and that �̇�(𝑠) and �̇�(𝑠′) are unit vectors since we have an arc length parameterisation.
We begin by proving Proposition 8.11. In fact this is easy because the kernels themselves are

separately continuous, so their differences are continuous as well. At a point (𝑠, 𝑠′) where 𝑠 is a
vertex and 𝑠′ is not, the functions 𝑞(𝑠), 𝑞(𝑠′) and �̇�(𝑠′) are all continuous, though �̇�(𝑠) is not (it has
a jump discontinuity at the vertex). By rotation, 𝐧(𝑠′) is also continuous. Moreover, |𝑞(𝑠) − 𝑞(𝑠′)|
is continuous and nonzero. The same is true for all expressions with tildes. From this it is easy
to see that the three expressions (8.7), (8.9), and (8.11) are all continuous, as are their analogues
with tildes. This completes the proof of Proposition 8.11, leaving only the need to prove part 1 of
Lemma 8.10, which will be done with a direct but lengthy calculation.

8.5 Geometric preliminaries

As a reminder, we have a fixed domain Ω and a domain Ω̃ which is among the class of domains
for which ‖𝛾 − 𝛾‖1 is bounded by some yet to be chosen small geometric constant 𝛿, depending
only on the geometry of Ω. We will, throughout, write

Γ ∶= ‖𝛾 − 𝛾‖0 ; Γ1 ∶= ‖𝛾 − 𝛾‖1 ,
and our restriction on Ω̃ is precisely that Γ ⩽ Γ1 ⩽ 𝛿 for some 𝛿 to be chosen later. Throughout
we use 𝐶 to denote a constant depending only on the geometry of Ω (and in particular not on the
geometry of Ω̃).



ASYMPTOTICS OF STEKLOV EIGENVALUES 111

Note that all six kernels (8.7)–(8.12) are independent of rotation and translation of the domain
Ω̃ in ℝ2. This allows us a degree of freedom of choice, and we will usually take advantage of this
to ensure that ̇̃𝑞(𝑠0) = �̇�(𝑠0) for some specific value 𝑠0, chosen conveniently. Of course we cannot
ensure this for more than one point at a time, but that will not be necessary.
Our bounds on the kernels (8.7)–(8.12) are all based on the basic fact that the curvature 𝛾(𝑠) is

related to 𝑞(𝑠) by

𝑞(𝑠) = 𝛾(𝑠) ⋅ Rot(�̇�(𝑠)) = 𝛾(𝑠)𝐧(𝑠), (8.13)

where Rot is counterclockwise rotation by 𝜋∕2. In particular we have 𝑞(𝑠) ⟂ �̇�(𝑠). The equa-
tion (8.13) may be used to estimate expressions involving 𝑞 and �̇� because by the fundamental
theorem of calculus,

𝑞(𝑠) = 𝑞(𝑠′) + (𝑠 − 𝑠′)�̇�(𝑠′) + ∫
𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) 𝑑𝑢 𝑑𝑡, (8.14)

�̇�(𝑠) = �̇�(𝑠′) + ∫
𝑠

𝑠′
𝑞(𝑢) 𝑑𝑢, (8.15)

with identical expressions for 𝑞(𝑠) and its derivative. Note that (8.14) and (8.15) hold only when
𝑠 and 𝑠′ are on the same side; otherwise there is a jump discontinuity in �̇�, which modifies the
expressions in the way one would expect.
The following proposition reflects the fact that if the curvatures of 𝜕Ω̃ and 𝜕Ω are close to one

another, then their boundaries change direction in similar ways.

Proposition 8.12. Suppose that Ω̃ additionally satisfies the condition that there exists 𝑠0 for which
̇̃𝑞(𝑠0) = �̇�(𝑠0). Then the following hold:

|( ̇̃𝑞(𝑠) − �̇�(𝑠)) − ( ̇̃𝑞(𝑠′) − �̇�(𝑠′))| ⩽ 𝐶Γ|𝑠 − 𝑠′|; (8.16)

| ̈̃𝑞(𝑠) − 𝑞(𝑠)| ⩽ 𝐶Γ; (8.17)

|⃛̃𝑞(𝑠) − 𝑞(𝑠)| ⩽ 𝐶Γ1. (8.18)

Remark 8.13. In fact, (8.16) holds without that condition on Ω̃, as the left-hand side of (8.16) is
invariant under rotation of Ω̃. The others do not.

Proof. Take (8.15) for �̇� and subtract it from the same for ̇̃𝑞, then plug in (8.13) to obtain

( ̇̃𝑞(𝑠) − �̇�(𝑠)) − ( ̇̃𝑞(𝑠′) − �̇�(𝑠′)) = ∫
𝑠

𝑠′ ∫
𝑠

𝑠′
(𝛾(𝑢) Rot( ̇̃𝑞(𝑢)) − 𝛾(𝑢) Rot(�̇�(𝑢))) 𝑑𝑢.

This holds for all 𝑠 and 𝑠′, not just those in the same boundary component; as the angles are
the same, the jump discontinuities that are added to (8.15) are the same for both Ω and Ω̃ and
therefore cancel. We estimate the integral using the usual analysis trick of adding and subtracting
𝛾(𝑢) Rot( ̇̃𝑞(𝑢)) inside the integral. Observe also that rotation does not change the norm of a vector.
Write 𝐹(𝑠) = ̇̃𝑞(𝑠) − �̇�(𝑠) and𝐺𝑠′(𝑠) = |𝐹(𝑠) − 𝐹(𝑠′)|, so that the left-hand side of (8.16) is 𝐺𝑠′𝑠, and
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we obtain

𝐺𝑠′(𝑠) ⩽ ∫
𝑠

𝑠′
(|𝛾(𝑢) − 𝛾(𝑢)| ⋅ | ̇̃𝑞(𝑢)| + |𝛾(𝑢)| ⋅ |𝐹(𝑢)|) 𝑑𝑢.

However, ̇̃𝑞 is a unit vector, so the first term is bounded by Γ|𝑠 − 𝑠′|. And |𝛾(𝑢)| is the curvature
of Ω and thus bounded by 𝐶, so adding and subtracting 𝐹(𝑠) inside the second term gives

𝐺𝑠′(𝑠) ⩽ Γ|𝑠 − 𝑠′| + 𝐶 ∫
𝑠

𝑠′
|𝐹(𝑢) − 𝐹(𝑠′) + 𝐹(𝑠′)|𝑑𝑢 ⩽ (Γ + 𝐶|𝐹(𝑠′)|)|𝑠 − 𝑠′| + ∫

𝑠

𝑠′
𝐶𝐺𝑠′(𝑢) 𝑑𝑢.

Since 𝐹(𝑠) is continuous so is 𝐺𝑠′(𝑠). We may therefore use the integral form of Grönwall’s
inequality to obtain a bound for 𝐺𝑠′(𝑠):

𝐺𝑠′(𝑠) ⩽ (Γ + 𝐶|𝐹(𝑠′)|)|𝑠 − 𝑠′| + ∫
𝑠

𝑠′
(Γ + 𝐶|𝐹(𝑠′)|)|𝑢 − 𝑠′| ⋅ 𝐶 ⋅ exp

(
∫

𝑠

𝑢
𝐶 𝑑𝑢′

)
𝑑𝑢.

A straightforward estimate gives

𝐺𝑠′(𝑠) ⩽ (Γ + 𝐶|𝐹(𝑠′)|)(|𝑠 − 𝑠′| + 𝐶|𝑠 − 𝑠′|2 exp[𝐶|𝑠 − 𝑠′|]). (8.19)

Now, in (8.19), substitute 𝑠0 for 𝑠′ and note that by our assumption 𝐹(𝑠0) = 0. The observation
that |𝑠 − 𝑠′| is universally bounded by a constant 𝐶 (namely 𝐶 = 𝐿) yields a very crude bound for|𝐹(𝑠)|:

|𝐹(𝑠)| = 𝐺𝑠0(𝑠) ⩽ Γ|𝑠 − 𝑠0| + 𝐶Γ|𝑠 − 𝑠0|2e𝐶|𝑠−𝑠0| ⩽ 𝐶Γ.
However, plugging this crude bound back into (8.19) and again using |𝑠 − 𝑠′| ⩽ 𝐿 on some (but
not all) of the |𝑠 − 𝑠′| terms gives a bound of 𝐶Γ|𝑠 − 𝑠′| for 𝐺𝑠′(𝑠). This is (8.16).
To get (8.17), use (8.13) and estimate the resulting difference as with the interior of the integral

in the previous paragraph, by adding and subtracting 𝛾(𝑠) ⋅ Rot( ̇̃𝑞(𝑠)):

| ̈̃𝑞(𝑠) − 𝑞(𝑠)| ⩽ |𝛾(𝑠) ⋅ Rot( ̇̃𝑞(𝑠)) − 𝛾(𝑠) ⋅ Rot( ̇̃𝑞(𝑠))| + |𝛾(𝑠) ⋅ Rot( ̇̃𝑞(𝑠)) − 𝛾(𝑠) ⋅ Rot(�̇�(𝑠))|
⩽ Γ + |𝛾(𝑠)| ⋅ |Rot( ̇̃𝑞(𝑠)) − Rot(�̇�(𝑠))| ⩽ Γ + 𝐶| ̇̃𝑞(𝑠) − �̇�(𝑠)|. (8.20)

By our assumption, ̇̃𝑞(𝑠) − �̇�(𝑠) equals zero for 𝑠 = 𝑠0. So, (8.16) demonstrates that

| ̇̃𝑞(𝑠) − �̇�(𝑠)| ⩽ 𝐶Γ|𝑠 − 𝑠0|,
which is crudely bounded by 𝐶Γ. This gives (8.17).
Finally, (8.18) is obtained by differentiating both sides of (8.13) and subtracting the non-tilde

version from the tilde version, which yields

| ⃛𝑞(𝑠) − 𝑞(𝑠)| ⩽ | ̇̃𝛾(𝑠) − �̇�(𝑠)| ⋅ |Rot(�̇�(𝑠))| + |𝛾(𝑠)| ⋅ |Rot( ̈̃𝑞(𝑠)) − Rot(𝑞(𝑠))|.
The first term is bounded by Γ1 as the second factor is a unit vector. For the second term, note that|𝛾(𝑠)| ⩽ 𝐶 and that the rotation ̈̃𝑞(𝑠) − 𝑞(𝑠), by (8.17), is bounded in absolute value by 𝐶Γ. So, the
second term is bounded by 𝐶Γ overall. Since of course Γ ⩽ Γ1, (8.18) follows. □
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8.6 On-diagonal rectangles

We now consider the on-diagonal rectangles, that is, each rectangle of the form 𝐼𝑗 × 𝐼𝑗 for fixed
𝑗. It is a well-known fact (see, for example, [9]) that although 𝐾𝐒𝐋 and 𝐾𝐒𝐋 both have logarithmic
singularities at the diagonal {𝑠 = 𝑠′}, the difference does not, and is actually smooth if the bound-
ary curve 𝐼𝑗 is smooth. This also will follow from our analysis. The kernel 𝐾𝐃𝐋 is actually smooth
as well if the boundary is smooth.
We begin by analysing the differences of single layer kernels and their derivatives.

Proposition 8.14. There exists 𝛿 > 0 depending only onΩ such that if Γ1 ⩽ 𝛿, then for all 𝑠, 𝑠′ ∈ 𝐼𝑗 ,
we have

||𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠′)|| ⩽ 𝐶Γ1|𝑠 − 𝑠′|2; (8.21)

||𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋|| ⩽ 𝐶Γ1|𝑠 − 𝑠′|; (8.22)

||𝜕𝑠𝐾𝐒𝐋−𝐒𝐋|| ⩽ 𝐶Γ1|𝑠 − 𝑠′|; (8.23)

||𝜕𝑠𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋|| ⩽ 𝐶Γ1. (8.24)

Observe that since |𝑠 − 𝑠′| is bounded this immediately implies that all such kernels are
bounded by a constant times Γ1, and thus induce operators from 𝐿2(𝐼𝑗) to 𝐿2(𝐼𝑗) with norms
bounded by a constant times Γ1, as desired.

Proof. First we fix an 𝑠′. As discussed, the kernels are invariant under a Euclidean motion
of Ω̃, so we assume without loss of generality that ̇̃𝑞(𝑠′) = �̇�(𝑠′), which also allows us to use
Proposition 8.12.
To begin, observe that by (8.14), which holds since 𝑠, 𝑠′ are on the same side:

|𝑞(𝑠) − 𝑞(𝑠′)|2 = (𝑠 − 𝑠′)2 + 2(𝑠 − 𝑠′)∫ 𝑠

𝑠′ ∫
𝑡

𝑠′
�̇�(𝑠′) ⋅ 𝑞(𝑢) 𝑑𝑢 𝑑𝑡 +

|||||∫
𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) 𝑑𝑢 𝑑𝑡

|||||
2

.

Write 𝑞(𝑢) = 𝑞(𝑠′) + ∫ 𝑢𝑠′ 𝑞(𝑣) 𝑑𝑣; then since 𝑞(𝑠′) and �̇�(𝑠′) are orthogonal we have

|𝑞(𝑠) − 𝑞(𝑠′)|2 = (𝑠 − 𝑠′)2 + 2(𝑠 − 𝑠′)∫ 𝑠

𝑠′ ∫
𝑡

𝑠′ ∫
𝑢

𝑠′
�̇�(𝑠′) ⋅ 𝑞(𝑣) 𝑑𝑣 𝑑𝑢 𝑑𝑡 +

|||||∫
𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) 𝑑𝑢 𝑑𝑡

|||||
2

.

The same expression holds with tildes, and we can subtract the two to estimate the difference
of distances-squared. The first terms are the same for each and thus cancel. The second terms’
difference, since �̇�(𝑠′) = ̇̃𝑞(𝑠′), is

2(𝑠 − 𝑠′)∫
𝑠

𝑠′ ∫
𝑡

𝑠′ ∫
𝑢

𝑠′
�̇�(𝑠′) ⋅ (𝑞(𝑣) − ⃛̃𝑞(𝑣)) 𝑑𝑣 𝑑𝑢 𝑑𝑡.

By (8.18), and the fact that |�̇�(𝑠′)| = 1, this expression is bounded by 𝐶Γ1|𝑠 − 𝑠′|4. Finally, we need
to estimate the difference of the last terms with andwithout tildes. By the usual add/subtract trick
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this difference of last terms is(
∫

𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) 𝑑𝑢 𝑑𝑡

)
⋅
(
∫

𝑠

𝑠′ ∫
𝑡

𝑠′
(𝑞(𝑢) − ̈̃𝑞(𝑢)) 𝑑𝑢 𝑑𝑡

)
+

(
∫

𝑠

𝑠′ ∫
𝑡

𝑠′
(𝑞(𝑢) − ̈̃𝑞(𝑢)) 𝑑𝑢 𝑑𝑡

)
⋅
(
∫

𝑠

𝑠′ ∫
𝑡

𝑠′
̈̃𝑞(𝑢) 𝑑𝑢 𝑑𝑡

)
.

Each piece of this can be estimated. For the first factor, |𝑞(𝑢)| = |𝛾(𝑢)|, which is bounded by𝐶 and
so the first term is bounded by𝐶|𝑠 − 𝑠′|2. The second factor is bounded using (8.17) by𝐶Γ|𝑠 − 𝑠′|2.
The third factor is the same. And the fourth factor has

| ̈̃𝑞(𝑢)| ⩽ |𝑞(𝑢)| + | ̈̃𝑞(𝑢) − 𝑞(𝑢)| ⩽ 𝐶 + Γ ⩽ 𝐶 + 1 ⩽ 𝐶,
as long as we choose 𝛿 ⩽ 1. So, overall the difference of last terms is bounded by𝐶Γ|𝑠 − 𝑠′|4. Thus,
overall, we have

||𝑞(𝑠) − 𝑞(𝑠′)|2 − |𝑞(𝑠) − 𝑞(𝑠′)|2| ⩽ 𝐶Γ1|𝑠 − 𝑠′|4. (8.25)

Now observe that for some 𝑐 > 0 depending only on the geometry of Ω, |𝑞(𝑠) − 𝑞(𝑠′)| ⩾ 𝑐|𝑠 −
𝑠′|, because all interior angles are positive and the boundary does not intersect itself. So, |𝑞(𝑠) −
𝑞(𝑠′)| ⩽ |𝑠 − 𝑠′| ⩽ 𝐶|𝑞(𝑠) − 𝑞(𝑠′)|. Therefore, manipulating (8.25) leads to

|||||1 − |𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 ||||| ⩽ 𝐶Γ1|𝑠 − 𝑠′|2. (8.26)

Taking logarithms, as long as Γ1 is sufficiently small, yields (8.21).
Before we analyse the difference of derivatives of single layer kernels, a brief proposition.

Proposition 8.15. For all 𝑠, 𝑠′ ∈ 𝐼𝑗 ,

| ̈̃𝑞(𝑠) ⋅ ̇̃𝑞(𝑠′) − 𝑞(𝑠) ⋅ �̇�(𝑠′)| ⩽ 𝐶Γ|𝑠 − 𝑠′|. (8.27)

Proof. Fix 𝑠′. As before, we may assume that ̇̃𝑞(𝑠′) = �̇�(𝑠′). Use (8.13) and the usual add/subtract
trick to bound the left-hand side of (8.27) by

|(𝛾(𝑠) − 𝛾(𝑠)) Rot(�̇�(𝑠)) ⋅ �̇�(𝑠′)| + |𝛾(𝑠)(Rot(�̇�(𝑠)) ⋅ �̇�(𝑠′) − Rot( ̇̃𝑞(𝑠)) ⋅ ̇̃𝑞(𝑠′))|.
For the first term, the first factor is bounded by Γ. The second factor Rot(�̇�(𝑠)) ⋅ �̇�(𝑠′) is zero when
𝑠 = 𝑠′ and has 𝑠-derivative equal toRot(𝑞(𝑠)) ⋅ �̇�(𝑠′), which has absolute value bounded by |𝛾(𝑠)| ⩽
𝐶; thus the second factor is bounded by 𝐶|𝑠 − 𝑠′|. All together the first term is bounded by 𝐶Γ|𝑠 −
𝑠′|. As for the second term, the first factor |𝛾(𝑠)| is bounded by 𝐶 (assuming that 𝛿 ⩽ 1). For the
second factor, ̇̃𝑞(𝑠′) = �̇�(𝑠′), so the second factor is

|(Rot(�̇�(𝑠)) − Rot( ̇̃𝑞(𝑠))) ⋅ �̇�(𝑠′)| ⩽ |�̇�(𝑠) − ̇̃𝑞(𝑠)|.
But �̇�(𝑠) − ̇̃𝑞(𝑠) is zero when 𝑠 = 𝑠′ and has 𝑠-derivative bounded in absolute value by |𝑞(𝑠) − ̈̃𝑞(𝑠)|,
which by (8.17) is bounded by 𝐶Γ. We therefore get a bound of 𝐶Γ|𝑠 − 𝑠′| here as well. This
completes the proof. □
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We use this to prove (8.22). The kernel of 𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋 is

−
(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 +

(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ ̇̃𝑞(𝑠′)|𝑞(𝑠) − 𝑞(𝑠′)|2 .

Since |𝑞(𝑠) − 𝑞(𝑠′)|−1 ⩽ 𝐶|𝑠 − 𝑠′|−1 as before, this is bounded in absolute value by
𝐶|𝑠 − 𝑠′|−2|(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠′) − |𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 (𝑞(𝑠) − 𝑞(𝑠′)) ⋅ ̇̃𝑞(𝑠′)|.

That ratio of squares is very close to 1, so we add and subtract 1 from it. In addition, taking the dot
product of (8.14) with �̇�(𝑠′) yields

(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠′) = 𝑠 − 𝑠′ + ∫
𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) ⋅ �̇�(𝑠′) 𝑑𝑢 𝑑𝑡,

and the same is true with tildes. When we plug all this in, the main 𝑠 − 𝑠′ terms cancel, and we
get an upper bound for 𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋 of

𝐶|𝑠 − 𝑠′|−2
⋅
|||||∫

𝑠

𝑠′ ∫
𝑡

𝑠′
(𝑞(𝑢) ⋅ �̇�(𝑠′) − ̈̃𝑞(𝑢) ⋅ ̇̃𝑞(𝑠′)) 𝑑𝑢 𝑑𝑡 +

(
1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2
)
(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ ̇̃𝑞(𝑠′)

|||||.
(8.28)

The first of these two terms (including the pre-factor), by Proposition 8.15, is bounded by 𝐶|𝑠 −
𝑠′|−2 ⋅ 𝐶Γ|𝑠 − 𝑠′|3 = 𝐶Γ|𝑠 − 𝑠′|. As for the second, the factor of 1 minus the fraction can be esti-
mated with (8.26) and is bounded by 𝐶Γ1|𝑠 − 𝑠′|2. The other factors are bounded by |𝑠 − 𝑠′| and
1, respectively. So, including the pre-factor we get a bound of 𝐶Γ1|𝑠 − 𝑠′| here as well. This proves
(8.22).
Since the single layer kernels are symmetric, we also get (8.23).
Nowwe tackle the second derivatives of the single layer kernels. The kernel 𝜕𝑠𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋 is given

by (8.10) minus the analogous expression with tildes. We consider the differences of the first and
second terms of (8.10), respectively.
The difference of the first terms can be handled nearly identically to the proof of (8.22).

Following the first few steps of that proof, it has absolute value bounded by

𝐶|𝑠 − 𝑠|−2|||||�̇�(𝑠) ⋅ �̇�(𝑠′) − |𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 ̇̃𝑞(𝑠) ⋅ ̇̃𝑞(𝑠′)|||||.
From (8.15), we get

�̇�(𝑠) ⋅ �̇�(𝑠′) = 1 + ∫
𝑠

𝑠′
𝑞(𝑢) ⋅ 𝑞(𝑠′) 𝑑𝑢.

And the same trick of adding and subtracting 1 from the ratio of squares gives an upper bound of

𝐶|𝑠 − 𝑠′|−2|||||∫
𝑠

𝑠′
(𝑞(𝑢) ⋅ �̇�(𝑠′) − ̈̃𝑞(𝑢) ⋅ ̇̃𝑞(𝑠′)) 𝑑𝑢 +

(
1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2
)
̇̃𝑞(𝑠) ⋅ ̇̃𝑞(𝑠′)

|||||. (8.29)
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The same estimates as before, namely Proposition 8.15 and (8.26), show that this is bounded,
overall, by 𝐶Γ1 as desired.
For the difference of the second terms of (8.10), observe that the second term is precisely

−2𝜕𝑠𝐾𝐒𝐋𝜕𝑠′𝐾𝐒𝐋. So, the difference of second terms is this minus the version with tildes, and we
can use the usual add/subtract trick to bound this difference by

||𝜕𝑠𝐾𝐒𝐋𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋|| + ||𝜕𝑠𝐾𝐒𝐋−𝐒𝐋𝜕𝑠′𝐾𝐒𝐋||. (8.30)

But by direct calculation, regardless of the parameterisations,

||𝜕𝑠𝐾𝐒𝐋|| ⩽ |𝑠 − 𝑠′|−1; ||𝜕𝑠′𝐾𝐒𝐋|| ⩽ |𝑠 − 𝑠′|−1.
Putting this together with (8.22) and (8.23) gives an overall bound of 𝐶Γ1, and we have proven
(8.24). This completes the proof of Proposition 8.14. □
We have dealt with the single layer potentials and their derivatives. Nowwe analyse the double

layer potentials.

Proposition 8.16. There exists 𝛿 > 0 depending only onΩ such that if Γ1 ⩽ 𝛿, then for all 𝑠, 𝑠′ ∈ 𝐼𝑗 ,
we have

||𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠′)|| ⩽ 𝐶Γ1; (8.31)

||𝜕𝑠𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠′)|| ⩽ 𝐶Γ1. (8.32)

Once this is proven, we have completed the proof of part 1 of Lemma 8.10 in the diagonal, 𝑗 = 𝑘
case, as all six kernels will be bounded by𝐶Γ1 and thuswill induce operators from 𝐿2(𝐼𝑗) → 𝐿2(𝐼𝑗)

with norm less than or equal to 𝐶Γ1.

Proof. As usual fix an 𝑠′ and assume ̇̃𝑞(𝑠′) = �̇�(𝑠′). Using (8.11) and (8.14), along with the fact that
�̇�(𝑠′) ⋅ 𝐧(𝑠′) = 0, we get

𝐾𝐃𝐋(𝑠, 𝑠
′) = −|𝑞(𝑠) − 𝑞(𝑠′)|−2(∫ 𝑠

𝑠′ ∫
𝑡

𝑠′
𝑞(𝑢) ⋅ 𝐧(𝑠′) 𝑑𝑢 𝑑𝑡

)
.

Let us rewrite this using 𝑞(𝑢) = 𝑞(𝑠′) + ∫ 𝑢𝑠′ 𝑞(𝑣) 𝑑𝑣 and the fact that 𝑞(𝑠′) = 𝛾(𝑠′)𝐧(𝑠′):

𝐾𝐃𝐋(𝑠, 𝑠
′) = −|𝑞(𝑠) − 𝑞(𝑠′)|−2(1

2
|𝑠 − 𝑠′|2𝛾(𝑠′) + ∫

𝑠

𝑠′ ∫
𝑡

𝑠′ ∫
𝑢

𝑠′
𝑞(𝑣) ⋅ 𝐧(𝑠′) 𝑑𝑣 𝑑𝑢 𝑑𝑡

)
. (8.33)

We can use this, and the adding/subtracting 1 trick, to write an expression for the difference:

𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠
′) = −

1
2

|𝑠 − 𝑠′|2|𝑞(𝑠) − 𝑞(𝑠′)|2
(
(𝛾(𝑠′) − 𝛾(𝑠′)) + 𝛾(𝑠′)(1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 )
)

−
1|𝑞(𝑠) − 𝑞(𝑠′)|2

(
∫

𝑠

𝑠′ ∫
𝑡

𝑠′ ∫
𝑢

𝑠′
(𝑞(𝑣) ⋅ 𝐧(𝑠′) − ⃛̃𝑞(𝑣) ⋅ �̃�(𝑠′)) 𝑑𝑣 𝑑𝑢 𝑑𝑡

)
−

1|𝑞(𝑠) − 𝑞(𝑠′)|2
(
1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2
)
∫

𝑠

𝑠′ ∫
𝑡

𝑠′ ∫
𝑢

𝑠′
⃛̃𝑞(𝑣) ⋅ �̃�(𝑠′) 𝑑𝑣 𝑑𝑢 𝑑𝑡.

(8.34)
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It remains to bound this and its 𝑠-derivative, in absolute value, by 𝐶Γ1. We do this for each of the
three terms separately.
Consider the first line of (8.34). The pre-factor is a 𝐶1 function of 𝑠 and 𝑠′ on the rectangle 𝐼𝑗

and is independent of Ω̃, so its 𝐶1 norm is uniformly bounded by a constant 𝐶. The second factor
is bounded, using (8.26), by Γ + (𝐶 + Γ)(𝐶Γ1|𝑠 − 𝑠′|), which is less than or equal to 𝐶Γ1. As for
the derivative of the second factor, by a direct calculation with logarithmic differentiation, we see
that it is

𝛾(𝑠′)
(
−2𝜕𝑠𝐾𝐒𝐋−𝐒𝐋

) |𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 . (8.35)

By (8.26) and (8.23), this is bounded by

(𝐶 + Γ)(𝐶Γ1|𝑠 − 𝑠′|)(1 + 𝐶Γ1|𝑠 − 𝑠′|2) ⩽ 𝐶Γ1.
This is enough to bound the first line of (8.34) and its 𝑠-derivative by 𝐶Γ1.
Now consider the second line. The pre-factor is bounded by 𝐶|𝑠 − 𝑠′|−2, and the integrand,

since 𝐧(𝑠′) = �̃�(𝑠′), is bounded in absolute value by Γ1. Thus, the second line itself is bounded by
𝐶Γ1|𝑠 − 𝑠′|. As for its derivative, there are two terms. If the 𝑠-derivative hits the pre-factor we get
2|𝑞(𝑠) − 𝑞(𝑠′)|−4(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠), which is bounded in absolute value by 𝐶|𝑠 − 𝑠′|−3, yielding
an overall bound of 𝐶Γ1. If it hits the integral, it removes one of the integrals, so the bound on
the integral becomes 𝐶Γ1|𝑠 − 𝑠′|2 instead of 𝐶Γ1|𝑠 − 𝑠′|3. Multiplied by 𝐶|𝑠 − 𝑠′|−2 this still yields
𝐶Γ1.
Finally, examine the third line. The first two factors are bounded by𝐶|𝑠 − 𝑠′|−2 and𝐶Γ1|𝑠 − 𝑠′|2,

respectively, as a consequence of (8.26). For the integral we evaluate the inner integral and get
a double integral of ̈̃𝑞(𝑢) − ̈̃𝑞(𝑠′) dotted with a unit vector. But | ̈̃𝑞(𝑢)| = |𝛾(𝑢)| ⩽ 𝐶 + Γ, so that
integral is less than 2(𝐶 + Γ)1

2
|𝑠 − 𝑠′|2. Putting all three together, the third line is bounded by

𝐶Γ1|𝑠 − 𝑠′|2, which is certainly bounded by 𝐶Γ1. As for the 𝑠-derivative, it can hit three different
factors. If it hits the first factor it produces an extra factor of |𝑞(𝑠) − 𝑞(𝑠′)|−2(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠),
which is bounded by 𝐶|𝑠 − 𝑠′|−1. If it hits the second factor, the second factor turns into (8.35)
and thus the bound of 𝐶Γ1|𝑠 − 𝑠′|2 becomes 𝐶Γ1|𝑠 − 𝑠′| instead. And if it hits the integral, one of
the integrals disappears and the bound again loses a factor of |𝑠 − 𝑠′|. But the 𝑠-derivative is still
bounded by 𝐶Γ1|𝑠 − 𝑠′|, which is more than enough. This completes the proof of Proposition 8.16,
and with it the 𝑗 = 𝑘 case of part 1 of Lemma 8.10. □

8.7 Off-diagonal rectangles

Nowwe assume 𝑘 ≠ 𝑗.We claim it is enough to consider the casewhere 𝑘 = 𝑗 − 1. Indeed, the 𝑘 =
𝑗 + 1 case is identical. For the other values of 𝑘, the geometric situation is the same as if we take
the 𝑘 = 𝑗 − 1 case and restrict the input to lie in a sub-interval of 𝐼𝑗−1 away from the intersection
𝑉𝑗 = 𝐼𝑗 ∩ 𝐼𝑗−1, so the analysis here will cover those values of 𝑘 as well. In this 𝑘 = 𝑗 − 1 case, the
diagonal singularity is not an issue, so all of our kernels are smooth in the interior of 𝐼𝑗 × 𝐼𝑘. But
there is a singularity at the point 𝑉𝑗 × 𝑉𝑗 , and as indicated in [9], it has a more substantial effect
than in the on-diagonal rectangles. Indeed not all of our kernels will be bounded near 𝑉𝑗 × 𝑉𝑗 .
However, we will be able to bound them, in absolute value, by a kernel which induces a bounded
operator from 𝐿2(𝐼𝑘) to 𝐿2(𝐼𝑗).
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So, let 𝑠 and 𝑠′ be the usual arc length coordinates, and assume without loss of generality that
𝑠 = 0 at the vertex 𝑉𝑗 . Thus, we have 𝑠 ⩾ 0 on 𝐼𝑗 , and 𝑠′ ⩽ 0 on 𝐼𝑘 = 𝐼𝑗−1. Assume without loss of
generality that 𝑞(0) = 𝑞(0) = 0 and that for both 𝜕Ω and 𝜕Ω̃, 𝐼𝑗−1 is tangent to the 𝑥-axis at 𝑉𝑗 ,
with 𝐼𝑗 making an angle 𝛼 with the 𝑥-axis for both. Now we define two vector-valued functions
𝛽−(𝑠

′) and 𝛽+(𝑠) by the equations

𝑞(𝑠′) = 𝑠′
(
−1

0

)
+ 𝛽−(𝑠

′); 𝑞(𝑠) = 𝑠

(
cos 𝛼

sin 𝛼

)
+ 𝛽+(𝑠).

Define analogues with tildes the same way.

Proposition 8.17. The following are true.

(1) The function 𝛽−(𝑠′) is as smooth as 𝑞(𝑠′) (at least 𝐶3), is 𝑂((𝑠′)2), and its Taylor coefficient of
(𝑠′)2 at 𝑠′ = 0 is perpendicular to 𝐼𝑗−1. Similar statements hold for 𝛽+, and the analogues with
tildes also hold.

(2) We have 𝛽+(𝑠) = 𝑞(𝑠), 𝛽−(𝑠′) = 𝑞(𝑠′), and the same are true for tildes and third derivatives.
(3) We have the estimates‖‖‖‖𝛽± − ̈̃𝛽±‖‖‖‖𝐿∞ ⩽ 𝐶Γ;

‖‖‖𝛽± − ⃛̃𝛽±‖‖‖𝐿∞ ⩽ 𝐶Γ1;||||�̇�+(𝑠) − ̇̃𝛽+(𝑠)
|||| ⩽ 𝐶Γ𝑠; ||||�̇�−(𝑠′) − ̇̃𝛽−(𝑠

′)
|||| ⩽ 𝐶Γ|𝑠′|;|||𝛽+(𝑠) − 𝛽+(𝑠)||| ⩽ 1

2
𝐶Γ𝑠2;

|||𝛽−(𝑠′) − 𝛽−(𝑠′)||| ⩽ 1
2
𝐶Γ(𝑠′)2.

(8.36)

Proof. The first statement is obvious except for the orthogonality, but that follows from the fact that
since 𝑞(𝑠′) is an arc length parameterisation, the vectors 𝑞(0) and �̇�(0) are orthogonal. The second
statement is clear. The first two estimates in the third statement follow from (8.17) and (8.18), and
the others follow from integration and the fact that 𝛽±(0) = 𝛽±(0) and �̇�±(0) =

̇̃𝛽±(0). □

Now define, as in [9],

𝑟(𝑠, 𝑠′) ∶=
|||||𝑠
(
cos 𝛼

sin 𝛼

)
− 𝑠′

(
−1

0

)|||||.
Its utility is the following:

Proposition 8.18. The kernel 𝑟−1(𝑠, 𝑠′) defines an operator which is bounded from 𝐿2(𝐼𝑗−1) to
𝐿2(𝐼𝑗).

Proof. This is a consequence of [9] and is essentially proved there. Specifically, apply the second
statement in [9, Theorem 4.2] with 𝑠 = 0 and 𝑗 = −1, noting that �̃�0 = 𝐻0 = 𝐿2. The kernel 𝑟−1
is an example of one of Costabel’s kernels 𝐾𝑗 with homogeneity 𝑗 = −1. If 𝜒 is a cut-off function
localising near 𝑉𝑗 , then by [9, Theorem 4.2], 𝜒(𝑠)𝑟−1𝜒(𝑠′) is bounded from 𝐿2 to 𝐿2. On the other
hand, 1 − 𝜒(𝑠)𝑟−1𝜒(𝑠′) is bounded on 𝐼𝑗 × 𝐼𝑗−1 and is also bounded from 𝐿2 to 𝐿2. Adding them
completes the proof. □

The point of this is that we have the following proposition:
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Proposition 8.19. There exists 𝛿 > 0 depending only on Ω such that if Γ1 ⩽ 𝛿, then for all 𝑠 ∈ 𝐼𝑗
and 𝑠′ ∈ 𝐼𝑗−1, we have

|𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠′)| ⩽ 𝐶Γ𝑟; (8.37)

|𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋| ⩽ 𝐶Γ; (8.38)

|𝜕𝑠𝐾𝐒𝐋−𝐒𝐋| ⩽ 𝐶Γ; (8.39)

|𝜕𝑠𝜕𝑠′𝐾𝐒𝐋−𝐒𝐋| ⩽ 𝐶Γ1𝑟−1; (8.40)

|𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠′)| ⩽ 𝐶Γ1; (8.41)

|𝜕𝑠𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠′)| ⩽ 𝐶Γ1𝑟−1. (8.42)

Oncewe have proven this proposition, all of our kernels on 𝐼𝑗 × 𝐼𝑗−1will be bounded in absolute
value by Γ1 times a kernel which defines a bounded operator from 𝐿2 → 𝐿2. This proves part 1 of
Lemma 8.10 and thereby completes the proof of the results in this section. It remains only to prove
Proposition 8.19.

Proof. First we note that 𝑟 is a good approximation to |𝑞(𝑠) − 𝑞(𝑠′)| in the sense that
𝐶−1𝑟 ⩽ |𝑞(𝑠) − 𝑞(𝑠′)| ⩽ 𝐶𝑟. (8.43)

In fact the ratio of |𝑞(𝑠) − 𝑞(𝑠′)| and 𝑟 actually approaches 1 as 𝑠, 𝑠′ → 0, since the deviations of
𝑞(𝑠) and 𝑞(𝑠′) from straight lines are quadratic, and if the deviations 𝛽± were identically zero then
we would have 𝑟(𝑠, 𝑠′) = |𝑞(𝑠) − 𝑞(𝑠′)|.
Now we claim:

|| |𝑞(𝑠) − 𝑞(𝑠′)| − |𝑞(𝑠) − 𝑞(𝑠′)| || ⩽ |𝑞(𝑠) − 𝑞(𝑠)| + |𝑞(𝑠′) − 𝑞(𝑠′)|
= |𝛽+(𝑠) − 𝛽+(𝑠)| + |𝛽−(𝑠′) − 𝛽−(𝑠′)|
⩽
1
2
𝐶Γ(𝑠2 + (𝑠′)2) ⩽ 𝐶Γ𝑟2 ⩽ 𝐶Γ𝑟|𝑞(𝑠) − 𝑞(𝑠′)|.

Indeed this follows from the definition of 𝛽, estimates (8.36), the fact that the ratio 𝑟2(𝑠, 𝑠′)∕(𝑠2 +
(𝑠′)2) is bounded by 𝐶, and (8.43). As a consequence,

|||||1 − |𝑞(𝑠) − 𝑞(𝑠′)||𝑞(𝑠) − 𝑞(𝑠′)| ||||| ⩽ 𝐶Γ𝑟, (8.44)

and so as long as Γ is sufficiently small,

|𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠′)| = |||||log |𝑞(𝑠) − 𝑞(𝑠
′)||𝑞(𝑠) − 𝑞(𝑠′)| ||||| ⩽ 𝐶Γ𝑟,

which proves (8.37).
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To go after derivatives of the single layer potential, observe that, after doing the usual add and
subtract 1 trick, the kernel of 𝜕𝑠𝐾𝐒𝐋−𝐒𝐋 is

|𝑞(𝑠) − 𝑞(𝑠′)|−2 (((𝑞(𝑠) − 𝑞(𝑠′)) ⋅ �̇�(𝑠) − (𝑞(𝑠) − 𝑞(𝑠′)) ⋅ ̇̃𝑞(𝑠))
+

(
1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2
)
(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ ̇̃𝑞(𝑠)

)
.

(8.45)

The pre-factor is bounded by 𝐶𝑟−2, so we need to show the sum of two terms is bounded by 𝐶Γ𝑟2.
The first of these terms, using an add-subtract trick, is bounded by

𝐶
(|(𝑞(𝑠) − 𝑞(𝑠′)) ⋅ (�̇�(𝑠) − ̇̃𝑞(𝑠))| + |((𝑞(𝑠) − 𝑞(𝑠′)) − (𝑞(𝑠) − 𝑞(𝑠′))) ⋅ ̇̃𝑞(𝑠)|).

By (8.43) and rearrangement, this is bounded by

𝐶𝑟|�̇�(𝑠) − ̇̃𝑞(𝑠)| + |(𝑞(𝑠) − 𝑞(𝑠)) + (𝑞(𝑠′) − 𝑞(𝑠′))|.
Switching from 𝑞 to 𝛽±, then applying (8.36), yields an upper bound of

𝐶𝑟Γ𝑠 +
1
2
Γ(𝑠2 + (𝑠′)2),

which is at most 𝐶Γ𝑟2, as 𝑠 ⩽ |𝑠 − 𝑠′| ⩽ 𝐶𝑟. Now the second of the two terms in (8.45) is bounded
by

𝐶
|||||1 − |𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2 ||||| ⋅ |𝑞(𝑠) − 𝑞(𝑠′)|.

By (8.44), for sufficiently small Γ, the first factor is bounded by 𝐶Γ𝑟. By (8.44) and (8.43),
the second term is bounded by 𝐶𝑟. Putting these together gives what we want and proves
(8.39). Since our geometric setup is symmetric with respect to interchange of 𝑠 and 𝑠′, we also
get (8.38).
For the second derivative of the single layer potential, as with the diagonal case, we consider

the differences between the tilde and non-tilde versions of the first and second terms of (8.10)
separately. The first two terms have difference which is bounded by

𝐶𝑟−2

(|||�̇�(𝑠) ⋅ �̇�(𝑠′) − ̇̃𝑞(𝑠) ⋅ ̇̃𝑞(𝑠′)||| + |||||
(
1 −

|𝑞(𝑠) − 𝑞(𝑠′)|2|𝑞(𝑠) − 𝑞(𝑠′)|2
)
̇̃𝑞(𝑠) ⋅ ̇̃𝑞(𝑠′)

|||||
)
.

The right-most portion of this is bounded by 𝐶Γ𝑟, so with the pre-factor, that gives 𝐶Γ𝑟−1 as
desired. The left-most term is bounded, using an add-subtract trick, by

|�̇�(𝑠) ⋅ (�̇�(𝑠′) − ̇̃𝑞(𝑠′))| + |(�̇�(𝑠) − ̇̃𝑞(𝑠)) ⋅ ̇̃𝑞(𝑠′)| = |�̇�−(𝑠′) − ̇̃𝛽−(𝑠
′)| + |�̇�+(𝑠) − ̇̃𝛽+(𝑠)|,

and by (8.36) this is bounded by 𝐶Γ(𝑠 − 𝑠′) ⩽ 𝐶Γ𝑟. So, the first terms of (8.10) differ by 𝐶Γ𝑟−1. As
for the second terms of (8.10), the same trick as on the diagonal yields a bound of (8.30), and by



ASYMPTOTICS OF STEKLOV EIGENVALUES 121

(8.39) and (8.38) this is bounded by

𝐶Γ(|𝜕𝑠𝐾𝐒𝐋(𝑠, 𝑠′)| + |𝜕𝑠′𝐾𝐒𝐋(𝑠, 𝑠′)|).
But each of the terms in brackets, by (8.8) and (8.9), is bounded by 𝐶|𝑞(𝑠) − 𝑞(𝑠′)|−1, which by
(8.43) is bounded by 𝐶𝑟−1, yielding an overall bound of 𝐶Γ𝑟−1. This proves (8.40).
For the double layer potential, the kernel 𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠

′) is (8.45) but with all �̇�(𝑠) replaced by
𝐧(𝑠), same for the tildes. Most of the analysis is identical, except that now we need to replace the
bound |�̇�(𝑠) − ̇̃𝑞(𝑠)| ⩽ 𝐶𝜎𝑠 with the same bound for |𝐧(𝑠) − �̃�(𝑠)|. But this is just a 90ž rotation,
which leaves the magnitude unchanged, so the same bound applies, proving (8.41).
Finally we need to analyse 𝜕𝑠𝐾𝐃𝐋(𝑠, 𝑠′) and do so by dealing with the first and second terms of

(8.12) separately. For the first terms, the proof is precisely analogous to the proof of (8.40), with the
same replacement of �̇�(𝑠) by 𝐧(𝑠), and the rotation trick we just used in the previous paragraph.
For the second terms, observe that the second term of (8.12) is precisely −2(𝜕𝑠𝐾𝐒𝐋)𝐾𝐃𝐋. By the
same trick as usual, the difference of terms is bounded by

|𝜕𝑠𝐾𝐒𝐋(𝑠, 𝑠′)𝐾𝐃𝐋−𝐃𝐋(𝑠, 𝑠′)| + |𝜕𝑠𝐾𝐒𝐋−𝐒𝐋(𝑠, 𝑠′)𝐾𝐃𝐋(𝑠, 𝑠′)|.
Using (8.39) and (8.41), this is bounded by

𝐶Γ(|𝜕𝑠𝐾𝐒𝐋(𝑠, 𝑠′)| + |𝐾𝐃𝐋(𝑠, 𝑠′)|).
Bydirect calculation, the first term is bounded by |𝑞(𝑠) − 𝑞(𝑠′)|−1, and the second by the samewith
tildes. By (8.43) and (8.44) both of these are bounded by 𝐶𝑟−1, yielding (8.42). This completes the
proof of Proposition 8.19, and with it all the results in this section. □

9 FURTHER EXAMPLES AND NUMERICS

9.1 General setup and benchmarking

The examples in this section extend those in Subsection 1.4. Inmost cases, the Steklov eigenvalues
are computed using the Finite Element packageFreeFEM (earlier versions known asFreeFem++),
see [22] and short notes [31]. In most cases, we choose a uniform mesh with 300mesh points per
unit length on the boundary. Roots of trigonometric polynomials are found using Mathematica
operating with double precision.
To benchmark the performance of the finite element solver, we compare the numerically

computed Steklov eigenvalues 𝜆num of the unit square 4(𝜋2 , 1) with the exact eigenvalues [18,
section 3.1]

𝜆 ∈ {0, 2} ∪ {2𝑡 tanh 𝑡 ∣ tan 𝑡 = − tanh 𝑡 or tan 𝑡 = coth 𝑡, 𝑡 > 0}

∪ {2𝑡 coth 𝑡 ∣ tan 𝑡 = tanh 𝑡 or tan 𝑡 = − coth 𝑡, 𝑡 > 0}.
,

We also compare the numerically computed Steklov eigenvalues and the exact eigenvalues 𝜎2𝑚 =
𝜎2𝑚+1 = 𝑚 for the unit disk 𝔻1. Figure 18 shows the relative numerical error

𝜀num𝑚 ∶=
|||||𝜆
num
𝑚

𝜆𝑚
− 1

|||||
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F IGURE 18 Relative FEM errors for the disk and the square, and asymptotics error for the square

for the square and the disk, and also the relative asymptotic error

𝜀
asy
𝑚 ∶=

||||𝜎𝑚𝜆𝑚 − 1
||||

for the disk.
One can see that with the chosen mesh size, the relative error 𝜀num𝑚 does not exceed approxi-

mately 10−6 for the eigenvalues 𝜆𝑚,𝑚 = 2,… , 100. Although it is well-known that adaptive FEM
are better suited for Steklov eigenvalue problems, see, for example, [14], they are processor-time
costly and harder to implement. As we conduct the numerical experiments purely for illustrative
purposes in order to demonstrate the practical effectiveness of the asymptotics, the use of uniform
meshes already gives very good results as shown above. For an alternative method of calculating
Steklov or mixed Steklov–Dirichlet–Neumann eigenvalues, see, for example, [3, 4].
As in the examples which follow the exact eigenvalues are not known, we redefine from now

on the relative asymptotic error as

𝜀
asy
𝑚 ∶=

||||| 𝜎𝑚𝜆num𝑚

− 1
|||||

and use these quantities for all illustrations.

9.2 Example 1.10 revisited

Before proceeding to concrete examples, we fist demonstrate formulae (1.5) when all angles are
special. Recalling Definition 2.3, formula (2.7) and Remark 2.1(c), we get in this case

𝚃(𝜶,𝓵, 𝜎) =
𝑛∏
𝑗=1

(𝛼𝑗)
(
ei|𝜕|𝜎 0

0 e−i|𝜕|𝜎
)
,
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F IGURE 19 Family  (𝛼) of curvilinear triangles

and so

Tr 𝚃 = 2 cos (|𝜕|𝜎) 𝑛∏
𝑗=1

(𝛼𝑗) = 2

with 𝜎 ⩾ 0 if and only if (1.5) holds. The statement on multiplicities, as well-as the statement in
case (b) of Example 1.10 when some exceptional angles are present, are easily checked.
Switching to particular examples, we consider, in addition to right-angled triangles 𝑇1 and 𝑇2,

a family of curvilinear triangles  (𝛼) constructed according to Figure 19. For each 𝛼 ∈ (0, 𝜋
3
),

the vertices of  (𝛼) coincide with the vertices of an equilateral triangle of side one, two sides
are straight, and the third (curved) side is given by the equation shown in Figure 19. Thus,
 (𝛼) = ((𝜋

3
, 𝜋
3
, 𝛼), (1, 1,𝓁𝛼)), where the length 𝓁𝛼 of the curved side has to be found numeri-

cally. We consider further two particular cases 3 =  (𝜋
5
) (two angles are odd special and one

is even special) and 4 =  (𝜋
7
) (all three angles are odd special), for which 𝓁 𝜋

5
≈ 1.0130 and

𝓁 𝜋
7
≈ 1.0296, respectively.
The asymptotic accuracy for 𝑇1, 𝑇2, 3, and 4 is plotted in Figure 20.

9.3 Example 1.12 revisited

We start with the proof of Proposition 1.13. For a quasi-regular 𝑛-gon 𝑛(𝛼,𝓁) with a
non-exceptional angle 𝛼, we have, by (2.7),

𝚃(𝜶,𝓵, 𝜎) = 𝙲(𝛼,𝓁, 𝜎)𝑛,

where 𝙲 is given by (2.6). Thus, 𝚃 will have an eigenvalue one if and only if 𝙲(𝛼,𝓁, 𝜎) has an
eigenvalue 𝑐 equal to one of the complex 𝑛-roots of one, e2i𝑞∕𝑛, 𝑞 ∈ ℤ. As det 𝙲 = 1, the other
eigenvalue of𝙲 is 1

𝑐
, therefore to cover all the distinct casesweneed to take 𝑞 = 0,… , [𝑛

2
];moreover,
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F IGURE 20 Asymptotic accuracy for 𝑇1, 𝑇2, 3, and 4

the condition can be then equivalently re-written as

Tr 𝙲(𝛼,𝓁, 𝜎) = 2 cosec
(
𝜋2

2𝛼

)
cos(𝓁𝜎) = 𝑐 + 1∕𝑐 = 2 cos

(
2𝑞

𝑛

)
. (9.1)

Solving (9.1) for non-negative 𝜎 gives the expressions for quasi-eigenvalues in the statement of
Proposition 1.13.
To prove the statement onmultiplicities, we remark that if 𝑐 ≠ ±1, thematrix 𝙲(𝛼,𝓁, 𝜎) has two

linearly independent eigenvectors, and so does 𝚃(𝜶,𝓵, 𝜎). The rest of the statement follows from
the careful analysis of the dimension of the eigenspace of 𝙲(𝛼,𝓁, 𝜎) corresponding to eigenvalues
𝑐 = ±1 when 𝜎 is a root of (9.1).
As an illustration, we present numerical data for the equilateral triangle 𝑃3 = 3(𝜋3 , 1), the

regular pentagon𝑃5 = 5( 3𝜋5 , 1), the regular hexagon𝑃6 = 6( 2𝜋3 , 1), and aReuleaux triangle =

3( 2𝜋3 , 𝜋3 ) (whose boundary is the union of three arcs constructed on the sides of an equilateral
triangle of side one as chords, with centres at the opposite vertices), see Figure 21.
Additionally, we consider a family of (non-symmetric) one-angled droplets 𝛼 = 1(𝛼,𝓁𝛼)

shown in Figure 22; the perimeter 𝓁𝛼 needs to be calculated numerically. The quasi-eigenvalues
𝜎 are listed in Example 1.12(a1).
Asymptotic accuracy for a selection of droplets is shown in Figure 23.

9.4 Discussion, and going beyond the theorems

When analysing the numerical data presented in Figures 20, 21, and 23, one should exercise
caution in interpreting the results. For example, the asymptotic accuracy curves for 𝑇1 and 𝑇2
in Figure 20, and for 𝑃3 in Figure 21, sharply bend upwards around 𝑚 ≈ 20. This means that
for higher eigenvalues the errors of numerical computations exceed asymptotic errors (with the
asymptotics in these cases converging rather rapidly), and the results become unreliable.
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F IGURE 2 1 Asymptotic accuracy for 𝑃3, 𝑃5, 𝑃6, and

F IGURE 22 A family of one-gons (droplets)𝛼

Wemake the following empirical observations on the speed of convergence of quasi-eigenvalues
𝜎𝑚 to the actual eigenvalues 𝜆𝑚 as𝑚 → ∞ based on numerical results:

∙ convergence is more rapid for straight polygons compared to (partially) curvilinear polygons,
for which it is in turn faster than for fully curvilinear polygons;

∙ the rate of convergence becomes somewhat slower as the number of vertices increases.

Remark 9.1. In view of the results of [10, 50] for the sloshing problem, one could suggest that the
curvature at the corner points may contribute to lower order terms in the spectral asymptotics. In
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F IGURE 2 3 Asymptotic accuracy for droplets𝛼 , 𝛼 ∈ {
𝜋

5
, 𝜋
3
, 3𝜋
7
, 5𝜋
8
}

particular, for fully curvilinear polygons, it is likely that 𝜆𝑚 − 𝜎𝑚 = 𝑂(
1
𝑚
), and that this estimate

cannot be improved in general. At the same time, one can showusing themethods of Section 4 and
[33, section 3], that for the triangles 𝑇1, 𝑇2 and 𝑃3 with all angles being special or exceptional, the
error term in the spectral asymptotics decays superpolynomially (and, in fact, similar behaviour
is expected for any partially curvilinear polygon with all the angles which are either special or
exceptional).

We also emphasise that all our theoretical results are only applicable to curvilinear polygons
with angles less than 𝜋, see Remark 3.4. Consider, however, the family of sectors

𝛼 = {𝑧 = 𝜌ei𝜃, 0 < 𝑟 < 1, 0 < 𝜃 < 𝛼} = ((𝛼, 𝜋
2
,
𝜋
2

)
, (1, 1, 𝛼)

)
.

For 𝛼 < 𝜋, Theorem 2.17(b) is applicable, giving three series of simple quasi-eigenvalues

𝜎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜋
𝛼

(
𝑚 −

1
2

)
,

1
2
arccos

(
cos

(
𝜋2

2𝛼

))
+ 2𝜋(𝑚 − 1),

−
1
2
arccos

(
cos

(
𝜋2

2𝛼

))
+ 2𝜋𝑚.

𝑚 ∈ ℕ. (9.2)

Numerical experiments indicate, however, that formulae (9.2) give good approximations of
eigenvalues even when 𝛼 > 𝜋, see Figure 24. Together with further numerical experiments (we
omit the details) this gives a good indication that Theorem 2.17 may be applicable (possibly with
worsened remainder estimates) to all curvilinear polygons with angles less than 2𝜋.
Finally, we note that it is straightforward to extend our results to not necessarily simply con-

nected domains Ω for which all boundary components are either smooth curves or curvilinear
polygons with interior (with respect to Ω) angles less than 𝜋: the set of quasi-eigenvalues for
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F IGURE 24 Asymptotic accuracy for sectors 𝛼 , 𝛼 ∈ { 3𝜋4 , 𝜋, 3𝜋2 , 11𝜋6 }

such a domain is just a union of the sets of quasi-eigenvalues generated by individual boundary
components taken with multiplicities, cf. [17].
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