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Abstract

Sensitivity analysis helps identify which model inputs convey the most uncertainty to the model
output. One of the most authoritative measures in global sensitivity analysis is the Sobol’ total-order
index, which can be computed with several different estimators. Although previous comparisons exist,
it is hard to know which estimator performs best since the results are contingent on the benchmark
setting defined by the analyst (the sampling method, the distribution of the model inputs, the
number of model runs, the test function or model and its dimensionality, the weight of higher order
effects or the performance measure selected). Here we compare several total-order estimators in an
eight-dimension hypercube where these benchmark parameters are treated as random parameters.
This arrangement significantly relaxes the dependency of the results on the benchmark design. We
observe that the most accurate estimators are Razavi and Gupta’s, Jansen’s or Janon/Monod’s for
factor prioritization, and Jansen’s, Janon/Monod’s or Azzini and Rosati’s for approaching the “true”
total-order indices. The rest lag considerably behind. Our work helps analysts navigate the myriad of
total-order formulae by reducing the uncertainty in the selection of the most appropriate estimator.

Keywords: Uncertainty analysis; sensitivity analysis; modeling; Sobol’ indices; variance decomposi-
tion, benchmarking analysis
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1 Introduction

Sensitivity analysis, i.e. the assessment of how much uncertainty in a given model output is conveyed
by each model input, is a fundamental step to judge the quality of model-based inferences [1–3]. Among
the many sensitivity indices available, variance-based indices are widely regarded as the gold standard
because they are model-free (no assumptions are made about the model), global (they account for
interactions between the model inputs) and easy to interpret [4–6]. Given a model of the form y = f(x),
x = (x1, x2, ..., xi, ..., xk) ∈ Rk, where y is a scalar output and x1, ..., xk are the k independent model
inputs, the variance of y is decomposed into conditional terms as

V (y) =

k∑

i=1

Vi +
∑

i

∑

i<j

Vij + ...+ V1,2,...,k, (1)

where
Vi = Vxi

[
Ex∼i(y|xi)

]
Vij = Vxi,xj

[
Ex∼i,j (y|xi, xj)

]

− Vxi

[
Ex∼i(y|xi)

]

− Vxj

[
Ex∼j (y|xj)

]
(2)

and so on up to the k-th order. The notation x∼i means all-but-xi. By dividing each term in Equation 1
by the unconditional model output variance V (y), we obtain the first-order indices for single inputs (Si),
pairs of inputs (Sij), and for all higher-order terms. First-order indices thus provide the proportion of
V (y) caused by each term and are widely used to rank model inputs according to their contribution to
the model output uncertainty, a setting known as factor prioritization [1].

Homma and Saltelli [7] also proposed the calculation of the total-order index Ti, which measures the
first-order effect of a model input jointly with its interactions up to the k-th order:

Ti = 1− Vx∼i

[
Exi(y|x∼i)

]

V (y)
=
Ex∼i

[
Vxi

(y|x∼i)
]

V (y)
. (3)

When Ti ≈ 0, it can be concluded that xi has a negligible contribution to V (y). For this reason,
total-order indices have been applied to distinguish influential from non-influential model inputs and
reduce the dimensionality of the uncertain space, a setting known as factor-fixing [1].

The most direct computation of Ti is via Monte Carlo (MC) estimation because it does not impose
any assumption on the functional form of the response function, unlike metamodeling approaches [8,
9]. The Fourier Amplitude Sensitivity Test (FAST) may also be used to calculate Ti, which involves
transforming input variables into periodic functions of a single frequency variable, sampling the model
and analysing the sensitivity of input variables using Fourier analysis in the frequency domain [10, 11].
While an innovative approach, FAST is sensitive to the characteristic frequencies assigned to input
variables, and is not a very intuitive method - for these reasons it has mostly been superseded by Monte
Carlo approaches, or by metamodels when computational expense is a serious issue. In this work we
focus on the former.

MC methods require generating a (N, 2k) base sample matrix with either random or quasi-random
numbers (e.g. Latin Hypercube Sampling, Sobol’ quasi-random numbers [12, 13]), where each row is
a sampling point and each column a model input. The first k columns are allocated to an A matrix
and the remaining k columns to a B matrix, which are known as the “base sample matrices”. Any
point in either A or B can be indicated as xvi, where v and i respectively index the row (from 1 to N)

and the column (from 1 to k). Then, k additional A
(i)
B (B

(i)
A ) matrices are created, where all columns

come from A (B) except the i-th column, which comes from B (A). The numerator in Equation 3 is

finally estimated using the model evaluations obtained from the A (B) and A
(i)
B (B

(i)
A ) matrices. Some

estimators may also use a third or X base sample matrices (i.e. A,B,C, . . . ,X), although the use of
more than three matrices has been recently proven inefficient by Lo Piano et al. [14].

1.1 Total-order estimators and uncertainties in the benchmark settings

The search for efficient and robust total-order estimators is an active field of research [1, 7, 15–20].
Although some works have compared their asymptotic properties (i.e. [16]), most studies have promoted
empirical comparisons where different estimators are benchmarked against known test functions and
specific sample sizes. However valuable these empirical studies may be, Becker [21] observed that their
results are very much conditional on the choice of model, its dimensionality and the selected number of
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model runs. It is hard to say from previous studies whether an estimator outperforming another truly
reflects its higher accuracy or simply its better performance under the narrow statistical design of the
study. Below we extend the list of factors which Becker [21] regards as influential in a given benchmarking
exercise and discuss how they affect the relative performance of sensitive estimators.

• The sampling method: The creation of the base sample matrices can be done using Monte-Carlo
(MC) or quasi Monte-Carlo (QMC) methods [12, 13]. Compared to MC, QMC allows to more effec-
tively map the input space as it leaves smaller unexplored volumes (Fig. S1). However, Kucherenko
et al. [22] observed that MC methods might help obtain more accurate sensitivity indices when the
model under examination has important high-order terms. Both MC and QMC have been used
when benchmarking sensitivity indices [15, 23].

• The form of the test function: some of the most commonly used functions in SA are the Ishigami and
Homma [24]’s, the Sobol’ G and its variants [23, 25], the Bratley and Fox [26]’s or the set of functions
presented in Kucherenko et al. [22] [14, 16, 18, 23]. Despite being analytically tractable, these
functions capture only one possible interval of model behaviour, and the effects of nonlinearities
and nonadditivities is typically unknown in real models. This black-box nature of models has
become more of a concern in the last decades due to the increase in computational power and code
complexity (which prevents the analyst from intuitively grasping the model’s behaviour [27]), and
to the higher demand for model transparency [3, 28, 29]. This renders the functional form of the
model similar to a random variable [21], something not accounted for by previous works [14, 16,
18, 23].

• The function dimensionality: many studies focus on low-dimensional problems, either by using
test functions that only require a few model inputs (e.g. the Ishigami function, where k = 3),
or by using test functions with a flexible dimensionality, but setting k at a small value of e.g.
k ≤ 8 (Sobol’ [25]’s G or Bratley and Fox [26] functions). This approach trades computational
manageability for comprehensiveness: by neglecting higher dimensions, it is difficult to tell which
estimator might work best in models with tens or hundreds of parameters. Examples of such models
can be readily found in the Earth and Environmental Sciences domain [30], including the Soil and
Water Assessment Tool (SWAT) model, where k = 50 [31], or the Modélisation Environmentale-
Surface et Hydrologie (MESH) model, where k = 111 [32].

• The distribution of the model inputs: the large majority of benchmarking exercises assume uniformly-
distributed inputs p(x) ∈ U(0, 1)k [14, 16, 23, 33]. However, there is evidence that the accuracy
of Ti estimators might be sensitive to the underlying model input distributions, to the point of
overturning the model input ranks [34, 35]. Furthermore, in uncertainty analysis – e.g. in deci-
sion theory, the analysts may use distributions with peaks for the most likely values derived, for
instance, from an experts elicitation stage.

• The number of model runs: sensitivity test functions are generally not computationally expensive
and can be run without much concern for computational time. This is frequently not the case for
real models, whose high dimensionality and complexity might set a constraint on the total number
of model runs available. Under such restrictions, the performance of the estimators of the total-
order index depends on their efficiency (how accurate they are given the budget of runs that can be
allocated to each model input). There are no specific guidelines as to which total-order estimator
might work best under these circumstances [21].

• The performance measure selected: typically, a sensitivity estimator has been considered to out-
perform the rest if, on average, it displays a smaller mean absolute error (MAE), computed as

MAE =
1

p

p∑

v=1

(∑k
i=1 |Ti − T̂i|

k

)
, (4)

where p is the number of replicas of the sample matrix, and Ti and T̂i the analytical and the
estimated total-order index of the i-th input. The MAE is appropriate when the aim is to assess
which estimator better approaches the true total-order indices, because it averages the error for
both influential and non-influential indices. However, the analyst might be more interested in using
the estimated indices T̂ = {T̂1, T̂2, ..., T̂i, ..., T̂k} to accurately rank parameters or screen influential
from non-influential model inputs [1]. In such context, the MAE may be best substituted or
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complemented with a measure of rank concordance between the vectors r and r̂, which reflect the
ranks in T and T̂ respectively, such as the Spearman’s ρ or the Kendall’s W coefficient [21, 36,
37]. It can also be the case that disagreements on the exact ranking of low-ranked parameters
may have no practical importance because the interest lies in the correct identification of top ranks
only [30]. Savage [38] scores or other measures that emphasize this top-down correlation are then
a more suitable choice.

Here we benchmark the performance of eight different MC-based formulae available to estimate Ti
(Table 1). While the list is not exhaustive, they reflect the research conducted on Ti over the last 20
years: from the classic estimators of Saltelli et al. [1], Homma and Saltelli [7], and Jansen [15] up to
the new contributions by Janon et al. [16], Glen and Isaacs [17], Azzini and Rosati [33] and Razavi and
Gupta [20, 39]. In order to reduce the influence of the benchmarking design in the assessment of the
estimators’ accuracy, we treat the sampling method τ , the underlying model input distribution φ, the
number of model runs Nt, the test function ε, its dimensionality and degree of non-additivity (k, k2, k3)
and the performance measure δ as random parameters. This better reflects the diversity of models and
sensitivity settings available to the analyst. By relaxing the dependency of the results on these benchmark
parameters1, we define an unprecedentedly large setting where all formulae can prove their accuracy. We
therefore extend Becker [21]’s approach by testing a wider set of Monte Carlo estimators, by exploring
a wider range of benchmarking assumptions and by performing a formal SA on these assumptions. The
aim is therefore to provide a much more global comparison of available MC estimators than is available
in the existing literature, and investigate how the benchmarking parameters may affect the relative
performance of estimators. Such information can help point to estimators that are not only efficient on
a particular case study, but efficient and robust to a wide range of practical situations.

Table 1: Formulae to compute Ti. f0 and V (y) are estimated according to the original papers. For estimators 2 and 5,

f0 = 1
N

∑N
v=1 f(A)v . For estimators 1, 2 and 5, V (y) = 1

N

∑N
v=1 [f(A)v − f0]2 [1, Eq. 4.16, 7, Eqs. 15, 20]. For estimator

3, f0 = 1
N

∑N
v=1

f(A)v+f(A
(i)
B

)v
2

and V (y) = 1
N

∑N
v=1

f(A)2v+f(A
(i)
B

)2v
2

− f20 [16, Eq. 15]. In estimator 4, 〈f(A)v〉 is the
mean of f(A)v . We use a simplified version of the Glen and Isaacs estimator because spurious correlations are zero by
design. As for estimator 7, we refer to it as pseudo-Owen given its use of a C matrix and its identification with Owen [40]
in Iooss et al. [41], where we retrieve the formula from. V (y) in Estimator 7 is computed as in Estimator 3 following Iooss
et al. [41], whereas V (y) in Estimator 8 is computed as in Estimator 1.

Nº Estimator Author

1
1

2N

∑N
v=1

[
f(A)v−f(A

(i)
B )v

]2

V (y) Jansen [15]

2
V (y)− 1

N

∑N
v=1 f(A)vf(A

(i)
B )v+f2

0

V (y) Homma and Saltelli
[7]

3 1−
1
N

∑N
v=1 f(A)vf(A

(i)
B )v−f2

0

V (y) Janon et al. [16]
Monod et al. [19]

4 1−


 1
N−1

∑N
v=1

[f(A)v−〈f(A)v〉]
[
f(A

(i)
B )v−

〈
f(A

(i)
B )v

〉]

√
V [f(A)v]V

[
f(A

(i)
B )v

]


 Glen and Isaacs [17]

5 1−
1
N

∑N
v=1 f(B)vf(B

(i)
A )v−f2

0

V (y) Saltelli et al. [1]

6
∑N

v=1[f(B)v−f(B
(i)
A )v]2+[f(A)v−f(A

(i)
B )v]2

∑N
v=1[f(A)v−f(B)v]2+[f(B

(i)
A )v−f(A

(i)
B )v]2

Azzini et al. [18] and
Azzini and Rosati
[33]

7
V (y)−

[
1
N

∑N
v=1

{[
f(B)v−f(C

(i)
B )v

][
f(B

(i)
A )v−f(A)v

]}]

V (y) pseudo-Owen

8
Ex∗∼i

[γx∗∼i(hi)]+Ex∗∼i[Cx∗∼i(hi)]
V (y) Razavi and Gupta

[20, 39] (see SM).

1We refer to the set of benchmarking assumptions as benchmarking parameters or parameters. This is intended to
distinguish them from the inputs of each test function generated by the metafunction, which we refer to as inputs.
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2 Assessment of the uncertainties in the benchmarking param-
eters

In this section we formulate the benchmarking parameters as random variables and assess how the
performance of estimators is dependent on them by performing a sensitivity analysis. In essence this is a
sensitivity analysis of sensitivity analyses [42], and a natural extension of a similar uncertainty analysis
in a recent work by Becker [21]. The use of global sensitivity analysis tools to better understand the
properties of estimators can give insights into how estimators behave in different scenarios that are not
available through analytical approaches.

2.1 The setting

The variability in the benchmark settings (τ,Nt, k, k2, k3, φ, ε, δ) is described by probability distributions
(Table 2). We assign uniform distributions (discrete or continuous) to each parameter. In particular,
we choose τ ∼ DU(1, 2) to check how the performance of Ti estimators is conditioned by the use of
Monte-Carlo (τ = 1) or Quasi Monte-Carlo (τ = 2) methods in the creation of the base sample matrices.
For τ = 2 we use the Sobol’ sequence scrambled according to Owen [43] to avoid repeated coordinates at
the beginning of the sequence. The total number of model runs and inputs is respectively described as
Nt ∼ DU(10, 1000) and k ∼ DU(3, 100) to explore the performance of the estimators in a wide range of

Nt, k combinations. Given the sampling constraints set by the estimators’ reliance on either a B, B
(i)
A ,

A
(i)
B or C

(i)
B matrices (Table 1), we modify the space defined by (Nt, k) to a non-rectangular domain (we

provide more information on this adjustment in Section 2.2).

Table 2: Summary of the parameters and their distributions. DU stands for discrete uniform.

Parameter Description Distribution

τ Sampling method DU(1, 2)
Nt Total number of model runs DU(10, 1000)
k Number of model inputs DU(3, 100)
φ Probability distribution of the model inputs DU(1, 8)
ε Randomness in the test function DU(1, 200)
k2 Fraction of pairwise interactions U(0.3, 0.5)
k3 Fraction of three-wise interactions U(0.1, 0.3)
δ Selection of the performance measure DU(1, 2)

For φ we set φ ∼ DU(1, 8) to ensure an adequate representation of the most common shapes in the
(0, 1)k domain. Besides the normal distribution truncated at (0, 1) and the uniform distribution, we also
take into account four beta distributions parametrized with distinct α and β values and a logitnormal
distribution (Fig. 1a). The aim is to check the response of the estimators under a wide range of probability
distributions, including U-shaped distributions and distributions with different degrees of skewness.

We link each distribution in Fig. 1a to an integer value from 1 to 7. For instance, if φ = 1, the joint
probability distribution of the model inputs is described as p(x1, . . . , xk) = U(0, 1)k. If φ = 8, we create
a vector φ = {φ1, φ2, ..., φi, ..., φk} by randomly sampling the seven distributions in Fig. 1a, and use
the i-th distribution in the vector to describe the uncertainty of the i-th input. This last case examines
the behavior of the estimators when several distributions are used to characterize the uncertainty in the
model input space.

2.1.1 The test function

The parameter ε operationalizes the randomness in the form and execution of the test function. Our
test function is an extended version of Becker [21]’s metafunction, which randomly combines p univariate
functions in a multivariate function of dimension k. Here we consider the 10 univariate functions listed in
Fig. 1b, which represent common responses observed in physical systems and in classic SA test functions
(see Becker [21] for a discussion on this point). We note that an alternative approach would be to
construct orthogonal basis functions which could allow analytical evaluation of true sensitivity indices
for each generated function; however, this extension is left for future work.

We construct the test function as follows:
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0

3

6

9

12

0.00 0.25 0.50 0.75 1.00
x

P
D

F

Distribution

U(0, 1)

NT(0.5, 0.15, 0, 1)
Beta(8, 2)

Beta(2, 8)

Beta(2, 0.8)

Beta(0.8, 2)

Logitnormal(0, 3.16)

a

−0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

Function

f1(x) = x3

f2(x) = 1 if x > 1 2, otherwise 0

f3(x) = (ex − 1) (e − 1)
f4(x) = (10 − 1 1.1)−1(x + 0.1)−1

f5(x) = x

f6(x) = 0

f7(x) = 4  (x − 0.5)2

f8(x) = sin(2  π  x) 2

f9(x) = x2

f10(x) = cos(x)

b

Figure 1: The metafunction approach. a) Probability distributions incuded in φ. NT stands for truncated normal distri-
bution. b) Univariate functions included in the metafunction (f1(x) = cubic, f2(x) = discontinuous, f3(x) = exponential,
f4(x) = inverse, f5(x) = linear, f6(x) = no effect, f7(x) = non-monotonic, f8(x) = periodic, f9(x) = quadratic, f10(x) =
trigonometric).

1. Let us consider a sample matrix such as

M =




x11 x12 · · · x1i · · · x1k

x21 x22 · · · x2i · · · x2k

...
...

. . .
...

. . .
...

xv1 xv2 · · · xvi · · · xvk
...

...
. . .

...
. . .

...
xN1 xN2 · · · xNi · · · xNk




(5)

where every point xv = xv1, xv2, . . . , xvk represents a given combination of values for the k inputs
and xi is a model input whose distribution is defined by φ.

2. Let u = {u1, u2, ..., uk} be a k-length vector formed by randomly sampling with replacement the
ten functions in Fig. 1b. The i-th function in u is then applied to the i-th model input: for
instance, if k = 4 and u = {u3, u4, u8, u1}, then f3(x1) = ex1−1

e−1 , f4(x2) = (10− 1
1.1 )−1(x2 + 0.1)−1,

f8(x3) = sin(2πx3)
2 , and f1(x4) = x3

4. The elements in u thus represent the first-order effects of each
model input.

3. Let V be a (n, 2) matrix, for n = k!
2!(k−2)! , the number of pairwise combinations between the k

inputs of the model. Each row in V thus specifies an interaction between two columns in M . In
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the case of k = 4 and the same elements in u as defined in the previous example,

V =




1 2
1 3
1 4
2 3
2 4
3 4




(6)

e.g., the first row promotes f3(x1) · f4(x2), the second row f3(x1) · f8(x3), and so on until the n-th
row. In order to follow the sparsity of effects principle (most variations in a given model output
should be explained by low-order interactions [44]), the metafunction activates only a fraction of
these effects: it randomly samples Vk2nW rows from V , and computes the corresponding interactions
in M . Vk2nW is thus the number of pairwise interactions present in the function. We make k2 an
uncertain parameter described as k2 ∼ U(0.3, 0.5) in order to randomly activate only between 30%
and 50% of the available second-order effects in M .

4. Same as before, but for third-order effects: let W be a (m, 3) matrix, for m = k!
3!(k−3)! , the number

of three-wise combinations between the k inputs in M . For k = 4 and u as before,

W =




1 2 3
1 2 4
1 3 4
2 3 4


 (7)

e.g. the first row leads to f3(x1) · f4(x2) · f8(x3), and so on until the m-th row. The metafunction
then randomly samples Vk3mW rows from W and computes the corresponding interactions in M .
Vk3mW is therefore the number of three-wise interaction terms in the function. We also make k3

an uncertain parameter described as k3 ∼ U(0.1, 0.3) to activate only between 10% and 30% of all
third-order effects in M . Note that k2 > k3 because third-order effects tend to be less dominant
than two-order effects (Table 2).

5. Three vectors of coefficients (α,β,γ) of length k, n and m are defined to represent the weights of
the first, second and third-order effects respectively. These coefficients are generated by sampling
from a mixture of two normal distributions Ψ = 0.3N (0, 5) + 0.7N (0, 0.5). This coerces the
metafunction into replicating the Pareto [45] principle (around 80% of the effects are due to 20%
of the parameters), found to widely apply in SA [1, 46].

6. The metafunction can thus be formalized as

y =
k∑

i=1

αif
uiφi(xi)

+

Vk2nW∑

i=1

βif
uVi,1φi(xVi,1

)fuVi,2φi(xVi,2
)

+

Vk3mW∑

i=1

γif
uWi,1φi(xWi,1

)fuWi,2φi(xWi,2
)fuWi,3φi(xWi,3

) .

(8)

Note that there is randomness in the sampling of φ, the univariate functions in u and the coefficients
in (α,β,γ). The parameter ε assesses the influence of this randomness by fixing the starting point
of the pseudo-random number sequence used for sampling the parameters just mentioned. We use
ε ∼ U(1, 200) to ensure that the same seed does not overlap with the same value of Nt, k or any
other parameter, an issue that might introduce determinism in a process that should be stochastic.
In Figs. S2–S3we show the type of Ti indices generated by this metafunction.

Finally, we describe the parameter δ as δ ∼ DU(1, 2). If δ = 1, we compute the Kendall τ -b correlation
coefficient between r̂ and r, the estimated and the “true” ranks calculated from T̂ and T respectively.
This aims at evaluating how well the estimators in Table 1 rank all model inputs. If δ = 2, we compute
the Pearson correlation between r and r̂ after transforming the ranks to Savage scores [38]. This setting
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examines the performance of the estimators when the analyst is interested in ranking only the most
important model inputs. Savage scores are given as

Sai =

k∑

j=i

1

j
, (9)

where j is the rank assigned to the jth element of a vector of length k. If x1 > x2 > x3, the Savage
scores would then be Sa1 = 1 + 1

2 + 1
3 , Sa2 = 1

2 + 1
3 , and Sa3 = 1

3 . The parameter δ thus assesses the
accuracy of the estimators in properly ranking the model inputs; in other words, when they are used in
a factor prioritization setting [1].

In order to examine also how accurate the estimators are in approaching the “true” indices, we run
an extra round of simulations with the MAE as the only performance measure, which we compute as

MAE =

∑k
i=1 |Ti − T̂i|

k
. (10)

Note that, unlike Equation 4, Equation 10 does not make use of replicas. This is because the effect of
the sampling is averaged out in our design by simultaneously varying all parameters in many different
simulations.

2.2 The execution of the algorithm

We examine how sensitive the performance of total-order estimators is to the uncertainty in the bench-

mark parameters τ,Nt, k, k2, k3, φ, ε, δ by means of a global SA. We create an A, B and k − 1 A
(i)
B

matrices, each of dimension (211, k), using Sobol’ quasi-random numbers. In these matrices each column
is a benchmark parameter described with the probability distributions of Table 2 and each row is a sim-

ulation with a specific combination of τ,Nt, k, . . . values. Note that we use k − 1 A
(i)
B matrices because

we group Nt and k and treat them like a single benchmark parameter given their correlation (see below).

Our algorithm runs rowwise over the A, B and k− 1 A
(i)
B matrices, for v = 1, 2, . . . , 18, 432 rows. In

the v-th row it does the following:

1. It creates five (Ntv , kv) matrices using the sampling method defined by τv. The need for these five
sub-matrices responds to the five specific sampling designs requested by the estimators of our study
(Table 1). We use these matrices to compute the vector of estimated indices T̂i for each estimator:

(a) An A matrix and kv A
(i)
B matrices, each of size (Nv, kv), Nv = V Ntv

kv+1W (Estimators 1–4 in
Table 1).

(b) An A, B and kv A
(i)
B matrices, each of size (Nv, kv), Nv = V Ntv

kv+2W (Estimator 5 in Table 1).

(c) An A, B and kv A
(i)
B and B

(i)
A matrices, each of size (Nv, kv), Nv = V Ntv

2kv+2W (Estimator 6 in
Table 1).

(d) An A, B and kv B
(i)
A and C

(i)
B matrices, each of size (Nv, kv), Nv = V Ntv

2kv+2W (Estimator 7 in
Table 1).

(e) A matrix formed by Nv stars, each of size kv(
1

∆h − 1) + 1. Given that we set ∆h at 0.2 (see

Supplementary Materials), Nv = T Ntv

4k+1U (Estimator 8 in Table 1).

The different sampling designs and the value for kv constrains the total number of runs Ntv that can
be allocated to each estimator. Furthermore, given the probability distributions selected for Nt and
k (Table 2), specific combinations of (Ntv , kv) lead to Nv ≤ 1, which is computationally unfeasible.
To minimize these issues we force the comparison between estimators to approximate the same
Ntv value. Since the sampling design structure of Razavi and Gupta is the most constraining,

we use Nv = 2(4k+1)
k+1 (for estimators 1–4), Nv = 2(4k+1)

k+2 (for estimator 5) and Nv = 2(4k+1)
2k+2

(for estimators 6–7) when Nv ≤ 1 in the case of Razavi and Gupta. This compels all estimators
to explore a very similar portion of the (Nt, k) space, but Nt and k become correlated, which
contradicts the requirement of independent inputs characterizing variance-based sensitivity indices
[1]. This is why we treat (Nt, k) as a single benchmark parameter in the SA.
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2. It creates a sixth matrix, formed by an A and kv A
(i)
B matrices, each of size (211, kv). We use this

sub-matrix to compute the vector of “true” indices T , which could not be calculated analytically
due to the wide range of possible functional forms created by the metafunction. Following Becker
[21], we assume that a fairly accurate approximation to T could be achieved with a large Monte
Carlo estimation.

3. The distribution of the model inputs in these six sample matrices is defined by φv.

4. The metafunction runs over these six matrices simultaneously, with its functional form, degree of
active second and third-order effects as set by εv, k2v

and k3v
respectively.

5. It computes the estimated sensitivity indices T̂v for each estimator and the “true” sensitivity indices
Tv using the Jansen [15] estimator, which is currently best practice in SA.

6. It checks the performance of the estimators. This is done in two ways:

(a) If δ = 1, we compute the correlation between r̂v and rv (obtained respectively from T̂v and
Tv) with Kendall tau, and if δ = 2 we compute the correlation between r̂v and rv on Savage
scores. The model output in both cases is the correlation coefficient r, with higher r values
indicating a better performance in properly ranking the model inputs.

(b) We compute the MAE between T̂v and Tv. In this case the model output is the MAE, with
lower values indicating a better performance in approaching the “true” total-order indices.

3 Results

3.1 Uncertainty analysis

Under a factor prioritization setting (e.g. when the aim is to rank the model inputs in terms of their
contribution to the model output variance), the most accurate estimators are Jansen, Razavi and Gupta,
Janon/Monod and Azzini and Rosati. The distribution of r values (the correlation between estimated
and ”true” ranks) when these estimators are used is highly negatively skewed, with median values of
≈ 0.9. Glen and Isaacs, Homma and Saltelli, Saltelli and pseudo-Owen lag behind and display median
r values of ≈ 0.35, with pseudo-Owen ranking last (r ≈ 0.2). The range of values obtained with these
formulae is much more spread out and include a significant number of negative r values, suggesting that
they overturned the true ranks in several simulations (Figs. 2a, S4).
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Figure 2: Boxplots summarizing the results of the simulations. a) Correlation coefficient between r̂ and r, the vector of
estimated and “true” ranks. b) Mean Absolute Error (MAE).
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When the goal is to approximate the “true” indices, Janon/Monod, Jansen and Azzini and Rosati
also offer the best performance. The median MAE obtained with these estimators is generally smaller
than Glen and Isaacs’ and pseudo-Owen’s, and the distribution of MAE values is much more narrower
than that obtained with Homma and Saltelli, Saltelli or Razavi and Gupta. These three estimators are
the least accurate and produce several MAE values larger than 102 in several simulations (Fig. 2b). The
volatility of Razavi and Gupta under the MAE is reflected in the numerous outliers produced and sharply
contrasts with its very good performance in a factor prioritization setting (Fig. 2a).

To obtain a finer insight into the structure of these results, we plot the total number of model runs
Nt against the function dimensionality k (Fig. 3). This maps the performance of the estimators in the
input space formed by all possible combinations of Nt and k given the specific design constraints of
each formulae. Under a factor prioritization setting, almost all estimators perform reasonably well at
a very small dimensionality (k ≤ 10, r > 0.7), regardless of the total number of model runs available.
However, some differences unfold at higher dimensions: Saltelli, Homma and Saltelli, Glen and Isaacs
and especially pseudo-Owen swiftly become inaccurate for k > 10, even with large values for Nt. Azzini
and Rosati display a very good performance overall except in the upper Nt, k boundary, where most of
the orange dots concentrate. The estimators of Jansen, Janon/Monod and Razavi and Gupta rank the
model inputs almost flawlessly regardless of the region explored in the Nt, k domain (Fig. 3a).

With regards to the MAE, Janon/Monod, Jansen and Azzini and Rosati maintain their high per-
formance regardless of the Nt, k region explored. The accuracy of Razavi and Gupta, however, drops
at the upper-leftmost part of the Nt, k boundary, where most of the largest MAE scores are located
(MAE > 10). In the case of Saltelli and Homma and Saltelli, the largest MAE values concentrate in the
region of small k regardless of the total number of model runs, a domain in which they achieved a high
performance when the focus was on properly ranking the model inputs.

The presence of a non-negligible proportion of model runs with r < 0 suggests that some estimators
significantly overturned the true ranks (Figs 3a, S4). To better examine this phenomenon, we re-plot
Fig 3b with just the simulations yielding r < 0 (Fig. S5). We observe that r < 0 values not only appear
in the region of small Nt, a foreseeable miscalculation derived from allocating an insufficient number
of model runs to each model input: they also emerge at a relatively large Nt and low k in the case
of pseudo-Owen, Saltelli and Homma and Saltelli. The Saltelli estimator actually concentrates in the
k < 10 zone most of the simulations with the lowest negative r values (Fig. S5). This suggests that
rank reversing is not an artifact of our study design as much as a by-product of the volatility of these
estimators when stressed by the sources of computational uncertainty listed in Table 2. Such strain
may lead these estimators to produce a significant fraction of negative indices or indices beyond 1, thus
effectively promoting r < 0.

We calculate the proportion of Ti < 0 and Ti > 1 in each simulation that yielded r < 0. In the case of
Glen and Isaacs and Homma and Saltelli, r < 0 values are caused by the production of a large proportion
of Ti < 0 (25%–75%, the x axis in Fig. 4). Pseudo-Owen and Saltelli suffer this bias too and in several
simulations they also generate a large proportion of Ti > 1 (up to 100% of the model inputs, the y axis
in Fig. 4). The production of Ti < 0 and Ti > 1 is caused by numerical errors and fostered by the values
generated at the numerator of Equation 3: Ti < 0 may either derive from Ex∼i

[
Vxi(y|x∼i)

]
< 0 (e.g.

Homma and Saltelli and pseudo-Owen) or Vx∼i

[
Exi

(y|x∼i)
]
> V (y) (e.g. Saltelli), whereas Ti > 1 from

Ex∼i

[
Vxi(y|x∼i)

]
> V (y) (e.g. Homma and Saltelli and pseudo-Owen) or Vx∼i

[
Exi(y|x∼i)

]
< 0 (e.g.

Saltelli).
To better examine the efficiency of the estimators, we summarized their performance as a function of

the number of runs available per model inputNt/k [21] (Fig. 5, S6). This information is especially relevant
to take an educated decision on which estimator to use in a context of a high-dimension, computationally
expensive model. Even when the budget of runs per input is low [(Nt/k) ∈ [2, 20]], Razavi and Gupta,
Jansen and Janon/Monod are very good at properly ranking model inputs (r ≈ 0.9), and are followed
very close by Azzini and Rosati (r ≈ 0.8). Saltelli, Homma and Saltelli and Glen and Isaacs come after
(r ≈ 0.3), with pseudo-Owen scoring last (r ≈ 0.2). When the Nt/k ratio is increased, all estimators
improve their ranking accuracy and some quickly reach the asymptote: this is the case of Razavi and
Gupta, Janon/Monod and Jansen, whose performance becomes almost flawless from (Nt/k) ∈ [40, 60]
onwards, and of Azzini and Rosati, which reaches its optimum at (Nt/k) ∈ [60, 80]. The accuracy of
the other estimators does not seem to fully stabilize within the range of ratios examined. In the case of
Homma and Saltelli and Saltelli, their performance oscillates before plummeting at (Nt/k) ∈ [200, 210],
(Nt/k) ∈ [240, 260] and (Nt/k) ∈ [260, 280] due to several simulations yielding large r < 0 values
(Fig. 5a).

Janon/Monod and Jansen are also the most efficient estimators when the MAE is the measure of
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Figure 3: Number of runs Nt against the function dimensionality k. Each dot is a simulation with a specific combination of
the benchmark parameters in Table 2. The greener (blacker) the color, the better (worse) the performance of the estimator.
a) Accuracy of the estimators when the goal is to properly rank the model inputs, e.g. a factor prioritization setting. b)
Accuracy of the estimators when the goal is to approach the “true” total-order indices.

choice, followed closely by Azzini and Rosati, Razavi and Gupta and Glen and Isaacs. Saltelli and
Homma and Saltelli gain accuracy at higher Nt/k ratios yet their precision diminishes all the same from
(Nt/k) ∈ [200, 210] onwards (Fig. 5b).

3.2 Sensitivity analysis

When the aim is to rank the model inputs, the selection of the performance measure (δ) has the highest
first-order effect in the accuracy of the estimators (Fig. 6a). The parameter δ is responsible for between
20% (Azzini and Rosati) and 30% (Glen and Isaacs) of the variance in the final r value. On average, all
estimators perform better when the rank is conducted on Savage scores (δ = 2), i.e. when the focus is on
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Figure 4: Scatterplot of the proportion of Ti < 0 against the proportion of Ti > 1 mapped against the model output r.
Each dot is a simulation. Only simulations with r < 0 are displayed.

ranking the most important model inputs only (Figs. S8–S15). As for the distribution of the model inputs
(φ), it has a first-order effect in the accuracy of Azzini and Rosati (≈ 10%), Jansen and Janon / Monod
(≈ 15%) and Razavi and Gupta (≈ 20%) regardless of whether the aim is a factor prioritization (r) or
approaching the “true” indices (MAE). The performance of these estimators drops perceptibly when the
model inputs are distributed as Beta(8, 2) or Beta(2, 8) (φ = 3 and φ = 4, Figs. S8-S23), suggesting
that they may be especially stressed by skewed distributions. The selection of random or quasi-random
numbers during the construction of the sample matrix (τ) also directly conditions the accuracy of several
estimators. If the aim is to approach the “true” indices (MAE), τ conveys from 17% (Azzini and Rosati)
to ≈ 30% (Glen and Isaacs) of the model output variance, with all estimators except Razavi and Gupta
performing better on quasi-random numbers (τ = 2, Figs. S16–S23). In a factor prioritization setting, τ
is mostly influential through interactions. Interestingly, the proportion of active second and third-order
interactions (k2, k3) does not alter the performance of any estimator in any of the settings examined.

To better understand the structure of the sensitivities, we compute Sobol’ indices after grouping
individual parameters in three clusters, which we define based on their commonalities: the first group
includes (δ, τ) and reflects the influence of those parameters that can be defined by the sensitivity ana-
lyst during the setting of the benchmark exercise. The second combines (ε, k2, k3, φ) and examines the
overall impact of the model functional form, referred to as f(x), which is often beyond the analyst’s
grasp. Finally, the third group includes (Nt, k) only and assesses the influence of the sampling design
in the accuracy of the estimators (we assume that the total number of model runs, besides being condi-
tioned by the computing resources at hand, is also partially determined by the joint effect of the model

dimensionality and the use of either a B, A
(i)
B ), B

(i)
A or C

(i)
B matrices) (Fig 6b).

The uncertainty in the functional form of the model [f(x)] is responsible for approximately 20% of
the variance in the performance of Azzini and Rosati, Janon/Monod or Jansen in a factor prioritization
setting. For Glen and Isaacs, Homma and Saltelli, pseudo-Owen or Saltelli, f(x) is influential only
through interactions with the other clusters. When the MAE is the performance measure of interest,
f(x) has a much stronger influence in the accuracy of the estimators than the couple (Nt, k), especially
in the case of Glen and Isaacs (≈ 40%). In any case, the accuracy of the estimators is significantly
conditioned by interactions between the benchmark parameters. The sum of all individual Si indices
plus the Si index of the (Nt, k) cluster only explains from ≈ 45% (Saltelli) to ≈ 70% (Glen and Isaacs) of
the estimators’ variance in ranking the model inputs, and from ≈ 24% (pseudo-Owen) to ≈ 60% (Razavi
and Gupta) of the variance in approaching the “true” indices.
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Figure 5: Scatterplot of the model output r against the number of model runs allocated per model input (Nt/k). See
Fig. S6 for a visual display of all simulations and Fig. S7 for an assessment of the number of model runs that each estimator
has in each Nt/k compartment.

4 Discussion and conclusions

Here we design an eight-dimension background for variance-based total-order estimators to confront
and prove their value in an unparalleled range of SA scenarios. By randomizing the parameters that
condition their performance, we obtain a comprehensive picture of the advantages and disadvantages
of each estimator and identify which particular benchmark factors make them more prone to error.
Our work thus provides a thorough empirical assessment of state-of-the-art total-order estimators and
contributes to define best practices in variance-based SA. The study also aligns with previous works
focused on testing the robustness of the tools available to sensitivity analysts, a line of inquiry that can
be described as a sensitivity analysis of a sensitivity analysis (SA of SA) [42].

Our results provide support to the assumption that the scope of previous benchmark studies is limited
by the plethora of non-unique choices taken during the setting of the analysis [21]. We have observed
that almost all decisions have a non-negligible effect: from the selection of the sampling method to the
choice of the performance measure, the design prioritized by the analyst can influence the performance
of the estimator in a non-obvious way, namely through interactions. The importance of non-additivities
in conditioning performance suggests that the benchmark of sensitivity estimators should no longer rely
on statistical designs that change one parameter at a time (usually the number of model runs and, more
rarely, the test function [14, 16, 18, 20, 23, 33, 39, 40, 42]). Such setting reduces the uncertain space to
a minimum and misses the effects that the interactions between the benchmark parameters have in the
final accuracy of the estimator. If global SA is the recommended practice to fully explore the uncertainty
space of models, sensitivity estimators, being algorithms themselves, should be likewise validated [42].

Our approach also compensates the lack of studies on the theoretical properties of estimators in the
sensitivity analysis literature (see for instance [15, 47]), and allows a more detailed examination of their
performance than theoretical comparisons. Empirical studies like ours mirror the numerical character
of sensitivity analysis when the indices can not be analytically calculated, which is most of the time in
“real-world” mathematical modeling.

Two recommendations emerge from our work: the estimators by Razavi and Gupta, Jansen, Janon
/ Monod or Azzini and Rosati should be preferred when the aim is to rank the model inputs. Jansen,
Janon/Monod or Azzini and Rosati should also be prioritized if the goal is to estimate the “true” total-
order indices. The drop in performance of Razavi and Gupta in the second setting may be explained by
a bias at a lower sample sizes, i.e. a consistent over-estimation of all total-order indices. This is because
their estimator relies on a constant mean assumption whose validity degrades with larger values of ∆h
[20, 39]. In order to remove this bias, ∆h should take very small values (e.g., ∆h = 0.01), which may not
be computationally feasible. Since the direction of this bias is the same for all parameters it only affects
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Figure 6: Sobol’ indices. a) Individual parameters. b) Clusters of parameters. The cluster f(x) includes all parameters
that describe the uncertainty in the functional form of the model (ε, k2, k3, φ). Nt and k are assessed simultaneously due
to their correlation. Note that the MAE facet does not include the group (δτ) because δ (the performance measure used)
is no longer an uncertain parameter in this setting.

the calculation of the “true” total-order indices, not the capacity of the estimator to properly rank the
model inputs.

It is also worth stating that Razavi and Gupta is the only estimator studied here that require the
analyst to define a tuning parameter, ∆h. In this paper we have set ∆h = 0.2 after some preliminary
trials with the estimator; other works have used different values (e.g. ∆h = 0.002, ∆h = 0.1, ∆h = 0.3;
[20, 21, 39]). Selecting the most appropriate value for a given tuning parameter is not an obvious choice
and this uncertainty can make an estimator volatile, as shown by Puy et al. [42] in the case of the PAWN
index.
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The fact that Glen and Isaacs, Homma and Saltelli, Saltelli and pseudo-Owen do not perform as well
in properly ranking the model inputs and approaching the “true” total-order indices may be partially
explained by their less efficient computation of elementary effects: by allowing the production of negative
terms in the numerator these estimators also permit the production of negative total-order indices, thus
leading to biased rankings or sensitivity indices. In the case of Saltelli, the use of a B matrix at
the numerator and an A matrix at the denominator exacerbates its volatility (Table 1, Nº 5). Such
inconsistency was corrected in Saltelli et al. [23].

The consistent robustness of Jansen, Janon/Monod and Azzini and Rosati makes their sensitivity to
the uncertain parameters studied here almost negligible. They are already highly optimized estimators
with not much room for improvement. Most of their performance is conditioned by the first and total-
order effects of the model form jointly with the underlying probability distributions (f(x) in Fig. 6b), as
well as by their sampling design (Nt, k), which are in any case beyond the analyst’s control. As for the
rest, their accuracy might be enhanced by allocating a larger number of model runs per input (if com-
putationally affordable), and especially in the case of Homma and Saltelli, Saltelli and Glen and Isaacs,
by restricting their use to low-dimensional models (k < 10) and sensitivity settings that only require
ranking the most important parameters (a restricted factor prioritisation setting; [1]). Nevertheless, their
substantial volatility is considerably driven by non-additivities, a combination that makes them hard to
tame and should raise caution about their use in any modeling exercise.

Our results slightly differ from Becker [21]’s, who observed that Jansen outperformed Janon/Monod
under a factor prioritization setting. We did not find any significant difference between these estimators.
Although our metafunction approach is based on Becker [21]’s, our study tests the accuracy of estimators
in a larger uncertain space as we also account for the stress introduced by changes in the sampling method
τ , the underlying probability distributions φ or the performance measure selected δ. These differences
may account for the slightly different results obtained between the two papers.

Our analysis can be extended to other sensitivity estimators (i.e. moment-independent like entropy-
based [48]; the δ-measure [49]; or the PAWN index, [50, 51]). Moreover, it holds potential to be used
overall as a standard crash test every time a new sensitivity estimator is introduced to the modeling
community. One of its advantages is its flexibility: Becker [21]’s metafunction can be easily extended
with new univariate functions or probability distributions, and the settings modified to check performance
under different degrees of non-additivities or in a larger (Nt, k) space. With some slight modifications
it should also allow to produce functions with dominant low-order or high-order terms, labeled as Type
B and C by Kucherenko et al. [22]. This should prompt developers of sensitivity indices to severely
stress their estimators so the modeling community and decision-makers fully appraise how they deal
with uncertainties.

5 Code availability

The R code to replicate our results is available in Puy [52] and in GitHub (https://github.com/
arnaldpuy/battle_estimators). The uncertainty and sensitivity analysis have been carried out with
the R package sensobol [53], which also includes the test function used in this study.
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1 Razavi and Gupta’s estimator (VARS)

Unlike the other total-order estimators examined in our paper, Razavi and
Gupta’s VARS (for Variogram Analysis of Response Surfaces [1, 2]) relies on
the variogram γ(.) and covariogram C(.) functions to compute what they call
the VARS-TO, for VARS Total-Order index.

Let us consider a function of factors x = (x1, x2, ..., xk) ∈ Rk. If xA and
xB are two generic points separated by a distance h, then the variogram is
calculated as

γ(xA − xB) =
1

2
V [y(xA)− y(xB)] (1)

and the covariogram as

C(xA − xB) = COV [y(xA), y(xB)] (2)

Note that

V [y(xA)− y(xB)] = V [y(xA)] + V [y(xB)]− 2COV [y(xA), y(xB)] (3)

and since V [y(xA)] = V [y(xB)], then

γ(xA − xB) = V [y(x)]− C(xA,xB) (4)

In order to obtain the total-order effect Ti, the variogram and covariogram
are computed on all couples of points spaced hi along the xi axis, with all other
factors being kept fixed. Thus equation 4 becomes

γx∗
∼i(hi) = V (y|x∗∼i)− Cx∗

∼i(hi) (5)

where x∗∼i is a fixed point in the space of non-xi. Razavi and Gupta [1,
2] suggest to take the mean value across the factors’ space on both sides of
equation 5, thus obtaining

Ex∗
∼i

[
γx∗

∼i(hi)
]

= Ex∗
∼i [V (y|x∗∼i)]− Ex∗

∼i

[
Cx∗

∼i(hi)
]

(6)

which can also be written as

Ex∗
∼i

[
γx∗

∼i(hi)
]

= V (y)Ti − Ex∗
∼i

[
Cx∗

∼i(hi)
]

(7)

and therefore

Ti =
Ex∗

∼i

[
γx∗

∼i(hi)
]

+ Ex∗
∼i

[
Cx∗

∼i(hi)
]

V (y)
(8)

The sampling scheme for VARS does not rely on A,B,A
(i)
B ... matrices, but

on star centers and cross sections. Star centers are N random points sampled
across the input space. For each of these stars, k cross sections of points spaced
∆h apart are generated, including and passing through the star center. Overall,
the computational cost of VARS amounts to Nt = N [k((1/∆h)− 1) + 1].
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2 Figures
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Figure S1: Examples of Monte-Carlo and Quasi Monte-Carlo sampling in two dimensions.
N = 200.
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Figure S2: Proportion of the total sum of first-order effects and of the active model inputs
(defined as Ti > 0.05) after 1000 random metafunction calls with k ∈ (3, 100). Note how
the sum of first-order effects clusters around 0.8 (thus evidencing the production of non-
additivities) and how, on average, the number of active model inputs revolves around 10–20%,
thus reproducing the Pareto principle.
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Figure S3: Sobol’ Ti indices obtained after a run of the metafunction with the following
parameter settings: N = 104, k = 17, k2 = 0.5, k3 = 0.2, ε = 666. The error bars reflect
the 95% confidence intervals after bootstrapping (R = 102). The indices have been computed
with the Jansen [3] estimator.
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Figure S8: Scatterplots of the model inputs against the model output. The red dots show the
mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S9: Scatterplots of the model inputs against the model output. The red dots show the
mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S10: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S11: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S12: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S13: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S14: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S15: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S16: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S17: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S18: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S19: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S20: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S21: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S22: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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Figure S23: Scatterplots of the model inputs against the model output. The red dots show
the mean value in each bin (we have set the number of bins arbitrarily at 30).
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