

Extratropical transition of tropical cyclones in a multiresolution ensemble of atmosphere-only and fully coupled global climate models

Article

Updated Version

Baker, A. J. ORCID: https://orcid.org/0000-0003-2697-1350, Roberts, M. J., Vidale, P. L. ORCID: https://orcid.org/0000-0002-1800-8460, Hodges, K. I. ORCID: https://orcid.org/0000-0003-0894-229X, Seddon, J., Vanniere, B. ORCID: https://orcid.org/0000-0001-8600-400X, Haarsma, R. J., Schiemann, R. ORCID: https://orcid.org/0000-0003-3095-9856, Kapetanakis, D., Tourigny, E., Lohmann, K., Roberts, C. D. and Terray, L. (2022) Extratropical transition of tropical cyclones in a multiresolution ensemble of atmosphere-only and fully coupled global climate models. Journal of Climate, 35 (16). pp. 5283-5306. ISSN 1520-0442 doi: https://doi.org/10.1175/JCLI-D-21-0801.1 Available at https://centaur.reading.ac.uk/105122/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

Published version at: https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0801.1/JCLI-D-21-0801.1.xml To link to this article DOI: http://dx.doi.org/10.1175/JCLI-D-21-0801.1

Publisher: American Meteorological Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Extratropical transition of tropical cyclones in a multiresolution ensemble of atmosphere-only and fully coupled global climate models

Alexander J. Baker^{1,*}, Malcolm J. Roberts², Pier Luigi Vidale¹, Kevin I. Hodges¹, Jon Seddon², Benoît Vannière¹, Rein J. Haarsma³, Reinhard Schiemann¹, Dimitris Kapetanakis³, Etienne Tourigny⁴, Katja Lohmann⁵, Christopher D. Roberts⁶, and Laurent Terray⁷

¹National Centre for Atmospheric Science and Department of Meteorology, University of Reading, Reading, Berkshire, UK

² Met Office Hadley Centre, Exeter, Devon, UK

³ Koninklijk Nederlands Meteorologisch Instituut, De Bilt, The Netherlands

⁴ Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain

⁵ Max Planck Institut für Meteorologie, Hamburg, Germany

⁶ European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

⁷ Climat, Environnement, Couplages et Incertitudes, Centre Européen de Recherche et de

Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France

* alexander.baker@reading.ac.uk

For submission to Journal of Climate

Corresponding author: Dr Alexander J. Baker

National Centre for Atmospheric Science Department of Meteorology, University of Reading Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6ES, UK +44 (0) 118 377 762

1 Abstract

2 Tropical cyclones undergo extratropical transition (ET) in every ocean basin. Projected 3 changes in ET frequency under climate change are uncertain and differ between basins, so 4 multimodel studies are required to establish confidence. We used a feature-tracking algorithm 5 to identify tropical cyclones and performed cyclone phase-space analysis to identify ET in an 6 ensemble of atmosphere-only and fully coupled global model simulations, run at various 7 resolutions under historical (1950-2014) and future (2015-2050) forcing. Historical 8 simulations were evaluated against five reanalyses for 1979–2018. Considering ET globally, 9 ensemble-mean biases in track and genesis densities are reduced in the North Atlantic and 10 Western North Pacific when horizontal resolution is increased from ~100 to ~25km. At high resolution, multireanalysis-mean climatological ET frequencies across most ocean basins as 11 12 well as basins' seasonal cycles are reproduced better than in low-resolution models. Skill in 13 simulating historical ET interannual variability in the North Atlantic and Western North Pacific is ~0.3, which is lower than for all tropical cyclones. Models project an increase in ET 14 frequency in the North Atlantic and a decrease in the Western North Pacific. We explain 15 16 these opposing responses by secular change in ET seasonality and an increase in lower-17 tropospheric, pre-ET warm-core strength, both of which are largely unique to the North Atlantic. Multimodel consensus about climate-change responses is clearer for frequency 18 19 metrics than for intensity metrics. These results help clarify the role of model resolution in 20 simulating ET and help quantify uncertainty surrounding ET in a warming climate. 21

22 1. Introduction

23 The impacts of tropical cyclones are not confined to the tropics. Their post-tropical evolution 24 makes these storms an important natural hazard across the midlatitudes (Baker et al., 2021; 25 Bieli et al., 2019; Evans et al., 2017; Jones et al., 2003; Keller et al., 2019). The poleward 26 propagation of tropical cyclones and the occurrence of extratropical transition (ET) exposes 27 populous regions where risks to life and infrastructure are high—Northeast United States, 28 maritime and eastern Canada, Western Europe, and East Asia-to hurricane-force wind 29 speeds and extreme precipitation (Evans et al., 2017). In the North Atlantic, tropical-origin 30 systems reached Northeast North America and Europe almost every year since 1979 (Baker 31 et al., 2021), including recent intense landfalls. For instance, Hurricane Sandy (22nd-29th 32 October, 2012)-the fourth costliest (by inflation-adjusted losses) North Atlantic hurricane yet recorded (Weinkle et al., 2018)—caused devastation across the Northeast United States 33 and eastern Canada (Blake et al., 2013). Ex-hurricane Ophelia (9th-15th October, 2017) led to 34 35 loss of life and severe wind damage across Ireland, the United Kingdom, and Scandinavia 36 (Rantanen et al., 2020; Stewart, 2018). At midlatitude landfall, both systems were post-37 tropical, having begun ET, but possessed hurricane-like intensities, the human and economic 38 impacts of which were felt across substantial areas. In the Western North Pacific, Typhoon Nabi (29th August-12th September, 2005) impacted two thirds of Japan's prefectures as both 39 40 a tropical and transitioning cyclone before undergoing cyclolysis over Alaska (Harr et al., 41 2008). These events, along with the current lack of consensus regarding ET in a changing 42 climate, heighten the urgency with which global studies of historical and near-future post-43 tropical cyclone activity are needed.

44

45 Tropical cyclones undergo ET in every ocean basin (Hart and Evans, 2001; Studholme et al., 46 2015; Wood and Ritchie, 2014; Zarzycki et al., 2017), but pronounced interannual variability 47 (Baker et al., 2021) and basin-to-basin differences (Bieli et al., 2019) exist. Transitioning 48 cyclones are also known to influence the large-scale circulation, such as Hurricane Debbie in 49 1982 (Laurila et al., 2019), and excite or amplify downstream Rossby waves (Evans et al., 50 2017; Jones et al., 2003; Keller et al., 2019; Michaelis and Lackmann, 2019). These cyclone-51 wave interactions influence downstream weather (Grams and Blumer, 2015; Keller et al., 52 2019). Of those cyclones which undergo ET, an appreciable proportion reintensify under 53 favourable environmental conditions, where appropriate phasing between the transitioning 54 cyclone and the upper-tropospheric flow pattern enhances baroclinic instability (Keller et al.,

55 2019). During and after ET, baroclinicity (Evans et al., 2017) and diabatic heating (Rantanen
56 et al., 2020) may reintensify the post-tropical cyclone.

57

58 Over the period of 1979–2018, statistically significant positive trends in the frequency of 59 North Atlantic ET events exist in several, but not all, reanalysis datasets (Baker et al., 2021). 60 Existing climate model projections underline the plausibility of increased tropical and post-61 tropical cyclone activity in the midlatitudes in response to anthropogenic warming. There is 62 evidence that more frequent ET events may occur in the future in the North Atlantic (Baatsen 63 et al., 2015; Haarsma et al., 2013; Liu et al., 2017; Michaelis and Lackmann, 2019) and 64 Western North Pacific (Bieli et al., 2020) ocean basins, but no consensus yet exists across 65 studies, modelling campaigns, and methodologies. Moreover, best-track data limitations, which are well documented (Chang and Guo, 2007; Delgado et al., 2018; Hagen et al., 2012; 66 67 Vecchi and Knutson, 2008), engender substantial uncertainty in observed trends (Lanzante, 2019; Moon et al., 2019). Additionally, natural, multidecadal variability in tropical-cyclone 68 69 frequency is yet to be accounted for (Knutson et al., 2020). Although global climate models 70 project reduced frequencies of tropical cyclones, more intense tropical cyclones are expected 71 in response to twenty-first-century warming (Knutson et al., 2020), potentially allowing a 72 higher proportion of cyclones to survive cooler midlatitude sea-surface temperatures 73 experienced prior to and during ET (Michaelis and Lackmann, 2019). Other factors, 74 particularly changes in shear, will also be important, with current evidence suggesting that 75 these will undergo ET-favourable future changes (Jung and Lackmann, 2021; Liu et al., 76 2017; Michaelis and Lackmann, 2021). Increased future ET event frequency is also 77 consistent with the projected expansion of tropical-cyclone genesis regions (Studholme et al., 78 2022), potentially reducing the mean displacement cyclones must undergo prior to 79 midlatitude ET. Together, these changes imply an increase in post-tropical cyclone impacts 80 across populated midlatitude regions, and idealised experiments suggest an increase in ET-81 related, high-impact weather across Europe (Jung and Lackmann, 2021), where our 82 understanding of historical risks is developing (Baker et al., 2021). Studies of historical and 83 future model simulations are therefore needed to assess both contemporary risk and future 84 changes more comprehensively. 85

One aspect of climate model evaluation important for both tropical and extratropical cyclones
is understanding the role of horizontal resolution in simulated climates, prompted by recent
developments in high-performance computing and data-management facilities. With

89 increases in model resolution to approximately 25 km, improved fidelity is anticipated for 90 many synoptic phenomena, particularly tropical and midlatitude cyclones, which ultimately 91 feed back onto the large scale. Recent studies have now firmly established that increasing 92 model resolution improves simulated tropical-cyclone frequency statistics across most ocean 93 basins (Manganello et al., 2019; Roberts et al., 2020a), leads to a more realistic global spatial 94 distribution (Roberts et al., 2020a; Roberts et al., 2015; Strachan et al., 2013), and results in 95 more realistic simulated warm-core vertical structures (Vannière et al., 2020). Moreover, 96 model resolution is a key constraint on the intensity which simulated cyclones may reach 97 (Davis, 2018). It is anticipated that atmospheric resolutions of \sim 50 km or finer (\sim 0.25 ° 98 ocean-model resolution) will yield improvement in the simulation of post-tropical cyclones 99 and ET (Haarsma, 2021). However, no systematic multimodel studies of ET have been undertaken, and the impact of increasing model resolution (atmosphere and ocean) on 100 101 simulated ET is also yet to be quantified. We address these issues in this paper using model simulations from the 6th phase of the Coupled Model Intercomparison Project (CMIP6), 102 103 which follow an experimental protocol designed to isolate the impacts of changes in model 104 resolution.

105

In this study of the representation of tropical cyclones undergoing ET across a multimodel 106 107 ensemble, we focus on climatological statistics, interannual variability, and cyclone structure 108 and intensity. These analyses are centred around two questions. What is the impact of 109 increasing model atmospheric resolution on simulated ET? What changes in ET metrics 110 under climate change are consistent across models? This paper continues in section 2 with a 111 description of the model and reanalysis data as well as the cyclone-tracking and analysis 112 methodologies. Our results are presented in section 3 and our conclusions are summarised, 113 with further discussion, in section 4.

- 114
- 115

116 **2. Data and methodology**

117 2.1 Reanalysis data

118 Tropical cyclone best-track datasets are not well suited to analysis of cyclones undergoing ET

119 because there are known heterogeneities within individual datasets (Barcikowska et al., 2012;

120 Chu et al., 2002; Kossin et al., 2007; Vecchi and Knutson, 2008, 2011), especially for storms'

121 post-tropical stages, under-counting biases (Chang and Guo, 2007; Delgado et al., 2018;

122 Hagen et al., 2012), and differences between operational centres' data-collection

123 methodologies (Hodges et al., 2017; Schreck III et al., 2014). We therefore evaluated model 124 simulations against five global reanalyses (Table 1): the European Centre for Medium-Range 125 Weather Forecasts' Interim Reanalysis (ERAI; Dee et al., 2011) and Fifth Reanalysis (ERA5; 126 Hersbach et al., 2020); the Japanese 55-year Reanalysis (JRA55; Kobayashi et al., 2015); the 127 National Aeronautics and Space Administration's Modern-Era Retrospective Analysis for 128 Research and Applications version 2 (MERRA2; Molod et al., 2015); and the combined 129 National Centers for Environmental Prediction Climate Forecast System Reanalysis and 130 Climate Forecast System version 2 dataset (NCEP; Saha et al., 2014)-the sole fully coupled 131 (atmosphere, ocean, land surface, and sea ice) reanalysis used herein. Between reanalyses, 132 differing forecast model formulations and resolutions (horizontal and vertical), as well as 133 data-assimilation schemes lead to differences in the representation of tropical-cyclone 134 vertical structure, which was examined by Hodges et al. (2017). Baker et al. (2021) found that interannual variability in the number ET events is well correlated between reanalyses, 135 136 but the percentage of tropical cyclones undergoing ET agrees less well between reanalyses on 137 the interannual timescale. It is therefore necessary to consider multiple reanalyses as an 138 observation-based reference, against which models may be evaluated.

Reanalysis	Analysis period	Analysis grid	Model resolution (grid spacing)	Data assimilation	Sample sizes (nnn. nsn)
ERAI	1979–2017	512x256	TL255L60 (80 km)	4D-Var.	35.4, 37.0
ERAS	1979–2018	1140x721	T639L137 (33km)	4D-Var.	40.4; 38.2
JRA55	1959–2014	288x145	TL319L60 (55 km)	4D-Var.	35.6; 44.3
MERRA2	1980–2017	576x361	Cubed sphere (50 km)	3D-Var. + GSI + IAU	35.7; 28.6
NCEP	1979–2016	720x361	T382L64 (38 km)	3D-Var. + GSI	36.2; 30.6

- 142 **Table 1.** Reanalyses. Atmospheric mesh spacing at 50 °N in units of km is given in brackets.
- 143 3(4)D-Var.: 3(4)D variational data assimilation; GSI: Grid-point Statistical Interpolation;
- 144 IAU: Incremental Analysis Update. The representation of tropical and post-tropical cyclones
- 145 in these reanalyses were evaluated by Hodges et al. (2017) and (Baker et al., 2021),
- 146 respectively. Annual-mean global sample sizes (cyclones year⁻¹) for all tropical cyclones
- 147 undergoing ET for each reanalysis are given as $n_{\rm NH}$, $n_{\rm SH}$.
- 148

149 2.2 The multiresolution PRIMAVERA model ensemble

We evaluated CMIP6 High-Resolution Model Intercomparison Project (HighResMIP; 150 151 Haarsma et al., 2016) historical and future atmosphere-only (Tier 1 and Tier 3, respectively), 152 including interaction with the land surface, and fully coupled (Tier 2) simulations from five 153 global climate models (Table 2): CNRM-CM6.1 (Voldoire et al., 2019), EC-Earth3P 154 (Haarsma et al., 2020), ECMWF-IFS (cycle 43r1; Roberts et al., 2018), HadGEM3-GC3.1 155 (Roberts et al., 2019; Williams et al., 2018), and MPI-ESM1.2 (Gutjahr et al., 2019). Each 156 model participated in the European Commission Horizon2020-funded project PRIMAVERA 157 (PRocess-based climate sIMulation: AdVances in high-resolution modelling and European 158 climate Risk Assessments; primavera-h2020.eu). Historical (1950-2014) and future (2015-159 2050) atmosphere-only experiments are termed highresSST-present and highresSST-future, respectively, and fully coupled experiments are termed hist-1950 and highres-future, 160 161 respectively. Historical highresSST-present simulations were forced by HadISST2 daily sea-162 surface temperature (SST) at a resolution of 0.25 ° interpolated to each model's grid (no 163 ocean mixed-layer model). Out to 2050, highresSST-future simulations were forced 164 according to Representative Concentration Pathway 8.5 (RCP8.5). (Use of RCP8.5 allowed 165 modelling centres to begin their model simulations before Shared Socioeconomic Pathways 166 scenarios became available.) In HighResMIP, future simulations were performed with all 167 models except ECMWF-IFS. The rate of projected sea-surface temperature (SST) warming 168 was derived from an ensemble mean of CMIP5, with interannual variability derived from the 169 historical period 1950–2014 (Haarsma et al., 2016).

170

171 Under the HighResMIP experimental protocol, minimal changes in model-tuning parameters 172 were made between low- and high-resolution integrations to ensure that resolution-sensitivity 173 studies were not confounded by substantial differences in model configurations between 174 resolutions (Haarsma et al., 2016). Between low- and high-resolution configurations, no 175 model-physics changes were made to the atmospheric components of CNRM-CM6.1 and EC-Earth3P, but minor adjustments were made to a single parameter in ECMWF-IFS (related 176 177 to net surface energy balance), HadGEM3-GC3.1 (related to quasi-biennial oscillation 178 period), and MPI-ESM1.2 (related to numerical stability). For the ocean model in coupled 179 configurations, one key difference is the effects of mesoscale eddies are parameterised at low 180 resolution (~1 °) but partially resolved at high resolution (~0.25 °) (e.g., Roberts et al., 2018; 181 Roberts et al., 2019). For all models, shorter dynamical timesteps were used in the high-182 resolution integrations to ensure numerical stability. The effective resolutions of the high-

- 183 resolution model configurations, measured by kinetic energy spectra, resolve synoptic-scale
- 184 dynamics (Klaver et al., 2020). Since this study concerns cyclone translation from the tropics
- 185 to the extratropics, resolutions are given as a model's regular mesh spacing at a latitude of 50
- 186 ° (Table 2). For convenience, we refer to resolutions nominally (i.e., 'low' or 'high') as well
- 187 as quantitatively, where necessary. A single ensemble member was analysed at each
- 188 resolution for both the atmosphere-only and fully coupled experiments.

Atmospheric model	Ocean model	Atmospheric dynamical core	Resolution nomenclature	Atmospheric resolution	Atmospheric mesh spacing
ARPEGE6.3	NEMO	Spectral (linear, reduced Gaussian)	LR; HR	TL127; TL359	142; 50 km
IFS cyc36r4	NEMO	Spectral (linear, reduced Gaussian)	LR; HR	TL255; TL511	71; 36 km
IFS cyc43r1	NEMO3.4	Spectral (cubic octahedral; reduced Gaussian)	LR; HR	Tco199; Tco399	50; 25 km
MetUM	NEMO	Grid point (SISL)	LM (LL); MM; HM (HH)	N96; N216; N512	135; 60; 25 km
ECHAM6.3	MPIOM1.63	Spectral (triangular; Gaussian)	HR; XR	T127; T255	67; 34 km

		Model name	CNRM-CM6.1	EC-Earth3P	ECMWF-IFS		HadGEM3-GC3.1	MPI-ESM1.2	
190	II	Į						Ι	
191	Table 2.	The PF	XIMAVERA (H	lighResMIP) model	ensemble. Nl	EMO: 1	Nucleus for Europ	pean
192	Modelling	g of the	e Ocean. MPIO	M: Max Pla	nk Instit	ute Ocean M	odel. S	ISL: semi-implic	it,
193	semi-Lag	rangiaı	n. For fully cou	pled simula	tions, the	e LL and HH	config	urations of	
194	HadGEM	[3-GC3	.1 were also in	cluded; LL	denoting	low-resolution	on atmo	osphere and low-	
195	resolutior	n (1°) o	ocean and HH o	lenoting hig	h-resolu	tion atmosph	ere and	high-resolution	(1/12
196	°) ocean.	Atmos	phere mesh spa	cing is give	n for 50	°N. Sample s	sizes fo	r all tropical cycl	ones
197	undergoir	ng ET a	across this ense	mble are giv	ven in Ta	ble 3. DOIs :	for eacl	n simulation are l	isted

198 at primavera-h2020.eu/modelling/.

200 2.3 Lagrangian tropical-cyclone tracking

- 201 To identify and track the evolution of tropical cyclones, we used the objective feature-202 tracking algorithm—TRACK—of Hodges (1995), a well-established tool for identifying 203 cyclones in reanalyses (Hodges et al., 2017) and model simulations (Roberts et al., 2020a). 204 The TRACK algorithm was applied to six-hourly relative vorticity, computed from the zonal 205 and meridional wind fields, which was vertically averaged over the 850-, 700- and 600-hPa 206 levels and spectrally filtered. (Upper-level vorticity is used in subsequent identification.) 207 Filtering to the T6–T63 spectral band removes both large, planetary scales (total 208 wavenumbers 0-5) and small-scale noise (total wavenumbers >63). Vorticity maxima exceeding $0.5 \times 10^{-5} \text{ s}^{-1}$ (in the Northern Hemisphere; scaled by -1 in the Southern 209 210 Hemisphere) were identified, initialised into tracks using a nearest-neighbour approach, and 211 subsequently refined by minimising a cost function for track smoothness, subject to adaptive 212 constraints on track displacement and smoothness (Hodges, 1995, 1999). The use of 213 vertically averaged vorticity improves temporal coherence in instances where vorticity 214 maxima shift between levels (Hodges et al., 2017). 215 216 Cyclone-centred sampling of meteorological fields along cyclone tracks was performed to 217 detect warm-core structures and measure cyclone intensities, following Hodges et al. (2017). 218 For warm-core identification, the T63-truncated vorticity data on seven levels covering 850-219 250 hPa were added to tracks by recursively searching for a vorticity maximum at each level 220 using the previous level's maximum as the starting point for a steepest-ascent maximization 221 applied to the B-spline-interpolated field. A search radius of 5 ° was used, centred on each 222 level's maximum. For the Southern Hemisphere, fields were scaled by -1. To quantify
- 223 cyclone intensity, mean sea-level pressure minima within a radius of 5 $^{\circ}$ and 925-hPa and 10-
- 224 metre wind speed maxima within a radius of 6° of the storm centre were sampled from
- reanalysis or model-output fields at their native, non-truncated resolutions. (All radii are
- 226 geodesic.)
- 227

Following Hodges et al. (2017), objective identification of tropical cyclones adhered to thefollowing criteria:

- cyclogenesis equatorward of 30 °N
- total cyclone lifetime must exceed two days
- T63 relative vorticity at 850 hPa must exceed 6×10⁻⁵ s⁻¹

 T63 relative vorticity centre must exist at each level between 850 and 250 hPa to indicate a coherent vertical structure

235

236

• T63 relative vorticity decrease with increasing height between 850 and 250 hPa by at

least 6×10^{-5} s⁻¹ to indicate the presence of a warm core

237 The three T63 relative vorticity criteria must also be jointly attained for at least four

238 consecutive time steps (i.e., one day) over ocean only. Together, these criteria minimise

239 inclusion of spurious short-lived or relatively weak vorticity features. The same criteria were

240 used for each reanalysis and model simulation and across all ocean basins.

241

242 Crucial to our analyses, vorticity-based tracking and post-tracking identification of tropical 243 cyclones yields longer cyclone lifecycles (compared with central-pressure-based algorithms 244 and methodologies where identification is performed during tracking), which allows for 245 objective analysis of post-tropical storm evolution (Hodges et al., 2017). A comparison of 246 TRACK results with results from a different tracking algorithm, which does not capture the 247 full lifecycle, demonstrates this advantage of vorticity-based tracking (section S1.1; Fig. S1). 248 In addition, filtering gridded data to a common spectral truncation, rather than tuning the 249 cyclone-tracking algorithm to a given dataset, allows both inter-model and inter-resolution 250 comparisons that are not complicated by methodological differences (Hodges et al., 2017). 251 Applying TRACK to a reanalysis globally, as described here, identifies ~30,000 tropical 252 vortices per year. Of these, ~8,000 per year have a lifetime that exceeds two days and are 253 retained; of these, ~120 per year exhibit the warm-core structure of a tropical cyclone 254 (Vannière et al., 2020). Our study is based on recently published tropical cyclone track 255 datasets, derived using a consistent methodology (Roberts et al., 2020a; Roberts et al., 256 2020b). Sample sizes for all tropical cyclones undergoing ET are given in Table 3. Finally, 257 spatial track statistics—track and genesis densities—were computed using spherical kernel 258 estimators, following Hodges (1996).

	Atmospł	nere-only	Fully coupled		
Model name	highresSST- present	highresSST- future	hist-1950	highres- future	
CNRM-CM6.1	42.3, 52.0	41.0, 47.5	43.4, 45.8	40.1, 39.4	
CNRM-CM6.1-HR	47.9, 55.9	46.7, 51.5	50.0, 49.6	46.8, 42.3	
EC-Earth3P	19.2, 29.3	20.1, 28.9	19.9, 27.6	19.1, 24.0	
EC-Earth3P-HR	30.1, 32.1	29.1, 29.4	26.6, 28.8	26.8, 27.8	
ECMWF-IFS-LR	34.7, 41.6	n/a	29.6, 41.5	n/a	
ECMWF-IFS-HR	39.8, 44.6	n/a	34.5, 41.7	n/a	
HadGEM3-GC3.1-LL	n/a	n/a	28.4, 38.7	28.6, 36.3	
HadGEM3-GC3.1-LM	36.3, 50.0	36.5, 50.7	n/a	n/a	
HadGEM3-GC3.1-MM	60.1, 68.8	60.9, 65.0	55.0, 56.0	53.2, 53.4	
HadGEM3-GC3.1-HM	63.8, 69.0	63.1, 64.6	58.1, 56.4	58.9, 54.3	
HadGEM3-GC3.1-HH	n/a	n/a	63.4, 56.2	60.1, 52.9	
MPI-ESM1.2-HR	10.5, 16.0	9.4, 14.5	11.4, 16.9	10.4, 15.5	
MPI-ESM1.2-XR	10.1, 17.0	9.6, 15.0	11.1, 17.4	10.1, 14.9	

Table 3. Annual-mean global sample sizes (cyclones year⁻¹) for all tropical cyclones

262 undergoing ET in each model simulation, given as $n_{\rm NH}$, $n_{\rm SH}$.

264 *2.4 Cyclone phase-space analysis*

- 265 The temporal evolution of cyclone structure, including identifying ET, is quantifiable by
- analysis of a cyclone's thermal wind fields (Hart, 2003; Hart and Evans, 2001). So-called
- 267 cyclone phase-space analysis involves three parameters: the thermal axisymmetry of the
- 268 cyclone (B; Eq. 1) and the lower- (T_L ; Eq. 2) and upper-tropospheric (T_U ; Eq. 3) cyclone-
- 269 relative thermal winds. In this study, these parameters were computed using 6-hourly data for
- all reanalyses and climate models. *B* is defined as:

271
$$B = h \left(\overline{Z_{600} - Z_{925}} \mid_R - \overline{Z_{600} - Z_{925}} \mid_L \right)$$
 (1)

272 where h = 1 for the Northern Hemisphere and -1 for the Southern Hemisphere, Z_p is 273 geopotential height (m) at level p (isobaric; hPa), and R and L denote the right- and left-hand 274 semicircles, respectively, relative to the cyclone's displacement direction. In this study, we 275 followed the majority of previous research (Bieli et al., 2019; Bieli et al., 2020; Dekker et al., 276 2018; Hart, 2003; Liu et al., 2017; Studholme et al., 2015) and defined thermal axisymmetry 277 (i.e., non-frontal) as B < 10 and asymmetry (i.e., frontal) as $B \ge 10$ m. To compute T_L and T_U 278 between isobaric surfaces, Hart (2003) used the slope of the linear regression between ΔZ and 279 ln p as the derivative of ΔZ relative to ln p to determine the mean ΔZ over a given pressure 280 range. However, to ensure consistency between phase-space parameters computed from reanalyses and model output, and to account for the different pressure levels on which 281 282 reanalysis and model data are available, it was necessary to adopt a three-level procedure, 283 following recent studies (Bieli et al., 2019; Bieli et al., 2020; Liu et al., 2017; Studholme et 284 al., 2015). Here, T_L (925–600 hPa) and T_U (600–250 hPa) are defined as vertical derivatives 285 of the horizontal geopotential height gradient:

286
$$T_{L} \equiv -|V_{T}^{L}| = \frac{\partial(\Delta Z)}{\partial \ln p} \Big|_{925 \text{ hPa}}^{600\text{hPa}}$$
(2)
287
$$T_{U} \equiv -|V_{T}^{U}| = \frac{\partial(\Delta Z)}{\partial \ln p} \Big|_{600\text{hPa}}^{250\text{hPa}}$$
(3)

where *p* is pressure and $\Delta Z = Z_{max} - Z_{min}$, where Z_{max} and Z_{min} are the maximum and minimum geopotential height, respectively, at a given level within a 5 ° radius of the cyclone centre. Positive T_L or T_U indicates the presence of a warm core in the upper or lower troposphere, respectively; negative values indicate a cold core. A deep warm- or cold-core structure is identified where T_L and T_U have the same sign. We performed phase-space analysis for all reanalyses (section 2.1) and all PRIMAVERA models (section 2.2). In our analysis, cyclone centres in reanalyses and model output are those identified objectively by TRACK, which

- ensures dynamical consistency between cyclone positions and the geopotential height field.
- 296 This differs from Bieli et al. (2020), who centred reanalysis geopotential data on best-track
- storm locations. The approach taken in our study avoids any potential inconsistencies
- between reanalysis and best-track storm centres, which would need to be accounted for,
- 299 particularly at weaker intensities (Hodges et al., 2017).
- 300
- 301 Among existing studies, various phase-space thresholds have been employed to identify ET
- 302 (e.g., Bieli et al., 2019; Hart and Evans, 2001; Kofron et al., 2010; Liu et al., 2017; Zarzycki
- 303 et al., 2017). We defined ET onset as either cold-core development (i.e., $T_L < 0$) or
- development of thermal asymmetry (i.e., $B \ge 10$), thereby allowing for either ET pathway. ET
- 305 completion is defined as the first occurrence of both $B \ge 10$ m and $T_L < 0$. These thresholds
- 306 are suitable for high-resolution gridded data (Michaelis and Lackmann, 2019) and are
- 307 supported by cluster analysis of observed ET events (Arnott et al., 2004). However, much of
- 308 the ET-identification literature has focussed on the North Atlantic, yet ET phase-space
- 309 pathways may differ between ocean basins (Bieli et al., 2019). To account for these
- 310 difficulties in our global study, ET was identified only where the completion criterion is
- 311 satisfied for at least four consecutive timesteps (i.e., one day). The use of this additional one-
- 312 day criterion identifies meaningful temporal changes in B and T_L and avoids counting any
- 313 spurious, high-frequency temporal variability in phase-space parameters as multiple core-
- 314 structure changes, following (Baker et al., 2021). An analysis of the sensitivity of ET location
- to methodological choices is presented in section S1.2, showing a large spread in ET location
- 316 (Fig. S2). In this study, ET-completion latitude was identified after a warm-core structure
- 317 persisted for at least 2 days based on phase-space parameters (i.e., $T_L > 0$ and $T_U > 0$),
- 318 corresponding to 'w' in Fig. S2. As such, sample sizes (Table 1 and Table 3) remain
- 319 unchanged. This method avoids false positives in ET identification arising from tropical
- 320 depressions and other weak, precursor systems (Bieli et al., 2020), and is therefore more
- 321 appropriate to analysis of ET location (see section S1.2 for details).
- 322323
- 324 2.5. Identifying post-ET reintensification
- 325 Instances of post-ET reintensification were defined as a post-ET change in p_{min} of at least -4
- 326 hPa, a threshold that is based on published case studies (e.g., Zhu et al., 2018), but the
- 327 number of identified reintensification events is necessarily sensitive to this threshold. For
- 328 consistency, we applied a single threshold across all reanalyses and models; a higher

329 threshold will likely be appropriate for any future analysis of higher-resolution (i.e.,

330 convection-permitting) models. We used p_{min} to avoid any complications arising from inter-

331 model differences in how near-surface wind speeds are computed (e.g., related to surface

- 332 roughness).
- 333
- 334
- 335 2.6 Eady growth rate

Eady growth rate maxima (Eq. 4) were computed as (Hoskins and Valdes, 1990):

337
$$\sigma_{max} = 0.31 \frac{f}{N} \frac{\partial(u,v)}{\partial Z}$$
(4)

338 where f is the Coriolis parameter, N is the static stability parameter, Z is geopotential height,

- and u and v are the zonal and meridional winds, respectively, which were used to compute
- 340 the magnitude of the horizontal wind (i.e., $\sqrt{u^2 + v^2}$). The vertical derivatives, $\partial(u, v)$ and ∂Z ,

341 were computed between the 850- and 250-hPa levels using 6-hourly data.

- 342
- 343

344 3. Results

In each of the following sections, we present historical results and model evaluation followedby analysis of projected future changes out to 2050.

- 347
- 348

349 *3.1 Spatial cyclone statistics*

350 We first present spatial track density patterns for tropical cyclones undergoing ET in

reanalyses and simulated across the PRIMAVERA ensemble. Reanalyses exhibit a high

352 degree of consistency for track density and demonstrate that tropical cyclones undergo ET in

all ocean basins. However, fewer ET events are identified over the Northern Indian Ocean

354 (Fig. 1a), where relatively low-latitude landfall either disrupts liminal ET events or averts

355 potential ET cases altogether, primarily via boundary-layer frictional effects (Bieli et al.,

- 356 2019). Overall, basins' climatological ET activity is proportional to their tropical cyclone
- 357 activity. The highest ET frequencies are identified in both the Western North Pacific and
- 358 South Pacific basins, with climatological mean values of ~12 cyclones year⁻¹. The North
- 359 Atlantic is the most active basin for ET outside the Pacific, and comparably low activity
- 360 occurs across the South Atlantic and South Indian basins (Fig. 1a).
- 361

362

363 Fig. 1. Cyclone track density for all tropical cyclones undergoing ET. (a) Multireanalysis 364 mean, (b-c) highresSST-present and (d-e) hist-1950. Track density was computed from 365 complete tracks, including precursor stages, and is shown in units of cyclone transits per year per unit area (within a 5 ° geodesic radius of storm centres). All available reanalysis years 366 367 (Table 1) are included in this analysis. (b, d) HR–LR denotes the ensemble-mean difference between high and low resolution. (c, e) $|error|_{HR}$ - $|error|_{LR}$ denotes the ensemble-mean 368 369 difference of the absolute error (model versus multireanalysis mean) between high and low 370 resolution. The low-resolution ('LR') sub-ensemble includes CNRM-CM6.1-LR, EC-Earth3P-LR, ECMWF-IFS-LR, HadGEM3-GC3.1-LM(-LL), and MPI-ESM1.2-HR. The 371 372 high-resolution ('HR') sub-ensemble includes CNRM-CM6.1-HR, EC-Earth3P-HR, 373 ECMWF-IFS-HR, HadGEM3-GC3.1-HM(-HH), and MPI-ESM1.2-XR. In b)-e), stippling 374 indicates where all five models agree on the sign of the difference.

376 The frequency of ET events simulated by PRIMAVERA models increases when resolution is 377 increased from ~100 km to ~25km in all basins, both in the highresSST-present (Fig. 1b) and 378 hist-1950 (Fig. 1d) experiments. Ensemble-mean climatologies are similar between both 379 experiments (Fig. S3). The North Atlantic and Western North Pacific basins are regions of 380 relatively widespread inter-model agreement on the sign of this resolution-sensitivity in track 381 density, again regardless of whether SST is prescribed. When prescribed, inter-model 382 agreement is also identified in the South Pacific and South Indian basins (Fig. 1b). This result 383 is consistent with a recent equivalent analysis of all tropical cyclones in PRIMAVERA 384 simulations (Roberts et al., 2020a), where increased frequencies were simulated at higher 385 model resolution across all ocean basins, for which the leading explanation is that finer 386 atmospheric resolution increases the conversion rate of precursor vortices (or 'seeds') to tropical cyclones (Roberts et al., 2020a; Vecchi et al., 2019; Vidale et al., 2021). Tropical-387 388 cyclone intensities simulated at model resolutions in the range 50-20 km are more 389 comparable with observational estimates (Roberts et al., 2020a), due in part to enhanced 390 surface latent heat flux (Vannière et al., 2020), implying that a more realistic proportion may 391 withstand midlatitude environmental conditions hostile to tropical cyclones prior to and 392 during the initial stages of ET. At low resolutions (typically ~100 km), PRIMAVERA models 393 simulate too few ET systems compared with reanalyses, particularly across the North Atlantic 394 and Western North Pacific, in both the highresSST-present (Fig. S4a) and hist-1950 (Fig. 395 S4c) experiments. Increasing resolution to ~25 km leads to increased track density globally, 396 reducing negative biases in these basins but engendering positive biases in the Eastern North 397 Pacific and South Pacific (Fig. S4c, d). In hist-1950, this bias reduction is consistent with a 398 reduction in negative surface temperature biases at high resolution (e.g., ~1 °K reduction in 399 the North Atlantic; Moreno-Chamarro et al., 2022). In section 3.2, we examine ET frequency 400 and the percentage of tropical cyclones undergoing ET separately.

403 **Fig. 2.** Climate-change response of track density for all cyclones undergoing ET. (a–c)

404 *highresSST-future* minus *highresSST-present* and (d–f) *highres-future* minus *hist-1950*. Track

- 405 density was computed from complete tracks, including precursor stages, and is shown in units
- 406 of cyclone transits per year per unit area (within a 5 ° geodesic radius of storm centres). The
- 407 low-resolution ('LR') sub-ensemble includes CNRM-CM6.1-LR, EC-Earth3P-LR,
- 408 HadGEM3-GC3.1-LM(-LL), and MPI-ESM1.2-HR. The high-resolution ('HR') sub-
- 409 ensemble includes CNRM-CM6.1-HR, EC-Earth3P-HR, HadGEM3-GC3.1-HM(-HH), and
- 410 MPI-ESM1.2-XR. Stippling indicates where all models agree on the sign of the difference.
- 411

412 Overall, PRIMAVERA simulations indicate that increasing resolution improves the 413 representation of ET frequency, as measured by track density, particularly across the North 414 Atlantic and Western North Pacific (Fig. 1c, e). For these basins, reductions in ensemble-415 mean absolute biases are found in both *highresSST-present* and *hist-1950*, and areas of bias 416 reduction across multiple models occur primarily over western boundary currents-the Gulf 417 Stream and Kuroshio, respectively. That these regions of resolution-dependence and reduced 418 biases overlap indicates that capturing the sharpness of SST fronts and associated 419 baroclinicity is important in simulating ET (Evans et al., 2017; Klein et al., 2002), and, 420 consistent with this, we find enhanced meridional SST gradients in both of these boundary-421 current regions (Fig. S5). In the Southern Hemisphere, little difference in ensemble-mean 422 biases is found between resolutions, with a caveat that observational or reanalysis-based 423 climatologies for the Southern Ocean are themselves more uncertain (Hodges et al., 2017). 424 The PRIMAVERA ensemble provides evidence that atmospheric resolutions typical of 425 CMIP6 are too coarse to adequately capture basin-mean tropical-cyclone (Roberts et al., 426 2020a) and ET statistics (this study). Increasing resolution to ~25 km partly addresses this 427 shortcoming.

428

445

429 The climate-change response of track density for tropical cyclones undergoing ET in high-430 resolution simulations is basin-dependent, with differences between atmosphere-only and 431 fully coupled simulations also apparent. In highresSST-future, increased track density is 432 simulated across the North and South Atlantic (but decreased over the eastern United States) 433 and over the Maritime Continent; decreases are simulated over the Eastern and Western 434 North Pacific and South Indian basins; and an unclear, mixed response characterises the 435 North Indian Ocean (Fig. 2a-b). Inter-model agreement about the sign of these changes is 436 largely confined to cyclogenesis regions (e.g., equatorial West Africa) and over the Gulf 437 Stream and Kuroshio Current. In highres-future simulations, positive climate-change 438 responses are confined to the central and Eastern North Pacific. The spatial response pattern 439 over the North Atlantic-increased over central and eastern North Atlantic and decreased 440 along the United States' east coast—is similar between highresSST-future and highres-future, 441 but the magnitude of the response is reduced in the fully coupled simulations (Fig. 2d–f). 442 This spatial pattern is supported by recent projections, with increases particularly apparent in 443 the eastern North Atlantic (Liu et al., 2017), consistent with the projected eastward and 444 poleward expansion of cyclogenesis within this basin (Haarsma et al., 2013).

446 Increasing horizontal resolution has a localised effect on the climate-change response of track 447 density for ET (Fig. 2c, f). In highresSST-future, resolution-sensitive responses to climate 448 change, which are common across *all* models, are seen only over the central North Atlantic 449 and parts of the Southern Ocean. In highres-future, spatially coherent and resolution-sensitive 450 responses to climate change are seen over the South Atlantic and Eastern North Pacific 451 basins, where simulated track density maxima are shifted equatorward at high resolution. 452 However, the spatial patterns of resolution sensitivity over the North Atlantic and Western 453 North Pacific broadly resemble the spatial climate-change response patterns, which indicates 454 that these responses are enhanced at high resolution in most models. This is seen more clearly 455 in the atmosphere-only experiment (Fig. 2c) than in the fully coupled experiment (Fig. 2f).

456 457

458 *3.2 Interannual variability in ET*

459 Over the period 1979–2018, high-resolution highresSST-present simulations reproduce the 460 multireanalysis-mean climatological ET counts for Northern Hemisphere basins (Fig. 3, left), 461 except for the Northern Indian Ocean, a basin where few ET events occur. However, little 462 improvement with increased resolution is seen for Southern Hemisphere basins (Fig. 3, left). Again, uncertainty is higher across the Southern Ocean, with greater inter-reanalysis spread 463 464 seen for Southern Hemisphere basins. These results are also true of the *hist-1950* simulations 465 (Fig. 4, left). The highresSST-present simulations appear to capture decadal variability in the role of SST in sustaining tropical cyclones to ET. In certain basins, periods are apparent 466 467 where the *highresSST-present* ensemble mean and multireanalysis mean ET count match well: e.g., 1985–2000 for the North Atlantic and 1990–2005 for the Western North Pacific 468 469 (Fig. 3, left). These periods coincide with observed positive phases in Atlantic Multidecadal 470 Variability and Pacific Decadal Oscillation, respectively. For ET %, differences between 471 low- and high-resolution ensemble means are small for most basins (Fig. 3, right). This 472 suggests that the large-scale environmental conditions conducive to ET are not substantially 473 different across the range of model resolutions considered here. This indicates that increased 474 ET frequency at high resolution is driven primarily by increased tropical cyclone frequency, 475 not by an increase in ET %. Similar mean values and variance in ensemble-mean ET count 476 and ET % are simulated in both highresSST-present (Fig. 3) and hist-1950 (Fig. 4) 477 experiments.

480 Fig. 3. Interannual variability in (left) the number of ET events and (right) the percentage of 481 tropical cyclones undergoing ET in each ocean basin in reanalyses and simulated in 482 highresSST-present and highresSST-future experiments. Shown are (red) the multireanalysis mean, with 1 standard deviation of the reanalysis spread indicated by red shading, and (solid 483 484 black) low- and (dashed black) high-resolution ensemble means. Each panel's legend gives 485 climatological-mean values of (left) ET count or (right) ET % for the reanalyses and 486 historical simulations. Also shown are (blue) timeseries for individual simulations to indicate 487 the ensemble spread for each basin.

489 In highresSST-present, models' skill in reproducing the multireanalysis-mean interannual 490 variability in ET count varies between basins (Table 4). Interannual variability in ensemble-491 mean and multireanalysis-mean ET counts are significantly, positively correlated for three 492 basins at low resolution and four basins at high resolution. The North Atlantic and Western 493 North Pacific basins are significantly correlated at both resolutions; the South Atlantic and 494 South Pacific basins are significantly correlated only at high resolution; and the Eastern 495 North Pacific is significant only at low resolution. Only for the North and South Indian basins 496 is ensemble-mean variability uncorrelated with reanalyses at either resolution. (Correlation 497 coefficients for *hist-1950* simulations are not shown because it is not expected that fully 498 coupled models' internal year-to-year variability would mimic that of forced simulations or 499 reanalyses.) For ET %, fewer significant correlations are found between ensemble-mean and 500 multireanalysis-mean timeseries (Table 4). Positive correlations are seen in the Northern and 501 Southern Indian basins and in the South Pacific basin at high resolution. However, low- and 502 high-resolution ensemble-mean ET % timeseries covary in most basins in both highresSST-503 present (Fig. 3) and hist-1950 (Fig. 4), more so than for ET count. To explain this, we 504 hypothesise that the large-scale environment conducive to the baroclinic conversion of 505 tropical cyclones is less sensitive to model resolution, while ET count depends on tropical 506 cyclone count, which is sensitive to model resolution (Roberts et al., 2020a).

507

508 Recent analysis of an ensemble of HadGEM3-GC3.1 simulations, performed under 509 HighResMIP, demonstrated that mean skill in representing interannual variability in tropical 510 cyclone count improves with additional members (Roberts et al., 2020a). At present, the 511 required six-hourly geopotential outputs are available for too few ensemble members to 512 repeat such an analysis for tropical cyclones undergoing ET, but this would constitute 513 valuable future work when sufficient model output is obtainable. Nonetheless, quantifying 514 the level of skill that exists in capturing interannual variability in the subset of tropical 515 cyclones that undergo ET, while lower than that for all tropical cyclones, is important, 516 establishing the baseline for HighResMIP-class models. This prompts further examination of 517 ET seasonality in the historical and future atmosphere-only simulations, which is possible in 518 the continuous PRIMAVERA simulations.

Ocean basin	ET	count	ET %		
Ottan bashi	LR	HR	LR	HR	
North Atlantic	0.31	0.30	0.24	-0.16	
Western North Pacific	0.50	0.34	0.21	0.24	
Eastern North Pacific	0.43	0.22	0.42	0.16	
North Indian	-0.08	0.03	0.03	0.38	
South Atlantic	0.07	0.34	0.12	0.27	
South Pacific	0.08	0.50	0.17	0.34	
South Indian	-0.04	-0.19	0.24	0.33	

521 **Table 4.** Pearson's *r* coefficients for correlations between low- (LR) or high-resolution (HR)

522 ensemble-mean and multireanalysis-mean interannual variability in ET count and ET % for

523 each ocean basin. Coefficients are shown only for highresSST-present; hist-1950 simulations

are not shown because it is not expected that coupled models' internal year-to-year variability

would mimic that of forced simulations or reanalyses. Significant (p < 0.1) correlations are in bold type.

529 Fig. 4. As in Fig. 3 for fully coupled *hist-1950* and *highres-future* simulations.

531 *3.3 Historical and future ET seasonality*

551

We next evaluate the seasonal cycle of ET, focussing on the North Atlantic and Western 532 533 North Pacific basins for which both climatological ET statistics (Fig. 1) and interannual ET 534 variability (Table 4) are represented reasonably across models. In the North Atlantic, 535 reanalyses show ET % increasing from July to a peak in September before declining into winter (Fig. S6a). In the highresSST-present experiment, most models reproduce this 536 537 seasonality, but the magnitude of the seasonal peak is overestimated by ~ 10 % at high-538 resolution. There are indications that increased atmospheric resolution improves the 539 simulation of the timing of the seasonal ET % peak. Two models-CNRM-CM6.1 and EC-540 Earth3P—simulate the seasonal peak too early (in August) at low resolution but simulate a 541 later peak (in September) at high resolution. Additionally, MPI-ESM1.2, the lowest-542 resolution model in this ensemble, simulates comparably muted seasonality that also peaks 543 earlier than reanalyses at both resolutions. In the fully coupled hist-1950 experiment, models reproduce the multireanalysis-mean seasonal cycle, but HadGEM3-GC3.1 and CNRM-544 545 CM6.1 simulate a broader seasonal distribution compared with reanalyses (Fig. S7a). In the 546 Western North Pacific, reanalyses show bimodal seasonality, with peaks in ET % in May and 547 September (Fig. S6b). Excepting the MPI-ESM1.2 model, which does not capture 548 bimodality, highresSST-present simulations also exhibit two seasonal peaks, but each occurs 549 one to two months later than in reanalyses in both low- and high-resolution integrations (Fig. 550 S6b), and this also holds true for *hist-1950* simulations (Fig. S7b).

552 To assess any potential future change in seasonality, ΔET %, we differenced the historical 553 and future seasonal cycles. For the North Atlantic, despite pronounced inter-model spread throughout most of the annual cycle, there is an indication of more consistent model 554 555 behaviour during August-November, months for which most models simulate an increase in 556 ET % in both the highresSST-future (Fig. S6c) and highres-future experiments (Fig. S7c). To 557 quantify the degree to which this inter-model consistency represents secular change in ET 558 seasonality, the annual fraction of total annual ET events occurring during August-November 559 was computed. A significant, positive trend in this quantity over the period 1950–2050 is 560 found in the ensemble mean of high-resolution atmosphere-only simulations (Fig. 5a), but the 561 trend is not significant in reanalyses, which likely cover too short a period (1980-) to assess 562 secular change, and is significant in the low-resolution ensemble mean only at the 80 % level. 563 In fully coupled simulations, no significant trends are seen (Fig. S8a). Conducting a similar 564 analysis of the forthcoming extension of ERA5 back to 1950 is warranted, pre-satellite 565 observational uncertainty notwithstanding. For the Western North Pacific, the inter-model 566 spread during the annual cycle of ΔET % is similar between *highresSST-future* (Fig. S6d) and 567 highres-future simulations (Fig. S7d) and, in contrast to the North Atlantic, no significant 568 secular change in ET seasonality is found in either reanalyses or in PRIMAVERA 569 simulations out to 2050 (Fig. 5b and Fig. S8b). However, together with projected changes in 570 track density (Fig. 2a–b, d–e), these results provide further evidence that the future response 571 of ET to climate change across the North Atlantic differs from that of the Western North 572 Pacific and of other ocean basins. Therefore, we next investigate the role of cyclone structure 573 in explaining these distinct North Atlantic and Western North Pacific responses.

575

576 Fig. 5. Secular change in the proportion of ET events occurring during August–November in

577 reanalyses (red) and low- (pale blue) and high-resolution (dark blue) atmosphere-only

578 simulations (ensemble mean) for the (a) North Atlantic and (b) Western North Pacific basins.

579 Shading shows the 95 % confidence interval for the linear fit. ECMWF-IFS is not included in

580 this analysis because no future simulations were performed in HighResMIP for this model.

582 *3.4 Response of cyclone structures to climate change*

To examine the response of cyclone core structure to climate change, we computed 583 584 ensemble-mean bivariate frequency distributions of phase-space parameters, B, T_L , and T_U in 585 the high-resolution simulations. The T_L -B distribution exhibits a similar general structure in 586 the highresSST-present and -future experiments for both the North Atlantic (Fig. 6a-b) and 587 Western North Pacific (Fig. 6d–e) basins. This is also true for T_L-T_U distributions (Fig. 7a–b 588 and Fig. 7d-e). Generally, tropical cyclones undergoing ET occupy the lower-right 589 (symmetric, warm core) and upper-left (asymmetric, cold core) quadrants, with fewer 590 instances in either hybrid (transitional) quadrant. The phase-space parameter distributions 591 simulated across PRIMAVERA models are consistent with previous studies (Hart et al., 592 2006; Michaelis and Lackmann, 2019). Historical ensemble-mean values of B and T_L for the 593 North Atlantic are consistent with recent analysis of observations (Studholme et al., 2015) as 594 well as reanalyses and Community Atmosphere Model simulations at resolutions of 55 and 595 28 km (Zarzycki et al., 2017). Ensemble-mean T_U values are also consistent with these 596 existing studies, except that deep warm-core structures are less frequent in PRIMAVERA 597 models than in recent 15-km-resolution simulations with the Model for Prediction Across 598 Scales-Atmosphere model (Michaelis and Lackmann, 2019), likely due to differences in 599 atmospheric resolution. For the Western North Pacific, model-simulated phase-space 600 parameters are consistent with reanalysis-based values (Kitabatake, 2011). In the fully 601 coupled simulations, T_L -B distributions for both basins are similar to those of the 602 atmosphere-only simulations (Fig. 8c, f), but differences in ensemble-mean T_U values are 603 seen, with warm-core responses to climate change occurring variously throughout the 604 troposphere (Fig. 9c, f).

605

606 Under climate change, models forced by prescribed SST simulate stronger warm-core 607 structures in the North Atlantic, indicated by a shift towards higher T_L for axisymmetric 608 tropical cyclones (Fig. 6c). Moreover, $T_L - T_U$ distributions show that the future shift to 609 stronger warm-core structures is primarily confined to the lower troposphere (Fig. 7c, f). 610 (Here, 'strong' refers to ensemble-mean T_L values at the higher end of the historical 611 distributions, in which a range of model-simulated intensities are averaged.) These findings 612 are supported by a recent single-model study (Michaelis and Lackmann, 2019), albeit the 613 ensemble-mean signal we report is less pronounced, and are consistent with increased low-614 level moisture and the potential for enhanced latent heat release in a warmer climate. Future 615 changes in core structures offer a partly mechanistic explanation of the projected increase in

- 616 ET across the North Atlantic (Baatsen et al., 2015; Haarsma et al., 2013; Liu et al., 2017) as
- 617 well as the projected change in track density, which is largely unique to the North Atlantic
- 618 (Fig. 2a–b, d–e). The lesser energy of weak warm-core cyclones is more likely to dissipate
- 619 before ET may occur, but relatively strong warm-core structures make cyclones more
- 620 resilient to unfavourable midlatitude environmental conditions (primarily cooler SST and
- 621 increased vertical wind shear), prolonging their poleward propagation and making ET more
- 622 probable across the North Atlantic (Hart et al., 2006).
- 623

624 In the North Pacific, however, this future shift to stronger warm cores is not seen in 625 PRIMAVERA models (Fig. 6f), although more frequent asymmetric, warm-core hybrid 626 structures (upper-right quadrant) in the future are simulated. These instances of hybrid 627 structures show cyclones existing more frequently in the transitional quadrants, potentially 628 indicating a future elongation of ET time (Zarzycki et al., 2017) and an increase in warm-629 seclusion occurrences, which involve multiple transitions (Baker et al., 2021; Dekker et al., 630 2018). Also seen is a shift towards stronger upper-level, cold-core structures (Fig. 7f). The 631 Western North Pacific is therefore characterised by more mixed future changes in core-632 structure frequencies, consistent with the projected response of track density, which generally 633 decreases across the basin but increases in localised areas (Fig. 2b, e). Broadly, these results 634 are also consistent with the lack of any consensus in published projections of ET frequency across the Western North Pacific: both a less favourable future ET environment (Ito et al., 635 636 2016) versus moderate future increase in ET frequency (Bieli et al., 2020) have been 637 suggested. For both basins, future phase-space changes in the fully coupled simulations 638 resemble those seen in the atmosphere-only experiments, but the North Atlantic climate-639 change signal is comparably muted (Fig. 8c, f; Fig. 9c, f).

640

641 Overall, these results help clarify the potential role that the climate-change response of 642 cyclones' core structures have in determining future ET frequency changes, and quantifies 643 how this differs between basins. Differences in pre-ET structures potentially underpin basin-644 specific responses of ET to climate change, and consistency exists among PRIMAVERA 645 models. However, to fully explain what drives disparate North Atlantic and Western North 646 Pacific responses, further studies of future changes in cyclogenesis and midlatitude large-647 scale conditions are needed, based on models of higher resolution than those in 648 PRIMAVERA, which better simulate the most intense systems (Judt et al., 2021), and,

649 potentially, their interactions with the large-scale environment.

Fig. 6. Ensemble-mean distributions of T_L versus *B* in high-resolution (a, d) *highresSSTpresent* and (b, e) *-future* simulations as well as (c, f) the climate-change response for the North Atlantic ('NAtl') and Western North Pacific ('WNPac'). Distributions are computed from every 6-hourly point during the entire lifetime of all storms undergoing ET, plotted as two-dimensional histograms, and normalised by the total number of cyclones (sample sizes for each model are given in Table 3). Values are scaled by 10⁴. Cyclone phase-space
- 658 categories are warm- ('WC') or cold-core ('CC') and either symmetrical (i.e., non-frontal;
- 659 'Sym.') or asymmetrical (i.e., frontal; 'Asym.'). The threshold of 10 m used to distinguish
- 660 thermally symmetric from asymmetric cyclones is indicated (dashed line). Stippling in c) and
- 661 f) indicates where all models agree on the sign of the difference.

663

Fig. 7. Ensemble-mean distributions of T_L versus T_U in high-resolution (a, d) *highresSSTpresent* and (b, e) *-future* simulations as well as (c, f) the climate-change response for the North Atlantic ('NAtl') and Western North Pacific ('WNPac'). Distributions are computed from every 6-hourly point during the entire lifetime of all storms undergoing ET, plotted as two-dimensional histograms, and normalised by the total number of cyclones (sample sizes for each model are given in Table 3). Values are scaled by 10⁴. Cyclone phase-space

- 670 categories are shallow or deep warm- ('WC') or cold-core ('CC'). Stippling in c) and f)
- 671 indicates where all models agree on the sign of the difference.

678 *3.5 Pre- and post-ET cyclone intensity*

- 679 During ET, cyclones develop low-level frontal structures and their horizontal size increases 680 (Evans et al., 2017). As such, increasing model resolution is expected to impact the 681 simulation of cyclones pre- and post-ET differently, particularly in models whose effective 682 resolutions coarsen equatorward. However, performing a global analysis of the pre- and post-683 ET stages of tropical cyclones' lifecycles is not trivial because ET pathways (i.e., the order in 684 which B and T_L changes occur) differ between ocean basins (Bieli et al., 2019). We therefore 685 separated cyclone tracks' warm- and cold-core stages about ET completion, when both B and 686 T_L satisfy ET criteria, following the definition first used by Hart (2003). Our additional 1-day 687 criterion (see Methods) helps increase confidence in the following inter-model comparison.
- 688

689 Compared with best-track intensity estimates, certain atmosphere-only models (particularly 690 CNRM-CM6.1) simulate realistic intensities at resolutions in the range 20–50 km (Roberts et 691 al., 2020a). However, best-track intensity estimates are not well suited to evaluating post-ET 692 systems (Velden et al., 2006), and the available primary cyclone wind-speed observations, 693 such as satellite scatterometry data, seldom include cyclones' post-tropical stages and span 694 too short a temporal range for climatological evaluation. We therefore turn to reanalyses, 695 which are constrained by observational data, to provide a homogeneous global reference. An 696 important caveat, however, is the underestimation of cyclone wind speeds in reanalyses 697 (Hodges et al., 2017; Murakami, 2014), although this underestimation is less marked at 698 higher latitudes (Sainsbury et al., 2020).

699

700 Considering all storms globally, PRIMAVERA models reproduce the reanalyses' cold-core, 701 post-ET intensity distributions at both low and high resolution and in both atmosphere-only 702 and fully coupled simulations (Fig. 10 and Fig. 11, top rows). However, models' 703 representation of warm-core, pre-ET distributions improve markedly with increasing 704 resolution, especially for CNRM-CM6.1 and HadGEM3-GC3.1, but more clearly so in the 705 atmosphere-only than in the fully coupled simulations, wherein cold-wake feedbacks reduce 706 upper-ocean temperatures and weaken subsequent tropical cyclones (Balaguru et al., 2014). 707 Sensitivity to resolution is similar in the fully coupled CNRM-CM6.1 and HadGEM3-GC3.1 708 simulations (Fig. 11, top row). These results show that horizontal resolutions typical of 709 CMIP6 appear sufficient to simulate cold-core (post-ET) intensity distributions, including the

- 710 relatively high-intensity tail—resolutions at which large-ensemble studies to quantify
- 711 multiannual variability of the strongest post-ET storms are computationally feasible.

- However, among high-resolution PRIMAVERA models, the high-intensity tail of the warm-core distribution is reproduced only by CNRM-CM6.1.
- 714

715 For highresSST-future, several models project decreasing warm-core and increasing cold-716 core intensities for weaker storms (<17ms⁻¹) but simulate opposite warm- and cold-core 717 responses for stronger storms (≥ 17 ms⁻¹) (Fig. 10, bottom row). This warm-core response is 718 consistent with projections of intensified tropical cyclones under anthropogenic warming 719 (Knutson et al., 2020). However, these responses are not replicated by fully coupled models 720 (Fig. 11, bottom row), in which intensity changes are weak (Roberts et al., 2020b). In the 721 fully coupled simulations, the responses of pre- and post-ET intensity distributions to climate 722 change are equivocal, with substantial inter-model differences. We speculate that the climate-723 change forcing out to 2050 in the HighResMIP experimental protocol is insufficiently strong (i.e., the future simulation period is too short) for a clear signal to emerge. However, it is 724 725 unclear whether intensity changes would be seen. For tropical cyclones overall, Roberts et al. 726 (2020b) found a weak future intensification in these simulations, and Bieli et al. (2020) found 727 equivocal ET climate-change responses in many basins out to 2100 under the weaker RCP4.5 728 scenario. If a clear climate-change signal were to emerge with further increases in model 729 resolution, which would increase the relative difference between the weakest and strongest 730 simulated tropical cyclones, this would suggest that processes important for intensity change 731 are not adequately captured at ~25 km resolution. 732

Fig. 10. Intensity (v_{max} at 925hPa) distributions in atmosphere-only simulations for all cyclones undergoing ET globally. For each model, historical simulations are shown in the top row and future simulations in the bottom row. Multireanalysis-mean curves (thick, solid lines) are shown with 1 s.d. (shading). Both low- (thin, solid lines) and high-resolution (thin, dashed lines) simulations are shown. Climate-change responses (i.e., highresSST-future minus highresSST-present), computed as integrated differences, are shown as percentages for storms whose lifetime-maximum intensity is $<17 \text{ ms}^{-1}$ or $\ge 17 \text{ ms}^{-1}$ for each atmospheric model resolution (ordered left to right).

747 3.6 Post-ET reintensification

748 The lifetime-maximum intensity of transitioning tropical cyclones typically occurs during the 749 warm-core, tropical phase. However, the addition of a baroclinic energy source and cyclone-750 wave interactions induce post-ET reintensification (Evans et al., 2017). We quantified the 751 frequencies of reintensifying versus non-reintensifying cyclones in reanalyses and in the 752 PRIMAVERA ensemble. Globally, reanalyses indicate that approximately 50 % of tropical 753 cyclones that complete ET undergo post-ET reintensification (Fig. 12a). For the North 754 Atlantic and Western North Pacific basins, ~55 and ~45 %, respectively, reintensify (not 755 shown), consistent with Hart and Evans (2001). These results are not significantly different 756 when reintensification is defined using 925-hPa wind speed (not shown). Globally, 757 PRIMAVERA models generally overestimate climatological reintensification frequency at 758 low resolution, but increasing resolution decreases the proportion of reintensifying systems 759 (and increases the proportion of non-reintensifying systems) in all models except MPI-760 ESM1.2, which better matches reanalyses (Fig. 12b and Fig. 13b). This result potentially 761 reflects improved simulation of the interactions between cyclones and the large-scale 762 circulation, which acts to reintensify systems (Keller et al., 2019), at high resolution. Which 763 processes facilitate such improvement should be a focus of future research because these 764 processes will be important for risk assessments of reintensification. However, it is also 765 possible that post-ET reintensification arises in models whose effective resolution increases 766 with increasing latitude (e.g., HadGEM3-GC3.1), allowing stronger simulated winds at 767 higher latitudes, but the impact of this artifact will be reduced at higher resolutions. 768

769 In HadGEM3-GC3.1, for an atmospheric resolution of 25 km (at 50 ° latitude), increasing ocean resolution from $1/4 \circ$ to $1/12 \circ$ (-HM and -HH, respectively) does not impact the 770 771 proportion of reintensifying cyclones (Fig. 13b). An increase in the proportion might be 772 expected because increasing ocean resolution and therefore more sharply resolving SST 773 fronts (around western boundary currents; Fig. S5) is likely to enhance baroclinicity and 774 provide atmospheric conditions conducive to post-ET reintensification. That no increase is 775 seen implies that atmospheric resolution, to which simulated tropical-cyclone frequency and 776 intensity are sensitive, acts as a constraint on reintensification statistics, at least for this 777 particular model. Further investigation with multiple ocean models would establish more 778 robustly whether this is the case.

- 780 In both the atmosphere-only and fully coupled simulations, future changes in the proportion
- 781 of post-ET reintensifying systems are small and generally within one standard deviation of
- 782 historical interannual variability (Fig. 12c and Fig. 13c), again suggesting that any climate-
- 783 change response under RCP8.5 emerges after 2050. In atmosphere-only simulations, low-
- resolution models all simulate an increase the proportion of reintensifying cyclones, but high-
- resolution models simulate a decrease (Fig. 12c), except for CNRM-CM6.1. Fully coupled
- 786 models typically simulate a future increase across resolutions (Fig. 13c).

789 Fig. 12. Global analysis of the percentage of transitioning storms that undergo post-ET

790 reintensification in (a) reanalyses and (b) *highresSST-present* simulations, and (c) the

791 percentage change simulated for *highresSST-future* experiments. One standard deviation of

792 interannual variability is indicated for each reanalysis and historical model simulation (black

793 lines).

796 Fig. 13. As Fig. 12 but for *hist-1950* and *highres-future* simulations.

3.7 ET latitude 3.7 ET latitude

799 Finally, we assess how ET location responds to both increased resolution and to climate 800 change out to 2050. Distributions of ET-completion latitude were computed from reanalyses 801 and all PRIMAVERA experiments globally as well as well as separately for the basins where 802 models exhibit the best performance: the North Atlantic and Western North Pacific basins 803 (Fig. 14). For highresSST-present, model-simulated ET completion occurs at lower latitudes 804 than in reanalyses (Fig. 14a–c). At high resolution, this is partially rectified: peak frequency 805 occurs at a similar latitude to reanalyses in both the North Atlantic (Fig. 14a) and Western 806 North Pacific (Fig. 14b), but the magnitudes of both peaks are underestimated and 807 occurrences of low-latitude ET (i.e., 10-20 °) remain too frequent. Globally, an equatorward 808 bias in peak frequency across resolutions indicates that ET-completion latitude is less well 809 simulated in other basins (Fig. 14c). These results hold true for hist-1950 simulations (Fig. 810 14d-f), except there are fewer instances of low-latitude ET (i.e., 10–20°), likely reflecting 811 slower development of warm-core structures and subsequent ET in the fully coupled 812 experiments.

813

814 In response to climate change, the ensemble-mean distribution of ET-completion latitude 815 exhibits an equatorward shift in the North Atlantic in the atmosphere-only experiment (Fig. 816 14a), but a poleward shift in the fully coupled simulations (Fig. 14d), with an increased 817 frequency of ET completion particularly between 45-55 °N. In the Western North Pacific, a poleward shift is seen in the latitude of the peak frequency, from ~30 to ~40 °N, in both 818 819 experiments, but little change is simulated at higher latitudes (i.e., > 45 °N). Globally, a small 820 equatorward shift of $\sim 2^{\circ}$ is simulated in atmosphere-only (Fig. 14c) and no meridional shift 821 is seen in coupled simulations (Fig. 14f). Previously, we showed stronger low-level warm-822 core structures are simulated in future (Fig. 6 and Fig. 8), which potentially allow tropical 823 cyclones to propagate farther poleward prior to ET, with the most pronounced signal seen in 824 the North Atlantic. While coupled PRIMAVERA models provide evidence for a poleward 825 shift of ET, climate-change responses globally are equivocal out to 2050.

827

Fig. 14. Ensemble-mean frequency distributions of ET-completion latitude for (solid lines) 828 829 low- and (dashed lines) high-resolution simulations, for both 1950-2014 (teal) and 2015-830 2050 (red). Results are shown for (a-c) atmosphere-only and (d-f) fully coupled experiments for the North Atlantic basin ("NAtl"), Western North Pacific basin ("WNPac") and all global 831 basins combined. 'LR' and 'HR' denote low- and high-resolution distributions, respectively. 832 833 Also shown is the multireanalysis-mean distribution with shading indicating the standard 834 error for the five reanalyses. Note that frequency is plotted as a function of absolute latitude (ϕ) to combine Northern and Southern Hemisphere results in c) and f). 835

837 4. Summary and discussion

838 This paper presents an analysis of ET across five reanalysis datasets and climate simulations

839 performed with five atmosphere-only and full coupled global models participating in CMIP6

840 HighResMIP, focussing on (i) the effect of increased model resolution on the representation

- 841 of ET and (*ii*) the response of ET to climate change.
- 842

843 For all tropical cyclones undergoing ET, we find an increase in the climatological track 844 density simulated at high resolution (~25 km) compared with low resolution (~100 km) in all 845 ocean basins and in both atmosphere-only and fully coupled model configurations (Fig. 1b, 846 d), particularly over Northern Hemisphere western boundary currents. Model error in 847 simulated track density (compared with the multireanalysis-mean track density) is reduced at 848 high resolution in the North Atlantic and Western North Pacific (Fig. 1c, e). The simulated 849 climatological annual-mean count of ET events is closer to that of reanalyses in the ocean 850 basins where ET activity is highest-the North Atlantic and the Western and Eastern North 851 Pacific—in both atmosphere-only (Fig. 3) and fully coupled (Fig. 4) experiments. In these 852 basins, atmosphere-only simulations exhibit skill of ~0.3 in capturing interannual variability 853 in just the subset of tropical cyclones that undergo ET (Table 4), demonstrating that the skill 854 of these models in simulating all tropical cyclones does not remain throughout the complete 855 cyclone lifecycle. Additionally, this level of skill in atmosphere-only simulations is lower 856 than that found for similar-resolution initialised seasonal forecasts (Liu et al., 2018). For the 857 other basins—the Northern Indian and Southern Hemisphere—frequencies simulated by high-resolution models overestimate reanalyses. ET %, however, is similar between low- and 858 859 high-resolution simulations, indicating that the resolution sensitivity of ET is driven by that 860 of tropical cyclone frequency, not by an enhancement of environmental conditions conducive 861 to ET. The seasonal cycle of ET is reproduced by most models, with both the seasonal timing 862 and the magnitude of the seasonal peak simulated more correctly at high-resolution, but the 863 impact of increased atmospheric resolution is model-dependent.

864

865 In general, PRIMAVERA models show clearer inter-model agreement on the climate-change

866 response of ET frequency than on the response of intensity-related metrics. For most basins,

867 models simulate a frequency decrease in response to climate change, except over the North

868 Atlantic, where an increase is projected (Fig. 2). The magnitude of the North Atlantic

869 response is larger in atmosphere-only simulations than in fully coupled integrations and is

870 enhanced by increasing atmospheric model resolution, although interannual variability is 871 pronounced (Fig. 3 and Fig. 4). A significant positive trend in the ensemble-mean fraction of 872 North Atlantic ET events occurring during August-November is found over the period 1950-873 2050 at high-resolution, indicating long-term change in ET seasonality in this basin, but no 874 secular seasonality change is simulated in the Western North Pacific (Fig. 5). North Atlantic 875 seasonality change may result in a higher proportion of tropical cyclones encountering the 876 midlatitude environment during the part of the seasonal cycle when, climatologically, baroclinicity is highest (Hoskins and Hodges, 2019). Opposing future ET responses between 877 878 the North Atlantic and Western North Pacific are potentially underpinned by changes in low-879 level, pre-ET warm-core structures, which strengthen in response to climate change in the 880 North Atlantic but undergo little change in the Western North Pacific (Fig. 6 and Fig. 7). 881 Comparing atmosphere-only with fully coupled simulations, the North Atlantic track density 882 response to climate change is more muted in the fully coupled experiment, which is 883 consistent with a less pronounced climate-change response of pre-ET structures simulated by 884 coupled models. Simulations with higher-resolution, storm-resolving models will open 885 opportunities to further study realistically deep warm-core cyclones.

886

887 Globally, simulated warm-core, pre-ET intensity distributions improve with resolution in 888 most models in both atmosphere-only and fully coupled experiments, better resembling reanalyses (Fig. 10 and Fig. 11). Simulated cold-core, post-ET intensity distributions exhibit 889 890 little sensitivity to resolution across models. Globally, models simulate no clear climate-891 change response of pre- or post-ET intensity distributions, suggesting that, if a signal exists, 892 extending simulations beyond 2050 may be required. Under highresSST-future forcing, some 893 models show decreasing warm-core and increasing cold-core intensities for storms <17ms⁻¹, 894 but the opposite response for storms $\geq 17 \text{ms}^{-1}$. However, this is not reproduced by fully 895 coupled models. Globally, increasing resolution increases the proportion of simulated post-896 ET reintensifications to approximately match reanalyses, but not in all models. Climate-897 change responses are not significant with respect to historical interannual variability and are 898 model-dependent (Fig. 12 and Fig. 13).

899

900 The role of model resolution is becoming clearer, but uncertainties remain. Recent analysis of

901 tropical cyclones the PRIMAVERA simulations (Roberts et al., 2020b) has shown that the

902 high-resolution atmosphere-only models, which typically have lower wind-speed biases,

903 show either reduced future wind speeds or no change. Fully coupled models with the smallest

904 historical biases simulate either no change in future wind speeds or increases of only a few 905 percent. These models therefore project weaker intensity responses to climate change 906 compared with other studies (Knutson et al., 2020). One potential factor is the simplifying 907 aspects of the HighResMIP protocol that are necessary to isolate the role of model resolution, 908 particularly the standardised aerosol forcing and use of a single set of SST and sea-ice 909 boundary conditions shared across models (Haarsma et al., 2016). For ET, the climate-change 910 responses of pre- and post-ET intensity analysed in this study are largely model-dependent, 911 with models exhibiting little systematic change between atmospheric resolutions of ~100 and 912 ~25 km. This suggests that these disparate responses are due to differences in model 913 formulation, but a larger ensemble of models is likely needed to assess this fully. For post-ET 914 reintensification, increasing atmospheric resolution appears to result in more consistent 915 model behaviour, but resolution remains a key research issue because several models still 916 underestimate tropical cyclone intensities at ~25 km grid spacing (Roberts et al., 2020a) and 917 further improvements are anticipated by increasing resolution to at least 10 km (Haarsma, 918 2021; Judt et al., 2021). To obtain samples of ET events comparable to this study, however, 919 running sufficiently long simulations (and / or a sufficiently large ensemble) at these storm-920 resolving resolutions, even without coupling to an ocean model, remains a significant 921 computational challenge (Roberts et al., 2020b).

922

923 Additional outstanding questions and uncertainties remain. A poleward expansion of Hadley 924 circulation termini is projected in a warmer climate (Lu et al., 2007), which implies 925 meridional shifts in tropical storm tracks (Sharmila and Walsh, 2018; Studholme and Gulev, 926 2018). However, the impacts of this large-scale change on the spatial distribution and 927 frequency of ET are equivocal. The poleward expansion of regions conducive to tropical 928 cyclone genesis and development that results from an increase in Hadley cell width will 929 reduce the mean displacement required for tropical cyclones to reach the midlatitude 930 baroclinic zone, increasing the likelihood of ET. However, a poleward shift of the midlatitude 931 storm track in response to warming has been projected (Bengtsson et al., 2006), which in turn 932 shifts environmental conditions conducive to extratropical transition poleward, potentially 933 offsetting Hadley-driven changes. Here, we find minimal changes in ET-completion latitude 934 out to 2050 (Fig. 14), suggesting cancellation in the net effect of these competing large-scale 935 changes. Further work is needed to establish the time of emergence of any meridional shift 936 and will require dedicated studies, exploring a range of climate-change scenarios with models run at resolutions sufficiently high to adequately represent both tropical cyclones and ET—at
least 25 km, according to our results.

939

940 This study provides evidence that pre-ET cyclone intensity and warm-core strength exert 941 influence over future changes in ET statistics and seasonality. Analysis of higher-resolution 942 and storm-resolving models (at least 10 km) will help establish whether these results hold 943 true for models able to reproduce more realistic tropical-cyclone maximum intensities, 944 including rapidly intensifying systems. Additionally, there is a need to contextualise future projections of ET, accounting for natural variability, and in particular the roles of regional 945 946 (e.g., Atlantic Multidecadal Variability) and global (i.e., El Niño-Southern Oscillation) 947 modes of variability on ET frequency. Dedicated sensitivity experiments will be required, 948 and such a study is forthcoming for the North Atlantic, where this work has identified future 949 changes that are important and often unique to this basin. Finally, investigation of secular 950 change in ET seasonality, as seen in the North Atlantic in this study, will be important 951 globally because future modification to the interval between the seasonal maximum of ET 952 occurrence and wintertime storminess may engender considerable changes in risk for 953 populous midlatitude regions.

955 Data and code availability

- 956 All reanalysis data for tropical-cyclone tracking (vorticity, wind fields, and sea-level
- 957 pressure) and cyclone phase-space analysis (geopotential) are available from rda.ucar.edu or
- 958 disc.gsfc.nasa.gov. Model data are available from Earth System Grid Foundation nodes
- 959 (esgf.llnl.gov). TRACK is available for download at gitlab.act.reading.ac.uk/track and the
- 960 track datasets used in this paper may be downloaded from
- 961 catalogue.ceda.ac.uk/uuid/e82a62d926d7448696a2b60c1925f811. Data analysis and
- 962 visualisation code is available from the lead author upon request (hrcm.ceda.ac.uk/contact).
- 963

964 Acknowledgements

965 All authors received financial support from the PRIMAVERA project (European Commission Horizon2020 grant agreement 641727) with data access via JASMIN 966 967 (jasmin.ac.uk) supported by IS-ENES3 (grant agreement 824084). AJB also received support 968 from National Environmental Research Council (NERC) national capability grant for the 969 North Atlantic Climate System: Integrated study (ACSIS) program (grants NE/N018001/1, 970 NE/N018044/1, NE/N018028/1, and NE/N018052/1). KL received funding from the German 971 Federal Ministry of Education and Research (BMBF) through JPI Climate / JPI Oceans 972 NextG-Climate Science-ROADMAP (FKZ: 01LP2002A). The authors are grateful to the 973 editor and to three anonymous reviewers, whose recommendations improved this paper.

974

975 Author contributions

AJB, PLV, RJH and MJR conceived the study. Simulations were performed by MJR, ET,
KL, CDR, and LT. Output data were managed by JS. MJR performed the cyclone tracking.
BV computed Eady growth rate. AJB undertook cyclone phase-space analysis and all other
data analyses, figure preparation, and wrote the manuscript. All authors provided input in
interpreting results and approved the final manuscript.

981

982 **Competing interests**

983 The authors declare no competing interests.

985 **References**

- 986 Arnott, J. M., J. L. Evans, and F. Chiaromonte, 2004: Characterization of Extratropical
- 987 Transition Using Cluster Analysis. *Monthly Weather Review* 132, 2916-2937
- 988 Baatsen, M., R. J. Haarsma, A. J. Van Delden, and H. de Vries, 2015: Severe Autumn storms
- 989 in future Western Europe with a warmer Atlantic Ocean. *Climate Dynamics* 45, 949-964
- 990 Baker, A. J., K. I. Hodges, R. K. H. Schiemann, and P. L. Vidale, 2021: Historical variability
- and lifecycles of North Atlantic midlatitude cyclones originating in the tropics. *Journal of*
- 992 *Geophysical Research: Atmospheres* **126**, e2020JD033924
- 993 Balaguru, K., S. Taraphdar, L. R. Leung, G. R. Foltz, and J. A. Knaff, 2014: Cyclone-cyclone
- 994 interactions through the ocean pathway. *Geophysical Research Letters* **41**, 6855-6862
- 995 Barcikowska, M., F. Feser, and H. von Storch, 2012: Usability of Best Track Data in Climate
- 996 Statistics in the Western North Pacific. *Monthly Weather Review* 140, 2818-2830
- Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm Tracks and Climate Change. *Journal of Climate* 19, 3518-3543
- 999 Bieli, M., S. J. Camargo, A. H. Sobel, J. L. Evans, and T. Hall, 2019: A Global Climatology
- of Extratropical Transition. Part I: Characteristics across Basins. *Journal of Climate* 32,
 3557-3582
- 1002 Bieli, M., A. H. Sobel, S. J. Camargo, H. Murakami, and G. A. Vecchi, 2020: Application of
 - 1003 the Cyclone Phase Space to Extratropical Transition in a Global Climate Model. *Journal of*
 - 1004 *Advances in Modeling Earth Systems* **12**, e2019MS001878
- 1005 Blake, E. S., T. B. Kimberlain, R. J. Berg, C. J.P., and J. L. Beven II, 2013: Hurricane Sandy
- 1006 (AL182012). National Hurricane Center Tropical Cyclone Report,
- 1007 <u>https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf</u>
- 1008 Chang, E. K. M., and Y. Guo, 2007: Is the number of North Atlantic tropical cyclones
- 1009 significantly underestimated prior to the availability of satellite observations? *Geophysical*
- 1010 *Research Letters* **34**, L14801

- 1011 Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning
- 1012 Center Tropical Cyclone Best-Tracks, 1945-2000. United States Naval Research Laboratory,
- 1013 NRL/MR/7540-02-16.
- 1014 Davis, C. A., 2018: Resolving Tropical Cyclone Intensity in Models. *Geophysical Research*
- 1015 *Letters* **45**, 2082-2087
- 1016 Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.
- 1017 A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J.
- 1018 Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B.
- 1019 Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P.
- 1020 McNally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey, P. de Rosnay, C.
- 1021 Tavolato, J. N. Thépaut, and F. Vitart, 2011: The ERA-Interim reanalysis: configuration and
- 1022 performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological*
- 1023 Society 137, 553-597
- 1024 Dekker, M. M., R. J. Haarsma, H. d. Vries, M. Baatsen, and A. J. v. Delden, 2018:
- 1025 Characteristics and development of European cyclones with tropical origin in reanalysis data.
 1026 *Climate Dynamics* **50**, 445-455
- 1027 Delgado, S., C. W. Landsea, and H. Willoughby, 2018: Reanalysis of the 1954–63 Atlantic
- 1028 Hurricane Seasons. Journal of Climate **31**, 4177-4192
- 1029 Evans, C., K. M. Wood, S. D. Aberson, H. M. Archambault, S. M. Milrad, L. F. Bosart, K. L.
- 1030 Corbosiero, C. A. Davis, J. R. D. Pinto, J. Doyle, C. Fogarty, T. J. G. Jr., C. M. Grams, K. S.
- 1031 Griffin, J. Gyakum, R. E. Hart, N. Kitabatake, H. S. Lentink, R. McTaggart-Cowan, W.
- 1032 Perrie, J. F. D. Quinting, C. A. Reynolds, M. Riemer, E. A. Ritchie, Y. Sun, and F. Zhang,
- 1033 2017: The Extratropical Transition of Tropical Cyclones. Part I: Cyclone Evolution and
- 1034 Direct Impacts. *Monthly Weather Review* 145, 4317-4344
- 1035 Grams, C. M., and S. R. Blumer, 2015: European high-impact weather caused by the
- 1036 downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011).
- 1037 Geophysical Research Letters 42, 8738-8748
- 1038 Gutjahr, O., D. Putrasahan, K. Lohmann, J. H. Jungclaus, J. S. von Storch, N. Brüggemann,
- 1039 H. Haak, and A. Stössel, 2019: Max Planck Institute Earth System Model (MPI-ESM1.2) for

- the High-Resolution Model Intercomparison Project (HighResMIP). *Geosci. Model Dev.* 12,
 3241-3281
- 1042 Haarsma, R., 2021: European Windstorm Risk of Post-Tropical Cyclones and the Impact of
- 1043 Climate Change. *Geophysical Research Letters* **48**, e2020GL091483
- 1044 Haarsma, R., M. Acosta, R. Bakhshi, P. A. Bretonnière, L. P. Caron, M. Castrillo, S. Corti, P.
- 1045 Davini, E. Exarchou, F. Fabiano, U. Fladrich, R. Fuentes Franco, J. García-Serrano, J. von
- 1046 Hardenberg, T. Koenigk, X. Levine, V. L. Meccia, T. van Noije, G. van den Oord, F. M.
- 1047 Palmeiro, M. Rodrigo, Y. Ruprich-Robert, P. Le Sager, E. Tourigny, S. Wang, M. van Weele,
- 1048 and K. Wyser, 2020: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR -
- 1049 description, model computational performance and basic validation. *Geosci. Model Dev.* 13,
- 1050 3507-3527
- 1051 Haarsma, R. J., W. Hazeleger, C. Severijns, H. Vries, A. Sterl, R. Bintanja, G. J. Oldenborgh,
- and H. W. Brink, 2013: More hurricanes to hit western Europe due to global warming.
- 1053 Geophysical Research Letters 40, 1783-1788
- 1054 Haarsma, R. J., M. J. Roberts, P. L. Vidale, C. A. Senior, A. Bellucci, Q. Bao, P. Chang, S.
- 1055 Corti, N. S. Fučkar, V. Guemas, J. von Hardenberg, W. Hazeleger, C. Kodama, T. Koenigk,
- 1056 L. R. Leung, J. Lu, J. J. Luo, J. Mao, M. S. Mizielinski, R. Mizuta, P. Nobre, M. Satoh, E.
- 1057 Scoccimarro, T. Semmler, J. Small, and J. S. von Storch, 2016: High Resolution Model
- 1058 Intercomparison Project (HighResMIP v1.0) for CMIP6. *Geoscientific Model Development* 9,
- 1059 4185-4208
- 1060 Hagen, A. B., D. Strahan-Sakoskie, and C. Luckett, 2012: A Reanalysis of the 1944–53
- 1061 Atlantic Hurricane Seasons—The First Decade of Aircraft Reconnaissance. Journal of
- 1062 *Climate* **25**, 4441-4460
- 1063 Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability Associated with the
- 1064 Downstream Impacts of the Extratropical Transition of Tropical Cyclones: Methodology and
- a Case Study of Typhoon Nabi (2005). *Monthly Weather Review* **136**, 3205-3225
- 1066 Hart, R. E., 2003: A Cyclone Phase Space Derived from Thermal Wind and Thermal
- 1067 Asymmetry. Monthly Weather Review 131, 585-616

- 1068 Hart, R. E., and J. L. Evans, 2001: A Climatology of the Extratropical Transition of Atlantic
- 1069 Tropical Cyclones. Journal of Climate 14, 546-564
- 1070 Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic Composites of the Extratropical
- 1071 Transition Life Cycle of North Atlantic Tropical Cyclones: Factors Determining
- 1072 Posttransition Evolution. Monthly Weather Review 134, 553-578
- 1073 Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas,
- 1074 C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo,
- 1075 P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M.
- 1076 Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S.
- 1077 Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G.
- 1078 Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut, 2020: The
- 1079 ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society* 146, 1999-
- 1080 2049
- Hodges, K. I., 1995: Feature Tracking on the Unit Sphere. *Monthly Weather Review* 123,
 3458-3465
- Hodges, K. I., 1996: Spherical Nonparametric Estimators Applied to the UGAMP Model
 Integration for AMIP. *Monthly Weather Review* 124, 2914-2932
- Hodges, K. I., 1999: Adaptive Constraints for Feature Tracking. *Monthly Weather Review*1086 127, 1362-1373
- 1087 Hodges, K. I., A. Cobb, and P. L. Vidale, 2017: How Well Are Tropical Cyclones
- 1088 Represented in Reanalysis Datasets? Journal of Climate 30, 5243-5264
- 1089 Hoskins, B. J., and K. I. Hodges, 2019: The Annual Cycle of Northern Hemisphere Storm
- 1090 Tracks. Part I: Seasons. Journal of Climate 32, 1743-1760
- 1091 Hoskins, B. J., and P. J. Valdes, 1990: On the Existence of Storm-Tracks. *Journal of the*
- 1092 Atmospheric Sciences 47, 1854-1864
- 1093 Ito, R., T. Takemi, and O. Arakawa, 2016: A Possible Reduction in the Severity of Typhoon
- 1094 Wind in the Northern Part of Japan under Global Warming: A Case Study. SOLA 12, 100-105

- 1095 Jones, S. C., P. A. Harr, J. Abraham, L. F. Bosart, P. J. Bowyer, J. L. Evans, D. E. Hanley, B.
- 1096 N. Hanstrum, R. E. Hart, F. Lalaurette, M. R. Sinclair, R. K. Smith, and C. Thorncroft, 2003:
- 1097 The Extratropical Transition of Tropical Cyclones: Forecast Challenges, Current
- 1098 Understanding, and Future Directions. *Weather and Forecasting* 18, 1052-1092
- 1099 Judt, F., D. Klocke, R. Rios-Berrios, B. Vannière, F. Ziemen, L. Auger, J. Biercamp, C.
- 1100 Bretherton, X. Chen, P. Düben, C. Hohenegger, M. Khairoutdinov, C. Kodama, L.
- 1101 Kornblueh, S.-J. Lin, M. Nakano, P. Neumann, W. Putman, N. Röber, M. Roberts, M. Satoh,
- 1102 R. Shibuya, B. Stevens, P. L. Vidale, N. Wedi, and L. Zhou, 2021: Tropical Cyclones in
- 1103 Global Storm-Resolving Models. *Journal of the Meteorological Society of Japan. Ser. II* 99,
- 1104 579-602
- 1105 Jung, C., and G. M. Lackmann, 2021: The Response of Extratropical Transition of Tropical
- 1106 Cyclones to Climate Change: Quasi-Idealized Numerical Experiments. Journal of Climate
- 1107 **34**, 4361-4381
- 1108 Keller, J. H., C. M. Grams, M. Riemer, H. M. Archambault, L. Bosart, J. D. Doyle, J. L.
- 1109 Evans, T. J. G. Jr., K. Griffin, P. A. Harr, N. Kitabatake, R. McTaggart-Cowan, F. Pantillon,
- 1110 J. F. Quinting, C. A. Reynolds, E. A. Ritchie, R. D. Torn, and F. Zhang, 2019: The
- 1111 Extratropical Transition of Tropical Cyclones. Part II: Interaction with the Midlatitude Flow,
- 1112 Downstream Impacts, and Implications for Predictability. Monthly Weather Review 147,
- 1113 1077-1106
- 1114 Kitabatake, N., 2011: Climatology of Extratropical Transition of Tropical Cyclones in the
- 1115 Western North Pacific Defined by Using Cyclone Phase Space. Journal of the
- 1116 Meteorological Society of Japan. Ser. II 89, 309-325
- 1117 Klaver, R., R. Haarsma, P. L. Vidale, and W. Hazeleger, 2020: Effective resolution in high
- resolution global atmospheric models for climate studies. *Atmospheric Science Letters* 21,
 e952
- 1120 Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical Transition of Western North
- 1121 Pacific Tropical Cyclones: Midlatitude and Tropical Cyclone Contributions to
- 1122 Reintensification. Monthly Weather Review 130, 2240-2259

- 1123 Knutson, T., S. J. Camargo, J. C. L. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra,
- 1124 M. Satoh, M. Sugi, K. Walsh, and L. Wu, 2020: Tropical Cyclones and Climate Change
- 1125 Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the
- 1126 *American Meteorological Society* **101**, E303-E322
- 1127 Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori,
- 1128 C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis:
- 1129 General Specifications and Basic Characteristics. Journal of the Meteorological Society of
- 1130 Japan. Ser. II 93, 5-48
- 1131 Kofron, D. E., E. A. Ritchie, and J. S. Tyo, 2010: Determination of a Consistent Time for the
- 1132 Extratropical Transition of Tropical Cyclones. Part I: Examination of Existing Methods for
- 1133 Finding "ET Time". Monthly Weather Review 138, 4328-4343
- 1134 Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally
- 1135 consistent reanalysis of hurricane variability and trends. *Geophysical Research Letters* **34**
- Lanzante, J. R., 2019: Uncertainties in tropical-cyclone translation speed. *Nature* 570, E6E15
- 1138 Laurila, T. K., V. A. Sinclair, and H. Gregow, 2019: The Extratropical Transition of
- 1139 Hurricane Debby (1982) and the Subsequent Development of an Intense Windstorm over
- 1140 Finland. Monthly Weather Review 148, 377-401
- 1141 Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The Present-Day Simulation and
- 1142 Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North
- 1143 Atlantic. Journal of Climate 30, 2739-2756
- 1144 Liu, M., G. A. Vecchi, J. A. Smith, H. Murakami, R. Gudgel, and X. Yang, 2018: Towards
- 1145 Dynamical Seasonal Forecast of Extratropical Transition in the North Atlantic. *Geophysical*
- 1146 Research Letters 45, 12,602-612,609
- 1147 Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global
- 1148 warming. Geophysical Research Letters 34

- 1149 Manganello, J. V., B. A. Cash, K. I. Hodges, and J. L. Kinter, 2019: Seasonal forecasts of
- 1150 North Atlantic tropical cyclone activity in the North American Multi-Model Ensemble.
- 1151 *Climate Dynamics* **53**, 7169-7184
- 1152 Michaelis, A. C., and G. M. Lackmann, 2019: Climatological Changes in the Extratropical
- 1153 Transition of Tropical Cyclones in High-Resolution Global Simulations. Journal of Climate
- 1154 **32**, 8733-8753
- 1155 Michaelis, A. C., and G. M. Lackmann, 2021: Storm-Scale Dynamical Changes of
- 1156 Extratropical Transition Events in Present-Day and Future High-Resolution Global
- 1157 Simulations. Journal of Climate 34, 5037-5062
- 1158 Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5
- 1159 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model
- 1160 Dev. 8, 1339-1356
- Moon, I.-J., S.-H. Kim, and J. C. L. Chan, 2019: Climate change and tropical cyclone trend. *Nature* 570, E3-E5
- 1163 Moreno-Chamarro, E., L. P. Caron, S. Loosveldt Tomas, J. Vegas-Regidor, O. Gutjahr, M. P.
- 1164 Moine, D. Putrasahan, C. D. Roberts, M. J. Roberts, R. Senan, L. Terray, E. Tourigny, and P.
- 1165 L. Vidale, 2022: Impact of increased resolution on long-standing biases in HighResMIP-
- 1166 PRIMAVERA climate models. Geosci. Model Dev. 15, 269-289
- 1167 Murakami, H., 2014: Tropical cyclones in reanalysis data sets. *Geophysical Research Letters*1168 41, 2133-2141
- 1169 Rantanen, M., J. Räisänen, V. A. Sinclair, J. Lento, and H. Järvinen, 2020: The extratropical
- 1170 transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and
- 1171 vorticity equation. Tellus A: Dynamic Meteorology and Oceanography 72, 1-26
- 1172 Roberts, C. D., R. Senan, F. Molteni, S. Boussetta, M. Mayer, and S. P. E. Keeley, 2018:
- 1173 Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS
- 1174 cycle 43r1) for HighResMIP. *Geosci. Model Dev.* **11**, 3681-3712
- 1175 Roberts, M. J., A. Baker, E. W. Blockley, D. Calvert, A. Coward, H. T. Hewitt, L. C.
- 1176 Jackson, T. Kuhlbrodt, P. Mathiot, C. D. Roberts, R. Schiemann, J. Seddon, B. Vannière, and

- 1177 P. L. Vidale, 2019: Description of the resolution hierarchy of the global coupled HadGEM3-
- 1178 GC3.1 model as used in CMIP6 HighResMIP experiments. *Geosci. Model Dev.* **12**, 4999-
- 1179 5028
- 1180 Roberts, M. J., J. Camp, J. Seddon, P. L. Vidale, K. Hodges, B. Vanniere, J. Mecking, R.
- 1181 Haarsma, A. Bellucci, E. Scoccimarro, L.-P. Caron, F. Chauvin, L. Terray, S. Valcke, M.-P.
- 1182 Moine, D. Putrasahan, C. Roberts, R. Senan, C. Zarzycki, and P. Ullrich, 2020a: Impact of
- 1183 Model Resolution on Tropical Cyclone Simulation Using the HighResMIP-PRIMAVERA
- 1184 Multimodel Ensemble. Journal of Climate 33, 2557-2583
- 1185 Roberts, M. J., J. Camp, J. Seddon, P. L. Vidale, K. Hodges, B. Vannière, J. Mecking, R.
- 1186 Haarsma, A. Bellucci, E. Scoccimarro, L.-P. Caron, F. Chauvin, L. Terray, S. Valcke, M.-P.
- 1187 Moine, D. Putrasahan, C. D. Roberts, R. Senan, C. Zarzycki, P. Ullrich, Y. Yamada, R.
- 1188 Mizuta, C. Kodama, D. Fu, Q. Zhang, G. Danabasoglu, N. Rosenbloom, H. Wang, and L.
- 1189 Wu, 2020b: Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP
- 1190 Multimodel Ensemble. Geophysical Research Letters 47, e2020GL088662
- 1191 Roberts, M. J., P. L. Vidale, M. S. Mizielinski, M.-E. Demory, R. Schiemann, J. Strachan, K.
- 1192 Hodges, R. Bell, and J. Camp, 2015: Tropical Cyclones in the UPSCALE Ensemble of High-
- 1193 Resolution Global Climate Models. Journal of Climate 28, 574-596
- 1194 Saha, S., S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H.-y.
- 1195 Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H. v. d. Dool, Q. Zhang, W.
- 1196 Wang, M. Chen, and E. Becker, 2014: The NCEP Climate Forecast System Version 2.
- 1197 Journal of Climate 27, 2185-2208
- 1198 Sainsbury, E. M., R. K. H. Schiemann, K. I. Hodges, L. C. Shaffrey, A. J. Baker, and K. T.
- 1199 Bhatia, 2020: How Important Are Post-Tropical Cyclones for European Windstorm Risk?
- 1200 Geophysical Research Letters 47, e2020GL089853
- 1201 Schreck III, C. J., K. R. Knapp, and J. P. Kossin, 2014: The Impact of Best Track
- 1202 Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS. Monthly Weather
- 1203 Review 142, 3881-3899
- 1204 Sharmila, S., and K. J. E. Walsh, 2018: Recent poleward shift of tropical cyclone formation
- 1205 linked to Hadley cell expansion. *Nature Climate Change* 8, 730-736

- 1206 Stewart, S. R., 2018: Hurricane Ophelia (AL172017). National Hurricane Center Tropical
- 1207 Cyclone Report, www.nhc.noaa.gov/data/tcr/AL172017 Ophelia.pdf
- 1208 Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating
- 1209 Global Tropical Cyclone Activity with a Hierarchy of AGCMs: The Role of Model
- 1210 Resolution. Journal of Climate 26, 133-152
- 1211 Studholme, J., A. V. Fedorov, S. K. Gulev, K. Emanuel, and K. Hodges, 2022: Poleward
- 1212 expansion of tropical cyclone latitudes in warming climates. *Nature Geoscience* 15, 14-28
- 1213 Studholme, J., and S. Gulev, 2018: Concurrent Changes to Hadley Circulation and the
- 1214 Meridional Distribution of Tropical Cyclones. *Journal of Climate* **31**, 4367-4389
- 1215 Studholme, J., K. I. Hodges, and C. M. Brierley, 2015: Objective determination of the
- 1216 extratropical transition of tropical cyclones in the Northern Hemisphere. *Tellus A: Dynamic*
- 1217 Meteorology and Oceanography 67, 24474
- 1218 Vannière, B., M. Roberts, P. L. Vidale, K. Hodges, M.-E. Demory, L.-P. Caron, E.
- 1219 Scoccimarro, L. Terray, and R. Senan, 2020: The Moisture Budget of Tropical Cyclones in
- 1220 HighResMIP Models: Large-Scale Environmental Balance and Sensitivity to Horizontal
- 1221 Resolution. Journal of Climate 33, 8457-8474
- 1222 Vecchi, G. A., T. L. Delworth, H. Murakami, S. D. Underwood, A. T. Wittenberg, F. Zeng,
- 1223 W. Zhang, J. W. Baldwin, K. T. Bhatia, W. Cooke, J. He, S. B. Kapnick, T. R. Knutson, G.
- 1224 Villarini, K. van der Wiel, W. Anderson, V. Balaji, J. H. Chen, K. W. Dixon, R. Gudgel, L.
- 1225 M. Harris, L. Jia, N. C. Johnson, S.-J. Lin, M. Liu, C. H. J. Ng, A. Rosati, J. A. Smith, and X.
- 1226 Yang, 2019: Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution,
- synoptic variability and background climate changes. *Climate Dynamics* 53, 5999-6033
- 1228 Vecchi, G. A., and T. R. Knutson, 2008: On Estimates of Historical North Atlantic Tropical
- 1229 Cyclone Activity. Journal of Climate 21, 3580-3600
- 1230 Vecchi, G. A., and T. R. Knutson, 2011: Estimating Annual Numbers of Atlantic Hurricanes
- 1231 Missing from the HURDAT Database (1878–1965) Using Ship Track Density. *Journal of*
- 1232 *Climate* **24**, 1736-1746

- 1233 Velden, C., B. Harper, F. Wells, J. L. Beven, R. Zehr, T. Olander, M. Mayfield, C. C. Guard,
- 1234 M. Lander, R. Edson, L. Avila, A. Burton, M. Turk, A. Kikuchi, A. Christian, P. Caroff, and
- 1235 P. McCrone, 2006: The Dvorak Tropical Cyclone Intensity Estimation Technique: A
- 1236 Satellite-Based Method that Has Endured for over 30 Years. Bulletin of the American
- 1237 Meteorological Society 87, 1195-1210
- 1238 Vidale, P. L., K. Hodges, B. Vannière, P. Davini, M. J. Roberts, K. Strommen, A.
- 1239 Weisheimer, E. Plesca, and S. Corti, 2021: Impact of Stochastic Physics and Model
- 1240 Resolution on the Simulation of Tropical Cyclones in Climate GCMs. *Journal of Climate* **34**,
- 1241 4315-4341
- 1242 Voldoire, A., D. Saint-Martin, S. Sénési, B. Decharme, A. Alias, M. Chevallier, J. Colin, J. F.
- 1243 Guérémy, M. Michou, M. P. Moine, P. Nabat, R. Roehrig, D. Salas y Mélia, R. Séférian, S.
- 1244 Valcke, I. Beau, S. Belamari, S. Berthet, C. Cassou, J. Cattiaux, J. Deshayes, H. Douville, C.
- 1245 Ethé, L. Franchistéguy, O. Geoffroy, C. Lévy, G. Madec, Y. Meurdesoif, R. Msadek, A.
- 1246 Ribes, E. Sanchez-Gomez, L. Terray, and R. Waldman, 2019: Evaluation of CMIP6 DECK
- 1247 Experiments With CNRM-CM6-1. Journal of Advances in Modeling Earth Systems 11, 2177-
- 1248 2213
- 1249 Weinkle, J., C. Landsea, D. Collins, R. Musulin, R. P. Crompton, P. J. Klotzbach, and R.
- 1250 Pielke, 2018: Normalized hurricane damage in the continental United States 1900–2017.
- 1251 Nature Sustainability 1, 808-813
- 1252 Williams, K. D., D. Copsey, E. W. Blockley, A. Bodas-Salcedo, D. Calvert, R. Comer, P.
- 1253 Davis, T. Graham, H. T. Hewitt, R. Hill, P. Hyder, S. Ineson, T. C. Johns, A. B. Keen, R. W.
- 1254 Lee, A. Megann, S. F. Milton, J. G. L. Rae, M. J. Roberts, A. A. Scaife, R. Schiemann, D.
- 1255 Storkey, L. Thorpe, I. G. Watterson, D. N. Walters, A. West, R. A. Wood, T. Woollings, and
- 1256 P. K. Xavier, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1)
- 1257 Configurations. Journal of Advances in Modeling Earth Systems 10, 357-380
- 1258 Wood, K. M., and E. A. Ritchie, 2014: A 40-Year Climatology of Extratropical Transition in
- 1259 the Eastern North Pacific. *Journal of Climate* **27**, 5999-6015
- 1260 Zarzycki, C. M., D. R. Thatcher, and C. Jablonowski, 2017: Objective tropical cyclone
- 1261 extratropical transition detection in high-resolution reanalysis and climate model data.
- 1262 Journal of Advances in Modeling Earth Systems 9, 130-148

- 1263 Zhu, X., L. Wu, and Q. Wang, 2018: Extratropical Transition and Re-Intensification of
- 1264 Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism
- 1265 Analysis. Journal of Ocean University of China 17, 461-476

Supplementary information

Extratropical transition of tropical cyclones in a multiresolution ensemble of atmosphere-only and fully coupled global climate models

Alexander J. Baker^{1,*}, Malcolm J. Roberts², Pier Luigi Vidale¹, Kevin I. Hodges¹, Jon Seddon², Benoît Vannière¹, Rein J. Haarsma³, Reinhard Schiemann¹, Dimitris Kapetanakis³, Etienne Tourigny⁴, Katja Lohmann⁵, Christopher D. Roberts⁶, and Laurent Terray⁷

¹ National Centre for Atmospheric Science and Department of Meteorology, University of Reading, Reading, Berkshire, UK

- ² Met Office Hadley Centre, Exeter, Devon, UK
- ³ Koninklijk Nederlands Meteorologisch Instituut, De Bilt, The Netherlands
- ⁴ Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- ⁵ Max Planck Institut für Meteorologie, Hamburg, Germany
- ⁶ European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
- ⁷ Climat, Environnement, Couplages et Incertitudes, Centre Européen de Recherche et de
- Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
- * alexander.baker@reading.ac.uk

Corresponding author: Dr Alexander J. Baker

National Centre for Atmospheric Science Department of Meteorology, University of Reading Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6ES, UK +44 (0) 118 377 762

S1. Methodological considerations

Two important methodological considerations in ET studies are discussed in this section: (*i*) the cyclone-tracking algorithm and (*ii*) the sensitivity of ET location to how ET is identified.

S1.1 Cyclone-tracking algorithm

Recent studies of tropical cyclones in reanalyses and simulated by climate models (e.g., Roberts et al., 2020a; Vannière et al., 2020) compared results obtained using TRACK with TempestExtremes, a sea-level-pressure-based tracking algorithm (Ullrich and Zarzycki, 2017), to show that, broadly, their results are robust to algorithm choice. However, tracks output by TempestExtremes represent only cyclones' warm-core stages, and as such few identified systems undergo ET (Fig. S1). Therefore, supplementary algorithms are required to extend cyclone tracks generated using TempestExtremes into the midlatitudes (e.g., Michaelis and Lackmann, 2019; Zarzycki et al., 2017), but the extent to which results are sensitive to the additional methodological choices necessary in this approach is unclear. In this study, use of TRACK, a vorticity-based algorithm that satisfactorily yields complete cyclone lifecycles based on a single set of identification criteria, is clearly advantageous in our analysis of ET statistics. Once comparable whole-lifecycle tracks, including post-tropical evolution, from multiple, independent algorithms are available, sensitivity analysis should be a research priority.

Fig. S1. Multi-reanalysis-mean track density in TCs undergoing ET identified by two featuretracking algorithms: (top) TRACK ('track148b") and (middle) TempestExtremes ("TempExt"). We also show (bottom) the inter-algorithm difference (i.e., TRACK minus TempestExtremes).

S1.2 Sensitivity of ET location to identification method

Recent analysis of ERA5 shows that phase-space-based identification of post-tropical structures compares well with other methods in terms of the number of ET events identified (Sainsbury et al., 2020) and phase-space methodologies are the most common across studies of ET. However, no consensus approach to identifying ET onset and completion based on phase-space parameters exists. Previous studies have applied differing absolute thresholds to identify changes in cyclone thermal symmetry and employed additional criteria, such as intensity thresholds and temporal smoothing of phase-space series. These modifications have little impact on the number of identified events, but the location of ET may be sensitive to how phase-space parameters are treated. We conducted an overview assessment of this in reanalyses by mapping the mean ET-completion locations for various identification approaches (Fig. S2). In the North Atlantic and Western North Pacific, a definition of ET where both ET onset and completion are identified by single-timestep B or T_L changes ('conventional') yields the lowestlatitude ET completion (Fig. S2). In contrast, applying a prior warm-core test, as in the previous section (4.2), yields ET completion in the range of 30–40 ° latitude, coinciding with the known centres of baroclinicity associated with western boundary currents. Other proposed modifications of ET identification—imposing a v_{max} threshold, applying a temporal smoothing, and requiring B and T_L criteria are met for consecutive timesteps—yield locations in between these two approaches, with greater overlap seen in the Western North Pacific (Fig. S2). These results help quantify the sensitivity of ET location to various methodological choices, and the results presented in Fig. 16 are necessarily sensitive to such choices, as are other published analyses. The method should fit the research question. When ET completion is identified postwarm core, it is broadly co-located with climatological, basin-high values of Eady growth rate (Fig. S2), indicating that this approach may be preferable for analyses of ET location, particularly in the North Atlantic.

In addition, application to climate models presents additional concerns. Bieli et al. (2020) identified grid-scale convective updrafts in 50-km-resolution simulations with the Forecastoriented Low Ocean Resolution (FLOR) version of the GFDL CM2.5 that triggered erroneous diagnoses of warm- and cold-core cyclone structures. These were rectified by computing storm-centric 95th-percentile geopotential (rather than local maxima) and by applying a temporal smoothing to phase-space trajectories. Although these issues are not pertinent to all models, understanding the effect of convection-parameterisation schemes on geopotential maxima and phase-space results, particularly T_U , requires a systematic investigation across multiple high-resolution models, contrasting simulations run using parameterised versus explicitly resolved convection.

Fig. S2. Sensitivity of ET-completion location in reanalyses to published methodological approaches. Results are shown for (a) the North Atlantic ('NAtl') and (b) the Western North Pacific ('WNPac'). 'Conventional' (square markers) refers to the commonly used definition of ET completion: the first timestep at which both *B* and T_L indicate an extratropical structure. The other markers indicate a single modification of this definition. 'S': a 24-hour temporal smoothing of *B* and T_L trajectories was applied. 'M': ET completion is only identified where *B* and T_L criteria are satisfied for four consecutive timesteps. 'V': ET completion is only

identified for storms whose lifetime-maximum intensity exceeds 17 ms⁻¹. 'WC': a warm core lasting for at least two days is first identified for each storm and ET completion is identified thereafter. Overlain are contours of climatological-mean Eady growth rate maxima for August–November in units of day⁻¹, computed using ERA5 wind and geopotential data using Eq. 4.

Fig. S3. Historical ensemble-mean track density simulated in low- and high-resolution (a–b) *highresSST-present* and (c–d) *hist-1950* experiments. Unit is cyclone transits per year per unit area (within a 5° geodesic radius of storm centres). Colour scale is the same as in Fig. 1a.

Fig. S4. Historical ensemble-mean track density biases (compared with multireanalysis-mean track density) simulated in low- and high-resolution (a–b) *highresSST-present* and (c–d) *hist-1950* experiments. Unit is cyclone transits per year per unit area (within a 5° geodesic radius of storm centres). Colour scale is the same as in Fig. 1c, e.

Fig. S5. Historical ensemble-mean August-November SST difference between low- and high-resolution *hist-1950* simulations. The low- and high-resolution sub-ensembles correspond to those of Fig. 1. Note the non-linear colour scale.

Fig. S6. Historical seasonal cycle of ET % in the (a) North Atlantic and (b) Western North Pacific basins. Shown are the multireanalysis mean (black with shading indicating standard error) and low- (solid) and high-resolution (dashed) *highresSST-present* simulations. (c–d) The difference between the future and historical seasonal cycles in ET % (i.e., *highresSST-future* minus *highresSST-present*). HadGEM3-GC3.1-MM is indicated by the dot-dashed line.

Fig. S7. Same as Fig. S6 but for fully coupled simulations. HadGEM3-GC3.1-MM and -HH are indicated by the dot-dashed and dotted lines, respectively.

Fig. S8. Secular change in the ensemble-mean proportion of ET events occurring during August–November in reanalyses (red) and in low- (pale blue) and high-resolution (dark blue) fully coupled simulations for (a) the North Atlantic and (b) the Western North Pacific basins. Shading shows the 95 % confidence interval for the linear fit. ECMWF-IFS is not included in this analysis because no future simulations were performed in HighResMIP for this model.