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Abstract 

The first chapter provides an overview on intermolecular interactions in solid 

dispersions of amide-containing nonionic water-soluble polymers including 

polyvinyl pyrrolidone (PVP), polyvinylpyrrolidone-co-vinyl acetate (PVP/VA), 

poly(N-vinyl caprolactam)–polyvinyl acetate–polyethylene glycol graft copolymer 

(Soluplus) and poly(2-oxazolines). Chapters 2 and 3 focus on the effects of structure 

and properties of PVP and poly(2-oxazolines) on solid dispersions. A series of 

poly(2-oxazolines) with equivalent degrees of polymerization were synthesized and 

these polymers and PVP were used to prepare solid dispersions with haloperidol or 

ibuprofen. Chapter 2 demonstrated that increasing the number of hydrophobic 

groups (-CH2- and -CH3) in the polymer resulted in greater inhibition of 

crystallinity of haloperidol. Interestingly, drug crystallization inhibition by poly(2-

isopropyl-2-oxazoline) was lower than with its isomeric poly(2-propyl-2-oxazoline) 

because of the semi-crystalline nature of the former polymer. In order to explore 

the impacts of both polymer hydrophobicity and drug–polymer hydrogen bonding, 

in chapter 3, ibuprofen, a hydrophobic crystalline drug and strong hydrogen bond 

donor (because of its carboxylic group), was selected to prepare solid dispersions 

with poly(2-oxazolines) and PVP. Chapter 3 indicates the crystallinity disruption is 

predominantly due to hydrogen bonding between the drug molecule (ibuprofen) and 

the polymer. Both chapters show the crystallization inhibition was consistent with 

drug dissolution studies using these solid dispersions, with the exception of poly(2-

propyl-2-oxazoline), which exhibited lower critical solution temperature that 

affected the release of haloperidol and ibuprofen. 

Chapter 4 and 5 investigate the mucoadhesion properties of modified poly(2-ethyl-

2-oxazoline) and poly(N-(2-hydroxylpropyl)methacrylamide) (PHPMA), 

respectively. In chapter 4, the presence of methacryloyl groups and residual amines 

in methacrylated poly(2-ethyl-2-oxazoline) had a strong synergistic effect on the 

mucoadhesive properties of these polymers. In chapter 5, the presence of maleimide 
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groups was shown to positively affect the mucoadhesive properties of PHPMA. 

These poly(2-ethyl-2-oxazoline) derivatives and PHPMA derivatives have 

significant potential as mucoadhesive materials for formulation of dosage forms for 

nasal drug delivery. 

The final chapter discusses the general conclusions and possible future work. The 

poly(2-oxazolines) and functionalized derivatives appear to offer great potential in 

pharmaceutical applications. 
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Chapter 1 

 

Overview of intermolecular interactions in solid dispersions with 

amide-containing nonionic water-soluble polymers 

 

This chapter illustrates the typical intermolecular interactions between amide-

containing nonionic water-soluble polymers and drugs in solid dispersions, and the 

influence of the interactions on drug crystallinity, drug stability and dissolution rate. 

In addition, the amide-containing water-soluble polymers which have not yet been 

studied in solid dispersions will also be described. 

 

This manuscript is under review before submission. 
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Overview of intermolecular interactions in solid dispersions with 

amide-containing nonionic water-soluble polymers 

Xiaoning Shan, Adrian C. Williams, Vitaliy V. Khutoryanskiy* 

Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, 

Reading RG6 6AD, United Kingdom 

KEYWORDS: solid dispersions, polymers, intermolecular interactions, 

crystallinity, stability, dissolution 

Abstract: 

It is well known that the solid dispersion approach has been widely and successfully 

applied to improve the solubility, dissolution rate and, consequently, the 

bioavailability of poorly water-soluble drugs. Various reviews on solid dispersions 

and carriers used for solubility enhancement of poorly water-soluble drugs have 

been recently reported. However, there the intermolecular interactions in solid 

dispersions of amide-containing nonionic water-soluble polymers, which could act 

as hydrogen bond acceptors and donors in intermolecular interactions between the 

carrier and drugs, have not been previously reviewed. Here, we explore typical 

intermolecular interactions between amide-containing nonionic water-soluble 

polymers and drugs, and the influence of these interactions on drug crystallinity, 

drug stability and dissolution rate. In addition, other amide-containing water-

soluble polymers which may be useful in solid dispersions are described. 

1. Introduction 

Solid dispersion technology using various pharmaceutically acceptable polymer 

excipients has successfully improved dissolution rates and thereby absorption of 

poorly water-soluble drugs [1]. Drugs can potentially co-exist in both an amorphous 

form and in a crystalline state in solid dispersions. The crystalline state has a long-

range order molecular packing, with a characteristic melting point (Tm), and 
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genralyl excellent stability whereas the amorphous state is characterized by 

disorganised or the complete loss of lattice packing which provides good drug 

solubility and enhanced bioavailability. A disadvantage of the high free energy 

amorphous state is physical instability [2, 3]. Therefore, due to the higher free 

energy of the amorphous form of drug, these dispersions are not thermodynamically 

stable with the drug tending to re-crystallize upon storage to its more 

thermodynamically stable, crystalline form [4].  

The presence of a hydrophilic polymer in the solid dispersion tends to maintain the 

drug in the amorphous form for extended periods, while the mixing of the drug at 

the molecular level with the hydrophilic polymer serves to improve its dissolution 

rate [5, 6]. A polymer with a high glass transition temperature (Tg) will increase the 

Tg of the system which corresponds to the deceleration of molecular mobility 

controlling the cold crystallization process at a certain temperature. In contrast to 

the above, a polymer with a low Tg will decrease the Tg of the system which 

corresponds to the acceleration of molecular mobility [7]. The molecular 

interactions between the drug and the hydrophilic polymer are therefore key drivers 

for the drug to remain in its amorphous form when stored or during the dissolution 

process itself [8]. 

Intermolecular interactions such as hydrogen bonding, ionic interactions, van der 

Waals forces, dipole-dipole interactions and hydrophobic effects (effect of polymer 

hydrophobicity on solid dispersions) commonly occur between components in solid 

dispersions [9]. These molecular interactions crucially affect drug crystallinity, drug 

release and the stability of the solid dispersion system. Generally, these interactions 

may inhibit drug crystallinity (to some extent), maintain physical stability during 

storage and improve drug dissolution rate [10, 11]. For solid dispersions using 

nonionic amide-containing water-soluble polymers as carriers, the primary 

interactions are typically hydrogen bonding, van der Waals interactions, dipole-

dipole interactions, and hydrophobic interactions. Of these, hydrogen bonding 
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usually plays a pivotal role in determining the overall interaction strength between 

the drug and polymer components [12-15]. This review considers various amide-

containing nonionic water-soluble polymers used to prepare solid dispersions and 

explores the influence of drug-polymer interactions on drug crystallinity, drug 

stability and dissolution rate. In addition, amide-containing water-soluble polymers 

which have not yet been studied in solid dispersions are described. 

2. Amide-containing nonionic water-soluble polymers in solid dispersion studies. 

Numerous amide-containing nonionic water-soluble polymers have been used as 

solid dispersion carriers, notably polyvinyl pyrrolidone (PVP), 

polyvinylpyrrolidone-co-vinyl acetate (PVP/VA), poly(N-vinyl caprolactam)–

polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®) and poly(2-

oxazolines). Amide-containing water-soluble polymers as potential future carriers 

are discussed in Section 3. 

2.1 Polyvinyl pyrrolidone (PVP) 

 

Figure 1. PVP synthesis and structure. 

2.1.1 PVP synthesis, general properties and applications in solid dispersions 

PVP is a water-soluble polymer that also dissolves in other polar solvents. It is 

synthesized via free radical polymerization starting from the vinylpyrrolidone (VP) 

monomer, using a free radical initiator such as azobisisobutyronitrile (AIBN). The 

synthesis and structure of PVP are given in Figure 1. There are different grades of 

PVP which are grouped according to their molecular weight by K values, e.g., K12 
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(2600–5500 Da), K17 (7100–11,000 Da), K25 (19,300–31,100 Da), K30 (31,700–

51,400 Da), and K90 (790,000–1,350,000 Da) [16]. Cross-linked PVP is also 

available as a swellable excipient used in tablet formulations and has also been used 

as a carrier for solid dispersions [17, 18]. 

PVP possesses many pharmaceutically useful properties including excellent 

solubility in water and other conventional solvents, adhesive and binding properties, 

film-forming ability, affinity to hydrophilic and hydrophobic surfaces, ability to 

form complexes with numerous drugs and is a thickening agent. Thus, PVP is a 

widely used excipient in various drug delivery systems for oral, topical, transdermal, 

and ocular administration [19]. 

PVP is a biocompatible and non-toxic polymer; it was recognized as safe by the 

Food and Drug Administration (FDA). However,  PVP is highly hygroscopic due 

to the electronegative groups of the carbonyl moiety in the pyrrolidone structure 

which can form hydrogen bond with water [20]. This may worsen physical stability 

and lead to drug recrystallization in the polymer carrier caused by the plastisizing 

effect of absorbed water. Therefore, moisture adsorption must be controlled during 

storage. The influence of hygroscopicity on the thickness of PVP films can be 

avoided by adding acetylated monoglycerides to the coating mixture [21]. 

PVP is extensively used to formulate solid dispersions; a Scopus database search 

(September 2021) yielded 939 records of PVP based solid dispersions since 1978. 

Some 122 drugs have been incorporated with PVP into solid dispersions, 

summarised in Table 1. Owing to its solubility in a wide variety of organic solvents, 

PVP is particularly suitable for the preparation of solid dispersions by the solvent 

method, which can be scaled-up by spray drying. Therefore, a large number of 

studies attempted to formulate PVP-based dispersions through solvent and spray 

drying methods [22-28]. PVP is an amorphous polymer so doesn’t melt into a liquid 

at high temperatures, which makes it unsuitable for producing solid dispersion via 

the fusion method, particularly for low melting point and thermo-labile drugs. 
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Nevertheless, reports describe the use of hot melt extrusion (HME) for preparation 

of solid drug dispersions [29-32]. Furthermore, the rate of dissolution of PVP-based 

solid dispersions is highly dependent on the molecular weight of PVP employed to 

prepare the dispersions; an increase in the molecular weight correlated negatively 

with the rate of dissolution, due to an increase in the viscosity and swelling of PVP 

within the solution phase. This consequently decreases the diffusion of drug 

molecules from the surface boundaries of the viscous material into the bulk of the 

solution, leading to retarded dissolution [33]. The optimum balance between 

dissolution rate and polymer grade has led to the prolific utility of PVP 30 K grade, 

among others, to prepare PVP-based dispersions. Moreover, PVP has been used for 

the dissolution enhancement of very slightly soluble drugs by its high hydrophilicity 

and strong interaction with some drug molecules [34]. The commercial solid 

dispersion products produced with PVP are summarised in Table 2. 

2.1.2 Influence of drug-PVP interactions in solid dispersions on drug crystallinity, 

drug stability and dissolution rate 

It can be seen from Table 1 that, of the 122 drugs dispersed into PVP, approximately 

65% were reported to hydrogen bond with the carrier whilst dipole-dipole 

interactions were reported in four studies, hydrophobic interactions were reported 

in three studies and Van der Waals interactions were described in three publications; 

approximately 30% of the studies reported no interactions between the drug and 

carrier. PVP can form a hydrogen bond either through the nitrogen or carbonyl 

group on the pyrrole ring. However, steric hindrance constrains the involvement of 

the nitrogen atom in intermolecular interactions, thus making the carbonyl group 

more favorable for hydrogen bonding [35].  

Intermolecular interactions are largely responsible for drug crystallinity reduction 

and consequent improvements in dissolution rate. Our recent study [36] described 

solid dispersions of haloperidol prepared using PVP and poly(2-oxazolines) and 

showed that hydrogen bonding interactions and hydrophobic effects influenced the 
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crystallinity of the drug and its release from solid dispersions. PVP was superior to 

the poly(2-oxazolines) in reducing crystallinity of haloperidol and gave rapid drug 

release from solid dispersions. This was attributed to not only its relative high 

hydrophobicity but also its ability to form hydrogen bonds with the drug molecules.  

Kanaze et al. [37] found that dissolution enhancement of flavonoid aglycone drugs 

naringenin and hesperetin was achieved by the solid dispersion technique; drug 

dissolution was 100% after 2 h using PVP as the carrier whereas using a PEG carrier 

resulted in lower dissolution at 2 h (<70%). This difference was attributed to the 

amorphous form and nano-dispersions of the flavanoid drugs into the PVP matrix, 

whereas with PEG the compounds were partially crystalline with particle sizes > 1 

μm. FTIR spectra showed the presence of hydrogen bonds between PVP carbonyl 

groups and hydroxyl groups of both flavanone aglycones. These interactions 

prevent crystallization of naringenin and hesperetin aglycones in the PVP matrix. 

On the other hand, the ability of PEG carrier to form hydrogen bonds with flavanone 

glycosides or aglycones was limited, thus both flavanone glycosides and their 

aglycones remained predominantly crystalline. 

Li et al. [38] found that the hydrogen bonds were formed between PEG and 

nitrendipine (TDP) and that these interactions were stronger than the hydrogen 

bonds formed between PVP and TDP. 3D molecular docking results of TDP with 

PEG or PVP showed that TDP-PEG had only hydrogen bond energy while TDP-

PVP had both hydrogen bond energy and hydrophobic energy, resulting in higher 

overall binding energy of TDP-PVP. The higher binding energy of TDP-PVP can 

sufficiently explain why the involvement of TDP had stronger impact on PVP and 

the better amorphous state of TDP in TDP-PVP. The faster drug release of TDP-

PVP was attributed to stronger binding energy (between drug and excipient) than 

TDP-PEG. The higher binding energy contributed to better amorphous state of TDP 

in TDP-PVP, reflecting that the intermolecular forces had significant influence on 

drug dissolution. 
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Karavas et al. [39] found that the hydrogen bonding interactions are the cause for 

the dissolution enhancement of felodipine (FEL) from FEL: PVP binary systems 

for high polymer concentrations where the hydrogen bonding intensity is high. The 

mechanism of such enhancement could be attributed to the effect of the interactions 

on the solubility and the specific surface of FEL particles in the system. 

Jun at al. [40] reported a higher dissolution rate of cefuroxime axetil (CA) from 

solid dispersions, which was probably attributed to the formation of amorphous or 

non-crystalline forms due to intermolecular hydrogen bonds, resulting from the 

crystallization inhibition facilitated by PVP K-30, the increased wettability and 

reduction in particle size, resulting in an increased surface area available for 

dissolution. 

Ghobashy et al. [41] found the in vitro rate of amlodipine dissolution depends on 

the drug−polymer intermolecular H bond. The rate of amlodipine dissolution is 

increased due to the drug−drug intramolecular hydrogen bonding replaced with the 

drug−polymer intermolecular hydrogen bonding, which reduces the crystal packing. 

The presence of hydrogen bonds between amlodipine and the hydrophilic polymers 

(PVP) in the solid dispersions is the primary cause of the rise in its solubility and 

dissolution. 

Guedes et al. [42] established that the rise in the rate of dissolution of LPSF/FZ4 in 

binary solid dispersion systems is directly related to the presence and intensity of 

intermolecular interactions formed with the hydrophilic polymers, especially the 

hydrogen bonds identified. These interactions at molecular level appear to control 

the changes in the physical (crystalline or amorphous) state and to have an influence 

on particle size. For the LPSF/FZ4–PVP 1:9 system, which provided better results 

in terms of a dissolution profile, various characterization techniques showed the 

existence of relatively stronger interactions than those with the PEG polymer, and 

this was confirmed by a theoretical study of molecular modeling. This suggests that 

PVP is the preferred polymer for use in formulations developed for LPSF/FZ4 to 
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improve its solubility, dissolution, and gastrointestinal absorption. 

In addition, the intermolecular interactions are also responsible for physical stability, 

particularly carbonyl functionality of PVP usually forms hydrogen bonds with the 

drugs containing –NH2 and –OH functionalities. For example, Obaidat et al. [43] 

found that a specific molecular interaction between the -NH2 group of celecoxib 

(CEL) and the -C=O group of PVP was the major reason behind the formation and 

performance of a stable CEL-PVP amorphous system. By specifically interacting 

with CEL, PVP arrested drug molecular motions, and prevented the rearrangement 

of CEL molecules from a disordered molecular state into a thermodynamically 

stable, ordered crystalline form. Thus, the interaction with PVP provided enhanced 

physical stability to the amorphous form of CEL. 

Kakran et al. [44] reported that curcumin (CUR) dispersions in PVP maintained 

their amorphous nature better than the CUR dispersion in PEG after storage for 9 

months. This can be explained not only by the higher glass transition temperature 

(Tg) for PVP (155 ◦C) than that of PEG (−22 ◦C), which resulted in more stable 

formulations with PVP, but also by the presence of functional groups that are either 

donors or acceptors for hydrogen bonds, since specific interactions increase the 

solubility of the drug in its carrier and also seem to play an important role in 

inhibiting phase separation and crystallization of a drug. The CUR interactions were 

greater with PVP than with PEG (as confirmed by FTIR study), which also 

contributed to improved stability of the CUR dispersion in PVP.  Greater drug-PVP 

interactions also increased the solubility of the drug in its carrier and thus inhibited 

phase separation and crystallization of the drug.  

Due to the potential for electron sharing in COOH hydrogen bond donor moieties, 

the bond between the O and the H is relatively weaker for the OH group compared 

to the bond between the N and H in NH hydrogen bond donor moieties. Thus, the 

hydrogen atom in the COOH moiety is a better hydrogen-bond donor compared to 

the hydrogen atom in the NH moiety. This in turn leads to stronger hydrogen bonds 
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between COOHdrug-COPVP compared to the hydrogen bonds between NHdrug-COPVP. 

It is speculated that the strength of the drug-polymer interactions, which in turn will 

influence the mixing enthalpy, it is important to determine which system will be 

susceptible to moisture induced immiscibility. Thus, model drugs with NH moieties 

were sensitive to moisture induced immiscibility while those containing COOH 

functions did not undergo this phenomenon. For example, Rumondor et al. [45] 

found that in the case of nifedipine, felodipine, droperidol and pimozide, drug-

polymer hydrogen bonds are formed between the NH moiety of the drug and the 

carbonyl moiety of PVP (susceptible to moisture-induced phase separation); for 

ketoprofen and indomethacin, hydrogen bonds were formed between the COOH 

moiety of the drug and the carbonyl moiety of PVP (no experimental evidence of 

moisture-induced phase separation). 

Table 1. Drugs employed in solid dispersions with PVP. “N” represents “no 

interactions reported” (September 2021). 

No. Drug Chemical Structure 

Drug-PVP interactions 

Hydrogen 

bonding 

Dipole-

dipole 
Hydrophobicity 

Van der 

Waals 

1 Aceclofenac 

 

[22] N N N 

 2 Albendazole 

 

[46] N N N 

3 Amlodipine 

 

[41] N N N 
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4 Andrographolide 

 

[23, 47] N N N 

5 Artemisinin 

 

N N N N 

6 Atorvastatin 

 

[48] N N N 

7 Azapropazone 

 

N N N N 

8 Bendroflumethiazide 

 

N N N N 

9 Bicalutamide 

 

[24, 30, 

49] 
N N N 

10 BMS-488043 

 

[50] N N N 

11 BMS-817399 

 

[51] N N N 
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12 Breviscapine 

 

[52] N N N 

13 Caffeine 

 

N N N N 

14 Carbamazepine 

 

[25] N N N 

15 Carvedilol 

 

[53] N N N 

16 Cefixime 

 

[26] N N N 

17 Cefuroxime axetil 

 

[40] N N N 

18 Celecoxib 

 

[43] N N N 

19 Chlordiazepoxide 

 

N N N N 

20 CI-987 

 

N N N N 
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21 Cilazapril 

 

[54] N N N 

22 Cinnarizine 

 

N N N N 

23 Clofazimine 

 

[55] N N N 

24 Clofoctol 

 

[56] N N N 

25 Curcumin 

Keto 

form 

Enol form 

[44, 57] N N N 

26 Dapsone 

 

[58] N N N 

27 Deferasirox 

 

[59] N N N 

28 Diazepam 

 

N N N N 

29 Diflunisal 

 

[60] N N N 
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30 Dihydroartemisinin 

 

[61] N N N 

31 Dipyridamole 

 

[62] N N N 

32 Droperidol 

 

[45] N N N 

33 Efavirenz 

 

[27, 28] N N N 

34 Etoricoxib 

 

N N N N 

35 Ezetimibe 

 

[63] N N N 

36 Febuxostat 

 

[64] N N [64] 

37 Felodipine 

 

[39, 65-

68]  
N N [65] 

38 Fenofibrate 

 

N N N N 
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39 Floctafenine 

 

N N N N 

40 Fluconazole 

 

[69] N N N 

41 Flutamide 

 

[70] N N N 

42 Fluvastatin 

 

N N N N 

43 Furosemide 

 

[71] N N N 

44 Glafenine 

 

N N N N 

45 Glibenclamide 

 

N N N N 

46 Gliclazide 

 

[72] N N N 

47 Glipizide 

 

[73] N N N 

48 Griseofulvin 

 

N N N N 
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49 Haloperidol 

 

[74] N [36] N 

50 Hesperetin 

 

[37, 65] N N N 

51 Hesperidin 

 

[37] N N N 

52 Hydrochlorothiazide 

 

N N N N 

53 Hydrocortisone 

 

[75] N N N 

54 Hydroflumethiazide 

 

N N N N 

55 Ibuprofen 

 

[35, 76-

78] 
N N N 

56 Indapamide 

 

N N N N 

57 Indomethacin 

 

[31, 45, 

79-81] 
N N N 

58 Indoprofen 

 

[56] N N N 
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59 Itraconazole 

 

N N N N 

60 Ketoconazole 

 

N [67, 82] N N 

61 Ketoprofen 

 

[45, 83] N N N 

62 Lacidipine 

 

[31, 84] N N N 

63 Lansoprazole 

 

[85, 86] N N N 

64 Loperamide 

 

N N N N 

65 Lopinavir 

 

N N N N 

66 Loratadine 

 

[56] [56] N N 

67 Lovastatin 

 

[87, 88] N N N 

68 LPSF/FZ4 

 

[42] N N N 
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69 Mefenamic acid 

 

[89] N N N 

70 Mefruside 

 

N N N N 

71 Meloxicam 

 

N N N N 

72 

3-Methoxy-1,5- 

bis(4-

methoxyphenyl) 

-1H-1,2,4-triazole 
 

N N N N 

73 Metolazone 

 

N N N N 

74 Nalidixic acid 

 

N [90] N [90] 

75 Naproxen 

 

[91, 92] N N N 

76 Naringenin 

 

[37] N N N 

77 Naringin 

 

[37] N N N 

78 Nevirapine 

 

N N N N 

79 Nifedipine 

 

[45, 93, 

94] 
N N N 
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80 Niflumic acid 

 

N N N N 

81 Nilutamide 

 

[56] N N N 

82 Nimodipine 

 

[95] N N N 

83 Nisoldipine 

 

[96, 97] N N N 

84 Nitrendipine 

 

[38] N [38] N 

85 Olanzapine 

 

[98] N N N 

86 Oridonin 

 

N N N N 

87 Oxeglitazar 

 

[99] N N N 

88 Paracetamol 

 

[100] N N N 

89 Phenacetin 

 

[101] N N N 
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90 Phenobarbital 

 

[93] N N N 

91 Pimozide 

 

[45] N N N 

92 Piroxicam 

 

[102, 

103] 
N N N 

93 Praziquantel 

 

N N N N 

94 Prednisolone 

 

N N N N 

95 Probucol 

 

[56] N N N 

96 
Propranolol 

hydrochloride 
 

[92] N N N 

97 Quercetin 

 

[104] N N N 

98 Raloxifene 

 

[105] N N N 

99 Reserpine 

 

N N N N 
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100 Resveratrol 

 

[106] N N N 

101 Ritonavir 

 

N N [107] N 

102 Rofecoxib 

 

N N N N 

103 Salicylamide 

 

[92] N N N 

104 Silymarin 

 

N N N N 

105 Simvastatin 

 

[108, 

109] 
N N N 

106 Sulfadiazine 

 

[110] N N N 107 Sulfadimidine 

 

108 Sulfamerazine 

 

109 Sulfamethizole 

 

[111] N N N 
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110 Sulfamethoxazole 

 

[112] N N N 

111 Sulfathiazole 

 

[110] N N N 

112 Sulfisoxazole 

 

N N N N 

113 Tadalafil 

 

[113] N N N 

114 Telmisartan 

 

N N N N 

115 Temazepam 

 

[114] N N N 

116 Tibolone 

 

[115] N N N 

117 Tolbutamide 

 

[31] N N N 

118 Tolfenamic Acid 

 

[116] N N N 

119 Troglitazone 

 

N N N N 
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Table 2. Commercial solid dispersion products produced with PVP. *Withdrawn in 

2000 due to adverse drug reactions. 

Product name Drug Indication Company 

Afeditab® Nifedipine Lower high blood pressure Elan Corp, Ireland 

Cesamet® Nabilone 
Treat nausea and vomiting 

caused by chemotherapy 

Eli Lilly and Company, USA; 

Valeant Pharmaceuticals, Canada; 

Meda Pharmaceuticals 

Ibuprofen® Ibuprofen Anti-inflammatory Soliqs, Germany 

Isoptin SRE-240® Verapamil Lower high blood pressure Soliqs, Germany 

Rezulin®* Troglitazone Antidiabetic Pfizer, USA 

 

2.2 Polyvinylpyrrolidone-co-vinyl acetate (PVP/VA) 

2.2.1 PVP/VA synthesis, general properties and applications in solid dispersions 

PVP/VA is an amorphous and water-soluble polymer. It is a copolymer of vinyl 

pyrrolidone and vinyl acetate in a 6:4 ratio, which is also popularly known by the 

trade names Kollidon VA64 (BASF, Germany) and Plasdone S-630 (Ashland, USA). 

The synthesis and structure of PVP/VA are given in Figure 2.  

120 UC-781 

 

[117] N N N 

121 Valdecoxib 

 

N N N N 

122 Valsartan 

 

[118] N N N 
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Figure 2. PVP/VA synthesis and structure. 

 

PVP/VA has traditionally been used as a binder and film-forming agent in the 

pharmaceutical industry [119]. PVP/VA has a significant advantage over PVP in 

terms of processability. First, owing to the relatively less hydrophilic vinyl acetate 

substituent, PVP/VA exhibits phase solubility with a wide range of active 

pharmaceutical ingredients (APIs) with varied polarity [34]. Furthermore, a recent 

study demonstrated that the physical stability of the PVP/VA copolymer may be 

better than that of pure PVP due to an overall decrease in the hygroscopicity of the 

polymer [120]. This means that replacing the hydrophilic VP repeat units with 

hydrophobic VA repeat units will not only significantly inhibit the crystallization 

upon dissolution of the amorphous solid dispersion, but may also improve the 

physical stability of the formulation during storage [121, 122]. For example, Chen 

et al. [62] found the moisture uptake into PVP/VA SDs was lower than that for PVP 

SDs at the same weight ratio of dipyridamole and carriers, attributed to the 

difference between the chemical structures of PVP and PVP/VA. Second, it was 

also found that the tensile strengths of tablets composed  of PVP/VA SDs at various 

ratios were greater than those of tablets of PVP SDs at the same compression 

pressure [62]. This result could be explained by the lower Tg of PVP/VA copolymer 

compared to PVP which made it an excellent direct compression binder aid and 

allowed it to undergo plastic deformation during compression. Also, the lower Tg 

and higher degradation temperature presents an opportunity to employ the polymer 

to formulate solid dispersions of low as well as high melting temperature APIs [119]. 

Therefore, when the drug is sensitive to moisture, or when the compressibility of 

the drug powder is poor, PVP/VA may be a better material than PVP. There are 49 
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drugs reportedly incorporated into PVP/VA as solid dispersions, summarised in 

Table 3. The commercial solid dispersion products produced with PVP/VA are 

presented in Table 4. 

2.2.2 Influence of drug-PVP/VA interactions in solid dispersions on drug 

crystallinity, drug stability and dissolution rate 

It could be seen from Table 3 that hydrogen bonding interactions between drug and 

PVP/VA are much more often reported than the other intermolecular interactions. 

Therefore, the influence of hydrogen bonding interactions between drug and 

PVP/VA on drug crystallinity, drug stability and dissolution are considered below. 

It has been demonstrated that the replacement of about 40% of vinyl pyrrolidone 

units with vinyl acetate (as in PVP/VA) results in reduced inhibition of 

crystallization and the PVP homopolymer is more effective in crystallization 

inhibition than the copolymer at a comparable molecular weight [123] because the 

higher VP content leads to higher propensity to hydrogen bonding with the API [83]. 

Chan et al. reported that the intensity of ketoprofen-polymer interaction follows the 

trend PVP>PVP/VA>PVA and the degree of drug-polymer interaction does 

interfere with the degree of amorphousness in the solid dispersion during the 

manufacturing process [124]. In similar studies but with ibuprofen (IBP), the 

interaction parameters χIBP-polymer are negative and vary in the order PVP < PVP/VA 

< PVA which means that the order of IBP-polymer miscibility is 

PVP>PVP/VA>PVA [78]; the “dissolving powers” of the polymers tested for 

indomethacin and nifedipine also follow the order PVP>PVP/VA>PVA [125]. In 

another study, out of 10 APIs (celecoxib, clotrimazole, cinnarizine, felodipine, 

indomethacin, itraconazole, ketoconazole, ketoprofen, loratadine, miconazole), 

only celecoxib, clotrimazole, felodipine, indomethacin, and ketoconazole resulted 

in the formation of single-phase homogenous amorphous solids with no crystalline 

content. A possible explanation of these occurrences was presented, based on the 

interaction between API and PVP/VA, which can lead to their complete miscibility 
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in the amorphous solid dispersion [126]. 

Different degrees of hydrogen bonding between drug and polymer determines the 

amount of moisture that is taken up by the sample and thus the physical stability. 

For example, a significant physicochemical interaction between the drug 

(indomethacin, lacidipine, nifedipine and tolbutamide) and polymer (PVP and 

PVP/VA) was found for all extrudates. This interaction was caused by hydrogen 

bonding between the carbonyl group of the polymer and a H-donor group of the 

drug. The lacidipine-PVP/VA extrudate showed some crystallinity after 4 weeks 

storage at 25℃/75% RH. In comparison, indomethacin-PVP/VA extrudate was 

stable for 8 weeks under the same conditions [31]. In another study [127], felodipine, 

pimozide, indomethacin and quinidine were used as model drugs with PVP and 

PVP/VA used as carriers; favorable drug-polymer interactions in the form of 

hydrogen bonding were found in all drug-polymer systems. For PVP/VA-

containing systems, evidence for stronger drug-polymer interactions can be found 

with indomethacin when compared to those formed with felodipine, quinidine, and 

pimozide. This was supported by analyzing the red shift experienced by the 

carbonyl peak of the vinylpyrrolidone moiety of PVP/VA when hydrogen bonded 

to the different drugs. In indomethacin-PVP/VA, 42～44 cm-1 shifts to lower 

wavenumbers were observed, greater than the 19～22 cm-1 shifts observed for the 

other PVP/VA-containing solid dispersions investigated. Chemically, indomethacin 

contains a COOH hydrogen bond donor group. This group is a better hydrogen bond 

donor compared to the NH group in felodipine and pimozide and the OH group in 

quinidine, resulting in stronger drug-polymer interactions. This analysis supports 

experimental evidence whereby no evidence for moisture-induced drug-polymer 

immiscibility was observed for indomethacin-PVP/VA, in contrast to the three other 

systems. This study also showed that the hygroscopicity of the polymer must be 

considered in addition to considering the strength of the drug-polymer interactions. 

For felodipine- and quinidine-containing systems, the extent of amorphous-

amorphous phase separation following exposure to moisture was more severe for 
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PVP-containing solid dispersions than for the corresponding PVP/VA-containing 

solid dispersions. For example, for felodipine-PVP samples containing 50% (w/w) 

polymer, storage at 84% RH resulted in a 50% reduction in the intensity of the peak 

assigned to drug-polymer hydrogen bonding relative to the peak assigned to drug-

drug hydrogen bonding. For the comparable PVP/VA system, only a 17% reduction 

in the relative intensity was observed. For the quinidine-PVP sample containing 50% 

polymer, storage at 84% RH resulted in a 47% reduction in the intensity of the peak 

assigned to drug-polymer hydrogen bonding relative to the free vinylpyrrolidone 

carbonyl moiety. For the comparable PVP/VA system, the reduction was only 11%. 

For both felodipine- and quinidine-containing model systems, the strength of drug-

polymer hydrogen bonding for PVP/VA-containing systems is approximately equal 

to that of their PVP-containing counterparts, as evidenced by similar red shifts 

observed from the IR spectra. Thus, the smaller extent of drug-polymer de-mixing 

for PVP/VA-containing systems is most likely explained by the reduction in the 

amount of water absorbed than by the strength of drug-polymer interactions. 

A study has also shown that the solubility of glycyrrhetinic acid can be improved 

by ternary solid dispersion (TSD) systems that incorporate alkalizers. PVP/VA 

relies on hydrogen bonds to interact with alkalizers, and glycyrrhetinic acid 

interacts with alkalizers to form ion-pair complexes through strong electrostatic 

attraction. This may be an important reason for the increase in the dissolution of 

glycyrrhetinic acid [128].  
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Table 3. Drugs employed in solid dispersions with PVP/VA. “N” represents “no 

interactions reported” (September 2021). 

No. Drug Chemical structure 

Drug-polymer interactions 

Hydrogen 

bonding 
Dipole-dipole Hydrophobicity 

Van der 

Waals 

1 ABT-102 

 

N N N N 

2 Acyclovir 

 

N N N N 

3 Albendazole 

 

[123] N N N 

4 
Andrographolid

e 

 

[129] N N N 

5 Bifendate 

 

N N N N 

6 Celecoxib 

 

[126] N N N 

7 Cinnarizine 

 

N N N N 
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8 Clotrimazole 

 

[126] N N N 

9 Dipyridamole 

 

[62] N N N 

10 Eprosartan 

 

N N N N 

11 Ezetimibe 

 

[130] N N N 

12 Febuxostat 

 

[64] N N [64] 

13 Felodipine 

 

[126, 127, 

131] 
N N N 

14 Fenofibrate 

 

N N N N 

15 Flutamide 

 

N N N N 

16 Gliclazide 

 

N N N N 
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17 Glyburide 

 

[132] N N N 

18 
Glycyrrhetinic 

Acid 

 

N N N N 

19 Griseofulvin 

 

N N N N 

20 Ibuprofen 

 

[78] N N N 

21 Indomethacin 

 

[31, 81, 

125-127] 
N [81] N 

22 Itraconazole 

 

N N N N 

23 Ketoconazole 

 

N [131] N N 

24 Ketoprofen 

 

[83, 124] N N N 

25 Lacidipine 

 

[31] N N N 
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26 Lapatinib 

 

N N N N 

27 Ledipasvir 

 

[133] N N N 

28 Loperamide 

 

N N N N 

29 Lopinavir 

 

[134] N N N 

30 Loratadine 

 

N N N N 

31 LPSF/FZ4 

 

N N N N 

32 Lumefantrine 

 

N N N N 

33 
Megestrol 

acetate 

 

N N N N 
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34 Miconazole 

 

N N N N 

35 Naproxen 

 

[100] N N N 

36 Nifedipine 

 

N N N N 

37 Nimodipine 

 

[135] N N N 

38 Olanzapine 

 

N N N N 

39 Oleanolic acid 

 

[136] N N N 

40 Paracetamol 

 

[137] N N N 

41 Pimozide 

 

[127] N N N 

42 Prednisolone 

 

[138] N N N 

43 Probucol 

 

N N N N 
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44 Quinidine 

 

[127] N N N 

45 Rebamipide 

 

[139] N N N 

46 Ritonavir 

 

[140] N N N 

47 Tadalafil 

 

[113, 141] N N N 

48 Tolbutamide 

 

N N N N 

49 Valsartan 

 

N N N N 
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Table 4. Commercial solid dispersion products produced with PVP/VA. 

Product name Drug Indication Company 

Kaletra® Lopinavir/Ritonavir Anti-viral (HIV) 
Abbott Laboratories, 

USA 

Novir® Ritonavir Anti-viral (HIV) 
Abbott Laboratories, 

USA 

Belsomra® Suvorexant Insomnia Merck 

ViekiraTM Ombitasavir etc. Chronic hepatitis C virus (HCV) AbbVie 

Harvoni® Ledipasvir/Sofosbuvir Chronic hepatitis C virus (HCV) Gilead Sciences 

 

2.3 Poly(N-vinyl caprolactam)–polyvinyl acetate–polyethylene glycol graft 

copolymer (Soluplus®) 

 

Figure 3. Soluplus® structure. 

2.3.1 Soluplus® general properties and applications in solid dispersions 

Soluplus® is a triblock graft copolymer consisting of polyethylene glycol (13% PEG 

6000), poly(N-vinyl caprolactam) (57%), and polyvinyl acetate (30%). It is an 

amphiphilic polymer, wherein PEG provides hydrophilicity, vinyl caprolactam is 

water soluble with a lower critical solution temperature, while vinyl acetate 

domains are lipophilic within the polymer matrix. The molecular weight of 
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Soluplus® usually ranges from 90,000 to 1,40,000 g/mol. It is an amorphous 

polymer with a relatively low glass transition temperature (Tg) of 70°C [113, 142]. 

Developed specifically for solid solutions, Soluplus® is free flowing and can be 

easily extruded for processing by, for example, hot melt extrusion (HME). 

Soluplus® can also be used as a matrix former in spray drying and as a binder in 

wet granulation or dry granulation and in drug layering. However, to date, only one 

commercial solid dispersion product produced with Soluplus® has been marketed-

Febuxostat/Zentiva. 

For Soluplus®-based dispersions, the API is generally dispersed molecularly within 

the polymer matrix [143]. Upon exposure to the solvent or dissolution media, the 

API can form a supersaturated solution as it dissolves along with the polymer [144]. 

There are very few reports describing the crystallization or precipitation inhibition 

properties of Soluplus®. Guan et al. [145] reported that Soluplus® synergistically 

inhibited crystal nucleation and growth of lacidipine, leading to prolonged 

supersaturation. Soluplus® also exhibits swelling property, which may offset 

potential dissolution rate improvements due to limited diffusion through the swelled 

polymer. Slamova et al. [146] reported that tadalafil release from a Soluplus® 

dispersion was retarded due to swelling of the polymer during dissolution. 

Nevertheless, the swelling property of Soluplus® can be leveraged to formulate 

delayed release solid dispersions. 

2.3.2 Influence of drug-Soluplus® interactions in solid dispersions on drug 

crystallinity, drug stability and dissolution rate 

It could be seen from Table 5 that hydrogen bonding interactions remain the most 

commonly reported intermolecular interaction between drugs and Soluplus®. Song 

et al. demonstrated that hydrogen bonding interactions between andrographolide 

and Soluplus® led to enhanced interface wetting, consequently leading to an 

improved dissolution rate [129]. Griseofulvin showed remarkable supersaturation 

from Soluplus®-based dispersion due to inhibition of API recrystallization through 
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stronger intermolecular interactions [147]. The improved lopinavir solubility and 

bioavailability was attributed to the stronger hydrogen bonding interactions 

between lopinavir and Soluplus® in the HME process [134]. Hydrogen bonds 

between the thioacetyl group of spironolactone and the donor hydroxyl groups of 

Soluplus® played a decisive role in the formation of a molecular solution and drug 

micellization, resulting in improved solubility and dissolution efficiency which was 

greatest at a drug/Soluplus® ratio 1:4 [148]. 

In addition, physical stability is always a challenging issue regarding amorphous 

drugs. A 20:80 simvastatin /Soluplus SD showed that little change took place in the 

dissolution profiles after 3 months storage (40℃, RH 75%), indicating good 

physicochemical stability, which was expected to be enhanced by the combined 

effect of the enhanced Tg value by Soluplus (the Tg of the solid dispersion system 

was increased by Soluplus) and the intermolecular hydrogen bonding between the 

amorphous simvastatin and Soluplus [149]. In an efavirenz-Soluplus solid 

dispersion study, a long-term stability experiment indicated that efavirenz remained 

amorphous under the storage conditions since Soluplus can engage in hydrogen 

bonding with efavirenz, resulting in reduced molecular mobility and retarded 

crystallization during storage under the studied conditions [150]. The improved 

stability of artemisinin during storage is attributed to strong intermolecular 

interaction between the drug and Soluplus which reduces molecular mobility and 

recrystallization [151]. LPSF/FZ4 not only forms hydrogen bonding through its N-

H groups with C=O groups on Soluplus, but also by its C=O with O-H groups on 

Soluplus. Due to this additional formation of hydrogen bonds, Soluplus®-based SD 

systems might exhibit a greater degree of intermolecular interactions than those 

with PVP which would be expected because the O-H groups in Soluplus® are 

stronger hydrogen bond donors than the N-H group of LPSF/FZ4, allowing them to 

form hydrogen bonds more easily with this drug, corroborated by the results of in 

vitro stability and dissolution studies [152]. The hydrogen bonding interactions 
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between the hydroxyl group of diosgenin and the carbonyl group (hydrogen bond 

acceptor) of Soluplus have been confirmed and not only inhibited drug 

crystallization but also enhanced the solid solubility of the drug [153]. Jog et al. 

demonstrated the physical stability of an ABT-102/Soluplus® dispersion as a 

consequence of strong hydrogen bonding between –C=O function of Soluplus® and 

–N-H moiety of the drug [154].  

However, structured intermolecular bonding between API and polymer can have 

adverse effects on stabilization of the disordered phase as the disruption of these 

bonding patterns may result in phase separation (polymer-rich regions were formed). 

Singh et al. prepared itraconazole/Soluplus® solid dispersion through hot-melt 

extrusion. The dispersion was stabilized due to hydrogen bonding between API and 

polymer. However, while attempting to formulate tablets from the prepared 

dispersion, Soluplus®-rich regions were formed during compression. It was 

indicated that the disruption of hydrogen bonding leads to phase separation [155]. 

Often, the hydrogen bonding interactions are complemented by API-polymer 

solubility/miscibility.  

Table 5. Drugs employed in solid dispersions with Soluplus®. “N” represents “no 

interactions reported” (September 2021). 

No. Drug Chemical structure 

Drug-polymer interactions 

Hydrogen 

bonding 
Dipole-dipole Hydrophobicity Van der Waals 

1 ABT-102 

 

[154] N N N 
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2 Acyclovir 

 

N N N N 

3 
Andrographoli

de 

 

[129] N N N 

4 Artemether 

 

[156] N N N 

5 Artemisinin 

 

N N N N 

6 Atorvastatin 

 

[157] N N N 

7 Azilsartan 

 

N N N N 

8 
Carbamazepin

e 

 

[158] N N N 

9 Carvedilol 

 

[159] N N N 
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10 Cefixime 

 

N N N N 

11 Celecoxib 

 

[43] N N N 

12 Danazol 

 

N N N N 

13 Diosgenin 

 

[153] N N N 

14 
Dronedarone 

hydrochloride 

 

N N N N 

15 Efavirenz 

 

[150] N N N 

16 Eprosartan 

 

N N N N 

17 Ezetimibe 

 

[150] N N N 
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18 Famotidine 
 
[160] N N N 

19 Febuxostat 

 

[64] N N [64] 

20 Felodipine 

 

[161] N N N 

21 Fenofibrate 

 

N N N N 

22 Furosemide 

 

[162] N N N 

23 Gliclazide 

 

N N N N 

24 Glyburide 

 

[132] N N N 

25 Griseofulvin 

 

[147, 163] N N N 

26 Ibuprofen 

 

[164] N N N 

27 Indomethacin 

 

N N N N 

28 Itraconazole 

 

[155] N N N 
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29 Lacidipine 

 

N N N N 

30 Lapatinib 

 

N N N N 

31 Lansoprazole 

 

[165] N N N 

32 Lopinavir 

 

[134] N N N 

33 LPSF/FZ4 

 

[152] N N N 

34 Naproxen 

 

[164] N N N 

35 Nimodipine 

 

[166] N N N 

36 Nisoldipine 

 

[167] N N N 

37 Olanzapine 

 

N N N N 
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38 
Olmesartan 

medoxomil 

 

N N N N 

39 Saccharin 

 

[168] N N N 

40 Simvastatin 

 

[149] N N N 

41 Sorafenib 

 

N N N N 

42 Spironolactone 

 

[148] N N N 

43 Sulfadiazine 

 

[110] N N N 44 Sulfadimidine 

 

45 Sulfamerazine 
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46 Sulfathiazole 

 

47 Tadalafil 

 

[113] N N N 

48 
Tamoxifen 

citrate 

 

[169] N N N 

49 Telmisartan 

 

N N N N 

50 Valsartan 

 

N N N N 

 

2.4 Poly(2-oxazolines) (POZ) 

2.4.1 POZ synthesis, general properties and applications in solid dispersions 

Firstly reported in 1966–1997, independently by four research groups [170-173], 

poly(2-oxazolines) (POZ) have been of great interest due to their narrow molecular 

weight distribution, tunable properties, and excellent biocompatibility [174]. POZ 

are potential candidates to overcome some of the limitations reported with 

pharmaceutical applications of PEG while retaining the required features—
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biocompatibility, low dispersity, responsiveness, high functionalization potential, 

and high versatility attainable by copolymerization —providing a polymeric 

platform for novel biomedical applications [175-179]. 

POZ are readily obtained via the cationic ring-opening polymerization (CROP) of 

2-oxazolines [180], as depicted in Fig. 4.  

 

Figure 4. POZ synthesis and structure. 

 

Functional polymers are accessible by selection of the initiator and terminating 

agent in a one pot synthesis [181-183], while the side chains are tunable by 

modification of the 2-substituent of the 2-oxazoline monomer, allowing control 

over the hydrophilicity and lower critical solution temperature (LCST) transition of 

the polymer (Fig. 5). Poly(2-methyl-oxazoline) (PMeOx or PMOZ), which has been 

reported to be even more hydrophilic than polyethylene glycol [184], is fully water 

soluble from 0 to 100℃; POZ with longer alkyl side-chains exhibit LCST behavior. 

Figure 5 shows the cloud point temperatures (TCP, the temperature where the 

transmittance rapidly decreases due to agglomeration of the polymer chains) of 

POZ with increasing hydrophobicity. It should be noted that the TCP depends on the 

molar mass, the concentration, the polymer end-groups and the conditions of the 

measurement [185] and therefore comparisons of TCP values reported in the 

literature should be used cautiously. 
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Figure 5. POZ with hydrocarbon side-chains with increasing hydrophobicity (from 

left to right) and consequently decreasing cloud point temperature [186]. 

 

The variation of the side-chain structure of POZ allows tuning of the properties 

from very hydrophilic (PMOZ) to very hydrophobic (long alkyl side-chains) 

polymers. Consequently, the solution behavior of POZ strongly depends on the 

side-chain structure [187]. Figure 6 gives an overview of the solubility of various 

POZ with hydrocarbon side-chains in water and common organic solvents. 

Figure 7 shows the glass transition temperatures (Tg) and melting temperatures (Tm) 

obtained from DSC of poly(2-oxazolines) with 1−17 carbon atoms in the side-chain. 

Polymers with 1−5 carbon atoms in the side-chain show a Tg that decreases linearly 

with increasing side-chain length which can be explained by the increasing 

flexibility of the side-chains. For PMOZ, PEOZ and PnPOZ, no melting peaks were 

observed by DSC, while polymers with four or more carbon atoms in the side-chain 

were found to be semicrystalline with a Tm around 150℃ [187]. 

POZ constitute a polymer class with exceptional properties for their use in a 

plethora of different biomedical applications and are proposed as a versatile 

platform for the development of new medicines (Fig. 8). However, use of POZ as a 

carrier in solid dispersions is reported in few studies. Fael et al. [187] found that a 

lower molecular weight of PEOZ (5000 g/mol) was superior to a higher molecular 

weight polymer (50,000 g/mol) in improving the dissolution behavior of glipizide. 
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Boel et al. [188] showed that PEOZ maintained supersaturation of itraconazole and 

fenofibrate to a similar extent as PVP, PVP/VA and HPMC. Everaerts et al. [189] 

selected PEOZ, PnPOZ, poly(2-sec-butyl-2-oxazoline) (PsecBuOZ) and a 

combination of PEOZ with either PnPOZ or PsecBuOZ as carriers for amorphous 

solid dispersions with six drugs and highlighted the potential of POZ as a novel 

polymer carrier to form amorphous solid dispersions. In our studies [36, 190], PVP 

and a series of water-soluble poly(2-oxazolines) including PMOZ, PEOZ, PnPOZ 

and PiPOZ were used to prepare solid dispersions with haloperidol and ibuprofen, 

and the effects of polymer structure and properties on drug crystallinity were 

demonstrated. Claeys et al. [191] demonstrated that PEOZ is a potentially 

interesting matrix for controlled release formulations produced by hot melt 

extrusion followed by injection molding. They found that both a highly water-

soluble drug (metoprolol tartrate) as well as a poorly water-soluble drug 

(fenofibrate) could be solubilized within the polymeric matrix upon hot melt 

extrusion. Whereas formulation of a highly water-soluble drug led to a slower 

dissolution and drug release profile, due to a slower dissolution rate of the 

polymeric matrix compared to the pure drug, a dramatic increase in dissolution rate 

was observed when a poorly water-soluble drug was formulated. Furthermore, they 

also showed that the release rate could be tailored by varying the molecular weight 

of the PEOZ. 

However, POZ is still not approved by the FDA for medical purposes (currently, 

only PEOZ is approved by the FDA as an indirect food additive) due to the shortage 

of pre-clinical evaluations on effectiveness and toxicokinetics in vivo. 
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Figure 6. Solubility of POZ with hydrocarbon side-chains in water and various 

organic solvents [192]. 

 

Figure 7. Glass transition and melting temperatures of poly(2-n-alkyl- 2-

oxazoline)s with varying side-chain length obtained from DSC [192]. 
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Figure 8. Drug delivery applications of POZ. (AVROXA BV, a company from 

Ghent University, Belgium.) 

 

 

2.4.2 Influence of drug-POZ interactions in solid dispersions on drug crystallinity, 

drug stability and dissolution rate 

It can be seen from Table 6 that only nine drugs have been studied in solid 

dispersions with POZ to date. In one of our previous studies on the effects of 

polymer structure and property on haloperidol crystallinity, it has been 

demonstrated that an increase in the hydrophobicity in a series of POZ also favored 

drug crystallinity reduction. However, poly(2-isopropyl-2-oxazoline) had poor 

ability to reduce crystallinity of haloperidol, which was related to the semi-

crystalline nature of this polymer. Dissolution studies gave good agreement with 

the levels of drug crystallinity measured in the solid dispersions. However, solid 

dispersions with poly(n-propyl-2-oxazoline) released the drug very slowly due to 

its lower critical solution temperature and hence insolubility of this polymer in the 

dissolution medium [36]. The mutual effects of hydrogen bonding and polymer 
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hydrophobicity on ibuprofen crystal inhibition in solid dispersions with PVP and 

POZ was studies [190]; PMOZ, the most hydrophilic polymer, showed the poorest 

ability to reduce or inhibit the crystallinity of IB. In contrast, the more hydrophobic 

polymers PVP, PEOZ, PnPOZ and PiPOZ provided greater but similar abilities to 

reduce IB crystallinity, despite the differing polymer hydrophobicity’s and that 

PiPOZ is semi-crystalline. These results indicate that crystallinity disruption is 

predominately due to hydrogen bonding between the drug molecules and the 

polymer.  

Table 6. Drugs employed in solid dispersions with POZ. “N” represents “no 

interactions reported” (September 2021). 

No. Drug 
Chemical 

structure 
Polymer 

Drug-polymer interactions 

Hydrogen 

bonding 
Dipole-dipole Hydrophobicity 

Van 

der 

Waals 

1 Etravirine 

 

PEOZ/PnPOZ blend N N N N 

2 Fenofibrate 
 

PEOZ 

PEOZ/PnPOZ blend 
N N N N 

3 Glipizide 
 

PEOZ N N N N 

4 Haloperidol 

 

PMOZ 

PEOZ 

PnPOZ 

PiPOZ 

N N [36] N 

5 Ibuprofen 
 

PMOZ 

PEOZ 

PnPOZ 

PiPOZ 

PEOZ/PnPOZ blend 

[190] N N N 
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6 
Indomethac

in 
 

PEOZ 

PnPOZ 

PsecBuOx 

PEOZ/PnPOZ blend 

PEOZ/ PsecBuOx 

blend 

N N N N 

7 
Itraconazol

e 

 

PEOZ 

PnPOZ 

PsecBuOx 

PEOZ/PnPOZ blend 

PEOZ/ PsecBuOx 

blend 

N N N N 

8 
Metoprolol 

tartrate  
PEOZ N N N N 

9 Miconazole 

 

PEOZ/PnPOZ blend N N N N 

 

3. Amide-containing water-soluble polymers which have not yet been studied in 

solid dispersions 

Amide-containing water-soluble polymers which have not yet been studied in solid 

dispersions are summarized in Figure 9. 

Poly(N-vinyl acetamide) is a polymer with affinity for both water and alcohol made 

primarily from N-vinylacetamide monomer. Expected applications include as a 

hydrophiling agent, thickening agent and dispersing agent [193].  

Polyacrylamides including polyacrylamide, poly(N-isopropylacrylamide), poly(N, 

N-dimethylacrylamide) and poly(N, N-diethylacrylamide) are high molecular 

weight water soluble or swellable polymers formed from acrylamide or its 

derivatives. Their glass transition temperatures are well above room temperature (> 

400 K). The only commercially important polyacrylamide is polyacrylamide. It is 

a non-ionic, water-soluble, and biocompatible polymer that can be tailored to meet 
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a broad range of applications. The polymer can be synthesized as a simple linear 

chain or as a cross-linked structure. The cross-linked polymer can absorb and retain 

extremely large amounts of water because the amide groups form strong hydrogen 

bonds with water molecules. Hydrated polyacrylamide is a soft gel that is used in 

gel electrophoresis and as a super water-absorbing polymer. The biomedical and 

pharmaceuticals applications of polyacrylamide have been described by Jain [194] 

and Yang [195].  

Poly(N-isopropylacrylamide), poly(N, N-diethylacrylamide) and poly(N-vinyl 

caprolactam) are temperature-responsive polymers. Poly(N-vinyl caprolactam) is a 

well-studied temperature-responsive polymer, second to poly(N-

isopropylacrylamide) which is the most popular temperature-responsive polymer. 

The polymers show similar LCST behavior in water between 30 and 32℃ [196, 

197], which thus limits their applications in solid dispersions. 

Given these polymers have amide groups which, as H-bond acceptors, could form 

hydrogen bonding interactions with APIs having H-bond donors, there is potential 

for those which do not show LCST to be carriers in solid dispersions. 
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Figure 9. Amide-containing water-soluble polymers which have not yet been 

studied in solid dispersions. 

4. Conclusions 

Intermolecular interactions, in particular hydrogen bonding, in solid dispersions 

using amide-containing nonionic water-soluble polymers as carriers are key factors 

highly influencing drug crystallinity, stability and dissolution rate following oral 

administration. Many of the amide-containing nonionic water-soluble carriers such 

as PVP, PVP/VA and Soluplus that can be applied are already extensively studied 

as excipients. The possibility of exploring other amide-containing nonionic water-

soluble carriers such as poly(N-vinyl acetamide) and polyacrylamide to produce an 

optimized product further extends the range of possibilities for formulation. 
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Chapter 2 

 

Polymer structure and property effects on solid dispersions with 

haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies 

 

This chapter was published as Shan, X.; Williams, A. C.; Khutoryanskiy, V. V., 

Polymer structure and property effects on solid dispersions with haloperidol: 

Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. International journal of 

pharmaceutics 2020, 590, 119884. 
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Fig. S1. 1H-NMR spectra of synthesized PMOZ, PnPOZ and PiPOZ in 



 

91 

 

CD3OD.  

 

Fig. S2. DSC trace of PiPOZ, at a heating rate of 10 ℃/min. The first 

run started from 25 ℃ to 220 ℃, the second run after quenching started 

from -50 ℃ to 220 ℃. 
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Fig. S3. FTIR spectra of PVP, PEOZ and synthesized PEI, PMOZ, 

PnPOZ and PiPOZ. Spectra are offset for clarity.  
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Fig. S4. X-ray diffraction patterns of PMOZ-HP SDs (a), PnPOZ-HP 

SDs (b) and PiPOZ-HP SDs (c). Patterns are offset for clarity. 
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Fig. S5. FTIR spectra of PVP-HP SDs (a), PEOZ-HP SDs (b), PMOZ-

HP SDs (c), PnPOZ-HP SDs (d) and PiPOZ-HP SDs (e). Spectra are 

offset for clarity. 



 

98 

 

 

Fig. S6. FTIR spectra of individual PEOZ and HP as well as PEOZ-HP 

15:1 mol as physical mixtures (PM) and solid dispersions (SD). 
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Fig. S7. DSC thermograms of PMOZ-HP SDs (a), PiPOZ-HP SDs (b), 
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PnPOZ-HP SDs (c) analyzed using Method 1 and PnPOZ-HP SDs (d) 

analyzed using Method 2. Traces are offset for clarity. 

Note 1: Inserts are enlargements at some molar ratios for clarity. 

Note 2: All polymer-HP SDs were analysed by heating the sample to 

100 ℃ in the first cycle (Method 1). Samples were also analysed by 

heating to 120 ℃ in the first cycle (Method 2). Thermograms for 

PnPOZ dispersions are obtained by heating to 120 ℃ in the first cycle 

(Method 2) whilst all other data is obtained by heating to 100 ℃ in the 

first cycle (Method 1). 

Table.S1: Melting temperatures of haloperidol in solid dispersions with 

PnPOZ analysed by two methods. 

 

Method 1 Method 2 

Tm of Peak 2 (℃) Tm of Peak 1 (℃) Tm of Peak (℃) 

PnPOZ-HP 1:1 112.5 150.9 150.6 

PnPOZ-HP 2:1 112.7 146.2 148.4 

PnPOZ-HP 5:1 112.1 134.6 133.5 

PnPOZ-HP 10:1 116.2 125.7 
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Fig. S8. Crystallinity of PiPOZ in SDs calculated by DSC and PXRD 

and (insert) enlarged DSC traces of PiPOZ-HP SDs 

Table. S2: Crystallinity (%) of PiPOZ calculated from DSC and PXRD 

data. 

Formula Tm of Peak 2 (℃) ΔΗs (J/g) 
Crystallinity (%) 

DSC PXRD 

PiPOZ-HP 0.3:1 *NA *NA *NA 5.6 

PiPOZ-HP 1:1 *NA *NA *NA 25.9 

PiPOZ-HP 2:1 *NA *NA *NA 33.5 

PiPOZ-HP 5:1 172.5 2.21 14.7 44.2 

PiPOZ-HP 10:1 186.4 9.47 50.2 63.5 

PiPOZ-HP 15:1 192.2 16.11 78.3 90.4 

PiPOZ-HP 20:1 193.9 15.27 70.9 47.2 

PiPOZ 203.5 ΔΗp = 25.13 (J/g) 100 100 

∗NA: not available. 
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the degree of crystallinity of PiPOZ calculated by PXRD was 

normalised according to the following equation: 

Crystallinity (%) = (
Is

Ip
)﹡100                            (S1) 

where, Is is the intensity of the sample at peak 8.152
。

2θ, Ip is the 

intensity of the pure PiPOZ at characteristic peak 8.152
。

2θ. 

the degree of crystallinity of PiPOZ calculated by DSC was normalised 

according to the following equation: 

Crystallinity (%) = (ΔΗs﹡ 
Ws

Wp
) /ΔΗp﹡100                 (S2) 

where, ΔΗs is the enthalpy for the melting PiPOZ at around 200 ℃, ΔΗp 

is the melting enthalpy of pure PiPOZ, Ws is the weight of SDs, Wp is 

the weight of PiPOZ in SDs. 

 

(a) 

 



 

104 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

Fig.S9. The A～B plots for PVP-HP (a), PEOZ-HP (b), PnPOZ-HP (c), 

PMOZ-HP (d) and PiPOZ-HP (e) solid dispersions. Error bars show 

standard deviation (n=3). 
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Chapter 3 

 

Mutual Effects of Hydrogen Bonding and Polymer Hydrophobicity on 

Ibuprofen Crystal Inhibition in Solid Dispersions with Poly(N-vinyl 

pyrrolidone) and Poly(2-oxazolines) 

 

This chapter was published as Shan, X.; Moghul, M. A.; Williams, A. C.; 

Khutoryanskiy, V. V., Mutual Effects of Hydrogen Bonding and Polymer 

Hydrophobicity on Ibuprofen Crystal Inhibition in Solid Dispersions with Poly(N-

vinyl pyrrolidone) and Poly(2-oxazolines). Pharmaceutics 2021, 13, (5). 
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Abstract: 

Nasal drug administration represents one of the most investigated route for the 

systemic administration, which is unfortunately often affected by inadequate nasal 

drug absorption. Here, we have investigated novel mucoadhesive poly(N-(2-

hydroxylpropyl)methacrylamide) copolymer (PHPMA) enriched with maleimide 

moieties. PHPMA and its maleimide derivates were investigated for their 

cytotoxicity and mucosal irritation. Importantly, copolymers with low maleimide 

content, which was nevertheless sufficient for the mucoadhesion, had no significant 

cytotoxicity against HEK293 cell line and no mucosal irritancy against slugs was 

also observed, respectively. The presence of maleimide groups had a remarkable 

positive effect on the mucoadhesive properties of PHPMA. These PHPMA 

derivatives have excellent potential as mucoadhesive materials for formulation of 

dosage forms for nasal drug delivery. 

Keywords: poly(N-(2-hydroxylpropyl)methacrylamide), mucoadhesion, maleimide, 

mucoadhesive materials, nasal drug delivery 
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1. Introduction 

Nasal drug administration has been established as an alternative route for the 

systemic availability of drugs restricted to intravenous administration due to the 

large surface area, porous endothelial membrane, high total blood flow, the 

avoidance of first-pass metabolism, and ready accessibility [1]. However, the drug 

absorption through the nasal mucosa is generally affected by the physicochemical 

properties of the drug [2], nasal mucus layer and mucociliary clearance [3], and 

nasal absorption enhancers [4]. Therefore, one of the greatest limitations for nasal 

drug delivery is inadequate nasal drug absorption. 

Several drug delivery systems (DDS), such as microspheres [5-7], liposomes [8-10] 

and gels [11, 12] have been demonstrated to have good bioadhesive characteristics 

and are able to control the rate of drug clearance from the nasal cavity as well as 

protect the drug from enzymatic degradation in nasal secretions. In addition, nasal 

DDS based on polymer materials exhibiting mucoadhesive properties have also 

been studied for increasing the residence time of drug formulations in the nasal 

cavity, resulting in improved nasal drug absorption. Of which, maleimide groups 

have been demonstrated to have a significant positive effect on the mucoadhesion 

performance of some hydrophilic polymers. For example, liposomes decorated with 

maleimide-functionalised PEG exhibited superior in vitro retention on the bladder 

tissue, which is related to their ability to form covalent bonds with thiols present in 

mucosal tissue [13]; maleimide-functionalised nanogels were found to exhibit 

excellent mucoadhesive properties on ex vivo conjunctival tissue when compared 

to the known mucoadhesive chitosan [14-16]; maleimide-functionalised chitosan 

demonstrated excellent mucoadhesive properties which is superior to chitosan itself 

[17]. 

(N-(2-hydroxylpropyl)methacrylamide)-based copolymers (PHPMA) are a 

hydrophilic biocompatible copolymers that has been widely explored as carriers for 

chemotherapeutic agents, and at least six of PHPMA-based therapeutics have 
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progressed into phase I or phase II clinical trials or compassionate clinical trials 

[18-20]. In addition, PHPMA has been validated as a dissociable “mucus-inert” 

coating material to enhance mucus permeation of nanoparticles by assembling on 

the nanoparticle surface and separating in time from the surface of nanoparticles for 

subsequent epithelium absorption [21]. Liu et al. [22] developed PHPMA coated 

trimethyl chitosan-based nanoparticles and demonstrated that the PHPMA coating 

could enhance the diffusion of trimethyl chitosan nanoparticles through both human 

cervicovaginal mucus and epithelial layer while non-coated trimethyl chitosan 

nanoparticles were found to be less diffusive in both mucus and E12 cells. In 

another study [23], Liu et al. investigated the effect of Mw of PHPMA as a ‘‘mucus-

inert’’ material for overcoming the intestinal absorption barrier and found that the 

trimethyl chitosan-based nanoparticles coated by lower Mw of PHPMA (Mw of 17 

kDa) exhibited the highest stability and excellent permeability across mucus while 

a high Mw coating (Mw of 120 kDa) results in premature dissociation of the PHPMA 

shell and hindrance in mucus, and the best candidate for promoting cell uptake and 

transepithelium transportation is 26 kDa. Liu et al. [24] developed PHPMA-coated 

wheat germ agglutinin-modified lipid-polymer hybrid nanoparticles, co-loaded 

with silibinin and cryptotanshinone and revealed that PHPMA enhanced 

nanoparticle mucus penetration through the in vitro mucus diffusion study. Lu et al. 

[25] modified the surface of mesoporous carbon nanoparticles with chitosan 

concealed by PHPMA layer and concluded that the mucus-permeable nanocarrier 

could effectively overcome multiple gastrointestinal absorption barriers and the oral 

bioavailability of drug-loaded nanoparticles was 2.76-fold that of commercial 

preparation. However, studies into the mucoadhesive properties of PHPMA or its 

derivatives are currently lacking; most studies are about mucus penetration. 

Here, we have employed novel strategy to increase the mucoadhesive properties of 

PHPMA by the introduction of the maleimide groups into the PHPMA side chains. 

Liquid formulations based on PHPMA and its maleimide derivatives with sodium 

fluorescein as a model compound were prepared and their retention on freshly 
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excised sheep nasal mucosa was evaluated using fluorescent microscopy. Tensile 

test was utilized as the other way to investigate the mucoadhesive properties of 

samples. The biocompatibility of parent PHPMA and its maleimide derivatives was 

studied in HEK293 cell line and slugs. 

2. Materials and methods 

2.1 Materials 

The monomers N-(2-hydroxypropyl)methacrylamide (HPMA) and 3-(3-

methacrylamidopropanoyl)thiazolidine-2-thione (Ma-β-Ala-TT) was prepared as 

described previously [26]. 2,2'-Azobis(4-methoxy-2,4-dimethylvaleronitrile) (V70) 

was from FUJIFILM Wako Pure Chemical Corporation (Japan). (1-cyano-1-

methyl-ethyl) benzenecarbodithioate (CTA), tert-butyl alcohol, N,N-

dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), azobisisobutyronitrile 

(AIBN) and 2-aminoethyl maleimide trifluoroacetate (AEMI) were from Merck 

(Czech Republic). Acetone and diethyl ether were from Lach-Ner (Czech Republic). 

N,N-diisopropylethylamine (DIPEA) was from Iris Biotech, GmbH (Germany). 

Deuterium oxide (D2O), sodium fluorescein, glycol chitosan, calcium chloride 

dehydrate, sodium chloride, potassium chloride and benzalkonium chloride (BAC) 

were from Sigma-Aldrich (UK). DMEM High Glucose was from Capricorn 

Scientific (Germany). 10 % fetal calf serum was from GE Healthcare Life Sciences 

(USA). 1 % penicillin/streptomycin was from Nacalai Tesque Inc. (Japan). CellTiter 

96 aqueous MTS reagent powder was from Promega Corporation (USA). Phenazine 

methosulfate was from Thermo Fisher Scientific (USA). Phosphate buffered saline 

(PBS) was purchased from Fisher Scientific (UK). 

 

2.2 Synthesis of PHPMA functionalised with maleimide groups (PHPMA-Mi) 

At first, the copolymer poly(HPMA-co-Ma-β-Ala-TT) (PHPMA-TT) was prepared 

by reversible addition−fragmentation chain transfer (RAFT) copolymerization of 
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HPMA (2 g, 13.97 mmol, 87.5 mol %) and Ma-β-Ala-TT (515 mg, 2.0 mmol, 12.5 

mol %) using V70 (0.013 mmol, 4.1 mg) as an azo initiator and CTA (0.027 mmol, 

5.9 mg) as a chain transfer agent. The molar ratio of monomers/CTA/ initiator was 

1200:2:1. The polymerization mixture was dissolved in tert-butyl alcohol with 15 % 

of DMA (22.8 mL, 0.7 M solution of monomers), transferred into a glass ampule, 

bubbled with Ar and sealed. After 16 h at 40 °C, the tough product was diluted with 

DMSO and isolated by precipitation in acetone/diethyl ether, then washed with 

diethyl ether and dried under vacuum. The resulting copolymer was reacted with 

AIBN (10 molar excess) in DMSO (15% w/w solution of polymer) under Ar for 3 

h at 70 °C in a sealed ampule to remove dithiobenzoate (DTB) ω-end groups. The 

reaction mixture was isolated by precipitation with acetone/diethyl ether, the 

precipitate was washed with diethyl ether and dried under vacuum to yield 

copolymer PHPMA-TT-1. The copolymer PHPMA-TT-2 was prepared by the same 

way but with 25 mol% of Ma-β-Ala-TT and with the molar ratio of monomers/CTA/ 

initiator 1600:2:1. 

The obtained reactive polymer precursors (PHPMA-TT) were dissolved in DMA 

and 1.1 molar amount of 2-aminoethyl maleimide trifluoroacetate (AEMI) to TT 

(thiazolidine-2-thione) groups was added to the solution using 1.1 molar amount of 

DIPEA as the base. The course of the reaction was analyzed using HPLC and after 

removing all TT groups from polymer, the reaction mixture was precipitated in 

acetone/diethyl ether, then washed with diethyl ether and dried under vacuum to 

form PHPMA-Mi conjugates. 

2.3 Characterization of polymers 

2.3.1 Proton nuclear magnetic resonance (1H-NMR) 

1H NMR spectra of polymers were recorded with a Bruker spectrometer operating 

at 250 MHz using D2O (15 mg/mL) as the solvent. All chemical shifts are given in 

ppm. MestReNova software was used for analysis of spectra. 
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2.3.2. Fourier transform infrared (FTIR) spectroscopy 

FTIR spectra were recorded on a Nicolet iS5 spectrometer using a diamond ATR 

(Attenuated Total Reflection) accessory. After a background scan was collected, 

samples were placed on the crystal and scanned from between 4000 and 600 cm-1 

at a resolution of 4 cm-1 and an average of 64 scans. The OMINIC software was 

used for spectral analysis. 

2.3.3 Size exclusion chromatography (SEC) 

The molecular weights and polydispersity of polymers were measured by size 

exclusion chromatography (SEC) on a HPLC system (Shimadzu, Japan) equipped 

with UV, differential refractive index and multi-angle light scattering detectors 

(Wyatt Technology Corp., USA) using TSKgel G4000 SWXL, (Tosoh Bioscience, 

Japan) (80% methanol, 20% 0.3 M acetate buffer pH 6.5) at a flow rate of 0.5 

mL/min. The calculation of molecular weights from the light- scattering intensity 

was based on the known injected mass, assuming 100% mass recovery. 

2.3.4 Calculation of maleimide modification 

The modification of maleimide was calculated from 1H NMR spectra of MPHPMA 

in D2O based on the integrated areas (I) of -CH signals of HPMA monomer and -

CH=CH- signals of maleimide moieties, as displayed in the following equations: 

𝐼[CH=CH]

2𝑦
=

𝐼[CH]

𝑥
                               (1) 

𝑀𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒 (%) =  
𝑦

𝑥+𝑦
                     (2) 

where I[CH=CH] is the integrated area of -CH=CH- of maleimide moieties, I[CH] is 

the integrated area of -CH of HPMA moieties, x is the number of repeating units of 

HPMA moieties, y is the number of repeating units of maleimide moieties. 

then the equation (2) was modified to: 



 

158 

 

𝑀𝑎𝑙𝑒𝑖𝑚𝑖𝑑𝑒 (%) =  
𝐼[CH=CH]

2∗𝐼[CH] + 𝐼[CH=CH]
               (3) 

2.4 In vitro nasal mucoadhesion studies  

2.4.1 Preparation of polymer/fluorescein sodium mixtures and artificial nasal fluid 

Artificial nasal fluid (ANF) was prepared according to the established protocol [27, 

28] by dissolving 7.45 g NaCl, 1.29 g KCl and 0.32 g CaCl2·2H2O in 1000 mL 

deionised water. The solution was left stirring overnight at room temperature. The 

artificial nasal fluid was kept at 37 °C in a water bath throughout the experiments. 

Sodium fluorescein solutions (0.05 mg/mL) were prepared in deionised water into 

which polymer samples were dissolved; 10 mg of either PHPMA, PHPMA-Mi, or 

glycol chitosan were dispersed in 10 mL of the sodium fluorescein solution and pH 

was adjusted to 5.7. The dispersions were left for 24 h at room temperature with 

stirring until complete dissolution and were protected from light by aluminium foil. 

2.4.2 Fluorescence retention studies on nasal mucosa 

Sheep heads were obtained from P.C. Turner Abattoir (Farnborough, UK) and 

transported to the laboratory in a cold box (3–4 °C). The nasal septum tissue 

containing mucosal lining (1.5×1 cm) was carefully dissected and extracted from 

each head with scissors, washed with 1 mL of ANF and placed on a microscope 

slide. All tissues were used within 24 h after animal slaughter. 

All experiments assessing retention of formulations on nasal mucosa were 

conducted at 37 °C in an incubator. Images of mucosal surfaces were taken using a 

fluorescence microscope (MZ10F, Leica Microsystems, UK), equipped with an “ET 

GFP” filter and a Zeiss Imager A1/AxioCam MRm camera. All images were at 0.8× 

magnification with a 211 ms exposure time. Initially, fluorescence images of 

mucosal tissues were recorded for each sample to collect background fluorescence 

intensity. Then, 20 μL solution of 1 mg/mL PHPMA, PHPMA-Mi or glycol chitosan 

containing 0.05 mg/mL sodium fluorescein was placed on the mucosal surface and 
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fluorescence images were again recorded. After 3 min of dosing, the mucosal 

tissues were transferred to the incubator and irrigated with ANF using a syringe 

pump at 0.43 mL/min. Fluorescence images of the mucosal tissue were collected 

periodically and analyzed using ImageJ software to measure pixel intensity after 

each wash. Results are presented as fluorescence intensity versus the time of 

irrigation after subtracting the background fluorescence from each wash image. 

Sodium fluorescein solution in deionised water was used as a negative control and 

glycol chitosan solution (1 mg/mL) was used as a positive control. The experiments 

were conducted in triplicate. 

2.4.3 Mucoadhesive properties studies using tensile test 

Tensile test was performed on a TA XT plus texture analyser (Stable Mirco systems) 

where nasal tissue 4 cm2 was incubated to 37 °C before being placed on a platform 

(24 mm opening) that was surrounded by water at 37 °C to maintain the tissue 

temperature during the test. Each sample was prepared by soaking a filter paper 

(diameter =15 mm) in polymer solution (3 mg/mL) using ANF as the solvent for 30 

s before drying in a vacuum oven at 25 °C for 20 mins and this process was repeated 

once to obtain a dry polymer coated filter paper, which was then attached to the 

probe via a carbon tab (12 mm). The contact time between the probe and the tissue 

was 30 s with 100 g of force before pulling apart with a removal speed of 1 mm/s. 

All samples were tested in triplicate. T.A. Exponent software was used to record the 

area under the force versus distance curves (work of adhesion) as well as the force 

of adhesion/adhesive strength which is the maximum force needed to detach tissue 

from the polymer coated filter paper. 

2.5 Biocompatibility studies 

2.5.1 Cytotoxicity studies 

HEK293 was cultured in DMEM High Glucose supplemented with 10 % fetal calf 

serum and 1 % penicillin/streptomycin. The cells were incubated at 37 ºC in a 
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humidified atmosphere of 5 % CO2. Cell viability was assessed using CellTiter 96 

AQueous Non-Radioactive Cell Proliferation Assay (MTS assay). Cells were 

seeded in 96-well plate at 3 × 103 cells/well and incubated overnight at 37 ºC in 5 % 

CO2 humidified air for cell attachment. The cells were then treated with various 

concentrations of the polymers (25, 50, 75, 100, 125 and 150 µg/mL) for 72 h. The 

negative control group consisted of untreated cells and was considered as 100 % of 

viable cells. After 72 h, treatment media were replaced with new growth media and 

20 µL MTS solution (prepared in phosphate buffered saline) containing 2 mg/mL 

of CellTiter 96 Aqueous MTS reagent powder and 0.92 mg/mL of phenazine 

methosulfate. The cells were incubated for a further 4 h before absorbance (Abs) 

was measured at 490 nm using an Infinite 200 PRO microplate reader (Tecan Group 

Ltd., Switzerland). The results are expressed as percentage of cell viability 

compared to the negative control group based on the following equation: 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
(AbsTreatment−AbsBlank)

(AbsControl−AbsBlank)
× 100                         (4) 

 

2.5.2 Slug mucosal irritation assay 

The slug mucosal irritation (SMI) assay was performed according to our previously 

published reports [29, 30]. Arion lusitanicus slugs were collected locally in Harris 

Garden (Reading, UK) and were housed in plastic containers and fed with lettuce, 

cabbage, and cucumber. Each slug’s body lining was carefully inspected and only 

slugs showing no evidence of macroscopic injuries with clear tubercles and a foot 

surface were used for testing purposes. Slugs weighing between 6 and 20 g were 

isolated from the culture and were placed individually in 1 L glass beakers lined 

with a paper towel moistened with 20 mL of phosphate buffered saline (PBS, pH 

7.40) and left at room temperature for 48 h before the start of an experiment. All 

beakers were covered with cling film pierced with tiny holes to allow air exchange. 

Each slug was individually weighed before the experiment and then placed in 90 
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mm plastic Petri dishes lined with Whatman™ filter paper moistened with either 

positive/negative controls (2 mL of 1% BAC in PBS and 2 mL of PBS solution, 

respectively) or 2 mL of each test materials (PHPMA, PHPMA-Mi) prepared in 

PBS with different 1, 2 and 3 mg/mL concentrations. After 60 min contact period 

slugs were taken out, rinsed with 10 mL of PBS, gently wiped with the paper towel, 

and then reweighed. The mucus production (MP) was estimated as a slug body 

weight loss and calculated using the following equation: 

MP =  
(mb−ma)

mb
× 100%                    (5) 

where mb and ma are the weights of a slug before and after experiment, respectively. 

Each experiment was repeated 5 times using different slugs and the results were 

evaluated statistically, calculating the mean ± standard deviation values. 

2.6 Statistical analysis 

All experiments were conducted in triplicate and data expressed as mean ± standard 

deviation with the probability of p < 0.05 considered as significant. GraphPad Prism 

statistical analysis software (version 7.0) was used to analyze data using one-way 

analysis of variance ANOVA and paired t-tests.  

3. Results and Discussion 

3.1. Synthesis and characterization of PHPMA-Mi conjugates 

PHPMA-Mi conjugates were synthesized by two-step procedure, first, the RAFT 

copolymerization of HPMA and Ma-β-Ala-TT was employed for the preparation of 

PHPMA-TT copolymers, which were used for subsequent reaction with AEMI to 

substitute the TT groups with maleimide groups (Fig. 1). The resultant PHPMA-Mi 

copolymers were characterized using 1H NMR, FTIR and SEC. 
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Fig. 1. Synthesis of PHPMA-Mi conjugates. 

The 1H NMR spectrum of PHPMA showed signals which were in agreement with 

the published literature [31]: δ (ppm) 3.82 (peak d, CH of PHPMA side chain), 

3.19–2.90 (peak c, CH2 of PHPMA side chain), 1.99–1.51 (peak a, CH2 of PHPMA 

backbone), 1.17–0.74 (peak b, CH3 of PHPMA backbone and CH3 of PHPMA side 

chain). The introduction of maleimide groups led to the signals at δ (ppm) 3.70-

3.18 (peak e and g), 2.30 (peak f) and 6.81 (peak h) characteristic for -CH2 attached 

to the amines, -CH2 attached to the carbonyl groups and -CH=CH- of maleimide 

moieties, respectively. The signal at δ (ppm) 7.56 (peak i) was attributed to NH of 

the copolymer side chain (Fig. 2), but this signal for PHPMA itself was too weak 

to be characterized probably because of the less NH groups in PHPMA 

homopolymer than that in PHPMA-Mi copolymers. It also could be seen from the 

1H NMR spectra of PHPMA-Mi that there were no TT groups signals as the TT 
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groups were entirely substituted by maleimide groups which was tracked and 

analyzed by HPLC equipped with UV (Fig. S1). However, side reactions are 

possible via Michael addition which would be further investigated in the future. 

The functionalization of maleimide was calculated from 1H NMR spectra of 

PHPMA-Mi in D2O based on the integral values (I) of -CH signals of HPMA 

monomer and -CH=CH- signals of maleimide moieties, as displayed in Table 1 that 

the maleimide substitution was 11% and 25% after the reaction with the reactive 

polymer precursor PHPMA-TT-1 and PHPMA-TT-2, respectively. For clarity, the 

maleimide functionalized PHPMA are annotated with their Mi content (i.e. 

PHPMA-Mi11 contains 11% maleimide groups and was synthesized from PHPMA-

TT-1). The resulting good polymer dispersity (1.10 for PHPMA-Mi11 and 1.14 for 

PHPMA-Mi25) was demonstrated by SEC (Fig. S2). 

 

Fig. 2. 1H NMR spectra of PHPMA and PHPMA-Mi in D2O. 
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Table 1. Characterization of polymers. 

Products Mw
a
 Mw/Mn

a
 

Content of maleimide groupb 

(mol %) 

PHPMA 74 700 1.08 0 

PHPMA-Mi11 74 400 1.10 11 

PHPMA-Mi25 72 000 1.14 25 

aMolecular weight and polydispersity were determined by SEC using RI and LS 

detection. bMaleimide content was determined by 1H NMR. 

The FTIR spectrum of PHPMA shows the following peaks: 3337 cm-1 (N–H and 

O–H stretch); 2970 and 2923 cm-1 (alkyl C–H stretch); 1640 cm-1 (amide C=O 

stretch); 1528 cm-1 (N–H bend); 1443 cm-1 (alkane); 1200 cm-1 (C–O stretch). 

Successful maleimide modification from PHPMA to PHPMA-Mi was shown not 

only through the N-H and C-H stretch enhancement but also by strong features 

appearing at 1705 cm-1 (C=C stretch), 831 cm-1 (=C-H bend) and 696 cm-1 (=C-H 

bend), and the signals were significantly strengthened with the higher content of 

maleimide groups (Fig. 3). 
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Fig. 3. FTIR spectra of PHPMA and PHPMA-Mi in the range of 3800-600 cm-1. 

3.2. In vitro nasal mucoadhesion studies 

The mucoadhesive properties of PHPMA, PHPMA-Mi11 and PHPMA-Mi25 

solutions containing sodium fluorescein were studied on freshly excised sheep nasal 

mucosa, irrigated with ANF. The glycol chitosan served as the mucoadhesive 

positive control, whereas the negative control was sodium fluorescein. Fig. 4 shows 

the retention of sodium fluorescein mediated with glycol chitosan, PHPMA, 

PHPMA-Mi11 and PHPMA-Mi25 on sheep nasal mucosa. Numerical values from 

these experiments are summarized in Table S1. 

Parent PHPMA exhibited relatively poor mucoadhesive properties as only ～7.1% 

of fluorescence remained on nasal mucosa after 60 min washing which was similar 

to that for sodium fluorescein (Fig. 4b). PHPMA conjugation with higher amount 

of maleimide resulted in greater retention after each wash. For example, the 

retention values of PHPMA, PHPMA-Mi11 and PHPMA-Mi25 after 5 min washing 

were approximately 20.5%, 34.6% and 42.2%, respectively, calculated based on the 

fluorescence intensity after 5 min washing. It could be seen that there was no 
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significant retention difference between PHPMA-Mi25 and glycol chitosan, 

indicating the potential mucoadhesive performance of PHPMA-Mi25. In addition, 

PHPMA-Mi11 showed significantly better mucoadhesive properties than parent 

PHPMA at all time points (p < 0.005). The superior mucoadhesive properties of 

PHPMA-Mi may be due to the high reactivity of maleimide towards thiol groups 

present in cysteine on the mucous membrane [17, 32]. 

 

(a) 

 

(b) 
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Fig. 4. (a) Fluorescence images showing retention of 1 mg/mL glycol chitosan, 

PHPMA, PHPMA-Mi25, PHPMA-Mi11 solutions using 0.05 mg/mL sodium 

fluorescein as the solvent, and pure 0.05 mg/mL sodium fluorescein solution on 

sheep nasal mucosa and washed with ANF. Scale bar is 2 mm. (b) Retention of 1 

mg/mL glycol chitosan, PHPMA, PHPMA-Mi11, PHPMA-Mi25 solutions using 

0.05 mg/mL sodium fluorescein as the solvent and pure 0.05 mg/mL sodium 

fluorescein solution on sheep nasal mucosa as washed with different volumes of 

ANF (pH=5.7, n=3, mean ± SD, “*” represents p < 0.05). 

Tensile test was utilized as the other way to investigate the mucoadhesive properties 

of samples. The force of detachment or adhesive strength indicates the force 

required to overcome the adhesive bonds between the sample and nasal mucosa, 

while the work of adhesion is the area under the force-distance curves. Dextran was 

used as a negative control [33]. The work of adhesion values showed that PHPMA-

Mi25 was statistically more mucoadhesive than PHPMA and PHPMA-Mi11 (Fig. 

5b), albeit PHPMA-Mi11 and PHPMA-Mi25 displayed similar force of detachment 

(Fig. 5a). Overall, the adhesive strength of the polymers correlated well with their 
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work of adhesion as PHPMA-Mi25 exhibited greater force of detachment and work 

of adhesion relative to the parent PHPMA. This is in good agreement with the 

fluorescence retention studies on nasal mucosa. 

 

 

Fig. 5. (a) Force of detachment and (b) work of adhesion of dextran, PHPMA, 
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PHPMA-Mi11 and PHPMA-Mi25 to sheep nasal mucosa measured using tensile test 

(n=3, mean ± SD, “*” represents p < 0.05). 

 

3.3. Biocompatibility studies 

The HEK293 cell growth inhibitory effect of the copolymers was studied over 72 h 

(Fig. 6). The cytotoxicity values were expressed as means and showed in Table S2. 

Recently, the toxicity of PHPMA has been tested in other cell lines such as HeLa, 

L-cells and WI-38, and none of the tested cell lines showed any cytotoxicity [34]. 

Similarly, in this study, PHPMA was proven to have no cytotoxic effect on the 

viability of HEK293 cells even at high concentrations (> 100 μg/mL). It could be 

seen that 11 mol% maleimide functionalized copolymer (PHPMA-Mi11) showed no 

significant toxicity even at very high concentration (150 μg/mL). By contrast, 25 

mol% maleimide functionalized copolymer (PHPMA-Mi25) was relatively toxic 

compared to parent PHPMA, what could be escribed to the maleimide groups acting 

as a reactive oxygen species (ROS)-scavenging inhibitor. The maleimide groups are 

able to deactivate intracellular glutathione and cysteine, thus increasing cytotoxicity 

[35, 36]. Therefore, it is important to be aware of the maleimide content when 

selecting maleimide modified polymers as the mucoadhesive materials. 
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Fig. 6. Viability of HEK 293 cells determined after treatment with different 

concentrations (25, 50, 75, 100, 125 and 150 μg/mL) of PHPMA, PHPMA-Mi11 

and PHPMA-Mi25 for 72 h. The untreated cells served as the control. Values were 

expressed as means ± SD (n = 3), “*” represents p < 0.05, “**” represents p < 0.005, 

“***” represents p < 0.001. 

The mucosal irritancy of PHPMA and PHPMA-Mi conjugates was tested in Arion 

lusitanicus slugs. Fig. 7 presents the results on mucus production by slugs exposed 

to filter paper moistened with PHPMA and PHPMA-Mi conjugates of various 

amount prepared in PBS as well as positive and negative controls. In experiments 

with 1% solution of BAC in PBS (pH 7.35), used as a positive control, slugs 

experienced a severe discomfort, producing approximately 36 ± 5% of yellow 

mucus, whereas slugs exposed to PBS (used as a negative control, pH 7.40) did 

show a low level of mucus production of 4 ± 1% (Fig. S3 in Supporting information 

for the images of slugs exposed to various test materials). A significant variability 

of the data obtained from experiments with positive control is explained by slugs’ 

increased activity and tendency to escape a contact with an irritant chemical. In all 

experiments with negative control and PHPMA-based biomaterials slugs secreted 
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colorless mucus, which is the first sign of their reasonably good biocompatibility. 

 

Fig. 7. Mucus production by Arion lusitanicus slugs in response to 60 min exposure 

to PHPMA, PHPMA-Mi11 and PHPMA-Mi25 as well as positive and negative 

controls. Statistically significant differences are given as: “****” represents p < 

0.0001; “*” represents p < 0.05; “ns” represents no significance. 

 

4. Conclusions 

Within the present study we have successfully synthesized and tested maleimide 

functionalized PHPMA copolymers as suitable mucoadhesive excipients. Using the 

cytotoxicity studies and slug mucosal irritation assay we were able to demonstrate 

good biocompatibility of maleimide containing polymers, thus proving their 

applicability within the nasal delivery route. In vitro nasal mucoadhesion studies 

demonstrated that PHPMA-Mi copolymers exhibited superior mucoadhesive 
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properties on nasal mucosa tissue compared to parent PHPMA owing to the binding 

of maleimide groups being available to interact with the mucosal surface. To sum 

up, maleimide functionalized PHPMA can potentially be used as a mucoadhesive 

material in dosage forms for nasal drug delivery. 
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(b) 

 

 

Fig. S1. (a) at 0 h (UV detector at 220 nm), the first peak was attributed to DMA, 

the second peak (2.8 min) was attributed to PHPMA-TT which showed two UV 

maximum absorption wavelength at 272 nm and 306 nm; (b) at 3 h (UV detector at 

220 nm), the first peak was attributed to DMA and released TT groups, the second 

peak (2.4 min) was attributed to PHPMA-Mi which showed one UV maximum 

absorption wavelength at 275 nm. 
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Fig. S2. SEC profiles of polymers (UV detector at 220 nm). 

Table S1. Retention values of 1 mg/mL glycol chitosan, PHPMA, PHPMA-Mi11 

and PHPMA-Mi25 solutions using 0.05 mg/mL sodium fluorescein as the solvent 

and pure 0.05 mg/mL sodium fluorescein solution on sheep nasal mucosa as washed 

with different volumes of ANF (pH=5.7). Values were expressed as means (n = 3). 

Retention (%) 

Time (min.) 

Sample 
0 5 10 20 30 40 50 60 

Glycol chitosan 100 37.22 28.91 21.92 18.33 15.94 13.81 12.52 

PHPMA-Mi11 100 34.64 27.42 20.62 17.51 14.94 13.23 12.24 

PHPMA-Mi25 100 42.17 30.77 22.83 19.13 17.12 15.31 14.03 

PHPMA 100 20.52 15.61 11.22 10.84 7.63 7.23 7.05 

Sodium fluorescein 100 19.05 14.62 10.21 9.24 6.92 6.62 5.73 
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Table S2. Values of viability of HEK 293 cells determined after treatment with 

different concentrations (25, 50, 75, 100, 125 and 150 μg/mL) of PHPMA, 

PHPMA-Mi11 and PHPMA-Mi25 for 72 h. The untreated cells served as the control. 

Values were expressed as means (n = 3). 

Cell Viability (%) 

                 Concentration (μg/mL) 

Sample 
0 25 50 75 100 125 150 

PHPMA 100 98.95 99.72 98.28 97.69 97.42 97.87 

PHPMA-Mi11 100 97.91 96.44 95.85 94.94 93.98 92.03 

PHPMA-Mi25 100 89.77 84.14 81.85 75.46 73.09 71.94 
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Fig. S3. Mucus production by Arion lusitanicus slugs in contact with positive (1% 

solution of BAC in PBS) and negative (PBS solution) controls as well as test 

materials after 60 min exposure. 
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Chapter 6 

 

 

General discussion and future work 
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General discussion 

Poly(2-oxazolines) (POZ) are an emerging polymer class with useful properties and 

are proposed as a versatile platform for different drug delivery systems such as 

nanoparticles [1], micelles [2], hydrogels [3], polymer-drug conjugates [4] and 

polymer-protein conjugates [5]. However, to date applications of POZ in solid 

dispersions as well as a mucoadhesive carrier are lacking. Here, we not only 

developed a series of poly(2-oxazolines)-based solid dispersions (second chapter 

and third chapter), but also modified poly(2-ethyl-2-oxazoline) with methacrylate 

groups which significantly improved its mucoadhesive performance (fourth 

chapter). In addition, PHPMA and its maleimide derivatives were studied in terms 

of their mucoadhesive properties and demonstrated that maleimide groups also 

resulted in enhanced mucoadhesion (fifth chapter), which could act as a parallel 

work to methacrylate groups modified poly(2-ethyl-2-oxazoline). 

The first chapter provided an overview on intermolecular interactions in solid 

dispersions of amide-containing nonionic water-soluble polymers including PVP, 

PVP/VA, Soluplus and poly(2-oxazolines). The amide group could act as hydrogen 

bonding acceptors in intermolecular interactions between carriers and drugs. Apart 

from hydrogen bonding, dipole-dipole interactions, hydrophobic effects and Van 

der Waals forces were also discussed. However, hydrogen bonding between drug 

molecules and carriers remain most widely reported and are responsible for drug 

crystallinity reduction, and improvements in drug stability and dissolution rate. The 

influence of hydrogen bonding between drug molecules and polymer carriers (PVP, 

PVP/VA, Soluplus and poly(2-oxazolines)) on solid dispersion properties provides 

the rationale to select other nonionic water-soluble polymer carriers containing 

amide groups such as poly(N-vinyl acetamide) and polyacrylamide, which have not 

yet been studied as solid dispersion carriers. 

The second chapter focused on the synthesis of a series of water-soluble poly(2-

oxazolines) with equivalent degrees of polymerization and subsequent applications 
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in solid dispersions. The polymer structure and property effects on solid dispersions 

with haloperidol were investigated. Poly(N-vinyl pyrrolidone) (PVP) was superior 

in its ability to reduce crystallinity of haloperidol and gave rapid drug release from 

solid dispersions which is related to its ability to form hydrogen bonds with the drug 

molecules. Increasing the number of hydrophobic groups (-CH2-and -CH3) in 

poly(2-oxazolines) resulted in greater inhibition of crystallinity of haloperidol. 

However, poly(2-isopropyl-2-oxazoline) had very poor ability to reduce 

crystallinity of haloperidol, which is related to the semi-crystalline nature of this 

polymer. Dissolution studies indicated good agreement with the levels of drug 

crystallinity measured in the solid dispersions. However, solid dispersions with 

poly(n-propyl-2-oxazoline) were found to release drug very slowly due to its lower 

critical solution temperature and hence insolubility of this polymer in the 

dissolution medium.  

Given the hydrogen bonding between haloperidol and poly(2-oxazolines) was 

almost absent due to the poor hydrogen bond donating ability of the haloperidol 

hydroxy group, the third chapter utilized ibuprofen as another model drug to explore 

the impacts of both polymer hydrophobicity and drug-polymer hydrogen bonding 

considering ibuprofen’s strong hydrogen bond donating ability (because of its 

carboxylic group). Poly(2-methyl-2-oxazoline), the most hydrophilic polymer, 

showed the poorest ability to reduce or inhibit the crystallinity of ibuprofen. In 

contrast, more hydrophobic polymers PVP, poly(2-ethyl-2-oxazoline), poly(n-

propyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) provided greater but similar 

abilities to reduce ibuprofen crystallinity, despite the different polymer 

hydrophobicity and that poly(2-isopropyl-2-oxazoline) is semi-crystalline. These 

results indicate that crystallinity disruption is predominantly due to hydrogen 

bonding between the drug molecules and the polymer. However, carrier properties 

affected drug dissolution, where poly(n-propyl-2-oxazoline) exhibited lower 

critical solution temperature that inhibited the release of ibuprofen, which is 

consistent with the haloperidol dissolution study. Drug release from other systems 
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was consistent with the degree of ibuprofen crystallinity within the dispersions. 

The fourth chapter demonstrated successful methacrylation of poly(2-ethyl-2-

oxazoline) through reaction between partially hydrolysed poly(2-ethyl-2-oxazoline) 

bearing secondary amino-groups and methacrylic anhydride. Cell toxicity studies 

demonstrated equivalent biocompatibility of the methacrylated polymers with the 

parent poly(2-ethyl-2-oxazoline). Methacrylation significantly increased 

mucoadhesion to nasal mucosal tissue compared to the parent poly(2-ethyl-2-

oxazoline), attributed to the synergistic binding of methacrylate groups as well as 

residual secondary amines being available to interact with the mucosal surface.  

The fifth chapter demonstrated successful maleimide functionalization of PHPMA 

through reaction between copolymer poly(HPMA-co-Ma-β-Ala-TT) bearing TT 

groups and 2-aminoethyl maleimide trifluoroacetate. The cytotoxicity studies and 

slug mucosal irritation assay indicated good biocompatibility of maleimide 

functionalized PHPMA. In vitro nasal mucoadhesion studies demonstrated that 

PHPMA-Mi copolymers exhibited superior mucoadhesive properties on nasal 

mucosa tissue compared to its parent PHPMA owing to the covalent bonding of 

maleimide groups being available to interact with the mucosal surface. 

In summary, the solid dispersion studies provide guidelines through which it is 

possible to rationally select polymer carriers for a given drug structure in solid 

dispersion preparation. For example, when selecting a carrier for solid dispersions, 

it is important to consider not only the hydrogen bonding capabilities of the polymer 

but also its broader properties such as hydrophobicity, semi-crystallinity and lower 

critical solution temperatures. The mucoadhesion studies based on poly(2-ethyl-2-

oxazoline) and PHPMA proved that they can potentially be used as mucoadhesive 

materials in dosage forms for nasal drug delivery.   

The work described in this thesis has demonstrated potential future uses and 

benefits of poly(2-oxazolines) as a pharmaceutical excipient.  Polymers can be 

prepared to span a broad range of hydrophilicities – from water soluble to highly 
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hydrophobic. The polymers can be easily functionalized to provide excipients with 

tailored properties such as mucoadhesion, and indeed to control the degree of 

mucoadhesion.  The poly(2-oxazolines) and functionalized derivatives appear to 

offer good biocompatibility- similar to that of other pharmaceutical polymeric 

excipients as assessed in cell cytotoxicity and mucosal irritation studies. Clearly 

further work is merited on this novel class of polymers to fully exploit and 

maximize their potential.  

 

Future work 

The solid dispersion work demonstrated the value of POZ’s as drug carriers and 

stability studies and long-term storage (or accelerated stability) studies could be 

performed in the future. For example, after preparation of the physical mixtures and 

solid dispersions, the samples could be stored for 8 weeks at 25 °C and 45 °C under 

an RH of 70%, respectively. Every week during this time, drug crystallinity within 

the dispersions could be measured alongside drug dissolution rates to assess not 

only stability but potentially identify moisture uptake effects on the dispersion 

(shown in literature studies to potentially led to phase separation). Further, the effect 

of humidity on the dissolution rates of solid dispersions would be beneficial; 

obtained powders could be kept under varying RHs for 4 weeks, with dissolution 

tests and drug crystallinity monitored throughout [6].  

A natural extension to the solid dispersion studies is to undertake an in vivo 

pharmacokinetic study. For example, haloperidol or ibuprofen could be 

administered orally to one group of animals (rats, which have been sued for 

haloperidol pharmacodynamic studies) while their solid dispersions will be 

administered orally to another group. Then blood samples from these animals could 

be analyzed [7] periodically and related to the pharmacodynamic actions (of 

haloperidol or ibuprofen). 
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Mocoadhesion studies could also be extended to in vivo studies. For example, 

haloperidol could be used as a model drug and formulated with MAPEOZ or 

PHPMA-Mi and tested in rats by nasal administration against haloperidol alone as 

a control. The catalepsy test would demonstrate whether the polymers could prevent 

unwanted central side effects of nasally administered haloperidol [8]. 

Advanced imaging techniques would also be useful to demonstrate the 

biodistribution and potential accumulation of the polymers in vivo.  For example, 

in vivo optical imaging could be conducted [9]; polymers would be labeled with a 

near-infrared fluorescence (NIRF) dye such as DiR and mice given nasal 

administration of free DiR and DiR/polymer. Additionally, DiR/polymer could be 

injected at the same dose into the tail vein as the control group. The major organs 

(heart, liver, spleen, lung and kidney) would then be collected and imaged to 

demonstrate biodistribution of the polymers from either nasal or iv administration. 
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Appendix 

Synthesis of poly(2-ethyl-2-oxazoline) hydrogels 

 

Synthesis of macromonomers 

Acrylated poly(2-ethyl-2-oxazoline) (APEOZ) macromonomer was synthesized by 

two synthetic strategies as depicted in Figure 1. The first method was based on the 

esterification of the hydroxy group ended poly(2-ethyl-2-oxazoline) with acryloyl 

chloride. The second method consists of two steps, namely the living cationic ring 

opening polymerization of 2-ethyl-2-oxazoline and the subsequent termination by 

acrylic acid. The bis-APEOZ macromonomer was obtained by the second method 

and terminated by 1,4- dibromo 2-butene. APEOZ and bis-APEOZ were 

characterized by 1H NMR and gel permeation chromatography (GPC) and shown 

in Figure 2 and Table 1. 

 

Synthesis of hydrogels by thermal free radical polymerization 

Triethylene glycol dimethacrylate (TEGDMA) and 2,2-Azobis (2-

methylpropionitrile) (AIBN) was used as the crosslinker and thermal initiator, 

respectively. Nitrogen was bubbled through the well-mixed solutions for 5 min to 

remove dissolved oxygen. The reaction vessels were placed in a water bath at 70 ℃. 
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Figure 1. Synthesis of poly(2-ethyl-2oxazoline) macromonomers and hydrogels. 
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Figure 2. 1H NMR spectra of APEOZ and bis-APEOZ. The degree of functionality 

was calculated from the integrals of the peaks of the vinylic protons of the acrylate 

(labeled as f) in comparison with the end methyl protons of the polymer backbone 

(labeled as a). 
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Table 1. Characterization of polymers. 

Product Mw
a PDIa Functionality of acrylatesb 

APEOZ 1554 1.115 52.0% 

bis-APEOZ 1624 1.182 53.6% 

aMolecular weight and polydispersity (PDI) were determined by GPC. Maleimide 

bfunctionality was determined by 1H NMR. 

 

Results and discussion 

The acrylate functionality for APEOZ and bis-APEOZ is 52.0% and 53.6%, 

respectively. It could be seen from scheme 1 that APEOZ macromonomer could not 

be made into hydrogels, but bis-APEOZ could form hydrogels, which might be 

related to the low functionalization of APEOZ due to the chain transfer reaction 

resulted from the water traces involved in the living cationic ring opening 

polymerization. Double vinyl end groups in bis-APEOZ makes it act as the other 

type of crosslinker to accelerate the free radical polymerization. 

Future work on this project will be purification of the reagents used in the synthesis 

of macromonomer to remove the water traces and accordingly improve the acrylate 

functionality.   

 

 

 

 

 


