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Abstract: Sentiment analysis usually refers to the analysis of human-generated content via a polarity
filter. Affective computing deals with the exact emotions conveyed through information. Emotional
information most frequently cannot be accurately described by a single emotion class. Multilabel
classifiers can categorize human-generated content in multiple emotional classes. Ensemble learning
can improve the statistical, computational and representation aspects of such classifiers. We present
a baseline stacked ensemble and propose a weighted ensemble. Our proposed weighted ensemble
can use multiple classifiers to improve classification results without hyperparameter tuning or
data overfitting. We evaluate our ensemble models with two datasets. The first dataset is from
Semeval2018-Task 1 and contains almost 7000 Tweets, labeled with 11 sentiment classes. The second
dataset is the Toxic Comment Dataset with more than 150,000 comments, labeled with six different
levels of abuse or harassment. Our results suggest that ensemble learning improves classification
results by 1.5% to 5.4%.

Keywords: ensemble learning; sentiment analysis; multilabel classification; deep neural networks;
pure emotion; Semeval 2018 Task 1; toxic comment classification

1. Introduction

Sentiment analysis is the process by which we uncover sentiment from information. The sentiment
part could refer to polarity [1], fine grained or not [2], or to pure emotion information [3–5]. The most
common source of information for sentiment analysis is Online Social Networks (OSNs) [6,7].
User-generated content provides a unique combination of complexity and challenge for automated
sentiment classification.

Automated classification refers to methods that can identify and classify information based on
an inference process. Machine Learning (ML) studies these types of methods and can be generally
separated in three parts: Modeling, Learning, and Classification. Given a classification task, a ML
method has to create a model of the data, learn based on a set of pre-classified examples and perform a
classification, as required by the task. Ensemble learning refers to the combination of finite number of
ML systems to improve the classification results [8].

Various ML systems exist, most frequently characterized by the model and the training methods
they employ. Artificial Neural Networks (ANNs) are one type of ML systems [9]. These networks
have three layers: input, hidden, and output. In the input layer, data is initially fed into a model.
The model parameters are then (re)calculated in the hidden layer, and data is classified in the output
layer. Each layer consists of a set of nodes or artificial neurons which are connected to the next
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layer. When an ANN consists of multiple hidden layers, it is referred to as a Deep Neural Network
(DNN) [10].

DNNs have been widely used in computer vision problems [11–13], where the goal of the
classification is to identify or detect objects/items/features in an image. When the goal of the
classification is to detect multiple objects in an image then the task is considered multilabel. These types
of problems can be extended from computer vision to text analysis. In emotion related classification,
a textual input can convey one or multiple emotions.

Traditional sentiment analysis is focused on a confined polarity or single emotion basis. Our main
goal is to present the effectiveness of ensemble learning in text-based multilabel classification.
In addition, we aim to trigger the researcher interest for considering multilabel emotion classification
as a significant aspect regarding sentiment analysis.

Our contributions are as follows. We create and present five multilabel classification architectures
and two ensembles, as well as a baseline stacked ensemble and a weighted ensemble that assigns
weights based on differential evolution. Then, we highlight the effectiveness of ensemble learning
in modern multilabel emotion datasets. Our results show that ensemble learning can be more
effective than single DNN networks in multilabel emotion classification. In addition, we also
incorporate a high-level description of the most commonly used hidden layers to introduce readers to
deep-learning architectures.

The remainder of our work is formatted as described. Section 2 covers some introductory
bibliography alongside state-of-the-art ensemble publications. Section 3 presents in detail our diverse
DNN architectures and their individual components. Section 4 describes the ensemble methods we
employed as well as some key sub-components. Section 5 presents the datasets we used and some of
their properties. Section 6 details our results and potential improvements. Section 7 concludes our
study with the summary and future work direction.

2. Related Work

Sentiment analysis is extensively studied since the early 2000s [14,15]. With the advent of internet,
OSNs soon became the most used source for sentiment analysis [16,17]. Some of the applications of
sentiment analysis are: marketing [18], politics [19], and more recently medicine [20,21]. Affective
computing, as suggested by Picard [22], has sparked the interest in the specific emotion analysis of
texts [3,23].

Machine learning has been successfully applied to sentiment analysis of texts [24–26]. ML methods
that have been used for sentiment analysis are: Support Vector Machines [27,28], Multinomial Naïve
Bayes [29] and Decision Trees [30], while DNNs were introduced more recently [31,32].

DNNs can be used in text related applications as well. In [33] Severyn and Moschitti rerank short
texts in pairs and present the per pair relation without manual feature engineering. Lai et al. [34] perform
unsupervised text classification and highlight key text components in the process via a recurrent convolutional
neural network. The authors of [35] perform a named entity recognition task and generate relevant word
embedding with two separate DNNs. Text generation is addressed via a recurrent neural network in [36] and
an extensively trained model outperforms the best non-NN models. Sentiment classification of textual sources
had its own fair share of DNN implementations [31,32,37].

Learning ensembles have been used to combine different types of information, such as audio
video and text towards sentiment and emotional classification [38]. Araque et al. use an ensemble of
classifiers that combines features and word vectors [39] for sentiment classification with greater than
80% F-Score. A soft voting ensemble is used in [40] for topic-document and document classification
the results suggesting a significant improvement over single-model methods. The authors of [41] use a
stacked two-layer ensemble of CNN to predict the message level sentiment of Tweets, with the addition
of a distant supervision phase. A pseudo-ensemble, essentially an ensemble of similar models trained
on noisy sub-data, is used for sentiment analysis purposes in [42], but is ineffective for regression
classification problems.
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Multilabel classification problems assign multiple classes per item. Such problems are frequently
observed in the field of computer vision [43–45]. With regards to multilabel text-based sentiment
analysis, Chen et al. [46] propose an ensemble of a convolution neural network and a recurrent neural
network for feature extraction and class prediction correspondingly. The authors of [47] propose a
Maximum Entropy model for multilabel classification of short texts found in OSNs. Furthermore, they
present an emotion per term lexicon as generated by the model, based on six basic emotions. However,
they calculate a micro averaged F1 based on the top emotions per item, essentially converting each
weighted label to binary format. Johnson and Zhang [48] present a combination of word order and
bag of words in a CNN architecture and point out the threshold sensitivity in multilabel classification.

3. DNN Architectures

We create five different DNNs, with diverse architectures, suited to a multilabel classification
problem. Model 1, Figure 1, is a simple CNN with one fully connected layer. Model 2, Figure 2,
combines a Gated Recurrent Unit and a Convolution layer, similar to [49]. Model 3, Figure 3, uses Term
Frequency Inverse Document Frequency Embeddings and three fully connected layers, inspired by [50].
Model 4, Figure 4, architecture is based on the top performing single model of the Toxic Comment
Classification Challenge in Kaggle https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge. Model 5, Figure 5, combines uni/bi/tri grams follow by three interconnected CNN processes,
as presented in [51]. Each of the modules used in these models is presented in this section.
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Figure 1. A Convolutional Neural Network.
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Figure 2. A Recurrent CNN with pre-trained Embeddings.
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Figure 3. A Deep Neural Network with Tf-Idf Embeddings.
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Figure 4. A Long Short-Term Memory network.
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Figure 5. A CNN with Uni/Bi/Trigrams consideration.
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3.1. Pre-Processing

For each dataset used, we perform a pre-processing that includes term lemmatization and
stemming, lowercase conversion, removal of non-pure text elements (such as Uniform Resource
Locators or Emotes), stop word filtering and frequency-based term exclusion. Although some
information is lost, extensive term filtering is shown to improve classification results [52].

3.2. Tokenization

Tokenization is performed on a term level for all the five methods presented. Each term is
represented by a unique token. Further linguistic elements such as abbreviations and negations are
cleaned, returned to their canonical form, and get assigned a token. For example, commonly used
negation ‘don’t’ is tokenized to ‘do’, ‘not’.

3.3. Embedding

We assign a vector value for each token in a sentence, e.g., based on the order they appeared in
our corpus, and we create a vector of numerical values. The mapping of word tokens to numerical
values of vectors is referred to as embedding. There are various ways of creating word embeddings.
Term Frequency-Inverse Document Frequency Tokenization creates a matrix of TF-IDF features which
are used to create the embedding. Every sentence is converted to a single dimension vector of numerical
elements regardless of the tokenization method. To address variable sentence length, we define a large
vector length and we fill the numerical vector with zeroes, a process known as padding. Most common
and effective word embedding methods are created based on term co-occurrence throughout a large
corpus [53,54].

3.4. Dropout

Neural networks are prone to overfitting. Overfitting is essentially the exhaustive training of the
model in a certain set of data, so much that the model fails to generalize. As a result, the model cannot
effectively work with new unknown data. A solution to overfitting is to train multiple models and
combine their output afterwards, which is highly inefficient.

Srivastava et al. [55] proposed randomly dropping neural units from the network during the
training phase. Their results suggested an improvement of the regularization on diverse datasets.
Spatial dropout refers to the exact same process, performed over a single axis of elements, rather
than random neural units over each layer. Furthermore, dropout has a significant potential to reduce
overfitting and provide improvements over other regularization strategies such as L-regularization
and soft-weight sharing [56].

3.5. LSTM and Gated Recurrent Unit

A feed-forward neural network has a unidirectional processing path, from input to hidden layer to
output. A recurrent network can have information travelling both directions by using feedback loops.
Computations derived from earlier input are fed back into the network, imitating human memory.
In essence, a recurrent neural network is a chain of identical neural networks that transfer the derived
knowledge from one to another. That chain creates learning dependencies that decay mainly due to
the size of the chained network.

Hochreiter and Schmidhuber [57] proposed Long Short-Term Memory networks to counter that
decay. The novel unit of the LSTM architecture is the memory cell that forgets or remembers the
information passed from the previous chain link. The Gated Recurrent Unit of Model 2 was introduced
by Cho et al. [58]. Its architecture is similar to LSTM units, but with the absence of an output gate. It is
shown that GRU networks perform well on Natural Language Processing tasks [59].
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3.6. Convolution

The convolution layer receives as input a tensor, which is convolved and its output, the feature
map, is passed to the next layer. A tensor is a mathematical object that describes a mapping of an input
set of objects to an output set. Therefore The convolution layers in all models are one-dimensional,
with a convolution window of size 3 and an output space dimensionality of 128. The only exception
is Model 5, where the convolution windows is different for each layer to provide a differentiated
architecture. The primary focus of this layer is to extract features from the input data by preserving the
spatial relationship between terms.

3.7. Pooling and Flattening

A pooling layer allows us to reduce the dimensionality of the processed data by keeping only the
most important information. Common types of pooling are max, average and sum. The respective
operation, per pooling type, is performed in a predefined window of the feature map. A pooling layer
reduces the computational cost of the network, leads to scale invariant representations and counters
small feature map transformations. Finally, by having a reduced number of features, we decrease the
probability of overfitting. Various pooling types were used, based on the architecture. Model 1 uses a
single global max pooling layer; the global parameter is outputting the single most important feature
of the feature map instead of a feature window. Model 2 uses a combination of global max and a global
average pooling layers, while Model 4 uses the local pooling equivalents. Model 5 uses three local max
pooling layers, one for each convolution.

The flattening layer on the other hand reduces the dimensionality of the input to one. For example,
a feature map with dimensions 5× 4 when flattened would produce a one-dimensional vector with
20 elements. The flattening layer passes the most important features of the input data to a fully
connected dense layer comprised of the classification neurons.

3.8. Dense

The dense layer is comprised by fully connected neurons both forward and backward.
Every element of the input is connected with every neuron of this layer. In four out of five models,
a dense layer can be seen at the end of the pipeline. The number of neurons in these layers is the
number of classes in our dataset. For the third model, where TF-IDF tokenization takes place, we chose
a simple DNN with 3 fully connected layer, which decreasing number of neurons for each subsequent
layer. DNNs with multiple dense fully connected layers is shown to perform better than shallow
DNNs [60].

3.9. Classification

The output of our model is a multilabel classification vector. Each of the neurons in the final
dense layer of the models interact with the classes of the dataset and provide a decimal value (ranging
from 0 to 1) which is then rounded for each class. The number of classes defines the number of fully
connected neurons in the final dense layer.

4. Ensembles

We previously mentioned that a method to counter overfitting is to train multiple models and
then combine their outputs. Ensemble learning combines the single-model outputs to improve
predictions and generalization. Ensemble learning improves upon three key aspects of learning,
statistics, computation and representation [61]. From a statistics perspective, ensemble methods reduce
the risk of data miss-representation, by combining multiple models we reduce the risk of employing a
single model trained with biased data. While most learning algorithms search locally for solutions
which in turn confines the optimal solution, ensemble methods can execute random seed searches with
variable start points with less computational resources. A single hypothesis rarely represents the target
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function, but an aggregation of multiple hypothesis, as found in ensembles, can better approximate
the target function.

We present two ensemble architectures, stacked and weighted [51]. Other popular ensemble
methods include AdaBoost, Random Forest and Bagging [62]. Stacked ensembles are the simplest yet
one of the most effective ensemble methods, widely used in a variety of applications [63,64]. Stacked
ensemble acts as our baseline ensemble, compared with our proposed weighted ensemble based
on differential evolution, a meta-heuristic weight optimization method. Meta-heuristic weighted
ensembles have achieved remarkable results in single label text classification [65,66].

4.1. Stacked

The main idea behind stacked ensembles is to combine a set of trained models through training
of another model (meta-model). The output predictions of the meta-model are based on the training of
the model outputs, Algorithm 1. In our implementation we fit the models output into a DNN with
two hidden dense layers, Figure 6.

Model1

Model5

.....

Dense 
Layer

Dense 
Layer

Class

Figure 6. The Stacked Ensemble Architecture.

Algorithm 1 Stacked Ensemble Pseudo-code
1: Input← Fixed Length Input
2: Output←Model[1,2,3,4,5] Outputs
3: SE()← Stacked Ensemble
4: Input→ SE(Output)→ Class
5: return Class

The outputs of the models are merged with the concatenation function of Keras https://keras.io/.
The input of the concatenation is a fixed size output tensor of each model. The output of the
concatenation is a single tensor, which is then used as an input to the fully connected layer. A second
fully connected layer follows similar to the final dense layer on each model.

4.2. Weighted

The weighted ensemble has a similar philosophy behind it. Instead of equally merging the outputs,
we merge the outputs by co-calculating a weight. Given a set of weighted tensors and a vector-like
object, we sum the product of tensor elements over a single axis, as specified by the one-dimensional
vector, Figure 7.

Model1

Model3

Model2

Model5

Model4

w1

w2

w3

w4

w5

Class

Figure 7. The Weighted Ensemble Architecture.

https://keras.io/
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The ‘fitting’ process of the second ensemble is a heuristic process for the best possible weights
combination, i.e., looking for the global minimum of a multivariate function. We propose differential
evolution [67] to scan the large space of five distinct weights, Algorithm 2.

Algorithm 2 Differential Evolution Pseudo-code
1: MF()←Multivariate Function
2: Target← Initialize Target Vector
3: Base = Target Vector+Random Integer
4: for number of iterations do
5: TempVector1 = Target+RandomDeviation
6: TempVector2 = Target−RandomDeviation
7: Weighted = WeightedDifference(TempVector1,TempVector2)
8: Base = Base+Weighted
9: Trial = Aggregate(Target,Base)

10: if MF(Trial) < MF(Base) then
11: Base = Trial
12: else
13: Base = Target
14: end if
15: end for
16: return Base

5. Datasets

For our comparison, we require datasets with binary multilabel categorization. We identified
two modern datasets, Semeval 2018 Task 1 Dataset (SEM2018) https://competitions.codalab.org/
competitions/17751 and Toxic Comments Dataset from Kaggle (TOXIC) https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge.

Both datasets exhibit a level of class imbalance, Figures 8a and 9a. However, they are different not
only in context, where SEM2018 is based on Twitter and TOXIC in Wikipedia, but also in the properties
of the actual text. The sentence length, after the source is cleaned, is different from the original mainly
due to the removal of infrequent terms, Table 1. We discussed before that the dimensions of our term
embeddings need to be low. We reduced the dimension by removing the terms that appear no more
than 10 times, alongside a tailored stop term removal.

Table 1. Sentence length.

Original Cleaned

Mean Median Mean Median

SEM2018 Train 16.06 17.0 8.52 9
Dev. 15.85 16 8.55 9

TOXIC Train 25.11 15 17.79 11
Dev. 16.06 17.0 10.22 6

anger
anticipation

disgust fear joy love
optimism

pessimism
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Figure 8. SEM20118 Class Distribution (a) and frequency of unique class combinations (b).

https://competitions.codalab.org/competitions/17751
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5.1. Semeval 2018

The SEM2018 Train is a collection of 6838 Tweets with emotion labeling of 11 classes. The classes
are: anger, anticipation, disgust, fear, joy, love, optimism, pessimism, sadness, surprise and trust.
Some examples of Tweets included in SEM2018 are:

• Whatever you decide to do make sure it makes you happy.
• Nor hell a fury like a woman scorned—William Congreve
• chirp look out for them Cars coming from the Wesszzz
• Manchester derby at home revenge

The Development dataset consists of 886 Tweets with the 11 aforementioned classes and their
respective labels. The class distribution in Train dataset is skewed in favor of five emotions, anger,
disgust, joy, optimism, and sadness. The same class distribution is evident in the Development dataset,
which is dominated by the same five emotions, Figure 8a.

SEM2018 contains 329 unique class combinations. The frequency of these unique combinations
follows a power law distribution for both Train and Development datasets Figure 8b. The most
frequent class combination for Train and Development was: anger and disgust, followed by joy and
optimism. One third of the class combinations appears only once and often combine contradiction
emotions, such as joy and sadness.

5.2. Toxic Comments

The Toxic dataset consists of two datasets as well, Train and Development. Train dataset consists
of 159,571 unique comments labeled with 6 different types of toxicity: toxic, severe_toxic, obscene, threat,
insult and identity_hate. Some example of comments are:

• I don’t anonymously edit articles at all.
• Dear god this site is horrible.
• Please pay special attention on this
• Cant sing for s**t though.

The Development dataset consists of 63,978 toxic comments with the same classes and their
respective labels. The class distribution is heavily skewed towards toxic, obscene and insult, in both
Train and Development, Figure 9a.

TOXIC Train includes 29 unique class combinations, while Development has 21. Both frequencies
follow a power law distribution, similar to SEM2018, Figure 9b. The most common class combinations
for Train and Development are: obscene and insult, obscene only and insult only. The most uncommon
class combinations included threat and severe_toxic classes. Out of 29 unique classes for Train 12 have
more than 100 occurrences, while out of 21 unique class combinations of Development 7 appear more
than 100 times.

toxic
severe_toxic

obscene threat insult
identity_hate

0.0

0.2

0.4

0.6

0.8
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Development

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.1

0.2

0.3

0.4
Train
Development

(b)

Figure 9. TOXIC Class Distribution (a) and frequency of unique class combinations (b).
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6. Results

The accuracy scores are validated via 10-fold validation. The baseline neural network (NN)
model [68] expectedly under-performs [69]. For the SEM2018 datasets, both ensembles outperform each
individual model. The stacked ensemble provides the best results in the Train subset while the weighted
ensemble marginally outperforms stacked ensemble in the Development subset, Table 2. The accuracy
of both ensembles is limited, to a degree, by the inherit bias of the dataset. The performance of
our ensembles outperforms all submitted models in the Codalab Competition https://competitions.
codalab.org/competitions/17751#results.

Table 2. Accuracy score for SEM2018.

Model Train Dev.

NN 0.2946 0.1710
Model1 0.8351 0.8032
Model2 0.8352 0.8094
Model3 0.8283 0.8019
Model4 0.8385 0.8138
Model5 0.8309 0.7737

Stacked En. 0.87 0.8149
Weighted En. 0.8472 0.8151

The baseline NN performed better in TOXIC dataset. NN performance is boosted by the big
number of unclassified elements in the dataset, Table 3, more than 40% of the samples as seen in
Figure 9b. TOXIC dataset included more than 25,000 unique terms before cleaning. The number of
unique terms affects the length of the tokenization and subsequently the dimension of the embedding.
The required dimension reduction reduced the training time of each model but affected its performance.
Our best performing model is in the op 35% of the Kaggle Competition submissions https://www.
kaggle.com/c/jigsaw-toxic-comment-classification-challenge/leaderboard but more than 1% worse
when compared to the top performing one.

Table 3. Accuracy score for TOXIC.

Model Train Dev.

NN 0.8981 0.9013
Model1 0.9759 0.9643
Model2 0.9637 0.9623
Model3 0.9777 0.9672
Model4 0.9776 0.968
Model5 0.9768 0.9623

Stacked En. 0.9776 0.9667
Weighted En. 0.9782 0.9698

Our ensemble methods improved upon single models in six out of eight cases. The classification
accuracy is improved by at least one of the ensembles across both datasets. The ensembles for SEM2018
dataset performed excellently compared to other architectures. On the other hand, the extensive data
cleaning of TOXIC -requirement due to computation/time constraints- hindered the performance of
our models and their ensembles. Given the heavy class imbalance and the cleaning of TOXIC, the
achieved accuracy of 97+% is decent. The baseline stacked ensemble under-performed our proposed
weighted ensemble in three out of four cases.

All the models presented, and in extent their ensembles, can be further improved by a range of
techniques. Test augmentation [70], hyperparameter optimization [71], bias reduction [72] and tailored
emotional embeddings [4,73] are some techniques that could further improve the generalization

https://competitions.codalab.org/competitions/17751#results
https://competitions.codalab.org/competitions/17751#results
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/leaderboard
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/leaderboard
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capabilities of our networks. However, the computational load over multiple iterations is extensive,
as the most complex models required hours of training per epoch and dataset.

7. Conclusions

We demonstrated that ensemble learning can improve the classification accuracy in multilabel
text classification applications. We created and tested five different deep-learning architectures capable
of handling multilabel binary classification tasks.

Our five DNN architectures were ensembled via two methods, stacked and weighted, and tested
in two different datasets. The datasets used provide a similar multilabel classification but vary in
size, term distribution and term frequency. The classification accuracy was improved by the ensemble
models in both tasks. Our proposed weighted ensemble outperformed the baseline stacked ensemble
in 75% of cases by 1.5% to 5.4%. Hyperparameter tuning, supervised or unsupervised, could further
improve the results but with a heavy computational load, since each hyperparameter iteration requires
the re-training/re-calculation of the ensemble.

Moving forward we aim to explore the creation and use of tailored emotional embeddings
concatenated with word embeddings. Additionally, we are currently developing new data
augmentation methods, tailored to text datasets. We are also exploring multilabel regression ensembles
and architectures that could be considered to be the refinement of binary classification, whether
multilabel or not.
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