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Abstract. As an alternative to using the standard multi-
model ensemble (MME) approach to combine the output
of different models to improve prediction skill, models can
also be combined dynamically to form a so-called super-
model. The supermodel approach enables a quicker correc-
tion of the model errors. In this study we connect different
versions of SPEEDO, a global atmosphere-ocean-land model
of intermediate complexity, into a supermodel. We focus on
a weighted supermodel, in which the supermodel state is a
weighted superposition of different imperfect model states.
The estimation, “the training”, of the optimal weights of this
combination is a critical aspect in the construction of a su-
permodel. In our previous works two algorithms were de-
veloped: (i) cross pollination in time (CPT)-based technique
and (ii) a synchronization-based learning rule (synch rule).
Those algorithms have so far been applied under the assump-
tion of complete and noise-free observations. Here we go
beyond and consider the more realistic case of noisy data
that do not cover the full system’s state and are not taken at
each model’s computational time step. We revise the training
methods to cope with this observational scenario, while still
being able to estimate accurate weights. In the synch rule an
additional term is introduced to maintain physical balances,
while in CPT nudging terms are added to let the models stay
closer to the observations during training. Furthermore, we
propose a novel formulation of the CPT method allowing the
weights to be negative. This makes it possible for CPT to
deal with cases in which the individual model biases have
the same sign, a situation that hampers constructing a skill-

fully weighted supermodel based on positive weights. With
these developments, both CPT and the synch rule have been
made suitable to train a supermodel consisting of state of the
art weather and climate models.

1 Introduction

Climate models are continuously improving over time. This
is made evident by the succession of the Coupled Model In-
tercomparison Project (CMIP), which is currently in its sixth
stage (Eyring et al., 2016). The CMIP models are used by
the Intergovernmental Panel on Climate Change (IPCC) for
its assessment reports. The model complexity is increasing
and more processes can be resolved due to increased spatial
and temporal resolutions. Nevertheless, the real climate sys-
tem is too complex (Ghil and Lucarini, 2020) for any numer-
ical model so that models will inevitably remain imperfect
(Palmer and Stevens, 2019).

Given a set of imperfect models, one can combine them
so that their combination has a greater forecast skill than
each individual model independently. A common approach
is to use the multi-model ensemble (MME) (Hagedorn et al.,
2005). In the MME the individual model ensembles are con-
structed based on different initial conditions but propagated
forward in time using the same model. After integration the
ensembles from different models are combined. The MME
is most importantly a very powerful and useful approach to
account for and to represent the uncertainty. Furthermore, it
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is possible to achieve better statistics such as the mean; this
is because errors tend to cancel each other out (Hagedorn
et al., 2005). Generally, the models are equally weighted in
an MME mean as is the case for, e.g., the CMIP runs in
the IPCC reports. Another possibility is to calculate a so-
called superensemble (Krishnamurti et al., 2016), where the
model weights are trained on the basis of historical observa-
tions, e.g., in Hagedorn et al. (2005) and Doblas-Reyes et al.
(2005). This is inherently a statistical method that does not
take possible changes in the model regimes into account. A
caveat is obviously that weights that are optimal for model
behavior in the past do not necessarily convert into optimal
weights for the future. To cope with this, a “dynamical” on
the fly approach to combine models is desirable, in which we
act on the model equations.

Along this line, in the supermodel approach models are
combined during the simulation by sharing their own ten-
dencies or states with each other, and not just their outputs
as with the MME. This amounts to creating a new virtual
model, the supermodel, that can potentially have better phys-
ical behavior than the individual models. By combining the
models dynamically into a supermodel, model errors can be
reduced at an earlier stage, potentially mitigating error propa-
gation and correcting the dynamics. This is particularly help-
ful since the climate system is not linear, which causes ini-
tial errors to spread over different variables and regions. The
simulated climate statistics of the supermodel are therefore
expected to be superior to that from the combination of bi-
ased models. The supermodel not only improves the statis-
tics of simulated climate as in the MME, it can also give an
improved model trajectory if the models are adequately syn-
chronized. This could be essential in order to predict a spe-
cific sequence of weather or climate events. Given that the in-
dividual model trajectories in a MME are “free” to evolve ac-
cording to each of the model dynamics, their averaging may
result in an overall cancellation of the individual variabilities.

The supermodel approach was originally developed using
low-dimensional dynamical systems (van den Berge et al.,
2011; Mirchev et al., 2012) and subsequently applied to a
global quasi-geostrophic atmospheric model (Schevenhoven
and Selten, 2017; Wiegerinck and Selten, 2017) and to a cou-
pled atmosphere-ocean-land model of intermediate complex-
ity called SPEEDO (Selten et al., 2017; Schevenhoven et al.,
2019). A partial supermodel implementation using state of
the art coupled ocean-atmosphere models and using real-
world observations was presented in Shen et al. (2016). A
crucial step in supermodeling is the training of the weights
based on data. The first supermodel training schemes were
based on the minimization of a cost function (van den Berge
et al., 2011; Shen et al., 2016), an approach with high compu-
tational cost, relying on a large number of long model runs.
Schevenhoven and Selten (2017) developed a computation-
ally efficient training scheme based on cross pollination in
time (CPT), a concept originally introduced by Smith (2001).
In CPT, the models in an MME exchange states during the

simulation. As a consequence, the CPT trajectory tends to
explore a larger area of the phase space than the individual
models, thus enhancing the chance to pass in the vicinity of
an observation. Another efficient training method, referred to
as the synch rule, was introduced by Selten et al. (2017). The
method, originally developed by Duane et al. (2007) for pa-
rameter estimation, is based on the synchronization theory of
different systems.

The SPEEDO experiments in Selten et al. (2017) and
Schevenhoven et al. (2019) were applied in a noise-free ob-
servation framework. The “historical observations”, used to
train the supermodel, were available at every model time
step. In this paper, we make a step forward towards apply-
ing CPT and the synch rule in state of the art models and
real-world observations. Real-world observations are not per-
fect and are not continuously available in time. We adapt the
training methods, again in the context of SPEEDO, in order
to produce accurate weights, in the context of sparse obser-
vations affected by Gaussian distributed noise.

The paper is structured as follows. Section 2 briefly de-
scribes the SPEEDO model, and redefines the definition of
the weighted supermodel in the context of sparse in time ob-
servations. Section 3 describes the training schemes CPT and
the synch rule as used in Schevenhoven et al. (2019), and in-
troduces adaptations to the methods to cope with sparse and
noisy observations. In Schevenhoven et al. (2019), the synch
rule was able to produce negative weights, and this seemed
very beneficial in case models share biases that cannot com-
pensate for each other. In this paper, we also explore the pos-
sibility of negative weights for CPT. Section 4 presents this
possibility, together with the results of the adaptations to CPT
and the synch rule in order to make the methods suitable for
training on the basis of sparse and noisy observations. We
conclude in Sect. 5 with a comparison of both training meth-
ods and an outlook to their application in state of the art mod-
els.

2 Weighted supermodel

This section recalls the general structure of a weighted su-
permodel as defined in Schevenhoven et al. (2019), and
summarizes the supermodel structure used with the cou-
pled atmosphere-ocean-land model SPEEDO (Severijns and
Hazeleger, 2010); full details can be found in Schevenhoven
et al. (2019). We then describe how the supermodel formula-
tions are modified to handle time-sparse noisy data.

In Schevenhoven et al. (2019) the weighted supermodel
was defined by combining the tendencies of the individual
models. In the case of two imperfect models with parametric
error, the weighted supermodel reads:

ẋ1 = f
(
xs,p1

)
, (1a)

ẋ2 = f
(
xs,p2

)
, (1b)

ẋs =W1ẋ1+W2ẋ2, (1c)
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where xs ∈ Rn represents the supermodel state vector, f the
nonlinear evolution function depending on the state x and
on a number of adjustable parameters p1,2 ∈ Rm, and the di-
agonal matrices W1,2 = diag(w1,2) with w1,2 ∈ Rn denote
the weights. Training a weighted supermodel implies train-
ing the weights w. In Schevenhoven et al. (2019), we initial-
ized all models from the same initial conditions, and the ten-
dencies were combined at each model’s computational time
step, δt , that was assumed to be the same among the imper-
fect models. This choice implied a substantial computational
cost. Constructing a supermodel for real model and observa-
tional scenarios requires relaxing this assumption.

This leads us to redefine a weighted supermodel by com-
bining individual models at every arbitrary 1T > δt , such
that:

ẋ1 = δmod(t,1T )f
(
xs,p1

)
+
(
1− δmod(t,1T )

)
f
(
x1,p1

)
, (2a)

ẋ2 = δmod(t,1T )f
(
xs,p2

)
+
(
1− δmod(t,1T )

)
f
(
x2,p2

)
, (2b)

xs =W1x1+W2x2 if δmod(t,1T ) = 1, (2c)

where, the Kronecker δ function takes the value 1 when
mod(t,1T )= 0, and zero otherwise. In the latter case no su-
permodel state is defined. Note that, in contrast to the original
formulation of the weighted supermodel given in Eq. (1a–
c), here the individual model states are combined instead of
their tendencies. In fact, combining the model tendencies ev-
ery 1T > δt can result in a much less synchronized super-
model state, thus possibly leading to a supermodel with poor
forecasting skill: a supermodel trajectory from models that
are not adequately synchronized will suffer from variance re-
duction and smoothing. Weighting the states ensures a syn-
chronized supermodel state every 1T . In our experiments
so far, the models share the same state space, such that the
models can continue with the exact supermodel state xs, im-
plying perfect synchronization imposed between the models
every 1T . In this study, we choose to let 1T coincide with
the observation frequency. The maximum time between two
subsequent observations in this study is 24 h, this is frequent
enough to maintain synchronization between the models.

2.1 SPEEDO model

The coupled model SPEEDO consists of an atmospheric
component (SPEEDY), that exchanges information with a
land (LBM) and an ocean-sea-ice component (CLIO). De-
tailed descriptions of SPEEDO can be found in Severijns
and Hazeleger (2010) and Selten et al. (2017). SPEEDY
describes the evolution of the horizontal wind components
U (east-west) and V (north-south), temperature T and spe-
cific humidity q at eight vertical levels plus the surface pres-
sure ps. The horizontal grid resolution has a spacing of 3.75◦

(48× 96 grid cells). SPEEDY exchanges moisture and heat
with the land model, LBM, which uses three soil layers and
up to two snow layers to close the hydrological cycle over
land. The horizontal discretization of the LBM is the same as

for SPEEDY. Moreover, SPEEDY exchanges heat, water, and
momentum with the ocean model, CLIO. CLIO describes the
evolution of ocean currents, temperature and salinity on a
computational grid with 3◦ horizontal resolution and 20 un-
evenly spaced layers in the vertical resolution. A three-layer
thermodynamic-dynamic sea-ice model describes the evolu-
tion of sea ice.

The SPEEDO equations can be formally and compactly
written as

ȧ = f a (a;pa)
+ga

(
eh,ew,em

)
, (3a)

ȯ= f o (o;po)
+go

(
Poeh,Poew,Poem,Por

)
, (3b)

l̇ = f l
(
l;pl

)
+gl

(
P leh,P lew,r

)
, (3c)

where a stands for atmosphere, o for ocean and sea-ice and
l for land; eh represents the heat exchange between the atmo-
sphere and surface, ew the water exchange, em the momen-
tum exchange and r the river outflow describing the stream-
ing of water from land to ocean. The exchange vectors de-
pend on the state of the atmosphere and the surface, but this
dependency is not made explicit in Eq. (3a–c) to simplify
the notation. The projection operators P represent the con-
servative regridding operations between the computational
grids of the different model components. The nonlinear func-
tions f represent the cumulative contribution of the modeled
physical processes to the change in the state vectors, and de-
pend on the values of the parameter vectors p. The nonlinear
functions g describe how the exchange of heat, water and
momentum between atmosphere, ocean and land affects the
change of the state vectors.

2.1.1 Weighted supermodel based on SPEEDO

A supermodel based on SPEEDO is formed by combin-
ing imperfect atmosphere components SPEEDY through a
weighted superposition of the states of the imperfect mod-
els. All imperfect atmospheres are each coupled to the same
ocean and land model. Figure 1 provides a schematic repre-
sentation of the supermodel constructed.

All the atmospheric components of the individual imper-
fect models receive the same state information from ocean
and land. Nevertheless, each atmosphere calculates its own
water, heat and momentum exchange. Conversely, the ocean
and land components receive the multi-model weighted aver-
age of the atmospheric states. This supermodel construction
is inspired by the interactive ensemble approach originally
devised by Kirtman and Shukla (2002).

We can now write the SPEEDO weighted supermodel
equations as

ȧi =
[
δmod(t,1T )f

a (as;p
a
i
)
+
(
1− δmod(t,1T )

)
f a (ai;p

a
i
)]

+ga
(
eh

i ,e
w
i ,e

m
i

)
, (4a)

ȯ= f o (o;po)
+go

(
Poeh,Poew,Poem,Por

)
, (4b)
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Figure 1. Schematic representation of the SPEEDO climate super-
model based on two imperfect atmospheric models. The two atmo-
spheric models exchange water, heat and momentum with the per-
fect ocean and land model. The ocean and land model send their
state information to both atmospheric models. The atmospheric
models exchange state information in order to combine their states
(Schevenhoven et al., 2019).

l̇ = f l
(
l;pl

)
+gl

(
P leh,P lew,r

)
, (4c)

as =
∑
i

Wiai if δmod(t,1T ) = 1, (4d)

where as denotes the atmospheric state of the supermodel,
Wi the diagonal matrices with weights on the diagonal
for the ith imperfect model, and the overbar indicates the
weighted average over the models. At the instant times when
a supermodel is constructed (i.e., δ = 1), its state will be used
to calculate the tendencies of the individual models. Other-
wise, the individual models just continue their runs without
interacting.

2.1.2 SPEEDO imperfect models

During the training for the supermodel based on SPEEDO,
we regard the atmospheric model with standard parameter
values as truth (Selten et al., 2017), whereas imperfect at-
mospheric models are created by perturbing those parame-
ter values. The ocean and the land models receive the heat,
water and momentum fluxes from the perfect atmospheric
model only. All atmospheres receive the same information
from the ocean and the land model, such that during training
all imperfect atmospheres only deviate from the observations
due to their own difference, not because of the coupling with
ocean and land (see Fig. 2).

We follow a similar experimental setup as in the precursor
study by Schevenhoven et al. (2019); in particular, to sim-
ulate the imperfect models we perturb the same parameters
with the same values. These are the convection relaxation
timescale, the relative humidity threshold and the momen-
tum diffusion timescale. The values used in the experiments
are summarized in Table 1.

The impact of perturbing parameters on the models’ cli-
mate (i.e., their long term behavior) is assessed on the basis

Figure 2. Schematic representation of the SPEEDO supermodel
training (Selten et al., 2017).

Table 1. Parameter values of perfect and imperfect models.

Model Convection Relative Momentum
relaxation humidity diffusion
timescale threshold timescale

Perfect 6 h 0.9 24 h
Model 1 4 h 0.85 18 h
Model 2 8 h 0.95 30 h
Model 3 3 h 0.75 14 h

of 40-year long simulations initiated on 1 January 2001. Ta-
ble 2 shows the global mean average difference between the
truth and the imperfect models for different variables. We see
that the imperfect models 1 and 2 have biases with opposite
signs in all of the variables. Note that their biases are com-
parable to those estimated for state of the art global climate
models (Collins et al., 2013). The third model has biases in
the same direction as model 1, but of generally larger ampli-
tudes. We make use of models 1 and 3 for the experiments
with negative weights.

3 Training methods

3.1 Training with the synch rule

The synch rule was originally conceived for parameter op-
timization in Duane et al. (2007). We follow here a similar
setting. Let us assume that the parameters q ∈ Rm appear
linearly in the system for state variables y ∈ Rn, such that
ẏ = f (y;q). The synch rule ensures convergence towards
parameters p ∈ Rm of the system for state variables x ∈ Rn,
ẋ = f (x;p), provided that synchronization between the sys-
tems occurs if the parameters of both systems are equal:
y (t )→ x(t) if p = q. The update of parameter qj for the
j th component of q reads:

ẋ = f (x;p), (5a)
ẏ = f (y;q)−K(y− x), (5b)

Geosci. Model Dev., 15, 3831–3844, 2022 https://doi.org/10.5194/gmd-15-3831-2022
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Table 2. Global mean average difference between the imperfect models and the perfect model, calculated over the last 30 years of the
simulation.

Model Temperature Precipitation Wind at Wind at Solar surface Cloud cover
[
◦C] [mm d−1

] 200 hPa 850 hPa radiation [%]
[m s−1

] [m s−1
] [W m−2

]

Mod 1 1.37 0.11 1.04 0.07 2.06 −1.59
Mod 2 −0.38 −0.04 −0.31 −0.03 −1.13 0.87
Mod 3 3.20 0.26 2.25 0.03 3.95 −3.37

q̇j =−δj
∑
i

ei
∂fi(y,q)

∂qj
, (5c)

where f denotes the evolution function and K(y−x) a con-
necting term between the two systems that nudges y to-
wards x. K ∈ Rn×n is a diagonal matrix of nudging coef-
ficients, K= diag(k). Furthermore, ei = yi − xi denotes the
ith component of the synchronization error, and δj an ad-
justable rate of the learning scaling factor.

We have extended the use of the synch rule to the train-
ing of supermodels (Selten et al., 2017; Schevenhoven et al.,
2019). In this context q refers to the supermodel weights, y to
the supermodel state and x to the observations. The synch
rule is initialized with certain values for q and during train-
ing the weights are updated according to the rule, such that
the supermodel synchronizes with the observations. In order
to keep the supermodel in the vicinity of the observations, the
supermodel is nudged towards the observations by the term
K(y− x).

3.1.1 Nudging towards the observations

The sensitivity of the training results to the nudging
strength K in SPEEDO was studied in Selten et al. (2017).
It was found that an amount of K = 1/24 h−1 nudging was
sufficient to let identical SPEEDO models synchronize with a
small error of less than 0.2 ◦C between the models. Neverthe-
less, in the experiments with different versions of SPEEDO,
the synchronization error increases by one order of magni-
tude. This amount of nudging is suitable for training, since it
keeps the models close enough to the observations. Further-
more, a clear distinction can be made between an untrained
and a well-trained supermodel in terms of the synchroniza-
tion error between the supermodel and the observations. Be-
cause in our experiments nudging is applied only when ob-
servations are available, we found that a stronger nudging
term than in Selten et al. (2017) is needed (as is shown in
Sect. 4), and that its amplitude is approximately inversely re-
lated to the number of observations. We have some flexibility
in the choice of the nudging strength in view of a certain in-
sensitivity of the results. For instance, there is a range of val-
ues of K for which identical SPEEDO models synchronize to
each other while a large error is maintained between the dif-
ferent versions of SPEEDO. For the experiments in this paper

K is therefore defined somehow arbitrarily, considering the
fact that without nudging the error between models initially
grows exponentially over time, but at some point saturates
when the distance between the models is on average as the
distance between two random states on their attractors. Ad-
ditionally, K is chosen equal for all the connected variables.

3.2 Training with CPT

The CPT learning approach is based on an idea proposed by
(Smith, 2001). It dynamically combines trajectories of differ-
ent models, such that the solution space is virtually extended.
The aim is to generate trajectories that more closely follow
the truth. In (Schevenhoven and Selten, 2017), this idea has
been developed into a supermodel training scheme.

The training phase of CPT starts from an observation.
From the same initial state, the imperfect models run for a
predefined cross pollination time, τ , until an observation is
available. The individual model predictions are then com-
pared to the observation, and the model state that is closest to
the observation will serve as the initial condition for the next
integration. In our experiments, the “closeness” to data is
measured using the global root mean squared error (RMSE).
In the case of a multidimensional (multivariate) model, such
as SPEEDO, it is possible that at certain time steps differ-
ent models are the closest to the truth for different state vari-
ables. In this case, the initial condition for the next run is con-
structed by combining the portion of the state vector of each
closest model state. This choice, while providing the closest
to data initial condition, is prone to create imbalances in the
model integration. Nevertheless, we experienced that as long
as the update is global, such that each grid point receives the
state of the same model for a certain variable, these imbal-
ances are not a big issue. Otherwise, a possible solution is to
use techniques from data assimilation (Carrassi et al., 2018)
to make the initial condition suitable for the individual mod-
els. An example is given in Du and Smith (2017) by using
pseudo orbit data assimilation (PDA).

After the training, a CPT trajectory is obtained as a com-
bination of different imperfect models, and we count how
often each model has produced the best prediction of a par-
ticular component of the state vector during the training.
These frequencies are then used to compute weights W for
the corresponding states of the models. The superposition of

https://doi.org/10.5194/gmd-15-3831-2022 Geosci. Model Dev., 15, 3831–3844, 2022
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the weighted imperfect model states forms the supermodel
state. Since the frequency is used to compute the supermodel
weights, the weights automatically sum to 1, which is also
functional to maintain physical balances. See Schevenhoven
and Selten (2017) for a more extensive and figurative expla-
nation of the CPT training scheme.

3.2.1 The rationale behind CPT: an illustration

The CPT training method has been derived from a linear
model assumption. Suppose we have two imperfect models
with differential equations:

ẋ1 = α1, (6a)
ẋ2 = α2, (6b)

where x1,2 ∈ R are state vectors and α1,2 ∈Q scalar direction
coefficients. Assume the perfect model equations are given
by:

ẋT = αT , (7)

where xT ∈ R and αT ∈Q. Furthermore, assume the imper-
fect models complement each other such that α1 < αT < α2.
Then there exists a convex combination α1

n
N
+α2(1− n

N
)=

αT , with n,N ∈ N and n < N . Choosing model 1 n out of
N time steps and N − n times model 2 will result in a CPT
trajectory that after N time steps equals the perfect obser-
vation at that point in time. Constructing the CPT trajectory
in such a way that the model closest to the observations is
always chosen will result in an optimal trajectory.

Weather and climate models are chaotic instead of linear.
The key to success is, however, not the dynamical nature of
the models, i.e., whether they are linear or nonlinear, but the
trade-off between the data sampling time and the regime of
evolution of the differences among the individual model tra-
jectories in between subsequent data times. If enough obser-
vations are available during training, the difference between
the imperfect models between subsequent observation times
can be described as quasi-linear, therefore still making it pos-
sible for the CPT training to work well. The obtained weights
will not be perfect and possibly not as optimal as weights
obtained with a cost function minimization approach. On the
other hand, the results in Schevenhoven et al. (2019) show
that in the short term the models are linear enough to let
the CPT approach work well. Moreover, CPT is a very fast
method, and only few iterations are necessary as compared
to the common approach of minimization of a cost function.

3.2.2 Duration of the training time

In Schevenhoven et al. (2019), the CPT training period in
SPEEDO was set to 1 week. The time step in these exper-
iments was 15 minutes and observations were available at
every time step. Therefore the weights were based on a tra-
jectory consisting of 672 time steps, a number that leads to

a quite accurate estimation of the weights. In this work on
the other hand, we set the maximum time between two sub-
sequent observations to 24 h, reducing the CPT trajectory to
only 7 steps in 1 week. Increasing the length of the training
period is difficult because the supermodel trajectory may lose
track of the observations during training. To avoid this, the
maximum duration for the training period is set to 2 weeks
for 1T = 24 h. To obtain more precise weights we use the
iterative method.

3.2.3 Iterative method

In Schevenhoven and Selten (2017) an iterative method was
proposed to obtain converged weights. The first iteration step
gives a first estimate of the weights of the supermodel. At the
next iteration, the supermodel resulting from the previous it-
eration is added as an extra imperfect model, and can thus
potentially be the closest model to the observations. To cal-
culate the new weights of the supermodel after the iteration,
we adopt a simple linear approach. To see this, consider the
case of two imperfect models, and assume that after an it-
eration the weights are wo

1 for imperfect model 1 and hence
wo

2 = 1−wo
1 for imperfect model 2. If the weights after the

next iteration are wn
1 for imperfect model 1, wn

2 for imper-
fect model 2 and 1−wn

1 −w
n
2 for the supermodel, then the

new supermodel weights will be wn
1 +w

o
1(1−w

n
1 −w

n
2) for

imperfect model 1 and wn
2 +w

o
2(1−w

n
1 −w

n
2) for imperfect

model 2. The supermodel with these weights will replace the
previous supermodel in the next iteration step. Ideally, the
added supermodel is closer to the truth than the initial imper-
fect models. This can help to follow the observations for a
longer period of time.

3.2.4 Nudging

For long training periods and/or noisy data, an iterative
method might not be enough to let the CPT trajectory ade-
quately follow the observations during training. A simple so-
lution is to use a form of nudging towards the observations,
similar to what is done in the synch rule. The equations for
the CPT trajectory xCPT with nudging, in an example with
two imperfect models, are as follows:

ẋ1 = δmod(t,1T )
[
f
(
xCPT,p1

)
+K (xobs− xCPT)

]
+
(
1− δmod(t,1T )

)
f
(
x1,p1

)
, (8a)

ẋ2 = δmod(t,1T )
[
f
(
xCPT,p2

)
+K (xobs− xCPT)

]
+
(
1− δmod(t,1T )

)
f
(
x2,p2

)
, (8b)

xCPT ={
x1, if ‖x1− xobs‖ ≤ ‖x2− xobs‖ and δmod(t,1T ) = 1
x2, if ‖x2− xobs‖ ≤ ‖x1− xobs‖ and δmod(t,1T ) = 1 , (8c)

where xobs denote the observations, δ the Kronecker delta,
1T the observation frequency andK the nudging coefficient.
In the experiments in this sectionK is equal for all state vari-
ables. As with the synch rule, the nudging strength needs to
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be enough to follow the observations, but it should not be too
strong. The goal of CPT is to see how models can compen-
sate for each other. Therefore, deviations from the original
observations can be advantageous as long as there are im-
perfect models able to counteract this deviation. Nudging the
imperfect model states to a value very close to the observa-
tions will lead to a too frequent choice of the model that is on
average closest to the observations, thus limiting the diversity
of representation within the supermodel.

4 Results

4.1 Training in SPEEDO

Before we start training the supermodel, we need to decide
when, where and how to let the models exchange their infor-
mation in order to create a weighted supermodel.

Following Schevenhoven et al. (2019), we use global
weights for both CPT and the synch rule. This means that
we use the same weight for all grid points. By doing so we
mitigate, and in the best case prevent, numerical instabili-
ties; however, note that different weights are allowed for each
variable.

As long as there are enough observations to capture the
global behavior of the different models, spatially sparse ob-
servations are not expected to be an issue when constructing
a weighted supermodel. Given that we focus here on the data
sparsity in time, in the experiments we assume that all grid
points are observed.

The prognostic variables exchanged between models are
temperature, vorticity and flow divergence. The weights for
the fluxes from atmosphere to ocean and to land are given by
the average of the weights for the three prognostic variables.
The SPEEDO time step during training is set to δt = 15 min.

Following Schevenhoven et al. (2019), the training period
for both CPT and the synch rule is 1 year. For CPT, the su-
permodel weights are calculated every week or every sec-
ond week in the case of 1T = 24 h, and the model states are
set back to the observations. For the synch rule the training
period continues for an entire year. This amount of time is
needed to obtain stable converged weights.

The codes for both training methods of CPT and the synch
rule in the experiments in this paper are integrated into the
SPEEDO code. After the individual models have made their
individual time steps, their states are exchanged between
the models with coupling routines. Once all models have
shared their knowledge, they can calculate the new super-
model state and the update of the weight according to the
training method. The SPEEDO CPT and synch rule super-
model training code is available in Schevenhoven (2021).

4.2 Synch rule adaptations

In Schevenhoven et al. (2019) the synch rule, rewritten from
Eq. (5a–c), looked as follows:

Ẇi,j =−δj ejfi,j , (9)

whereWi,j denotes the weight of model i for state variable j ,
fi,j the imperfect model tendency of model i and state vari-
able j , ej the synchronization error between the supermodel
state and the observations, and δj an adjustable rate of the
learning scaling factor. This equation is derived without any
prior assumption on the weights. In the context of noise-free
and continuously available observations, the weights turned
out to sum approximately to 1, which seems necessary in or-
der to maintain physical balances. Nevertheless, when Eq. (9)
is used in the case of noisy and sparse in time observations,
the weights do not sum to 1 anymore. If the deviation from
1 is too large, the supermodel state will be either too small
or too large compared to the imperfect model states, possibly
resulting in loss of synchronization with the observations and
an even worse estimation of the next weight update.

We adapt the synch rule such that the weights are imposed
to sum to 1. This is achieved by using the tendency of the
individual imperfect model fi , but also by subtracting the

equally weighted supermodel tendency fE =
1
N

N∑
i=1
fi . The

new synch rule is defined as (see Appendix A for a deriva-
tion):

Ẇi =−δe (fi − fE) , (10)

where index j is omitted to simplify the notation. From
Eq. (10) it can be seen that the total update of the weights

for the N imperfect models equals 0:
N∑
i=1
Ẇi =−δe

N∑
i=1
(fi −

fE)=−δeN(fE− fE)= 0. Thus, if the initial weights sum
to 1, they will sum to 1 continuously throughout the training.

4.2.1 Adaptation to nudging

Too little nudging towards the observations during training
may lead to large errors between the imperfect models and
the observations. In this case, the updates of the weights
might go in a different direction than anticipated. The imper-
fect models and the observations might be in different phases,
resulting in a converse sign of the synchronization error e. In-
terestingly, it is still possible to obtain converged weights in
this case, only that the weights differ substantially from those
obtained with more nudging towards the observations.

In the first experiment of (Schevenhoven et al., 2019)
the weights for temperature (T ), vorticity (VOR) and diver-
gence (DIV) all turned out to be around 0.3 for imperfect
model 1 and 0.7 for imperfect model 2. We apply the same
amount of nudging to the same imperfect models, except that
the observations are available every second time step, instead
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Table 3. Weights for the supermodel trained by the synch rule with
an observation available at every second time step and the same
amount of nudging towards the observations as in Selten et al.
(2017) and Schevenhoven et al. (2019). The weights are averaged
over the last 10 weeks of training. The standard deviation is given
in parentheses.

Model T VOR DIV

Model 1 1.15 (0.055) 2.88 (0.070) −0.92 (0.046)
Model 2 −0.15 (0.055) −1.88 (0.070) 1.92 (0.046)

of every time step. Then the weights converge to the weights
given in Table 3.

When the weights converge towards stable values as in Ta-
ble 3, the average update of the weights must be equal to 0.
Hence, at least one of the terms in Eq. (10) should be equal
to 0 on average. Since the imperfect models are not yet in
equilibrium after 1 year (Schevenhoven et al., 2019), the av-
erage model tendency cannot be 0. This implies that the error
between the supermodel and the observations must be equal
to 0; however, a free run of 40 years with a supermodel with
the weights from Table 3 results in a climatological error of
up to +2 ◦C in the Northern Hemisphere and up to −2 ◦C
in the Southern Hemisphere. Thus, too little nudging during
training can result in a supermodel with a correct global aver-
age temperature (the opposite biases on the two hemispheres
cancel out), but very different dynamics compared to the ob-
servations.

There can also be too much nudging towards observations.
In this case, a link with data assimilation can be made, where
one has to find a middle ground between noisy observations
and the model. Too much nudging towards the observations
during training can result again in a converse sign of the syn-
chronization error e. This leads to an incorrect update of the
weights, making it more difficult to follow the observations
during training.

4.3 Limitations of sparse and noisy observations

In this section we assess to what extent observations can
be noisy and sparse in time before the CPT or the synch
rule training methods are no longer able to produce weights
close to the optimum. To systematically evaluate this, we
choose 4 different observation frequencies 1T : 15 min, 1 h,
6 h and 24 h. Since for the standard CPT training time of 1
week the weights for 1T = 24 h would only be based on
7 steps, the training time for this observation frequency is
doubled to 2 weeks. The error in the observations is unbiased
and Gaussian distributed ∼N(0,σ ), where standard devia-
tion σ is chosen to be equal to either 0.5 %, 2.5 % or 5 %
of the spatial standard deviation σX of the observations per

prognostic variable X. Hence σX = 1
N

√∑
i

(
Xi −X

)2
, with

i ranging over all N = 96× 48× 8 grid points and X denot-

Table 4. Weights for the supermodel trained by CPT and the synch
rule. The standard deviation over the year (CPT) or the standard
deviation over the last 10 weeks of training (synch rule) is given in
parentheses. The weights are only given for model 1, for model 2
the weight equals 1−weight of model 1.

Method Noise K T VOR DIV
[%] [day−1]

1T = 15 min

CPT 0.5 0.0 0.32 (0.016) 0.40 (0.010) 0.29 (0.032)
2.5 1.0 0.34 (0.015) 0.39 (0.005) 0.31 (0.031)
5.0 1.0 0.39 (0.020) 0.39 (0.010) 0.28 (0.031)

Synch 0.5 1.0 0.33 (0.012) 0.39 (0.005) 0.35 (0.004)
2.5 1.0 0.32 (0.006) 0.39 (0.003) 0.34 (0.003)
5.0 1.0 0.33 (0.016) 0.39 (0.005) 0.34 (0.006)

1T = 1 h

CPT 0.5 0.0 0.35 (0.011) 0.40 (0.004) 0.35 (0.009)
2.5 20.0 0.34 (0.011) 0.38 (0.000) 0.36 (0.008)
5.0 20.0 0.43 (0.015) 0.40 (0.005) 0.40 (0.013)

Synch 0.5 20.0 0.30 (0.006) 0.39 (0.001) 0.36 (0.002)
2.5 20.0 0.35 (0.005) 0.39 (0.001) 0.39 (0.004)
5.0 20.0 0.46 (0.005) 0.39 (0.002) 0.46 (0.006)

1T = 6 h

CPT 0.5 0.0 0.32 (0.000) 0.43 (0.000) 0.32 (0.030)
2.5 20.0 0.31 (0.008) 0.39 (0.000) 0.32 (0.000)
5.0 40.0 0.46 (0.054) 0.36 (0.010) 0.39 (0.000)

Synch 0.5 40.0 0.33 (0.003) 0.39 (0.002) 0.33 (0.007)
2.5 40.0 0.36 (0.013) 0.39 (0.009) 0.34 (0.012)
5.0 40.0 0.48 (0.016) 0.42 (0.011) 0.42 (0.006)

1T = 24 h

CPT 0.5 20.0 0.38 (0.020) 0.43 (0.000) 0.29 (0.000)
2.5 70.0 0.29 (0.000) 0.29 (0.000) 0.27 (0.011)
5.0 70.0 0.40 (0.057) 0.43 (0.051) 0.39 (0.085)

Synch 0.5 70.0 0.37 (0.012) 0.42 (0.017) 0.38 (0.010)
2.5 70.0 0.37 (0.010) 0.42 (0.011) 0.38 (0.005)
5.0 70.0 0.48 (0.013) 0.40 (0.036) 0.36 (0.008)

ing the spatial mean value. For temperature this corresponds
to a standard deviation of ∼ 0.15, 0.75 and 1.5 ◦C. Table 4
denotes the chosen nudging coefficient K and the resulting
weights together with their variance. For the experiments
with 1t = 15 min the same nudging strength K is chosen as
in Schevenhoven et al. (2019): K = 1/24 h−1, which corre-
sponds to K = 1 d−1. All CPT experiments are performed
with the iterative method.

Figure 3 shows the weights from Table 4 in one plot
such that the differences between the methods become clear.
The horizontal lines (continuous for model 1 and dashed for
model 2) indicate the weights obtained by CPT and the synch
rule in Schevenhoven et al. (2019), in which case the obser-
vations were perfect and available at every time step. Despite
the optimal weights for 1T = 15 min they are not necessar-
ily expected to be optimal for, e.g., 1T = 24 h, in this par-
ticular experiment the 2 cases show similar weights. From
Fig. 3a and b it can be seen that if observations are avail-
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able at each time step (1T = 15 min), the synch rule gives
slightly better results for noisier observations than CPT. For
the synch rule, the weights turn out to be almost exactly the
same for all three levels of noise. For 1T = 1 h, the results
for CPT and the synch rule seem similar for the two low-
est noise levels. For the highest noise level, both methods
seem to struggle a bit more to obtain good weights, since the
models are more equally weighted. Decreasing the observa-
tion frequency further to1T = 6 h results in the same pattern
with CPT performing slightly better. Once good CPT weights
have been found, they remain very consistent throughout the
year, indicated by the standard deviation of 0. For the largest
observation window 1T = 24 h, again the synch rule seems
to encounter somewhat more difficulties in following the
temperature observations for the highest noise level. Overall
however, both methods perform well in the context of sparse
and noisy observations.

From Schevenhoven et al. (2019) we know the perfor-
mance of supermodels with CPT and synch rule weights
trained with perfect, noise free observations. The weights for
the different experiments in Schevenhoven et al. (2019) var-
ied within a range of±0.05 per variable. We did not find any
significant difference in the forecast performance of the su-
permodels for these weights. Since the weights in the exper-
iments in this paper are approximately within this range, we
can foresee the outcome of model performance experiments.
To see this point, we compared the short-term forecast per-
formance of the supermodels trained by perfect observations
(s-CPT/synch perf obs), and the supermodels trained by ob-
servations available every 24 h(s-CPT/synch noisy obs), with
the highest noise level we used in this paper (see Fig. 4).
Not surprisingly, the supermodels trained with perfect obser-
vations are slightly better than the two supermodels trained
with sparse and noisy observations. The supermodels trained
with the observations available every 24 h, also combine in
the forecast phase the states every 24 h, which introduces a
small shock. The supermodel differences in the 2-week fore-
cast, however, are very small. The synch rule supermodel
trained with sparse and noisy observations performs least
well, but one would expect this result as the weights for tem-
perature are clearly a bit different from the other supermod-
els. Still, the model skill is not far from the other supermodel
skills.

4.4 Negative weights

Imperfect models 1 and 2 complement each other in im-
portant physical variables such as temperature and wind.
Model 1 tends to overestimate their global average values,
while model 2 underestimates them. Together they form a
convex hull (Schevenhoven and Selten, 2017), which results
in positive supermodel weights. On the other hand, using
model 1 and model 3 to construct a supermodel implies the
need for negative weights. The synch rule naturally allows
negative weights, since we did not impose any restrictions on

Table 5. Weights for the supermodel trained by CPT allowing for
negative weights. The standard deviation over the year is given in
parentheses.

Model T VOR DIV

Model 1 1.33 (0.028) 1.84 (0.058) 0.56 (0.079)
Model 3 −0.33 (0.055) −0.84 (0.058) 0.44 (0.079)

the weights. In Schevenhoven et al. (2019) synch rule train-
ing has been performed with model 1 and model 3, result-
ing in a supermodel with partly negative weights that outper-
formed both imperfect models in short-term and long-term
forecast quality.

CPT training does not automatically produce negative
weights, since the weights are based on the frequency by
which the imperfect models are chosen. Nevertheless, CPT
training can give negative weights too, although with bound-
ary restrictions. In the standard CPT training, one chooses
whether one of the imperfect models is the closest to the ob-
servations, or in addition, whether the supermodel is clos-
est in the iterative method. To obtain negative weights one
can also choose a predefined combination of the imperfect
models, for example: xneg1 = αx1+ (1−α)x3, with α ∈ R.
If one defines an additional predefined combination xneg2 =

(1−α)x1+αx3, the range for weights w1 and w3 for imper-
fect models 1 and 3 is between α and 1−α if α 6∈ [0,1].

In this experiment we choose α =−1, such that w1, w3 ∈

[−1,2]. The experiment is the same as in Schevenhoven et al.
(2019): an observation is available for every time step , for
every time step either xneg1 or xneg2 per variable is cho-
sen as the closest model state and the training period is 1
week. Table 5 shows the weights and associated variance
of the weights. The weights are remarkably similar to the
weights of the synch rule experiment with negative weights
in Schevenhoven et al. (2019). The weights for vorticity and
divergence differ by 0.16, the weights for temperature by
only 0.03.

The statistics of a 40-year supermodel run with the weights
from Table 5 are therefore quite similar to the climatology of
the supermodel in Schevenhoven et al. (2019). Table 6 shows
that the supermodel outperforms both imperfect models in
temperature, precipitation, wind, cloud cover and surface so-
lar radiation compared to the values in Table 2.

5 Discussion and conclusion

We have shown the potential of the CPT and synch rule
training methods to train a weighted supermodel on the ba-
sis of noisy and sparse time observations. The CPT train-
ing method is based on “crossing” different model trajecto-
ries and thus generating a larger ensemble of possible trajec-
tories. The synch rule adapts the weights to the individual
models on the fly during the training, such that the super-
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Figure 3. Weights for the supermodel trained by CPT and the synch rule. The horizontal lines (continuous for model 1, dashed for model 2)
indicate the weights obtained by CPT and synch rule training in Schevenhoven et al. (2019), in which case the observations were perfect and
available at every time step.

Geosci. Model Dev., 15, 3831–3844, 2022 https://doi.org/10.5194/gmd-15-3831-2022



F. Schevenhoven and A. Carrassi: Training supermodels with noisy and sparse observations 3841

Table 6. Global mean average difference between the supermodel with negative weights and the perfect model, calculated over the last
30 years of the simulation.

Model Temperature Precipitation Wind at Wind at Solar Cloud cover
[
◦C] [mm d−1

] 200 hPa 850 hPa surface [%]
[m s−1

] [m s−1
] radiation
[W m−2

]

Super 0.62 0.10 0.57 −0.02 1.43 −0.87

Figure 4. Forecast quality as measured by the RMSE of the truth
and a model with a perturbed initial condition. The control is the
difference between the perfect model and the perfect model with a
perturbed initial condition. The pink and orange lines show the su-
permodels trained by perfect observations (s-CPT/synch perf obs),
and the supermodels trained by observations available every 24 h
(s-CPT/synch noisy obs),respectively, with the highest noise level
used in this paper.

model synchronizes with the observations. In our previous
work (Schevenhoven et al., 2019) it was shown that both
methods were able to improve weather and climate predic-
tions in a noise-free and highly frequent observational set-
ting, using different parametric versions of the global cou-
pled atmosphere-ocean-land model SPEEDO. In this study,
we moved towards realism by handling the case of noisy data
that are not available at each of the models’ computational
time step. We have generated synthetic noisy observations
by adding zero-mean Gaussian noise, with variance as large
as 1.5 ◦C in temperature. These synthetic noisy observations
are made available at different intervals, of 1, 6 or 24 h. Both
methods needed adaptations over the original formulations
given in Schevenhoven et al. (2019) in order to train the
weighted supermodel on the basis of noisy and sparse time
observations. The new variants of the training methods have
proven robustness against these changes in the observational
scenario and shown capabilities to give adequate weights.

To handle noisy and sparse time data, we use nudging in
both methods: this choice proved to be pivotal to ensure cor-
rect updates of the weights. For the synch rule the nudging
strength was increased while for CPT the nudging term was
not present in the original formulation and has been intro-
duced here.

For the synch rule it is necessary that the sum of the
weights remains equal to 1 in order to maintain physical bal-
ances. In the noise-free framework of Schevenhoven et al.
(2019), this is ensured automatically. Nevertheless, in the
current framework we had to impose the condition that the
weights sum to 1, which is achieved by subtracting the
equally weighted tendency term in the synch rule equation.
Besides the inclusion of nudging in the CPT method, the use
of an iterative approach within CPT further helped to keep
track of the data. Additionally, in Schevenhoven et al. (2019)
the synch rule was able to produce negative weights in case
the imperfect models cannot compensate for each other’s bi-
ases with positive weights. In this paper, we have gone be-
yond this and developed a method to obtain negative weights
also within the CPT method.

The CPT and the synch rule both update the weights based
on the difference between the model trajectories and the
observations, and on the difference between the imperfect
model tendencies. Despite using similar ingredients, CPT
and the synch rule give different results for sparse and noisy
observations. In particular, the synch rule trajectory seems to
diverge slightly earlier from the observations than the CPT. A
possible reason could be the different use of the models’ ten-
dencies. With CPT, the imperfect models run unconstrained
from the data in the period, 1T , between subsequent obser-
vations. If 1T is large enough the model trajectories will
have a large spread before being compared at the next obser-
vation time. Choosing the right model from this large spread
can quickly reduce the distance to the observations. For the
synch rule, on the other hand, one integrates the supermodel
instead of the individual models as in CPT. Once the synch
rule supermodel trajectory has diverged from the observa-
tions, it can be more difficult to get back to the observations
compared to the CPT training, since the supermodel weights
need to be adapted such that the next integration period will
bring the supermodel closer to the observations. If 1T is
small, CPT and the synch rule are very comparable methods,
as we have also seen in the results of the negative weight
experiment in Sect. 4.

Future directions

Despite the application of the iterative method and nudging,
the CPT and synch rule may still struggle to stay very close
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to the observations. To increase the chance to obtain a proper
trajectory, one could work with an augmented ensemble of
trajectories. This ensemble could consist of trajectories start-
ing from slightly different initial conditions, or trajectories
that emerge from a model nearby the closest model to an
observation. One could make a comparison with the parti-
cle filter method (see e.g., van Leeuwen et al., 2019), where
trajectories that do not fall within the likelihood of the ob-
servations are pruned and one continues with the trajectories
within the likelihood of the observations from slightly per-
turbed initial conditions. In our case, the best trajectory after
training can be obtained by comparing the RMSE between
the trajectories and the observations.

Both training methods seem in principle more suitable for
short rather than longer timescales, since for both training
rules it is important that the imperfect models stay close
enough to the observations. For longer timescales this can be
difficult. Despite the action of the nudging, the models can
be out of the data phase as long as time evolves. If the ob-
servations are lost, the “closest” model in the CPT training
is not necessarily the one that contributes most to improv-
ing the supermodel dynamics. If during synch rule training
the supermodel loses the observations, a new, non-optimal
equilibrium for the weights can be found, as we have seen in
Sect. 4. Having said this, both methods could still be useful
if one prefers to combine models only on a seasonal or even
longer timescale (under the assumption that with this lim-
ited amount of exchange the models are still synchronized to
some extent). For both CPT and the synch rule, one can aver-
age over the observations to potentially obtain a correct sign
whether the supermodel is either overestimating or underes-
timating the observations.

Until now the distance between models and model to data
has been the RMSE. If one is training a supermodel with
improved skill on longer timescales, it is possible that the
appearance of specific climatological features of the mod-
els is of more importance than a small RMSE. In that case
the distance between observations and models can be de-
fined in a different way. For example, if the imperfect mod-
els suffer from an erroneous double intertropical convergence
zone (ITCZ), one can increase the weight of the model which
is on average closer to a single ITCZ. Additionally, one can
define different weights for different periods of time, for ex-
ample seasonally dependent weights. Despite these possibil-
ities in adapting the training methods, there are some con-
ditions that need to be fulfilled when CPT or the synch rule
are used on longer timescales. The methods only work if the
models can compensate for each other. For example, when
both models have been spun up for a sufficient amount of
time and are stable in state space, both CPT and the synch
rule cannot give useful weights. In the case of CPT, the model
that is on average closest to the observations will be repeat-
edly chosen. For the synch rule, the average model tendency
will be zero over a sufficient amount of time, hence there will
be no update of the weights on average over time. Therefore,

for both training methods the imperfect models cannot al-
ready reside on their own attractor and the tendency towards
their attractor needs to be visible.

To make the training methods suitable for state of the art
models it needs to be taken into account that state of the art
models can differ in grid point resolution and time steps. In
this paper, for both CPT and the synch rule during training
the imperfect model states are replaced, in the case of the
synch rule the imperfect model states are replaced by the new
supermodel state, and in the case of CPT the imperfect model
states are replaced by the state of the closest model. To apply
the training methods in state of the art models, techniques
from data assimilation can be used to combine the states in a
dynamically consistent manner (Carrassi et al., 2018). With
the use of these techniques both CPT and the synch rule in
principle seem to be suitable for training a state of the art
supermodel.

Appendix A: The synch rule in cases of noisy and sparse
observations

The general form of the synch rule as given in Duane et al.
(2007) is:

q̇j =−δj
∑
i

ei
∂fi(x,q)

∂qj
, (A1)

where qj is the updated parameter, δj the adaptation rate,
ei the difference between the truth and model i and fi the
time derivative of model i for the particular parameter. For
derivation, see Duane et al. (2007). In our case qj are the
weights of the supermodel with respect to a certain variable j
and model i is the supermodel. Hence we can rewrite it to:

q̇kj =−δj ej
∂f s(x,q)

∂qkj
, (A2)

where k denotes imperfect model k, and qkj the weight for
model k corresponding to variable j . The error ej is the dif-
ference between the truth and the supermodel, and f s is the
time derivative of the supermodel. At this point we can make
a choice. We can write f s just as a superposition of imperfect
models k as done in Schevenhoven et al. (2019):

f s =
∑
i

Wkf k, (A3)

without any constraints on the weights. Then the term
∂f s(x,q)
∂qkj

is just the time derivative of the imperfect model k
corresponding to variable j implying we can simplify the
rule further to (Schevenhoven et al., 2019):

Ẇkj =−δj ejfkj . (A4)

Although no constraint was imposed on the weights, they au-
tomatically turned out to sum to 1 in Schevenhoven et al.
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(2019). In Schevenhoven et al. (2019) a partial explanation
is given based on maintaining physical balances. The obser-
vations to train the weights in this paper were noise-free and
available at every time step. If we remove these assumptions,
the update of the weights might disturb the physical balances
and therefore the synchronization of the supermodel with the
observations could be lost, resulting in meaningless weights.
A possible solution is to impose that the weights sum to 1.
In an example of only two imperfect models, the supermodel
time derivative can be written as follows for weight W1:

f s =W1f 1+ (1−W1)f 2. (A5)

Then rewriting Eq. (A4) omitting variable j for simplicity
gives:

Ẇ1 =−δe (f1− f2) . (A6)

To get the equation for the update of W2 as well from the
formula for f s, we can rewrite f s to:

f s =
1
2

(
W1f 1+ (1−W1)f 2

)
+

1
2

(
(1−W2)f 1+W2f 2

)
.

(A7)

Then the equations are:

Ẇ1 =−δ̃e (f1− f2) , (A8)
Ẇ2 =−δ̃e (f2− f1) . (A9)

So the total update of the weights W1 and W2 is equal to 0,
hence initialization with weights that sum to 1 will result in
weights that remain summed to 1. This rule can be further
generalized. Rewrite for N models f s to:

f s =
1
N

N∑
i=1

([(
1−

∑
k,k 6=i

Wk

)
f i

]
+

N∑
j 6=i

Wjf j

)
. (A10)

Taking the derivative of f s with respect to weight Wi ,
∂f s(x,W)

∂Wi
, results in the following learning rule:

Ẇi =−δe

(
(N − 1)fi −

∑
k,k 6=i

fk

)
, (A11)

which can be rewritten to:

Ẇi =−δ̃e

(
fi −

1
N

∑
k

fk

)
, (A12)

where 1
N

∑
k

fk) can simply be written as fe, with e mean-

ing equally weighted, since fe is the equally weighted super-
model tendency, so

Ẇi =−δ̃e (fi − fe) . (A13)

From Eq. (A13) it can also easily be seen that the total up-

date of the weights equals 0:
N∑
i=1
Ẇi =−δ̃e

N∑
i=1
(fi − fe)=

−δ̃eN(fe− fe)= 0.

Code availability. The exact version of the SPEEDO model code
with the CPT and synch rule training integrated that is used to
produce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.6244858; Schevenhoven, 2021), as
are input data and scripts to run the model and plot the results for
all the simulations presented in this paper. The Zenodo archive con-
sists of 6 folders. The atmosphere component SPEEDY as well as
the coupler and the training code for CPT and the synch rule can
be found in AtmosCoupler. Furthermore, folder progsandlibs con-
tains the necessary programs and libraries, CLIO the ocean com-
ponent and LBM the land component, Postprocessing contains the
scripts to make the figures in this paper and lastly Results contains
the model output for the different experiments presented in this pa-
per.
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