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WHETHER CROP DIVERSIFICATION IS ENERGY EFFICIENT: AN EMPIRICAL 

ANALYSIS FROM BANGLADESH 

ABSTRACT 

This study examines whether crop diversification provides economy in energy use and 

improves technical energy efficiency using a large survey data of 2,075 farms from 20 sub-

districts of 17 districts in Bangladesh by applying a stochastic input-distance function 

approach. The results reveal that cereal production significantly increases energy use by 

0.14% for every one percent increase` in output. Renewable source of energy constitutes 

59.6% of total inputs and labour energy alone constitutes 39%. Significant output 

complementarity exists between cereal and oilseed enterprises but competition exist between 

jute with pulse and/or oilseed enterprises. The mean technical energy efficiency is estimated 

at 68% implying that energy output can be increased by 32% by eliminating inefficiency. 

Diversification amongst enterprises is associated with energy inefficiency, implying that 

specialization into cereals improves efficiency. Large farms are inefficient whereas large 

family size improves efficiency. The key policy implication is that diversification of crop 

enterprises must maintain cereal (i.e., rice/wheat/maize) as the main base and then add non-

cereal crops (e.g., oilseeds) in order to improve energy economy. Also, diversification within 

cereals from rice monoculture to wheat and/or maize will significantly improve technical 

energy efficiency.    

JEL classification: O33; Q18; C21 

Key words: Crop diversification, technical energy efficiency, scale economy of energy use, 

stochastic input distance function, Bangladesh. 

1. Introduction 

The renewed drive to increase agricultural production using modern technology to feed the 

growing population in the face of closing land frontier and falling yield levels has resulted in 

an unprecedented increase in the use of commercial energy in agriculture in developing 
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economies. The increase in energy use is particularly high in countries reliant on Green 

Revolution technology to promote agricultural growth which in turn is largely dependent on 

non-renewable fossil fuels, e.g., inorganic fertilizers, pesticides and mechanization 

(particularly for supplementary irrigation and land preparation) [1]. For example, commercial 

energy use in Bangladesh agriculture has been modest in the past but increased rapidly in recent 

years. The energy intensity (i.e., commercial energy/GDP ratio) in Bangladesh agriculture has 

increased from only 1.78 in 2000 to 11.31 in 2008 [2], implying that the sector is becoming 

energy intensive mainly due to the widespread diffusion of a rice-based Green Revolution 

initiated since the early 1960s, thereby, adding further a crisis to the existing problem of acute 

energy deficiency in the economy [1]. 

Bangladesh, dominated by rice culture accounting for 79.2% of the gross cropped area 

[3], is seeking to diversify its agricultural sector to other cereals (i.e., wheat and maize) as 

well as non-cereals (e.g., potatoes, vegetables, and spices, etc.). In fact, the Fifth Five Year 

Plan (1997–2002) set specific objectives to attain self-sufficiency in foodgrain production 

along with increased production of other nutritional crops, as well as to encourage export of 

vegetables and fruits, keeping in view domestic consumption demand and nutritional 

requirements [4]. The Plan also earmarked 8.9% of the total agricultural allocation to promote 

crop diversification. Subsequently, the Poverty Reduction Strategy Paper (2005) and the Sixth 

Five Year Plan (2011–2015) also emphasized crop diversification [5, 6] although no specific 

budget was earmarked in these plan documents. 

Farmers in Bangladesh grow multiple crops with rice in order to meet subsistence as 

well as cash requirement [7]. However, expansion of non-cereals (e.g., potatoes, vegetables, 

onions and cotton), which are more profitable than rice cultivation, are slow because of the 

incompatibility of the existing irrigation system that is mainly suitable for rice production 

only [8]. But there is recognition that with better farming practices and varietal improvements, 
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the non-cereal crops will be more profitable and could lead to crop diversification as a 

successful strategy for future growth and sustainability of Bangladeshi agriculture [4, 6, 8, 9]. 

Recently, the National Food Policy Capacity Strengthening Program (NFPCSP) implemented 

by the Food and Agriculture Organization of the United Nations (FAO) and the Food 

Planning and Monitoring Unit (FPMU), Ministry of Food and Disaster Management, 

Bangladesh with the financial support of EU and USAID completed a large scale 

research on investigating financial and economic profitability of cereal and non-cereal crops 

(specifically, high yielding varieties of rice, aromatic rice, wheat, maize, lentil, mustard, and 

jute) in mid-2013 [10].  

Therefore, given renewed drive by the Bangladeshi government to diversify its 

agricultural sector instead of intensifying existing rice-based Green Revolution technology, it is 

important to know whether such strategy of crop diversification is productive and efficient when 

evaluated in terms of energy use. This confirmation is important because not all crops that are 

deemed to be economically profitable are also efficient in terms of energy use. For example, 

the prawn-fish enterprise of the ‘gher farming system’
1
 in Bangladesh, which is the most 

financially rewarding enterprise [11], is actually highly inefficient in terms of energy use [12]. 

Conclusions on the merit of crop diversification as a strategy for agricultural growth in 

the literature are mixed. Previous studies mainly focused on the impact of crop diversification 

either on income or overall production with favourable conclusions [13, 14, 15]. Only a few 

focused on its impact on technical efficiency where conclusions are mixed. For example, 

                                                           
1
 The term ‘gher’ refers to the modification of a paddy field to enable the operation of three enterprises: prawn 

(principal enterprise), fish, and high yielding varieties of rice. The middle of the ‘gher’ is surrounded by high and 

wide dikes with canals dug at the inner periphery of the dikes. The whole area of the ‘gher’ is filled with rain-

water during the monsoon season, specifically from June to December, and closely resembles a typical pond. 

The ‘gher’ becomes dry naturally from January to April except the canals. This allows joint production of prawn, 

fish and rice in a single system known as ‘gher farming system’ [11].  
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while Coelli and Fleming [16] and Rahman [7, 17] concluded that crop diversification 

significantly improves technical efficiency on farms in Papua New Guinea and Bangladesh, 

but Llewelyn and Williams [18] and Haji [19] concluded otherwise for Indonesian and 

Ethiopian farms.  

Given this backdrop, this study aims to examine: (a) the existence of energy 

economies of diversification amongst crop enterprises; and (b) the impact of diversification 

on technical energy efficiency in farming in Bangladesh. To our knowledge, such information 

is not available in the energy literature. Therefore, the present study will be a valuable 

contribution to the existing literature providing an evidence based conclusion on the merit of 

crop diversification as a strategy for agricultural growth when evaluated in terms of energy 

use. We do so by using a large scale sample survey of 2,075 farm households from 20 sub-

districts of 17 districts of Bangladesh.  

The paper is organised as follows. Section 2 presents the analytical framework, the 

model, and various performance measures developed to address the research objectives. 

Section 3 presents the results. The final section concludes and draws policy implications. 

2. Research Methodology 

2.1 Analytical framework 

The importance of examining level of technical efficiency arises because gains in efficiency 

are derived from improvements in decision making, which in turn are assumed to be linked to 

a host of socio-economic conditions, e.g., education, experience, farm operation size, etc. that 

are largely under the control of the decision maker, i.e., farmer. In this study, we are 

examining whether diversification into various crop enterprises lead to gains in scale 

economy in energy use as well as gains in technical energy efficiency. In order to examine 

these two key objectives, we need to represent the multiple crop production system by 

specifying a multi-output, multi-input production technology. A distance function approach 
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(either output-orientated or input-orientated) is appropriate here, and can be analyzed using 

either parametric or non-parametric methods. We adopt an input oriented approach which is 

appropriate when inputs are endogenous (e.g., minimize energy use in our case) and output is 

exogenous [20]. We chose a stochastic distance function approach instead of a non-parametric 

deterministic approach (i.e., Data Envelopment Analysis) because of its ability to separate the 

random noise (e.g., weather variation, measurement errors, etc.) from technical inefficiency 

effects. For example, our data is spread over 17 districts (which enhances representativeness 

of the sample but potentially contains regional level variations) and covers a complete crop 

year cycle (which in turn is likely to be subject to weather variations) implying that the choice 

of a stochastic/parametric approach is more appropriate.  

The production technology of the farm is defined using the input set, L(y), 

representing the set of all input vectors, KRx +∈ , which can produce the output vector MRy +∈ . 

That is, 

)1(}:{)( yproducecanxRxyL K

+∈=  

The input-distance function is then defined on the input set, L(y), as 

)2()}()/(:max{),( yLxyxDI ∈= ρρ  

The properties of the distance function DI(x,y) are that it is non-decreasing, positive, linearly 

homogenous and concave in x, and increasing in y. The distance function, DI(x,y), takes a 

value ≥ 1 if the input vector, x, is an element of the feasible input set, i.e., L(y) [DI(x,y) ≥ 1 if x 

∈ L(y)]. The value of the distance function is equal to one if x is located on the inner 

boundary of the input set. And for this reason, the input oriented distance function can be 

interpreted as the multi-input input-requirement function which allows deviations (distance) 

from the frontier, and these deviations are interpreted in terms of technical efficiency [21].  

 

2.2 The model 
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For empirical implementation of the distance function, we select the flexible translog (TL) 

functional form used by many [7, 12, 17, 21, 22, 23]. 

The translog input distance function with M outputs (Ym) and K inputs (Xk) for the I 

farms (denoted i) is given as: 
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We impose these constraints by normalizing the input distance function by one of the inputs 

following Lovell et al. [24]. Thus equation (3) becomes 
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 We rewrite this function with –lnDi=– ui as a one sided error term, and include the 

standard error term vi to represent statistical noise, measurement error or unobserved inputs, 

which provides the following equation suitable for estimation: 

)5()(ln ,1 iii vuTLX +−=− Y,X
*  

Following Morrison-Paul and Nehring [21] and Morrison-Paul et al. [22], we reverse the signs 

of Eq (5) in order to interpret various performance measures derived from Eq (5) that are 

similar to familiar functions, such as a production function: 
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 )6()(ln ,1 iii vuTLX +−−= Y,X
*  

 Equation (6) is now written in the same form as a standard stochastic production 

frontier seen in the literature. Equation (6) can be estimated econometrically using the 

maximum likelihood method, assuming that vi are independently and identically distributed 

with zero mean and variance, 2

vσ ; and the ui are non-negative random variables which are 

independently distributed as truncations at zero of the normal distribution with unknown 

variance, 2

uσ , and unknown mean, µ, defined by: 

∑+=
z

zizi Z )7(0 δδµ   

The parameters of the equations (6) and (7) were estimated using maximum likelihood 

procedures in a single stage as following Coelli and Perelman [25].  

2.3 The performance measures  

We can derive various performance measures of the production process as elasticities from 

this estimated model. The sum of the first-order input elasticities represent scale economies, 

which provides information on the extent to which output increases with increase in input. 

The second-order elasticities reflect production complementarities which provide information 

on the economic impacts from output jointness [21].  

The X-Y scale economy relationship of the input distance function can be represented 

by the sum of individual input elasticities which shows how much overall input use must 

increase in order to support a 1% increase in all outputs. At the ame time, the individual input 

elasticity provides us with the information on how much input expansion is required for a 1% 

increase in output, i.e., Ym: YmmmYmD YXYD εε =∂∂=∂−∂=− ln/lnln/ln 1, . This measure can 

be regarded as an ‘input share’ of Ym (in relation to X1). And the sum of these input elasticties 
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represents scale economies: .ln/lnln/ln 1, Y

m

Y

m

m

m

mYD m
YXYD εεε ==∂∂=∂∂−=− ∑∑∑ A 

shortfall of εY from 1 shows the extent of scale economies [21]. 

 The first-order elasticities YYm and εε can also be decomposed into second-order 

effects which reflect compositions of output in response to expansion of scale. This 

information shows how input elasticity of Ym or output share ( Ymε ) change in response to 

change in another output, which is a measure of output jointness of the production system. For 

example, nYmYnYm Yln/, ∂∂= εε shows increase in the Ym input share as Yn increases. If 

0, <YnYmε , then output jointness or complementarity is implied; i.e., the input use does not 

have to increase as much to expand Ym if the Yn level is greater. The cross-output coefficient 

estimate is the elasticity of this measure YmYnmnYnYmmn ,,: εβεβ ==  [21]). Finally, the one-

sided error term, ui provides information on the level of technical efficiency, TE = exp(ui) 

[26]. 

2.4 Data and the study area 

Data for this study was taken from a recently completed NFPCSP-FAO project. The data was 

collected during February–May 2012 through an extensive farm-survey in 17 districts 

covering 20 sub-districts (upazillas) of Bangladesh. A multistage stratified random sampling 

technique was employed. At the first stage, districts where the specified crops are dominant 

are selected. The selection of the districts also took into account specified characteristics, i.e., 

land elevation types of the region and type of technology. At the second stage, sub-districts 

were selected according to highest concentration of these specified crops in terms of area 

cultivated based on information from the district offices of the Directorate of Agricultural 

Extension (DAE). At the third stage, unions were selected using same criteria at the 

union/block level which was obtained from the sub-district offices of the DAE. Finally, the 

farmers were selected at random from the villages with the same criteria classified by three 
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standard farm size categories used in Bangladesh. These are: marginal farms (farm size 50–

100 decimals), small farms (101–250 decimals), and medium/large farms (>250 decimals). To 

ensure equal representation of all farm size categories, a target of 105 farmers from each sub-

district was set as follows: 35 marginal farms, 35 small farms, and 35 medium/large farms. 

However, actual sampled farms from two sub-districts deviated from the target. Boalmari sub-

district of Faridpur was selected additionally to collect information on jute production and 

Birganj sub-district of Dinajpur was selected to include sufficient number of two of the main 

specified crops (i.e., irrigated wheat and maize) in the survey. This provided a total of 2,083 

farm households (Table 1). However, due to some missing information, the final sample size 

stood at 2,075. The questionnaire used was pre-tested in Tangail district prior to finalization. 

The survey was carried out by trained enumerators who were graduate students of the Sher-e-

Bangla Agricultural University, Dhaka and/or Bangladesh Agricultural University, 

Mymensingh.  

[Insert Table 1 here] 

2.5 Energy coefficients 

We have applied an ex-post analysis to the level of energy inputs and outputs derived from 

crop diversification, because the data contains detailed information on all the quantities of 

inputs and outputs used in the production process. The standard energy coefficients from the 

existing published literature were used for conversion [27, 28, 29]. For some inputs and 

outputs, whose energy equivalents are not available, these were computed by using personal 

judgement and consultation with the academics from Bangladesh Agricultural University, 

Mymensingh.   

Specifically, the production energy for power tiller, mechanical thresher and shallow 

tube wells were calculated as follows [27]:  

)/()( TWGMM ppe =  (8) 
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where Mpe is the energy of the machine per unit area, MJ ha
-1

; G is the mass of machine, kg; 

Mp is the production energy of machine, MJ kg
-1

; T is the economic life, h; and W is the 

effective field capacity, ha h
-1

. 

The diesel energy requirement was determined on the basis of fuel consumption, l h
-1

. 

The data were converted into energy units and expressed in MJ ha
-1

. The following equation 

was used in the calculation of fuel consumption [28]: 

SFCRPFC m ..=  (9) 

where FC is the fuel consumption, l h
-1

; Pm is the machine power, kW; R is the loading ratio, 

decimal; and SFC is the specific fuel consumption (0.25 l kWh
-1

). 

Table 2 presents the energy coefficients used in this study. 

[Insert Table 2 here] 

2.6 The empirical model 

The production structure of crop farming in Bangladesh is specified using a multi-output 

multi-input stochastic input distance function. The general form of the flexible translog 

stochastic input distance function for the i
th

 farm is defined as:  
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where the dependent variable X1 is the energy from machineries (i.e., power tiller for land 

preparation + mechanical thresher for threshing operations) used per ha for all crops; X* are 

the other energy inputs normalized by the machinery energy variable (X1); Y are the crop 

energy outputs; D are dummy variables to account for regional level fixed effects; and C are 
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dummy variables to account for zero values of crop enterprises (i.e., crop outputs containing 

zero values for some observations are specified as ln{max (Ym, 1–Cc)} following Battese and 

Coelli [30]; v is the two sided random error and u is the one sided error in eq. (10); ln is the 

natural logarithm; Z in eq. (10a) are the variables representing farm specific characteristics to 

explain inefficiency; ζ is the truncated random variable; α0, αk,, αkl, βm, βmn, τkm, κd, ωc, δ0, and 

δz are the parameters to be estimated.  

The model consists of seven production inputs (X); four outputs (Y); three dummy 

variables (C) to account for zero values of jute, pulse and oilseed enterprises; seven variables 

representing socio-economic characteristics of the farm (Z) included in the inefficiency effects 

model as predictors of technical inefficiency; and 16 dummy variables (D) to account for 

regional level fixed effects (in both functions). The seven inputs used in the analyses are: X1 = 

machinery energy (MJ ha
-1

), X2 = total human labour (MJ ha
-1

), X3 = chemical fertilizers (MJ 

ha
-1

); X4 = organic manure (MJ ha
-1

); X5 = irrigation (MJ ha
-1

); X6 = seed (MJ ha
-1

); X7 = 

pesticides (taka). The four outputs are: Y1 = cereals (includes High Yielding Varieties (HYV) 

and Hybrid rice in Boro (dry winter) season, HYV and Aromatic rice in Aman (monsoon) 

season, HYV wheat, and HYV maize) (MJ ha
-1

); Y2 = pulse (i.e., lentil) (MJ ha
-1

); Y3 = jute 

(MJ ha
-1

); and Y4 = oilseed (i.e., mustard) (MJ ha
-1

). The seven variables representing socio-

economic characteristics of the farm are: Z1 = age of the farmer; Z2 = family size; Z3 = 

education of the farmer; Z4 = dummy variable for involvement in NGO; Z5 = land 

fragmentation (number of plots per farm); Z6 = ogive index of output concentration (number); 

and Z7 = farm operation size (ha). Table 3 presents the definitions, units of measurement, and 

summary statistics for all variables.  

[Insert Table 3 here] 

We have selected the Ogive (pointed arch) index, which provides a measure of 

concentration of output shares of the enterprises, to see whether diversification amongst 
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enterprises has an effect on technical energy efficiency, also applied by Rahman and Barmon 

[12] and Coelli and Fleming [16]. The Ogive index is defined as: 

∑
=

−
=

M

m

m

M

MY
Ogive

1

2

/1

))/1((
  (11) 

where M is the total number of production enterprises under consideration and Y is the share 

of the mth enterprise to total energy output. An Ogive value of 1/M indicates perfect 

diversification of output among enterprises. The justification for inclusion of other variables 

as determinants of inefficiency is from the existing literature.  

3. Results 

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of the stochastic 

input distance function and the inefficiency effects model jointly in a single stage. Prior to 

discussing the results, we report the series of hypothesis tests conducted to determine 

functional form, input output separability and presence of inefficiency in the model (Table 4).  

The first test was conducted to determine the appropriate functional form, i.e., the 

choice between a Cobb-Douglas or a translog functional form (H0: αkl=βmn=τkm=0 for all k, l, 

m, and n). A generalised Likelihood Ratio (LR) test confirms that the choice of a translog 

production function is a better representation of the production technology.  

 Next, we tested for the separability of the inputs and outputs in the input distance 

function. This hypothesis is defined by equating all cross-terms between inputs and outputs to 

zero (H0: all τkm=0 for all k and m) [23]. The null hypothesis is strongly rejected, which 

implies that aggregation of all the inputs and outputs into a single index will be inconsistent.  

 Next, we tested for the presence of inefficiencies in the model. The parameter γ is the 

ratio of error variances from Eq. (10). Thus, γ is defined as being between zero and one, 

where if γ = 0, technical inefficiency is not present, and where γ = 1, there is no random noise. 

The value of γ is estimated at 0.90 (see lower panel of Appendix Table A1) which is 

significantly different from zero at 1% level, indicating that inefficiencies are present in the 
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model. Next we determine whether the variables introduced as inefficiency effects improve 

the explanatory power of the model. The null hypothesis (H0: δz=0 for all z) is rejected at the 

1% level, implying that the distributions of inefficiencies are not identical across individual 

observations [23].  

 Finally, we also determine whether controlling for regional effects is worthwhile both 

in the production frontier as well as in the inefficiency effects function. The null hypothesis 

(H0: all κk=0 for all k) is strongly rejected at the 1% level, implying that there are significant 

variations across regions as we have expected (Table 4).   

[Insert Table 4 here] 

3.1 Energy productivity and scale economy in energy use 

The parameter estimates of the stochastic input distance function and the inefficiency effects 

model for crop farming estimated jointly in a single stage is presented in Appendix Table A1. 

A large number of the coefficients in the input distance function are significantly different 

from zero at the 10% level at least. All the variables are mean-differenced prior to estimation 

so that the  elasticities  of  the  distance  function  with  respect  to  input  and output 

quantities  at  the  sample mean  correspond  simply  to  the  first order coefficients. All the 

signs on the first order coefficients of inputs and outputs are consistent with a priori 

expectations.  

The overall measure representing incentive to increase the scale and diversity of farm 

enterprises is the scale elasticity εY (Table 5). Although the estimate of εY=0.57 suggests scale 

economies, (εY<1 indicate scale economies), the formal test for constant returns to scale (i.e., 

εY=1) cannot be rejected implying that constant returns to scale prevail in Bangladeshi 

farming. This finding is encouraging because the literature in this regard is mixed. For 

example, Asadullah and Rahman [31] report decreasing returns to scale in rice production 
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whereas Rahman [7, 17] noted increasing returns to scale for diversified crop production 

system in Bangladesh.  

The individual output contribution to the scale elasticity is also presented in Table 5. 

Table 5 shows that only cereal output elasticity is significantly different from zero, implying 

that increasing the production of cereals will increase energy use substantially. The elasticity 

value is estimated at 0.14 implying that a 1% increase in cereal output will increase energy 

use by 0.14%. 

The elasticities of the distance function with respect to input quantities are equal to the 

energy input shares and, therefore, reflect the relative importance of inputs in the production 

process. Table 5 reveals that all seven elasticities are negative, as expected, with only one 

input (pesticide energy) being not significantly different from zero. The elasticity with respect 

to labour is the largest with a value of -0.39, implying that labour represents 39% of the total 

energy use at the sample mean. Rahman and Barmon [12] reported even higher share of 

labour energy use (59%) for gher farming in Bangladesh.  

The second order cross-effects represented by the cross-parameters of the estimated 

functions (βmn) provides information on the output complementarities and their contribution to 

scale economies (mid-panel of Table 5). Four crop combinations are negative with cereal and 

oilseed enterprise combination being significantly different from zero at the 1% level, 

implying significant complementarity and/or output jointness [21]. This indicates that cereal 

and oilseed combination requires less energy inputs than it would otherwise require when 

produced independently. In contrast, combinations of jute with pulse and/or oilseed 

enterprises are positive and significantly different from zero at the 5% level at least, implying 

competition or output disjointness. This indicates that such combination of enterprises exert 

diseconomies in energy use instead. Overall, these results suggest that deriving scope 
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economies in Bangladeshi farming is not straightforward when evaluated in terms of energy 

use and is at contrast with those reported by Rahman and Barmon [12] and Rahman [7, 17].  

[Insert Table 5 here] 

3.2 Determinants of technical energy efficiency  

Prior to the discussion of the determinants of technical inefficiency, we report summary 

statistics of technical energy efficiency scores. The mean technical energy efficiency is 

estimated at 68% implying that the average farm could increase energy output by 32% by 

eliminating inefficiency. Farmers exhibit a wide range of inefficiency ranging from 8% to 

99% in multiple crop farming (Table 6). Nevertheless, 52.5% of the total farmers are 

operating at a technical energy efficiency level of 81% and above (Table 6). Observation of 

wide variation in technical efficiency is not surprising and is similar to the results of Rahman 

and Rahman [1], Rahman and Barmon [12], and Rahman [7, 17] for Bangladesh and Bravo-

Ureta et al. [32] for developing economies worldwide covering a range of crops and systems, 

respectively. 

[Insert Table 6 here] 

The lower panel of Appendix Table A1 provides the results of the inefficiency effects 

model. The coefficients on these inefficiency predictors show only the direction of influence 

and do not provide information on the magnitude of influence. Therefore, we compute 

technical energy efficiency elasticities for these predictors presented in the lower panel of 

Table 5.  

Family size significantly improves technical efficiency, perhaps through more timely 

supply of family labour, also reported by Rahman [17]. The elasticity estimate indicates that a 

1% increase in family size will improve technical energy efficiency by 0.02%. Farm operation 

size is associated with energy inefficiency implying that large farms are relatively inefficient. 

The elasticity estimate indicates that a 1% increase in farm size will reduce efficiency by 
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0.005%. The conclusion regarding farm size and efficiency relationship is mixed in the 

literature. For example, while Rahman and Hasan [33] reported positive relationship in 

Bangladesh, Rahman et al. [11] and Aye and Mungatana [34] reported negative relationship 

for Bangladesh and Nigeria, respectively.     

The negative coefficient on the Ogive index indicates that specialization significantly 

improves technical energy efficiency. The elasticity estimate indicates that a 1% increase in 

crop specialization will improve technical energy efficiency by 0.06%. This finding is 

supported by Rahman and Barmon [12] who evaluated Bangladeshi gher farming in terms of 

energy use. But when the merit of crop diversification is examined using conventional 

physical input-output framework, the evidence is in favor of diversification [7, 11, 17]. This is 

because specialization in Bangladesh is geared towards cereal production (i.e., mainly rice but 

area under wheat and maize are on the rise as well) all of which provides very high energy 

ratio (energy output/energy input) as compared to non-cereal crops. That is why production of 

cereals significantly improves technical energy efficiency, as output quantity is favoured by 

high energy content as compared to non-cereals which are low productive and contains low 

energy content.  

4. Conclusions and policy implications 

The aim of this study is to examine whether crop diversification is energy efficient. 

Specifically, we investigated whether crop diversification improves energy economy in input 

use and technical energy efficiency in crop farming in Bangladesh. The results are mixed and 

require cautious interpretation. Overall, constant returns to scale prevail in Bangladeshi 

farming. Production of cereals (rice/wheat/maize) increases energy inputs substantially. 

Among the inputs, labour alone accounts for 39% of total energy use. Also, 59.6% of total 

energy inputs are renewable, implying that the farming system in Bangladesh is not solely 

dependent on non-renewable sources of energy, which is encouraging. This trend is unlikely 
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to change substantially in the future because the main thrust of mechanization in agriculture 

was in land preparation which gradually replaced draft animal power services (because of its 

relative scarcity) by power tillers. Also, the use of organic manure in farming is increasing, 

particularly in wheat and maize production, thereby leading to a relative reduction in 

inorganic fertilizer use [1, 35, 37, 39]. However, with the rising cost of fossil fuels and 

imported machineries, farmers may revert to the use of draft animal power services for land 

preparation and farm gate transportation as well as increase application of organic manures 

provided that the livestock sector is developed subsequently to meet such increased demand.  

We find that although cereal with other crop combinations has the expected negative 

sign of output jointness or complementarity, significant evidence of energy economy exists 

only in cereal and oilseed enterprise combination. On the other hand, combination of non-

cereal enterprises, such as jute with pulses or oilseeds provides diseconomies in the use of 

energy input. Crop diversification is associated with inefficiency, implying that specialization 

into cereals improves technical energy efficiency. Large farms are inefficient while family 

size improves efficiency perhaps through timely use of family supplied labour.  

The main policy implication of this study is that Bangladesh should pursue crop 

diversification but needs to choose enterprise combinations strategically. Most importantly 

any diversification strategy must maintain cereal production as the main base and then add 

non-cereal crops in order to reap the benefit of energy economy in input use, e.g., cereal and 

oilseed combination. Next, within cereal enterprise itself, farmers could diversify from rice 

monoculture to wheat or maize enterprises in order to improve technical energy efficiency. It 

is important to improve technical energy efficiency in agriculture as it implies potential to 

produce more output without exerting additional pressure on already deficient commercial 

energy resources. Also, crop enterprises which create large energy balance are sustainable in 

the long run in terms of energy use [1, 12]. In fact, recent studies demonstrated that technical 
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energy efficiency of wheat and maize production are much higher than rice. For example, the 

technical energy efficiency of wheat and maize production is estimated at 88% [35] and 93% 

[1] as compared with rice at 77% [36]. The area under wheat and maize is on the rise in 

Bangladesh with the latter increasing at a faster rate. For example, wheat area in Bangladesh 

has increased from 125.6 thousand ha in 1972 to 479.1 thousand ha in 2006 [37] whereas 

maize area increased from only 2.7 thousand ha in 1972 to 128.3 thousand ha in 2009 [38], 

indicating that farmers are already seeking diversification within cereals, apparently to benefit 

from productivity and financial gains, if not to save energy explicitly. This is because maize 

ranks first in terms of yield and financial benefit with Benefit Cost Ratio (BCR) estimated at 

1.63 as compared with wheat (BCR 1.40) and rice (BCR 1.14) [39].  

Achievement of these policies is challenging. Nevertheless, diversification from rice 

monoculture to other cereals (i.e., wheat and maize) and adding non-cereal enterprises while 

keeping cereals as the main base will significantly improve both energy economy and energy 

efficiency in Bangladesh agriculture, which is a goal worth pursuing.  
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APPENDIX 
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