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Highlights 
- We developed a model to define sensitive variables in manual grape harvest 
- We characterise their uncertainty through Monte Carlo simulations 
- Output uncertainty was apportioned onto inputs with a global sensitivity analysis 
- Criticalities were identified and analysed through regional sensitivity analysis 
- The approach proposed could support decision making in grape harvest management  
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Abstract 9 

This contribution presents a novel approach to characterise uncertainty in the manual grape harvest 10 

of a winery in Tuscany (Italy). After identifying the potential sources of variability arising from 11 

randomness, weather, and management options, a model to define useful output variables is built. 12 

These output variables include the discrepancy in the harvest date of the vineyards (harvest date 13 

discrepancy), the discrepancy in the required workforce across harvest dates (labour discrepancy), 14 

and, finally, the potential deficit of working hours throughout the grape harvest campaign (labour 15 

deficit). The range spanned by these variables is first assessed through a Monte Carlo uncertainty 16 

analysis wherein the model is repeated approximately 16,000 times with variable combinations of the 17 

input parameters per their probability distribution. The assessed uncertainty is then apportioned to 18 

the input parameters through a global sensitivity analysis. In turn, a regional sensitivity analysis 19 

characterizes the circumstances producing a deficit of working hours, which corresponds to sufferance 20 

in the grape harvest campaign. The discussed approach could be implemented in a user-friendly 21 

decision-support tool for risk characterisation and efficient grape harvest management. 22 
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Nomenclature  26 

Abbreviation Description 

Del Labour deficit (h) 

Dihd Harvest date discrepancy 
(day) 

Dil Labour discrepancy (h) 
hdtrigger Ideal harvest date binary 

trigger 
htrigger Hours extra binary trigger 

(h) 
L Workers 
ptrigger Productivity binary trigger 
pn  Productivity normal 

distribution (t h-1) 
pu  Productivity uniform 

distribution (t h-1) 
rtrigger Rain binary trigger 
rttrigger Rain threshold binary 

trigger 
SU Sundays (day) 
SUtrigger Sundays work 
Si First-order Sobol’ indices 
Ti Total order indices 
v Vineyard 
ytrigger Yield binary trigger 
yn,v  Yield normal distribution 

(ton) 
yu,v  Yield uniform distribution 

(ton) 

 27 

Introduction 28 

Planning fieldwork days according to the workforce demand profile set by crop features is of the 29 

utmost importance for successful agricultural operations. However, the time available may become 30 

critical in matching the optimal time window for harvesting the crops, which highlights the importance 31 
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of estimating the workload required (De Toro & Hansson, 2004; Maton, Bergez, & Leenhardt, 2007) 32 

and its entailed costs (Marinello, Yezekyan, Armentano, & Sartori, 2020). 33 

Primary sources of temporal variability include adverse environmental conditions (e.g., due to rain), 34 

interactions between climatic events and soil (Obour et al., 2019; De Toro, 2005), and climate change 35 

(Kolberg, Persson, Mangerud, & Riley, 2019). Other crop characteristics (e.g., soil slope, the density of 36 

planted trees, and other agronomic parameters) may introduce further variability due to the 37 

interactions with pedo-climatic conditions on the one hand (Cogato et al., 2020), and the working 38 

capacity of machines and field workers on the other (Strub, Kurth, & Loose, 2021; Strub & Loose, 39 

2021). Additional constraints may be set by field non-trafficability, non-working days, and festivities. 40 

The ratio between the crop surface on the performed operations, or the mass to be harvested, and 41 

the available working time defines the minimal working capacity targeted for the fieldwork. This 42 

threshold identifies the deployed minimum machine power or manual work in the case of agricultural 43 

mechanization or farm management, respectively (Rotz & Harrigan, 2005). 44 

This research studies grape harvest for winemaking and an agricultural operation involving manual or 45 

mechanical means. The selection between these two options can influence wine quality (Guerrini et 46 

al., 2018). Mechanical grape harvesters have dramatically advanced in recent years, rendering the 47 

quality of a mechanical grape harvest practically indistinguishable from manual harvesting (Parenti et 48 

al., 2015) in terms of minor sensory changes (Hendrickson et al., 2016). Additionally, mechanical 49 

harvesting offers several advantages in terms of costs, time, management, timeliness, and quick 50 

harvesting in adverse conditions (Ferrera et al., 2008, Parenti et al., 2015; Hendrickson et al., 2016). 51 

However, manual grape harvest remains popular among consumers, many of whom show a 52 

willingness to pay a higher price for wines made from hand-harvested grapes (Dominici, Boncinelli, 53 

Gerini, & Marone, 2019). Another advantage of the manual grape harvest is its robustness against 54 

seasonal variations, especially because terrain flooding may impede mechanical harvest. Other issues 55 
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preventing the mechanization of grape harvest include excessive soil slope and the traditional training 56 

system (Cogato et al., 2020). 57 

A crucial shortcoming of the manual grape harvest is its poor timeliness, which can significantly impact 58 

high-quality wines made from grapes with a narrow optimal harvesting point. A quality loss function 59 

has been proposed in the literature to estimate the damage produced when deviating from this 60 

optimal harvest date: Ferrer, Mac Cawley, Maturana, Toloza, and Vera (2008) provided an estimate of 61 

two days for the optimal time range for the harvest of premium quality grapes. More recently, Varas, 62 

Basso, Maturana, Osorio, and Pezoa (2020) proposed an even more conservative estimate of just one 63 

day. This picture encounters further complications in the typical settings of winemakers, many of 64 

whom own multiple vineyards with scattered features in terms of grape cultivar, soil, training systems, 65 

management operations, and density of planted trees. Each of these vineyards has a highly variable 66 

optimal harvest date and yield on a yearly basis. This aspect translates into high variability within and 67 

across vintages, which affects the required working capacity. Additionally, labour productivity 68 

constitutes a highly uncertain parameter due to its influence by different variability sources related to 69 

workers and environmental conditions, including the vineyard block slope (Bohle, Maturana, & Vera, 70 

2010). 71 

Hence, effective management of grape harvest operations remains impossible without a careful 72 

examination of the large spectrum of potential circumstances at play. This development can be 73 

achieved by acknowledging the large variabilities in terms of weather, operations, and randomness, 74 

as discussed above. A natural option to capture these settings involves performing numerous Monte 75 

Carlo simulations, each of which runs with an individual random combination of the variable factors 76 

acknowledged, sampled from their input distributions. Doing so helps characterize the level of 77 

uncertainty (uncertainty analysis) entailed by the simulations and, in turn, apportions it to the 78 

modelling hypotheses and factors through sensitivity analysis. Finally, the lesson learned can translate 79 

into decision-making through the management options per the identified constraints and criticalities. 80 
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The next section illustrates this methodology, followed by a discussion of the results and, finally, a 81 

presentation of the conclusions on the lesson learned from this study on manual grape harvesting. 82 

Data and Methods 83 

This section describes the collected data and the adopted methodology. The script and data used are 84 

available from a GitHub repository. 85 

Data and modelling assumptions 86 

The Pietro Beconcini Agricola winery, located in a hilly area in San Miniato (43° 41’ 16.1’’ N, 10.52’ 87 

41.9’’ E), 30 km from Florence, Tuscany (Italy), represents the focus of our case study. Data refer to 88 

the 2018, 2019, and 2020 harvest campaigns. For each vineyard block (v, 1 - 19), the yearly figures for 89 

the grape harvests in terms of grape yields (y, ton), productivity per hour of work (p, t h-1), and harvest 90 

date (hd) were recorded. The statistical properties of these variables were garnered under the 91 

assumptions of normality or uniformity of their probability distributions. The introduction of these 92 

contrasting distribution shapes compensated for the limited number of years from which they were 93 

drawn. Additionally, the impact of the distribution-shape assumption on output uncertainty 94 

underwent testing using sensitivity analysis through a binary trigger. Normal distributions were 95 

truncated at 1.2 standard deviations, which correspond to the largest variation over the years 96 

documented across the vineyards in the field. The time frame (t) for the possible harvest dates was 97 

defined between the lower threshold of the 229th day of the year (August 16 or, on leap years, August 98 

15) and the upper threshold of the 305th day of the year (October 31 or, on leap years, November 1).  99 

Dividing the sum of the required hours by the available time provided a gross estimate of the required 100 

workforce. The workforce that harvests the vineyard is usually hired before the vintage and is used 101 

over the whole harvest season with a certain level of flexibility. The payment that the workforce 102 

receives for its service is proportional to the working time, covering only the days of harvesting 103 

fieldwork.  104 

https://github.com/Confareneoclassico/Manual_grape_harvest
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The viable period to harvest each vineyard falls within one to two days (Ferrer et al., 2008; Varas et 105 

al., 2020). The optimal harvest day is also highly variable for each vineyard, as discussed in the 106 

introduction. Hence, for the trial-hosting company (Piero Beconcini Agricola), the vineyard’s harvest 107 

must consist of 19 punctual events, each with its own optimal period. This necessarily results in peaks 108 

and troughs in the fieldwork. The number of workers was selected on the basis of the previous year’s 109 

figures, based on an interview with the winery’s owner. Resorting to extra work hours is controlled by 110 

a trigger (htrigger), as is working on Sundays (SUtrigger). Sundays (SU) are randomly selected across the 111 

pool of inquired dates per a 229-235 trigger, which chooses the calendar position of the first Sunday 112 

and all subsequent Sundays consistently at a seven-day distance.  113 

The available time for the entire harvest is further limited by the weather. In the CIOSTA method (Reith 114 

et al., 2017), this is accounted for by multiplying for a coefficient between 0 and 1, where the 115 

coefficient represents the probability of working on a given day per weather conditions. After an 116 

interview with the viticulturer, two thresholds were identified (i.e., 5mm and 15mm of rain). These 117 

thresholds were modelled into probabilities according to historical weather data. The amount of daily 118 

precipitation over the years 2003-2020 was retrieved from the San Miniato weather station located 119 

approximately 1 km from the winery. For each of the days investigated, the number of years for which 120 

precipitation exceeded the 5 mm or 15 mm threshold, divided by the total number of recorded 121 

occurrences, was recorded. This fraction resulted in the probability of precipitation above this given 122 

threshold. Triggers selected whether, in a given simulation, it would rain on a particular day (rtrigger) 123 

(where the random number extracted is higher than the probability of having 5 or 15 mm of rain on 124 

that day) and the threshold selected (rttrigger) (i.e., 5 mm vs. 15 mm of rain). The latter trigger defined 125 

the risk propensity of the winery manager in terms of the required amount of precipitation to call off 126 

a harvest day (binary: 5 mm vs. 15 mm). 127 
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Table 1 reports the probability distributions for the uncertain parameters. For parameters with more 128 

than one distribution shape available, the triggers activate either one or the other based on the 129 

extracted random binary value in a specific simulation. 130 

Table 1 Summary of the parameters and their distribution. D stands for discrete, U for uniform, N for 131 
normal, and DU for discrete uniform. The statistical moments for yield, productivity, and ideal 132 

harvest date are reported in Table 2 for clarity. 133 

Parameter Description Distribution 

yn,v (t) Yield normal N(meanw,stdw) 
yu,v (t) Yield uniform U(minw,maxw) 
pn (t h-1) Productivity normal N(mean,std) 
pu (t h-1) Productivity uniform U(min,max) 
hdn,v(d) Ideal harvest date normal N(meanw,stdw) 
hdu,v(d) Ideal harvest date uniform U(minw,maxw) 
ytrigger Yield binary trigger DU(0,1) 
ptrigger Productivity binary trigger DU(0,1) 
hdtrigger Ideal harvest date binary trigger DU(0,1) 
l Workers DU(8,17) 
htrigger(h) Hours extra binary trigger DU(8,10) 
SU(day) Sundays DU(229,235) 
SUtrigger Sundays work DU(0,1) 
rtrigger Rain binary trigger DU(0,1) 
rttrigger Rain threshold binary trigger DU(0,1) 

 134 

Table 2 reports the data collected for the individual vineyards. These data were gathered 135 

straightforwardly, yet they are an effective proxy to represent the winery arrangements in terms of 136 

fieldwork organization. These features make the variables crucial for simulating and modelling a 137 

manual grape harvest functional to high-quality winemaking and the characterization of the variability 138 

of this stage. The vineyard’s average harvest dates vary from day 251 to day 285 (an interval of 35 139 

days). Vineyard blocks three and 11 are expected to be harvested on average on day 251, whereas the 140 

others in roughly ten more days. Thus, all the remaining vineyards should be harvested within 25 days 141 

(specifically, four vineyards from day 260 to day 262 and nine vineyards from day 267 to day 271). 142 

Hence, 13 out of 19 vineyards will be harvested in a range of 11 days, which represents the vintage’s 143 

critical phase. The number of working hours required to harvest the vineyards ranged from 17±5 h 144 

needed for vineyard block 17 to the 110±35 h required for vineyard block 12. The yields vary highly 145 
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across vineyards, and where they depend primarily on the viticulturer’s agronomical choices and 146 

oenological targets. 147 

Table 2 Recorded data for vineyard blocks showing surface, cultivar, ideal harvest date, work hours, 148 
and yields (mean ± standard deviation). 149 

Vineyard Surface (m2) Cultivar Harvest date Work hours (h) Yield (kg) 
1 3000 Tempranillo 262±11 37±14 3445±78 
2 6000 Colorino 270±12 73±7 4025±177 
3 2500 Tempranillo 251±11 43±14 2825±106 
4 3000 Merlot 268±24 69±11 3575±177 
5 7000 Sangiovese 278±11 49±21 5100±424 
6 4000 Trebbiano 271±16 47±10 3350±212 
7 8000 Petit manseng 260±15 81±12 4250±71 

8 6000 Malvasia, 
Bianca Lunga 267±13 53±16 6350±636 

9 4000 Tempranillo 273±16 28±7 3550±71 
10 2500 Merlot 277±21 28±11 1400±141 
11 3500 Sangiovese 251±16 45±12 3600±283 
12 13000 Sangiovese 260±14 110±35 4650±71 
13 9000 Tempranillo 261±4 53±11 5855±346 
14 6000 Tempranillo 267±11 73±26 5000±283 
15 3000 Sangiovese 285±16 41±8 1000±283 
16 10000 Sangiovese 270±11 77±25 4350±212 
17 4000 Sangiovese 271±12 17±5 950±71 
18 5000 Petit manseng 268±12 35±18 3375±247 
19 14000 Sangiovese 268±4 81±6 3250±354 

 150 

Model output variables 151 

Each simulation in this research produced three output variables: harvest date discrepancy, the labour 152 

discrepancy, and the labour deficit.  153 

The output variable harvest date discrepancy (Dhd, d) is the average time lag in harvest dates across 154 

the vineyards in the winery, as shown in Eq. 1. In this equation, 1 ≤ n ≤ v represents the number of 155 

harvest date occurrences, and k is the index running over the population of n. The theoretical 156 

minimum for n is 1, which corresponds to the unlikely event all vineyards mature on the same day. 157 

Conversely, the theoretical maximum for n is 19, which corresponds to the case where no harvest date 158 

across the winery coincides. Ideal circumstances would correspond to a low figure for Dhd 159 
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(approximately 1), with distinct harvest dates that are temporally close enough to allow for the 160 

optimal use of the workforce available. 161 

 162 

        (1) 163 

 164 

The even allocation of the available workforce across the days is a crucial variable. To this end, one 165 

can define the labour discrepancy (Dil, days) per Eq. 2. This output variable expresses the degree to 166 

which the labour requirements are scattered across the vineyards over their corresponding harvest 167 

dates. The lower the variable, the more regular the pattern of labour requirements. 168 

 169 

        (2)  170 

Finally, the labour deficit (Del, h) defined in Eq. 3 expresses the difference between the labour 171 

requirement from the field and the availability of labour, which depends on the following factors: 172 

number of workers hired, the decision to resort to extra daily hours, work shifts on Sundays, and the 173 

harvesting days after accounting for the working days lost due to rain. Values around zero correspond 174 

to adequate workforce availability, while negative values represent a situation of excess. Additionally, 175 

positive values highlight situations of deficiency whose criticality increases with the proxy value. This 176 

variable is the most crucial in determining the impact of managerial decisions on the harvest outcome. 177 

        Eq. (3) 178 

Uncertainty analysis was run on the output variables. This analysis comprised 16,383 (214 - 1) Monte 179 

Carlo simulations performed on samples drawn from the parameters’ probability distributions per the 180 

specifics detailed in Table 1. The low-discrepancy Sobol’ sequence of quasi-random numbers (Bratley 181 

& Fox, 1988) drew these samples, the rationale being that it converges faster than pure random 182 

numbers. The quasi-random numbers were transformed into instances of the sample probability 183 
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distributions through an inverse transformation of the cumulative probability figures for each of the 184 

input variables.  185 

Finally, the variance of the output variable Del was apportioned to the input parameters through 186 

global sensitivity analysis (Saltelli, Ratto, et al., 2008), whereby all the parameters were varied 187 

simultaneously within their uncertainty range. Doing so made it possible to fully characterize the 188 

output variability by including the part caused by interactions among parameters. This is the typical 189 

case of non-additive models (i.e., those in which mathematical relations among the uncertain 190 

parameters are beyond mere additions and subtractions). This paper discusses two metrics of 191 

sensitivity: firstly, the first-order Sobol’ indices Si, which estimate the contribution to the variance of 192 

individual parameters (Sobol’, 1993); and secondly, the total-order indices Ti, which also quantify the 193 

contribution of the parameters through their interaction with other parameters (Homma and Saltelli, 194 

1996). These indices are included in the range (0, 1) for independent input parameters and represent 195 

a convenient way to communicate the importance of the input parameters’ contribution to the output 196 

uncertainty. For a given input parameter i, it is always valid that Si ≤ Ti. The Saltelli and Jansen 197 

estimators for Si and Ti were used, respectively (Saltelli, Annoni, et al., 2010). Additionally, 1,000 198 

bootstrap replicas of the Monte Carlo simulations with replacements were generated to strengthen 199 

the estimations of the sensitivity indices. Finally, regional sensitivity analysis (Saltelli, Ratto, et al., 200 

2008) was adopted to understand the range of input parameter values responsible for a given output 201 

range (e.g., in the case of Del) and in terms of the direction of change (Deza and Deza, 2013). 202 

Results and Discussion 203 

Figure 1 shows plots for the output variable harvest date discrepancy (Dihd). Most of the values cluster 204 

around an average discrepancy of 2.5 days (Table 3). Approximately 98% of the simulations produced 205 

2 < Dihd < 3, while only six simulations resulted in an output larger than four days; this is a negligible 206 

figure over the full pool of approximately 16,000 simulations. The largest value of seven days was 207 

obtained from a simulation in which vineyards harvest days clustered over five days (specifically, days 208 
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276, 284, 291, 301, and 304). The simulations producing 2 < Dihd < 3 resulted from an average of 15 209 

harvest dates over the 19 vineyards, with 267 as the average harvest date and an average spacing of 210 

1.2 days across the vineyards. 211 

 212 

Fig. 1 Number of occurrences of Dihd (d) in a pool of simulations (truncated at four d). 213 

Table 3 Statistical properties of output distribution. 214 

 Dihd(d) Dil(h) Del (h) 

mean 2.45 34 ∼ −330 

std 0.24 11 ∼ 520 

min 1.65 16 ∼ −2,200 

25% 2.29 27 ∼ −680 

50% 2.47 31 ∼ −330 

75% 2.58 38 2.0 

max 7.00 ∼350 ∼ 1,700 

 215 

The observed trends can be understood by capturing the seasonal variability in the different vineyards, 216 

as showcased in Fig. 2. In particular, this figure illustrates the population of harvest dates obtained 217 

from Monte Carlo simulations on the basis of the assumed distribution shapes (i.e., normal and 218 

uniform) for the experimental data. Vineyards characterized by a narrower date range around the 219 

harvest date are less sensitive to the specifics of the vintage of a particular year than vineyards with a 220 

more extended date range. The ideal managerial situation would correspond to vineyards with a 221 

narrow distribution of harvest dates and harvest dates that are poorly spread within each vintage, 222 
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lacking overlaps across vineyards. To this end, one could resort to canopy management techniques to 223 

delay or anticipate the harvest day for the vineyards on the most critical days. The same result could 224 

be achieved by planting a widely scattered pool of grape varieties and cultivars expected to mature 225 

on less critical dates during vintages. 226 

 227 

Fig. 2 Visualisation of the distribution of the ideal harvest dates across vineyards as overlayed 228 
sampled distributions. 229 

 230 

The output variable harvest date discrepancy (Dil) shows some level of right skewness, as illustrated 231 

in Fig. 3. In total, nine simulations produce a discrepancy larger than 100 h, with the maximum at 232 

approximately 350 h (Table 3). The latter value was obtained from the same simulation, producing the 233 

largest Dihd, for which daily labour requirements on the harvest days were as follows: 60, 81, 54, 43, 234 

and 929 h. The outlier on day 304 (929 h) was responsible for this Dihd figure. This variable can be 235 

regarded as a proxy that summarises the flexibility in the required workforce for the harvest. Given 236 

that the hiring of workers needs to occur before the harvest when the ideal harvest date is not known, 237 
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this figure can inform the level of flexibility when contracting the workforce. Additionally, the 238 

company manager can also minimize the variability of this output variable with appropriate 239 

agronomical choices. These choices include calibrating the extension of the fields allocated to a variety 240 

of grapes typically scattered and having harvest dates well-spaced in time in seeking a constant 241 

workforce demand across harvest dates. 242 

 243 

Fig. 3 Number of occurrences of Dil (h) in the pool of simulations run truncated at 100 h. 244 

 245 

Finally, Fig. 4 shows the distribution of the output variable labour deficit (Del). Three-quarters of the 246 

simulations produce negative figures, which reflect situations in which a sufficient workforce has been 247 

employed for the harvest. The maximum deficit of more than 1,600 h (Table 3) was produced in 248 

correspondence with profound mismatches between the harvest dates and the days on which the 249 

workforce was available. This situation occurred in simulation 15,684, for which the vineyards' 250 

requirements over 13 different harvest dates were satisfied only once. The causes of this pattern will 251 

be discussed later. All the simulations with large deficits of hours will most likely force the company 252 

to harvest on less preferable dates, eventually negatively impacting the quality of the wine produced.  253 
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 254 

Fig. 4 Number of occurrences of Del (h) in the pool of simulations. 255 

 256 

A global sensitivity analysis identified the parameters primarily responsible for the observed trend. 257 

Only the sensitivity analysis on the output variable Del is shown here because it is the output for which 258 

the input parameters potentially affect variability (Fig. 5). The narrow whisker-box plots for the 259 

bootstrapped samples confirm the stability of the estimates. The number of workers was the most 260 

influential parameter (Sl = 0:29 -0:31) followed by the selection of rainy days (Sr = 0:28 - 0:30). Neither 261 

the triggers selecting the distribution shapes nor the individual yields showed any significant impact 262 

on the output (Sytrigger ≈ 0), most likely attributable to their low standard deviation (approximately 5% 263 

of the mean) across simulations. Conversely, the triggers for the harvest date and productivity 264 

distribution had an effect through interaction with other parameters (Shd,trigger ≈ 0, Thd,trigger > 0; Sp,trigger 265 

≈ 0, Tp,trigger > 0). The sum of all first-order terms only explained 75-86% of the output variance, which 266 

means that the reminder occurred through interactions between pairs or larger groups of parameters.  267 
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 268 

 269 

 270 

Fig. 5 Sensitivity indices for uncertain input variables for Del  in a pool of simulations. The whisker box 271 
plots produced over 1,000 bootstrap replicas with replacements. 272 

Managing the manual grape harvest of the different vineyards was confronted with four crucial 273 

sources of variability, for which the scope for management control is limited when the harvest date 274 

approaches. These sources of variability were the ideal harvest date, the vineyard yield, the workers’ 275 

productivity, and the weather. Hence, quantifying the contribution of these sources of variability to 276 

the final uncertainty of the output variables represents a method of understanding to what extent 277 

management choices may influence grape harvest criticalities. To do so, the input parameters were 278 

clustered into three groups: firstly, natural (which includes the natural variability, including yields, 279 

harvest days, and rainy days); secondly, modelling assumptions and exogenous variables (triggers for 280 

the distribution shapes adopted, productivity, and the trigger for Sundays); and thirdly, managerial 281 

variables (i.e., number of workers, triggers for resorting to extra hours and Sunday working shifts, and 282 

the rain threshold). The first group represents the variables minimally controllable by the winery 283 

management when the harvest date is approaching, the second represents those related to modelling 284 

and other assumptions, and the third captures the effect of management choices. Figure 6 shows the 285 

results for the output variable Del. 286 
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 287 

Fig. 6 Sensitivity indices for grouped uncertain input variables for Del in a pool of simulations. The 288 
whisker box plots produced over 1,000 bootstrap replicas with replacements. 289 

 290 

The managerial choices available are the variables that have the most substantial effect on output 291 

uncertainty, although they can only justify 37-44% of the output variance (i.e., output variance would 292 

reduce on average by this fraction by fixing this group of parameters). Tmanagerial amounts to 50-55% 293 

when one acknowledges the interactions with the other group of variables. The sum of first-order 294 

effects Sgroup,i apportions again only 85-90% of the output variance, showing that one still has 295 

interactions across the three parameter groups. This situation corresponds to irreducible output 296 

uncertainty, which is not uncommon when modelling the interface between human and natural 297 

systems (see, for example, Lo Piano, Saltelli, & van der Sluijs, (2019); Puy, Lo Piano, & Saltelli, (2020)). 298 

Let us now address the question of which values of the uncertainty input variables will more likely 299 

lead to workforce deficits during the harvest through a regional sensitivity analysis. This discussion 300 

focuses on the two most crucial variables under management control - namely, l and htrigger - as the 301 

choice of an adequate number of workers is probably the most critical decision in managing the grape 302 

harvest. This choice should simultaneously rule out the risks of overinvestments (i.e., too many 303 

workers) and the risk of harvest dates mismatching the ideal situation due to employing too few 304 

workers (Allen & Schuster, 2004). 305 
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Figure 7 analyses the Del distribution against these managerial choices. 306 

 307 

Fig. 7 Number of occurrences of Del in a pool of simulations for a) the number of workers and b) 308 
the number of hours due to working extra hours (daily shifts of 10 h against 8 h).  309 

 310 

Figure 7 shows that none of the possible combinations explored can rule out the risk of incurring 311 

deficit hours. Contracting more workers leads to less deficient simulations, yet one can result in a 312 

deficit even when hiring the maximum number of workers (i.e., 17 workers). This situation occurred 313 

in 84 simulations out of 910 with 17 workers (i.e., almost 10%). Considering the number of available 314 

working days for this setting against the whole pool of simulations (Table 4), one can understand the 315 

causes of this finding.  316 

Table 4 Number of available working days in simulations with 17 workers leading to a deficit in Del 317 
compared to those in the whole pool of simulations 318 

 Working days 
(17 workers 
and deficit) 

Working days 
(whole pool) 

mean 27 61 

std 14 14 
min 11 11 
25% 14 65 
50% 26 66 
75% 30 66 
max 66 77 

 319 
 320 
The deficit simulations suffer from a limited number of days of workforce availability (mean = 321 

27), but a deficit harvest may be produced for a large number of working days (up to 66). This 322 
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circumstance occurs from a simulation in which a substantial number of vineyards mature on 323 

days where the workforce is not available due to rainy days or non-working Sundays. 324 

Even jointly resorting to the maximum number of workers (i.e., 17) and a daily extra-hour work shift 325 

produced 30 simulations with a deficit of hour work out of a total of 454 (6%). On the other hand, the 326 

choice of hiring an abundance of workers to limit the risk of deficit situations is not free from 327 

drawbacks because a significant excess of the workforce may lead to extra costs for the management 328 

and demotivate the engaged workforce due to the inadequateness of the tasks assigned. Notably, the 329 

same situation may also result under the condition of a large deficit in terms of the workforce. 330 

Conclusions 331 

This contribution presented a model that identifies features related to risk in a grape harvest 332 

campaign. The proposed variables harvest date discrepancy, labour discrepancy, and labour deficit 333 

proved effective proxies that can be calculated straightforwardly from limited and easily accessible 334 

data. Additionally, our contribution illustrated the usefulness of Monte Carlo-based uncertainty 335 

analysis and sensitivity analysis in estimating and characterising the main sources of risk in a grape 336 

harvest campaign.  337 

The proposed approach can be escalated and replicated in other wineries to inform managers about 338 

the available options for mitigating potentially critical situations. Uncertainty analysis can help 339 

quantify the extent of these critical issues by evaluating a large number of potential combinations of 340 

input factors, where their specific impact on the output uncertainty can eventually be apportioned 341 

through global sensitivity analysis. Another valuable piece of information is the amount of variability 342 

under the control of the viticulturer through their management choices, which can eventually lead to 343 

sound estimations of the costs and the level of risk one wishes to embrace. In our case study, only 344 

around 40% of the variance of the labour deficit depended on parameters under the control of the 345 

management. 346 
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The model and the approach elaborated in the present study may fruitfully serve as the backbone of 347 

a user-friendly decision-support tool that can help winemakers readily explore a set of assumptions 348 

and produce inferences about the consequence of their management choices. The approach could be 349 

further refined by including monetary proxies and penalty functions dependent on the temporal 350 

mismatch between the actual and ideal harvest dates for the vineyards blocks. 351 
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 430 

Figures caption 431 
 432 

Fig. 1 Number of occurrences of Dihd (d) in the pool of simulations run truncated at 4 d. 433 

Fig. 2 Visualisation of distribution of the ideal harvest dates across vineyards as overlayed sampled 434 
distributions. 435 

Fig. 3 Number of occurrences of Dil (h) in the pool of simulations run truncated at 100 h.  436 

Fig. 4 Number of occurrences of Del (h) in the pool of simulations. 437 

Fig. 5 Sensitivity indices for the uncertain input variables for Del in the pool of simulations. The 438 
whisker box plots have been produced over 1,000 bootstrap replicas with replacement. 439 

Fig. 6 Sensitivity indices for the grouped uncertain input variables for Del in the pool of simulations. 440 
The whisker box plots have been produced over 1,000 bootstrap replicas with replacement. 441 
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Fig. 7 Number of occurrences of Del in the pool of simulations for a variable a) number of workers; 442 
b) number of hours due to working extra hours (daily shifts of 10 against 8 h.).  443 

 444 

Tables caption 445 
Table 1 Summary of the parameters and their distribution. D stands for discrete, U for uniform, N 446 
for normal and DU for discrete uniform. The statistical moments for yield, productivity and ideal 447 
harvest date are reported in Table 2 for clarity. 448 

Table 2 Recorded vineyard blocks data: surface, cultivar, ideal harvest date, work hours and yields 449 
(mean ± standard deviation). 450 

Table 3 Statistical properties of the output distributions. 451 

Table 1 Number of available working days in simulations with seventeen workers leading to a 452 
deficit in Del against those in the whole pool of simulations. 453 

 454 

 455 


