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Abstract

An important question in cancer evolution concerns which traits make a cell likely to success-

fully metastasise. Through a combination of experimental evolution and computer vision

a series of mathematical models have been developed throughout this thesis to investigate

the individual signal processing behaviour of cancer cells during dispersal. In Chapter 2 a

convolutional neural network is used to demonstrate how the morphology of individual cells

can be automatically segmented within phase contrast time-lapse videos. The segmented

morphologies are then used in Chapter 3 to explore the idea of signal processing mediated

dispersal to reveal a density-dependent phenotype only seen in cells selected for distant

site colonisation. Specifically, the model shows that the rate of morphological change is

positively correlated with the speed of migration when the local cell density is high. However,

when the local cell density is low the opposite relationship is displayed: the rate of morpho-

logical change decreases with an increase in migration speed. Chapter 4 then builds upon

the results of Chapter 3 to develops two temporally dependent morphological model that

quantify short term temporal changes in dispersal dynamics at both a population and single

cell level. The temporally dependent models reveal that in fact a subset of cells in all of the

experimental populations can adopt similar complex behaviour. However, the populations

differ in their behavioural demography as well as the frequency at which a given behaviour

is adopted through time. Finally, Chapter 5 employs a similar temporally resolved approach

to investigate the interaction between the broader cancer cell population and a small subset

of cancer cells known as poly-aneuploid cancer cells. In summary, this thesis harnesses the

power of mature mathematical techniques to investigate novel and emergent characteristics

of metastatic dispersal in a quantitative and statistically robust manner.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a collective term associated with over 100 forms of disease that are characterised by

uncontrolled cellular growth. The onset of aggressive proliferation gives rise to a malignant

mass of cells known as a tumour (Weinberg, 1996). Once formed, the tumour then develops

over time through a combination of genetic and epigenetic changes. Finally, the molecular

changes then culminate in advantageous phenotypic changes that are selected for producing

a heterogeneous population of cells (Greaves and Maley, 2012).

The Hallmarks of Cancer

Whilst cancer encompasses a broad spectrum of diseases there are a set of phenotypic changes

that are seen as essential across all cancer types, The Hallmarks of Cancer (Hanahan and

Weinberg, 2000). Uncontrolled cellular proliferation, a loss of growth suppression, and an

evasion of cellular apoptosis are 3 of the earliest hallmarks of cancer and together they permit

the formation of a microscopic tumour (Polyak, 2007). However, to increase in size further,

the tumour must also upgrade its corresponding infrastructure. This demand is met through

the onset of sustained angiogenesis whereby new blood vessels are built so that the tumour

can continue its expansion and become clinically relevant (Raica et al., 2009). Yet, as much

as 90% of cancer related mortality is not solely due to the formation of a primary tumour.
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Rather it is the result of cancer cells spreading around the body and forming tumours at

secondary sites, a process known as metastasis (Chaffer and Weinberg, 2011).

1.1.1 Cancer evolution

The constant increase in cell population coupled with selection for the fittest variant has

allowed tumour development to be understood as an instance of Darwinian natural selection,

a key mechanism of evolutionary change (Greaves and Maley, 2012; Merlo et al., 2006;

Nowell, 1976). Importantly, natural selection is the only process that leads to adaption on an

evolutionary timescale (Barton, 2007). Hence natural selection can be used to understand

how a tumour first forms, how it grows, and ultimately how it becomes resistant to therapy

(Venkatesan and Swanton, 2016).

Natural selection in cancer

A tumour first forms as a result of an individual cell developing a proliferative advantage

relative to its neighbours. This advantage is then selected for causing a period of rapid

proliferation to ensue and a subsequent expansion in tumour size. However, during this time,

random mutations also appear within the population. The vast majority of the mutations

either have a negligible or negative effect causing the mutant to die out. Yet, occasionally, a

beneficial mutation will arise and give the mutant a competitive advantage over its peers i.e.

a higher degree of invasiveness. This advantage is then passed onto subsequent generations

resulting in the mutant lineage becoming dominant within the tumour mass. A similar process

can be seen when a therapeutic intervention is applied. A therapeutic intervention will kill

the vast majority of cells within a tumour leaving only a small sub-population of cells to

remain. However, all of the cells within the remaining sub population are therapy resistant.

Thus, when the therapy ends, and the tumour regrows, the entire tumour population is now

resistant to therapy (Maley and Reid, 2005; Nowell, 1976).
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Criteria for selection to act

For selection to act there are certain conditions that must first be met within the population:

(Lewontin, 1970):

• Phenotypic variation: Individuals within the population have different phenotypes

• Differential fitness: Different phenotypes have different rates of survival and reproduc-

tion in certain environments

• Fitness heritability: There is a correlation in fitness between parents and their offspring

If these principles hold, then a population will experience evolutionary change (Barton,

2007). In the context of cancer, phenotypic variation is present due to genetic and epigenetic

variation that arises as a result of mutations, and changes in methylation. In turn, the

phenotypic variation then creates a fitness differential within the tumour as seen by the

heterogeneous population of cells that remain. Finally, the increase in fitness is then heritable

as it is encoded into the nucleotides and methylation patterns of the DNA (Maley and Reid,

2005).

1.1.2 Cellular selection

Whilst natural selection shapes cancer progression (Greaves and Maley, 2012), selection also

shapes the development of healthy functional tissue. Therefore, cancer is not characterised

by the presence of natural selection, but rather the unit at which selection acts.

The unit of selection refers to the biological tier upon which selection acts: molecular,

cellular, organism, or group (Lewontin, 1970). The formation of functional tissue requires

successful multi-cellularity. Therefore, individual cellular selection is suppressed in favour

of the organism becoming the primary unit of selection (Michod, 1999). In contrast, cancer is

a loss of individual cellular control. Hence selection defaults to the cellular level where each

individual cell is working to improve their own local environment and increase their own

chances of survival (Rieger and Welter, 2015). This selfish behaviour is a defining feature of
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cancer and it enables the disease to become extremely resilient. However, it can also have

negative repercussions as seen by the poorly formed vasculature within the tumour mass.

Sustained angiogenesis

The vasculature within a tumour is developed through a period of sustained angiogenesis

(Raica et al., 2009). Angiogenesis is a process commonly seen in wound healing (Tonnesen

et al., 2000) and mid stage embryogenesis (Breier, 2000) to facilitate the formation of new

tissue. In both cases angiogenic signalling is tightly controlled over a set period of time

in which neighbouring cells are working as a collective. This results in a highly organised

vasculature network being formed which can in turn provide a constant supply of resources

to the tissue (Basanta and Anderson, 2017).

In contrast, the heterogeneous cell population within a tumour is not acting as a collective,

each cell is acting for itself. Therefore, each cell will only invest into angiogenic signalling

until an adequate level of resources have been personally received. As a result, this causes the

vasculature within the tumour to form as an unordered, excessively branched, leak riddled

network (Hanahan and Weinberg, 2011). The poorly designed network then leads to an

erratic bloody flow within the tumour which creates both spatial and temporal heterogeneity

in the distribution of resources (Gillies et al., 2018). In turn the resource heterogeneity further

increases the competition between neighbouring cells.

Metastatic paradox

Intense cellular selection can explain how traits such as uncontrolled proliferation and a

loss of growth suppression arise within a tumour cell population. They both increase the

rate of proliferation which in turn increases the individual’s fitness. Likewise, the ability to

induce sustained angiogenesis improves the surrounding tumour environment which also

increases the individual’s fitness (Fortunato et al., 2017; Merlo et al., 2006). Yet, in contrast,

the ability to metastasise appears to have no direct fitness benefit within the primary tumour.

Furthermore, it may even be expected that the abundance of metastatic cells will decline at

the primary tumour site as cells that are capable of metastasising will have already left the
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tumour (Bernards and Weinberg, 2002). Nevertheless, metastasis occurs in nearly all types

of cancer and remains a broadly incurable stage of cancer progression (Pienta et al., 2020).

1.1.3 Metastasis

Metastasis is a multi-step process whereby a cell spreads from the primary tumour and

then eventually colonises at a distant site in the body. The series of stages from tumour

dissemination to distant site colonisation are referred to as the metastatic cascade (Figure

1.1).

Figure 1.1: The metastatic cascade; taken from (Valastyan and Weinberg, 2011).
The metastatic cascade begins within a cancer cell first leaving the primary tumour and then
invading into the local micro-environment towards a nearby blood vessel. The cell then
enters into the circulatory system before being carried around the body to a distant site. Upon
reaching a distant site the cell then leaves the circulatory system and forms a microscopic
tumour to aid its survival. Finally, the cell then re-initiates aggressive proliferation and
colonises the distant site to form a clinically relevant secondary tumour.
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The cascade begins within a cell escaping from the primary tumour and migrating through

the extracellular matrix towards a nearby blood vessel. Once at the blood vessel the cell then

intravasates into the circulatory system before being carried around the body to a distant site.

Upon reaching a distant site the cell then extravasates from the blood and invades into the

foreign tissue. To actively survive within the foreign environment the cell then proliferates to

form a small microscopic tumour. Finally, to colonise the distant site the cell must re-initiate

aggressive proliferation resulting in the formation of a clinically relevant macroscopic tumour

(Valastyan and Weinberg, 2011).

Timing metastatic progression

Whilst the stages of metastasis are well known, dating when a metastatic cell first appears

within the tumour population remains unclear. Classically metastatic spread has been

understood through a linear progression model where a metastatic sub-population appears

late in tumour development (Weinberg, 2007). However, recent molecular evidence suggests

that the formation of a metastatic sub-population might occur earlier in tumour development,

referred to as the parallel progression model. The parallel progression model also suggests

that metastasis may occur without the need for local tissue invasion and that a cell might

intravasate straight into the tumour’s vasculature (Deryugina and Kiosses, 2017; Klein, 2009).

Accurately dating when a metastatic population first appears within the primary tumour

is important because it helps to estimate the degree of heterogeneity between the primary

tumour and distant metastatic site. In turn, the degree of heterogeneity is a significant

clinical marker because an increase in heterogeneity is seen to correlate with an increase in

therapeutic resistance (Turajlic and Swanton, 2016). In regard to the two different models of

metastatic progression the linear progression model is expected to have less heterogeneity

between the primary and distant site tumours compared to the parallel progression model

(Caswell and Swanton, 2017). However, the two models of metastatic spread are not mutually

exclusive. That is, both models can occur within the same patient at different points in time

(Turajlic and Swanton, 2016). Hence, when investigating different stages of the metastatic
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cascade, it is important to evaluate traits at a single cell level to ensure that the heterogeneity

within the metastatic population is captured.

Metastatic inefficiency

In spite of metastasis being the most-deadly stage of cancer progression, it is also considered

to be the most inefficient (Chaffer and Weinberg, 2011; Chambers et al., 2002). Experimental

evidence has found that only 0.02% of metastatic tumour cells injected into the circulatory

system of a mouse subsequently formed a clinically relevant tumour at a distant site (Luzzi

et al., 1998). Furthermore, this figure does not account for the initial dissemination from

the primary tumour whereby a cell must avoid immune detection and navigate through the

complex collagen rich micro-environment (Gupta and Massagué, 2006). Hence relative to the

number of cells that initially disseminate, the proportion of cells that successfully colonise is

expected to be considerably less.

However, the inefficiency is not believed to be uniform across the cascade. Experimental

evidence suggests that process is bottle-necked by the final two stages, the ability to survive

and then colonise at a distant site. After entering into the circulatory system 83% of cells

managed to extravasate, but only 2% and 0.02% complete the final two stages. The remaining

extravasated cells entered in to a dormant non-proliferative state known as quiescence (Luzzi

et al., 1998). Cellular quiescence is a transient state (Yao, 2014) where a cell has left the cell

cycle and is undetectable to the immune system (Gomis and Gawrzak, 2016).

The high rate of cellular dormancy, but lack of apoptosis, suggests that existing and

thriving at a distant site are not one in the same. The ability to overpower and dominate the

local population is less common compared to quietly integrating into the masses. Hence the

few cells capable of distant site colonisation most likely possess a unique, but deadly, set of

traits. Identifying the traits that separate the small lethal sub-population of cells from the

broader metastatic population will therefore be essential in trying to constrain metastatic

spread.
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1.2 Dispersal theory

The fitness of an individual is measured relative to its current environment (Clobert et al.,

2012). Thus, a change in environment will often cause a corresponding change in fitness.

In turn, if the environment is spatially and temporally heterogeneous, then the fitness of

an individual can vary extensively across multiple different locations. In such a setting

ecological dispersal theory predicts that dispersal can be selected for when the gain in fitness

from moving outweighs the cost of migration itself (Bowler and Benton, 2005). In short,

if the fitness is higher at a different location, and the cost of moving between locations is

low, then the ability to disperse can be under selection. Ecological dispersal theory therefore

provides a clear explanation for the onset of metastatic spread (Amend et al., 2016).

Firstly, the underdeveloped vasculature network within the tumour means that resource

levels are both spatially and temporally heterogeneous. This variability then creates a fitness

differential within the tumour that causes an individual’s fitness to vary in both time and

space. Hence the ability to disperse can be selected for as it allows the individual to move in

response to environmental changes and therefore prevents a reduction in fitness.

Interpreting metastatic spread in the context of dispersal provides a powerful framework

to investigate the different environment pressures that can select for a dispersal phenotype

as well as the corresponding types of dispersal i.e. long vs short range (Bonte et al., 2012).

The following section discusses different ecological pressures that can select for a dispersal

phenotype and how they relate to the evolution of metastasis. The section then concludes by

highlighting the importance of accurate signal processing during dispersal and its application

in metastatic spread.

1.2.1 Resource availability

If resource availability is constant, regardless of the severity, then selection favours a spe-

cialised phenotype to fill the evolutionary niche (Futuyma and Moreno, 1988). However,

in many environments, as within a tumour, resource availability can fluctuate both spatially
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and temporally. In turn, this variability can select for a phenotype that is equally as flexible,

phenotypic plasticity (Gillies et al., 2018).

Phenotypic plasticity

Phenotypic plasticity involves a genotype producing different phenotypes when exposed to

different environmental conditions (King and Hadfield, 2019). Plasticity therefore allows a

genotype to be more tolerant to changes in the environment and thus have a higher fitness

across multiple environments (Ghalambor et al., 2007). If the variability is temporally

predictable then this flexibility can allow for maximum reproduction in times of resource

prosperity (Wang et al., 2015) coupled with dormancy during times of resource austerity.

In contrast, if resource availability is temporally stochastic then plasticity can arise via

dispersal (Bowler and Benton, 2005). Resource driven dispersal occurs throughout ecology

and has been shown experimentally in cancer cell populations to select for increased motility

and dispersal like behaviour (Chen et al., 2011; Taylor et al., 2017). Furthermore, if an

environment is also spatially heterogeneous, such as in a tumour, then either a conditional or

unconditional dispersal strategy can be adopted.

Unconditional dispersal

An unconditional dispersal strategy means that the rate of dispersal, the number of migrants

entering and leaving an area, is constant irrespective of the environmental conditions (McPeek

and Holt, 1992). Unconditional dispersal can therefore be seen as a form of bet-hedging

where an individual aims to lower their own fitness variance (Villa Martín et al., 2019). This

means that in an optimal environment there is a reduction in the maximum level of fitness so

that in a sub-optimal environment there is a corresponding increase in fitness (Rees et al.,

2009).

An example of bet-hedging can be seen in the form of seed banks whereby a proportion

of seeds emerge at different points in time. This means that the maximal level of germination

is never achieved, and neither is the maximal level of fitness, as certain seedlings will emerge

in sub-optimal conditions. However, if all of the seedlings are destroyed at a given point in
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time e.g by an extreme weather event. Then the plant has a second chance at producing viable

descendants from the subsequent waves of seedlings (Fan et al., 2018). An unconditional

dispersal strategy also provides a similar reduction in fitness variance. The continual dispersal

means that an individual can end up leaving a prosperous region before all of the resources

have been exploited, thus incurring a drop in maximum fitness. However, it is also means

that the migrant will move straight through an unfavourable region and thus only be exposed

to the adverse conditions temporarily (Gillies et al., 2018).

Conditional dispersal

In contrast, conditional dispersal is more complex. The decision to disperse is dependent on

one or many environmental cues being satisfied e.g. local resource availability drops below a

minimum threshold. In turn, this means that under certain environmental conditions multiple

dispersal strategies can evolve and exist at an evolutionary equilibrium (McPeek and Holt,

1992). In the context of cancer, this is problematic as it means that to prevent dispersal as

a whole you need to block each individual strategy (Katt et al., 2018). Yet, to block each

strategy requires a detailed understanding of the individual phenotypes within the population

as well as how they interact. In a complex disease such as cancer this is extremely difficult

as phenotypic variation within a population is often very diverse. Also, individual cells

are known to transiently change their phenotypic traits (Section 1.3). Hence containing a

migratory population relies upon finding a trait that is common among the different dispersal

strategies.

1.2.2 Population density

Whilst dispersal can be selected for due to a change in resource supply it can also be selected

for by a change in demand (Matthysen, 2005). This change can occur through a local increase

in population density, or through an increase in one region coupled with a decrease in another.

In either case a fitness differential is caused regardless of whether the environment is constant

or variable (Hamilton and May, 1977).
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Density dependent dispersal in early tumour development

Dispersal driven by a change in population density tends to be more prevalent in smaller

populations (Bowler and Benton, 2005). This is due to a local increase in population size

having a larger relative impact and therefore the corresponding increase in competition is

greater. As a result, this might provide an explanation for the onset of metastasis early in

tumour development, as seen in the parallel progression model. Initially the tumour is small

both in regard to its spatial dimensions and its population. Therefore, a burst in proliferation

locally would have a larger impact on the topology of the tumour, and thus the competition

within.

The lack of local invasion in a parallel progression model might also be explained by

density driven dispersal. If the increase in population occurs locally, and therefore the

reduction in fitness has affected those locally, an equal increase in fitness can be gained by

dispersing locally. In contrast, dispersal that is driven by a decrease in resource availability

tends to be longer as the migrant needs to find a new pasture (Clobert et al., 2012).

1.2.3 Kin selection

Dispersal can be selected for by a change in environmental conditions, but likewise dispersal

can also change the environment in its wake. As a migrant leaves the native site the remaining

population benefit from a reduction in competition. This reduction may be coincidental.

However, it may also be an active process to improve the fitness of a close relative, kin

selection.

Kin selection occurs when selection acts on traits to improve the fitness of a relative at

the expense of the own individual’s fitness (Smith, 1964). Hamilton’s rule states that kin

selection should act when the benefit to a recipient, accounting for the level of relatedness r

(Wright, 1922), outweighs the cost to an actor. Formally, Hamilton’s rule can be written as

rB >C, where r is the level of relatedness between the recipient and the actor, B is the gain

in fitness to the recipient and C is the fitness cost to the actor (Hamilton, 1964). Therefore, as
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the level of relatedness diverges the probability of kin selection decreases. In a highly related

population such as cancer kin selection may therefore provide a strong selective pressure.

Kin selection dispersal range

Dependent on the rate of genetic divergence kin selection could potentially drive selection for

dispersal in both the linear and parallel progression models of metastasis. Firstly, there needs

to have been enough time for the level of relatedness between individual cells to decrease.

The level of relatedness r within the cancer cell population is ≈ 1 at the onset of tumour

development due to the clonal nature of cancer. As a result, kin selection may not be viable

as the fitness increase locally would be outweighed by the individual cost of migration, and

the decrease in fitness for the clonal relatives that receive the migrant. Hence in the parallel

progression model this would explain the delay in the onset of a dispersal phenotype (Turajlic

and Swanton, 2016).

In contrast, in the linear progression model, kin selection may explain the onset of a

longer range. At a global level, the tumour is genetically diverse. However, as the tumour

grows in size the cells that are spatially close to one another are more likely to be genetically

similar. Hence increasing the dispersal distance increases the probability that the area that

receives the migrant is genetically divergent from the migrant itself, albeit the cost and risk

to the migrant is higher. However, elucidating whether a change in kin structure is driving

selection for dispersal is problematic. Firstly, kin structure is typically intertwined with other

selective pressures such as resource quality and therefore pinpointing its exact affect can be

extremely challenging (Bowler and Benton, 2005).

1.2.4 Signal processing

To summarise, a variety of different ecological pressures can select for the ability to disperse.

Likewise, the same ecological pressures can select for a myriad of different dispersal be-

haviours and habitats for subsequent colonisation (Clobert et al., 2012). Yet, common to all

aspects of dispersal is the need for an individual to be able to receive and respond to changes



1.2 Dispersal theory 13

within their environment, a process known as individual signal processing (Clobert et al.,

2009).

Signal processing in cancer

The action of receiving, evaluating, and responding to both public and private signals can

also be seen during metastasis:

1. Emigration

Firstly, aggressive cellular proliferation is known to create a hypoxic and highly acidic

tumour core (Amend and Pienta, 2015). In turn, the deterioration in environmental

conditions can increase the fitness of certain tumour sub-populations. However, the

reduction in oxygen availability has also been proposed as a leading cause of metastatic

dispersal (Amend et al., 2016). Hence whether an indiviudal cell stays or goes depends

on the cell detecting the current local oxygen levels.

2. Migration

Secondly, a cell is guided by environment signals to shape its migratory behaviour

(Section 1.3). The direction in which a cell migrates is in response to both chemotactic

and durotactic gradients (Alberts et al., 2008). The gradients can be geographically

fixed, as in the case of a capillary, or they can change location dynamically as seen

during cellular streaming (Section 1.3). Likewise, the type of migration that a cell

adopts i.e. ameoboid or mesenchymal is dependent on the signals that are received

from the substrate that a cell is moving along (Friedl and Wolf, 2010).

3. Immigration

Finally, certain cancer types are known to colonise at particular organs, the "seed and

soil" hypothesis (Paget, 1889). Similarly, once at the distant site, individual cells are

known to reside in a state of prolonged cellular dormancy before re-initiating aggressive

proliferation (Giancotti, 2013). Hence both aspects rely upon a cell responding to
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their current environment conditions and then responding accordingly. In other words,

processing an incoming signal.

However, in contrast to an organism, individual signal processing in cancer is a recent life

history event. Historic mechanisms exist within the cell, but they have been broadly repressed

so that multi-cellularity can flourish. An example of which can be seen during the onset of

sustained angiogenesis. Hence the re-activation of specific intra-cellular pathways present

an opportunity for variation to arise within the population, and thus a potential substrate

for selection to act. As a result, individual signal processing maybe a key determinate in

metastatic success and a possible means by which to identify cells with increased metastatic

potential.

Morphological proxy

To explore the role of signal processing in metastasis requires the quantification of signal

exchanges on a cellular level. Yet, due to the number of different environment signals that are

present, and the corresponding number of individual receptors on the surface of a cell, it is

not tractable to sequentially test the effect of each individual protein pathway. An alternative

approach, that encompasses the entire spectrum of possible signals, is to use morphology

as a proxy (Tweedy et al., 2013). A change in morphology then represents the transmission

or receipt of a signal and the magnitude of morphological change correlates with the signal

intensity. This approach also benefits from being able to measure morphology in situ. Thus,

the signal emission from dynamic factors such as the location of a neighbouring cell can

also be captured. The next step is to understand how an individual cell responds to different

environmental signals and how those signals can influence its phenotypic behaviour.

1.3 Cell migration

Cancer cell migration is a complex process that involves the coordinated activity of hundreds

of proteins in order to generate cell polarity, actin filament polymerisation, focal adhesion
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turnover, and cellular traction (Butler et al., 2019). A detailed knowledge of the stages before,

during, and after a cell migrates is therefore essential to understand how cancers metastasise.

1.3.1 Stages of migration

Gaining a motile phenotype

Firstly, to facilitate migration, most cancer cells are required to lose cell-cell adhesion and

epithelial polarity whilst gaining motility and invasiveness, a process that is referred to as

Epithelial - Mesenchymal Transition (EMT) (Tam and Weinberg, 2013). EMT is a reversible

phenotypic change normally associated with embryogenesis and wound healing that depends

on a diverse network of epigenetic mechanisms (Kalluri and Weinberg, 2009). After having

undergone EMT a cell is then able to squeeze through gaps within the tightly packed ECM

and is only further limited by the size of its nucleus (Wolf et al., 2013). However, EMT

is not binary. Experimental evidence indicates the EMT is a multi-step process and as

such the degree of EMT varies across the population (Grigore et al., 2016). As a result,

the corresponding degree of invasiveness and motility also varies across the cancer cell

population.

Movement mechanics

Next, once a cell has become motile its individual movement is initiated in response to

external signals that are received by receptor proteins on the cell membrane (Kim et al.,

2011). The signal is then transported via a complex network of pathways to the interior of

the cell (Alberts et al., 2008). Next, the cell proceeds to rearrange its cytoskeleton and form a

pseudopodia. A pseudopodia is an actin based structure that forms at the leading edge of the

cell. Once the pseudopodia has formed it adheres to the substrate and provides a direction

for the cell to move in (Lauffenburger and Horwitz, 1996; Olson and Sahai, 2008). The cell

then physically moves by detaching from the substrate at its rear. The subsequent contractile

forces then drive the cell forward onto the newly created pseudopodia and then the process

repeats (Alberts et al., 2008; Ananthakrishnan and Ehrlicher, 2007; Cameron et al., 2000).
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Cell-Cell adhesion Cell-ECM adhesion Cellular contraction Migration mode
High High Moderate Collective strand
High Moderate High Collective sheet
Low High High Mesenchymal
Low Moderate Moderate Amoeboid pseudopodal
Low Low Low Amoeboid blebby

Table 1.1: Modes of Cell Migration:
The resultant modes of migration from different combinations of cell-cell adhesion, cell-ECM
adhesion and cellular contraction (Friedl and Wolf, 2010).

Environmental repercussions of migration

Finally, the aftermath of a migratory cell population can be seen by the topological changes

that occur within the surrounding micro-environment (Fang et al., 2014). During tumour

dissemination, and the subsequent invasion at a distant site, a cell is required to navigate

through the stroma that separates the circulatory system from the basement membrane (Clark

and Vignjevic, 2015). The stroma, among other things, provides a scaffold for binding

together tissue and cells through a plethora of proteins termed the extra cellular matrix

(ECM), of which collagen is the most abundant constituent (Bremnes et al., 2011; Kohn et al.,

2015).

A change in collagen composition is one of the earliest clinical markers of cancer pro-

gression. Initially, the collagen density increases around the tumour causing the surrounding

matrix to stiffen. The increased stiffness then allows the tumour to continue its expansion by

displacing the host tissue (Gkretsi and Stylianopoulos, 2018). After the collagen density has

increased, it is then followed by a straighten of fibres perpendicular to the tumour boundary

(Figure 1.2) (Provenzano et al., 2008). The straightened fibres are then bundled together to

form "highways" that cells are able to exploit and thus move through the ECM in a more

directed fashion (Wershof et al., 2019). The change in collagen composition demonstrates

the symbiotic relationship between migratory cells and the surrounding micro-environment

that continues throughout metastatic dispersal (Yuan, 2016).
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Figure 1.2: Cancer cells leaving the primary tumour; adapted from (Clark and Vignjevic,
2015). A graphical image of cancer cells escaping from the primary tumour (left of the
figure), migrating through the basement membrane, and into the stroma. Once in the stroma
the cells then migrate towards a blood vessel in the bottom right. The point of escape has an
increased immune response and a straightening of the local collagen fibres. In addition, the
cells at the top of the figure are uniform and are adhered to one another. In contrast, the cells
at the point of escape are more irregular and elongated with a lack of cell to cell adhesion,
characteristic features of cells that have undergone Epithelial - Mesenchymal Transition.

1.3.2 Modes of cell migration

During migration cells adopt a wide variety of different migratory modes. The mode of

migration depends on the degree of cellular adhesion, to both other cells and the ECM,

as well as the degree of cellular contraction (Table 1.1) (Friedl and Wolf, 2010). Broadly

there are 3 types of migration although multiple cells can also migrate in groups known as

multi-cellular streams (Friedl and Wolf, 2003; Paul et al., 2016) (Figure 1.3):

• Collective migration

Collective cell migration occurs when cell-cell adhesion is still present and is often

observed at the edge of the tumour boundary (Friedl et al., 2012) (Figure 1.3a). Collec-
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(a) Collective strand migration

(b) Single cell mesenchymal migration (c) Single cell amoeboid migration

Figure 1.3: Modes of cancer cell migration; adapted from (Friedl and Wolf, 2003).
Broadly cancer cells use 3 types of migration: a) Collective migration where cell-cell adhesion
remains, b) Single cell mesenchymal migration where cells have lost cell-cell adhesion but
have a high degree of adhesion to the substrate, c) Single cell amoeboid migration where
cells have lost cell-cell adhesion and have moderate to low adhesion to the substrate.

tive cell migration can occur as either a linear strand with a single leading cell or as a

sheet with multiple leading cells (Clark and Vignjevic, 2015).

• Single cell migration

If cell-cell adhesion is no longer present then the mode of migration is predominately

dependent on the degree of cellular adhesion to the matrix. A high degree of cell-ECM

adhesion produces a mesenchymal phenotype that is characterised by a "spindle-

shaped" morphology with well defined protrusions know as pseudopodia (Figure 1.3b).

In contrast, amoeboid migration occurs when the degree of cell-ECM adhesion is low

and is identifiable by a more rounded morphology with a poorly defined leading edge

(Pandya et al., 2017) (Figure 1.3c)



1.3 Cell migration 19

• Multi-cellular streaming

Whilst amoeboid and mesenchymal migration are types of single cell migration they

can also occur within higher level group structures known as multi-cellular streams

(Friedl et al., 2012). In contrast to collective migration where the cells are physically

joined, the cells within a stream remain independent (Gaggioli et al., 2007). This

allows the stream to quickly change its formation and adapt to the environment in

which it is moving through. As a result, multi-cellular streaming is one of the fastest

and most directed modes of migration with an average cell speed of ≈ 1–2µm/min.

In comparison, solitary migration is approximately an order of magnitude slower and

collective migration can be up too two orders of magnitude slower, 0.2–0.4µm/min

and 0.01–0.05µm/min respectively (Clark and Vignjevic, 2015).

Benefits of group dispersal

The process of disseminating from a primary tumour and surviving at a distant site are both

functionally similar. They involve a cell migrating through the stroma and reaching a target

location, either a blood vessel or an area suitable for colonisation (Figure 1.1). Nevertheless,

there is a large difference in their relative success (Luzzi et al., 1998). However, due to the

lack of cellular apoptosis, the critical difference is assumed to be essential for metastatic

progression but not critical for cellular survival.

One possible explanation might be the number of cells that are present within the local

vicinity. During dissemination there is a high density of cancer cells migrating locally and

the route has been down-trodden previously by earlier waves of migrants. In contrast, when

arriving at a distant site the probability that another malignant cell has been in the area is

approximately 0. Hence cancer cells may rely upon a community approach to successfully

survive and then colonise at a distant site. This may also explain why the presence of

circulating cellular clumps is indicative of a worse prognosis (Murlidhar et al., 2017). That

is, when a clump arrives at a distant site the group structure is already present and therefore

any cooperative strategies can be enacted straight away. If true, and group structure is

critical for metastatic success, then accurate neighbour communication will be an essential
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prerequisite. As a result, this would reaffirm the importance of individual signal processing

during metastatic dispersal.

1.3.3 Migratory dynamics

To determine whether group level cooperation is critical for metastatic success relies upon

having a thorough knowledge of the individual phenotypes that exist within the population.

In the context of cancer, phenotypic information is commonly gleamed by measuring traits

from fixed cell images. In turn, the measured traits are then used to summarise the phenotype

of a cell and categorise its behaviour (Table 1.1) (Gordonov et al., 2016; Meijering et al.,

2012).

Cell state

Whilst this is approach can be informative it also assumes that the phenotype of the cell

remains constant over a short period of time i.e. within a single generation. Yet, in reality, a

cell’s phenotype can, and often does, vary over shorter time periods by spanning multiple

different states (Adler and Sánchez Alvarado, 2015). The state referees to the individual

realisation of a phenotype. For example, EMT is a transition from an epithelial to mesenchy-

mal phenotype. Yet, in between the two defined phenotypes there is also an array of hybrid

states that a cell can transiently express (Figure 1.4) (Lambert et al., 2017). Capturing this

within cell variation is important when investigating higher level behaviours as cooperative

groups often have a precise population structure. Hence small deviations at an individual

level can manifest into large shifts in population level dynamics. Also, defining a phenotype

as a collection of states provides an important link between the multiple levels of variation

that can exist within a population at different timescales i.e. phenotypic plasticity on an

evolutionary timescale vs state changes on a generational timescale.
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Figure 1.4: Hybrid EMT states; adapted from (Lambert et al., 2017).
The epithelial mesenchymal transition (EMT) of two cells from an epithelial phenotype, left
of the figure, to a mesenchymal phenotype, right of the figure. The 3 intermediate figures
demonstrate the hybrid states that a cell can adopt between the two fixed phenotypes.

Geographical interpretation of cell states

Similar to Waddington’s epigenetic landscape (Goldberg et al., 2007) the relationship between

phenotypes and states can also be represented in a geographic context. The different possible

phenotypes are represented as countries joined together on a map. The possible states within

each phenotype are then analogous to the different locations within a country that a person

can live. Feasibly a person can live in any part of the country. Yet, in practice, certain areas

are more common i.e. cities, towns etc. Likewise, all states are possible within a given

phenotype, but certain states are more stable and therefore more common. Furthermore,

moving to a new city within a country tends to be more prevalent and is often a faster process

than moving between separate countries. Similarly, a change in cell state occurs over a shorter

time period relative to a change in phenotype. Hence developing a thorough understanding of

the state landscape will be useful to predict which states will flourish within certain temporal

environments.

Cell morphology

A marker of cell state, and an emergent property of cell - environment interaction, is captured

by a cell’s morphology (Prasad and Alizadeh, 2018; Rangamani et al., 2013; Wu et al.,

2020). Historically qualitative measures of morphology in fixed images have been used to

differentiate between different cellular phenotypes. However, more recently, a quantitative

approach has been adopted allowing for a greater degree of precision and more subtle changes

in phenotype to be detected (Alizadeh et al., 2016; Lyons et al., 2016).
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Figure 1.5: Geographical interpretation of cellular states.
The 4 main colours (red, yellow, green, and blue) represent the 4 phenotypes that a cell can
exist in. The shaded hexagons within each main colour then represents the hybrid states
within each phenotype. Generally, the states within a given phenotype are closer to one
another and thus it is easier for a cell to move between states than between phenotypes. Yet
importantly all states are still accessible from everywhere within space.

Measuring morphology in a quantitative manner also means that the variation between

phenotypes can be represented as a continuum rather than discrete entities. This then

allows hybrid cellular states to be investigated as well as fixed phenotypes. Likewise,

measuring morphology through time also allows the transition between different states to be

captured. Hence additional factors that affect cellular morphology, such as speed of migration

(Lauffenburger and Horwitz, 1996; Olson and Sahai, 2008) and orientation (Tweedy et al.,

2013), can also be accounted for in a dynamic setting but not necessarily through the use of

fixed images.
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1.4 Measuring cancer evolution

1.4.1 Retrospective analysis

Evolutionary processes, especially at a whole organism level, are not usually observable.

Therefore, present day information is commonly supplemented by fossils, along with ad-

vanced genetic and statistical methods, to infer an image of the past.

The same approach has dominated the field of cancer evolution where molecular infor-

mation is harvested from tumour biopsies (Graham and Sottoriva, 2017). The molecular

information has then been used to investigate multiple aspects of tumour evolution such

as the degree of intratumoural heterogeneity (Andor et al., 2016). In turn, the degree of

intratumoural heterogeneity has then been used to try and predict whether a tumour will

become invasive (Maley et al., 2006) or resistant to therapy (Morris et al., 2016). Likewise,

inferring the evolutionary trajectory that leads to the increased tumour diversity has been

essential in detecting large macro-evolutionary bursts that often proceed major oncogenic

events (Sottoriva et al., 2015).

Limitations of retrospective analysis in cancer

However, there are also limitations with adopting a retrospective approach to understand the

evolution of cancer. Firstly, fossils are not present within a tumour. Unlike most evolutionary

processes cancer evolution does not possess a fossil record. This means that evolutionary

"dead-ends" cannot be detected and thus all inference is based upon the lineages that survived.

As a result, it is often not possible to fully understand the ecological pressures that shape the

subsequent evolutionary trajectory of cancer progression.

Secondly comparative studies have focused primarily on the genetic information within a

tumour rather than also considering the traits at a phenotypic level. This can be problematic

as genetic changes do not necessarily manifest into phenotypic changes. Likewise, multiple

different genetic changes can result in the same phenotypic change. Hence developing a

thorough understanding of the genotype - to - phenotype mapping in cancer is essential to

fully understand the evolutionary routes to therapy resistance (Graham and Sottoriva, 2017).
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Also, due to the dynamic nature of cancer it is often difficult to detect certain transient or

complex behaviours solely through a genetic lens.

1.4.2 Experimental evolution

Alternatively, some evolutionary processes can be observed directly under controlled con-

ditions through a technique known as experimental evolution. Experimental evolution is

often found in microbial biology and involves applying experimental selective pressures to

replicate populations with a fast generation time. In turn, the evolutionary trajectories of

the population can then be observed in real-time (Elena and Lenski, 2003). Furthermore,

experimental evolution also allows the operator to precisely control the surrounding ecology

both in terms of the structure as well as the resource availability. Hence specific pressures

can be applied and then direct evolutionary hypothesis can be tested.

Another key advantage of experimental evolution is the ability to transfer populations to

new environments and determine how their fitness changes under different selective pressures

(Kawecki et al., 2012). This aspect of experimental evolution is extremely beneficial when

exploring the evolutionary dynamics of metastasis, a process that inherently involves a

change in environment. Likewise, it also means that experiments can be designed so that

individual cells can be measured at multiple points in time. Hence removing the issue of

genotype - to - phenotype mapping and capturing the phenotypic variation across multiple

different timescales (Gerrish and Sniegowski, 2012).

Drawbacks of experimental approach

Nevertheless, as with any experimental system, there are some drawbacks. One of the

major drawbacks with experimental evolution is the lack of transferability to complex

real-world scenarios (Buckling et al., 2009). This is especially relevant when trying to

study the evolutionary dynamics of a cancer, a process that is inherently very complex

and dependent on the surrounding environment. Also, rather paradoxically, it is extremely

challenging to include variation between experiments similar to the variation that is seen

between patients in a clinical setting. As a result, the number of evolutionary trajectories
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maybe underestimated compared with clinical data. Nevertheless, experimental evolution in

cancer offers an exciting approach to investigate and understand what is meant by a metastatic

cancer phenotype (Sprouffske et al., 2012; Taylor et al., 2013).

1.5 Thesis plan

The aim of this thesis is to explore the evolution of individual signal processing in metastatic

dispersal. Through the use of experimental evolution and time-lapse microscopy the dispersal

behaviour of experimentally selected populations of cancer cells have been captured. Then,

through the use of morphology as a proxy, the individual signal processing dynamics have

been modelled mathematically in response to dynamical features such as the cell speed

and distance to the nearest neighbouring cell. As a result, the mathematical models have

highlighted new and interesting biological phenomena that may have direct implications for

understanding the route to metastatic success.

The next chapter, Chapter 2, details an array of computational methods that can be used to

extract quantitative measures of cell migration from time-lapse videos. The chapter explains

how a convolutional neural network can be used to automatically segment the morphology of

individual cells. The chapter then compares the different factors that can be optimised in a

convolutional neural network to improve the segmentation performance. Finally, the chapter

concludes by highlighting a few key aspects that need to be considered when deploying a

convolutional neural network in time-lapse videos.

Chapter 3 then focuses on the morphological dynamics at a population level. The chapter

begins by detailing how the segmented morphologies in Chapter 2 can be quantified uniquely.

A linear model is then built to evaluate the different morphological dynamics in response to

both the speed of migration and the distance to the nearest neighbouring cell. The chapter

then concludes by explaining the model results with respect to the environment selective

pressures that were applied to each population.

The penultimate results chapter, Chapter 4, then builds upon the model in Chapter 3 but

at a single cell level. The chapter utilises the individual time series that is recorded for each
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cell during migration to investigate how the average morphological behaviour of a population

varies over time. The chapter then evaluates the morphological behaviour of each individual

cell to quantify the degree of phenotypic heterogeneity within each experimental population.

Finally, Chapter 5 builds on the two previous chapters to investigate the effect of transient

interactions with neighbouring cells. More specifically, the chapter looks at the role of a poly-

aneuploid cancer cells (PACCs) as possible conductors of metastatic dispersal. The chapter

utilises a similar cell specific modelling approach as Chapter 4 but with a greater focus on

the temporal behaviour of each cell. The thesis then concludes with a general discussion to

highlight the key findings and to suggest a few specific areas of cancer evolution in which a

similar modelling approach maybe beneficial.



Chapter 2

Convolutional neural networks as a

method for automated cell tracking

2.1 Cell tracking

To quantify the phenotypic behaviour of individual cancer cells during metastatic dispersal

requires imaging the migration of live cells. Phase contrast microscopy is the go-to method

in live cell imaging owing to its ability to illuminate the cell, and certain internal components

(Zernike, 1942). If consecutive images are taken and then coalesced together a phase contrast

time-lapse video can be formed capturing the position of individual cells through time and

space.

The first task when working with time-lapse data is to translate the information encoded

within an image, such as the location of a cell, into a quantitative value that can be used

for down-stream analysis. This pre-processing stage is known as cell tracking. The process

of cell tracking can then be further broken down into two phases: segmentation and object

linking. Segmentation is the first phase of cell tracking and it involves identifying which

pixels are associated with each cell in a frame (Tay et al., 2010). Metrics such as the speed or

direction can be obtained by segmenting a single pixel for each cell (Meijering et al., 2009).

Yet, more complex metrics related to the morphology of a cell require the entire contour to

be segmented. As a result, thousands of pixels need to be identified for each cell (Moen
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et al., 2019). Object linking is then the second phase of cell tracking whereby the same

cell is linked between consecutive frames to reconstruct its migration trajectory. If multiple

cells are linked between frames, then the migration behaviours can also be interrogated at a

population level as well as the single cell level (Svensson et al., 2018).

Cell tracking is a process that can be conducted either manually or automatically. Manual

cell tracking is performed by an operator tracking each individual cell through time. It is a

highly accessible method, but it is also slow and extremely time expensive as human input

is required throughout. It also renders more complex morphological analysis intractable.

Furthermore, manual tracking has a high degree of variability between operators as well as

within the same operator (Huth et al., 2010). Alternatively, automated cell tracking uses a

computer algorithm to track multiple cells through consecutive images. This approach is

typically faster and less time expensive as a computer can track the cells without constant

input from the operator.

Challenges of automated segmentation

Although appealing, automated cell tracking in phase contrast images is also extremely

challenging. One of the main challenges to overcome is the low contrast between the cell

and background. This is especially problematic when investigating features related to the

morphology of a cell as the contrast between the cytoplasm of the cell and background is

even less clear (Vicar et al., 2019). To try and mitigate this issue, and accentuate the contrast,

experimental adjustments are often made through the use of fluorescent tags. Although

effective, such modifications are not without limitations. Firstly, the tags tend to decrease in

emission strength over time which may bias which cells are tracked. Secondly, the tags can act

as another round of selection due to their toxicity (Liu et al., 1999). The combination of these

two factors render fluorescent tags unsuitable for long term experimental evolution studies.

Nevertheless, the following section highlights a variety of computational approaches that

can used to improve the segmentation performance without any experimental modifications

(Baltissen et al., 2018; Caicedo et al., 2017; Van Valen et al., 2016).



2.1 Cell tracking 29

Object linking

If perfect segmentation is achieved, such that all of the cells in every frame have been

identified, object linking performance is dependent on the degree of cellular displacement

between frames. If cellular displacement is small, and thus the similarity between frame is

high, all of the cells can be reliably linked. In contrast, if the displacement is high, multiple

cells in frame t can be joined to a given cell in frame t +1 and thus the one-to-one matching

necessary for accurate tracking is lost. This issue can however be mitigated by ensuring that

the frame rate of the time-lapse video, how often an image is taken, is kept sufficiently high

(Masuzzo et al., 2016). This therefore keeps the displacement between frames low regardless

of the cell speed. Furthermore, a high frame rate also decreases the error between the

observed migration track of the cell and the true migration track of the cell, thus increasing

the accuracy of the recorded trajectory.

2.1.1 Automated segmentation

Automated segmentation has two stages; feature computation and feature selection (Berg

et al., 2019). Feature computation captures the information that is encoded in an image and

translates it into a numerical value i.e. the colour and intensity of a pixel or the length of an

object. Feature selection then builds a model from the extracted features that can be used

to segment cells in future unseen images. The parameters for each feature in the model

are estimated dependent on their discriminatory power, the higher the power the bigger the

weighting (Erickson et al., 2017). For example, the long continuous curve of pixels that

represent the tail of a sperm cell are more informative then the small group of pixels that

represent the head. As such, the tail would be given a greater weighting when classifying the

object.

In cell tracking automated segmentation can be broadly divided into 3 groups dependent

on the level of explicit prior knowledge from the operator:

1. Model based:
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Model based segmentation uses classical techniques such as thresholding and edge

detection (Canny, 1986; Roeder et al., 2012; Sezgin and Sankur, 2004) to compute

features. The computed features are often based upon characteristics that are deemed

to be important by the operator such as the area or pixel colour of the object. Likewise,

prior knowledge is used in the feature selection stage whereby a threshold is set to

discriminate between groups i.e. the maximum length of a cell (Nixon and Aguado,

2012). If accurate prior information is known, that also possesses a high discriminatory

power i.e the colour of a fluorescent tag, then model based segmentation can be a quick

and effective method with a short lead in time. However, model based segmentation

can struggle when there is large variation in the object features or the discriminatory

features of an object are not already know. Unfortunately, both of these aspects are

common place in phase contrast images of cancer cells.

2. Machine learning with features:

Machine learning with features utilises the same classical thresholding techniques

for the feature computation stage as the model based approach. However, the feature

selection stage uses a machine learning algorithm to build a data drive model rather

than relying on the operator (Sommer et al., 2011). The model is optimised through an

iterative training process that uses a set of manually annotated images to search for the

best solution in the data (Kotsiantis et al., 2006). The resultant model often contains

non-linear unintuitive combinations of features that possess a high discriminatory

power (Goodfellow Ian et al., 2016), many of which can be over looked in a model

based approach.

However, the performance of the model is also extremely dependent on the quality of

the training data. The training data must be representative of the population and the

manual annotations need to be of a high standard. If not, the model will fail when it is

deployed on future unseen data. Furthermore, machine learning with features is still

very dependent on the quality of the feature selection. This can prove to be problematic
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when the cell density is high as accurate predefined features cannot be extracted from

the image.

3. Convolutional neural networks:

Convolutional neural networks (CNNs) extend the machine learning with features

framework further by using data to drive the feature computation as well as the feature

selection stage. CNNs compute features by first deconstructing an image into multiple

levels of abstraction. The abstractions are then used to look for low level features

such as edges and curves before later looking for higher order features such as shapes

(Krizhevsky et al., 2012; Lawrence et al., 1997). Also, in contrast to the two previous

segmentation methods, the feature computation and feature selection stages aren’t

necessarily disjoint. A CNN can alter the features that are computed dynamically based

upon the results of the feature selection (Goodfellow Ian et al., 2016). Recent hardware

improvements have meant that CNNs have been able to produce extremely high levels

of accuracy in many computer vision based tasks with medical imaging, such as cell

segmentation, being a prominent field (Kayalibay et al., 2017). The process by which

a CNN segments an image is described in detail in the following section.

The virtue of a data driven approach can also be the downfall of a CNN. Firstly, training

a CNN requires manually annotated data, similar to machine learning with features. Yet

the quantity of data that is needed is much larger. This is a major issue when working

with CNNs as the generation of such data is often expensive and time consuming.

Secondly it is extremely difficult to decipher which features are being computed by

a CNN. As a result, if the images used during training are not representative of the

population then the results from a CNN can be widely inaccurate when deployed on

unseen images (Moen et al., 2019).

The focus of this thesis centres around the use of morphology as a proxy for signal processing

during metastatic dispersal. Hence the morphology from thousands of cells need to be

captured over an extended period of time. Furthermore, to account for the spatial effect of

neighbouring cell, a potentially key factor in signal processing, cases of high cell density
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also need to be considered. As a result, the large quantity of data coupled with the need to

capture accurate and precise morphological details, for which all future analysis is based

upon, means that the use of a CNN is the only option.

The chapter proceeds in the following manor. Firstly, the theory behind how a CNN

segments an image is discussed as well as how it is trained. This theoretical understanding

is then put into practice by deploying a network on series of phase contrast images. After

the initial deployment the network is then retained and optimised. Finally, the chapter then

concludes by discussing the optimisation results whilst also highlighting some features that

are especially prominent in context of cell tracking.

2.2 Convolutional neural network

A convolutional neural network is a form of representation learning where the discriminatory

features and characteristics within a dataset are automatically learned by the system (Bengio

et al., 2013). These features are then used in tasks such as classification and segmentation

(LeCun et al., 2015). The design of a CNN is such that a series of convolutional layers,

often known as filters, pre-process an image and conduct the feature computation stage. This

information is then passed to a neural network that performs the feature selection phase

and thus the final classification (Khan et al., 2020). Note that throughout this chapter any

reference to a neural network relates to a fully connected neural network unless otherwise

stated.

2.2.1 Neural network

Graphically a neural network can be interpreted as a series of nodes that are grouped together

to form a layer. Multiple layers are then stacked adjacent to one another with nodes in

consecutive layers joined be a network of weighted edges (Figure 2.1) (Bengio, 2009; LeCun

et al., 2015). The first and last layers are the input and output layers, with all intermediate

layers referred to as hidden layers. The purpose of the hidden layer nodes is to transform the

input data that they receive via a mathematical transform known as an activation function.
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Figure 2.1: A graphical representation of a fully connected neural network.
The neural network has 3 nodes in the input layer (shown in green), 4 nodes in each of the 2
hidden layers (shown in blue), followed by 2 nodes in the output layer (shown in orange).
The arrows indicate the weighted edges between nodes in adjacent layers.

The activation function is central in a neural network as it allows the network to detect

non-linear patterns in the data (Webb et al., 2011).

Nodal out put = f (∑N
i=0

Weighted
input data︷ ︸︸ ︷

wi ∗ inputi+bias) : f = activation f unction

N = number o f input edges

(2.1)

Neural network workflow

A neural network operates in a series of sequential stages. Firstly, a single numerical value

is provided to each node in the input layer. For example, if the neural network is designed

to classify cars by make the input data maybe engine size, weight, and top speed. This

information is then passed through the connected edges of the network to the nodes in the

second layer. The sum of the weighted input data, along with a bias, is then transformed by
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the activation function of each node (Equation 2.1). The nodal output is then passed forward

to the connected edges and the process is repeated across all of the hidden layers. A deep

neural network can contain over 100 hidden layers meaning that this process is extremely

computationally expensive (Bengio, 2009). Finally the nodes in the output layer represent

the different classification classes i.e. the makes of car. The input value to each node in the

output layer corresponds to the probability that the original data resides in the given class.

The class with the highest probability is the final classification (Gardner and Dorling, 1998).

Activation function

The activation function is key to the network as it introduces non-linearity to the system

which is essential when trying to understand complex mappings (Olgac and Karlik, 2011). In

contrast to a mappings such as that between height and weight where a linear relationship is

often sufficient. The mapping between data types such as the engine size and the make of a

car are not necessarily as clear. The activation function is however helped by the presence

of a bias as it allows the function to slide along the x axis and improve the model fit. In the

context of linear regression the bias is akin to the intercept.

The non-linear nature of the activation function also has an important role in allowing

the network to become deeper and thus leverage the multiple layers of abstraction. If the

activation function is linear, irrespective of the number of layers in the network, then the

system can be reduced to a linear mapping in a single layer. Hence the neural network

would be akin to a linear regression model and as such it would lose its hierarchical power.

In contrast, the same is not true with a non-linear function. Stacking multiple non-linear

functions together allows the network to retain its hierarchical power and therefore detect

features with a high discriminatory power. This framework can be further extended to allow

each node to have its own activation function although in practice this level of complexity is

often not beneficial.
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2.2.2 Neural network training

A neural network learns the features within a data set through a process known as training.

The goal of training is to minimise the error between the network prediction and the ground

truth value, known as the loss function. The loss function is the error across all of the training

examples for a given combination of parameters and hyper-parameters. Therefore, assuming

that the training set is representative of the population, the location of the global minima on

the loss function corresponds to the optimal combination of parameters and hyper-parameters

in the network. If the loss function is visualised as a hilly landscape, then aim of training

is to find the lowest point (Li et al., 2018). Hence the algorithm finds the lowest point on

the function in the same way that a person finds the lowest point in a landscape, by walking

downhill one step at a time.

Parameters

The edge weights and biases of a neural network are collectively referred to as the network

parameters because they are iteratively adjusted after each epoch of training. An epoch is

one complete pass through the entire training data set (Webb et al., 2011). However, due

to the number of parameters and the non-linear relationship between layers the network’s

parameter space is often very large and complex. As a result, hundreds of epochs are required

to adequately traverse along the loss function and find the global minima. The exploration

itself is typically governed via a method of stochastic gradient descent (SGD) (Bottou and

Lecun, 2004). SGD is an algorithm that steps along the loss function by taking a sample

of points and calculating their lose. The gradient between each of the sample values is

then calculated and the algorithm then steps in the direction of the largest negative gradient

(Rumelhart et al., 1986), the steepest downwards slope.

Hyper-parameters

In contrast, the hyper-parameters such as the number of hidden layers or the activation

function in a given layer are set at the start of each training schema (Aghdam and Heravi,
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2017). As well as defining the architecture of the network the hyper-parameters also control

how the SGD algorithm moves along the loss function. One of the most important hyper-

parameters is the learning rate, the step size taken by the algorithm after each epoch (Murphy,

2012). If the learning rate is too small the algorithm will take a long time to converge and

may also become trapped in a local minima. Likewise, if the learning rate is too large then

the algorithm might miss the global minima altogether (Zeiler, 2012). Hence, to ensure

that the learning rate, along with the other network hyper-parameters, is optimised correctly

multiple models are trained and then compared to evaluate the performance of different

model combinations (Goodfellow Ian et al., 2016).

2.2.3 Convolutional layers

In the previous example a vector of data was used to classify a vehicle. The elements of the

vector corresponded to different features used to discriminate between different makes of

car. However, in the case of an image, such features are not already known. A default option

is to flatten the image into a single vector where each element corresponds to a given pixel.

However, flatten the 2D matrix that represents an image means that input vector size can be

considerable. A single 1080 x 1080 image results in a vector that contains over 1,000,000

elements (Aghdam and Heravi, 2017). Hence due to the number of weights in the network

the model is prone to over-fitting.

Filters

CNNs combat this issue be leveraging the spatial information in an image to their advantage.

CNNs utilise the knowledge that a given pixel is more strongly related to the pixels that are

closer to it than pixels that are distant in the image (Krizhevsky et al., 2012). This enables a

single image to be interpreted as a composition of multiple features i.e. an image of a car

can be broken down into wheels, windows, and doors. This is achieved by convolving, or

sliding, a filter across the image and extracting the different features. The filter itself is an

N ×N matrix where the elements within the filter are parameters that are estimated during

training, similar to the weighted edges in a neural network. Once the filter has passed over
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Figure 2.2: A top horizontal filter convolving across an input image.
The 16 x 16 input image contains a 10 x 10 square in the centre. The top horizontal 3 x 3
filters has a stride of 1 and maps to a single pixel in the 14 x 14 feature map. The red rows
in the feature map indicate a positive result from the filter, a top horizontal row in the input
image. The green rows in the feature map indicate a direct opposite result of the filter in
the input image, a bottom horizontal row in the input image. The magnitude of the matrix
elements in the red or green rows corresponds to fit of the filter to the region in the input
image, the larger the magnitude the better the fit. The matrix elements of the filter are kept
constant as it moves across the input image.

an image the subsequent output is referred to as a feature map. The feature map functions as

a record containing the spatial location of a given feature within the original image (Figure

2.2) (Aghdam and Heravi, 2017). In the car example a filter might be used to extract cases

where a wheel appears in an image. The feature map would therefore be the original image

with only the wheels showing. Furthermore, by retaining the spatial structure of the image it

means that individual pixels can be classified within the original image as well as the image

as a whole, a process known as semantic segmentation.

In practice multiple filters are used in each convolutional layer to extract different features

from the image (Figure 2.3) (Zeiler and Fergus, 2013). The initial layers contain low level

filters that extract edges and curves. Whilst later layers contain filters that extract high level
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features such as corners and shapes. The increase in filters does however mean that there is a

corresponding increase in the number of feature maps that are produced at each convolutional

layer (Figure 2.3) (Zeiler and Fergus, 2013). Once generated each of the feature maps are

then transformed by a non-linear activation function before being passed to the next layer in

the network. Similar to a neural network the activation function is critical as it allows the

network to detect non-linear patterns within the feature maps. An example of a common

activation function is the Rectified Linear Unit, ReLU (Glorot et al., 2011). The ReLU

function operates by setting all negative values in the feature map to 0 whilst leaving all

non-negative values untouched (Figure 2.3).

2.2.4 Leveraging spatial information

Sparsely connected

Retaining the spatial information in an image also has two other key benefits. Firstly, in

contrast to a fully connected neural network, consecutive convolutional layers are only

sparsely connected. Therefore, each pixel in a feature map is only connected to a small

region of pixels within the input image (Sainath et al., 2013). This then reduces the number

of parameters that need to be estimated during training and hence reduces the change of

over-fitting.

Translational equivariance

Secondly, the parameter values within a given filter are estimated across the entire image. In

a fully connected neural network a weighted edge is used once between a single input and

output node. In a CNN the same mapping is used across nearly all of the input and output

nodes, know as parameter sharing. The benefit of parameter sharing is that the network is

equivariant to translation, a feature is detected regardless of its location within the image

(Kondor and Trivedi, 2018). This is critical in a CNN because it means that the number of

possible classes can be reduced dramatically. For example, rather than having 4 different
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classes of a car for each quadrant of the image, the network only needs to retain a single

class.

This is also an essential feature in the context of cell tracking as it means that the same cell

is detected as it moves through space. Likewise, this also means in addition to classifying the

image as a whole i.e is a cell present, the network can also record the spatial location of a cell

within the image. This dual capability is achieved by using two independent neural networks

where one handles the image classification and the other handles the object localisation.

The object localisation network records the position of the object by using a boundary box

that encompasses the perimeter of the object. Hence in the car example one network would

classify the make of car whilst the other network records its position in the image e.g bottom

left.

Pooling layers

Although the architecture of a CNN is dominated by convolutional layers the network is also

punctuated with periodic pooling layers. The function of a pooling layer is to down sample

the original input image into a smaller dimensional output. A common pooling function

is the max output function that summarises a K ×K area within the original image by its

maximum value in that area (Krizhevsky et al., 2012) (Figure 2.3).

The benefit of a pooling layer is two fold. Firstly, the reduction in dimension means that

there is a corresponding reduction in the number of parameters that need to be estimated

within the network (Krizhevsky et al., 2012). Secondly, it makes the network invariant to

translation (Graham, 2014). Translational invariance is similar to translational equivariance

but with an important difference. The former means that a small deviation in the input value

will map to the same output value. Whereas the latter means that a large deviation in the input

results in the same deviation in the output. Thus in practice these two functions complement

one another. The invariance criteria means even if there is a small change in the structure of

an object at a local level it will still be classified correctly i.e. a car will be detected if there is

a small dent in the body work. Whereas the equivariance condition allows the network to
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Figure 2.3: The workflow of a convolutional layer in a CNN.
A 16 x 16 input image with a 10 x 10 square functions as the input to the convolutional layer.
The 4 filters with a stride of 1 are deployed to extract the 4 outer edges of the square, each of
which has a length of 10, along with the 4 inner edges each with a length of 6. The feature
maps are the same as Figure 2.2 where the red rows represent a positive match from the filter
and the green rows represent the opposite filter match. The ReLU activation function then
removes all negative matrix elements for the feature maps. Finally, the max pooling function
down samples the activation output by taking the maximum value from a 2 x 2 region. The
max pooling function has a stride of 2 and therefore reduces the 14 x 14 activation output to
a 7 x 7 output.

detect the same features at different locations globally in the image i.e. a car is detected in

the upper right or lower left corners of an image.

2.2.5 Region based CNN

The previous sections have outlined how a CNN classifies and localises a single object within

an image. Yet in practice an image will often contain multiple instances of a given classes

i.e. multiple cars within a given image. This variability presents a problem for a CNN as the

length of the output layer is equal to the number of instances × number of classes. Hence if
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the number of instances is not known in advance then the length of the output layer cannot

be defined (Zhao et al., 2019).

Fortunately, region based CNNs overcome this issue by deconstructing the image into

a series of smaller regions (Girshick et al., 2014). The smaller regions are then treated

as individual input images before being reconstructed back into a full size image after

segmentation. The virtue of this approach is that if the image is deconstructed into small

enough regions then the number of instances within a region will always be either 0 or 1. In

turn this allows the length of the output layer to be set equal to the number of possible classes

within the image. Furthermore, through the addition of another neural network each instance

within the image can also be segmented at a pixel level, known as instance segmentation (He

et al., 2017).

Instance segmentation is critical in cell tracking as it enables phenomena to be investigated

at a single cell level whilst in the presence of the broader cell population (Kimmel et al.,

2018). Also, for logistical reasons a time-lapse video rarely records the entire migratory

population. Instead, multiple geographical regions within the population are chosen as a

sample and then their position remains fixed for the course of the video. This results in the

number of cells that are present within the video changing through time. Furthermore, cells

can divide or die during the course of a video which in turn alters the number of objects that

are present at any one time.

2.3 Methods

All of the time-lapse data that was collected in this thesis was tracked using the semi-

automated Usiigaci pipeline (Tsai et al., 2019). The pipeline combines a mask regional

convolutional neural network, Mask R-CNN, (He et al., 2017) for segmentation with a

particle tracker, Trackpy, (Allan et al., 2018; Crocker and Grier, 1996) for object linking

(Figure 2.4).



42 Convolutional neural networks as a method for automated cell tracking

Figure 2.4: A phase contrast image segmented by Mask R-CNN.
The left hand image is a single 960 x 960 phase contrast image of MDA-MB-231 breast
cancer cells. The right hand image is the corresponding 960 x 960 segmented output from
Mask R-CNN that is used in future analysis.

2.3.1 Mask R-CNN

Mask R-CNN is widely considered to be the gold standard in instance segmentation as it

combines high level precision with fast segmentation speed. The structure of Mask R-CNN

can be broken down into 3 major stages (He et al., 2017):

1. Backbone:

The backbone is a convolutional neural network that performs the feature extraction

and is typically either ResNet50 or ResNet101, the suffix denotes the number of layers

in the network. The ResNet architecture allows the networks to be extremely deep

through the inclusion of "skip connections" that prevent the network from becoming

saturated (He et al., 2016). In essence, skip connections allow the network to miss

certain layers if the increase in depth is not providing an increase in performance. In

theory this means that a deeper network will also perform at least well as its shallower

counter parts. The final layer contains a feature map with dimensions 32x32x2048,
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where 2048 corresponds to the number of individual feature map layers demonstrating

the extreme degree of abstraction.

The backbone also includes a feature pyramid network that ensures that objects at

multiple scales are detected. The feature pyramid network utilises the high level feature

maps with strong semantic information, cases where large structures are detected, to

reconstruct lower levels and ensure that smaller objects are also detected (Lin et al.,

2017). This is critical in cell tracking as cell size can vary greatly and without the

feature pyramid network smaller cells may not be detected. Furthermore, due to the

sequential workflow of a CNN if a cell is not detected it cannot be segmented. As a

result, the feature pyramid network is extremely important.

2. Regional Proposal Network:

The region proposal network is a light weight neural network that selects different

sized regions from the feature map and determines with a given probability whether the

region contains an object (Ren et al., 2015). The classifier is binary and therefore if the

probability exceeds a pre-defined threshold then the region is accepted. The regions

themselves are quantified using boundary boxes that also record the region’s position in

the image. If the region does contain an object, a cell, then the region proposal network

will make small adjustments to the boundary box location to improve its accuracy.

The accuracy of the boundary box is quantified by the Intersection over Union, IoU

(Rezatofighi et al., 2019). The IoU is the ratio of area covered by both the prediction

and the ground truth compared with the total combined area covered by the prediction

or the ground truth. An IoU of 1 indicates that the prediction has perfectly matched the

ground truth. A high performance from the region proposal network is imperative. If

the region proposal network does not suggest regions for all of the cells in the image,

then a cell will be missed. As a result, the false negative rate is more pivotal than the

false positive rate.

3. Headers:
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The headers are 3 independent fully connected neural network branches that conduct

the final: classification, boundary box localisation, and produce the pixel level seg-

mentation mask for each instance. Importantly the loss function for the network is the

combined loss for each of the 3 neural networks and therefore each branch needs to be

trained effectively.

The classification branch operates in a similar way to the region proposal network

classifier to determine the correct class for the object. However, in contrast to the region

proposal network the classifier is discrete rather than binary. This allows different

cell types to be classified within the same image, albeit all of the time-lapse data in

this thesis uses a single cell type. Likewise, the boundary box localisation branch

also follows a similar format to the region proposal network by adjusting the final

boundary box to improve the localisation performance (Ren et al., 2015). Finally, the

mask branch operates on a pixel by pixel manner to outline the shape of each cell. The

thresholds for the boundary box refinement and the mask branch use the same IoU

criteria mentioned above (He et al., 2017).

The Mask R-CNN network that is already in the Usiigaci pipeline has been pre-trained on

the Common Objects in Context (COCO) data set before being further trained upon 50 phase

contrast images. The COCO data set is an extremely large collection of manually annotated

images that cover a broad spectrum of different scenarios. Due to its vast size, > 200,000

annotated images, the data set is often used as benchmark in computer vision competitions

(Lin et al., 2015). The benefit of pre-training on a large general data set is to initialise the

network parameters before re-training on a more specific, but often smaller, data set in which

the network will be deployed. This two stage approach is extremely useful with deep CNNs

as it helps to prevent the final network from over-fitting to the training data (He et al., 2017;

Pan and Yang, 2010; Simonyan and Zisserman, 2015).
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2.3.2 Performance evaluation

Once the final network has been trained its performance is then evaluated via the mean

average precision, mAP (He et al., 2017). The mean average precision evaluates the networks

precision at different recall levels. The precision measures how accurate the networks

predictions are i.e. a precision of 1 indicates that all of the proposed cells are in fact cells

whereas a precision of 0.5 indicates that only half of the predictions are correct. The recall

measures how many of the cells are being detected within the image, a recall of 1 indicates

that all of the cells in the image are being detected. For example, if the precision is 1 but the

recall is 0.5 then only half of the cases are being detected but all of the detected cases are

correct (Equation 2.2) (Everingham et al., 2015).

Precision =
True Positive

True Positive+False Positive
Recall =

True Positive
True Positive+False Negative

(2.2)

In practice the precision is evaluated at multiple recall levels to determine the recall level at

which the precision begins to deteriorate. Initially the precision will be high when the recall

level is low, the object is only proposed if the network is nearly certain that the object is a cell.

The precision then falls until nearly 0 when the recall approaches 1, everything is proposed

as a cell and thus the network is not precise. The average precision is calculated as the area

under the precision-recall plot and the mean average precision is the average precision across

all classes (Goodfellow Ian et al., 2016). If only one class is present, as is the case in this

thesis e.g. a cell, then the mean average precision is the average precision.

The threshold for a true positive is set prior the mAP being calculated and is based up on

the IoU of the segmented mask. Historically the IoU threshold was set at 0.5, a prediction

was accepted as a true positive if half of the segmented mask overlapped with the ground

truth. However, the mAP is now more commonly evaluated over a range of IoU values to

ensure that networks with a high level of precision are weighted more favourably (Huang
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et al., 2016). In the context of cell morphology, it is critical to ensure that the network is

segmenting cells with a high degree of precision as all future metrics are based upon these

results.

2.3.3 Pre-trained performance

The performance of the current network within the Usiigaci pipeline was evaluated to

determine whether re-training was necessary. To evaluate the network’s performance 60

images were randomly chosen from two 72 hour time-lapse videos where an image had been

taken every 2 minutes. The 4320 image data set was chosen as both time-lapse videos were

recordings of MDA-MB-231 breast cancer cells, the same cell line that was used throughout

this thesis. The length of both videos also allowed for multiple cell divisions to occur which

ensured that some of the images were denser than others. The 60 images were then manually

annotated and are referred to as the test set for the remainder of this chapter. The manual

annotations involved drawing around the outline of every cell in each of the 60 images to

produce a ground truth mask. The average mAP score was then calculated across 10 IoU

thresholds ranging from 0.5 - 0.95 (Huang et al., 2016).

The current Usiigaci trained network scored an average mAP across 2 repeats of 0.0389.

This is extremely low considering the pre-trained network from the COCO data set scored a

mAP of 0.3110. Nevertheless, the poor performance is not necessarily a surprise. Firstly, the

Usiigaci training data is from a different cell type to the test set. Secondly, there are large

differences in the image properties between the training and test data as well as a difference

in the number of cells. In all, the poor mAP result confirms that the network needs to be

retrained prior to deployment.
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2.4 Results

2.4.1 Retrained performance

Training setup

The network was initially re-trained using the same protocol as the Usiigaci network, referred

to as the baseline for the remainder of this chapter. The protocol used 50 manually annotated

images to train the network with a 90:10 split for the training and validation subsets respec-

tively. In contrast to the independent test set that is only seen by the network once for the

final network evaluation. The training data is seen by the network throughout training and

has two subsets: training and validation. The training subset is used to estimate the network

parameters during each epoch. Then at the end of each epoch the validation set is used to

independently evaluate how well the network has performed. Keeping the validation set

independent from the training set is vital as it helps to prevent the network from over-fitting

to the training data (Goodfellow Ian et al., 2016). To ensure that the terminology is clear for

the remainder of this chapter the training data refers to the training set and the validation set

combined.

The re-trained network kept all of the hyper-parameters the same as the baseline as well

as the training schema. The training schema consisted of 100 epochs of training on the

network headers followed by 100 epochs on the full network. Across the 200 epochs the

learning rate remained fixed at 0.001. Training the network in parts is sometimes used in

cases where the training data is small. Optimising the headers typically requires less data

than the network backbone and therefore training in sections can help to prevent over-training

(Zhang et al., 2020).

After having repeated the same protocol as the baseline the new training data yielded a

dramatic improvement in the network’s performance, the mAP score increased to 0.541. The

marked increase in performance highlights the sensitivity of the network to the data that it is

trained upon. Hence ensuring that the training data accurately represents the population in

which the network is going to be deployed in is paramount.
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Practical performance maxima

Although the increase in performance is sizeable, it does not necessarily mean that an optimal

model has been found. A perfect segmentation has a mAP score of 1. Yet in practice no CNN

will achieve this as the network is limited by the Bayes error, the unaccountable stochastic

error within the system (Tumer and Ghosh, 1996). Likewise a sub optimal performance will

not necessarily have any impact on the subsequent biological interpretations.

To generate a practical performance maxima 10 images were randomly chosen from the

60 image test set and re-annotated. The 10 re-annotated images were then evaluated against

the same 10 images from the original test set, as if they had been segmented by a trained

network. The re-annotated images recorded a mAP score of 0.658 and therefore this will be

used as a practical maxima for the network to reach.

Training schemas

To determine whether the network can reach the practical performance maxima different

training protocols were executed and then evaluated on the test set. The different protocols

involved independently varying the training data size, validation split, and two of the hyper-

parameters.

The 14 different network configurations were also each tested with 4 different training

schemas (Figure 2.5). The different training schemas were deployed to evaluate the benefit

of training the headers disjoint from the rest of the network, S1 vs S2, and to compare the use

of a fixed vs variable learning rate that decreases over training, S1/S2 vs S3/S4 (Figure 2.5).

The motivation for a variable learning rate is to allow the network to explore the landscape

globally at the start of training, before then narrowing on a particular region as the training

progresses (Bengio, 2012). In total 56 different networks were trained and by the end of

each training period the loss function had converged. This process was then repeated and the

average of the two repeats was recorded as the final mAP for each network combination for

each of the 60 test images.
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Figure 2.5: An overview of the 4 different training schemas used for optimisation.
S1 has a fixed learning rate of 0.001 with 100 epochs initially on the headers followed by
100 on all layers. S2 has a fixed learning rate of 0.001 with 100 epochs on layers followed
by another 100 epochs on all layers. S3 has a variable learning rate starting at 0.01 on the
headers for 100 epochs, followed by 100 epochs on all layers at a learning rate of 0.005,
and finally another 100 epochs across all layers at a learning rate of 0.001. S4 has the same
decrease in learning rate over 300 epochs as S3 but it runs across all layers of the network.

2.4.2 Training data structure

Training data size

The first comparison tested whether an increase in training data caused a corresponding

increase in model performance. The training data size was increased from 40 to 240 images

with a 40 image increase at each interval. The validation split remained constant with 90% in

the training set and 10% in the validation set, the same as the baseline. All hyper-parameters

were also kept the same as the baseline and each training data size was deployed across all 4

training schemas.

A linear mixed model was then used to evaluate whether the relationship was significant.

The model was such that the mAP score was dependent on the training data size and the

difference between images in the test set was controlled with a random effect. Finally, the
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Figure 2.6: A plot of the mAP score against the number of images in the training data.
The training data size was increased from 40 to 240 images with a 40 image increase at
each interval. The data points represent the average mAP score across the 60 image test
set for each of the different training data sizes. The straight parallel lines correspond to
the significant parameter values of the linear mixed model that was fitted to the data. The
intercepts were allowed to vary between each training schema and were all found to be
significantly different from one another at a 5% level. The slope parameter (β = 1.43×10−4)
was also found to be significantly different from 0 at a 5% level.

model intercepts were allowed to vary across the 4 training schemas but the slope remained

fixed.

All 4 intercepts were found to be significantly different from 0 and from one another

at a 5% level (N= 1440). The fixed learning rate schemas, S1 and S2, had intercept values

of 0.495 and 0.501 respectively. Whilst the variable learning rate schemas S3 and S4 had

significantly larger intercept values of 0.541 and 0.556 respectively (Figure 2.6).

The slope parameter (β = 1.43×10−4) was also found to be significant at the 5% level

( p < 2×10−16, N = 1440) (Figure 2.6). Thus, meaning that a 100 image increase in the

training data size causes a 0.014 increase in the mAP score. The significance also means that

the largest possible training data size should be used to maximise the mAP score. Henceforth,

all remaining network evaluations used a training data size of 240 images. Finally, the fixed
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effects of the mixed model explained a significant proportion of the variation in the mAP

scores with a marginal R2 = 0.145.

Validation split

Next, the validation split was increased to evaluate whether training data size and structure

had a significant effect on the model performance. The training data size was fixed at 240

images but the validation split increased from 10% to 25% in 5% intervals. All hyper-

parameters were kept the same as the baseline and each validation split was deployed across

the 4 different schemas.

Figure 2.7: A plot of the mAP score against the validation split in the training data.
The validation split was increased from 10% to 25% in 5% intervals. The data points represent
the average mAP score across the 60 image test set for each of the different validation splits.
The straight parallel lines correspond to the significant parameter values of the linear mixed
model that was fitted to the data. The intercepts were allowed to vary between each training
schema and were all found to be significantly different from one another at a 5% level. The
slope parameter was not significantly different from 0 at a 5% level and thus the slope value
was set to 0.

A linear mixed model was also used to evaluate the significance of increasing the

validation split on the network performance. Similar to the training data size model the mAP
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score was dependent on the validation split and the difference between images in the test set

was controlled with a random effect. Likewise, the intercepts were allowed to vary across the

4 training schemas but the slope remained constant.

All 4 intercepts were found to be significantly different from 0 as well as from one another

at the 5% level (N = 960). The variable learning rate schemas, S3 and S4, had intercept values

of 0.576 and 0.584 respectively. These both outperformed the fixed rate learning schemas

which had mAP scores of 0.528 and 0.532 for schemas S1 and S2 respectively (Figure 2.7).

However, in contrast to the training data size, the slope parameter was not significant in

the validation split. There was no significant correlation between an increase in the validation

split and an increase in the mAP score (Figure 2.7). As a result the validation split remained

at 10% for the remaining network comparisons.

2.4.3 Hyper-parameter optimisation

The two previous sections evaluated the effect of changing the training data size and structure

on the network’s performance. However, another kept aspect that is under the control of

an operator is the choice of hyper-parameters that are used during training. The hyper-

parameters control the networks structure as well as dictating how the algorithm moves

through the parameter space during training. The total number of possible hyper-parameters

are vast and as such not all combinations could be evaluated. Nevertheless, two highly

influential hyper-parameters, the backbone and gradient clip norm, were tested.

ResNet backbones

The backbone, as detailed in Section 2.3.1, controls the number of convolutional and pooling

layers that are used in the model as well as the structure of the layers. The two backbones

that have been evaluated in this section are ResNet50 and ResNet101. The suffice details

the number of layers, 50 and 101, whilst the ResNet prefix indicates the presence of "skip

connections". Skip connects allow layers to be missed during the back-propagation phase of

training, the process by which parameters are optimised (He et al., 2016). This in turn helps

to mitigate the issue of vanishing gradients that plague deep neural networks. A vanishing
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gradient refers to when a weight gradient becomes extremely small during training. An

extremely small gradient means that the network training becomes extremely slow, or worse

still training may halt altogether as the network does not know which direction to move in

(Goodfellow Ian et al., 2016). The inclusion of skip connections however allows the network

to miss a layer during training if the gradients become too small. In practical terms this means

that adding additional layers to a network should result in the same or better performance

compared to shallower networks.

Gradient clip norm

Gradient clipping also helps with gradient related issues during training. However, in contrast

to the skip connections, gradient clipping deals with the opposite issue when gradients

become extremely large. During training, the SGD algorithm can end up moving through

areas of the landscape that are rough and jagged. In turn this means that steep descents and

cliff like edges are often present. When combined with a large learning rate this can produce

large gradient changes causing dramatic weight adjustment within the network. This then

means that the algorithm can end up overshooting the minima or the network may become

numerically unstable causing the training to terminate (Bengio, 2012). Keeping the learning

rate low reduces the prevalence of gradient explosions but they can still occur. Gradient

clipping however helps to prevent this by rescaling the gradient. Rescaling the gradient has

a similar effect to reducing the learning rate of the algorithm by reducing the step size and

preventing the minima from being missed (Kim et al., 2016). In this section a gradient clip

norm of 10 was compared against a clip norm of 5 in the baseline. The training data size was

set at 240 images and the validation split remained at 10%.

Hyper-parameter results

A Kruskal Wallis test found that ResNet101 backbone significantly outperformed the

ResNet50 backbone irrespective of the gradient clip value or the training schema (p <

2.2× 10−16, N = 960) (Figure 2.8). Although the difference is striking the result is not

unexpected. It confirms the information in the previous paragraph that a deeper network
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Figure 2.8: A plot of the mAP score against 4 different hyper-parameter combinations.
The ResNet backbones were compared at two different level as well as the gradient clip
value was set at either 5 or 10. The height of the bar chart represents the mAP score of each
hyper-parameter combination for each training schema. The ResNet101 backbone performed
significantly better than ResNet50 across both gradient clip values regardless of the training
schema. Training schema S4 performed better than training schema S2 within the ResNet101
backbone at both gradient clip values. Finally, the highest mAP score was achieved with the
ResNet101 backbone, a gradient clip of 10 and the S4 training schema.

will always perform at least as well as shallower network. However, it was still important to

verify the result on a relatively small training data size of 240 images. Due to the extreme per-

formance difference the remaining gradient clip comparisons focus solely on the ResNet101

backbone.

The ResNet101 backbone had 8 different network combinations to test. However, two of

the training schemas with a gradient clip of 10, S1 and S3, become numerically unstable and

did not finish. This maybe due to an interaction between the larger gradient clip norm and

the 100 epochs of training that solely focuses on the headers in both schemas S1 and S3. The

same behaviour was also seen in schema S3 when the ResNet50 backbone was combined

with a gradient clip of 10. As result, the two different gradient clip values were compared

with the ResNet101 backbone and just for schemas S2 and S4.
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A mixed model analysis of variance (ANOVA) was used to evaluate the two gradient

clip norm values. The gradient clip value and training schema were set as fixed effects along

with the interaction. The random effect controlled for the difference between images in the

test set. The gradient clip norm and training schema were both significantly different from

0 (p = 9.337×10−3 and p < 2.2×10−16 respectively, N = 240) as well as the interaction

(p = 1.164×10−12, N = 240). The fixed effects of the model also explained a significant

proportion of the variation in the mAP score with a marginal R2 = 0.187.

The significance of the interaction term implied that the effect strength of the gradient clip

norm varied between training schemas. To test which of the 4 network combinations were

different from one another a pairwise Bonferroni multiple comparison test was used. In turn

all 6 of the pairwise comparisons were found to be significantly different from one another at

a 5% level. The highest mAP score with a value of 0.601 was produced with a ResNet101

backbone, a gradient clip norm value of 10, and a variable learning rate schema that trained

across all layers. This was an 11.1% mAP increase relative to the baseline performance and

it meant that 91.3% of the practical performance maxima had been achieved. This model

configuration is referred to as the alpha configuration for the rest of this chapter.

2.5 Discussion

Automated segmentation is a major obstacle in computational cell tracking (Caicedo et al.,

2017). The non-rigid nature of a cancer cell means that it is extremely difficult to define as a

target and the low contrast between the cell and the background further complicates the issue.

However, segmentation performance has been increased dramatically with the introduction

of convolutional neural networks (CNNs) (Asgari Taghanaki et al., 2020). CNNs have been

able to capture an unprecedented level of precision which has in turn allowed more complex

features to be investigated. Furthermore, they offer a higher throughput capability due to

their increased level of autonomy and lack of sustained operator input.

Nevertheless, full transferability has yet to be achieved. Thus in the majority of cases a

network will need to be re-trained on a specific sample of data to account for the variability
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between research groups. Thus, as a minimum, a high level understanding of the basic factors

that influence a CNNs performance is necessary to ensure that the best possible results are

achieved.

2.5.1 Training data importance

One of the most important factors in a CNNs performance is the data that the network is

trained upon. The training data is used to estimate the network’s parameters which in turn

control how well a network will perform during segmentation. Time and attention should

therefore be given to the quality of the training data that is used and to ensure that it is

representative of the target population. Also, specific care should be given to any manual

annotations that are performed as an erroneous error can have a substantial negative impact

on the network’s performance (Moen et al., 2019). Once the training data has been accurately

collected and curated the next issue is to determine how much data is needed.

Optimal training data size

The error of a CNN, as with any model, is expected to decrease as the sample size increases.

This explains why an increase in training data caused a significant increase in the mAP score

of the network (Figure 2.6). The increase in training data means that a larger proportion

of the population is now known. The larger proportion of known information means that

the network error decreases which in turn causes an increase in the mAP score, 1 - error =

mAP score. Yet, despite the significant relationship it is still not clear how much training

data is needed. Furthermore, it would be incorrect to assume that the linear relationship will

continue indefinitely and that increasing the training data size will always be beneficial.

Theoretically the network error will decrease until it is asymptotic with the Bayes error.

Hence, the model performance will increase until it reaches an inflection point and begins to

flatten. The location of the inflection point is important because it defines how much training

data is needed to achieve an optimal network performance (Goodfellow Ian et al., 2016).

Although the inflection point was not found in this analysis the model fit the data best when

the exponent was equal to 1 rather than with a reciprocal term. This therefore suggests that



2.5 Discussion 57

the relationship was not beginning to flatten. Thus, implying that considerably more than 5%

of the image population needs to be sampled to reach an optimal network performance. As a

result, the total training data size will most likely not be an active decision from the operator

but rather it will be constrained by other external factors. The best practice approach should

therefore be to collect as much training data as possible with the knowledge that any tractable

increase in training data size will be beneficial to the model performance.

2.5.2 Training algorithm

An alternative approach is to improve the training algorithm through optimising the hyper-

parameters in the model. One of the most important, but also most difficult, hyper-parameters

to optimise is the learning rate. The learning rate needs to be large enough to allow for

adequate exploration of the parameter space, but yet small enough to converge onto a minima

when it has been found. Striking a balance between these two competing objects is an active

area of research with a variety of different approaches. Yet broadly all of the approaches

centre around the idea that the learning rate should vary over the training duration.

Adaptive learning rate

The benefit of a variable learning rate is evident across all of the training comparisons where

schema S3 and S4 consistently outperform schemas S1 and S2, albeit with the exception of

the ResNet50 backbone. Likewise, the alpha configuration also used the S4 variable learning

rate schema (Figure 2.5). A further extension upon schema S4 is to allow the training process

an even higher degree of autonomy such that it evaluates its own performance during training

and then changes the learning rate accordingly. This is referred to as an adaptive learning rate

as the learning rate changes dynamically during training rather than being fixed at the start of

training (Kingma and Ba, 2014). An example of this approach can be seen with the AdaGrad

algorithm that scales the individual parameter updates proportionate to the sum of the inverse

historic gradient values (Duchi et al., 2011). Practically this means that training favours

a direction that has a gradual slope rather than solely picking the steepest gradient. The

motivation being that the algorithm will find a reliable path that descends towards a global
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minima and stick to it rather than bouncing between ridge lines. Adaptive learning rates

are often a popular chose when training a CNN because they tend to converge faster than

stochastic gradient descent (Zeiler, 2012) and often more forgiving to optimise. In turn this

is especially useful when working with a large training set size that might be prohibitively

expensive to evaluate for each epoch of training.

2.5.3 Generalisation performance

Although appealing at first glance adaptive learning rates should also be approached with

caution. There is evidence to suggest that the use of an adaptive learning rate might mean that

the final solution is not as generally applicable as that gained via stochastic gradient descent

(Keskar and Socher, 2017). This might not be an issue if the training data is extremely large

or highly representative but in context of cell tracking it has important implications.

Time-lapse videos are commonly recorded in a sequential manner, often with large gaps

between each recording. This is a product of the experimental workflow by which cells are

cultured and is often unavoidable. Likewise results from previous experiments are often

used to inform the decisions of future experiments and thus a sequential workflow can be

beneficial. The downside of this is that the total population size grows through time rather

than remaining fixed. Thus, initially the training data set is a random 5% sample of a

single experiment. However, as more experiments are performed the sample becomes less

representative of the population. Therefore, a high degree of generalisation is essential to

ensure that the network is only re-trained for a given lab rather than needing to be re-trained

for each experiment. As a result, stochastic gradient descent was kept as the only training

algorithm through all training combinations.

Finally, to maximise the general applicability of the alpha configuration, multiple models

where trained independently and then they were combined for the final evaluation. This

is known as an ensemble approach. The motivation for an ensemble approach is that each

model will make slightly different mistakes, model M1 will detect slightly different features

to model M2 (Chandra and Yao, 2006). Hence when combined together the average model

performance will benefit from the independent capabilities of each model and thus the mAP
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score will increase. To determine whether an ensemble approach is beneficial a single

alpha configured model was evaluated against the combined output of the single model

plus another 3 independent alpha configured models. Although the training configuration

remained constant across the 4 models the training images were randomly divided into the

training and validation sets. This means that each of the models did not have exactly the

same images in their validation set, and therefore different models were able to focus on

slightly different features. After evaluating the two approaches the ensemble approach was

found to have a 2% higher mAP score compared to the single model. This confirmed the

use of a model ensemble and therefore all subsequent time-lapse data in this thesis were

segmented by 4 independently trained alpha configured CNNs.

To summarise, cell tracking is a critical pre-processing stage that is essential when

analysing time-lapse videos. In this chapter a variety of different automated cell tracking

approaches were discussed before a convolutional neural network was chosen. The con-

volutional neural network was then optimised with a specific focus on the training data

quantity and structure. In turn the trained convolutional neural network was then used for all

subsequent cell tracking throughout the remainder of this thesis.





Chapter 3

A phenotypic switch in the dispersal

strategy of cells selected for colonisation

3.1 Introduction

Metastasis is a form of long-range dispersal (Amend et al., 2016; Tissot et al., 2019) and

central to understanding how cancers metastasise is understanding how cells migrate (Paul

et al., 2016; Wells et al., 2013). During migration, as cancer cells become more invasive,

they adopt an altered morphology, typically taking on elongated shapes characteristic of

epithelial-mesenchymal transition (EMT) (Cowden Dahl et al., 2009; Odenwald et al., 2013).

This change in cellular morphology is an important marker of migratory state (Prasad and

Alizadeh, 2018; Wu et al., 2020). As result, quantitative measures of cell morphology taken

from static images have been shown to effectively differentiate between cancer cell lines with

high and low metastatic potential (Alizadeh et al., 2016; Lyons et al., 2016). Yet, there are

important aspects of migratory behaviour linked to metastasis that cannot be captured solely

from static images. This is especially evident when investigating dynamical behaviours such

as signal processing ability.
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Challenges of metastasis

To successfully metastasise a cell is required to navigate through a series of sequential

steps known as the metastatic cascade. The cascade begins with a cell escaping from the

primary tumour before then migrating through the extracellular matrix towards a nearby

blood vessel. Once at a blood vessel the cell must then intravasate into the blood before it is

carried around the body to a distant site. After reaching a distant site the cell then needs to

extravasate from the blood and invade into the foreign tissue. Finally, the cell must re-initiate

aggressive proliferation and colonise the distant site by forming a secondary macroscopic

tumour (Valastyan and Weinberg, 2011).

In addition to the cellular changes needed for metastatic success there are also a host of

environmental changes needed for a cell to metastasise (Shieh, 2011). This is evident from

the onset of cellular dispersal where nearby collagen fibres are straightened perpendicular to

the tumour boundary (Provenzano et al., 2008). The straightened fibres then act as a pathway

for future migrants in turn improving their migratory success (Wershof et al., 2019). This

dynamic cell-environment interplay continues throughout the metastatic cascade (Yuan, 2016)

and highlights the importance of the surrounding micro-environment in shaping metastatic

progression.

Morphological behaviour distant site colonisation

Successful colonisation of a distant site, the final and rate-limiting step of metastasis (Mas-

sagué and Obenauf, 2016), requires navigation through the unpredictable tumour microen-

vironment (Clark and Vignjevic, 2015) as well as the novel environment at a the distant

metastatic site (Valastyan and Weinberg, 2011). In both stages success is achieved, in part,

by the cell’s capacity to detect and respond to changes in the environment (Costa-Silva

et al., 2015; Peinado et al., 2011; Psaila, Kaplan, Port, and Lyden, Psaila et al.; Sceneay

et al., 2013). Therefore, cells capable of distant site colonisation would be expected to have

an altered signal processing ability and be more reactive to environmental change. As a

result, an altered degree of morphological change might be expected in colonising cells.

Furthermore, morphological change is expected to be positively correlated with migration
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speed in successfully metastasising cells, because a faster-moving cell will experience a

greater degree of environmental variation over a given time period, and therefore change its

morphology more rapidly in response.

To test this hypothesis the chapter proceeds by first detailing the experimental selective

pressures that were used to evolve three populations of cells each of which correspond

to a separate stage of the metastatic cascade (Chaffer and Weinberg, 2011; Pantel and

Brakenhoff, 2004): escape from the primary tumour, invasion of foreign tissue, and distant

site colonisation. The chapter then explains how Zernike moments can be used to quantify

the morphology of each individual cell within the evolved populations. This morphological

information is then modelled in response to the speed of migration and the distance to

neighbouring cells. Finally, the chapter concludes by discussing the morphological dynamics

of each population in light of the selective pressure that were applied.

3.2 Data collection

To evaluate the precise phenotypic changes that are associated with metastatic success, it

is preferable to compare replicate populations of cells that differ only in their ability to

metastasise. Clinically this is often not possible as a variety of different selective pressures

tend to exist within a tumour. However experimental evolution, a technique more commonly

seen in microbiology, can be used to generate such cancer cell populations (Sprouffske et al.,

2012; Taylor et al., 2013).

3.2.1 Evolved population summary

Starting with a population of MDA-MB-231 breast cancer cells three separate selective

regimes were applied each of which was designed to be similar to the ecological pressures

experienced whilst traversing the metastatic cascade (Valastyan and Weinberg, 2011). Two

biological replicate ancestor populations were also frozen at the start of the experiment to act

as a control for comparisons with the evolved lines (Figure 3.1) (Kawecki et al., 2012).
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Figure 3.1: Experimental evolution of cancer cell populations.
Ancestor populations were kept frozen throughout. Escape populations were placed in a
high density collagen matrix surrounded by a low density outer collagen ring: after 10-14
days cells that had escaped into the outer ring (shown in blue) were released, expanded
and reseeded back into a new high density collagen core; this process was repeated 7 times
over the course of 6 months. Invasion populations were seeded around a Matrigel island;
after 7 days cells that had invaded the Matrigel (shown in blue) were released, expanded
and reseeded around a new Matrigel island this was repeated 15 times over the course of 6
months. Colonisation populations were seeded onto a piece of decellularized rat lung which
acted as a novel scaffold for colonisation and left to establish for 6 months. Four replicate
lines were maintained for each treatment.

Escape populations

The escape populations (Figure 3.1) were selected by tightly packing cells into a high density

core of collagen and then allowing them to escape outwards into a low density collagen outer

ring (Keeton et al., 2018). After 10-14 days the cells that had escaped into the outer collagen

ring were recovered from the matrix, expanded, and then seeded back into a new collagen

escape assay, completing one round of selection. In total, 7 rounds of selection were applied

to each of the four biological replicate escape populations. The high density collagen core and

the low density outer collagen ring were both three-dimensional (3D) culture environments

designed to be similar to those experienced during tumour dissemination.
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Invasion populations

The invasion populations (Figure 3.1) were selected following a similar protocol to the escape

populations whereby repeated consecutive rounds of selection were applied. In contrast

to the escape assay, however, cells moved from a 2D to 3D environment, similar to the

change in environment experienced during the arrest of a cell at a distant site. The cells

were seeded around the outside of a Matrigel island - a synthetic basement membrane matrix

widely used in cell culture - and left to invade. After 7 days the cells were collected from the

Matrigel, expanded and seeded around the outside of another Matrigel island. This process

was repeated 15 times for each of the four biological replicate populations over the course of

the 6 month experiment.

Colonisation populations

The colonisation populations (Figure 3.1) were selected by culturing cells on a piece of

decellularized rat lung, which acted as a scaffold for growth similar to that experienced by

cells colonizing a distant site (Keeton et al., 2018). The protocol involved cells being seeded

onto a decellularized scaffold and left to colonize over a 6 month period. Decellularized

tissue is generated by removing all cells from a piece of tissue such that only the extracellular

matrix is left. At the end of the experiment cells were released from the scaffold, ensuring

that the population represented cells from within the tissue core as well as the edges. Again,

this selection was applied to four biological replicate populations.

Finally, all twelve experimentally evolved cell populations were frozen and then thawed

alongside the ancestor populations prior to experimental analysis. This step ensured that any

selective pressure from the freezing-thawing process was constant across all treatments and

replicate populations.

3.2.2 Time-lapse microscopy

Once thawed the cells were then placed onto 2D tissue culture plates and their migration was

recorded over a 12-hour period, with images taken at two-minute intervals. This resulted
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in 11,880 phase contrast images being collected over a total of 33 time-lapse videos. The

2D plastic environment was intentionally chosen as a neutral testing environment and to

ensure that the morphology could be clearly seen without the use of fluorescent tags, a factor

that might have applied an additional selective pressure (Liu et al., 1999). Further technical

details related to the experimental assays and exact microscope settings can be found in

Appendix A.

After the time-lapse videos had been recorded, the cells were then tracked through the

semi-automated Usiigaci pipeline (Figure 3.5A) (Tsai et al., 2019) which had been trained

with an alpha configuration as detailed in Section 2.4.3. The segmented morphology of each

cell was then manually checked in every frame to detect any possible errors i.e a cell had

divided, been mis-identified or incorrectly segmented. Furthermore, 30 minutes before and

after a cell division were excluded to remove any rounded morphologies typical of a cell

dividing (Cooper and Hausman, 2000; Théry and Bornens, 2006). Finally a cell needed to

appear in at least 30 frames and be present for at least 75% of the trajectory to be included in

any further analysis. A total 813 cells were tracked across the 33 time-lapse videos.

3.3 Quantifying morphology

Once tracked, the morphology of each cell needed to be quantified. Whilst a wide variety of

different morphological measure exist, they can be broadly grouped into two main categories;

descriptive measures and basis function expansions (Prasad and Alizadeh, 2018). Descriptive

measures include metrics such as the cell perimeter, area, and aspect ratio. They are classified

as descriptive because they measure a given feature that is then used to summarise the entire

morphology of a cell (Pincus and Theriot, 2007). As a result, descriptive measures tend to

have a straightforward biological interpretation and they are often easy to record. However,

because they only measure a single feature are also limited by the prior belief of the operator.

Hence not all of morphological variation is necessarily captured. Furthermore, descriptive

measures tend to be highly correlated with one another which can subsequently restrict

further analysis.
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Figure 3.2: A graphical representation of a basis function.
(A) The vectors (3,4) and (4,2) are described with the non-orthogonal basis (1,1) (shown
in green) and (0,1) (shown in red). (B) The vectors (3,4) and (4,2) are described with the
orthogonal basis (1,0) (shown in blue) and (0,1) (shown in yellow).

3.3.1 Basis function expansions

In contrast basis function expansions, when taken to a high enough degree, extract all of the

information that is encoded within morphology of a cell (Pincus and Theriot, 2007). This is

achieved by representing the morphology as a unique mathematically function. The function

is then decomposed into a linear combination of functions, known as a basis (Flusser et al.,

2009). The individual morphologies can then be differentiated from one another dependent

on their specific basis function combination, known as the moments of a function.

An example of a basis can be seen by representing points on a 2D grid. In this example

the space is all possible vectors of the form (x,y) where x and y are real numbers. The

vectors (1,1) and (0,1) then form the basis by which all possible elements, vectors, in the

space can be represented as a linear combination. Hence the point (3,4) = 3(1,1)+1(0,1),

and the point (4,2) = 4(1,1)−2(0,1) (Figure 3.2A). Whilst this example is trivial the same
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concept can be extended to higher dimensional vector spaces and into function spaces via a

polynomial basis, the set {1,x,x2} is an example of a polynomial basis.

Orthogonal basis

Whilst the basis (1,1) and (0,1) was used in the previous example is does not mean that it

is the only eligible basis in the space. On the contrary, there are often multiple bases that

can be used within a given space i.e. the basis (2,1) and (1,2) is also valid. However, some

bases are used more often because they possess a desirable characteristic, orthogonality.

Formally two functions or vectors are orthogonal if their dot product is = 0. Although

graphically a pair of vectors can be seen as orthogonal if they intersect at right angles to one

another. Thus, the basis (1,1) and (0,1) is not orthogonal as seen by the 45°intersection. In

contrast the basis (1,0) and (0,1) is orthogonal. Hence a linear combination of the basis

(1,0) and (0,1) can be used to represent the point (3,4) = 3(1,0)+ 4(0,1) and the point

(4,2) = 4(1,0)+2(0,1) (Figure 3.2B). The benefit of an orthogonal basis is that the system

is more straightforward to solve and then interpret, especially in higher dimensional spaces.

An orthogonal basis is also beneficial when calculating the moments of a function as the

orthogonality is inherited by the moments. This is important because it means that each

additional moment is then independent. Hence the same level of accuracy can be achieved

with fewer moments compared to a non-orthogonal basis which has implications on the

performance, as discussed in the following section.

Two orthogonal bases that are commonly used in image analysis are Fourier series

(Tweedy et al., 2013) and Zernike polynomials (Zernike and Stratton, 1934). Zernike

polynomials are often favoured as the x and y components can be evaluated together and the

resultant Zernike moments have a low reconstruction error (Teh and Chin, 1988). As a result,

Zernike moments have been used previously to evaluate the morphology of cancer cells

in still images with great success (Alizadeh et al., 2016; Tahmasbi et al., 2011). However,

their application to live cell imaging remains limited. Extending their application to live cell

imaging therefore offers an exciting opportunity to quantify the morphological dynamics of

individual cells through time, the central theme to this thesis.
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3.3.2 Method of moments

Moments are most commonly encountered in statistics to characterise the shape of a distribu-

tion with a scalar quantity. For example, if a normal distribution is fitted to a sample of data

the distribution will be centred around the average value of the sample. Likewise, the "bell"

of the distribution will be more or less diffuse dependent on the spread of the data. These

two characteristics are referred to as the mean and variance. Yet, more generally they are the

first and second order moments of the function, in this case the function is a normal density

function. Moments therefore act as method to capture the features of a sample with respect

to a general form.

Whilst only the 1st and 2nd order moments are normally used in statistics higher order

moments also exist, the 3rd and 4th order moments are known as skewness and kurtosis

respectively. The motivation for using higher order moments is that they extract more detail

about the shape of the function. This then reduces the number of samples that the function

can represent and allows for greater differentiation between groups. Furthermore, if moments

are taken to a high enough order, then every distribution can be represented uniquely. This is

an important point in image analysis as it ensures that every shape can be distinctly defined if

a high enough moment order is used. Albeit, determining what moment order is high enough

can be challenging.

Moment error

A moment is defined as a projection of a function onto a polynomial basis. The general form

for a moment of order (p+q) in the image plane ξ is:

Mpq =
∫∫

ξ

ψpq(xy)︸ ︷︷ ︸
Basis

Function

f (x,y)︸ ︷︷ ︸
Image

Function

dxdy : p,q = 0,1, ...,∞ (3.1)

and if moments are taken to the order (p+q) = ∞ than an image will be reconstructed exactly.

However, in practice, moments are taken to the order (p+ q) = ν : ν << ∞. This allows

the method of moments to be tractable but it also helps to reduce the effect of background
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noise. The background noise arises a result of numerical errors that occur during practical

applications. Whilst unavoidable the background noise does mean that there is an error

between the original image, f (x,y), and the reconstructed image f̂ (x,y). Hence minimising

the error is essential to ensure that the moments accurately represent the original image (Liao

and Pawlak, 1996).

Two factors that heavily influence the size of the error are the max moment order ν ,

which is positively correlated with the error, and the choice of basis. Thus, if reducing the

max moment order helps to minimises the effect of background noise. Then choosing a basis

that requires a smaller moment order, such as an orthogonal basis, is a advantageous.

Invariance criteria

The choice of basis also effects whether the moments are invariant to translation, rotation,

and scaling. Satisfying these 3 invariance criteria is essential to ensure that any difference

between moments is solely due to a difference in shape rather than prospective i.e. the same

image is recorded regardless of whether it is upside down.

Translational invariance can be achieved by translating each object to have the same

centre of mass i.e. the centre of mass is always around the origin, (0,0). Likewise scaling

invariance can be achieved by scaling each object by a constant with respect to its average

radius (Flusser et al., 2016). Finally, whilst rotational invariance can be achieved with

Cartesian coordinates (Hu, 1962) the reconstruction power is often very low. Thus, circular

moments are commonly used instead as they are naturally invariant to rotation and can be

adopted by transforming the image to a Polar coordinate system.

3.3.3 Zernike moments

A special form of circular moments that keep their magnitude constant under rotation are

Zernike moments (Zernike, 1942). The moments are calculated using a Zernike polynomial

basis which is orthogonal on the unit disk, (x2 + y2)≤ 1, meaning that each moment is also

independent. The combination of rotational invariance and reduced background noise from
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the orthogonal basis means that Zernike moments are frequently used in image analysis to

quantify objects and shapes (Flusser et al., 2009; Liao, 1994).

Zernike moment definition

Zernike moment are defined in a discrete image as (Shutler and Nixon, 2006):

Zm,n =
m+1

π

N−1

∑
x=0

N−1

∑
y=0

Pxy[Vm,n(x,y)]∗ : x2 + y2 ≤ 1 (3.2)

where m defines the moment order and can take integer values from 0 −→ ∞. The image

function is represented by Pxy but because an image is measured on a discrete scale, in pixels,

the double integral in Equation 3.1 is replaced with a double summation in Equation 3.2.

The double summations starts at (0,0) and finishes at (N,N) where N is equal to the size of

the image. Likewise the basis function, the Zernike polynomials, corresponded to Vm,n(x,y)

where ∗ denotes the complex conjugate. Finally n, the integer of rotation, is either positive of

negative so long as the following two conditions are satisfied:

m−|n|= even and |n| ≤ m (3.3)

whereby |n| denotes the absolute value of n. Hence an even moment order will have an

integer of rotation that is even, or 0, and an odd moment order will have an odd integer of

rotation. The integer of rotation is important as it controls the number of oscillations that

occur within each Zernike polynomial which in turn controls the amount of flexibility within

the polynomial.

Zernike moment error

Due to Zernike polynomials being orthogonal on the unit disk they can also be expressed in

polar coordinates such that:

Vm,n(r,θ) = Rm,n(r)exp(inθ) where i =
√
−1 (3.4)
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and Rm,n(r) is the radial polynomial

Rm,n(r) =
(m−|n|)/2

∑
s=0

(−1)s (m− s)!

s!(m+|n|
2 − s)!(m−|n|

2 − s)!︸ ︷︷ ︸
Polynomial
Coefficient

rm−2s : r ≤ 1 (3.5)

where m and n represent the moment order and integer of rotation. In polar form it becomes

clear that the polynomial coefficient is dominated by factorials in both the numerator and

the denominator. Thus the magnitude of the coefficient tends to become large even when

m is relatively small. The combination of a large coefficient with a high polynomial order

means that the error between the numerical approximation of the integral in Equation 3.1,

calculated by the double summation in Equation 3.2, also tends to become large. Hence

this error causes the difference between the original image, f (x,y), and the reconstructed

image f̂ (x,y). Thus, higher order moments have to be used with caution when quantifying

the shape of an object to ensure that the information being retrieved outweighs the numerical

error of the moment.

Zernike moment invariance

However, the pre-processing necessary to achieve invariance to translation and scaling causes

the first two moments, orders 0 and 1, to no longer be informative. Therefore, the moments

have to be removed from any further analysis causing an even high moment order to be used

as a result.

|Z(m)(n)|= |Z(m)(−n)| (3.6)

Likewise rotational invariance is achieved by using the magnitude of the moment rather

than the moment itself. Yet, Zernike moments have a positive and negative component

dependent on whether n > 0 or n < 0. Thus, because the magnitude of a complex number

is equal to the magnitude of it complex conjugate the positive and negative rotations are no

longer distinct (Equation 3.6). Therefore, all analysis strictly considers only the non-negative
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rotations of each polynomial order to ensure that the information is not being duplicated

(Alizadeh et al., 2016; Shutler and Nixon, 2006; Tahmasbi et al., 2011). However, this then

means that the amount of information being retrieved at each moment order is also reduced

which further prompts the need for higher order moments, albeit at the cost of detecting

further background noise.

3.3.4 Optimal number of Zernike moments

Selecting the optimal moment order is an important yet difficult balance to strike. The

moment order needs to be high enough to ensure that sufficient information is captured, and

thus unique shapes can be differentiated from one another. Yet the order also needs to be

low enough to ensure that any surplus background noise is kept to a minimum and thus the

performance is maximised.

Mean squared error

The reconstruction performance for a given moment order γ can be evaluated via the mean

squared error (MSE). The MSE is calculated as the sum of the squared error between the

original image, f (x,y), and the reconstructed image f̂ (x,y) (Liao and Pawlak, 1996). Note

that the reconstructed image f̂ (x,y) for order γ is formed using all moment values ≤ γ . For

example, if the moment order = 10 then all previous orders up to and including order 10 are

used in the reconstruction. The MSE is then calculated for increasing orders to determine the

point at which the background noise outweighs the gain in detail.

Mean squared error results

To determine the optimal moment order a frame was chosen at random from the experimen-

tally evolved time-lapse videos. The frame contained a total of 36 cells with a wide variety

of different morphologies. The MSE was then calculated for each of the 36 cells starting

at a moment order from 2 through to a moment order of 48. The average MSE was then
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calculated for each moment order across the 36 cells to produce an average MSE which was

then plotted against the moment order (Figure 3.3)

Figure 3.3: A plot of the average mean squared error against moment order.
The average mean squared error (MSE) of reconstruction against the Zernike moment order.
The moment order increases from 2 through to 48 in one moment intervals. At a moment
order of 2 there is an MSE of 0.965. The MSE then continues to decrease until a moment
order of 45 at which the lowest MSE value of 0.224 is obtained. Finally the MSE begins to
increase rapidly for moment orders greater than 45 with a value of 0.455 at a moment order
of 48. The MSE drops below 0.5 at a moment order of 20 to indicate the minimum order at
which an informed reconstruction is achieved.

Initially the average MSE decreases quickly as the moment order increases (Figure 3.3).

The reduction in average MSE then continues until an inflection point is reached at a moment

order of 45. The inflection point indicates the moment order at which the reconstruction

error has been minimised. After reaching the inflection point the average MSE then begins

to rise rapidly, indicating that any additional moments would only add surplus noise to the

reconstruction (Liao and Pawlak, 1996).

However, whilst the reduction in average MSE continues until a moment order of 45 the

rate of reduction is not constant. Instead, the average MSE follows an exponential decay

whereby the relative reduction in MSE per additional moment order becomes less closer
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Figure 3.4: The Zernike moment reconstruction performance on cell morphology.
The reconstruction performance increases as the Zernike moment order increases. However,
the increase in reconstruction performance from a Zernike moment order of 10 to 20 is
considerably more compared to the increase in performance from a Zernike moment order of
20 to 30. All of the reconstructions suffer from background noise as seen by the grey pixels
that collect around the white outline.

to the point of inflection. For example, a moment order increase from 20 to 30 causes an

average reduction in MSE of 0.154. In contrast a similar 10 order moment increase from 30

to 40 causes an average reduction in MSE of 0.069, less than half the reduction for the same

10 order increase (Figure 3.3). This result highlights how higher order moments extract ever

finer levels of detail whereas lower order moments capture large structural patterns. Whilst

extra detail is useful, especially when categorising morphologies within a still image, in

a dynamic setting it can also make it more difficult to determine what aspect of the shape

has changed i.e. one large change in shape from a rectangle to a circle or a combination

of smaller changes from a smooth to ruffled edge. Hence, the point of inflection can be

interpreted as the moment order upper bound rather than a set value.

Another important marker is the moment order at which the MSE drops below 0.5. The

MSE is calculated as the sum of the difference in each pixel between the original image,

f (x,y), and the reconstruction, f̂ (x,y). The two images are both 8-bit grey scale images

meaning that each pixel can take a value between 0 and 255, white and black respectively. In

the original image, f (x,y), the pixel values are strictly either 0 or 255 as the object shape is

known exactly. However in the reconstructed image, f̂ (x,y), the pixel values vary between 0

and 255 because the moment order γ << ∞ (Figure 3.4). Hence if the standardised error of a

given pixel is greater than 0.5 the reconstruction of that pixel is no better than chance. Thus
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the moment order at which the average MSE drops below 0.5 can be seen as the minimum

order for an informed reconstruction of the shape. Across the 36 cells that average MSE first

dropped below 0.5 when the moment order = 20 (Figure 3.3). Therefore a moment order of

20 can be interpreted as the minimum order needed for an informed reconstruction.

Zernike moment summary

To summarise, the average MSE was calculated to determine the optimal moment order. The

lowest reconstruction error is achieved with a moment order of 45. Yet an informed level

of reconstruction is achieved with a moment order of 20. Whilst the morphology of each

cell needs to be quantified accurately the focus of this thesis is to investigate the change

in morphology, which is then used as a proxy for signal processing. Hence the onus is

on detecting large morphological changes that demonstrate an active response instead of

focusing on the morphology itself. As a result, a moment order of 20 is used for the remainder

of this thesis to measure the morphology of each cell, albeit the same qualitative result was

also achieved with a moment order of 45.

3.4 Results

3.4.1 Quantifying dispersal in evolved populations

In each frame three metrics were captured for every cell: morphology, spatial location and

distance to a neighbouring cell. The morphology was measured with 20 Zernike moments

(Zernike, 1942) and then the rate of morphological change was calculated as the Euclidean

distance between the vector of moments in frame t and t +1 relative to the time between

frames (Figure 3.5B). The speed of migration was then calculated as the change in spatial

location between consecutive frames (Figure 3.5C). Finally, the distance to the closest

neighbouring cell was recorded as the shortest distance from the edge of the cell contour to

another neighbouring cell contour without crossing the body of the cell (Figure 3.5D). The
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Figure 3.5: Quantifying dispersal from time-lapse videos.
(A) Cells were tracked over a 12 hour period with images taken at two minute intervals using
phase contrast time-lapse microscopy to generate movies from which morphology could be
segmented through the use of a convolutional neural network. (B) The rate of morphological
change was recorded as the distance between Zernike moments in consecutive frames. (C)
The speed of migration is calculated as the distance between the spatial location of cells in
consecutive frames. (D) The distance between neighbouring cells is quantified as the shortest
distance between the contour of one cell and the contour of another. The direction of the
arrow points from a given cell to the point on the contour of the closest neighbouring cell.

three metrics were then averaged across the entire trajectory of the cell, providing a summary

of the dispersal behaviour for each cell.

After the three metrics were calculated the rate of morphological change and the speed

of migration were then evaluated to determine whether there was a significant difference

among the four populations. An analysis of variance (ANOVA) was used to compare the

mean rate of morphological change and the mean speed of migration across all populations,

differences in wells were accounted for as a random effect. There was significant variation

among the populations in their mean rate of morphological change (p = 0.0296, N = 813). A

post-hoc Bonferroni multiple comparison test was then used to identify which populations

were significantly different. The escape populations were found to have a significantly higher
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Figure 3.6: Comparing the mean rate of morphological change and speed of migration
among the four populations. (A) A plot of the natural log-transformed rate of morpho-
logical change for each of the four populations. The centre dot signifies the mean rate of
morphological change with errors bars signifying 95% confidence intervals. The escape
populations had a significantly faster rate of morphological change compared with the in-
vasion populations, p = 0.0152 (N = 813). (B) A plot of the natural log-transformed speed
of migration for each of the four populations. The centre dot signifies the mean speed of
migration with errors bars signifying 95% confidence intervals. There was no significant
difference in the average speed of migration among the 4 populations. The mean, standard
error and number of observations for each population can be found in Table B.1, Appendix B

rate of morphological change compared with the invasion populations (p = 0.0152, N = 813;

Figure 3.6A). There was no significant difference in the mean speed of migration among the

four populations (Figure 3.6B).

3.4.2 Speed of migration predicts rate of cell-morphological change in

evolved populations

Next, the morphological behaviour was investigated in response to the speed of migration

and the nearest neighbour distance. A linear mixed model was fitted across all of the data

such that the rate of morphological change was dependent on the speed of migration, the
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Figure 3.7: The rate of morphological change against the speed of migration.
The natural log-transformed rate of morphological change plotted against the natural log-
transformed speed of migration. The straight lines represent the reduced model for each
population using only parameters that are significant at the 5% level. The ancestor populations
have an intercept-only model fitted (N = 88). The speed of migration is the only significant
variable in the escape (N = 230, p = 1.765× 10−3) and invasion (N = 283, p = 0.018)
populations. For both escape and invasion populations the rate of morphological change is
positively correlated with the speed of migration, the faster the speed of migration the higher
the rate of morphological change.

distance to the nearest neighbouring cell and the interaction of the two (Equation 3.7). The

model parameters were selected through a process of forward selection and only included if

they were significant at the 5% level. The populations were also included as a fixed effect

allowing the intercepts and slopes to vary between populations. The significant parameters

were then used to fit a reduced model to the ancestor, escape and invasion populations (Figure

3.7).

Rate of
morphological

change
=α+β1∗( Speed of

migration)+β2∗( Distance to
nearest neighbour)+β3∗( Speed of

migration∗
Distance to

nearest neighbour) (3.7)
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In the ancestor populations neither the speed of migration nor the distance to neighbouring

cells significantly affected the rate of morphological change. As such, an intercept only

model was fitted to the data (Figure 3.7). However, the intercept model explained only a

small proportion of the variance, (marginal R2 = 0) (Nakagawa and Schielzeth, 2013). This

might therefore suggest that the rate of morphological change is either highly stochastic, or

that it depends on factors not included in the model.

In contrast, the speed of migration was significant in both the invasion and escape

populations such that it was positively correlated with rate of morphological change, (β =

0.680 and 0.319 respectively: Figure 3.7). Furthermore, the escape and invasion models

also both explained a significant proportion of the variation (marginal R2 = 0.347 and 0.099

respectively). Finally, to ensure that the results were not affected by a small cluster of

potential outliers the same analysis was repeated after having removed any influential data

points (Figure B.2, Appendix B), defined by a Cook’s distance > (4 / N) where N is the

sample size (Bollen and Jackman, 1985). Yet, the same qualitative relationship was still

present.

The steeper slope in the escape populations compared with the invasion populations might

therefore suggest that selection for escape favours cells that can change their morphology

rapidly when migrating at higher speeds. This might be a result of the collagen escape assay

being a 3D to 3D environment compared with the 2D to 3D environment of the Matrigel

invasion assay. However, this could also be due to the different number of rounds of selection

between the two assays, or a difference in the strength of selection within each.

3.4.3 Spatial density affects morphological dynamics

Finally, the colonisation populations displayed a more complex morphological behaviour

dependent on the speed of migration, the distance to the nearest neighbouring cell and the

interaction of the two: as the distance between neighbouring cells increases, the relationship

between the rate of morphological change and the speed of migration becomes negative

(Figure 3.8A). Hence when close to a neighbouring cell, the rate of morphological change

is positively correlated with the speed of migration: a faster speed of migration results in a
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Figure 3.8: A dynamic switch in the morphological behaviour within cells selected for
colonisation. Data points have been removed to highlight the behaviour of the model, the
same model with data points can be seen in Figure B.1, Appendix B. The speed of migration
(p = 5.418×10−14), the distance to the nearest neighbouring cell (p = 2.207×10−10) and
the interaction of the two (p = 2.219×10−11) was significant in the colonisation populations
(N = 212). (A) The predicted natural log-transformed rate of morphological change against
the natural log-transformed speed of migration. The shaded lines indicate the natural log
transformed nearest neighbour percentile. The lighter the line, the further away from a
neighbouring cell with distance values ranging from 2µm - 477µm. (B) The predicted natural
log-transformed rate of morphological change against the natural log-transformed nearest
neighbour distance. The shaded lines indicate the speed of migration percentile. The lighter
the line the faster the speed of migration. The shaded region indicates the range of distances
over which there is no significant relationship in the rate of morphological change and the
speed of migration when the data is centred at these distances, between 57.9µm and 147.2µm.

higher rate of morphological change. However, when the distance between neighbouring

cells is large and a cell is isolated, the rate of morphological change is negatively correlated

with the speed of migration: a faster speed of migration has a lower rate of morphological

change. Furthermore, the same analysis was also repeated after the removal of any potentially

influential data points and the interaction term was still significant in the colonisation

populations (Figure B.2, Appendix B). Finally, the colonisation model also explained a
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significant proportion of the variation in the rate of morphological change (marginal R2 =

0.236).

The switch in morphological behaviour was then examined further to determine whether

the change in behaviour was gradual or sudden. This hypothesis was investigated by centring

the nearest neighbour data a distance x and then refitting the same morphological change

model (Equation 3.7). The speed of migration was then evaluated to determine whether it was

still significant in the model. If the speed of migration was not significant at a distance x then

there was no significant difference in the rate of morphological change for cells migrating at

different speeds. The method was then repeated for different values of x to find a range of

distances over which the speed of migration was not significant. The smaller the range the

more sudden the switch.

At nearest neighbour distances between 57.9µm and 147.2µm the speed of migration

was not significant in the model, as seen by the shaded region in Figure 3.8B. Therefore, at

distances < 57.9µm or > 147.2µm the speed of migration is significantly related to the rate of

morphological change. The small range of distance values suggests that the cells have a high

degree of sensitivity to the location of neighbouring cells. Interestingly, the range of distance

values coincides with values from the literature whereby cells within a tumour core have

been seen to display a correlated mode of migration at spatial distances < 50µm compared

with distances greater than 250µm (Staneva et al., 2019).

3.5 Discussion

Novel phenotypic analysis was conducted across 4 experimentally evolved populations of

MDA-MB-231 breast cancer cells to investigate their morphological behaviour during disper-

sal. Combining experimental evolution with computer vision enabled a multidimensional

data set to be formed that captures the dispersal dynamics of individual cells within each

population. This data set has then been used to build a data driven morphological model that

has uncovered fundamental dynamics at a cellular level and is capable of distinguishing cells

selected for colonisation. Due to its unique and powerful nature this data set is further used
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in Chapters 4 and 5 to investigate other dispersal characteristics that may influence metastatic

success.

3.5.1 Navigating through a complex environment

The continuous flow of cells through the microenvironment creates a landscape that is both

spatially and temporally heterogeneous (Yuan, 2016). This landscape variability might

explain the correlation between the rate of morphological change and the speed of migration

for both the escape and invasion populations (Figure 3.7). The collagen escape and Matrigel

invasion assays used to select the escape and invasion populations are both porous and

complex (Anguiano et al., 2017), but yet they are also malleable. This malleability means

that large structural changes can occur within the environments and migration routes that

were previously accessible may become blocked. Hence a cell may need to respond to the

environment changes by also changing its own morphology to ensuring that it can continue

to migrate and does not become trapped. Likewise, as the speed of migration increases, an

increase in the rate of morphological change might also be necessary to ensure that the cells

are not temporarily stuck by any potential obstacles. This would then also explain why there

is no correlation in the ancestor populations where the environment remains constant and

thus would be no selective advantage to this behaviour.

In addition to comparing the dispersal behaviour of the final populations it would also be

valuable to examine the intermediate populations, the cells that were selected after the first

or second round of selection. If the intermediate populations displayed the same behaviour

as the final population, then this might suggest that a single sub-population was selected

after the first round. However, it may also be that the intermediate populations display a

more gradual change in behaviour whereby the steepness of the slope increases with each

round of selection. This would therefore suggest that the number of sub-populations are

being iteratively reduced with each round of selection. In either case it would give an insight

into the clonal heterogeneity of the original ancestor population (McGranahan and Swanton,

2017) as well as comparing the strength of selection between in both the escape and invasion

assays.
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3.5.2 Forging a path within a crowd

Distant-site colonisation requires a cell to switch from a mode of long-range dispersal

and focus on re-initiating aggressive proliferation; the subsequent increase in local cell

density may reduce available space and thus intensify competition. A similar selective

pressure can be seen in the colonisation assays. In contrast to the ancestor, escape and

invasion populations, where cells are periodically moved to a new expansive environment,

the colonisation population remain fixed. As such in addition to the structural changes that

occurred within the microenvironment there is also a high density of cells migrating locally

as thus the cells themselves could block potential migration routes, therefore explaining the

significance of the neighbour location in the model. This hypothesis would also explain

the interaction that is observed between neighbouring cells. If a cell is migrating at a high

speed and is close to other neighbouring cells, then changing its morphology rapidly might

be necessary to avoid other cells that are changing location dynamically. However, when

isolated the location of neighbouring cells is no longer of concern and thus a reduction in the

rate of morphological change might allow a cell to conserve vital resources.

The significance of the neighbour sensitivity may also suggest that the ability of a cell

to sense contact has been re-acquired within the colonisation population. A loss of contact

inhibition is seen as one of the earliest developments in cancer progression as it allows

aggressive proliferation to ensue, which in turn gives rise to the formation of a primary

tumour (Pavel et al., 2018). However, the high degree of neighbour sensitivity seen in Figure

3.8 questions whether contact sensing is in fact lost, or instead down-regulated earlier in the

metastatic cascade. If true, this could suggest that cells selected for distant-site colonisation

are able to vary their own contact sensing ability dependent on the exogenous environmental

stresses they encounter.

3.5.3 Detecting complex phenotypic behaviours

In summary, interpreting cellular morphology as a dynamic process provides novel insight

into the behaviour of breast cancer cells, and furthers the understanding of the phenotypic
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route to metastasis. A future next step will be to evaluate the morphological dynamics in a

native 3D environment (Petrie and Yamada, 2012) and in the vicinity of stromal cells such

as fibroblasts which are known to have a critical role in metastasis (Malanchi et al., 2012).

The presence of stromal cells might also change the relationship seen within our escape and

invasion populations, as cells would then be able to interact via matrix metalloproteinases.

Thus, rather than needing to change their morphology quickly to prevent being trapped, they

could exploit the matrix metalloproteinases to cut themselves free, as seen previously during

metastatic dispersal (Page-McCaw et al., 2007). Likewise, the behaviour seen within the

colonisation populations may also change when the neighbouring cell is non-cancerous. If

so, then it may suggest that cancer cells selected for colonisation are actively registering one

another rather than simply avoiding another obstacle. Nevertheless, this work highlights the

power of phenotypic analysis in discovering complex emergent behaviours that would not

have been apparent from genetic data.





Chapter 4

Heterogeneity in cancer cell signal

processing

4.1 Introduction

Heterogeneity is widespread in nearly all types of cancer (McGranahan and Swanton, 2017).

Genetic variation can be seen between patients with the same cancer type, intertumoural

heterogeneity, as well as between individual cells within a given tumour, intratumoural

heterogeneity (ITH) (Burrell et al., 2013; Dagogo-Jack and Shaw, 2018). Clinically the

degree of ITH is important, as an elevated level of ITH is seen to correlate with an increased

likelihood of therapy resistance and worse patient outcomes (Morris et al., 2016). As a result,

deciphering the evolutionary path that leads to increased tumour diversity is essential in

trying to predict, and ultimately constrain, cancer progression (Turajlic et al., 2019).

Genetic heterogeneity and therapy resistance

High levels of ITH are expected to increase the rate of tumour evolution, and thus the

likelihood of therapy resistance, through two different mechanisms. Firstly, tumour evolution

is driven, in part, by mutations that randomly appear within the population. The majority of

these mutations either have either a negligible or negative effect on the individual’s fitness.

However, occasionally, a beneficial mutation will appear that increases the individual’s
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fitness and is thus selected (Martincorena et al., 2017). A high degree of genetic variability is

therefore expected to increase the breadth of mutations that appear and thus the likelihood of

a beneficial mutation emerging (McGranahan and Swanton, 2015). Secondly, an increase

in genetic diversity means that relative to normal tissue there is a reduction in cellular

homogeneity, and thus a corresponding increase in cellular competition. This aggressive

competition then promotes the outgrowth of mutant clones (Parker et al., 2020), which further

increases the rate of tumour evolution and disease progression (Section 1.1.2).

4.1.1 Phenotypic heterogeneity

Whilst extensive genetic heterogeneity is common, linking specific genetic changes to

functionally different phenotypic traits remains an enigma (Graham and Sottoriva, 2017).

Resolving this shortfall however is important because adaption occurs at a phenotypic level.

Thus, without an accurate genotype-to-phenotype mapping, it is hard to differentiate the key

genetic changes that are critical for cancer progression from the remaining background noise

(Yi et al., 2017).

In addition, cancer also has a high degree of plasticity (Sharma et al., 2010). Non-genetic

factors such as changes in gene expression have a large, but transient effect on the phenotype

of a cell (Burrell et al., 2013; Marusyk and Polyak, 2010; Meyer and Heiser, 2019). This

causes phenotypic variation to exist on both a cellular and evolutionary timescale. Yet, due

to logistical challenges, both levels of variability are rarely evaluated together and instead the

traits are assumed to be constant at the level of the cell. For example, the migration behaviour

of a cell is typically summarised by a single quantitative value over the entire migration

trajectory. Whilst this assumption can provide valuable insight (Chapter 3), it also relies upon

the local microenvironment remaining equally constant. That is, the same environmental

signals are received by a given cell over its lifespan. However, this assumption is often not

true, especially during metastasis.



4.1 Introduction 89

Short term phenotypic variability in metastasis

Firstly, the local microenvironment is known to have a high degree of spatial and temporal

variability (Yuan, 2016). Hence the environmental signals that an individual cell will receive

are inherently time dependent. Secondly, each individual cell is moving. Thus, even if the

surrounding environment remains temporally constant, an individual cell will still experience

a change in environmental signals as a result of its own migration. A high degree of short term

phenotypic variability may therefore be advantageous during metastasis to compensate for the

variability within the surrounding environment. As a result, cells selected for colonisation at

a distant site are expected to change their phenotypic behaviour more frequently in response

to subtle changes in environment conditions.

Similarly, once the temporal variation has been partitioned, the degree of within pop-

ulation variability is also expected to be higher within cells that have been selected for

distant site colonisation. This expectation is based on the assumption that if a high degree of

temporal variation is advantageous, then all cells selected for distant site colonisation will be

highly flexible. In turn, the high degree of short term phenotypic variability acts as a buffer

against environmental changes, akin to dispersing in the first place (Bowler and Benton,

2005). Yet, if all cells are highly responsive to temporal changes, then the environment

is effectively constant through time. Therefore, ecological dispersal theory would predict

that multiple stable solutions can exist at an evolutionary optima (McPeek and Holt, 1992).

Hence the degree of heterogeneity within the population is also be expected to be higher.

Chapter overview

The two hypotheses that cells selected for distant site colonisation have a higher degree of

phenotypic variability and heterogeneity can be tested by evaluating the signal processing

behaviour through time within each of the experimentally evolved population of cells (Section

3.2.1). The chapter begins by first explaining how the degree of short term phenotypic

variability can be quantified within each population by leveraging the individual time series

data that is collected for each cell during tracking. The advantages of using time series

migration data are then explored as well as certain issues that need to be considered during
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the model building process e.g. how to account for different sources of variability. A

temporally dependent morphological model is then built that also includes the influence of

known covariates such as the speed of migration and the nearest neighbour distance. The

model is then fitted to the time series data at a population level, before then being refitted at a

single cell level. Finally, the results are discussed to compare the different levels of short

term phenotypic variability and heterogeneity within each experimental population.

4.2 Time series data

Single cell tracking records the position of a cell as a point, or a collection of points, repeatedly

over a set period of time. The migratory record can then be used to measure individual

cellular traits such as the rate of morphological change or the speed of migration. The

measured traits can be used to compare different cellular populations or to build quantitative

models that characterise complex cellular behaviours.

Typically, the first stage of analysis involves calculating the average value of a trait over

the entire trajectory of the cell. This means that for a given trait each cell is represented by

a single datum. Whilst effective, this also assumes that the temporal variation in the trait

remains constant over the migration trajectory. Yet in practice this is often not true. Traits

such as cell speed are known to change frequently during migration however this variability

is rarely captured (Figure 4.1). As a result, the migratory dynamics within a population are

summarised as a combination of fixed behaviours.

Modelling temporal data

An alternative approach is to leverage the temporal structure within the data and to acknowl-

edge that the value of a trait at time t may depend on the value of the trait at time t − 1.

Hence the observed time series is then assumed to be generated by an underlying process,

such as a random walk, where each observation is a random variable. As a result, each

individual trait is then represented by a series of data points rather than a single datum. This

means that each trait can then be modelled temporally and at a single cell level. However,
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Figure 4.1: A simulated example of the migration behaviour in three cells that have
the same average speed of migration. A plot of the migration speed for 3 simulated cells
over a 10 hour time period. Cell A migrates at a constant speed of 5µm/h. Cell B begins
from a static position and then increases its speed of migration linearly over the 10 hour time
period reaching a max speed of 10µm/h. Cell C migrates at a speed of 10µm/h for the first
5 hours before then stopping and remaining static for the last 5 hours. Whilst the 3 different
behaviours are distinct, they each migrate a distance of 50µm over a 10 hour time period and
therefore have the average speed of 5µm/h.

the temporal structure does also add additional challenges to the model building process.

The dependency between consecutive data points, known as autocorrelation, is problematic

because it violates an underlying assumption of linear regression. If not resolved the presence

of autocorrelation can cause an underestimation of parameter errors which many in turn lead

to incorrect conclusions being drawn.

4.2.1 Autoregressive-moving-average model

Fortunately, a wide variety of approaches exist to account for the presence of autocorrelation

and therefore model time series data. One of the most common methods is to model the time

series as a combination of two polynomials, known as an autoregressive-moving-average

model (ARMA). The autoregressive polynomial (AR) models the current value at time t as a
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linear combination of historic values plus some stochastic error. Then the moving average

polynomial (MA) models the current value at time t as a linear combination of the historic

errors plus some stochastic error. In both models the number of historic values and errors are

set in advance as hyper parameters whilst the parameters are estimated from the data. The

combination of low model complexity and efficient parameter computation has meant that

ARMA models are extremely popular in time series analysis, especially when there is an

onus on predicting future values as would be the case in a financial setting (Ltkepohl, 2007).

Disadvantages of ARMA modelling

Nevertheless, ARMA models do have limitations, many of which may explain why they are

so rarely used when analysing cell migration data. Firstly, ARMA models approximate the

underlying dynamics rather than trying to understand them directly. Whilst this enables a

prediction to be made, gaining an insight into the underlying dynamics is often the main

objective within a biological setting. Secondly, ARMA models do not naturally handle

irregular or missing data. This can be problematic in the context of cell migration as data is

rarely complete. Missing values can occur due to inaccuracies in the tracking process, or due

to logistical issues such as a cell partly leaving the field of view or being excluded because of

a division event (Section 3.2.2). Finally, ARMA models are primarily a univariate modelling

technique, they model a single time series. Yet in cell tracking experiments a time series

is collected for each individual cell. Hence the data is both cross sectional and temporal,

known as longitudinal data. The objective therefore is to understand the processes that are

generating the time series as well as being able to contrast between the different cells. As a

result, a more flexible approach is needed when modelling cell migration data known as state

space modelling.

4.3 State space modelling

State space modelling (SSM) is a form of hierarchical modelling that partitions the variation

within a time series into two separate models: state and observation (Figure 4.2). The state
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model is designed to reflect the true underlying dynamics of the system. The system is

assumed to have a temporal structure, whereby the value at time t is dependent on the value

at time t −1, and evolve through time as a stochastic process. However, the state is also a

latent process that cannot be observed directly. Thus, the observation model functions as

a link between the state dynamics and observed time series whilst also accounting for the

variability introduced by the sampling procedure. The observations are then assumed to be

independent once the temporal structure has been accounted for by the state model (Durbin

and Koopman, 2001).

Figure 4.2: The structure and progression of a univariate state space model.
The underlying states, in red, have a temporal structure where the state at time t, xt , is
dependent on the state at time t −1, xt−1. The observations, in blue, are then related to the
states via the observation equation and are assumed to be independent once the temporal
structure has been accounted for by the states.

An example of an SSM can be seen by modelling the change in water depth of a lake.

The true depth will change day - to - day in accordance to ratio of rain fall and evaporation.

Hence this process has a temporal structure where the depth of the lake on a given day is

a function of the previous day plus some stochastic variability. These dynamics are then

characterised by the state equation. However, it is not possible to obtain an exact measure of
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the water depth due to the uneven surface on the bottom of the lake which also changes day -

to - day. Thus, the observation model accounts for the experimental variability that links the

underlying dynamics with the observed data.

The ability to partition different sources of variability has meant that SSMs are often

used in an ecological setting where data is notoriously difficult to obtain and often has a high

degree of experimental variability (Aeberhard et al., 2018). However, their application in

modelling cell migration data has been far more limited (Svensson et al., 2018). Extending

the use of state space modelling to single cell migration data therefore offers an exciting

opportunity to test novel hypotheses and gain insight into previously unknown biological

phenomena.

4.3.1 Model structure

The structure of a time invariant SSM with Gaussian errors is defined as (Holmes et al.,

2012):

xt = Bxt−1 +u+Cct +wt where wt ∼ MVN(0,Q) (4.1)

yt = Zxt +a+Ddt +vt where vt ∼ MVN(0,R) (4.2)

where Equation 4.1 represents the state model and Equation 4.2 represents the observation

model. The state of the system at time t is represented by xt , an m×1 vector where m = the

number of hidden states in the model. Likewise, the observations at time t are represented by

yt , an n×1 vector where n = the number of observed time series. The number of states, m,

is often equal to the number of observed time series n. However, in some cases where n is

large, there maybe a belief that multiple observations arise from the same generative process

and thus m < n. The ability to include prior beliefs into the model structure is a powerful

characteristic of SSMs and it features across multiple aspects of the model structure.
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Matrix mapping

The current value of the state, xt , is related to the previous state value, xt−1, via the state

matrix, B. The state matrix is an m×m matrix where the diagonal elements represent the

interaction of the state with itself, and the off diagonal elements represent the inter-state

interactions. The ability to estimate the effect of inter-state interactions could be particularly

useful in modelling competition assays where an increase in the size of population A causes

a corresponding decrease in the size of population B. However, for the remainder of this

thesis no inter-state interactions are considered and thus the state matrix remains strictly

diagonal. If the state matrix is equal to the identity matrix than the system progresses as a

random walk.

Similarly, the observation value at time t, yt , is related to the state value at time t, xt , via

the n×m observation matrix, Z. The structure of the matrix Z is important as akin to the

design matrix in a linear regression context, it relates the underlying generative processes

to the observed time series. If each cell is believed to originate from a unique underlying

process, then the structure of Z will be equal to the identity matrix. However, cancer develops

as a clonal process. Thus, the behaviour of multiple cells maybe expected to arise from the

same underlying generative process. Hence the total number of underlying processes may be

considerably less than the number of observed time series, m << n.

One option is to have an underlying process for each population and then estimate

the effect size for a given process on an individual cellular basis. However, this structure

assumes that each population specific process occupies a distinct phenotypic subspace.

This assumption could be true for the experimentally evolved populations that experience

independent selective pressures (Section 3.2.1). Yet, in vivo, each stage of the cascade is

completed sequentially. Therefore colonisation of a distant site also requires the completion

of earlier stages in the metastatic cascade. An alternative option is to relax the condition of

independence and to assume that each underlying process effects the behaviour of every cell.

Thus the behaviour of a given cell is represented as a linear combination where the effect

size of a given process is estimated from the data. This approach is known as dynamic factor
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analysis and has been adopted for the remainder of this chapter (Harvey, 1990; Zuur et al.,

2003).

Weight vectors

The mean state vector, u, and mean observation vector, a, are m×1 and n×1 vectors that

weight the state and process models respectively. In a multivariate system the weighting

vectors allow the mean of each state or observation to be independent at equilibrium. Whilst

the extra freedom can be useful it also adds an additional overhead to the estimation process.

Thus, if the individual equilibrium values are not of interest, the data can be standardised

removing the weight vectors from the estimation process. This approach has been adopted

throughout this thesis. It is important to stress that the standardisation occurs at an individual

level. Thus, the subsequent covariate effects are estimated relative to the individual average

not the population average as would be expected in a regression context.

Covariate effects

The flexible nature of SSMs also extends to their handling of covariates that can appear in

either the state, ct , or observation, dt , models and have dimensions p×1 : m and q×1 : n

respectively. Note that p and q signify the number of covariates in either the observation

or state model. Then 1 : m or 1 : n signify the number of covariate data sources e.g. an

individual data stream per state would have dimensions p×m where as a single data stream

would be p×1. Likewise, whilst the covariates in Equations 4.1 and 4.2 have the subscript

t to signify that the input is time varying. The vector can in fact contain a mixture of time

varying and time invariant data sources. This freedom is especially useful when including

geographical information that is often temporally constant e.g. the source of a chemotactic

gradient.

The effect size of the covariates in either the state or process model is defined by the

matrices C or D with dimensions m× p and n×q respectively. Similar to the observation

matrix, Z, the structure of the covariate matrices can be defined to allow for effects at different

levels in the model. For example, the effect of resource levels on cellular uptake could be
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estimated as a constant across all of the cells within the population. That is, the level of

uptake is proportional to the resource level for all cells in the population. However, the

minimal level of resources needed for a cell to stop migrating maybe estimated on a cell

specific basis.

Variance-covariance structures

The characteristic feature of an SSM is the ability to separate different levels of variability

between the state and observation models. The variation in the state model at time t is

represented by a m×1 vector wt , and the observation variation at t by a n×1 vector vt . The

elements of wt and vt are assumed to be drawn from separate m×m and n×n multivariate

normal distributions with mean 0 and variance Q and R respectively.

However, in contrast to a linear regression model where the variance, σ , is constant along

each dimension of the multivariate normal. The structure of Q and R are not restricted. As a

result, each dimension of Q and R can have the same variance, its own variance, or a mixture

of the two. Furthermore, each dimension does not need to be independent. A covariance

between dimensions can be estimated in the off-diagonal elements of Q and R. The versatile

variance structure helps to improve the model fit but it also has important implications on the

subsequent model interpretation.

An example of how different variance structures effect subsequent interpretations can be

seen by modelling the change in population size on the African continent. The model could

be specified with a single state variance q which would mean that the population size of

each country is temporally independent, and the same across the whole continent. However,

changes in population size may also vary differently on a country-by-country basis. As such

an alternative model maybe used where separate state variances qi are estimated for each

individual country. Likewise, the assumption of temporal independence between countries

may also be invalid. Instead, fluctuations in population size may coincide for adjacent

countries. Hence a covariance effect can be estimated between neighbouring countries.

Leveraging the flexible variance-covariance structure of an SSM is also an appealing

prospect when modelling single cell migration data. For example, the variance of the
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observation model, R, can be structured to account for the experimental variability between

each well or time-lapse video. Then the state model variance, Q, could be structured to

account for increases and decreases in the migration speed of neighbouring cells.

Model considerations

Whilst an SSM can have a wide variety of different structures it is important to ensure that

the model still reflects the underlying biology of the system (Auger-Méthé et al., 2016). For

example, estimating a state matrix, B, with inter-state estimates between cells in neighbouring

wells would be clearly flawed. Likewise, careful considerations also need to be made for the

covariate and variance-covariance structures.

Finally, SSMs are often computationally very expensive to fit. Hence when combined with

large multidimensional data sets, such as those generated during cell biology experiments,

certain model structures can quickly become intractable (Thygesen et al., 2017). Similarly,

SSMs can also suffer from ill-conditioned variance-covariance matrices when the model

structure is too complex for the data. This then causes the model to be fitted incorrectly and

if not detected can lead to incorrect conclusions being drawn (Auger-Méthé et al., 2016).

The implications of an incorrect variance-covariance structure can be seen by the difference

between a state variance q that is ≈ 0 and a state variance = 0. The former is a stochastic

process that has little variation. Whereas the latter is a deterministic process. Hence whilst

the quantitative difference is small, the effect on the subsequent interpretation is huge. As a

result, a thorough understanding of how to fit an SSM is essential to ensure that the model is

informative, but yet still tractable and statistically robust.

4.3.2 Fitting an SSM

The objective of fitting an SSM is to estimate either the states xt , the model parameters θ , or

a combination of the two. In the context of cell migration, the model parameters are rarely

known and are often the primary focus of the model. However, the model parameters are

estimated by maximising the likelihood of the model with respect the data. Yet the states form

part of the data and they are unknown. Hence the states must also be estimated along with the
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model parameters. Therefore fitting an SSM involves maximising the joint likelihood of the

model parameters and the states conditional on the observations, L(θ ,x1:T |y1:T ) (Shumway

and Stoffer, 2011).

Expectation maximisation algorithm

In practice maximising the joint likelihood, L(θ ,x1:T |y1:T ), becomes intractable for non-

trivial problems. Thus a two-stage iterative process is known as the expectation-maximisation

(EM) algorithm is adopted (Roweis and Ghahramani, 1999). The E stage estimates the state

values from the conditional distribution of the states given the current parameter values of

the model and the observed data p(x1:T |y1:T ,θ). The M stage then maximises the marginal

likelihood of the model conditional on the observed data, L(θ |y1:T ). Note that the observed

data y1:T is dependent on the states x1:T as defined in Equations 4.1 and 4.2 (Figure 4.3.1).

This process is then repeated and continues until the likelihood of the model converges onto

a local maximum. In short, the E stage generates estimated values of the states. The M stage

then uses the estimated states to estimate the model parameters. The new model parameters

are then used to generate new estimates of the states, and so forth, until the local maxima has

been found.

Whilst the EM algorithm alleviates the strain of maximising the joint likelihood, L(θ ,x1:T |y1:T ).

Evaluating the marginal likelihood still requires evaluating the states from the conditional

distribution, p(x1:T |y1:T ,θ). This means maximising the likelihood function of states over

a T ×T space which involves computing a T dimensional integral. Hence to reduce the

computational expense the marginal likelihood, L(θ |y1:T ), is normally either approximated

or, in specific cases, it is calculated directly via the Kalman filter (Kalman, 1960).

Kalman filter

The Kalman filter is recursive algorithm that can be used to estimate the states and marginal

likelihood of an SSM with Gaussian errors. The filter operates in an iterative manor to update

the mean and variance of the state up to time t −1 before then estimating the state value at

time t. If an observation exists at time t the filter will then use this information to update and
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improve its state estimate at time t. The process then repeats for the next state estimate at

time t +1 (Kalman, 1960).

The first step of the Kalman filter is to initialise the mean and variance of the prior state

distribution at time t0, x0. In this thesis the prior state distribution x0 is set with a mean of

0 and an independent variance of 5, x0 ∼ N(0,5). Whilst the parameters of the prior state

distribution could be included as fixed unknowns, this increases the number of parameters

that then need to be estimated by the model. Hence the diffuse prior enables the model to

retain a high degree of flexibility whilst still minimising the number of unknown parameters.

In a simple SSM with no weight vectors or covariates the subsequent state distributions at

time t = 1...T are estimated by the following where xt|t−1 and Pt|t−1 are the predicted state

estimate and predicted estimate covariance respectively at time t:

• Transition step

1. Predicted state estimate: xt|t−1 = Bxt−1|t−1

2. Predicted estimate covariance: Pt|t−1 = BPt−1|t−1BT +Q

• Update step

3. Observation residual: rt = yt −Zxt|t−1

4. Observation covariance: St = ZPt|t−1ZT +R

5. Optimal Kalman gain: Kt = Pt|t−1ZT S−1
t

6. Update state estimate: xt|t = xk|k−1 +Ktrt

7. Update estimate covariance: Pt|t = (I−KtZ)Pt|t−1

The transition step predicts the state estimate, xt|t−1, and estimate covariance, Pt|t−1, at time

t based on the values up to and including time t −1. Then, if an observation is missing at

time t the filter will move on to the next iteration and repeat the transition step for time t +1.

The ability to naturally handle missing observations is a powerful feature of the Kalman filter

that makes it extremely useful in settings where incomplete data is common e.g. biology.
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However, if an observation is present at time t the Kalman filter will then update the state

estimate and estimate covariance to account for the information gained by the observation.

The update step begins by first calculating the difference between the actual observation

at time t, yt , and the estimated observation, Zxt|t−1. The observation covariance is then

calculated in step 4 akin to the estimate covariance in step 2. The filter then compares the

estimate covariance against the observation covariance to determine the magnitude of the

update needed to both the state estimate and estimate covariance, known as the Kalman gain

(Kalman, 1960).

Kalman gain

The Kalman gain is pivotal to the Kalman filter because it draws together both sources of

variation within the model: the state and the process. The magnitude of the Kalman gain

then dictates the subsequent improvement to both the state estimate and estimate covariance

in steps 6 and 7.

The behaviour of the Kalman gain can be understood more clearly by expressing it such

that:

Kt =
Pt|t−1ZT

ZPt|t−1ZT +R
(4.3)

Hence when the observation model variance, R, is small the Kalman gain tends to 1
Z . Thus

when substituted into stages 6 and 7 of the Kalman filter the updated state estimate and state

covariance depend primarily on the observation. That is, when the observation is accurate,

the filter relies on the observation to estimate the state.

However, when the predicted estimate covariance, Pt|t−1, is small the Kalman gain tends

to 0. As such the updated state estimate and estimate covariance depend primarily on the

state of the model. That is, when the state does not vary much through time, the model

ignores the observation and relies on the value from the previous state.
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Kalman filter results

The temporal nature of the Kalman gain means that its magnitude, and therefore its effect,

can change dynamically over the course of the observed time series. This allows the Kalman

filter to handle unexpected disturbances within the data without it impacting on the estimation

performance of the underlying states. In fact, the performance of the Kalman filter is so

robust that the Kalman filter estimates of the states are also the maximum likelihood state

estimates.

The final part of the E step is to re-run the Kalman filter in reverse and combine the

results from both directions to ensure that the temporal order is not biasing the estimates of

the states, known as the Kalman smoother. The smoothed states are then used in the M stage

of the EM algorithm to estimate the fixed parameters in the model (Shumway and Stoffer,

2017).

4.3.3 Model selection

The EM algorithm can be used to estimate the parameters of an SSM by combining the

Kalman filter with maximum likelihood estimation. However, an SSM can be defined in

multiple different forms due to the flexibility in the parameter structure (Section 4.3.1). Thus,

a process of model section is needed to determine which parameter combination best fits the

observed data (Siple and Francis, 2016).

Population Ancestor Escape Invasion Colonisation Total
Sample size 24 58 105 57 244

Table 4.1: The final data set in Chapter 4 stratified by population.
Displayed are the number of cells within each experimentally evolved population that
collectively form the final data set within Chapter 4. The data set is a subset of the 813 cells
that were modelled in Chapter 3. Yet, in addition to the previous selection criteria, a cell also
needed to have present for at least 8 of the 12 hours of tracking and not been involved in a
cell division event.

In this chapter the data set is a subset of the 813 cells that were modelled previously

(Chapter 3). In addition to the previous selection criteria a cell also needed to satisfy the
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following two conditions. Firstly, a cell must not have divided during the tracking period or

be the daughter cell of a division event. This is to prevent the model from trying to estimate

the underlying state of a cell that is known to no longer exist. Secondly a cell needed to have

been successfully recorded for at least 8 of the 12 hours of tracking. Whilst this condition

is more subjective, it ensures that the model is fitted to a data set in which more values are

present than missing. A total of 244 cells met these conditions and together they form the

final data set (Table 4.1).

Optimal number of factors

The first step in dynamic factor analysis is to determine the optimal number of factors to

include in the model. Ideally this is performed by fitting n different covariate free models

where the number of factors increases sequentially from 1...n. The optimal number of factors

are then chosen based on the model that has the smallest AICc value (Zuur et al., 2003).

Unfortunately, the 244 cell data set in this chapter means that there are two issue with

adopting this approach.

Firstly, in a time series context, the 244×360 cell migration data set is extremely large.

A total of 244 separate models would need to be fitted for each variance covariance structure.

Also, as the number of factors in the model increases, the corresponding time taken to fit

each model increases dramatically. As a result, fitting a model with even a moderate number

of factors, m > 7, quickly becomes intractable.

Secondly, the number of factors need to reflect the underlying biological structure of the

system. Thus, fitting a 10 factor model to a data set containing 4 experimentally evolved

populations of cells would lack clear biological justification. As a result, in this chapter, the

optimal number of factors were chosen by comparing models with a factor total ranging from

1...4. This meant that in the extreme case a model could still be estimated with a unique

factor for each experimentally evolved population. Similarly, an independent parameter was

estimated for each state in the state matrix allowing the state to progress as a random walk or

a mean reverting process.
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Variance structure

To ensure that the model remains identifiable the state variance, Q, has to be set equal to the

identity matrix, I (Zuur et al., 2003). However, the observation variance, R, is undefined

and therefore needs to be selected. In this chapter the following 6 different structures were

compared:

1. Identity matrix (no estimation)

2. A single global estimate (1 estimated parameter)

3. Independent estimates for each video (33 estimated parameters)

4. Independent estimates for each cell (244 estimated parameters)

5. Correlated estimates for each video (66 estimated parameters)

6. Correlated estimates for each cell within a given video (1265 estimated parameters)

Across the 24 different model combinations the AICc value was minimised by a 4 factor

model with correlated estimates for each video (Table C.2, Appendix C). The need for

correlated estimates in each video maybe due to the cell density within each video affecting

the quantification of the cell morphology. In short, if the video has a high density of cells in

frame t then the density is also expected to be high in frame t +1. In turn, the high density of

cells may then mean that extracting the morphology of multiple cells is more error prone. As

a result, the video has a high observation variance that is also temporally correlated.

Covariate selection

Next, the inclusion of known covariates such as the speed of migration, nearest neighbour

distance, and then interaction of the two were tested to determine whether the model error

could be further reduced. To ensure that the model remains identifiable the covariates are

strictly limited to the observation model, d, (Zuur et al., 2003). Likewise, to remain tractable

the covariates are assumed to be observed without error and without any missing values.
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However, the speed of migration and nearest neighbour distance do contain missing

values as a result of the tracking process (Section 3.2.2). Hence before they can be used

as covariates the missing values need to be imputed. To ensure that the imputed values are

as accurate as possible a dynamic factor model was fitted to each covariate data set. The

model selection process was the same as the covariate free model. The speed of migration

model had 4 factors and a correlated observation variance structure for each video, akin to

the covariate free model (Table C.3, Appendix C). The nearest neighbour model had 4 factors

and a correlated observation variance structure for each cell within a given video (Table C.4,

Appendix C). The missing values in each data set were then imputed from the estimated state

predictions generated by the Kalman smoother.

The imputed covariates were then tested through a process of forward selection to

determine whether they improve the model fit by lowering the AICc. The number of factors

were set equal to 4 and each covariate addition was evaluated across the 6 different observation

variance structures. In the first instance, the covariate effects were estimated at a population

level (Table C.5, Appendix C) before the same process was then repeated at a single cell

level (Table C.6, Appendix C). In both cases all 3 covariates were found to reduce the model

AICc with independent estimates in the observation variance structure. Hence a full model

was estimated at both the population and single cell level. Finally, prior to post-hoc analysis,

the model was re-run at 10 different starting conditions to ensure that the global minima was

found.

4.4 Results

4.4.1 Short term phenotypic flexibility

Time invariant population model

To act as a time invariant reference a linear mixed model was first fitted to the 244 cell data

set. The model was fitted in accordance with the same model selection process detailed in

Section 3.4.2 where covariates were chosen through a process of forward selection. The
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populations were included as a fixed effect and then the intercepts and slopes were allowed

to vary between each population. The significant parameters were then used to fit a reduced

model to each population (Figure 4.3).

Figure 4.3: The rate of morphological change against the speed of migration.
The natural log-transformed rate of morphological change plotted against the natural log-
transformed speed of migration. The straight lines represent the reduced model for each
treatment using only parameters that are significant at the 5% level. The ancestor (N = 24),
escape (N = 58), and invasion (N = 105) populations have an intercept-only model fitted.
The speed of migration (p = 3.264× 10−3), the distance to the nearest neighbouring cell
(p = 1.572×10−2) and the interaction of the two (p = 1.133×10−2) was significant in the
colonisation population (N = 57). The shaded lines indicate the nearest neighbour percentile.

In the ancestor populations neither the speed of migration nor the distance to the neigh-

bouring cells significantly affected the rate of morphological change. As such an intercept

only model was fitted to the data. Also, in contrast to the previous chapter, neither the

speed of migration nor the distance to the neighbour cells significantly affected the rate of

morphological change in either the escape or invasion populations. Hence an intercept only

model was also fitted to both populations. However, in the colonisation populations, the

model remained the same as in Chapter 3. The rate of morphological change was dependent

on the speed of migration, the distance to the nearest neighbouring cell, and the interaction
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of the two: as the distance between neighbour cells increases, the relationship between

the rate of morphological change and the speed of migration becomes negative. To ensure

that the results were not affected by a small cluster of potential outliers the same analysis

was repeated after having removed any influential data points (Figure B.3) defined by a

Cook’s distance > (4 / N) where N is the sample size (Bollen and Jackman, 1985). The same

qualitative relationship was still present.

Population state space model

Next, the morphological behaviour was evaluated temporally with covariate effects estimated

at a population level. This meant that 4 parameters were estimated for each covariate similar

to a linear regression model. To test whether the model performed equally well for each

population the root mean squared error (RMSE) was calculated for each cell based on the

one-step-ahead-residuals (Harvey, 1990). An analysis of variance (ANOVA) was then used

to compare the average RMSE between each experimentally evolved population. There was

no significant difference in the average goodness of fit between the 4 experimentally evolved

populations.

In the ancestor, invasion, and colonisation populations the speed of migration, nearest

neighbour distance, and the interaction of the two were all significant at a 5% level (Figure

4.4). However, in the escape populations the speed of migration and interaction were

significant but not the nearest neighbour main effect as seen by the 95% confidence interval

overlapping 0 (Figure 4.4). Hence in the escape populations the nearest neighbour distance

does not significantly affect the rate of morphological change when an individual cell is

moving at its average speed of migration.

The change in significant population covariates between the linear regression model

(Figure 4.3) and the population state space model (Figure 4.4) highlight that all of the cells

can adopt similar phenotypic behaviours. Yet the frequency at which a given behaviour is

adopted varies between different populations. In the linear regression model the covariates

are calculated as the average value over the 12 hour migration period. Thus on average the

ancestor, invasion, and escape populations do not significantly vary their rate of morpholog-
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Figure 4.4: The state space covariate estimates at a population level and correspond-
ing 95% confidence interval.
A plot of the covariate estimates for each experimental population within the population
level state space model. The centre dot signifies the covariate estimate and the error bars
are 95% confidence intervals. A covariate is significant within a given population if the
95% confidence interval does not overlap 0, as seen by the black dotted line. The ancestor,
invasion, and colonisation populations can be seen to have a significant speed of migration,
nearest neighbour and interaction effect. In contrast, the escape populations have a significant
speed of migration and interaction, but the nearest neighbour main effect is not significant as
seen by the 95% confidence interval overlapping 0 (95% CI = [3.257×10−4,−3.645×10−2

]).

ical change in response to their average speed of migration or nearest neighbour distance.

However, importantly, this does not mean that their rate of morphological change never

varies in response to their speed of migration or nearest neighbour distance. The significant

covariates in the population state space model highlight that the rate of morphological change

can vary in response to the speed of migration and nearest neighbour distance. In contrast,

the colonisation populations display the same phenotypic behaviour in both the linear re-

gression model and population state space model. Hence this suggests that the colonisation

populations vary their rate of morphological change more often in response to the speed of
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migration and nearest neighbour distance compared with the other experimentally evolved

populations.

4.4.2 Dispersal heterogeneity

Single cell state space model

Finally, the morphological behaviour was evaluated temporally with covariate effects es-

timated on a cell specific basis. In contrast to the 2 previous models this meant that 244

parameters were estimated for each covariate. To ensure that the model performed equally

well across each of the 4 populations the RMSE was calculated for each cell based on the

one-step-ahead-residuals (Harvey, 1990). An analysis of variance (ANOVA) was then used

to compare the average RMSE between each experimentally evolved population. There was

no significant difference in the average goodness of fit between the 4 experimentally evolved

populations.

In the cell specific state space model, a variety of different phenotypic behaviours were

detected across each of the 4 experimentally evolved populations. The spectrum of behaviours

ranged from cells in which none of covariates were significant at a 5% level through to cells

in which all of the covariates were significant (Figure 4.5). Yet, 98% of the cells where

characterised by one of the following 4 covariate combinations and thus they remain the

focus for further analysis:

• Speed of migration only

• Speed of migration and nearest neighbour distance

• Speed of migration and the interaction

• Speed of migration, nearest neighbour distance, and the interaction.

The most frequent covariate combination across all 4 of the experimentally evolved popula-

tions was the speed of migration only, accounting for 54.4% of cells. The speed of migration

and nearest neighbour combination accounted for 15.3% of the 244 cells and the speed

of migration and interaction accounted for 23%. Finally, the speed of migration, nearest

neighbour, and interaction (known as the full model) accounted for 4.9% of the 244 cells.
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Figure 4.5: The proportion of cells within each experimental population that have a
significant covariate combination within the single cell state space model.
A plot of the proportion of cells within each population that have a significant covariate
combination when the covariates are estimated at a single cell level. A covariate is significant
if the 95% confidence interval for that cell does not overlap 0. The cells are then stratified
according to the significant covariates and population type. As a result, each strata is
independent such that an ancestor cell with a significant speed of migration and nearest
neighbour covariate effect cannot also be counted in the speed of migration only strata.

Population specific covariate combination

A Chi-Squared test was used to test whether there was a significant association between the

experimental population and the specific covariate combination. There was a significant

association between the experimental populations and the different covariate combinations

at a 5% level (p = 0.01393, N = 239). A post-hoc Bonferroni multiple comparison test was

then used to identify which populations were significantly associated with a given covariate

combination. The escape populations were found to have a significantly larger proportion of

the population associated with a full model of covariate effects (p = 0.04143, N = 239). The

full model of covariates accounted for 13.8% of the cells in escape populations compared to

5.7% of the cells in the invasion populations. However, in contrast to population level models,

none of the cells in the colonisation populations had a full model of significant covariates.
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Nevertheless, the colonisation populations did have the highest proportion of cells, 26.3%, in

which the speed of migration and nearest neighbour main effects were significant but not the

interaction, a phenotypic behaviour not seen at the population level.

4.5 Discussion

The individual time series recorded for each experimentally evolved cell during migration

was utilised in this chapter to investigate whether high levels of phenotypic flexibility

are associated with selective pressures akin to later stages of metastasis. Then, once the

degree of phenotypic flexibility had been partition, the level of within population phenotypic

heterogeneity was evaluated to determine whether levels of heterogeneity were elevated in

cells selected for distant site colonisation.

4.5.1 Elevated sensitivity in a crowded environment

The spatial and temporal heterogeneity at a distant site expected to be is less than within the

primary tumour or the local tumour micro-environment. The combination of an established

vasculature network and a tightly controlled population size means that excess resources are

expected to be scarce (Pries et al., 2001). A similar selective pressure can be seen within the

colonisation assays and it may explain why cells selected for distant site colonisation vary

their morphological behaviour more frequently in response to environment changes.

In the ancestor, escape, and invasion populations the cellular cohort is periodically

partitioned and then a subset of cells are moved into a new environment. In contrast, the

colonisation populations remain as an entire cohort. As a result, if resource levels are updated

evenly, then the colonisation populations are expected to spend a longer duration in a state of

resource poverty owning to the larger average population size. Hence the scarce supply of

resources may then select for cells that can maintain a high level of vigilance to ensure that

any available resources are detected, and then captured.

Similarly, the non-significant neighbour main effect in the escape populations may also

be a result of selection driven by changes in population density. Initially the local cell density
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is high within the escape assays due to the cells being tightly packed into the high density

collagen core. Then, over time, the cells escape outwards into the low density collagen

surroundings. This causes the local cell density to reduce before eventually increasing due

to the cells actively proliferating. A similar dynamic can be seen within the invasion assay,

albeit the cells are invading inwards towards the Matrigel core. However, importantly, the

rate of local cell density is expected to decrease faster within the invasion assay compared to

the escape. This is due, in part, to the smaller average distance from the selection boundary,

the margin at which the two environments join, and that the cells within the invasion assay

are able to migrate outwards in the opposite direction. As a result, the slower reduction in

population density within the escape assay means that on average a cell will have to wait

longer until its resource availability increases. This may therefore mean that selection acts

on a cell to increase its long term survival and only respond to environmental cues when

absolutely necessary i.e when it is either trapped or migrating at high speeds.

4.5.2 Spatial heterogeneity selects for multiple dispersal strategies

The prolonged period of resource scarcity within the colonisation populations may mean that

the spatial resource heterogeneity is larger compared to the corresponding temporal resource

heterogeneity. Hence, in such an environment, ecological dispersal theory would predict that

multiple conditional dispersal strategies can exist at an evolutionary optima (McPeek and

Holt, 1992). Thus, this may explain why none of the cells have a significant full model of

covariate effects but why a quarter of the cells have a significant speed significant speed of

migration and nearest neighbour effect without a significant interaction.

The significant nearest neighbour main effect means that the sub-population of cells can

continuously detect subtle changes in environmental conditions. Hence when the local cell

density is high, the individual cell may benefit from a constant level of resource surveillance.

In contrast, if the local cell density is low, then the cost of constant detection might outweigh

the corresponding benefit causing a reduction in fitness. Hence this would explain why the

behaviour is less frequent within the other experimental populations where the cell density is

periodically reduced. Yet in the colonisation populations the combination of high cell density
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and a temporally constant environment means that the behaviour can be selected. If true,

this could have important implication because it would suggest that the diversity within the

colonisation population is higher and therefore the corresponding rate of evolution is also

likely to be higher.

4.5.3 Frequency of behaviour is as important as the behaviour itself

In summary, modelling temporal changes in cancer cell morphology provides fresh insight

into the frequency at which phenotypic behaviours are displayed within breast cancer cells

that are experimentally selected for different stages of the metastatic cascade. Likewise

modelling phenotypic behaviour at a single cell level highlights the pervasive heterogeneity

that arises from different ecological selective pressures. A future next step will be to

determine whether the covariate interactions in each experimental population occur at the

same relative level of migration speed or nearest neighbour distance. That is, do cells

selected for their ability to escape switch their phenotypic behaviour at a lower relative speed

compared with cells selected for invasion due to the different rates of reduction in population

density. Furthermore, applying sequential selective pressures will be important to determine

whether the speed of migration and nearest neighbour covariate combination is retained

within cells selected for distant site colonisation. If so, then it may highlight a key phenotypic

behaviour that is essential for metastatic success.





Chapter 5

Poly-aneuploid cancer cell specific

signalling

5.1 Introduction

The majority of cancer cells are aneuploid (Taylor et al., 2018), they possess an unbalanced

chromosomal complement (Ben-David and Amon, 2020). Mistakes during cell division

cause changes to occur in both the chromosomal structure and number (Gordon et al., 2012).

This leads to increased genetic diversity within the population akin to the effect of a mutation.

However, due to the number of genes that are affected, chromosomal aberrations typically

create a much larger genetic disturbance. As a result, the corresponding impact on the fitness

of a cell is often more dramatic leading to increased rates of phenotypic adaption (Sansregret

and Swanton, 2017).

Polyploidization

An extreme form of structural disturbance associated with worse patient outcomes is seen

by the duplication of the entire chromosomal complement, known as polyploidization

(López et al., 2020). Polyploidization is seen in multiple different cancer types and is

commonly assumed to be an early evolutionary event in cancer progression to overcome

the accumulation of deleterious mutations (Bielski et al., 2018). However, on a cellular
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Figure 5.1: A phase contrast image of a poly-aneuploid cancer cell (PACC).
A phase-contrast image of a poly-aneuploid cancer cell (PACC) taken from the 12 hour
time-lapse videos that were collected in Chapter 3. A large PACC can be seen within the
centre of the image (circled in red). In contrast, 5 smaller normal cancer cells can be seen
within the local vicinity (circled in green).

timescale, polyploidization also leads to the formation of a physically large, but highly

motile, quiescent cell type known as a poly-aneuploid cancer cell (PACC) (Pienta et al.,

2020) (Figure 5.1). Importantly, PACCs have been found within the distant site metastases of

patients that have subsequently died from metastatic cancer (Mannan et al., 2020). Hence

this would suggest that duplication events maybe a recurrent feature in cancer development

and that the formation of PACCs maybe associated with a lethal stage of cancer progression.

5.1.1 Polyploid formation and function

Whilst PACCs are cancer specific, polyploidization also occurs within a range of different

somatic tissues (Fox et al., 2020) through two independent processes: cellular fusion and

deviations in DNA duplication (Aguilar et al., 2013; Calvi, 2013). An osteoclast is an

example of a cell fusion derived somatic polyploid cell that forms from the fusion of bone

marrow macrophages. In turn, osteoclasts are then responsible for the degradation of bone to
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release essential minerals such as calcium (Pienta et al., 2020). In contrast, a megakaryocyte

is an example of a somatic polyploid cell that forms due to deviations in DNA duplication.

Specifically, a megakaryocyte is formed through a process known as endomitosis whereby

the chromosomes in a cell divide, but the nucleus remains as a single organelle (Orr-Weaver,

2015). Once formed, a megakaryocyte is then responsible for the production of platelets,

a key component of blood that is necessary for clotting (Zimmet and Ravid, 2000). The

wide range of physiological functions that are performed by polyploid cells demonstrate

the importance of ploidy increases and the need to evaluate the exact function of PACCs in

cancer progression.

Therapeutic resistance

Experimental studies have found that duplication events, leading to the formation of PACCs,

can be induced in response to adverse environmental conditions such as hypoxia (Lopez-

Sánchez et al., 2014) and exposure to cytotoxic drugs (Lin et al., 2019). In turn, once

the environment conditions improve, a proportion of the PACC population are seen to de-

polyploidize back into viable proliferative cancer cells (Erenpreisa et al., 2011). However,

after the de-polyploidization event, the PACC progeny display an increased tolerance to the

environment pressures that induced the initial PACC formation (Puig et al., 2008). That is,

if a PACC forms in response to a cytotoxic agent, then the PACC progeny display a higher

cytotoxic tolerance compared to the pre-PACC cancer cells. As a result, this would suggest

that chromosomal duplication maybe an active strategy that some cells can adopt to increase

their chances of survival within a hostile environment (Mallin et al., 2020). Hence finding,

and then targeting, PACC vulnerabilities could prove to be an essential step in combating

metastatic progression and therapeutic resistance.

Migration difficulties

The increase in cell size from polyploidization is known to cause a corresponding decrease in

the surface area to volume ratio of a polyploid cell (Marshall et al., 2012). In turn, this maybe

a critical feature in the PACC defence strategy by lowering the overall toxin load that a PACC
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will experience compared to a normal cancer cell (Pienta et al., 2021). Yet the increase in

size also means that the metabolic rate of a PACC is higher compared to a normal cancer cell

(Coward and Harding, 2014). Thus, the level of resources needed for PACC survival are also

expected to be higher compared to a normal cancer cell. However, in the context of resource

detection, the reduction in surface area to volume ratio may also prove to be problematic

during PACC dispersal.

Firstly, morphological changes associated with resource detection carry an energetic cost

that is expected to scale with cell size. Thus, the process of resource detection is likely to be

more expensive in a PACC compared to a normal cancer cell. Furthermore, the reduction

in surface area to volume ratio means that a PACC is expected to change its morphology

more often to achieve the same relative level of resource detection per unit volume. In short,

resource detection is expected to be a more costly process for a PACC, but a PACC also needs

to participate in resource detection more often. Secondly, if a resource deposit is detected, a

PACC’s migration through the complex tumour microenvironment maybe restricted by its

enlarged nucleus (Wolf et al., 2013). Thus, a PACC maybe forced to participate in extensive

environmental rearrangements incurring a further energetic penalty.

The conductors of group cooperation

Alternatively, the prolonged survival time of a PACC may mean that it could benefit from co-

operating with normal cancer cells within the local vicinity. For example, somatic polyploid

cells are known to down-regulate metabolic pathways associated with oxidative phospho-

rylation (Vazquez-Martin et al., 2016). As a result, polyploid cells are forced to participate

in aerobic glycolysis which in turn releases diffusible metabolites into the local micro-

environment as a by product (Nakajima and Van Houten, 2013). Aerobic glycolysis is also

known to be a primary form of energy production in cancer cells, especially PACCs (Donovan

et al., 2014). However, cancer cells are known to induce aerobic glycolysis in neighbouring

stromal cells as a way to obtain vital metabolites and then benefit from more energy efficient

oxidative pathways (Pavlides et al., 2009). Thus, if PACCs are producing a similar diffusible

product then nearby cancer cells could be attracted to the high concentration of diffusible by
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products subsequently benefit from the use of oxidative pathways. In turn, a PACC may then

co-opt the highly energised cancer cells to initiate a leader-follower dynamic akin to the onset

of cellular streaming during tumour invasion (Zhang et al., 2019). This would dramatically

reduce the energetic cost to the individual PACC whilst also benefiting the neighbouring

cancer cells by providing vital resources.

Chapter overview

To understand the role of PACCs in metastatic dispersal the chapter begins by characterising

the phenotypic behaviour of a PACC during migration. In turn, a state space model is then

built to test whether there is a different behaviour response from a cell when it neighbour is a

PACC compared to a normal cancer cell. That is, do normal cancer cells detect when their

nearest neighbour is a PACC, and then significantly change their morphological behaviour as

a result, known as the PACC model. Finally, the results of the PACC model are then discussed

before a series of open questions are proposed that need to be addressed to understand the

role of PACCs in cancer progression.

5.2 PACC characteristics

To investigate the behaviour of PACCs, a data set is needed in which multiple PACCs exist.

To ensure that the same data set can be used throughout the remainder of this chapter the

data set must also include multiple cancer cells that have interacted with both a PACC and

a normal cancer cell during their migration for the PACC model. As a result, the final data

set in this chapter was curated through a 3 step process that started with the original 33

time-lapse videos that were collected in Chapter 3.

5.2.1 Data curation

The data curation process began by first identifying which of the 33 time-lapse videos

contained a PACC. A cell was classified as a PACC if it had both an enlarged cellular and

nuclear area, hence this includes both mono and multi nuclear PACCs. Two independent
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Population Ancestor Escape Invasion Colonisation Total
Sample size 24 0 35 10 69

Table 5.1: The final data set in Chapter 5 stratified by population.
Displayed are the number of cells within each experimentally evolved population that
collectively form the final data set within Chapter 5. That data set is a subset of the 244
cells that were modelled in Chapter 4. In addition to the previous selection criteria, each
time-lapse video also needed to contain a PACC and at least one cell in each video needed to
have a PACC nearest neighbour during their migration. Further details regarding the data
selection process can be found in Section 5.2.1.

operators then manually inspected each video and if the same cell was highlighted as a PACC

by both operators then the cell was judged to be a PACC and thus the video was eligible.

A total of 10 PACCs were identified across 8 of the 33 time-lapse videos. Invariably the

manual selection process introduced a certain degree of subjectivity. However, due to the

extreme size of a PACC relative to a normal cancer cell (Figure 5.1) the likelihood of a

misclassification is expected to be low.

Next, the 8 time-lapse videos were then used to filter the 244 cell time series data set

used in Chapter 4. This ensured that all of the cells within the subsequent PACC model

were present within at least 8 of the 12 tracking hours and none of the cells were involved

in a cell division event. A total of 76 cells were selected within the 8 time-lapse videos.

Finally, across the 76 tracked cells at least one cell per video needed to have had a PACC

nearest neighbour during their migration for the video to be included in the final data set.

The final data set contained a total of 69 tracked cells in 7 time-lapse videos (Table 5.1). The

69 tracked cells included 5 PACCs and 25 cells in which their nearest neighbour had been a

PACC during their migration.

5.2.2 Rate of morphological change scales with cell size

Once the data set had been curated, the rate of morphological change and the speed of

migration were then compared between the PACC and normal cancer cell populations.

However, owing to the small PACC sample size, 5 cells, it was not possible to quantify

the migratory behaviour of the PACC sub-population directly. As a result, the rate of
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morphological change and speed of migration were evaluated in response to the average

cellular area. A linear model was then fitted to the normal cancer cell population, along

with a 95% prediction interval, and then extrapolated to the PACC sub-population. In turn,

if the 5 PACCs were found to be inside of the 95% prediction interval an inference could

be drawn with respect to the cell area. Thus, enabling an implicit comparison to then be

drawn due to the extreme difference in cell area between the PACC and normal cancer cell

population. Alternatively, if the 5 PACC cells were found to be outside of the 95% prediction

interval then this may suggest that a unique migratory behaviour is present within the PACC

sub-population, possibly to compensate for the extreme size.

In the normal cancer cell population, the cell area was found to be significantly and

positively correlated with the rate of morphological change at a 5% level (p = 8.637×10−12,

β = 0.567, N = 64). The model was also found to explain a significant proportion of the

variation within the average rate of morphological change (R2 = 0.524). Hence within the

normal cancer cells an increase in cellular area caused a corresponding increase in the rate

of morphological change. Furthermore, the 5 PACC cells were also found to be inside

of the extrapolated 95% prediction interval. Therefore, suggesting that the same positive

correlation is also present within the PACC sub-population (Figure 5.2A). In contrast, the cell

area was not significantly correlated with the speed of migration within the normal cancer

cell population. Hence an intercept only model was fitted, which in turn included the 5

PACC cells within the extrapolated 95% prediction interval (Figure 5.2B). However, the

intercept model explained only a small proportion of the variation (R2 = 0) within the speed

of migration. Therefore, suggesting that the speed of migration is either highly stochastic, or

that it depends on factors not included in the model.

In summary, the results show that the rate of morphological change scales with cell

area. Hence the rate of morphological change is expected to be considerably higher in the

PACC sub-population compared to the normal cancer cell population owing to the extreme

increase in cell area. In turn, to sustain the high rate of morphological change, a PACC is

expected to have an increased metabolic rate meaning that the individual level of resources

that a PACC needs to survive will be higher. However, the results also show that the speed
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Figure 5.2: The effect of increased cellular area on migratory dynamics.
The solid blue lines represent the significant model in each data set and the solid green
lines represent the corresponding 95% prediction interval. The dashed blue and green lines
then represent the extrapolated model and 95% prediction interval respectively. Finally, the
shaded green regions indicate the area enclosed by the extrapolated 95% prediction interval.
(A) The natural log-transformed rate of morphological change plotted against the natural
log-transformed cell area. The cell area was significantly and positively correlated with the
rate of morphological change at a 5% level (p = 8.637×10−12, β = 0.576, N = 64). Hence
an increase in cellular area caused a corresponding increase in the rate of morphological
change. (B) In contrast, the cell area was not significant in the speed of migration and thus
an intercept only model was fitted (N = 64). Finally, in both models, the 5 PACC cells were
inside of the extrapolated 95% prediction interval indicating the same migratory dynamics
were present within the PACC and normal cancer cell populations. As a result, this means that
the PACC population is expected to have a higher rate of morphological change compared to
the normal cancer cell population but a similar speed of migration.

of migration does not scale with cell area. Hence the speed of migration in the PACC

sub-population is not expected to be faster than in normal cancer cell population. Whilst a

PACC may need more resource to survive, it is not necessarily able to find the resources any

faster than a normal cancer cell. Taken as a whole, this further supports the notion that a

cooperative search strategy could be beneficial within the PACC sub-population. As a result,

the following section discusses how a state space model can be used to evaluate whether
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there is an interaction between a PACC and a normal cancer cell that might be indicative of a

symbiotic relationship.

5.3 Cell - to - cell interaction model

Cell - to - cell interactions are dynamic and temporally dependent. Capturing transient

changes in morphological behaviour requires the use of the individual time series data that is

collected for each cell during tracking, as a discussed in Section 4.2. In turn, the time series

data can then be modelled through the use of a state space model to account for the presence

of autocorrelation (Durbin and Koopman, 2001). However, in contrast to the previous

chapter, the purpose of the PACC neighbour model is to investigate acute temporal changes

in morphological behaviour. Hence, the model has an increased focus on the underlying state

of the system (Equation 4.1), and the dynamics that govern how an individual cell changes

its behaviour through time. As a result, there are subtle but important changes to the model

structure that need to be addressed prior to further analysis being conducted.

5.3.1 Model structure

To recap, a state space model partitions the variation within a time series in two separate

models: state and observation. The state model is designed to reflect the underling dynamics

of the system. The system is assumed to have a temporal structure that develops through time

as a stochastic process. The latent state is then linked to the observed time series through the

observation model that also accounts for the variability introduced by the sampling procedure

(Section 4.3) (Durbin and Koopman, 2001).

In the previous chapter (Chapter 4) a state space model was used to quantify the short

term phenotypic variability and heterogeneity in the signal processing behaviour of individual

cells. The model was then used to evaluate whether increased phenotypic flexibility and

heterogeneity was associated with selective pressures similar to late stages of the metastatic

cascade. The model therefore focused on the variation between individual cells rather than

the variation within a given cell. That is, the variation through time was acknowledged, but
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was not the primary focus of the model. As a result, the temporal variation within each cell

was approximated by a linear combination of 4 underlying generative processes, a technique

known as dynamic factor analysis (Harvey, 1990; Zuur et al., 2003).

In contrast, the temporal variation within a given cell is the primary focus of the PACC

model. The objective of the model is to detect whether there is a different behavioural

response from a cell when its neighbour is a PACC compared with a normal cancer cell.

That is, does the presence of a PACC transiently change the morphological behaviour of a

neighbouring cell. As a result, the individual state of each cell needs to be modelled directly

and thus the number of states in the model must equal the number of observations, m = n.

State matrix

The one - to - one relationship between the states and observations in the PACC model means

that the observation matrix, Z, must be set equal to the identity matrix, I. In contrast, the

structure of the state matrix, B, is more flexible and needs be evaluated during the model

selection process.

The state matrix, B, is an m×m matrix that relates the current value of the state at time

t, xt , to the previous value of the state at time t −1, xt−1. The structure of the state matrix

is important because it characterises the underlying dynamics of the model and specifies

how the model will develop through time. For example, if the state matrix is set equal to the

identity matrix then the model will develop as a random walk. This means that the variance

of the state distribution will increase through time, and hence the rate of morphological

change for an individual cell may increase continually. Contrary to this, cellular behaviour is

assumed to have an underlying level of persistence. Thus over an extended period of time the

rate of morphological change for an individual cell is expected to revert back to an average

value. Hence the state matrix of the PACC model is estimated such that the magnitude of

each diagonal element is strictly less than 1.

Whilst the individual rate of morphological change for a given cell is expected to revert

back to an average value, the time taken to revert back to the cell specific average is not

necessarily constant across the population. For example, a change in morphology requires
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the rearrangement of internal actin filaments (Lauffenburger and Horwitz, 1996; Olson and

Sahai, 2008). A larger cell, such as a PACC, is therefore expected to have a greater number

of filaments. Thus, in order to achieve the same degree of morphological change relative to a

normal cancer cell a PACC needs to rearrange more filaments. In turn, the level of exertion

needed to achieve the same relative change is expected to be higher and therefore deviations

from the average rate maybe temporally shorter than in a normal cancer cell. The structure

of the state matrix must therefore be carefully evaluated to ensure that the model accurately

reflects the underlying dynamics of the system, akin to the observation variance structure in

Chapter 4.

Covariate effects

A cell specific state also means that the covariate affects can be estimated on single cell basis

in either the state or observation model. However, the effect, and subsequent interpretation

of a covariate in either the state or observation model can be vastly different.

The observation model links the observed data to the underlying system dynamics whilst

also accounting for the variability introduced by the sampling procedure. Yet, in certain

systems, a significant proportion of the sampling variability maybe explained by the inclusion

of known external factors. For example, if a change in whale population sizes is compared

between different geographic regions then the water visibility within each region may affect

the sample variability. That is, the sampling variation within a region with poor visibility

is expected to be higher because it is harder to see the whales within the water. Hence

the degree of water visibility maybe included as a covariate in the observation model to

reduce the observation variance and therefore improve the model performance. In contrast, a

covariate within the state model explains a significant proportion of the variation within the

underling system dynamics. Thus in the whale example the number of fish within a given

region maybe included as a state covariate because the fish stock will affect the underlying

system dynamics irrespective of the water visibility. The focus of the PACC model is to

characterise the underlying system dynamics and thus the covariate affects are strictly limited

to the state model.
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5.3.2 Model selection

A process of model selection was initially used to build a reference model that did not

discriminate between neighbour types, known as the blind model. The first round of model

selection sought to evaluate the structure of the state matrix, B, and state variance, Q. A

further round of model selection was then used to evaluate the inclusion of common covariates

such as the speed of migration and nearest neighbour distance. Note that the phrase common

covariates is used throughout this chapter to signify covariates that are estimated for all 69

cells compared with covariates that are only estimated in a subset of cells.

Fixed observation variance

Theoretically the observation variance, R, could also be estimated. However, the small sample

size (Table 5.1) meant that the model became unstable when estimating the observation

variance and thus the observation variance had to be fixed. The magnitude of the observation

variance for each cell was set equal to the average time-lapse video specific observation

variance in Chapter 4. Whilst this could potentially bias the output of the model the only

alternative, without collecting more data, was to assume that there was no observation

variance and then remove the observation model. Taken as a whole, the fixed model variance

appeared to better reflect the underlying knowledge of the system and thus a fixed variance

was adopted for the remainder of this chapter.

Covariate free model

In the first stage of model selection the fixed observation variance was used to compare 3

different state matrix structures and 7 different state variance structures (Table 5.2). Across

the 21 different model combinations the model AICc was minimised by an independent

estimate for each cell in both the state matrix and the state variance (Table C.8, Appendix

C). The need for a cell specific estimate in the state matrix suggests that there is significant

variation between the individual cells in how their morphological behaviour develops through
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time. Likewise, the cell specific estimate in the state variance also highlights that there is

significant variation in the underlying system dynamics between individual cells.

Structure
Number of

estimated parameters State matrix State variance

Identity matrix 0 ⋆ ✓
A single

global estimate 1 ✓ ✓

Independent estimates
for each population 3 ✓ ✓

Independent estimates
for each video 8 ⋆ ✓

Independent estimates
for each cell 69 ✓ ✓

Correlated estimates
for each video 16 ⋆ ✓

Correlated cell estimates
for each cell within a given video 432 ⋆ ✓

Table 5.2: The state matrix and state variance structures compared during model se-
lection. The 3 different state matrix structures and the 7 different state variance structures
compared during the covariate free model selection. A ✓ signifies that the structure was used
for the given parameter where as a ⋆ signifies that it was not. Across the 21 different model
combinations the model AICc was minimised by an independent estimate for each cell in
both the state matrix and the state variance.

Full model

The next stage of model selection then evaluated whether the model error could be further

reduced through the addition of known common covariates such as the speed of migration,

nearest neighbour distance, and the interaction of the two. The covariates were assumed to be

observed without error and without missing values akin to the previous chapter. As a result,

the imputed covariate data in Chapter 4 was reused for both the speed of migration and the

nearest neighbour distance for the remainder of this chapter.

The covariates were then tested at a single cell level through a process of forward selection

to determine whether they improved the model fit by lowering the AICc. The addition of

each covariate was evaluated with a fixed observation variance and a state matrix that had

independent estimates for each cell. Importantly, each covariate was evaluated across the 7

different state variance structures to determine whether the optimal model state variance had
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changed (Table C.8, Appendix C). All 3 covariates were found to reduce the model AICc

and thus the blind model was fitted with a full set of common covariates at a single cell level

with independent estimates in the state variance (Table C.9, Appendix C).

5.3.3 Neighbour identity

Once the blind model had been fitted, the PACC model was then fitted to evaluate whether

normal cancer cells significantly change their morphological behaviour when their nearest

neighbour is a PACC compared with a normal cancer cell. The PACC model is an extension

of the blind model that also includes a neighbour identity covariate to highlight when the

nearest neighbour cell at time t is a PACC.

The neighbour identity was generated for each of the 69 cells as a binary variable that

equalled 1 when the nearest neighbour was a PACC and 0 when it was a normal cancer cell.

Similar to the speed of migration and nearest neighbour distance the neighbour identity also

contained missing values. However, in contrast to the common covariates, the neighbour

identity was not imputed with a state space model. Instead, the imputed nearest neighbour

distances in Section 4.3.3 were used to determine whether the missing neighbour identity

at time t was a PACC. This approach was advantageous because it prevented the use of a

non-Gaussian state space model and also ensured the neighbour identity corresponded with

the nearest neighbour distance. Finally, a neighbour identity effect was estimated for the 25

cells that had a PACC nearest neighbour during their migration and the neighbour identity

effect was set equal to 0 for the remaining 44 cells.

5.4 Results

5.4.1 PACC identity is significant

The neighbour identity covariate was found to improve the model performance and lower the

PACC model AICc by 44 points compared to the blind model (Table 5.3). This suggests that
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there is a significant change in morphological behaviour when the nearest neighbour cell is a

PACC compared with a normal cancer cell.

Model
Number of

estimated parameters AICc ∆AICc

Blind 345 58073 0
PACC 370 58029 -44

Alternative 362 58083 +10

Table 5.3: Neighbour identity model performance comparison.
Displayed are the performance for each of 3 models compared in Chapter 5. The blind model
is a reference model that does not discriminate between neighbour types. The covariates in
the blind model include the speed of migration, nearest neighbour distance and the interaction
of the two. The PACC model is an extension of the blind model that also includes an identity
covariate for the 25 cells which have a PACC nearest neighbour during their migration.
Finally, the alternative model has the same structure as the PACC model but a cell has been
chosen at random to be a pseudo PACC. The identity covariate in the PACC model was found
to improve the model performance and reduces the model AICc by 44 points compared to
the blind model. In contrast, the alternative model performed worse than the blind model and
increased the model AICc by 10 points compared to the blind model.

Specific neighbours matter

To test whether the improved PACC model performance was an artefact of the increased

model resolution an alternative model was also fitted. The alternative model randomly

selected a cell from each of the 7 time-lapse videos to be a pseudo PACC. The same data

curation process was then adopted as outlined previously (Section 5.2.1). The 69 cells

within the alternative model contained a total of 3 PACCs and 17 cells in which their nearest

neighbour had been a PACC during their migration. Whilst the number of cells that had a

PACC nearest neighbour decreased by 68%, a Kruskal Wallis test found that there was no

significant difference in the average time spent with a PACC nearest neighbour across the

two models. The model was then fitted with an estimated neighbour identity effect for the 17

cells that had a PACC nearest neighbour and the neighbour identity effect was set equal to 0

for the remaining 52 cells.
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In contrast to the PACC model, the neighbour identity covariate in the alternative model

was found to reduce the model performance and increase the alternative model AICc by 10

points compared to the blind model (Table 5.3). This therefore suggests that the significant

neighbour identity effect in the PACC model is capturing a unique biological phenomena.

As a result, the output of the PACC model was then investigated to determine whether

the temporal dynamics in the rate of morphological change were different among the 3

experimentally evolved populations.

5.4.2 Temporal phenotypic dynamics

To test whether the PACC model performed equally well for each of the populations the

root mean squared error (RMSE) was calculated for each cell based on the one-step-ahead-

residuals (Harvey, 1990). An analysis of variance (ANOVA) was then used to compare the

average RMSE between each experimentally evolved population. There was no significant

difference in the average goodness of fit between the 3 experimentally evolved populations.

Phenotypic behaviour is not population specific

The significant common covariate effects were then evaluated across the 69 cells to deter-

mine whether a specific morphological behaviour was associated with a given experimental

population. A spectrum of different morphological behaviours were detected ranging from

cells in which none of the common covariates were significant at a 5% level through to cells

in which all of the common covariates were significant.

Across the 69 cells the most frequent common covariate combination was the speed

of migration only accounting for 31.9% of the cells. The speed of migration and nearest

neighbour combination accounted for 29% of the 69 cells and the speed of migration and

interaction accounted for 20.3% of the cells. Incidentally, this is the same significant common

covariate combination rank order as the previous chapter (Section 4.4.2). Finally, the speed

of migration, nearest neighbour, and interaction accounted for 8.7% of the 69 cells and the

remaining 10.1% of cells had no significant common covariate effects (Figure 5.3).
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Figure 5.3: The proportion of cells within each population that have a significant com-
mon covariate combination with the PACC model. A plot of the proportion of cells within
each population that have significant common covariate when estimated at a single cell level
within the PACC model. A covariate is significant if the 95% confidence interval for that cell
does not overlap 0. The cells are then stratified according to the significant covariates and
population type. As a result, each strata are independent such that an ancestor cell with a
significant speed of migration and nearest neighbour covariate effect cannot also be counted
in the speed of migration only strata.

A Chi-Squared test was used to evaluate whether there was a significant association

between the experimental population and the significant common covariate combination.

There was no significant association between the experimental population the different

common covariate combinations at 5% level. This means that within PACC model the

significant common covariate combination is independent of the experimental population.

A significant PACC response is cell specific

Next, the significant neighbour identity effect was investigated. Across the 25 cells in which

a neighbour identity effect was estimated 68% had a significant nearest neighbour response.

That is, 17 of the 25 cells significantly changed their rate of morphological change in response

to the distance from their nearest neighbouring cell. Furthermore, 47% of the 17 cells also
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had a significant neighbour identity effect. That is, 9 of the 25 cells displayed a significant

change in their rate of morphological change when their nearest neighbour was a PACC

compared with a normal cancer cell.

The duration over which each of the 25 cells had a PACC nearest neighbour ranged

from 0.28% to 99.7% of their migration trajectory. Likewise, the cell specific average

distance from a PACC ranged from 1.01µm to 29.15µm across the 25 cells. The PACC

nearest neighbour duration and distance were then tested to determine whether a significant

neighbour identity effect was more likely in cells that spent a longer duration next to a

PACC or were physically closer to a PACC. A Kruskal Wallis test was used to compare the

mean PACC nearest neighbour duration and distance between cells with a significant or non

significant neighbour identity effect. There was no significant difference in the PACC nearest

neighbour duration or distance at a 5% level between cells in which a neighbour identity

effect was significant or not. This therefore suggests that the neighbour identity effect is cell

specific rather than being due to the duration of distance of PACC exposure.

A Chi-Squared test was used to evaluate whether there was a significant association

between the experimental population and a significant neighbour identity effect. There was

no significant association between the experimental population and a significant neighbour

identity effect at a 5% level. This means that within the PACC model a significant neighbour

identity is independent of the experimental population. Hence further confirming that a

significant neighbour identity effect is cell specific.

5.4.3 Invasion populations have increased morphological persistence

Finally, the level of morphological persistence was investigated among the 3 experimental

populations. Across the 69 tracked cells 61% had a significant state matrix estimate that

ranged from 0.16 to 0.98 where a smaller state matrix estimate signifies a higher level of

morphological persistence. The remaining 39% of cells had a state matrix estimate that was

not significantly different from 0. That is, the rate of morphological change at time t does not

significantly depend on the rate of morphological change at time t −1. In turn, this suggests

that an individual cell is more responsive because its morphological behaviour at time t is a
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function of the current state dynamics, rather than also depending upon the previous value of

the state.

Figure 5.4: The proportion of cells within each population that have a significant state
matrix estimate within the PACC model. A state matrix estimate is significant if the 95%
confidence interval for that cell does not overlap 0. The cells are then stratified according to
the significance of the state matrix estimate and the population type. The majority of cells
within the ancestor and colonisation populations had a significant state estimate. In contrast,
the majority of cells within the invasion populations had a non-significant state estimate.
Hence this would suggest that the morphological behaviour of the invasion populations is
more responsive due to the value at t being dependent on the current state of the system,
rather than also depending on its own historical behaviour.

A Chi-Squared test was used to evaluate whether there was a significant association

between the specific experimental population and the proportion of cells that have a significant

temporally dependent structure (Figure 5.4). There was a significant association between the

specific experimental population and the proportion of cells that have a significant temporally

dependent structure at a 5% level (p = 0.031, N = 69). A post-hoc Bonferroni multiple

comparison test was then used but it could not specify which populations were statistically

different. This maybe due, in part, to the small overall sample size. Likewise, it may also be

due to the invasion populations representing over half of the 69 tracked cells. Nevertheless,
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the majority of cells within the ancestor and colonisation populations have a significant

temporal structure in the rate of morphological change, 75% and 80% respectively. In

contrast, the majority of cells within the invasion populations, 64%, have a non significant

temporal structure in the rate of morphological change (Figure 5.4). Taken as a whole, this

suggests that the invasion populations are more responsive to their current environment

conditions compared to the ancestor or colonisation populations.

Finally, the 25 cells in which a neighbour identity effect was estimated were also investi-

gated to determine whether there was a significant association between a significant state

estimate and a significant PACC neighbour response. A Chi-Squared test found that there

was no significant association between the significance of the state matrix estimate and a

significant PACC neighbour response, hence reaffirming that a significant PACC response is

cell specific.

5.5 Discussion

This chapter sought to investigate the migratory behaviour of PACCs to determine whether

their increased size could prove to be problematic during metastatic dispersal. The chapter

began by first comparing the rate of morphological and speed of migration between the

PACC sub-population and the wider cancer cell population. The results showed the PACC

sub-population is expected to have a higher rate of morphological change but a similar

speed of migration. Hence these results supported the notion that whilst PACCs need more

resources to survive, their migratory ability is not necessarily any better compared to a normal

cancer cell. In turn, these results served as a foundation upon which to build a novel state

space model to investigate whether PACCs interact with normal cancer cells as a form of

cooperative search. That is, do normal cancer cells detect when their nearest neighbour is a

PACC and significantly change their morphological behaviour as a result. The model found

that there is a significant change in morphological behaviour in a subset of cells when their

nearest neighbour is a PACC compared to a normal cancer cell. However, the same behaviour
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is not observed in an alternative model when a cell is randomly chosen to be a "pseudo"

PACC suggesting that the interaction is specific to the rare PACC sub-population.

5.5.1 An annoying obstacle or an attractive opportunity

The PACC model highlights that there is a significant change in morphological behaviour

in a subset of cells when their neighbour is a PACC compared with a normal cancer cell.

However, the model does not differentiate whether the significant response is due to a transfer

of diffusible goods or whether the PACC is simply acting as a large obstacle to overcome.

Separating these two competing hypotheses is challenging because PACCs are, by definition,

extremely large. Thus, the alternative model would not necessarily capture this confounding

effect. Likewise, due to the myriad of different diffusible products within the local vicinity

it maybe hard to identify a specific PACC neighbour signal. Nevertheless, the model still

provides critical insight and subsequent further knowledge maybe gained by stratifying the

PACC population itself.

The term PACC is a broad label that includes both large mononuclear and multinuclear

cells (Pienta et al., 2020). In both instances the individual cell has an increased amount of

genomic material compared to a normal cancer cell. However, in the former the genomic

material is contained within a single nucleus whereas in the latter there are multiple distinct

nuclei. Evaluating whether the same significant change in morphological behaviour occurs

irrespective of whether the PACC neighbour is a mono or multi nuclear cell may reveal the

cause of the significant neighbour identity response.

For example, during migration cells are able to squeeze through gapes within the tightly

packed ECM down to a threshold pore size that is equal to 10% of their cross sectional

nuclear area (Wolf et al., 2013). Hence, within the PACC population there is expected to

be a large difference in the minimum threshold pore size between mono and multi nuclear

PACCs. If the cross sectional nuclear area of a mononuclear PACC is equal to x then the

minimum pore size it can migrate through is equal to x
10 . In contrast, a multinuclear PACC

with the same cross sectional nuclear area, x, has a minimum pore size equal to x
10×DN were

DN equals the number of distinct nuclei. This difference is based on the assumption that
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each distinct nuclei has its own rate limiting size and thus the cell can be rotated such that all

of the nuclei are complementary. As a result, a multinuclear PACC would need to perform

fewer structural alterations within the local microenvironment compared to a mononuclear

PACC. In turn, there would be less need for cooperation between a multinuclear PACC and a

neighbouring cancer cell meaning that the identity effect may no longer be significant within

the PACC model. Also, if the neighbouring cells are still attracted by the high concentration

of diffusible products within the local multinuclear PACC vicinity, but the multinuclear

PACCs are not in a symbiotic relationship, then the rate of morphological change should be

higher within a multinuclear PACC compared to a mononuclear PACC at an equal neighbour

cell density. This is because the multinuclear PACC needs to navigate through the crowded

environment, based on the results in Chapter 4. Unfortunately, it was not possible to test this

hypothesis with the current data due to the lack of specific nuclear staining.

5.5.2 Any decision is better than indecision

The significant identity covariate in the PACC model highlights that temporally dependent

decisions are being made by individual cells in response to their own specific environmental

conditions e.g. the presence of a neighbouring PACC. A similar temporally dependent

decision process is also being made during the invasion of a distant site and this might

explain why the majority of cells within the invasion population have a non-significant state

estimate.

Invasion at a distant site begins with a cell becoming lodged within the tight confines

of a narrow capillary (Stoletov et al., 2010). If the cell then detects that there is a high

resource level within the local vicinity it will extravaste out of the blood and migrate into the

foreign tissue (Mallin et al., 2020). The decision to re-initiate migration therefore requires an

individual cell to be decisive and highly responsive to the current environmental conditions.

A similar selective pressure can be seen within the invasion assays where a cell must

cross an environmental boundary to survive and reach the next round of selection. In contrast

to the ancestor and colonisation assays, the invasion assay requires an individual cell to

migrate across an environmental boundary between the 2D tissue culture plastic and the
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3D Matrigel island. However, cancer cells are known to migrate quickly, and preferentially,

along environmental boundaries (Keeton et al., 2018). Thus, the corresponding decision to

invade must also be quick. As a result, an individual cell needs to be highly responsive to the

current environmental conditions rather than relying upon its own historic exposure. Hence

the morphological behaviour at time t is a function of the current state of the system rather

than also depending upon the previous system state.

5.5.3 The challenges of capturing transient behaviours

In summary, capturing transient changes in morphological behaviour offers a unique insight

into the decision process made by an individual cell during migration. The PACC model in

this chapter identifies a previously unknown decision process in a subset of cells across all

experimental populations and irrespective of the duration or distance away from a PACC.

Whilst further work is still needed to determine whether the results in this chapter represent

a symbiotic PACC - neighbour relationship, the results do highlight the importance of

evaluating transient behaviours to reveal new cancer dynamics.

One of the major challenges to overcome whilst investigating PACC related behaviours

is the low frequency at which PACCs appear within the migratory population. Admittedly,

the time-lapse data in this thesis was not collected to specifically investigate PACC related

behaviours. Nevertheless, across the 813 cells that were original tracked in Chapter 3 only 10

were found to be PACCs. Hence the PACC population represents approximately 1.2% of the

experimentally evolved cells within this thesis. As a result, the sample size within this chapter

is relatively small which in turn limits the depth of post-hoc analysis that can be performed.

Similarly, the model could only be applied to 3 of the 4 experimentally evolved populations

due to no PACCs being tracked within the escape populations. Whilst the sample size could

be readily increased by recording more time-lapse videos this also causes the quantity of

image data increase. In turn, automated tracking techniques will need to be further refined to

ensure that the large data sets can be efficiently and accurately processed.

In addition to improving the post-hoc analysis an increased sample size would also allow

for a more detailed primary PACC model to be built. The neighbour identity is currently
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recorded as a binary variable in the PACC model. This means that the neighbour identity

effect causes a sudden "jump" in the rate of morphological change. However, in reality, the

neighbour identity effect is expected to cause a continuous gradual deviation in the rate of

morphological change. Thus a more realistic model may have a nearest neighbour effect size

that changes through time. Hence, once the model is fitted, the size of the nearest neighbour

effect with and without a PACC neighbour can be compared. Furthermore, the improved

model would also be able to capture whether the neighbour identity effect size changes

through time. That is, does the presence of a PACC have a smaller effect on a cell that has

already interacted with a PACC previously.



Chapter 6

Discussion

The spread of cancer cells from a primary tumour to distant sites around the body marks

the deadliest stage of cancer progression, metastasis (Fares et al., 2020). Metastasis occurs

in nearly all types of cancer and is leading cause of cancer related mortality (Pienta et al.,

2020). Yet, metastasis is also widely considered to be the most inefficient stage in cancer

progression. Only a small fraction of cells that initially leave the primary tumour are

eventually successful in colonising at a distant site (Chaffer and Weinberg, 2011; Chambers

et al., 2002). Identifying the traits and behaviours that separate the cells capable of successful

metastasis is therefore central to combating metastatic disease. This thesis investigated the

evolution of individual signal processing, through the proxy of morphological change, as a

key determinate in metastatic success and a possible means by which to identify cells with

increased metastatic potential.

6.1 Making sense of cancer cell migration

A myriad of different cell migration modes are observed during metastatic dispersal causing

extensive variation to exist between individual cells (Friedl and Wolf, 2003, 2010). Likewise,

due to the widespread spatial and temporal heterogeneity within the surrounding tumour

micro-environment (Yuan, 2016) dispersal behaviours are also known to change dynamically

during the migration of an individual cell (Butler et al., 2020). However, in spite of the enor-
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mous complexity, migratory dynamics are commonly characterised by a single quantitative

metric such as the average cell speed or turning angle (Meijering et al., 2009; Pincus and

Theriot, 2007; Prasad and Alizadeh, 2018). As a result, this an oversimplified view of the

underlying complexity and can fail to provide the maximum biological insight. In contrast,

this thesis has shown in Chapters 3 - 5 that by adopted more sophisticated analytic approaches

novel insight can be gained into the intricacies that exist during metastatic dispersal.

6.1.1 Dependent behaviours

Firstly, a central theme throughout this thesis has been the investigation of complex migratory

behaviours that develop from the interaction between individual cellular traits. For example,

when the rate of morphological change was evaluated in isolation the colonisation populations

were indistinguishable from the other experimentally evolved populations. However, when

the rate of morphological change was evaluated in response to the speed of migration and

nearest neighbour distance, a wealth of behavioural variation was revealed (Chapter 3).

Hence if extensive behavioural diversity can be seen from simple experimental selective

regimes. Then the corresponding degree of behavioural diversity in vivo is expected to be

staggering!

However, the full extent of the behavioural variation will not be understood without a

change in analytic approach. That is, rather than quantifying and comparing the value of

individual traits between populations e.g. the average cell speed or turning angle. The focus

should instead be on characterising and quantifying the underlying behavioural mechanisms

(Figure 6.1). In turn, this would enable a Hallmarks of metastatic dispersal to be formed

that identifies common dispersal behaviours correlated with increased metastatic potential.

Thus, whilst the magnitude of a given behaviour maybe population or cancer specific, akin

to the difference in slopes between the invasion and escape populations (Figure 3.7), the

fundamental characteristics should remain constant. A similar concept can be seen by the

presence of chromosomal instability. That is, whilst the specific chromosomal aberrations that

occur tend to vary between cancer types, the presence of increased chromosomal instability

as a whole is indicative of cancer progression. As a result, a hallmarks of metastatic dispersal
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Figure 6.1: A graphical comparison of the difference in variation between isolated
traits and dependent phenotypic behaviours. The shaded hexagons represent an individ-
ual cell where the colour and shade correspond to the behaviour and the intensity of the
behaviour. (A) The grey scale represents a single migratory trait such as cell speed where
the variation within the population is seen by the different shades. (B) The 4 main colours
(red, yellow, green, and blue) represent different dependent behaviours that may exist within
a population. The shade of each colour then signifies the average intensity of the given
behaviour. Importantly, the dependent behaviours reveal a greater degree of variation within
the population and also highlight distinct cellular sub-populations.

would then provide a natural link across multiple different cancers irrespective of the distant

tissue type.

6.1.2 Temporal behaviours

Likewise, another core theme throughout this thesis has been the importance of characterising

behaviours at a single cell level. For example, the temporally dependent morphological model

in Chapter 4 showed that at a population level all of the experimental populations can adopt a

similar complex morphological behaviour. However, at a single cell level, the same complex

morphological behaviour was no longer present within the colonisation populations. Instead,
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the single cell model showed that there were two similar, but yet different, morphological

behaviours that existed together within the population.

Figure 6.2: A graphical representation of the temporal changes in phenotypic be-
haviour at both a population and single cell level. The shaded hexagons represent an
individual cell where the colour and shade correspond to the behaviour and the intensity of
the behaviour. (A) The temporal variation in phenotypic behaviour at a population level as
seen by the changes in shade of each colour across the distinct sub-populations. (B) The
temporal variation in phenotypic behaviour at a single cell level as seen by the changes
in shade of each individual cell. The single cell model captures the variation in time as
well as the variation between individual cells. Hence the increased resolution enables the
heterogeneity within the population to be quantified.

Characterising behaviours at a single cell level is important because it amalgamates

multiple levels of biological variation. That is, the variation in migratory behaviour can be

investigated together at a population, group, and single cell level (Figure 6.2). In the context

of metastasis this is invaluable because whilst the majority of cells that leave a primary

tumour will fail, metastatic success is achieved even if only a single cell is triumphant. Thus,

gaining insight into the broader population level dynamic is important, but identifying the

deadly subset of cells that are ultimately successful is also essential. Single cell phenotyping
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therefore provides a framework in which to unravel the complex web of dynamics that

develop at a both a population and single cell level during metastatic dispersal.

6.1.3 Transient behaviours

Finally, the penultimate chapter in this thesis (Chapter 5) focused on a specific sub-population

of cells, poly-aneuploid cancer cells (PACCs). A temporally dependent morphological model

found that a subset of cells displayed a significant, but transient, change in morphological

behaviour when their nearest neighbour was a PACC compared with a normal cancer cell. In

contrast, when a cell was chosen at random within the broader migratory population to be

a "pseudo" PACC the same significant behaviour was not seen. Whilst multiple questions

still exist regarding the specific role of PACCs in cancer evolution their presence offers an

exciting opportunity to investigate a feature that maybe integral to lethal progression across

multiple cancer types.

Figure 6.3: A graphical representation of a transient phenotypic behaviour.
The shaded hexagons represent an individual cell where the colour and shade correspond to
the behaviour and the intensity of the behaviour. A black hexagon then represents a transient
change in behaviour within the individual cell. As a result, the change in behaviour may then
also have an effect on the spatially adjacent cells.
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Yet the results in Chapter 5 also more broadly highlight the power of phenotypic anal-

ysis in capturing the specific spatial context. The importance of the surrounding micro-

environment is widely acknowledged throughout cancer evolution (Yuan, 2016) and was a

primary justification for the adoption of an experimental approach throughout this thesis. Yet,

excluding the study of cellular quiescence, the effect of specific ecological disturbances on

the behaviour of individual cells has been broadly ignored. Thus, in its most rudimentary

form, the PACC model in Chapter 5 serves as a quantitative framework upon which further

transient environmental effects can be investigated (Figure 6.3).

A further question regarding the formation of PACCs is whether the likelihood of cellular

fusion between two specific cells is a function of the shared cellular ancestor? That is, do two

"daughter" cells from a single division event detect the presence of one another and therefore

possess a higher propensity for cellular fusion. Likewise, whilst a viable PACC may be more

likely from the fusion of two "sister" cells, a PACC formed from the fusion of two ancestrally

divergent cells may lead to a greater evolutionary burst of diversity. As a result, the identity

of the constituent cells within a cell fusion derived PACC maybe as important as the PACC

itself (Miroshnychenko et al., 2021). Yet, importantly, novel questions such as this can only

be answered through a phenotypic approach in which the specific spatial context is retained

on a single cell level.

6.2 Accounting for cell size in signal processing

The results in Chapter 5 also highlight a strong positive correlation between the rate of

morphological change and cell area. That is, an increase in cellular area was seen to cause

a corresponding increase in the rate of morphological change. However, due to the small

sample size it was not possible to determine whether the correlation was present across all of

the experimental populations or specific to the invasion population that accounted for over

half of the cells within Chapter 5.

To test whether the affect of cell area on the rate of morphological change was population

specific the same analytical approach from Chapter 3 was adopted with the addition of cell



6.2 Accounting for cell size in signal processing 145

area as another covariate. A linear mixed model was fitted across all of the data such that

the rate of morphological change was dependent on the speed of migration, the distance

to the nearest neighbouring cell, the interaction of the two, and the cell area. The model

parameters were selected through a process of forward selection and only included if they

were significant at the 5% level. The populations were also included as fixed effects allowing

the intercepts and slope to vary between populations.

The cell area was found to be significantly and positively correlated with the rate of

morphological change across all 4 of the experimental populations. That is, akin to the results

in Chapter 5, an increase in cellular area was seen to cause a corresponding increase in the

rate of morphological change. The inclusion of cellular area as a covariate also meant that

the extended model explained a larger proportion of the variation compared with the previous

model (marginal R2 = 0.609 and 0.237 respectively).

In addition to cell area, the same significant covariate combinations were still present

within the escape, invasion, and colonisation populations. That is, the cellular area and the

speed of migration was significant within the invasion and escape populations whilst the full

model was significant within the colonisation populations. However, a change in behaviour

was found within the ancestor populations. In contrast to Chapter 3 where an intercept only

model was fitted. The cell area and speed of migration were both found to be significantly and

positively correlated with the rate of morphological change within the ancestor populations.

Hence the ancestor populations can be seen to have the same morphological dynamics as

both the escape and invasion population after accounting for the affect of cellular area.

In summary, signal processing is a complex behaviour that is dependent on multiple

different cell extrinsic and intrinsic factors, one of which is cellular area. Hence whilst the

affect of cell area on the signal processing behaviour of a cell offers an exciting area of

research. The novel finding also underling the importance of capturing dependent behaviours

when quantifying cellular dynamics during metastasis (Section 6.1.1). Finally, caution should

always be taken when constructing complex mathematical models to ensure that all elements

of the model accurately capture the underling biology of the system.
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6.3 Challenges and limitations

A range of novel analytical approaches have been applied throughout this thesis to develop

a deeper understanding of the migratory dynamics that exist during metastatic dispersal.

However, a common obstacle that has plagued this thesis, as well as all forms of phenotypic

analysis in cancer, is the challenge of obtaining accurate measures of phenotypic traits. This

is acutely apparent when investigating complex behaviours such as signal processing that

require large multi-dimensional data sets to be curated, manipulated, and then processed

to make sense of the biological complexity that exists within. The challenges, limitations

and possible solutions to some of the problems that were encountered during this thesis are

discussed within the following section.

6.3.1 Experimental approach

Firstly, all of the phenotypic models within this thesis (Chapters 3 - 5) were built upon data

obtained from 4 experimentally evolved populations of breast cancer cells. The populations

were evolved using selective regimes that were designed to simulate different stages of the

metastatic cascade (Figure 3.1).

One advantage of using an experimental approach is that populations of cells can be

compared that only differ on their ability to metastasise (Sprouffske et al., 2012; Taylor

et al., 2013). Hence the variation in phenotypic behaviours such as signal processing can

be attributed to distinct selective pressures, an aspect that is not possible within a tumour.

Yet, by the same reasoning, the experimental selective regimes may also be criticised for

not accurately representing the complexity within the native system (Buckling et al., 2009).

For example, the selective regimes in this thesis do not consider the transportation through

the circulatory system, a crucial stage in metastatic dispersal. Likewise, the interaction

between cancer cells and neighbouring stromal cells, a prominent feature during metastatic

dispersal, is not captured. As a result, the findings in this thesis do not necessarily represent

the dynamics that develop within a patient. However, the results do function as a proof of
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concept and likewise all of the quantitative modelling approaches could be translated into

another system.

An important future project will be to build upon the experimental approaches within

this thesis and to apply the selective regimes in series as would be the case in vivo. Whilst

this will lose the distinct selective pressures within each population it will validate whether

the same colonisation dynamics are observed after earlier stages of experimentally selection.

Likewise, identifying whether the same phenotypic behaviours appear suddenly within the

escape and invasion populations after the first round of selection, or gradually after multiple

rounds, will also provide value insight. In vivo multiple rounds of escape and invasion do not

occur. Thus the selective regimes in this thesis may have unrealistically selecting populations

of cells with lower levels of phenotypic variation.

6.3.2 Generating structured data

Next, whilst a plethora of different experimental protocols can be adopted the phenotypic

behaviour of individual cells must still be recorded via a time-lapse video. In turn, the

information that is encoded within the video, such as the location or shape of a cell, must be

translated into a quantitative value that can be used for downstream analysis. This process is

known as cell tracking and is a rate limiting step in many cell migration experiments.

In Chapter 2 a variety of different approaches were discussed to automate the cell tracking

process. A convolutional neural network (CNN) was then used to automatically segment the

morphology of 161,085 cells across 11,880 phase contrast time-lapse images. The segmented

data then formed the basis for the subsequent morphological models presented in Chapters 3

- 5. Whilst a CNN was essential in this thesis there are still certain limitations that need to be

address before wider penetration can be achieved within the cell migration community.

Firstly, in contrast to other automated tracking platforms such as ImageJ (Schindelin

et al., 2012) or Ilastik (Sommer et al., 2011) CNNs do not typically possess a graphic user

interface (GUI). Hence interacting within a CNN relies upon having a working knowledge of

the command line. Whilst this knowledge can be quickly developed it may still perturb some

experimental cell biologists from embracing the use of a CNN. Secondly, manual corrections
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are often needed irrespective of how well the CNN has been trained. The data in this thesis

required multiple weeks of manual curation to ensure that the segmented morphologies

accurately matched the underlying ground truth. Admittedly, the segmentation performance

will improve as the quantity of annotated training data increases and underling technology

matures. Likewise, the degree of manual post-processing can be exponentially reduced

in certain scenarios through the use of florescent tags. Nevertheless, the concept of fully

automated cell tracking is not yet available and will most likely not be available in the

foreseeable future. As a result, the expense of performing manual corrections needs to be

carefully considered when designing experiments that require extensive cell tracking.

6.3.3 Analytical infrastructure

Finally, quantifying the migratory behaviour of individual cells requires the tracked trajectory

of each cell to be post-processed to extract metrics such as the nearest neighbour distance. The

post-processing stage was a major challenge within this thesis due to the lack of developed

analytic infrastructure. As a result, a bespoke post-processing pipeline had to be developed

from the ground up that was both efficient and scalable to handle the large quantity of data.

This meant that advanced computational techniques were required that may not be within

the remit of many experimental cell biologists. Hence if the field of cellular phenotyping is

going to progress the need for skilled image-informaticians will be essential to ensure that

suitable computational methods can be developed.

6.4 Future work

This thesis has shown that a variety of different migration behaviours can develop during

metastatic dispersal. Yet, elucidating whether the same migratory dynamics emerge within a

native 3D environmental remains unknown. The transition from quantifying cell migration

in 2D to 3D is an important, but complex, leap that can reveal radically different migratory

behaviours (Yamada and Sixt, 2019). However, more broadly, 3D phenotyping also provides

an opportunity to integrate quantitative modelling directly into the experimental workflow.
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This then preserves the natural population structure and also enables continuous changes in

phenotypic behaviours to be captured on both a cellular and evolutionary timescale.

For example, in this thesis the migratory behaviour of the colonisation populations were

recorded, and then quantified, at the end of the 6 month experiment on a 2D tissue culture

plate. Hence this meant that only two evolution time-points were obtained and the cellular

behaviours were recorded within a featureless environment. In contrast, by recording the

cells within the native 3D tissue environment multiple phenotypic samples could have been

collected over the 6 month duration. This would then enable the evolutionary trajectory

of each population to "tracked" and understood directly, similar to the difference between

quantifying phenotypic behaviours in time-lapse videos vs inferring behaviours from still

images. As a result, a multi-level state space model could then estimate the evolutionary

dynamics within each population from the individual migratory behaviours. In other words,

multiple phenotypic snapshots could be taken, and the global cell population stratified by

population type and migratory behaviour, akin to Figures 4.5 and 5.3. The snapshots could

then be coalesced to form an "evolutionary time-lapse video" to detect whether convergent

or divergent dynamics develop in response to specific selective regimes. In the context of

poly-aneuploid cancer cells this could provide essential insight as the evolutionary trajectory

of the population could be compared relative to the fluctuations in PACC frequency. That

is, do increases in PACC frequency precede bursts in phenotypic diversity. If so, does the

magnitude of the phenotypic burst decrease through time or do PACCs consistently provide a

constant unwavering source of cellular diversity.

Furthermore, quantifying the migratory behaviours in situ also means that the envi-

ronmental features and population structure can be retained. That is, the distinct cellular

sub-populations will still be spatially partitioned. In the context of metastatic dispersal this

enables questions regarding the influence of kin selection to be investigated because the

migrant cell will be leaving a defined population structure. However, to fully benefit from the

increased data richness a corresponding shift in the analytical approach will also be needed.

Instead of measuring migratory rates, such as cell speed, the analytic focus will need to be

on the raw geographic position of each cell, the migratory coordinates. Whilst this presents a
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host of new quantitative challenges it also fully leverages the power of phenotypic analysis

in capturing the spatial context in which a cellular dynamic develops.
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Appendix A

Experimental methods

A.1 Escape Assay

Initially, MDA-MB-231 cells (LGC) were encapsulated in a 2mg/ml collagen gel (rat-

tail collagen type 1, First Link) and set into a 24-well plate which was used as a mould

(750,000 cells per gel, Greiner Bio-One). The collagen gels were compressed for 2 minutes

as described in Keeton et al. (2018), then set into a 1mg/ml low density collagen gel

(rat tail collagen type 1, First Link). Once set, cell culture medium (Dulbeco’s Modified

Eagles Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), and Penicillin

100 µg/ml, Streptomycin 100 U/ml (Gibco, Fisher Scientific)) was added over the top.

Medium was replaced every 3-4 days. After 10-14 days, the compressed collagen disc

was separated from the low density collagen and collagenase type 1 diluted in phospho-

buffered saline solution (Gibco, Fisher Scientific) used to retrieve the cells from the collagen

matrix, 200 U/ml for compressed collagen and 100 U/ml for low density collagen. Cells

in collagenase/PBS were incubated at 37°C in a stirred water-bath at 45 rpm for 30-60

minutes, then washed in Phospo-buffered saline solution (PBS, Gibco Fisher Scientific).

Cells extracted from the compressed collagen were placed in liquid nitrogen storage and

those collected from the low density collagen were seeded into 2mg/ml collagen gel with

medium over for population expansion. Once expanded, cells were retrieved from collagen
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using collagenase in PBS then seeded into 2mg/ml collagen for compression or frozen at

-80°C and transferred to liquid nitrogen for storage.

A.2 Invasion Assay

MDA-MB-231 cells (LGC) were re-suspended in PBS, and seeded around the outside of a

5mg/ml set Matrigel island in a 6-well plate Matrigel (#35623, Corning), was diluted using

DMEM without supplements. Cells were seeded in excess at the island margins, with around

40,000 cells seeded in 200µl per experiment for the initial set-up. Cells were left to settle and

adhere to the 2D surface for 60 minutes then cell culture medium added over the top (DMEM

supplemented with 10% FBS, and penicillin 100 µg/ml, streptomycin 100 U/ml). Medium

was changed every 3-4 days and cells were harvested after 7 days. Cells were retrieved from

Matrigel using Cell Recovery solution (#354253, Corning) on ice for 45-60 minutes, washed

with ice cold PBS then reseeded into Matrigel at 5mg/ml to expand cell numbers. After 7

days the cells were released from Matrigel using cell recovery solution as described above

(typically 400,000 – 500,000 per gel), re-suspended in PBS and seeded in excess around the

outside of a new Matrigel island (5mg/ml) for the next round of the 2D/3D invasion assay or

cells were frozen at -80°C and transferred to liquid nitrogen for storage.

A.3 Colonisation Assay

Rat lung was retrieved from 9 week old Wistar rats (Envigo) and flash frozen. It was then

thawed and decellularized using repeated rounds of treatment following an adapted version of

the protocol published in Medberry et al. (2013). Briefly: frozen lung was thawed and cut into

small pieces of around 100mg, which were then placed into deionized water (ddH2O), stirred

at 60 rpm for 16 hours at 4°C. Lung tissue was treated with 0.02% trypsin/0.05% EDTA for

60 minutes at 37°C at 60 rpm, 3% Triton-X 100/PBS for 70 minutes, 1M sucrose/PBS for

30 minutes, 4% deoxycholate/ddH2O for 60 minutes, 0.1% peracetic acid in 4% ethanol

for 120 minutes, PBS for 5 minutes, and finally twice in ddH2O for 15 minutes. The
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tissue was washed thoroughly between each treatment with ddH2O. De-cellularization was

checked between rounds using epifluorescence microscopy and staining with DAPI H1200

Vectashield (Vectorlabs) to identify whether cell nuclei remained within the matrix structure.

Decellularized lung tissue was freeze-dried and stored in an airtight container.

Using decellularized lung as a culture matrix: tissue was soaked in 70% ethanol, washed

with PBS and then rehydrated in PBS pH 7.2 (Gibco) in a tissue culture incubator for

5 days, then soaked in cell culture medium (DMEM supplemented with 10% FBS and

penicillin/streptomycin as described above) for 48 hours. Cells grown in 2D tissue culture

flasks were trypsinized, re-suspended in medium then 750,000 cells added in low volume of

medium (100-150 µl) over the decellularized lung tissue in a 6-well plate and left to adhere

for 2 hours. Medium was then added over the top so that the decellularized lung rafts floated.

Rafts were transferred to new wells when the bottom of the well was confluent with shed

and adhered cells. To feed the cells growing in/on the raft, ½ of the medium (2ml of 4ml)

was aspirated and replaced every 2-4 days. After 140 and 189 days, rafts were retrieved

from medium, washed with PBS and cells harvested by incubating in: collagenase I (170

U/ml, Gibco 17018-029), collagenase IV (170 U/ml, Gibco 17104-019), elastase (0.075

U/ml, Sigma E7885) (based on the protocol described in Quatromoni et al. (2015)) incubated

at 37°C 45rpm in a stirred water-bath, then washed twice with PBS before seeding in 2D

tissue culture plates for expansion. Expanded cells were then frozen at -80°C and transferred

to liquid nitrogen for storage.

A.4 Time-lapse microscopy

The frozen cells were retrieved from liquid nitrogen, cultured in 2D tissue culture flasks

(25cm2 or 75cm2 Greiner bio-one), trypsinized and seeded into 6-well plates (Greiner bio-

one) at 10-15% cell confluence. Time-lapse movies were made for 12 hour periods with

images taken at 2 minute intervals, using a Nikon TiE phase contrast microscope with an

environmental chamber (37°C) and moveable platform stage. x10 Plan Apo DIC L Lens
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was used in conjunction with an intermediate magnification changer set to x1.5 to give x15

magnification. NIS Elements software was used for image capture.



Appendix B

Supplementary figures

B.1 Chapter 3

Population
Mean rate of

morphological change
SE rate of

morphological change Mean speed of migration SE speed of migration N

Ancestor 4.782 0.074 4.466 0.096 88
Escape 4.900 0.037 4.238 0.045 230

Invasion 4.717 0.033 4.234 0.040 283
Colonisation 4.822 0.038 4.310 0.045 212

Table B.1: The natural log-transformed mean and standard error for the rate of mor-
phological change and the speed of migration. Displayed are the natural log mean and
standard error for the rate of morphological change and speed of migration for each of the
four populations. The escape populations have a significantly higher rate of morphological
change compared with the invasion populations, p = 0.0289.
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Figure B.1: A dynamic switch in the morphological behaviour within cells selected for
colonisation with data points. The speed of migration (p = 5.418 x10-14), the distance to
the nearest neighbouring cell (p = 2.207 x10-10) and the interaction of the two (2.219 x10-11)
was significant in the colonisation population (N = 210). (A) The natural log-transformed
rate of morphological change against the natural log-transformed speed of migration. The
data point colour relates to the distance from a neighbouring cell. The lighter the data point
the further away from a neighbouring cell. The shaded lines represent the predicted natural
log-transformed rate of morphological change against the natural log-transformed speed of
migration. The shaded lines indicate the natural log-transformed nearest neighbour percentile.
The light the line the further away from a neighbouring cell. (B) The natural log-transformed
rate of morphological change against the natural log-transformed nearest neighbour distance.
The data point colour relates to the speed of migration. The lighter the data point the faster
the speed of migration. The shaded lines represent the predicted natural log-transformed
rate of morphological change against the natural log-transformed nearest neighbour distance.
The shaded lines indicate the speed of migration percentile. The lighter the line the faster the
speed of migration. The shaded region indicates the range of distances over which there is
no significant relationship in the rate of morphological change and the speed of migration
when the data is centred at these distances, between 57.9µm and 147.2µm.
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Figure B.2: The reduced model for each population after the removal of influential
data points. The natural log-transformed rate of morphological change against the natural
log-transformed speed of migration. In the colonisation populations the shaded lines indicate
the natural log-transformed nearest neighbour percentile. The lighter the line the further
away from a neighbouring cell. Influential data points, Cook’s distance > (4 / N) where N
is the sample size (Bollen and Jackman, 1985), have been removed to test whether a small
subset of points influencing the result. After the removal of the influential points the speed of
migration was still significant in the escape and invasion populations. Likewise, the speed of
migration, distance to the nearest neighbouring cell and the interaction of the two was still
significant in the colonisation populations.
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B.2 Chapter 4

Figure B.3: The time invariant reduced model for each population after the removal
of influential data points. The natural log-transformed rate of morphological change against
the natural log-transformed speed of migration. In the colonisation populations the shaded
lines indicate the natural log-transformed nearest neighbour percentile. The lighter the line
the further away from a neighbouring cell. Influential data points, Cook’s distance > (4 / N)
where N is the sample size (Bollen and Jackman, 1985), have been removed to test whether
a small subset of points influencing the result. After the removal of the influential points
the intercept was still the only significant parameter in the ancestor, escape and invasion.
Likewise, the speed of migration, distance to the nearest neighbouring cell and the interaction
of the two was still significant in the colonisation populations.
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Model selection

C.1 Chapter 4

Structure
Number of

estimated parameters Identification

Identity matrix 0 S1
A single

global estimate 1 S2

Independent estimates
for each video 33 S3

Independent estimates
for each cell 244 S4

Correlated estimates
for each video 66 S5

Correlated estimates for
each cell within a given video 1265 S6

Table C.1: The observation variance structures compared during the dynamic factor
model selection in Chapter 4. The 6 different observation variance structures compered
during the dynamic factor model selection in Chapter 4. Note, the number of estimated
parameters strictly related to the observation matrix structure and the not the model as a
whole. The identification key relates to the observation variance structures in Tables C.2 -
C.6.
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Observation
variance structure

Number of
factors Log likelihood AICc

Number of
estimated parameters ∆AICc

S5 4 -109605.92 221319.25 1040 0.00
S2 4 -109807.04 221588.14 975 267.89
S3 4 -109781.60 221602.89 1007 281.64
S4 4 -109624.39 221722.46 1218 400.21
S5 3 -110114.39 221840.87 798 517.63
S1 4 -110001.68 221975.37 974 651.13
S2 3 -110316.72 222113.01 733 787.76
S3 3 -110293.86 222132.51 765 806.26
S6 4 -108828.33 222263.56 2239 936.32
S4 3 -110159.30 222294.72 976 966.48
S5 2 -110632.67 222383.11 555 1053.86
S1 3 -110461.29 222400.10 732 1069.85
S2 2 -110835.79 222657.63 490 1326.39
S3 2 -110818.16 222687.19 522 1354.95
S6 3 -109341.59 222779.43 1997 1446.18
S1 2 -110935.69 222855.40 489 1521.15
S4 2 -110703.33 222886.22 733 1550.97
S6 2 -109861.26 223309.15 1754 1972.90
S5 1 -111354.05 223332.53 311 1995.28
S2 1 -111551.49 223596.49 246 2258.24
S3 1 -111540.14 223638.22 278 2298.97
S1 1 -111605.44 223702.39 245 2362.14
S4 1 -111456.38 223896.79 489 2555.55
S6 1 -110596.20 224270.50 1510 2928.25

Table C.2: The covariate free dynamic factor model selection results.
Displayed are the covariate free dynamic factor model selection results in Chapter 4. The
observation variance structure relates to the identification column in Table C.1. The optimal
covariate free model with the lowest AICc had 4 factors and correlated estimates for each
video in the observation variance.
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Observation
variance structure

Number of
factors Log likelihood AICc

Number of
estimated parameters ∆AICc

S5 4 -110359.89 222827.19 1040 0.00
S2 4 -110430.97 222836.01 975 7.82
S3 4 -110415.27 222870.22 1007 41.03
S4 4 -110228.54 222930.76 1218 100.57
S1 4 -110568.01 223108.04 974 276.85
S5 3 -110798.73 223209.55 798 377.36
S2 3 -110872.47 223224.50 733 391.31
S3 3 -110858.25 223261.27 765 427.08
S4 3 -110701.35 223378.81 976 543.62
S1 3 -110972.14 223421.82 732 585.63
S6 4 -109482.55 223572.01 2239 734.82
S5 2 -111376.95 223871.66 555 1033.47
S2 2 -111449.76 223885.56 490 1046.37
S3 2 -111437.11 223925.08 522 1084.89
S6 3 -109945.35 223986.93 1997 1145.74
S1 2 -111510.91 224005.85 489 1163.66
S4 2 -111317.26 224114.08 733 1270.89
S6 2 -110545.75 224678.13 1754 1833.94
S5 1 -112196.15 225016.73 311 2171.54
S2 1 -112264.62 225022.75 246 2176.56
S1 1 -112287.71 225066.94 245 2219.75
S3 1 -112257.40 225072.75 278 2224.56
S4 1 -112220.75 225425.52 489 2576.33
S6 1 -111392.45 225863.00 1510 3012.81

Table C.3: The speed of migration dynamic factor model selection results.
Displayed are the speed of migration dynamic factor model selection results used in Chapter
4 to impute the missing speed of migration values. The observation variance structure relates
to the identification column in Table C.1. The optimal model used for imputation had 4
factors and correlated estimates for each video in the observation variance. The imputed
speed of migration values were then used in Chapter 4 and Chapter 5.
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Observation
variance structure

Number of
factors Log likelihood AICc

Number of
estimated parameters ∆AICc

S6 4 -57082.76 118772.53 2239 0.00
S6 3 -63095.08 130286.48 1997 11512.95
S4 4 -68491.33 139456.35 1218 20681.82
S6 2 -70133.26 143853.21 1754 25077.68
S5 4 -74402.09 150911.60 1040 32135.07
S3 4 -74815.14 151669.98 1007 32892.45
S4 3 -75622.33 153220.79 976 34442.26
S2 4 -76256.91 154487.91 975 35708.38
S6 1 -77626.35 158330.84 1510 39550.31
S5 3 -81181.81 163975.73 798 45194.20
S3 3 -81553.41 164651.60 765 45869.07
S2 3 -82763.81 167007.20 733 48223.67
S4 2 -84258.38 169996.34 733 51211.80
S5 2 -88713.66 178545.09 555 59759.56
S3 2 -89139.94 179330.75 522 60544.22
S2 2 -89905.88 180797.82 490 62010.29
S1 4 -89437.53 180847.10 974 62058.57
S1 3 -92185.48 185848.50 732 67058.97
S4 1 -94685.34 190354.71 489 71564.18
S1 2 -95747.25 192478.53 489 73687.00
S5 1 -97887.61 196399.65 311 77607.12
S3 1 -98417.58 197393.11 278 78599.57
S2 1 -98837.81 198169.14 246 79374.61
S1 1 -101250.27 202992.05 245 84196.52

Table C.4: The nearest neighbour dynamic factor model selection results.
Displayed are the nearest neighbour dynamic factor model selection results used in Chapter
4 to impute the missing nearest neighbour distances. The observation variance structure
relates to the identification column in Table C.1. The optimal model used for imputation had
4 factors and correlated estimates for each cell within a given video. The imputed nearest
neighbour distances were then used in Chapter 4 and 5.
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Observation
variance structure

Covariate
combination Log likelihood AICc

Number of
estimated parameters ∆AICc

S4 Full -100758.67 204015.76 1230 0.00
S4 Both -100849.90 204189.97 1226 173.21
S4 Speed -100889.71 204261.34 1222 243.58
S5 Full -101126.98 204386.00 1052 367.24
S5 Both -101202.11 204528.05 1048 508.29
S6 Full -99970.33 204572.98 2251 552.22
S5 Speed -101240.89 204597.40 1044 575.64
S6 Both -100053.34 204730.53 2247 707.77
S3 Full -101346.50 204757.30 1019 733.53
S6 Speed -100091.28 204797.93 2243 773.17
S2 Full -101446.96 204892.59 987 866.83
S3 Both -101420.73 204897.56 1015 870.80
S3 Speed -101459.55 204966.99 1011 939.23
S2 Both -101519.72 205029.91 983 1001.14
S2 Speed -101557.76 205097.79 979 1068.03
S1 Full -103169.03 208334.68 986 4303.92
S1 Both -103222.77 208433.95 982 4402.19

Table C.5: The dynamic factor model selection results with covariates estimated at a
population level. Displayed are the dynamic factor model selection results in Chapter 4 with
covariate effects estimated at a population level. The observation variance structure relates to
the identification column in Table C.1. The covariate combination relates to either: the speed
of migration only (speed), the speed of migration and the nearest neighbour distance (both),
or the full model of covariate effects (full). All of the models were estimated with 4 factors.
The optimal dynamic factor model with covariate effects estimated at a population level had
a full model of covariates with an independent estimates for each cell in the observation
matrix.
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Observation
variance structure

Covariate
combination Log likelihood AICc

Number of
estimated parameters ∆AICc

S4 Full -99306.94 202611.30 1950 0.00
S4 Both -99734.70 202955.74 1706 343.44
S5 Full -99681.37 202987.00 1772 373.70
S4 Speed -100064.12 203106.68 1462 492.37
S6 Full -98517.35 203205.80 2971 590.50
S5 Both -100086.65 203288.80 1528 672.50
S3 Full -99905.13 203365.54 1739 748.24
S5 Speed -100409.62 203429.13 1284 810.83
S6 Both -98937.52 203521.45 2727 902.15
S2 Full -100019.49 203527.41 1707 907.11
S6 Speed -99271.22 203667.48 2483 1046.18
S3 Both -100310.92 203668.78 1495 1046.48
S3 Speed -100629.59 203800.94 1251 1177.64
S2 Both -100425.26 203831.03 1463 1206.73
S2 Speed -100737.54 203950.81 1219 1325.51
S1 Full -102137.00 207760.34 1706 5134.04
S1 Speed -102652.21 207778.08 1218 5150.78
S1 Both -102423.86 207826.15 1462 5197.85
S5 Neighbour -109184.49 220978.88 1284 18349.58
S2 Neighbour -109393.39 221262.51 1219 18632.21
S3 Neighbour -109364.41 221270.58 1251 18639.28
S4 Neighbour -109197.83 221374.10 1462 18741.80
S1 Neighbour -109629.11 221731.89 1218 19098.59
S6 Neighbour -108404.36 221933.74 2483 19299.44

Table C.6: The dynamic factor model selection results with covariates estimated at a
single cell level. Displayed are the dynamic factor model selection results in Chapter 4 with
covariate effects estimated at a single cell level. The observation variance structure relates to
the identification column in Table C.1. The covariate combination relates to either: the speed
of migration only (speed), the speed of migration and the nearest neighbour distance (both),
or the full model of covariate effects (full). All of the models were estimated with 4 factors.
The optimal dynamic factor model with covariate effects estimated at a single cell level had a
full model of covariates with an independent estimate for each cell in the observation matrix.
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C.2 Chapter 5

Structure
Number of

estimated parameters Identification

Identity matrix 0 S1
A single

global estimate 1 S2

Independent estimates
for each population 3 S3

Independent estimates
for each video 8 S4

Independent estimates
for each cell 69 S5

Correlated estimates
for each video 16 S6

Correlated estimates for
each cell within a given video 432 S7

Table C.7: The state matrix and state variance structures compared during the blind
model selection in Chapter 5. The 7 different parameter structures compared in the state
matrix and state variance blind model selection in Chapter 5. Note, the number of estimated
parameters strictly relate to the parameter structure and not the model as a whole. The
identification key relates to the state matrix and state variance structures in Tables C.8 and
C.9.
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State matrix
structure

State variance
structure Log likelihood AICc

Number of
estimated parameters ∆AICc

S4 S4 -30872.94 62023.58 138 0.00
S4 S5 -31000.12 62166.86 83 142.27
S2 S5 -31072.04 62174.09 15 148.51

S31 S5 -31070.18 62174.39 17 147.81
S4 S2 -31019.26 62178.95 70 151.37
S4 S31 -31019.16 62182.79 72 154.21
S4 S3 -31018.24 62188.99 76 159.41

S31 S2 -31091.33 62190.67 4 160.09
S2 S31 -31093.09 62194.19 4 162.60

S31 S31 -31091.28 62194.57 6 161.99
S2 S3 -31089.31 62194.63 8 161.05

S31 S3 -31087.43 62194.86 10 160.28
S2 S2 -31097.77 62199.55 2 163.96
S4 S6 -30635.14 62274.01 491 237.43

S31 S4 -31068.36 62281.19 72 243.60
S2 S4 -31070.74 62281.92 70 243.34

S31 S6 -30801.16 62468.57 425 428.99
S2 S6 -30804.18 62470.46 423 429.87

S31 S1 -33217.79 66441.58 3 4399.99
S4 S1 -33153.48 66445.40 69 4402.81
S2 S1 -33222.96 66447.92 1 4404.33

Table C.8: The covariate free blind model selection results.
Displayed are the covariate free blind model selection results in Chapter 5. The state matrix
and state variance structure relate to the identification column in Table C.7. All of the models
were estimated with a fixed observation variance as detailed in Section 5.3.2. The optimal
covariate free blind model with the lowest AICc had independent estimates in the state matrix
and the state variance.
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State variance
structure

Covariate
combination Log likelihood AICc

Number of
estimated parameters ∆AICc

S4 Full -28686.27 58073.22 345 0.00
S5 Full -28755.12 58097.76 290 23.54
S2 Full -28786.57 58134.00 277 58.78

S31 Full -28785.27 58135.50 279 59.28
S3 Full -28782.81 58138.79 283 61.56
S4 Both -28800.26 58159.34 276 81.12
S5 Both -28872.42 58191.20 221 111.98
S2 Both -28901.60 58223.06 208 142.84

S31 Both -28901.02 58225.98 210 144.75
S3 Both -28898.76 58229.61 214 147.38
S4 Speed -28983.82 58385.47 207 302.25
S5 Speed -29040.53 58387.13 152 302.90
S6 Full -28506.88 58454.09 698 368.86
S2 Speed -29088.15 58456.01 139 369.79

S31 Speed -29086.96 58457.69 141 370.47
S3 Speed -29085.63 58463.14 145 374.91
S6 Both -28611.12 58516.13 629 426.91
S6 Speed -28757.47 58663.30 560 573.08
S4 Neighbour -30748.48 61914.79 207 3823.57
S5 Neighbour -30858.20 62022.46 152 3930.24
S2 Neighbour -30873.34 62026.40 139 3933.17

S31 Neighbour -30872.89 62029.55 141 3935.32
S3 Neighbour -30871.30 62034.48 145 3939.25
S6 Neighbour -30503.06 62154.47 560 4058.25
S1 Both -31839.34 64096.50 207 5999.27
S1 Full -31789.39 64137.59 276 6039.37
S1 Speed -31930.70 64139.10 138 6039.88
S1 Neighbour -33011.10 66299.89 138 8199.67

Table C.9: The blind model covariate selection results.
Displayed are the blind model covariate selection results in Chapter 5. The state variance
structure relates to the identification column in Table C.7. The covariate combination relates
to either: the speed of migration only (speed), the speed of migration and the nearest
neighbour distance (both), or the full model of covariate effect (full). All of the models were
estimated with independent estimates for each cell in the state matrix. Likewise, all of the
models were estimated with a fixed observation variance as detailed in Section 5.3.2. The
optimal blind model had a full model of covariates with independent estimates for each cell
in the state variance.
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