
Changes in net ecosystem exchange over 
Europe during the 2018 drought based on 
atmospheric observations 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open access 

Thompson, R. L., Broquet, G., Gerbig, C., Koch, T., Lang, M. 
ORCID: https://orcid.org/0000-0002-1904-3700, Monteil, G., 
Munassar, S., Nickless, A., Scholze, M., Ramonet, M., 
Karstens, U., van Schaik, E., Wu, Z. and Rödenbeck, C. (2020)
Changes in net ecosystem exchange over Europe during the 
2018 drought based on atmospheric observations. Philsophical
Transactions of the Royal Society B, 375 (1810). 20190512. 
ISSN 1471-2970 doi: https://doi.org/10.1098/rstb.2019.0512 
Available at https://centaur.reading.ac.uk/106730/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1098/rstb.2019.0512 

Publisher: Royal Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

2 
royalsocietypublishing.org/journal/rstb
Research
Cite this article: Thompson RL et al. 2020
Changes in net ecosystem exchange

over Europe during the 2018 drought based on

atmospheric observations. Phil. Trans. R. Soc. B

375: 20190512.
http://dx.doi.org/10.1098/rstb.2019.0512

Accepted: 22 July 2020

One contribution of 16 to a theme issue

‘Impacts of the 2018 severe drought and

heatwave in Europe: from site to continental

scale’.

Subject Areas:
environmental science

Keywords:
atmospheric inversion, atmospheric

tracer transport modelling,

net ecosystem exchange, drought

Author for correspondence:
R. L. Thompson

e-mail: rona.thompson@nilu.no
© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†Present address: Department of Meteorology,

University of Reading, Reading, UK.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5088401.
Changes in net ecosystem exchange
over Europe during the 2018 drought
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The 2018 drought was one of the worst European droughts of the twenty-first
century in terms of its severity, extent and duration. The effects of the drought
could be seen in a reduction in harvest yields in parts of Europe, as well as an
unprecedented browning of vegetation in summer. Here, we quantify the
effect of the drought on net ecosystem exchange (NEE) using five independent
regional atmospheric inversion frameworks. Using a network of atmospheric
CO2 mole fraction observations, we estimate NEE with at least monthly
and 0.5° × 0.5° resolution for 2009–2018. We find that the annual NEE
in 2018 was likely more positive (less CO2 uptake) in the temperate region
of Europe by 0.09 ± 0.06 Pg C yr−1 (mean ± s.d.) compared to the mean of
the last 10 years of −0.08 ± 0.17 Pg C yr−1, making the region close to carbon
neutral in 2018. Similarly, we find a positive annual NEE anomaly for the
northern region of Europe of 0.02 ± 0.02 Pg C yr−1 compared the 10-year
mean of −0.04 ± 0.05 Pg C yr−1. In both regions, this was largely owing to a
reduction in the summer CO2 uptake. The positive NEE anomalies coincided
spatially and temporally with negative anomalies in soil water. These
anomalies were exceptional for the 10-year period of our study.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.
1. Introduction
In 2018, Europe experienced an extensive heatwave anddrought. European temp-
eratures were much higher than the 1981–2010 average from April to December,
with a mean temperature anomaly of +2.5°C in May [1]. Along with the anoma-
lously high temperatures was an extended period of low precipitation, especially
over parts of Central andNorthern Europewhere the total precipitation in spring,
summer and autumn fell below 80% of normal. In Germany, the spring and
summer precipitation even fell below 40% of normal [1]. What makes 2018
stand out compared to previous heatwaves and droughts in the twenty-first
century (specifically in 2003 and 2015) is its long duration, from spring to
winter, which led to agricultural losses, water restrictions and, through low
river levels, disruptions to shipping.
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The effects of the 2003 drought on the land biosphere and
net ecosystem exchange (NEE) have been widely studied [2–
4]. NEE is the difference between terrestrial ecosystem respir-
ation and gross primary production, where a positive NEE
denotes a flux to the atmosphere. Ciais et al. [2] estimated a
30% decrease in gross primary productivity (GPP) over
Europe in 2003. The decrease in GPP coincided with soil
drying and water stress, which led to stomatal closure and
a decrease in evapotranspiration [2]. The finding that the
decline in GPP was primarily due to water, and not heat
stress, is corroborated by other studies [3,4]. Terrestrial eco-
system respiration (TER) decreased coincidently with GPP,
owing to reduced auto- and heterotrophic respiration, again
thought to be due to the water deficit [2]. The reduction in
TER did not completely compensate the reduction in GPP,
and overall a reduction was also seen in NEE, and resulted
in an anomalous source of CO2 to the atmosphere from the
land biosphere in 2003 [2].

The 2018 drought also had a widespread impact on Euro-
pean vegetation, which could be seen from space. Both the
moderate resolution imaging spectroradiometer (MODIS) on
the Terra satellite and the visible infrared imaging radiometer
suite (VIIRS) on the Suomi NPP satellite showed an extensive
browning of vegetation in July 2018 (https://earthobserva-
tory.nasa.gov/images/92490/heatwave-turns-europe-brown).
Satellite observations of leaf area index (LAI) also showed sig-
nificant anomalies, with July 2018 having the lowest LAI of
any July since the start of the record in 2000, and negative
LAI anomalies were seen from June to October [5]. The appar-
ent plant stress from summer to autumn 2018 suggests that
there was also an impact on NEE and carbon uptake by the
land biosphere, but quantification of this impact is still needed.

In this study, we use atmospheric inversions, which
assimilate observations of CO2 mole fractions into models
of atmospheric tracer transport to constrain NEE fluxes in a
Bayesian statistical framework. Atmospheric inversions
have been widely used to estimate NEE on global and
regional scales, and there are several examples focusing on
Europe (e.g. [6–10]). Since the inversions use atmospheric
CO2 mole fractions, they provide a constraint on NEE that
is largely independent of estimates based on eddy covariance
(EC) flux measurements and land surface models and thus
can be considered as complementary to these approaches.
However, owing to the previous lack of long-term regional
observation records, and to coarse model resolution, earlier
inversions provided only tenuous results on regional scales
and, therefore, have not been hitherto used to assess the
impact of droughts on NEE in Europe [11,12], although an
inversion has been used in the study of the 2012 drought in
the USA [13]. The recent inversion inter-comparison project,
EUROCOM, has made significant progress on examining
the robustness of European CO2 inversions [14], and this
study applies a suite of the EUROCOM inversions to assess
the impacts of the 2018 drought.

Using estimates of NEE for Europe from five different
regional inversion frameworks for the past 10 years (2009–
2018), we examine the impact of the 2018 heatwave and
drought on NEE and compare the annual land biosphere
carbon uptake to that of previous years. Moreover, we
address the following questions: how well do inverse
models detect inter-annual variations in NEE? And how
exceptional were changes in NEE in 2018 with respect to
previous years?
2. Methodology
(a) Overview of the inversion method
We use five atmospheric inversion frameworks, which are all
based on Bayesian statistics (table 1). Atmospheric inversions
find the statistically optimal fluxes, given the observed CO2

mole fractions and prior statistical information about the fluxes.
This is expressed as finding the fluxes (or flux parameters), x,
that minimize the cost function:

JðxÞ ¼ 1
2
(x� xb)

TB�1(x� xb)þ 1
2
(HðxÞ � y)TR�1(HðxÞ � y),

ð2:1Þ
where x is a vector of fluxes (or flux parameters) controlled by the
inversion and xb is the prior value of x and y is a vector of observed
CO2 mole fractions. H(x) is the observation operator, which relates
x to CO2 mole fractions, and is described by an atmospheric trans-
port model (see the description of the inversion frameworks in the
electronic supplementary material, Information). B andR are error
covariance matrices that describe the uncertainties of the prior
fluxes (or flux parameters) and the uncertainties of the obser-
vations and observation operator, respectively (assuming that
these uncertainties have Gaussian distributions) [17,18]. The pos-
terior value of x, i.e. the solution minimizing this equation, can
be foundby solving the first-order derivative using a descent algor-
ithm, also known as the variational approach, and is the approach
used by four of the inversion frameworks in this study [8,9,19–21].
The fifth framework (NAME-HB) uses a Monte Carlo Markov
Chain approach to find the solution for x [22]. The observation
operator, H(x), represents atmospheric transport of CO2 and,
depending on the definition of x, a statistical model relating the
parameters x to NEE fluxes, where the parameters are offsets or
scaling factors of first-guess estimates ofNEE. The inversion frame-
works included in this study are fully described in Monteil et al.
[14] and in the electronic supplementary material, Information.
(b) Atmospheric observations
The atmospheric observations used in the inversions include in situ
and flask measurements made at numerous sites throughout
Europe (figure 1 and electronic supplementary material, table
S1). Since the network is not stationary in time, as new sites were
added and some sites were discontinued, we include inversions
that used a selection of sites that were quasi-continuous through-
out the 10-year period of our study (these are labelled ‘select’).
Using a near-stationary observational dataset (i.e. one with close
to the same number of observations in the same locations each
year) prevents artefacts in the temporal variability of the posterior
NEE that may arise due to a changing observational constraint
[23]. On the other hand, selecting only quasi-continuous sites
reduces the observational constraint in the inversion leading to
higher uncertainties in the temporal variability of NEE. Therefore,
we also include inversions using all available sites (these are
labelled ‘all’), as these have a stronger constraint on NEE,
especially in 2018 when more sites were operating, although
changes in the observational network mean that the precision of
the estimates varies from year to year.

All observation sites record mole fractions of CO2 in parts-per-
million by volume (ppm) and are calibrated to the international
standard WMO-CO2-X2007 scale. Estimates for the inter-compar-
ability of the measurements are typically within the WMO
recommended target of 0.1 ppm based on the WMO round-robin
comparison experiment (https://www.esrl.noaa.gov/gmd/
ccgg/wmorr/). Hourly observations were assimilated into the
inversions during the daytime for low-altitude sites and during
the night-time for mountain sites (for NAME-HB, a different selec-
tion criterion was used—see electronic supplementary material,
Information). The selection criteria follow standard practices to

https://earthobservatory.nasa.gov/images/92490/heatwave-turns-europe-brown
https://earthobservatory.nasa.gov/images/92490/heatwave-turns-europe-brown
https://earthobservatory.nasa.gov/images/92490/heatwave-turns-europe-brown
https://www.esrl.noaa.gov/gmd/ccgg/wmorr/
https://www.esrl.noaa.gov/gmd/ccgg/wmorr/
https://www.esrl.noaa.gov/gmd/ccgg/wmorr/


Table 1. Overview of the atmospheric inversion frameworks used in this study.

CarboScope-

Regional FLEXINVERT LUMIA NAME-HB PyVAR-CHIMERE

transport model STILT (Lagrangian) FLEXPART (Lagrangian) FLEXPART

(Lagrangian)

NAME (Lagrangian) CHIMERE (Eulerian)

meteo. forcing ECMWF IFS ECMWF IFS ECMWF EI UK Met Office unified

model

ECMWF IFS

transport resolution 0.25° × 0.25° 0.5° × 0.5° 0.5° × 0.5° 0.233° × 0.352° 0.5° × 0.5°

optimization method variational variational variational Metropolis–Hastings variational

state vector spatial

resolution

0.5° × 0.5° variable from 0.5° × 0.5° to

4° × 4°

0.5° × 0.5° 0.35° × 0.25° 0.5° × 0.5°

state vector temporal

resolution

3 h 12 h intervals averaged

over 10 days

1 month 6 h 6 h

number obs. sitesa CSR-all: 44

CSR-select: 15

CSR-clim: 15

FI-select: 16

FI-clim: 16

LU-all: 34

LU-select: 14

LU-clim: 14

NA-select: 16

NA-clim: 16

PYV-all: 56

prior NEE VPRM SiBCASA LPJ-Guess LPJ-Guess VPRM

prior ocean Mikaloff-Fletcher

et al. 2007

(fixed)

CarboScope

oc_v1.6 (fixed)

CarboScope oc_v1.6

(fixed)

Takahashi et al. (2009)

(fixed)

zero prior (optimized)

fossil fuel EDGAR EDGAR EDGAR EDGAR EDGAR

biomass burning none GFEDv4.1s none none none

boundary conditions two-step

approach [15]

coupling to CAMSv18r2

[16]

two-step approach

[15]

coupling to CAMSv18r2

[16]

initial conditions

CAMSv18r2 [16]

aAbbreviated names for each inversion are given, where ‘all’ indicates that all available sites were used, ‘select’ indicates that only sites with quasi-continuous measurements were

used and ‘clim’ indicates that a climatological NEE prior was used but is otherwise the same as ‘select’.
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avoid assimilating observations forwhich themodel representation
errors are likely to be very large, specifically for low-altitude sites
at night-time and in the early morning when the planetary
boundary layer is shallow, and for mountain sites when upslope
winds, carrying the effect of local fluxes, may strongly influence
the atmospheric signal [24,25].

Uncertainties in the observation space include estimates of the
measurement error, as well as estimates of the errors from the
observation operator. The quadratic sum of uncertainties for
each observation gives the diagonal elements of R in equation
(2.1) and, in all the inversions presented, the off-diagonal elements
of R are zero, i.e. that the uncertainties are assumed to be uncorre-
lated. The inversion frameworks use different methods for
determining observation space uncertainties, which are described
in the electronic supplementary material, Information.

(c) Prior information
Four of the atmospheric inversion frameworks only optimize NEE
and thereby assume that the contribution to themodel observation
error from other fluxes, i.e. from the ocean, biomass burning and
the combustion of fossil fuels, is negligible or at least much smaller
than that from NEE. PyVAR-CHIMERE is the exception as it also
optimizes ocean fluxes (but likewise assumes that the errors in
the other flux components are negligible). This is the general
approach used by atmospheric inversions since: (i) NEE is con-
sidered the most uncertain CO2 flux; (ii) on hourly time scales
the atmospheric CO2 signal is largely dominated by NEE since
the sites are located away from urban centres and thus the
influence of fossil fuel emissions; and (iii) there are currently
no widely available and reliable atmospheric tracers for fossil
fuel emissions (e.g. 14CO2) and thus no possibility to separately
constrain these in the inversions.

All inversions used gridded fossil fuel emissions based on the
Emission Database for Atmospheric Research (EDGARv4.32) [26].
These data were provided at 0.1° × 0.1° and for the year 2010 and
were extrapolated to other years using country-scale fuel con-
sumption data from the BP Statistical Review of World Energy
2019. A temporally disaggregated version of the data was used
with emissions estimated hourly based on sector-specific temporal
factors (seasonal, weekly and diurnal) [27]. The emission of CO2

from fossil fuels is generally well-known for developed countries
with an uncertainty typically less than the global uncertainty of
5% [28]; however, the relative uncertainty for any given grid cell
or time may be much larger than that of the national total. This
uncertainty is to some extent accounted for in the observation
space uncertainties (see electronic supplementary material, Infor-
mation), albeit imperfectly. With no widespread observations of
reliable tracers for fossil fuel emissions, atmospheric inversions
are still susceptible to errors in NEE due to inaccurate fossil fuel
emissions [29].

For the other flux components (NEE, ocean and biomass
burning), the inversion frameworks used diverse estimates
(table 1). Here, we present just the prior NEE estimates used, as
this component has the largest influence on the inversion results
(the other components are described for each inversion in the
electronic supplementary material, Information). The prior NEE
modelswere (i) the Simple BiosphereModel - CarnegieAmes Stan-
ford Approach (SiBCASA), which uses ECMWF ERA-Interim
meteorological reanalyses to drive biophysical processes and satel-
lite observed Normalized Difference Vegetation Index (NDVI) to
track plant phenology [30]. NEE is provided at 3-hourly and



10° W 0° 10° E 20° E 30° E

40° N

50° N

60° N

70° N

80° N
mountain
lowland
tall tower

Figure 1. Map of observation sites. The black symbols indicate sites that have
quasi-continuous observations for the period 2009–2018 (included in the
‘select’ inversions) and the grey symbols indicate all other sites. The
North, Temperate and Mediterranean regions are indicated by the colour
shading.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190512

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 A

ug
us

t 2
02

2 
1° × 1° resolution. (ii) The Vegetation Photosynthesis and
Respiration Model (VPRM), which calculates GPP based on the
Enhanced Vegetation Index (EVI) from MODIS and respiration
based on the temperature at 3-hourly and 0.25° × 0.25° resolution
[31]. (iii) The Lund-Potsdam-Jena General Ecosystem Simulation
(LPJ-GUESS) dynamic global vegetation model, which uses
CRU-JRA meteorological data to estimate GPP and respiration
at 6-hourly and 0.5° × 0.5° resolution [32]. Lastly, we include a set
of inversions labelled ‘clim’, which use a climatological NEE
prior to examine how much of the anomalies are driven by the
atmospheric observations versus the prior information. Climatolo-
gical fluxes of NEE were computed from each of the prior models
by adjusting the 3 (or 6) hourly fluxes so that the monthly NEE of
each year matched the 10-year monthly mean.

Prior uncertainties for the fluxes (or flux parameters) in x
were used to define the diagonal elements of B in equation (2.1).
Error correlations between variables in x were accounted for by
including off-diagonal terms in B. (Details on the calculation
of the prior uncertainties and the construction of B for each inver-
sion framework are given in the electronic supplementary
material, Information.)

(d) Boundary conditions
For the inversion frameworks using Lagrangian transport models
(FLEXINVERT, CarboScope-Regional, LUMIA and NAME-HB),
the boundary conditions provide estimates of the variation in
CO2 mole fractions that are not accounted for in the relatively
short (5 to 30 days) Lagrangianmodel simulations. In these frame-
works, the boundary condition is also known as the ‘background’
mole fraction and is described for each observation. In FLEXIN-
VERT and NAME-HB, the background was calculated by
coupling the end points of the Lagrangian backwards trajectories
to 3-hourly global three-dimensional concentration fields from
the CAMSv18r2 CO2 inversion [16] (https://atmosphere.coperni-
cus.eu). In LUMIA and CarboScope-Regional, the background
was calculated using the two-step inversion approach as described
by Rödenbeck et al. [15] (for details, see the electronic supplemen-
tary material, Information). PyVAR-CHIMERE uses an Eulerian
transport model, and in this case, the boundary condition
describes the initial field of CO2 mole fractions for the regional
model, as well as the lateral and top boundaries. The boundary
conditions for this inversion were also provided by the CAMS
CO2 inversion.

(e) Additional datasets
In the analyses, we have used meteorological data from the
ECMWF ERA5 reanalysis with 3-hourly and 30 km horizontal
resolution. Specifically, the parameters used are 2 m temperature,
soil water volume at 0–7 cm depth, total precipitation and down-
ward shortwave radiation. In addition, we use the NDVI from
the MODIS instrument onboard the Terra satellite. NDVI was
used with 16-day and 0.05 degree resolution. For comparison
with the inversion-derived NEE, we use Eddy Covariance esti-
mates for NEE from the Fluxnet network at hourly frequency.
(For access to datasets, see the acknowledgements).
3. Results
There is already a high level of agreement between the hourly
modelled and observed CO2mole fractions using the prior flux
estimateswith correlations at all sites better than 0.5 andmodel
observation errors having a 1-sigma standard deviation (s.d.)
of less than 8 ppm. As expected, the agreement with the obser-
vations improves further with the posterior estimates of NEE
with correlations generally better than 0.7 and a s.d. of less
than 6 ppm (electronic supplementary material, figures S1
and S2). The generally good agreement with the observations
demonstrates a reasonable level of competence of the transport
models to represent the variability of the data but does not
indicate the overall performance of an inversion. The perform-
ance can to some degree be assessed by comparing with
independent observations, i.e. those not included in the
inversion. Although this type of validation is commonly used
for inversions, it should be noted that the comparison is not
strictly independent as the model observation errors for inde-
pendent observations are correlated to those for assimilated
observations due to the modelled atmospheric transport.
Comparisons with independent observations (see electronic
supplementary material, table S2) show that the agreement
generally improves with the posterior NEE estimates (see elec-
tronic supplementarymaterial, table S3 and figure S3). The one
exception is LUMIA, forwhich there is no significant difference
between the prior and posterior statistics; however, this does
not indicate that this inversion framework performs more
poorly than the others (and the posteriorNEE is not an outlier).
This is because the comparison depends on where in the
domain changes to the prior NEE were made and
how sensitive the modelled mole fractions are to these
changes. The sites used for independent comparison include
two coastal sites and three high-altitude sites, which are
less sensitive to changes in NEE compared to low-altitude
continental sites, but no other independent sites were available
for the comparison. Furthermore, the number of and frequency
of independent observations available means that this com-
parison is limited—the independent data are discrete

https://atmosphere.copernicus.eu
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Figure 2. (a) Annual mean NEE and NEE anomaly, and annual anomalies in soil water (SW) and 2 m temperature (T) for the North region. For NEE and NEE
anomaly, the means of the three inversion cases (select, all and clim) are shown by the solid lines, and the range of all inversions in each case is shown by
the shading. Also shown are the mean and range of prior NEE models, VPRM, SiBCASA and LPJ-GUESS (dashed line and grey shading) and mean NEE from
EC sites (dotted line). For the NEE anomaly, the horizontal grey lines show ±2 s.d. from the ensemble mean. (b) Similar to (a) but for the Temperate region.
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samples with a frequency of 1–2 per week, thus this compari-
son cannot verify improvements to variability in the fluxes
on the diurnal scale.

In this study, we use the results of all inversions as
an ensemble of NEE estimates representing a wide range of
uncertainties (i.e. random and systematic) associated with the
inversion approach. The inversions give a wide range of
estimates for annual NEE (electronic supplementary material,
figure S4), as has been previously found [14]. This is because
annual NEE is the result of a small imbalance between large
CO2 uptake in the growing season and large CO2 output for
the rest of the year and thus has considerable relative errors.
Inversion estimates for the annual mean (2009–2018) NEE for
Europe range from −0.33 to 0.37 Pg C yr−1, with one inversion
framework (FLEXINVERT) estimating the European biosphere
to be a small carbon source. FLEXINVERT finds larger winter
respiration fluxes, but similar summer uptake, compared to the
other inversions, resulting in a positive annual NEE. Overall
though, the inversions suggest that the European biosphere
is a weaker sink than the prior models indicate, with a prior
range of −0.68 to −0.06 Pg C yr−1. Although there are large
differences in the 10-year annual mean NEE among the inver-
sions, the s.d. in annual NEE is quite consistent, showing
that the inversions all show a similar degree of year-to-year
variability. Moreover, all but one of the inversions (PYV-all)
found more positive NEE in 2018 compared to their 10-year
mean and, notably, all of the inversions using a climatological
prior for NEE (these are labelled ‘clim’) find more positive
NEE in 2018. This shows that the inversions are able to
detect this anomaly based on the observational constraint
and independently of the prior information. Furthermore,
although there are differences between the ‘all’ and ‘select’ ver-
sions of a given inversion framework, the differences between
frameworks are greater indicating that features specific to each
framework, such as modelled transport, have a greater impact
than that of changes in the observational network. This is also
true for the annual and seasonal anomalies discussed below.

The 2018 drought did not affect all areas of Europe;
specifically, there was a dipole with generally hotter and
drier conditions than normal north of the Alps, and wetter
and cooler conditions south of the Alps, that is in the Mediter-
ranean region [33]. North of the Alps, there was also some
regional variability in the onset and severity of the drought.
Northern and Central Europe both experienced positive
anomalies in temperature and negative anomalies in soil
water from spring to autumn, whereas Western Europe was
less affected in spring but had similar anomalies in summer
and autumn (see electronic supplementary material, figure
S5). Therefore, in the following sections, we analyse NEE
for Northern and Temperate Europe (as defined by the
Koeppen–Geiger Climate Classes) only, which were affected
by the drought.

Figure 2 shows the annual mean NEE and anomalies for
the North and Temperate regions from the three sets of inver-
sion (all, select and clim), along with the area-weighted mean
anomalies in soil water content (SWC) and 2 m temperature
from the ECWMF ERA5 reanalysis. In both regions, the
NEE estimated by the inversions is consistently more positive
(i.e. less carbon uptake) than the prior models. It is also more
positive than the mean NEE from EC flux sites (see electronic
supplementary material, table S4 and figure S8 for an over-
view of the EC sites used). Some discrepancy between the
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mean NEE from EC sites and the inversions is, however,
expected since the EC sites have only small footprints [34]
and the small number of sites covering the period of our
study (17 for the Temperate and only 2 for the North
region) cannot fully represent the regions as a whole.

For North Europe, the sets ‘clim’ and ‘select’ both show
slightly more positive annual NEE for 2018 but still within
two s.d. of the 10-year mean, while the set ‘all’ is closer to
the mean, a result driven by just one inversion (CSR-all, see
electronic supplementary material, figure S6). The
annual NEE for 2018 was 0.02 ± 0.02 Pg C yr−1 (mean and
s.d. of all inversions) higher than the 10-year mean of
−0.04 ± 0.05 Pg C yr−1. By contrast, the prior models show
no elevated NEE for 2018 (0.005 ± 0.017 Pg C yr−1 mean and
s.d. of the prior models) as is also the case for NEE from
the EC flux data, but with the caveat that this result is
based only on two sites.

For Temperate Europe, a positive annual NEE anomaly for
2018 (i.e. at or above two s.d. of the mean) was found by the
‘select’ and ‘clim’ inversions, while the set ‘all’ also showed
elevated NEE but within two s.d. owing to the result of the
inversion PYV-all, which found no anomaly. On average,
the annual NEE for 2018 was 0.09 ± 0.06 Pg C yr−1 (mean
and s.d. of all inversions) higher than the 10-year mean of −
0.08 ± 0.17 Pg C yr−1. The prior NEE models VPRM and
LPJ-GUESS show only slightly more positive annual NEE
for 2018 while SiBCASA shows slightly more negative
NEE resulting in no mean prior anomaly (mean and s.d. of
the prior models of −0.005 ± 0.069 Pg C yr−1). The anomaly
found by the inversions is consistent with the EC flux data,
which also show a distinct positive anomaly in 2018 for the
Temperate region.

In both North and Temperate Europe, the reduction in
CO2 uptake compared to the 10-year mean coincides with a
decrease in soil moisture and increase in temperature, as is
discussed in more detail in the next section. The results for
2018 are exceptional for the 10-year record—the only other
year where the inversions show a significant anomaly is
2017 when the annual NEE was lower (i.e. greater carbon
uptake) than the 10-year mean for the Temperate region.

Figure 3 shows the monthly mean NEE and monthly
anomalies for the North and Temperate regions, along with
anomalies in SWC and 2 m temperature. In the North region,
the ‘all’ set of inversions shows an increase in carbon uptake
for May to June, and all inversion sets show a decrease for
July to August, resulting in only a small anomaly in the
annual NEE of 0.02 ± 0.02 Pg C yr−1. The prior NEE models,
in contrast, show no change in the early summer uptake,
although all (but SiBCASA) show a decrease in the mid to
late summer uptake, similar to the inversions. Interestingly,
the monthly NEE anomalies found by the inversions are very
consistent with the EC fluxes, even though these are based
only on two sites. The increase in early summer uptake con-
curred with above-average temperatures, but the uptake
decreased with a growing deficit in soil water as the summer
progressed. In the Temperate region, the spring uptake is
lower than average in March to April but resumed around
mean levels in May, only to decrease again from June to
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August. This summer anomaly was found by all inversions
except NA-clim. The other inversions in the ‘clim’ set, however,
found a decrease in summer uptake. Of the prior models, only
VPRM captured the summer decrease in carbon uptake. Simi-
lar to the North region, the reduction in summer uptake
concurred with an increasing soil water deficit—14% lower
than average.

The spatial distribution of the summer and annual mean
NEE anomalies for 2018 are shown in figure 4 along with
histograms of the inversion ensemble results. Overall, the
posterior pattern resembles that of the prior NEE models,
with notable positive anomalies in Scandinavia, Germany,
France, UK and Czechia but with the inversions showing
stronger anomalies both for the summer and annual mean.
Negative NEE anomalies in the summer are seen a posteriori
for the Iberian Peninsula, Switzerland and southeast
Europe. Note that the positive anomaly centred on northern
Portugal is due solely to the inversion LU-all, which included
the site Sierra de Gredos (GIC) in northwest Spain (electronic
supplementary material, figure S9)—a site that appears to be
influenced by very local fluxes that are not well captured by
the atmospheric transport model and may result in this arte-
fact. Notable is that the inversions show considerable
convergence for the summer and annual NEE anomalies for
the Temperate region, of 0.23 ± 0.25 and 0.09 ± 0.06 Pg C yr−1

(mean ± s.d.), respectively. The inversion ensemble is also
closer to the mean summer and annual anomalies from the
EC data, although there is a large spread in the anomalies
across the 17 EC sites.
4. Discussion
The pattern of positive summer and annual NEE anomalies
(figure 4) corresponds closely with positive temperature and
negative precipitation and SWC anomalies (electronic sup-
plementary material, figure S5). Furthermore, these patterns
agree very closely with negative anomalies in summer NDVI
from MODIS. NDVI is representative of the density and
photosynthetic activity of vegetation, thus a negative NDVI
anomaly indicates that the vegetation is photosynthetically
less active or dense than usual.

In the North region, the increase in CO2 uptake (negative
NEE anomaly) in May to June was correlated with positive
anomalies in temperature and downward shortwave radi-
ation. Coincidently, there was also a positive anomaly in
NDVI over Norway and northern Sweden (electronic sup-
plementary material, figure S5). Temperature is known to
be a limiting factor on primary productivity in high latitudes
in spring and warmer springs are generally associated with
greater spring CO2 uptake, especially when this results in
an earlier start to the growing season [35,36]. Therefore, it
is likely that vegetation in Northern Europe benefited from
the warmer temperatures in May leading to greater net pro-
ductivity. This May to June increase in uptake, however,
was offset by a decrease in the mid to late summer uptake
(positive NEE anomaly), which was very likely due to a
soil water deficit. The dry conditions also contributed to a
particularly bad fire season in Northern Europe, particularly
in Sweden, where estimates from the Global Fire Emissions
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Database (GFED, https://www.globalfiredata.org), suggest
that the CO2 emitted from wildfire was approximately 10
times that of the previous year. Since NEE represents the
balance of GPP and TER it excludes CO2 emitted through dis-
turbances. The inversions, however, calculate NEE as the net
land biosphere to atmosphere flux and rely on prior estimates
of wildfire emissions to correct this flux to NEE. This correc-
tion likely did not contribute to any significant error in our
NEE estimates as the CO2 emitted from fires in the North
region in 2018 from GFED amount to 1.5 × 10−4 Pg C yr−1,
which is only 0.3% of the summer NEE anomaly.

For the Temperate region, there was no significant change
in the early summer (May) carbon uptake, possibly because,
when temperatures began to increase in April, there was
already below average SWC. In regions already with a spring
deficit in soil water, such as in Germany, there was also lower
than average NDVI and a positive NEE anomaly (electronic
supplementary material, figures S5 and S9). By summer, a
negative NDVI anomaly was apparent for the whole Temper-
ate region and the annual anomaly was below 1 s.d. from the
10-year mean. The only other year with a comparable anomaly
was 2010. The anomaly in SWC for the Temperate region
exceeded 2 s.d. from the 10-year mean and was the only year
for which this was the case.

Buras et al. [33] examined anomalies in the climate water
balance (CWB), that is the difference between precipitation
and potential evapotranspiration, and found large negative
CWB anomalies over Northern and Central Europe during
the 2018 drought, which were co-located with large negative
NDVI anomalies. Buras et al. [33] suggest that the strong
coupling of soil water deficit and NDVI may be because tem-
perate forests are poorly adapted to dry conditions compared
to those of typically more arid regions.

Overall the inversions found the European land biosphere
(i.e. all three regions, 3.98 × 106 km2) to be close to carbon neu-
tral in 2018withmean andmedian of 0.01 and−0.08 Pg C yr−1,
respectively, and range of −0.24–0.54 Pg C yr−1 compared
to the 10-year mean, median and range of −0.11, −0.22 and
−0.33–0.37 Pg C yr−1. This is in contrast with the 2003 drought
duringwhich the European land biosphere (4.6 × 106 km2) was
estimated to be a source of carbon of 0.5 Pg C yr−1 [2]. This is
even though the 2018 drought had a larger extent
(24–38 Mha) compared to the 2003 drought (20–28 Mha) [37].
The greater impact on NEE in 2003 may be due to the very
dry spring (from February) exacerbating the drought, while
in 2018, a widespread soil water deficit is only apparent from
April. In 2003, the reduction in carbon uptake was found to
be due to a limitation of water, and not to extreme heat [3],
which, given the strong temporal and spatial correlations of
the NEE and SWC anomalies, appears to be the case also for
2018. This is also consistent with conclusions drawn from
global vegetation models investigating the drought [37].

Persistent high-pressure systems, like that in 2018, may
become more common in the future, particularly during the
summer, due to a weakening mid-latitude circulation,
which likely will lead to a greater occurrence of weather
extremes and drought [38,39]. Previous studies have shown
that warmer temperatures alone have a positive effect on
net productivity in Northern Europe through an increase in
the remineralization of organic matter and thus an increase
in the supply of nitrogen, and if the warming occurs in
spring, through a longer growing season [40,41]. However,
in areas with reduced precipitation, the potential increase in
productivity through warmer temperatures could be reduced
or even offset due to deficits in soil water [40]. The inversion
results for the North region in 2018 further suggest that a
warmer spring can lead not only to enhanced net pro-
ductivity but also to NEE, but that this enhancement can be
offset by reduced NEE in summer owing to a soil water def-
icit. In the Temperate region, by contrast, there was no net
increase in the spring uptake and the summer uptake was
reduced owing to a soil water deficit.
5. Conclusion
The European drought of 2018 was exceptional for the last
10 years in terms of its severity and extent, as seen in the
meteorological anomalies of temperature, precipitation and
soil water volume, as well as in its effect on NDVI. The inver-
sion ensemble showed a positive annual NEE anomaly (less
CO2 uptake) in the Temperate region of 0.09 ± 0.06 (mean ±
SD) Pg C yr−1, compared to the 10-year mean of −0.08 ±
0.17 Pg C yr−1, making the region close to carbon neutral
for 2018. The anomaly was largely owed to reduced
summer uptake with NEE being 0.23 ± 0.25 Pg C yr−1 more
positive than average. In the North region, the annual
anomaly was smaller, 0.02 ± 0.02 Pg C yr−1, because a nega-
tive anomaly (increased CO2 uptake) in May to June
partially offset a summer positive anomaly. In both the
North and Temperate regions, the summer decrease in CO2

uptake was likely driven by a soil water deficit and was vis-
ible in a reduction in NDVI.

Overall, the atmospheric inversion approach was able to
detect large changes in NEE. However, the absolute value
of NEE from inversions remains very uncertain. Improve-
ments in inversion estimates could be achieved by more
reliable spatiotemporally resolved estimates of fossil fuel
emissions, constraints on boundary conditions and improved
atmospheric transport modelling, but also through the long-
term maintenance of high-density atmospheric observation
networks.
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