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Abstract: In this study the impacts of Soil Moisture and Ocean Salinity (SMOS) soil moisture
data assimilation upon the streamflow prediction of the operational Global Flood Awareness
System (GloFAS) were investigated. Two GloFAS experiments were performed, one which used
hydro-meteorological forcings produced with the assimilation of the SMOS data, the other using
forcings which excluded the assimilation of the SMOS data. Both sets of experiment results were
verified against streamflow observations in the United States and Australia. Skill scores were
computed for each experiment against the observation datasets, the differences in the skill scores were
used to identify where GloFAS skill may be affected by the assimilation of SMOS soil moisture data.
In addition, a global assessment was made of the impact upon the 5th and 95th GloFAS flow percentiles
to see how SMOS data assimilation affected low and high flows respectively. Results against in-situ
observations found that GloFAS skill score was only affected by a small amount. At a global scale,
the results showed a large impact on high flows in areas such as the Hudson Bay, central United
States, the Sahel and Australia. There was no clear spatial trend to these differences as opposing signs
occurred within close proximity to each other. Investigating the differences between the simulations at
individual gauging stations showed that they often only occurred during a single flood event; for the
remainder of the simulation period the experiments were almost identical. This suggests that SMOS
data assimilation may affect the generation of surface runoff during high flow events, but may have
less impact on baseflow generation during the remainder of the hydrograph. To further understand
this, future work could assess the impact of SMOS data assimilation upon specific hydrological
components such as surface and subsurface runoff.

Keywords: hydrology; soil moisture; forecasting; data assimilation

1. Introduction

Hydrological predictability, amongst other factors, is linked with the initial hydrological conditions
(IHC) within a catchment [1]. For example, ensemble streamflow prediction (ESP) methods used in
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seasonal streamflow forecasts depend on accurate estimates of the IHCs [2]. Of these IHCs, soil moisture
is highly important, as the gradual release of water from the soil column is often a large component of
streamflow. It has been shown that an accurate estimate of initial soil moisture enhances streamflow
predictability at both short [3] and seasonal time scales [4]. This is because the hydrological prediction
chain starts with the IHC’s which are used to initialise a hydrological model, then forcings from
numerical weather prediction (NWP) forecasts are used to produce a streamflow forecast. Accurate
measurements of initial soil moisture conditions are therefore beneficial to the operational global
streamflow forecasts that have become available in recent years [5].

Operational streamflow forecasts can benefit from accurate initial soil moisture measurements
by assimilating them into their IHC’s. Measurements can be obtained from in-situ observations
from frequency domain reflectometry (FDR [6]) or cosmic ray methods such as the Cosmic-ray
Soil Moisture Observing System (COSMOS [7,8]). However these measurements have low spatial
representativeness [9] as they rely on point measurements and they do not have global coverage.
Alternatively, measurements from satellite-based remote sensing platforms can provide global coverage.
These can either come from active or passive microwave sensors, the former can have a high
spatial resolution (~1 km for Synthetic Aperture Radar (SAR) sensors) but low repeat pass coverage
(>10 days) [9]. Passive microwave sensors conversely have coarse spatial resolution but high repeat
pass coverage, this second attribute makes them highly suitable for use within operational streamflow
forecast systems.

Passive microwave sensors onboard satellite platforms such as Soil Moisture Active Passive
(SMAP [10]), Soil Moisture and Ocean Salinity (SMOS [11]) and the Advanced Microwave Scanning
Radiometer-2 (AMSR-2 [12]) can provide global soil moisture estimates [13]. The sensors detect
brightness temperature from the top 1–5 cm of the soil column, which can then be transformed
into an estimate of the soil moisture through methods including radiative transfer [14] and neural
networks [15,16]. The broad swath width (~1000 km) combined with the short repeat pass times
(~1–2 days) allow for frequent updating of the soil moisture status, which is beneficial for operational
forecasting [17].

Remotely sensed soil moisture observations are typically incorporated into the IHC’s of a
streamflow prediction system through data assimilation [9], using the ensemble Kalman filter for
example [18,19]. Some previous studies have shown that this results in improved streamflow
prediction [20], whilst others have seen a deterioration [21]. These results may relate to how challenges
such as uncertainties and biases within the satellite data are dealt with [9,22].

Many of these previous studies however have performed their evaluations of soil moisture data
assimilation using level 2 or 3 quality data. This additional post-processing of the original level 1 data,
whilst improving the quality, also increases the latency time, meaning that it cannot be integrated
within a real time operational forecast system. Instead either the original level 1 data or emulated level
2 data via a neural network, for example [15,16], can be assimilated within an operational forecast
system. One example is the Integrated Forecast System (IFS) of the European Centre for Medium
Range Weather Forecasts (ECMWF), whose land data assimilation system (LDAS) assimilates this
soil moisture information from ASCAT (Advanced Scatterometer) and SMOS [23–26] into the soil
moisture analysis.

The ECMWF operational soil moisture analysis, amongst other land surface analysis variables,
is then used within the configuration of the Global Flood Awareness System (GloFAS [27,28]) to
produce streamflow forecasts. In this configuration, the land surface analysis variables are used
within the Hydrology Tiled ECMWF Scheme for Surface Exchanges of Land (H-TESSEL) land surface
model component of the IFS [29] to produce forecasts of hydrological variables including surface and
subsurface runoff. These are then coupled offline with the kinematic channel routing of the LISFLOOD
hydrological model [30] to produce streamflow forecasts.

Since the GloFAS configuration is initialised from the IFS land surface analysis, it is likely that
the assimilation of data including soil moisture has an impact upon streamflow prediction. Previous
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work has demonstrated a discernable impact of data assimilation upon GloFAS streamflow prediction,
especially in areas dominated by snowmelt [31]. However the specific impact of the soil moisture data
assimilation has not been assessed. The inclusion of SMOS within the IFS LDAS, as part of model cycle
46r1 in June 2019 [23], provides an opportunity to assess its impact upon GloFAS streamflow predictions.

The aim of this manuscript therefore is to describe our assessment of the impact of soil moisture
data assimilation, from SMOS, upon streamflow prediction within GloFAS. This was be achieved by
performing a data denial experiment using SMOS data and the GloFAS forecast configuration. Results
from the experiment were analysed against in-situ streamflow observations to assess the impact upon
GloFAS streamflow prediction skill. Then, an assessment against proxy streamflow observations from
the GloFAS ERA-5 dataset [28] was performed to assess the global impact upon skill. Finally, the impact
upon high and low flow prediction was assessed through direct comparison between the two GloFAS
data denial experiments.

2. Materials and Methods

2.1. SMOS Soil Moisture Data

The SMOS satellite was launched in November 2009 with the aim of measuring soil moisture
and ocean salinity. Onboard is an L-band radiometer which measures brightness temperature at
1400–1427 MHz [32,33]. At this frequency, the signal measured is sensitive to the soil moisture within
the top few centimeters of the soil layer [34]. The level 1c data are provided at an average 43 km spatial
resolution on the icosahedral equal area (ISEA)-4H9 grid, with a repeat cycle of less than 3 days [34].
The near real time level 1 brightness temperature is used for operational monitoring [24], as well as for
research data assimilation experiments [35]. The level 2 soil moisture product is calculated from the
level 1c data using a Bayesian approach which models the earth’s emissions at different polarisations
and incidence angles to account for the interaction with vegetation [34]. Level 2 soil moisture accuracies
ranged from 0.02–0.06 m3/m3 depending on the area and the radio frequency interference (RFI) [34].
However this level 2 is not available within the <3 h near real time (NRT) requirements of operational
forecast systems, meaning it cannot be assimilated. In response a neural network (NN) processor has
been developed using the level 1c data trained on the level 2 soil moisture data and the soil temperature
from the ECMWF IFS [16]. A comparison of the level 2 and the level 1 NN products showed a standard
deviation of the difference of 0.05 m3/m3 and a Pearson’s correlation coefficient higher than 0.7 in most
regions of the globe [16]. It is important to note, however, that this study used SMOS soil moisture data
created by a similar NN processor but trained on the ECMWF IFS soil moisture analysis, rather than
the original level 2 product. This was to remove any bias between the SMOS soil moisture estimate
and the IFS soil moisture analysis. The bias removal means the SMOS soil moisture data could be
assimilated into the ECMWF IFS soil moisture analysis. ECMWF receives the SMOS level 1c data
from ESA (European Space Agency) where it has already been converted from local solar time to UTC
(Coordinated Universal Time), this enables it to be incorporated into the LDAS, which is based on UTC.

2.2. GloFAS Streamflow Predictions

As part of the European Commission Copernicus Emergency Management Service (CEMS) for
floods, ECMWF operates the Global Flood Awareness System (GloFAS). This provides operational
forecasts of streamflow once a day (00 UTC) at 0.1◦ spatial resolution globally with daily temporal
resolution up to 46 days ahead. It was pre-operational since 2011 and has been operational since 23rd
April 2018.

Streamflow forecasts are produced by coupling the hydrological forecasts of surface and subsurface
runoff from the IFS H-TESSEL land surface model component [29] with the kinematic channel routing
procedure within the LISFLOOD hydrological model [30]. The offline coupling is necessary because
no lateral routing of runoff exists within H-TESSEL.
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2.2.1. H-TESSEL Surface and Subsurface Runoff Forecasts

Surface and subsurface runoff were calculated from the H-TESSEL land surface model [29,36],
which is part of the ECMWF IFS. The soil water budget in H-TESSEL was computed at each
computational node using the Richards equation of water flow through the unsaturated soil profile [37].
At the top boundary layer water enters the soil as precipitation minus evaporation and runoff, at the
bottom boundary layer water exits as free draining. The soil hydraulic conductivity was calculated
from the van Genuchten equation which is a function of pressure head which in turn relates to the soil
texture [38]. Different parameters are assigned to each soil texture class derived from the Food and
Agriculture Organization dataset [39]. The saturated hydraulic conductivity was used to calculate the
maximum infiltration rate which was then used to calculate the amount of runoff. Runoff is generated
in a Hortonian manner when the throughfall plus the snowmelt exceeds the maximum infiltration
rate [36].

The H-TESSEL forecasts were initialised from the ECMWF analysis fields. The analysis was
produced by assimilating the first guess (i.e., the previous forecast) with the latest near real time
hydro-meteorological observations. The LDAS of the IFS includes an analysis of soil moisture, which
combines a two-dimensional screen level analysis of 2 metre temperature and relative humidity
observations from SYNOP (Surface Synoptic Observations) with soil moisture observations from
satellite sensors. A Simplified Extended Kalman Filter (SEKF) was used to analyse the soil moisture
state vector for each grid point at each time step [17]. A more detailed description of the soil moisture
data assimilation procedure can be found in the IFS documentation [36]. Currently satellite soil
moisture observations from ASCAT and SMOS (the latter since model cycle 46r1 released 12th June
2019) are used within the LDAS soil moisture procedure. Therefore the assimilation of the SMOS soil
moisture data into the ECMWF analysis may impact the GloFAS streamflow predictions.

2.2.2. LISFLOOD Channel Routing

The next stage of the GloFAS configuration is the offline coupling of the H-TESSEL surface and
subsurface runoff forecasts with the kinematic channel routing from the LISFLOOD hydrological model.
It routes the forecasted surface runoff from H-TESSEL along a one-dimensional channel network using
a kinematic solution of the St. Venant equations [30]. Calculating this requires information about
the channel length, gradient, flow width and depth, as well as the Manning’s roughness coefficient.
This information was obtained firstly from the global river network database [40], which includes a
river channel network at 0.1◦ spatial resolution from the digital elevation model (DEM) created by
the Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales project
(HydroSHEDS project [41]). This is a hydrologically conditioned version of the original Shuttle Radar
Topography Mission (SRTM) DEM [42] to ensure continuous stream networks. River widths are
obtained from the Global Width Database for Large River (GWD-LR [43]). Bankfull water depth was
estimated using the Manning’s equation applied to long term average discharge observations.

GloFAS also includes 463 large lakes and 667 reservoirs, whose locations and attributes were
obtained from global datasets [44]. The outflow from each lake was computed using the relationship
with lake level using the weir equation [45]. The extraction of water through irrigation is represented
by subtracting from the forecasted streamflow a value taken from a monthly climatology [46]. Finally,
open water evaporation is estimated using the Penman–Monteith with forcings taken from forecasts
produced by the ECMWF IFS.

Eight of the GloFAS model parameters were tuned in a recent calibration exercise, including the
channel Manning’s n, the multiplier for lake outflow and flood storage and outflow for reservoirs [46].
An evolutionary algorithm (EA) was used with the Kling–Gupta Efficiency metric (KGE [47]) calculated
for streamflow as the objective function. The calibration was performed in 1287 catchments ranging
from 484 km2 to 4,800,000 km2 in size. At each station, at least four years of observed daily streamflow
data between 1995–2015 were required; these were mostly sourced from the Global Runoff Data Centre
(GRDC [48]). The four-year observation sample was split into two years for calibration and two for
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validation. Within the former the calibration was performed using a maximum of 15 generations
of the EA algorithm. Forcings of surface and subsurface runoff were obtained from the ECMWF
IFS H-TESSEL reforecasts between 1995–2015 which were a combination of model cycles 41r1 and
41r2. Results from the calibration found improved streamflow estimation skill in 67% of the 1287
catchments (77% when excluding North America) [46]. The skill improvement was lowest where
there were large negative biases in the baseline simulations, which could be caused by precipitation
underestimation [46]. For catchments which were not part of the calibration exercise, default parameter
values taken from the literature were used.

2.3. Streamflow Observations

In-situ observations of streamflow were extracted in order to perform a skill assessment of the
GloFAS hydrological predictions. Observations were taken within the United States and Australia,
as they have relatively dense observation networks and because previous studies have shown good
performance of the SMOS soil moisture data. A total of 283 locations were chosen in the United
States and 32 within Australia. These locations had been selected in a previous verification study
of GloFAS [28] because they represented a range of different catchments found across the countries,
as well as the catchments being sufficiently large to be captured by the comparatively coarse 0.1◦

× 0.1◦ spatial resolution of GloFAS. It was necessary to shift the latitude and longitude coordinate
of each in-situ location on to the nearest GloFAS river cell. This is because the 0.1◦ × 0.1◦ GloFAS
channel network is a simplification of the real-world channel locations, which can result in a small shift
between the two. The shifting was done at each in-situ location by identifying the nearest channel cell
in the GloFAS river network with a similar upstream area as the observed value. Additionally, a note
was made at each in-situ site about the extent of any anthropogenic intervention in the hydrological
functioning of the river, for example if there were any dams or irrigation activity.

In-situ streamflow observations were extracted from the respective monitoring agencies, as data
for the time period of the GloFAS experiments was not already held. In Australia, the data were
extracted from the Bureau of Meteorology (BoM). These were daily average streamflow observations
which had been quality controlled. In the United States the data were extracted from the United States
Geological Survey (USGS) and were six hourly average discharges. These were further averaged
onto daily time steps, the units were converted from cubic feet per second to cubic metres per second.
The observed time series at each in-situ location was assessed for missing data, and locations with less
than 90% completeness were eliminated from the subsequent analysis.

2.4. GloFAS Experiment Design

To test the impact of SMOS data assimilation upon GloFAS streamflow prediction a data denial
experiment using and excluding SMOS data was designed. Firstly, two ECMWF IFS analysis simulations
were performed, one simulation included SMOS soil moisture data, described in Section 2.1, within
the LDAS procedure, and the other simulation excluded it. The simulations were run at 06 and 18
UTC (Coordinated Universal Time) on each day from the 1st March 2017 to the 21st May 2018 using
IFS cycle 45r1 upgraded to use IFS cycle 46r1 LDAS with grid TCo399 (Triangular Cubic-octahedral,
approximately 0.25◦ × 0.25◦ horizontal resolution), climate version 015 and a 12 h assimilation window.
This configuration of the LDAS was also used to support the operational implementation of the SMOS
NN product assimilation in ECMWF IFS cycle 46r1 in June 2019 [23]. At 06 and 18 UTC on each
day during the simulation period, the soil moisture analysis was created alongside the other LDAS
products. These were used to initialise the ECMWF IFS to produce forecasts at a 6 hourly temporal
resolution out to 24 h lead time. The outputs from these forecasts included the H-TESSEL forecasts of
surface and subsurface runoff required for the LISFLOOD channel routing component of GloFAS.

The next stage of the experiment was to take the outputs from the two ECMWF IFS simulations and
couple them with the channel routing component of GloFAS. The following output variables from the
ECMWF IFS experiments were used as forcings within the channel routing: surface runoff, subsurface
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runoff, surface net solar radiation, surface net thermal radiation, 10 metre wind U component, 10 metre
wind V component, 2 metre temperature, and 2 metre dewpoint temperature. The channel routing was
performed at 24 h timesteps valid between 00–24 UTC, therefore the ECMWF IFS values needed to be
aggregated onto each 24 h timestep. For accumulated variables, such as surface and subsurface runoff,
the 24 h accumulations were aggregated by combining data from the following forecast times (Table 1):

Table 1. 24 h accumulated variables created on a given day (d0) were created by summarising the
European Centre for Medium Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS)
experiment data at the forecast times shown below.

Forecast Time Lead Time (hours)

d−1 at 18 UTC 6–12
d0 at 06 UTC 0–12
d0 at 18 UTC 0–6

For instantaneous variables, such as 2 metre temperature and the wind components, the average
was taken across the instantaneous values at 00, 06, 12 and 18 UTC on the relevant day. All the ECMWF
IFS forcings were re-gridded using nearest neighbour from the TCo399 grid onto the regular 0.1◦ × 0.1◦

grid (European Petroleum Survey Group—EPSG projection code 4326) used by GloFAS.
The aggregated and re-gridded ECMWF IFS forcings were then coupled with the LISFLOOD

kinematic channel routing to produce daily streamflows for each day of the experiment period (1
March 2017–21 May 2018). for each 0.1◦ × 0.1◦ computational model cell. This GloFAS configuration of
aggregating ECMWF IFS analysis forcings and coupling them to the LISFLOOD channel routing is the
same as that used in the evaluation of GloFAS forced with ERA-5 data [28]. A summary of the datasets
used in this experiment design are given in Table 2.

Table 2. Summary of the datasets used in the Global Flood Awareness System (GloFAS) experiment.
SMOS: Soil Moisture and Ocean Salinity; USGS: United States Geological Survey; H-TESSEL: Hydrology
Tiled ECMWF Scheme for Surface Exchanges of Land; BoM: Bureau of Meteorology.

Dataset Spatial Resolution (Degrees) Temporal Resolution (Hours)

SMOS level 2 Soil Moisture (trained on
ECMWF neural network) 0.50◦ Instantaneous

H-TESSEL surface and subsurface runoff 0.25◦ 6
GloFAS Streamflow 0.10◦ 24

USGS streamflow observations NA (point observations) 24
BoM streamflow observations NA (point observations) 24

2.5. Streamflow Evaluation

2.5.1. Verification against In-Situ Observations

Results from the GloFAS streamflow experiments above were verified against in-situ observed
streamflow values within Australia and the United States. Verification of both experiments was done to
analyse the impact of SMOS data assimilation upon GloFAS prediction skill. The estimated streamflow
from the two GloFAS experiments were extracted at each in-situ location on each day during the
experiment period. Each GloFAS experiment was compared against the respective observations by
calculating the modified Kling–Gupta Efficiency (KGEmod) index [47,49]. The KGEmod was calculated
as a combination of the correlation, the bias and the variability (Equation (1)):

KGEmod = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2r =

covs,o

σs·σ0
, β =

µs

µo
, γ =

σs/µs

σo/µo
(1)

where r = correlation, β = bias, γ = variability, s = simulation (i.e., the GloFAS experiment), o =

observation, cov = covariance, σ = standard deviation and µ = mean.
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The KGEmod is very useful for diagnosing the performance of a hydrological simulation, as it
combines three of the most important factors in producing good results. However great care must
be taken if interpreting its results as a skill score owing to the lack of a benchmark predictor [50].
Therefore a skill score [51] was computed to compare the KGEmod results from the GloFAS simulations
with and without SMOS soil moisture data assimilation (KGEmodSS Equation (2)). Positive values
showed where the GloFAS simulation, which includes the assimilation of SMOS soil moisture data,
outperforms the simulation without the assimilation of SMOS.

KGEmodSS =
KGEmod[with SMOS] −KGEmod(without SMOS)

KGEmodPerf−KGEmod(without SMOS)
(2)

where KGEmodPerf = 1 which is a theoretical perfect score for the KGEmod metric.

2.5.2. Global Impact upon GloFAS

The difficulty of obtaining global in-situ streamflow observations meant that it was not possible
to assess the global impact of SMOS data assimilation through a skill score comparison. Instead the
assessment was done by calculating the 5th and 95th streamflow percentiles in each GloFAS model cell
over the whole experiment period for both experiments. These percentiles represent the low and high
flow values respectively. The percentiles were calculated on the specific discharge values, which is the
discharge divided by the upstream area, as this removed the influence of the upstream catchment area
size. The percentage differences in the percentile values between the two GloFAS experiments were
then calculated. This analysis was chosen to highlight whether SMOS assimilation affected mostly
high or low flows; this may have important consequences for a flood forecasting system. Another
advantage of this assessment method was that it could be performed globally as it did not depend on
the presence of in-situ observations. This allowed a complete global analysis of the impacts of SMOS
data assimilation upon GloFAS.

3. Results

3.1. Verification against Observed Streamflow

3.1.1. United States

A wide range of KGEmod scores occurred throughout the United States in the simulation with
SMOS soil moisture data assimilation. A cluster of high values occurred in the north west in the
Colombia and upper Missouri basins, a cluster of low scores occurred in the Platte River (Nebraska)
(Figure 1a). One explanation for the wide range of scores could be the presence of regulation within the
river basins, a process which was only simplistically represented by GloFAS at some locations. However
there was no apparent correlation between the KGEmod value and river regulation, as locations subject
to regulation show both high and low KGEmod values (Figure 1a).

The KGEmod skill scores were mostly centred around 0 (Figure 1b), meaning that there was little
difference between the skill of the simulations with and without SMOS soil moisture data assimilation.
The largest negative KGEmod skill score values appeared on the Platte River (Nebraska), as well as
the upper Nelson River (North Dakota). At these locations the KGEmod values were less than zero
in both GloFAS simulations with and without SMOS data assimilation. Analysing the hydrograph
near the outlet of the Platte River showed that both GloFAS simulated hydrographs were much below
the observed discharge (Figure 2b). The main difference between them was the discharge peak which
occurred on the 1 November 2017. This peak was greater in the simulation when SMOS soil moisture
was assimilated, but because this coincides with a trough in the observations this may be what caused
the lower skill owing to the poor correlation. Further analysis in the Platte River found that GloFAS
simulates three reservoirs within this basin (at Kingsley, Seminoe and Pathfinder). These could explain
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the low KGEmod values in this basin as they may over-estimate the total reservoir storage and/or
under-estimate the total outflow from one of, or all of, the reservoirs.
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There were 40 locations where the KGEmod skill score was 0.05 or more (Figure 1b), 31 of
these locations had low KGEmod values (less than 0.40), meaning that care must be taken when
interpreting the apparent improvements at these locations. Two locations within the Wisconsin River
demonstrated positive KGEmod skill scores and KGEmod values greater than 0.40. At one of these
locations, both GloFAS simulations captured the overall rise and fall within the observed discharge
series, but neither captured the observed variability (Figure 2a). The GloFAS simulation which included
the assimilation of SMOS soil moisture had a large streamflow peak in May 2017 which better matched
the observations, hence increasing the KGEmod. However the peak was still not as sharply defined as
in the observations (Figure 2a).

Across all 283 gauging station locations in the United States the GloFAS simulation with SMOS
soil moisture data assimilation shows slightly improved bias and KGEmod values over the simulation
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without SMOS soil moisture data assimilation (Table 3). A previous study [52] also investigated the
hydrological impact of SMOS data assimilation, but within the upper Mississippi basin. Whilst that
study did not explicitly analyse streamflow, they found that CDF matching of modelled soil moisture
from the Variable Infiltration Capacity (VIC) model to SMOS soil moisture resulted in higher values [53].
This could explain the higher KGEmod values observed at some locations in the GloFAS experiment
which had SMOS soil moisture data assimilation. For example at the Wisconsin river (Figure 2) the
higher streamflow in June 2017 in the GloFAS experiment with SMOS could be the result of higher soil
moisture values leading to more generation of surface runoff.
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Table 3. Streamflow evaluation metrics averaged across the 283 United States gauging stations.

Simulation R Bias KGEmod

Without SMOS DA 0.428 0.840 −0.504
With SMOS DA 0.420 0.812 −0.472

The KGEmod from the simulation with SMOS data assimilation was broken down into its
constituent components of bias, variability and correlation (Figure 3). This was done to explain the
trends in the KGEmod score above (Figure 1). For the bias, values less than 1 showed that GloFAS
under-estimates streamflow with the reverse being true for values greater than 1. In this assessment,
GloFAS mostly had an under-estimation bias with some over-estimation in the south west (Figure 3a).
The greatest under-estimation occurred within the Platte River, which, as discussed above, could be
related to the treatment of reservoir storage within GloFAS (Figure 2). The variability showed that
GloFAS has a higher variability than the observations in locations where the KGEmod score was low
(Figure 3b). At the Platte River, the GloFAS variability being higher than the observations occurred due
to its baseflow making it more sensitive to the peak flows which occurred in June and November 2017
(Figure 2). At the same location, the GloFAS simulation with SMOS soil moisture data assimilation had
a higher variability than the simulation without SMOS, due to the greater November 2017 peak flow
in the former simulation (Figure 2). Correlation was greater than zero in most locations across the
US, with 164 locations having a correlation greater than 0.4 (Figure 3c). Locations with the highest
correlation also had higher KGEmod scores. There was little difference in the correlation scores at these
locations between the GloFAS simulations with and without SMOS soil moisture data assimilation
(Figure 2).
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3.1.2. Australia

The KGEmod values from the GloFAS simulation which included SMOS soil moisture data
assimilation show that values greater than 0.2 occur in the north of Australia (Figure 4). For example,
in the Roper River both GloFAS simulations captured the peak streamflows between January and
April 2018 (Figure 5). Both GloFAS simulations miss the observed peak in April 2017, but both capture
the extremely low baseflow from May 2017 to January 2018, which may be the main cause of the



Remote Sens. 2020, 12, 1490 11 of 22

higher KGEmod value at this location. The GloFAS simulation which included SMOS soil moisture
data assimilation had a lower peak flow in February 2018 than the GloFAS simulation without SMOS
(Figure 5). This better matched the observed peak flow at this time and may explain why the KGEmod

value rose from 0.57 to 0.65 when SMOS soil moisture data assimilation was included (Figure 5).
KGEmod values in the south east of Australia were mostly less than zero (Figure 4a). The majority

of these locations lie within the Murray–Darling river basin, which features a large amount of regulation
to the natural river flow [53]. Large quantities of water are extracted from the Murray–Darling river
for purposes including the irrigation of agricultural land, and consequently the observed streamflow
would be lower than the original natural flow. The hydrographs near the outlet of the basin demonstrate
this issue whereby both GloFAS simulations are greater than the observed streamflow (Figure 5).
Additionally the shape of both simulated GloFAS hydrographs did not match that of the observations.
GloFAS includes three reservoirs within this basin, but evidently these are insufficient to represent the
full impact of the water management regime within the basin. At this location, the GloFAS simulation
with SMOS soil moisture data assimilation has lower peak flows than the GloFAS simulation without
SMOS, something that also occurred in the north of the country (Figure 5).

The KGEmod skill score in Australia showed a decline in KGEmod scores in the north of the country
and in the upper Murray–Darling basin when SMOS soil moisture data were assimilated (Figure 4b).
However, in 9 locations the KGEmod skill score is greater than 0.05, which shows an improvement
when SMOS data were assimilated. All but two of these locations occurred within the Murray–Darling
basin. The KGEmod skill score values were often attributable to a difference in one or two flood peaks
during the simulation period between the simulations with and without SMOS data assimilation. For
example, at the outlet of the Murray–Darling basin the positive KGEmod skill score value was due
to the simulated peak in February 2018 being lower in the simulation which included SMOS data
assimilation, which better matched the observation (Figure 5). However, for the rest of the simulation
period, the two simulations were almost identical. It was not clear what particular aspect of the SMOS
soil moisture data assimilation might be causing these trends in the KGEmod skill score. Care should
be taken when interpreting the KGEmod skill score trends in the Murray–Darling basin, however,
since neither GloFAS simulation captured the management processes.

Averaging the streamflow evaluation metrics across all 32 gauging stations showed a slight
decline from the simulation which includes SMOS soil moisture data assimilation (Table 4). Previous
studies have also investigated the impact of SMOS data assimilation upon streamflow prediction in
the Murray–Darling basin using the VIC hydrological model [54,55]. Their results found that SMOS
data assimilation slightly improved the streamflow evaluation metrics, in contrast to the results found
here. The differences between this study and those of previous studies [54,55] could be because this
study looks across all of Australia, rather than just at the Murray–Darling basin. Also, within the
Murray–Darling, this study includes gauging locations near the outlet, whereas previous studies [54,55]
have focueds on smaller catchments within the upper reaches. These smaller catchments may be less
prone to water management processes, which may be negatively affecting the streamflow metrics in
this study.

The components of the KGEmod show that the bias of the GloFAS simulation tends towards
over-estimation, particularly within the Murray–Darling basin (Figure 6). This was highlighted in
the hydrograph at the outlet of the basin (Figure 5b) and likely reflected the lack of GloFAS’ ability to
replicate the water management practices throughout the basin. For variability, the GloFAS simulation
under-estimated it in the north of the country and is slightly over-estimated in the Murray–Darling
basin (Figure 6). This could be due to GloFAS not under-estimating the magnitude of the flood peaks in
the north of the country which would result in a lower standard deviation. In the Murray–Darling this
is because the river management practices, not represented in GloFAS, aim to reduce the variability of
the streamflow. The correlation was highest in the north of the country where river flows are more
natural than in the Murray–Darling basin, where the correlation was lower (Figure 6).
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Table 4. Streamflow evaluation metrics averaged across the 32 Australian gauging stations.

Simulation R Bias KGEmod

Without SMOS DA 0.410 2.466 −1.248
With SMOS DA 0.356 2.558 −1.340
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3.2. Global Impact upon GloFAS

Low flows in large parts of the world showed little impact from the assimilation of SMOS soil
moisture data within GloFAS (Figure 7). The greatest percentage differences in low flows (the 5th flow
percentile) were found around the Hudson Bay, southern Central Africa, Australia and the northern
latitudes of Eurasia (Figure 7). At most of these locations, the 5th flow percentile had decreased
after the assimilation of SMOS soil moisture data. There were only a few locations where the 5th
flow percentile increases by a large amount, the strongest signal was in southern Africa at 15◦S
(Figure 7). However, care should be taken when interpreting percentage differences in the 5th flow
percentile, as small differences in areas with very low flows can result in large percentage differences.
For example, in southern Central Africa and Australia the 5th percentile flow values were in the
order of ×10−4 mm·day−1. However, this does not explain the strong signal around the Hudson Bay,
as its 5th percentile values were greater than those of surrounding regions, which displayed minimal
differences. Snow cover and snowmelt can play an important role in the hydrology of this region,
however SMOS data should be masked during periods of snow cover, meaning that this explanation is
unlikely. Instead, SMOS soil moisture data assimilation may have been increasing the soil H-TESSEL
soil moisture during the summer period when low flows occurred. However, this would require
further investigation.

High flows were also unaffected in large parts of the world, however the areas which were affected
showed a stronger impact on high flows than for low flows (Figure 8). The areas with the greatest
impact were the Hudson Bay, central United States, Australia, the Sahel region and to a lesser extent
Pakistan/north west India and north eastern China. The Hudson Bay area showed a widespread
increase in the 95th flow percentile after the assimilation of SMOS soil moisture into GloFAS (Figure 8).
This could suggest that SMOS soil moisture assimilation was increasing the soil moisture in this region,
which lead to an increase in both low and high flows. In the central United States the results agreed
with the streamflow skill assessment in Section 3.1.1, which found that peak flows increased in rivers
such as the Platte (Figure 2b), which decreased the KGEmod skill score (Figure 1b). In the other regions,
however, there was no clear spatial trend to these differences, as differences of opposing sign occurred
close to each other. One example was in Australia, which showed increased high flows in the northern
fringe of the country, but decreased flows in some areas of the Murray–Darling basin in the south east
(Figure 8), which was also observed in Section 3.1.2 (Figure 5b).
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4. Discussion

This study investigated the impact of SMOS soil moisture data assimilation upon GloFAS
streamflow prediction within an operational forecast configuration. In general, only a minor impact on
streamflow prediction skill was found. Globally, the greatest impact was found in the Hudson Bay,
central United States, the Sahel and Australia. The greatest impact of SMOS was upon the simulation
of flood peaks, lower flows showed lower sensitivity to the inclusion of SMOS data assimilation.

The areas of the world which showed the greatest impact upon high flows in this study appeared
to coincide with areas which have open land cover (Figure 8). Comparing the results of this study
against landcover data from the ESA Climate Change Initiative (CCI) dataset for 2018 [56] confirms that
the greatest changes occurred in sparsely vegetated, herbaceous, grassland, cropland and shrubland
classes. Forested and urban areas showed little impact of SMOS soil moisture data assimilation upon
GloFAS streamflow predictions. This is likely because SMOS measurements in these areas are subject
to interference, which increases the measurement error, meaning they were filtered out and are not
assimilated into the model. It may be possible that certain land cover types are associated with either
an improvement or a degradation of GloFAS streamflow skill with the assimilation of SMOS soil
moisture data. To investigate this further, at each observation station location in the United States and
Australia the land cover classification from the ESA CCI data for 2018 [56] were extracted. Then, all
stations where the modified Kling–Gupta Efficiency skill score (KGEmodSS) was ≤−0.05 (indicating a
degradation with SMOS data assimilation) and all the stations where KGEmodSS was ≥0.05 (indicating
an improvement with SMOS data assimilation) were identified. Within each of the degradation and
improvement categories, these were further broken down into the landcover classes from ESA CCI.
Results showed that for both degradation and improvement most stations belonged to the grass, tree,
water and shrub landcover classes (Table 5). Therefore it appears that the landcover status does not
explain the spatial pattern of degradations or improvements in the GloFAS prediction skill.

Table 5. Modified Kling–Gupta efficiency skill score (KGEmodSS) values at station locations in the
United States and Australia calculated from the GloFAS experiments with and without SMOS data
assimilation broken down by ESA Climate Change Initiative (CCI) landcover class. The second column
shows stations where KGEmodSS degraded with SMOS data assimilation, the third column shows
where it improved.

ESA CCI Land Cover Type Number of Stations where
KGEmodSS ≤ −0.05 (%)

Number of Stations where
KGEmodSS ≥ 0.05 (%)

Grass 16 (24%) 28 (21%)
Tree 13 (20%) 19 (14%)

Urban 7 (11%) 12 (9%)
Crop 4 (6%) 3 (2%)

Vegetation 0 (0%) 8 (6%)
Herbaceous 2 (3%) 11 (8%)

Water 11 (17%) 24 (18%)
Shrub 13 (20%) 29 (22%)

SMOS data assimilation also appeared to have a minimal impact upon GloFAS results within
Europe (Figures 7 and 8). This could be because many of the rivers within Europe are below the 0.1◦

spatial resolution of GloFAS. Another reason could be the presence of radio frequency interference
(RFI) in this region upon the SMOS measurements. This would mean that SMOS data are filtered out
in this region and are not assimilated into the model.

The results suggest that the assimilation of SMOS soil moisture mostly affected high flows
(Figure 8). Analysis of hydrographs in the United States and Australia confirmed that the main,
and sometimes only, differences occurred in the peak flows during the experiment period (Figures 2
and 5). It would be expected that altering the soil moisture may also affect the amount of water released
to the river during low flows, however this was not observed in this study. The explanation could
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be that SMOS data assimilation mainly affects the top soil layer, and since this is only a very shallow
portion of the entire soil column, this could explain the minimal impact on low flows. A greater
impact on low flows could result if the soil moisture assimilation is then analysed into root zone soil
moisture [20]. The ECMWF IFS LDAS already performs this root zone analysis with SMOS data,
but perhaps greater weight should be given to the SMOS data; future work could investigate this.
However since the assimilation mostly affects the top soil layer this could have a large impact on the
ability of the soil column to generate surface runoff, as surface runoff is mostly produced in the top
soil layer. For example, if SMOS data assimilation increases the soil moisture in the top soil layer, this
reduces the infiltration capacity of this soil layer, meaning more surface runoff production during the
next rainfall event and greater flow in the river.

The finding that SMOS data assimilation has a minor impact on GloFAS streamflow prediction
corresponds with previous findings [22,57,58]. Previous studies have posited that the reasons for
this include, amongst others, the representativeness of the soil layers, biases between the model and
satellite data, the use of a calibrated hydrological model and uncertainties within the hydrological
model [22,59]. Regarding the first of these the SMOS soil moisture data were assimilated into the top
soil layer of the H-TESSEL soil column, which was 7 cm deep. This is comparable with the depth
penetrated by the SMOS soil moisture measurements, which are in the order of a few centimeters [34].

Biases between the SMOS and H-TESSEL model soil moisture data were addressed by using the
SMOS soil moisture neural network product trained on ECMWF IFS (i.e., H-TESSEL) soil moisture
analysis. This would implicitly remove any biases between the SMOS observations and the ECMWF
model. However this would restrict the data assimilation to only correcting for random model errors
rather than also correcting the bias, preventing it from changing the behaviour of the soil moisture [55].
Assimilating the SMOS neural network product trained on the original SMOS level 2 soil moisture
data could offer a solution, as this product is not bias corrected to the ECMWF model. However
it would not currently work within the ECMWF IFS LDAS, as it breaks the assumption of the zero
observation-model bias. A possible solution for future work would be to perform a parameter analysis
of H-TESSEL, which may involve tuning the parameters which control the vertical soil water budget.

The use of a calibrated hydrological model to perform the streamflow predictions may explain the
resulting minor impact of SMOS data assimilation. As mentioned above, GloFAS was calibrated in
a previous study by optimizing the streamflow parameters using forcings from a 20 year ECMWF
IFS reforecast [46]. The calibration of a given hydrological model can sometimes mean that it is
difficult for any subsequent simulation to outperform it [58]. However the GloFAS calibration study
only tuned the LISFLOOD streamflow parameters and left the vertical hydrological component,
i.e., H-TESSEL soil water balance, unchanged. Hence, GloFAS is not as fully calibrated as other
hydrological models, meaning there could be more scope for improving its streamflow prediction skill
through data assimilation into its initial conditions. This is evidenced by the improvements observed
at some locations in the United States whereby peak discharges better matched the observations
after the assimilation of SMOS soil moisture (Figure 2). Increased soil moisture values from the
assimilation of SMOS soil moisture could cause increased surface runoff production and hence greater
streamflows [52].

Uncertainties within the GloFAS model configuration and parameterisation may also explain
the minor impact of soil moisture data assimilation. They could represent biases and or errors which
could not be overcome by data assimilation of soil moisture alone. In the United States, for example,
GloFAS exhibits a widespread under-estimation bias (Figure 3a) whilst in Australia there was an
over-estimation bias at most locations (Figure 6a). A possible solution for future work could be to
revise the parameterisation of the H-TESSEL soil water budget using SMOS soil moisture data in a
calibration procedure [22]. Biases within GloFAS could also be caused by the precipitation forcings,
therefore, a dual updating procedure of both the precipitation and initial soil moisture conditions could
be carried out in future work [60].
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5. Conclusions

Overall, this study has analysed the impact of SMOS soil moisture data assimilation upon GloFAS
streamflow predictions within an operational configuration. Two GloFAS experiments were conducted
using hydro-meteorological forcings from ECMWF IFS experiments, which include and exclude the
assimilation of SMOS soil moisture data. Streamflow predictions from both GloFAS experiments were
evaluated against observations from in-situ measurements using the KGEmod metric. The results
showed some impact upon hydrological prediction skill, but it was difficult to discern a clear signal
due to biases and uncertainties within GloFAS.

Further investigation was performed to determine how low and high flow GloFAS predictions
were affected by SMOS data assimilation. Results showed that high flows were more affected than
low flows. A global assessment of the impact upon low and high flows found the greatest impact
around the Hudson Bay, central United States, the Sahel and Australia. However, there was no clear
spatial trend to these results as differences of opposing sign were within close proximity to each other.
Investigating the hydrographs at specific station locations found that differences in KGEmod could often
be attributed to differences in a single flood peak, whilst the remainder of the simulated hydrographs
were very similar. In some instances the flood peak in the simulation with SMOS data assimilation
was the greatest, whilst the opposite was true in other instances. This could be because SMOS data
assimilation only affects the top soil layer, which can greatly alter the generation of surface runoff

during a flood peak, but has little effect upon baseflow production during lower flows. There was no
clear spatial trend to the changes in high and low flows either. To better understand these changes
future work should focus on finding out how the SMOS data are affecting the GloFAS simulations.
This could be done by analysing changes in individual hydrological components such as surface and
subsurface runoff, the former being significant for high flows and the latter more important during
low flows. This study highlights that assimilating SMOS soil moisture does impact the hydrological
predictions of GloFAS, but more work is needed to understand the causes of the observed results.
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