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Boundedness of Toeplitz Operators in Bergman-
type Spaces

Jari Taskinen and Jani A. Virtanen

Abstract. The characterization of the bounded Toeplitz operators Ta

in Bergman spaces is an open problem even in the simplest case of
the unweighted Bergman-Hilbert space A2(D). We consider here recent
partial results on the topic. These include sufficient conditions for the
boundedness and compactness of Ta in terms of weak Carleson-types
condition for the symbol a. The results were recently generalized to
the case of spaces on the unit ball BN of CN . The second approach is
based on certain results on the structure of the Bergman-spaces, namely,
representations of their weighted norms using finite-dimensional decom-
positions of the spaces. This approach provides a characterization of the
boundedness and compactness in the case of operators in spaces with
weighted sup-norms.

Mathematics Subject Classification (2020). Primary 47B35; Secondary
47B32, 47B91.

Keywords. Bergman space, weighted norm, Toeplitz operator, little Han-
kel operator, bounded operator, compact operator.

1. Introduction: the spaces and operators

The focus of this article is on recent results on the boundedness of Toeplitz
operators on weighted Bergman spaces of holomorphic functions, mainly on
the open unit disk D of the complex plane C, although some of the results are
also formulated on the unit ball BN of CN , N = 2, 3, . . . . The related question
on the compactness is only considered when it can be dealt with parallel to
boundedness, and certain more special recent results for compactness will
remain out of this review.
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and Letters. JV was supported in part by the Engineering and Physical Sciences Research
Council grant EP/T008636/1.
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We will concentrate on two circles of ideas. First, we deal with Toeplitz
operators with oscillating symbols and weak Carleson-type sufficient condi-
tions for boundedness. The starting point of this direction of research is the
article [30]. The second approach applies to operators with radial symbols,
and it is based on the results on the structure of weighted Bergman spaces
which were pioneered in the works of W.Lusky, [17], [18], [19] and adapted to
the study of Toeplitz operators recently in the papers [4], [5]. This led to a
characterization of the boundedness and compactness of Toeplitz operators
in weighted H∞-spaces.

Let us present the basic notation and definitions. The notation con-
cerning the spaces on the unit ball BN will only be needed and thus given
at the end of Section 2. The normalized area measure on D is denoted by
dA = π−1rdrdθ, where r and θ are the polar coordinates of z = reiθ ∈ C.
Given 1 ≤ p < ∞ and the real parameter α > −1 we define the weighted
area measure by dAα(z) = (1 + α)(1− r2)αdA(z) and set

Lpα(D) =
{
g : D→ C measurable : ‖g‖pp,α :=

∫
D

|g|pdAα <∞
}

and

Apα(D) = {g ∈ Lpv(D) : g holomorphic };

in the case α = 0 these spaces are denoted by Lp(D) and Ap(D), respectively.
Here, v(z) = (1− |z|2)α are called standard weights.

We will also consider more general weighted Bergman spaces and their
analogue, weighted Hardy space H∞v corresponding to p = ∞. In general,
by a weight v we mean a continuous function D →]0,∞[ which is radial,
vanishing on the boundary and decreasing with the radius, i.e. there holds
v(z) = v(|z|) for all z ∈ D, lim|z|→1 v(z) = 0 and v(r) ≥ v(s) if 1 > s > r > 0.
We denote vdA = dAv and, for 1 ≤ p <∞,

Lpv(D) =
{
g : D→ C measurable : ‖g‖pp,v :=

∫
D

|g|pdAv <∞
}

and

Apv(D) = {g ∈ Lpv(D) : g holomorphic },

and

h∞v (D) = {g : D→ C : g harmonic, ‖g‖v := sup
z∈D
|g(z)|v(|z|) <∞}

and

H∞v (D) = {g ∈ h∞v : g holomorphic };
we use the standard notation H∞(D) = (H∞(D), ‖ · ‖∞) in the non-weighted
case. In all of the above cases, the subspaces of holomorphic and harmonic
functions are closed subspaces of the their superspaces.

We write N = {1, 2, 3, . . .} and N0 = N ∪ {0}.
Given α, the Bergman projection Pα is the orthogonal projection from

the Hilbert space L2
α(D) onto the closed subspace A2

α(D). Given a function
a ∈ L1(D), we also denote by Ma the pointwise multiplier Ma : f 7→ af ,
where f : D → C is a measurable function (which is usually holomorphic or
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harmonic in the sequel). If 1 ≤ p <∞, then a Toeplitz operator Ta on Apα(D),
with symbol a, is in principle defined as the composition

Taf = PαMaf, (1.1)

but the assumptions made so far do not always suffice to guarantee that
(1.1) makes sense, since Ma might map f outside L2

α(D). In the case a is a
bounded function, there is no problem with the definition, since Pα can be
written with the help of the Bergman kernel as the intergal operator

Pαf(z) =

∫
D

f(w)

(1− zw)2+α
dAα(w) ,

hence

PαMaf =

∫
D

a(w)f(w)

(1− zw)2+α
dAα(w), (1.2)

and for every z ∈ D, these integrals converge for all f ∈ L1
α(D). Moreover, it

is known that Pα is a bounded operator in the space Lpα(D), when 1 < p <∞,
which yields the boundedness of Ta : Apα(D)→ Apα(D) for bounded symbols.

It is not difficult to construct unbounded symbols a which still induce
bounded Toeplitz operators, but the characterization of symbols a ∈ L1(D)
such that Ta : Apα(D) → Apα(D) is well-defined and bounded is a well-known
open problem. Let us mention some partial results on it. The characteriza-
tion of boundedness and compactness of Toeplitz operators with nonnegative
symbols in terms of Carleson type measures first appeared in [24]

D.Luecking [15] proved that a Toeplitz operator Ta with a nonnegative
symbol a ∈ L1(D) is bounded in A2(D), if and only if the average

|B(z, r)|−1

∫
B(z,r)

a(w) dA(w)

is a bounded function of z. Here B(z, r) denotes a disk in the Bergman met-
ric, with center z and some fixed radius r > 0. Toeplitz operators with radial
symbols in the space A2

α(D) and analogues on higher dimensional domains
were thoroughly considered in [9]: in this case the operator is unitarily equiv-
alent with a sequence space multiplier, see also (5.1) below, and thus the
boundedness properties can be determined. A partial generalization to the
case p 6= 2 was established in [21]. The Berezin transform

B(f)(z) = (1− |z|2)2

∫
D

f(w)

|1− zw̄|4
dA(w), z ∈ D, (1.3)

is a useful tool for the theory of Toeplitz operators, although it will not be
used in this article. N.Zorboska proved in [38] for symbols a of bounded mean
oscillation that the Toeplitz operator Ta : A2(D)→ A2(D) is bounded if and
only if B(a) is bounded. The results of [15] and [38] generalize to other Ap(D)-
spaces, 1 < p <∞, as well, see e.g. [30]. Here is a non-exhaustive list of other
works dealing with the boundedness and compactness of Toeplitz operators
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in Bergman-type spaces: [8], [9], [10], [11], [12], [15], [16], [21], [22], [25], [27],
[28], [29], [30], [34], [35], [39], [36], [38]. The monograph [37] is a standard
reference for the topic, and we also mention the survey article [31].

In this article we will review in Section 2 the results of [30], [33], [11].
These consist of sufficient, weak Carleson-type conditions for the boundedness
and compactness of Toeplitz operators in reflexive Bergman spaces with stan-
dard weights, both on the unit disk and the unit ball. Sections 3–6 are mainly
based on the recent works [4], [5], which deal with operators on H∞v (D)-spaces
with quite general classes of weights. Theorem 4.1 of Section 4 states that
there is a bounded harmonic symbol f for which Tf is unbounded in H∞v (D)
for any radial weight v satisfying our general assumptions. The main result
of Section 5, Theorem 5.3 contains a necessary and sufficient condition for
the boundedness of Tf in H∞v (D), as well as the corresponding result for the
compactness. These conditions are slightly abstract, and thus in Section 6 we
derive some more concrete, easily formulated sufficient conditions based on
the results of Section 5.

We conclude this section by a remark on the definition of Toeplitz oper-
ators as an improper integral. Here, we fix α > −1 and assume the symbol a
is radial. Formula (1.4) will be considered in detail in Section 2 even for more
general, non-radial symbols. The proof of Proposition 1.1 is taken here from
[14], although some versions of it have probably been known for specialists
for a long time.

Proposition 1.1. Let a be a radial symbol, i.e. a(z) = a(|z|) for almost
all z ∈ D, belonging to L1

α(D), α > −1, and let g(z) =
∑∞
n=0 gnz

n be a
holomorphic function on D. Then, the defining integral (1.2) of Tag exists in
the improper sense as the limit

Tag(z) = lim
ρ→1

∫
|w|<ρ

a(w)g(w)

(1− zw)2+α
dAα(w), (1.4)

convergent for every z ∈ D. Moreover,

Tag =

∞∑
n=0

βa,α(1, n)gn
(α+ 1)B(n+ 1, α+ 1)

zn (1.5)

and in particular the power series on the right converges for all z ∈ D.

Here and in the next we denote by B and Γ Euler’s beta- and gamma-
functions,

B(n+ 1, c) =
n!Γ(c)

Γ(n+ 1 + c)
, c > 0,

and for 0 < ρ ≤ 1

βa,α(ρ, n) = (α+ 1)

√
ρ∫

0

tn(1− t)αa(
√
t)dt, (1.6)
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where the integral converges by the assumptions that a is radial and belongs
to L1

α(D).

Proof of Proposition 1.1. We start by the remark that for all m ∈ N0,
the integral ∫

D

g(w)wma(w)dAα(w)

exists in the improper sense for every holomorphic g on the disk D. Namely,
the rotational symmetry of a and the usual orthogonality relations of trigono-
metric polynomials yield for all m ∈ N0∫

|w|<ρ

g(w)wma(w)dAα(w) = 2(α+ 1)gm

ρ∫
0

r2m+1a(r)(1− r2)αdr.(1.7)

Clearly, the limit exists, when ρ→ 1. For every 0 < ρ < 1, z ∈ D, we obtain
by (1.7) ∫

|w|<ρ

a(w)g(w)

(1− zw)2+α
dAα(w)

=

∫
|w|<ρ

g(w)

( ∞∑
n=0

(zw)n

(α+ 1)B(n+ 1, α+ 1)

)
a(w)dAα(w)

=

∞∑
n=0

βa,α(ρ, n)gn
(α+ 1)B(n+ 1, α+ 1)

zn. (1.8)

Let L ∈ N be such that L ≥ |α|+ 1. Then,

B(n+ 1, α+ 1) ≥ n!Γ(α+ 1)

(n+ L)!
≥ CLn−L (1.9)

for some constant CL > 0. We also have

βa,α(ρ, n) ≤ βa,α(1, n) = 2(α+ 1)

1∫
0

t2n(1− t2)αa(t)dt ≤ Cα (1.10)

for another constant Cα > 0, for all ρ and n, since a ∈ L1
α(D). Moreover, since

g is a holomorphic function on D, we have lim supn→∞ |gn|
1
n ≤ 1, hence,

lim sup
n→∞

∣∣∣∣ βa,α(1, n)gn
(α+ 1)B(n+ 1, α+ 1)

∣∣∣∣ 1n ≤ lim sup
n→∞

(
CLCαn

L
) 1
n · lim sup

n→∞
|gn|

1
n ≤ 1.

The same estimate holds, independently of ρ, when βa,α(1, n) is replaced
by β1,α(ρ, n). Hence, by the elementary theory of power series, (1.5), (1.8)
converge uniformly on compact subsets of the disk and define holomorphic
functions. Moreover, we have βa,α(ρ, n) → βa,α(1, n) for every n as ρ → 1,
hence, considering truncated series (1.5), (1.8) shows that the limit on the
right of (1.4) exists for every z ∈ D and coincides with (1.5). �
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2. Toeplitz operators with oscillating symbols

If an unbounded, measurable function a is strongly oscillating, it may give
rise to a Toeplitz operator via the improper integral (1.4), and the operator
may even be bounded with respect to a Bergman norm. A sufficient condition
for oscillating symbols to induce a bounded Ta was presented in the paper
[30]. More precisely, in the reference it was shown that Ta is bounded under
an averaging condition for the symbol itself rather than for its modulus. The
result needs a generalized definition of Toeplitz operators, which, however,
eventually coincides with the improper integral. The result also extends to
little Hankel operators.

We will next review the mentioned approach. It is based on a decom-
position of the disk into an infinite family of (Dn)∞n=1 subdomains, which
have essentially constant area with respect to the hyperbolic geometry. The
geometry of the subdomains needs to be specified carefully, since an explicit
integration by parts -argument is a crucial step in the argument. Here, the
sets Dn are rectangles in the polar coordinates, but they could also be chosen
differently, see the discussion below.

Let us consider a symbol a : D→ C, which is at least locally Lebesgue-
integrable on D. We also fix the parameter α > −1.

Definition 2.1. Denote by D the family of the sets D := D(r, θ) , where

D = {ρeiφ | r ≤ ρ ≤ 1− 1

2
(1− r) , θ ≤ φ ≤ θ + π(1− r)} (2.1)

for all 0 < r < 1, θ ∈ [0, 2π]. Let |D| :=
∫
D
dA and, for w = ρeiφ ∈ D(r, θ),

let

âD(w) :=
1

|D|

ρ∫
r

φ∫
θ

a(%eiϕ)%dϕd%. (2.2)

We will study symbols a for which there exists a constant C > 0 such that

|âD(w)| ≤ C (2.3)

for all D ∈ D and all w ∈ D.

The setsD
(
1−2−m+1, 2π(k−1)2−m

)
∈ D, wherem ∈ N, k = 1, . . . , 2−m,

form a decomposition of the disk D. Let us re-index them somehow into a
family (Dn)∞n=1 with

Dn = { z = reiθ | rn < r ≤ r′n, θn < θ ≤ θ′n} (2.4)

where, for some m and k,

rn = 1− 2−m+1, r′n = 1− 2−m, θn = π(k − 1)2−m+1, θ′n = πk2−m+1.(2.5)

Given f ∈ Apα(D), we write for all n = n(m, k)

Fnf(z) =

∫
Dn

a(w)f(w)

(1− zw̄)2+α
dAα(w) , z ∈ D, (2.6)
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so that Fn can actually be considered as a conventional, bounded Toeplitz
operator on Apα(D).

The following theorem, in the case of α = 0, is the main result Theorem
2.3 of [30]. The weighted case was included in [11].

Theorem 2.2. Let 1 < p <∞ and assume that the locally integrable function
a satisfies the condition (2.3). Given f ∈ Apα(D), the series

∑∞
n=1 Fnf(z)

converges pointwise, absolutely for almost all z ∈ D, and the generalized
Toeplitz operator Ta : Ap → Ap, defined by

Taf(z) =

∞∑
n=1

Fnf(z) (2.7)

is bounded for all 1 < p <∞, and there is a constant Cα, independent of a,
such that

‖Ta‖ ≤ Cα sup
D∈D,w∈D

|âD(w)|. (2.8)

The main step of the proof consists of writing the integral (2.6) in polar
coordinates and performing a double integration by parts (once with respect
to both coordinates) such that there appear integrals of a and derivatives
of f(w)(1 − |w|2)α(1 − zw̄)2+α. The former can be estimated by using the
assumption (2.3) and the latter by using bounds for the maximal Bergman
projection and well known arguments and estimates related with hyperbolic
geometry. One obtains a representation for the integral (1.2) as a pointwise
convergent sum of the integrals (2.6) as in (2.7). We refer to [30] for the
details. Improved versions of the proof appear in [33] and [11], and they yield
our next theorem, although we do not repeat the proof here. We remark that
every Toeplitz operator

Taρf(z) =

∫
|w|<ρ

a(w)f(w)

(1− zw̄)2+α
dAα(w) (2.9)

is bounded Apα(D)→ Apα(D), since the support of the symbol is contained in
a compact subset of D.

Theorem 2.3. Let 1 < p <∞ and 1/p+1/q = 1, and let the symbol a be as in
Theorem 2.2. Then, the generalized Toeplitz operator Ta : Apα(D) → Apα(D),
defined in (2.7), can be written as

Taf = lim
ρ→1

Taρf , (2.10)

for all f ∈ Apα(D). The limit converges with respect to the strong operator
topology. Moreover, the transposed operator T ∗a : Aqα(D) → Aqα(D) (with re-
spect to the standard complex dual pairing) satisfies

T ∗a f = lim
ρ→1

Tāρf (2.11)

for f ∈ Aqα(D) and for almost all z ∈ D, and the limit also converges in the
strong operator topology.
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The limits in (2.10), (2.11) cannot in general converge in the operator
norm, since the operators Taρ are compact. We mention that, when α = 0,
the above results are formulated in [33] also for little Hankel operators

haf(z) =

∫
D

a(w)f(w)

(1− z̄w)2
dA(w) , z ∈ D. (2.12)

Here, one also defines using the same decomposition of the unit disk as above

Hnf(z) =

∫
Dn

a(w)f(w)

(1− z̄w)2
dA(w) , z ∈ D, (2.13)

and defines the generalized little Hankel operator haf(z) as
∑∞
n=1Hnf(z).

Then, if (2.3) holds for the symbol a, one obtains that ha : Ap(D)→ Lp(D) is
bounded for all 1 < p <∞, the operator norm of ha has the same bound as
in (2.8), and finally, the operator ha and its transpose have representations
as improper integrals similar to those in (2.10), (2.11).

The definition (2.7) of a generalized Toeplitz operator depends on the
geometry of the special decomposition (2.4) of the unit disk, but Theorem
2.3 largely removes this unsatisfacatory feature, since the improper integral
in (2.10) is quite a natural one. We remark that in the literature there are
versions of the result, which use different subdomains of the unit disk. In [39]
the condition (2.3) is replaced by a similar one on Carleson squares

Sαh (eiθ) =
{
ρeiφ : 1− h < ρ < 1, |φ− θ| < παh

}
where 0 < h < 1, 0 ≤ θ ≤ 2π, 0 < α ≤ 1. The authors give a boundedness
result for the Toeplitz operators and they also show that their sufficient
condition is equivalent to that in Theorem 2.2. Finally, they also prove the
important observation that the sufficient condition (2.3) is not necessary to
the boundedness of Ta : Apα(D)→ Apα(D).

Another variant appears in [22], [23] where Toeplitz operators on Bergman
spaces of simply connected planar domains are considered. In such domains
any geometric symmetry is usually lost, and there does not exist a decom-
position of the domain which is as natural as the one for the disk, see (2.4).
However, the author uses a Whitney decomposition with Euclidean rectangles
and obtains results which are analogous Theorem 2.2. The Whitney decom-
position can of course be applied also in the case of the disk, and it yields
another sufficient condition for the boundedness of the Toeplitz operator. We
do not know, if the condition is equivalent to (2.3).

In [32], we generalized Theorem 2.2 to the setting of A1(D), while
bounded Toeplitz operators Tµ on A1

α(BN ) were characterized in terms of
the reproducing kernels in [6] under additional conditions on the measure
µ. We skip a detailed discussion on the boundedness problem in A1-spaces
and only note that the previous approach has not been worked out in the
non-locally convex cases 0 < p < 1.

Theorems 2.2 and 2.3, first proved in [30] and [33], have been generalized
to the case of Toeplitz operators on the Bergman space of the unit ball of CN



Boundedness of Toeplitz Operators in Bergman-type Spaces 9

in the recent work [11], but even presenting the results leads to non-trivial
technical challenges. We do not directly need the Euclidean space R3 here, but
since that dimension is still within the capabilities of the human imagination,
we ask the reader to think about a radially symmetric decomposition of the
unit ball of R3: that is indeed a challenge, since decomposing the ball surface
into finitely many identical squares in spherical coordinates (corresponding
to intervals [θn, θ

′
n] in (2.4)–(2.5)) is impossible. For example, starting to fill

the ball surface from the equator with spherical squares with one side parallel
to the meridians, one runs into difficulties at latest when trying to fill the
north and south caps.

The results of [11] are formulated for measures with standard weights
and thus the proofs contain new information even in the case N = 1, since
the earlier papers only contained the unweighted case. The basic idea of
the proof is the same as in in [30] and [33], but new non-trivial technical
considerations are nevertheless needed. Let us review the approach of [11]
superficially without going into all technical details. For α > −1, we de-
fine the weighted Lebesgue measure dVα on the unit ball BN , N ∈ N, by
dVα(z) = cα(1 − |z|2)αdV (z), where dV is the unweighted N -dimensional
(real) Lebesgue measure and cα is a normalizing constant such that

∫
BN dVα =

1. For 1 ≤ p < ∞, we denote by Lpα(BN ) the Lp-space with respect to the
measure dVα and by Apα(BN ) the weighted Bergman space of all holomorphic
functions in Lpα(BN ). We also denote by Pα the orthogonal projection from
L2
α(BN ) onto A2

α(BN ). It is known to be a bounded operator Lpα(BN ) onto
Apα(BN ) for all 1 < p <∞.

In the following it is useful to work with real variables by identifying
CN with Rn, n = 2N , so that BN equals Bn in real coordinates. Accordingly,
any point x ∈ Bn with modulus |x| = r can be written as

x = (r cos θ2, r sin θ2 cos θ3, r sin θ2 sin θ3 cos θ4, · · · ,
r sin θ2 · · · sin θn−1 cos θn, r sin θ2 · · · sin θn−1 sin θn)

in the spherical coordinates

ξ = (r, θ2, · · · , θn) ∈ [0, 1[×
n−1∏
j=2

[0, π[×[0, 2π[ =: Qn,

and these determine the coordinate transform σ : Qn → Bn by x = σ(ξ).
As in the case of the unit ball one needs to specify a suitable decomposition
of the unit ball Bn, but it turns out to be unexpectedly difficult in higher
dimensions. We skip the detailed choice of the sets at this point, referring
to Section 1 of [11] and only mention that it is possible to choose for every
m ∈ N finitely many subsets Bm,k, k = 1, . . . ,Km, which are images under
the mapping σ of certain rectangles Qm,k ⊂ Qn in polar coordinates, such
that

– the volume of every Bm,k is proportional to 2−nm,

– the union of all sets Bm,k when m ∈ N and k = 1, . . . ,Km, covers Bn,
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– there is a constant N ∈ N such that any point x ∈ Bn is contained in at
most N of the sets Bm,k.

We enumerate the sets Qm,k and Bm,k into sequences (Qj)
∞
j=1 and

(Bj)
∞
j=1. Then, we impose on Qn the partial ordering

x 6 y ⇐⇒x1 ≤ y1, |π2 − x2| ≥ |π2 − y2|, . . . , |π2 − xn−1| ≥ |π2 − yn−1|,
xn ≤ yn. (2.14)

On each Qj we pick up the smallest and largest points x(j) =
(
x

(j)
1 , . . . , x

(j)
n

)
and y(j) =

(
y

(j)
1 , . . . , y

(j)
n

)
with respect to the given ordering, hence, there

holds Qj = Q
(
x(j), y(j)

)
, where we denote, for a, b ∈ Qn with a 6 b,

Q(a, b) =
{
x ∈ Rn : a 6 x 6 b

}
, B(a, b) = σ

(
Q(a, b)

)
. (2.15)

Note that for x, y ∈ [0, 1)× [0, π2 ]n−2× [0, 2π] the order relation ”6” coincides
with the usual partial order of points in Rn, which is then mirrored to all of
Qn to account for the construction of the sets Qj and Bj . In particular, the

x(j) and y(j) are two opposite corners of Qj and we have Bj = B(x(j), y(j)).
Let a : BN → C be a locally integrable function and 1 < p < ∞. The

generalized Toeplitz operator is defined by

Taf(z) :=

∞∑
j=1

Ta(χjf)(z) =

∞∑
j=1

Pα(aχjf)(z), (2.16)

if the series converges for almost every z ∈ BN and all f ∈ Apα(BN ). Here
χj denotes the characteristic function of the set Bj . The boundedness of the
Bergman projection Pα in Lpα(BN ) implies that Taf = Pα(af) whenever af ∈
Lpα(BN ). In particular, if a is bounded, then Ta is just the standard Toeplitz
operator. As in the one-dimensional case, a “weak” Carleson-type condition
(2.18) implies that Ta becomes a well-defined bounded linear operator and
the definition coincides with the integral definition, when it is interpreted as
an improper integral. Accordingly, given a locally integrable a : BN → C, we
define for all j ∈ N

âj := sup
y∈Bj

∣∣∣∣ ∫
B(x(j),y)

a dVα

∣∣∣∣ (2.17)

and denote |B|α =
∫
B
dVα for all measurable subsets B ⊂ BN .

Theorem 2.4. Let a : BN → C be locally integrable, 1 < p < ∞ and the
family (Bj)j∈N be as above. If there exists a constant Ca > 0 such that

âj ≤ Ca|Bj |α (2.18)

for all j ∈ N, then the series (2.16) converges almost everywhere and in
Lpα(BN ) and defines a bounded linear operator Apα(BN ) → Apα(BN ) with
‖Ta‖ ≤ CαCa, for some constant Cα > 0 independent of a.

Given the symbol a as above and 0 < ρ < 1, we define aρ(z) = a(z)
for |z| ≤ ρ and aρ(z) = 0 for ρ < |z| < 1; then every operator Taρ is
bounded on Apα(BN ), since the supports of the symbols are compact subsets
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of the unit ball, or also by the previous theorem. As in the one-dimensional
case, the assumption (2.18) allows the following representation of the Toeplitz
operator, which does not depend on the decomposition (Bj)j∈N.

Theorem 2.5. Let 1 < p <∞ and 1/p+ 1/q = 1, and suppose that a ∈ L1
loc

satisfies (2.18). Then

Taf = lim
ρ→1

Taρf

for all f ∈ Apα(BN ) and the transpose operator T ∗a : Aqα(BN )→ Aqα(BN ) can
be expressed as

T ∗a f = lim
ρ→1

Taρf

for f ∈ Apα(BN ).

The transpose is defined respect to the standard duality of Apα(BN )-
spaces.

It would probably be possible and technically easier to formulate and
prove a result analogous to Theorem 2.4 by using a rectangular Whitney
decomposition of BN instead of the one described here, but there would
then be the disadvantage that the spherical symmetry would be lost and
the condition for the boundedness would depend on the particular choice of
the decomposition. In particular, it might be difficult or impossible to prove
Theorem 2.5 with that approach.

3. Toeplitz operators in H∞
v -spaces: introduction

From now on we will deal with Toeplitz operators in spaces on D with quite
general weights v satisfying the basic assumptions of Section 1. A typical,
important example of weights considered in this section is the exponentially
decreasing v(r) = exp(−1/(1−r)). Because of such examples we need again to
pay attention to the definition of Toeplitz operators in the spaces Apv(D) and
H∞v (D), namely, there is the problem that the Bergman projection may not be
bounded. Actually we will show that this is always the case for p =∞ for any
weight, see Theorem 4.1, but even in the reflexive case there may be problems
in this respect: in [7] it was shown that for the above mentioned exponential
weight v(z), the orthogonal projection L2

v(D) → A2
v(D) is bounded in Lpv if

and only if p = 2. Moreover, in [19] W.Lusky proved that the mere existence
of a bounded projection from L∞v (D) onto H∞v (D) is equivalent to v satisfying
condition (B) of Definition 5.1, below. For example, the exponential weight
v satisfies (B), but there also exist natural weights which do not, like v(z) =
(1− log(1−|z|))−1 (see the statement after Theorem 1.2. of [19] and Example
2.4. of the same paper for other examples).

Yet, even in the spaces H∞v (D) and Apv(D) with general weights, the
definition of the Toeplitz operator involves the orthogonal projection Pv :
L2
v(D)→ A2

v(D). It will be useful to consider the integral kernel of Pv, the so
called Bergman kernel. In the next we follow well-known arguments, see e.g.
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[7]. We denote the inner product in the Hilbert spaces L2
v(D) and A2

v(D) by

〈f, g〉 =
∫
D fg dAv. Then, the functions ek(z) = Γ

−1/2
2k zk, where k ∈ N0 and

Γk = 2π

1∫
0

rk+1v(r)dr, (3.1)

form an orthonormal basis of A2
v(D). We remark that the numbers Γk satisfy

for all 0 < % < 1 and some constant Cv,% > 0 the following lower bound

Γk ≥ Cv,%%k (3.2)

for every k ∈ N0. This follows from (3.1) by considering the integral e.g. over
the interval [%, 1− (1− %)/2] only.

Convergence in the space Apv(D), 1 < p <∞, with respect to the norm
‖ · ‖p,v implies pointwise convergence (hence Apv(D) is a closed subspace of
Lpv(D) ), and thus the point evaluation functionals at any point of D are
bounded functionals on Apv(D). Consequently, we find the Bergman kernel by
using the Riesz representation theorem, which allows us to choose the family
of functions Kz ∈ A2

v(D), z ∈ D, such that

g(z) = 〈g,Kz〉 =

∫
D

g(w)Kz(w) dAv(w) (3.3)

for all g ∈ A2
v(D). The integral operator defined by the right hand side can

be extended to L2
v(D), and it actually defines the orthogonal projection from

L2
v(D) onto A2

v(D), i.e. the Bergman projection Pv. Using the orthonormal
basis (ek)∞k=0 we can write for all z ∈ D

Pvg(z) =

∞∑
k=0

〈g, ek〉ek(z) =

∫
D

∞∑
k=0

zkwk

Γ2k
g(w)dAv(w). (3.4)

Here, the order of the summation and the integral can be changed, because
(3.2) leads for any fixed z ∈ D to the estimate∣∣∣zkwk

Γ2k

∣∣∣ ≤ cv,%( |z|
%2

)k
, (3.5)

and we can choose here %2 > |z| so that the sum on the right-hand side of
(3.4) converges well enough. Moreover, the estimate (3.5) implies that for
every z ∈ D the Bergman kernel Kz is a bounded function:

|Kz(w)| ≤ Cz for all w ∈ D. (3.6)

We obtain the following inference.

Lemma 3.1. Let f ∈ L1(D). The integral defining the Toeplitz operator Tf
with symbol f on H∞v ,

Tfg =

∫
D

f(w)g(w)Kz(w) dAv(w), (3.7)

converges for all z ∈ D and for all g ∈ H∞v (D),
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Indeed, if g ∈ H∞v (D), then, by definition, gv ∈ L∞(D). Hence, the
result follows from (3.6).

We remark that the a priori assumption f ∈ L1(D) is usual also in the
considerations on Toeplitz operators in the reflexive Bergman spaces, but
in that case this assumption does not guarantee that the defining integral
(3.7) converges for all g ∈ Apv(D). From this point of view, the case p =
∞ is simpler. However, although Tfg of (3.7) is a well-defined holomorphic
function it might not be an element of H∞v (D) and Tf might not be a bounded
operator H∞v (D)→ H∞v (D). Actually it is an elementary consequence of the
closed graph theorem that Tf is a bounded operator H∞v (D) → H∞v (D) if
and only if Tf (H∞v (D)) ⊂ H∞v (D). We will soon turn to questions on the
boundedness of the operator Tf .

If g ∈ H∞v (D) is such that fg ∈ L2
v(D), we also have

(Tfg)(z) =

∞∑
n=0

〈fg, en〉en(z) =

∞∑
n=0

zn

Γ2n

∫
D

f(w)g(w)wnv(w)dA ,(3.8)

where the series converges in L2
v(D). However, the formula also holds for all

g ∈ H∞v (D) (since we are assuming f ∈ L1(D)) and the product fgv thus
belongs to L1(D), and one can commute the summation and integration in
(3.8), due to (3.5). In the latter case, the sum (3.8) converges uniformly for
z in compact subsets of the disk.

4. Toeplitz operators with harmonic symbols in H∞
v (D)-spaces

In this section we will consider Toeplitz operators Tf with harmonic symbols
f : D→ C in weighted spaces H∞v (D). We assume that the weight v satisfies
the basic requirements introduced in Section 1. In addition, the following
notions will be needed here and in subsequent sections. For for any function
g : D→ C and radius 0 ≤ r ≤ 1 we will denote

M∞(g, r) = sup
|z|=r

|g(z)|. (4.1)

Also, a weight v is called normal if

sup
n∈N

v(1− 2−n)

v(1− 2−n−1)
<∞ and inf

k∈N
lim sup
n→∞

v(1− 2−n−k)

v(1− 2−n)
< 1. (4.2)

For example, the standard weights v(r) = (1 − r2)α, α > 0 are normal,
whereas the weights of exponential type, v(r) = exp(−α/(1− r)β), α, β > 0,
are not. The Riesz projection P maps harmonic functions into holomorphic
ones and it is defined by

P
(∑
k∈Z

akr
|k|eikθ

)
=

∞∑
k=0

akr
keikθ, r ∈ [0, 1), θ ∈ [0, 2π]. (4.3)

For every m > 0 we denote by rm be a point where the function r 7→ rmv(r)
attains its absolute maximum on [0, 1]. Due to the general assumptions on
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the weights it is easily seen that rn ≥ rm if n ≥ m and limm→∞ rm = 1; see
for example [17] for details.

We now turn to questions on the boundedness of Toeplitz operators Tf
with harmonic symbols f . In the case f is even holomorphic, the operator
Tf is just the multiplier Mf , and it is quite plain that Tf is bounded, if and
only if f ∈ H∞(D), i.e., f is a bounded function. Due to the generality of the
weights, the details of this claim are exposed in [4], Section 2. Allowing the
symbol to be just a harmonic function changes the situation dramatically.
The basic reason for this is the unboundedness of the Riesz and Bergman
projections with respect to the sup-norm, but one can develop this idea as
far as the following result. We repeat that in all of our results the weights v
must satisfy the general assumptions made in Section 1.

Theorem 4.1. There is a bounded harmonic function f : D → C such that
Tf is not a bounded operator H∞v (D)→ H∞v (D) for any weight v on D.

This result implies the following conclusion.

Corollary 4.2. For any weight v, the Bergman projection Pv is not a bounded
mapping L∞v (D)→ L∞v (D).

Namely, the pointwise multiplication with a bounded function f is al-
ways a bounded operator H∞v (D) → L∞v (D). So, if Pv were bounded, this
would imply Tf : H∞v (D)→ H∞v (D) is bounded for every f ∈ L∞(D), which
would contradict Theorem 4.1. We actually see that even the restriction of
Pv onto h∞v (D) is unbounded.

In the sequel, the complex variable z will always be written in the polar
coordinates as z = reiθ, unless otherwise indicated.

Proof of Theorem 4.1. Let us fix a weight v on D and define first the
function f0 : ∂D→ C by

f0(z) =

{
1 , if − π/2 ≤ θ ≤ π/2
0 , if −π ≤ θ < −π/2 or π/2 < θ ≤ π.

The symbol f is defined as the harmonic extension of f0 on D obtained from
the Poisson integral, hence, we have f ∈ h∞(D). Calculating the Fourier
coefficients of f0 we observe that

f(z) =
1

2
+

1

π

∞∑
k=0

(−1)k

2k + 1

(
z2k+1 + z̄2k+1

)
, z ∈ D. (4.4)

Indeed, let ak, k ∈ Z, be. Then we have

ak =
1

2π

π/2∫
−π/2

e−iktdt =
eikπ/2 − e−ikπ/2

2kπi
=
ei|k|π/2 − e−i|k|π/2

2|k|πi

=

{
(−1)j

(2j+1)π , if |k| = 2j + 1 for some j ∈ N0,

0 for other k ∈ Z \ {0}.
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Moreover, a0 = 1/2. This implies (4.4).
Next we define the test functions, which will be used in showing the

unboundedness of the Toeplitz operator: we set

gm(z) =
rmeimθ

rmmv(rm)
, z = reiθ ∈ D

for all m ∈ N0, where the definition of the maximum point rm was given in
the beginning of the section so that we obviously have ‖gm‖v = 1. We next
show that for all m ∈ N0 there holds

Tfgm(z) =

m∑
k=0

bk−m
Γ2m

Γ2k

zk

rmmv(rm)
+

∞∑
k=m+1

bk−m
zk

rmmv(rm)
(4.5)

where f(z) =
∑∞
k=−∞ bkr

|k|eikθ and Γk is as in (3.1). Indeed, this follows
from

f(z)g(z) =
∑
j∈Z

bj
rm+|j|ei(j+m)θ

rmmv(rm)

=

∞∑
k=m+1

bk−m
rkeikθ

rmmv(rm)
+

m∑
k=−∞

bk−m
r2m−keikθ

rmmv(rm)

and (3.8).
Let us now turn to the final proof showing that Tf is unbounded on

H∞v (D). We define

f1(z) =

∞∑
j=0

(−1)j

2j + 1

(
z2j+1 + z̄2j+1

)
and note that it suffices to show that Tf1 is unbounded since Tf = T1/2 +

π−1Tf1 and T1/2 (multiplication by constant 1/2) is bounded. Fix a positive
integer m, say m = 4m0 for m0 ∈ N. Then

k−m is

{
odd if k is odd
even if k is even

and j−2m0 is

{
odd if j is odd
even if j is even.

We apply formula (4.5) with bk = 0, if k is even, and with bk = (−1)k/|2k+1|
if k is odd, to obtain

Tf1gm(z) =

m∑
k=0,
k odd

bk−m
Γ2m

Γ2k

zk

rmmv(rm)
+

∞∑
k=m+1,
k odd

bk−m
zk

rmmv(rm)
. (4.6)

Next, if S is the operator Sf(z) = (f(z)− if(iz))/2, we have

Sf(z) =

∞∑
k=0

f4k+1z
4k+1 for f(z) =

∞∑
k=0

f2k+1z
2k+1, (4.7)

since 1− i · i2k+1 = 1 + (−1)k . We obtain

STf1gm(z) =
∑

0≤4j+1≤m

b4j+1−m
Γ2m

Γ8j+2

z4j+1

rmmv(rm)
+

∑
m+1≤4j+1<∞

b4j+1−m
z4j+1

rmmv(rm)
.
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Recall that b4j+1−m = 1/|4(j−m0)+1|. So if we take θ = 0 then all summands
in the preceding sum are non-negative. Hence

rm
5

log

(
1

1− r4
m

)
=
rm
5

∞∑
j=1

(r4
m)j

j
≤
∞∑
j=0

r4j+1
m

4j + 1

=
∑

m+1≤4j+1<∞

b4j+1−m
r4j+1
m v(rm)

rmmv(rm)
≤ S(Tf1(gm))(rm)v(rm)

≤ ‖S(Tf1(gm))‖v ≤ ‖Tf1(gm)‖v.
since trivially by the definition of the operator S we have sup|z|=r |(Sf)(z)| ≤
sup|z|=r |f(z)|. Since limm→∞ rm = 1, the left-hand side of the preceding
estimate grows to the infinity, when m→∞. Hence Tf1 and also Tf cannot
be bounded. �

5. General result on multipliers and Toeplitz operators in
H∞

v (D) with radial symbols

We continue by considering a fixed radial weight v on D and Toeplitz op-
erators Tf : H∞v (D) → H∞v (D), where Tf = PvMf . A function with radial
symmetry on the disk can nearly never be harmonic, and the study of Toeplitz
operators with radial symbols requires techniques different from those in Sec-
tion 4. First we note that if f ∈ L1(D) is radial, i.e. f(z) = f(|z|) for almost
every z ∈ D, then Tf is a coefficient multiplier. This is easily seen by expand-
ing the kernel as in (3.4) and a calculation using the usual orthonormality
relations of trigonometric polynomials,

Tfg(z) =

∞∑
n=0

zn

Γ2n

1∫
0

2π∫
0

f(r)g(reiθ)rn+1e−inθv(r) dθdr

=

∞∑
n=0

zn

Γ2n

1∫
0

f(r)r2n+1v(r)gndr =

∞∑
n=0

γngnz
n (5.1)

where g =
∑
n gnz

n and

γn =
1

Γ2n

1∫
0

r2n+1v(r)f(r)dr. (5.2)

We expose here the approach based mainly on the works [17], [19] and
[20] dealing with the condition (B), below, which according to Theorem 1.1
of [19] characterizes those radial weights such that the space H∞v (D) is iso-
morphic to the Banach space `∞. Examples of weights satisfying (B) are all
normal weights (4.2), in particular the standard weights, and the weights of
exponential type v(r) = exp(−γ/(1− r)β); see [19].

The very definition of condition (B) is somewhat technical and we can-
not quite avoid other technical considerations in this survey either, however,



Boundedness of Toeplitz Operators in Bergman-type Spaces 17

one can follow our presentation without going into the depth of the argu-
ments just by keeping in mind that condition (B) associates to the weight an

increasing sequence of indices (mn)∞n=1 ⊂ (0,∞) and radii
(
rmn

)∞
n=1
⊂ (0, 1)

such that mn →∞ and rn → 1 as n→∞, and moreover, gives the very use-
ful equivalent representation in Theorem 5.2 for the weighted sup-norm. We
recall that the numbers rm ∈]0, 1[ were defined in the beginning of Section 4.

Definition 5.1. The weight v satisfies the condition (B), if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0(
rm
rn

)m
v(rm)

v(rn)
≤ b1 and m,n, |m− n| ≥ c ⇒

(
rn
rm

)n
v(rn)

v(rm)
≤ b2.

Note that here m and n need not be integers. We now fix a number b > 2: it
is shown in Lemma 5.1. of [19] that it is then possible to choose, by induction,
an increasing, unbounded sequence (mn)∞n=1 ⊂ (0,∞) such that

b = min

((
rmn
rmn+1

)mn v(rmn)

v(rmn+1
)
,

(
rmn+1

rmn

)mn+1 v(rmn+1
)

v(rmn)

)
.

Next, for all n ∈ N, for the given mn, we define

wnk =


|k| − [mn−1]

[mn]− [mn−1]
, if mn−1 < |k| ≤ mn, and

[mn+1]− |k|
[mn+1]− [mn]

if mn < |k| ≤ mn+1,

(5.3)

where k ∈ Z and m0 = 0. Here [r] is the largest integer not greater than r.
With the help of these numbers we define the coefficient multipliers of de la
Valleé Poissin type, acting on harmonic functions f(z) =

∑∞
k=−∞ fkr

|k|eikθ,
by

Wn :

∞∑
k=−∞

fkr
|k|eikθ 7→

∞∑
k=−∞

wnkfkr
|k|eikθ

We will need the following uniform boundedness property of the operators
Wn, namely there exists a constant C > 0, depending on the weight only,
such that

M∞(Wng, r) ≤ CM∞(g, r) (5.4)

for all 0 ≤ r ≤ 1 and g ∈ h∞v (D). See (4.1) for the notation. The inequality
(5.4) follows e.g. by combining an inequality in Theorem 1 of [20] with Lemma
3.3. of [19].

The operatorsWn are important, since they decompose the spaceH∞v (D)
into finite dimensional blocks with a useful representation for the norm. The
result is from Theorem 1 of [20], see also Propositions 4.1. and 5.2. of [19].

Theorem 5.2. Let v satisfy (B). Then there are constants c1, c2 > 0 such
that, for all g ∈ h∞v (D),

c1 sup
n∈N

M∞(Wng, rmn)v(rmn) ≤ ‖g‖v ≤ c2 sup
n∈N

M∞(Wng, rmn)v(rmn) (5.5)
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and

c1M∞(Wng, rmn)v(rmn) ≤ ‖Wng‖v ≤ c2M∞(Wng, rmn)v(rmn)(5.6)

for all n ∈ N.

Moreover, it follows from Theorem 5.2 that if the numbers fk ∈ C, k ∈ Z
satisfy

sup
n∈N

sup
θ∈[0,2π]

∣∣∣∣ ∑
mn−1<|k|≤mn+1

wnkfkr
|k|
mne

ikθ

∣∣∣∣v(rmn) <∞, (5.7)

then the series defining the harmonic function f(reiθ) =
∑∞
k=−∞ fkr

|k|eikθ

converges uniformly on compact subsets of D and f belongs to h∞v (D) and
‖g‖v is bounded by a constant depending on the weight v. For this statement,
see Remark 1, (iii) of [20].

Examples. If v is normal then one can take mn = 2kn for suitable fixed
k > 0 (see [19], Example 2.4, and [17]). For v(r) = exp(−α/(1− r)β) one can
take mn = β2(β/α)1/βn2+2/β − β2n2, see [2].

We now formulate one of the main results of this section, the character-
ization of boundedness and compactness for coefficient multipliers. The case
of Toeplitz operators with radial symbols follows easily from this. The result
was already proven for a more restricted class of weights in Theorem 4.1 of
[18]. We will assume that a sequence (γk)∞k=0 of complex numbers is given,
and consider the formal series f(θ) =

∑∞
k=0 γke

ikθ, which may or may not
converge. The formal series Wnf is then naturally defined as

Wnf(θ) =

∞∑
k=0

wnkγke
ikθ

where the numbers wnk are as in (5.3). We denote by Mf the coefficient
multiplier

Mfg(z) =

∞∑
k=0

γkgkr
keikθ, z = reiθ (5.8)

for harmonic functions g(z) =
∑∞
k=−∞ gkr

|k|eikθ. By definition, Mfg is holo-
morphic, if the series (5.8) converges.

Theorem 5.3. Let the weight v satisfy condition (B). Then Mf maps h∞v (D)
into H∞v (D) and is bounded, if and only if

sup
n∈N

2π∫
0

|(Wnf)(θ)|dθ <∞. (5.9)

Moreover, assume (5.9) holds. Then Mf : h∞v (D) → H∞v (D) is compact, if
and only if

2π∫
0

|(Wnf)(θ)|dθ → 0 as n→∞. (5.10)
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We present here the proof of the boundedness-statement, comment on
the compact case only briefly and refer to [4] for the details. Let us first prove
that (5.9) implies the boundedness of the operator. By (5.3), for every n there
are only finitely many non-zero wnk, hence, we can write MWnf , cf. (5.8), as
a convolution

MWnfg(z) =
1

2π

2π∫
0

Wnf(θ − ψ)g(reiψ)dψ, z = reiθ ∈ D.

We obtain the estimate

∣∣MWnfg(z)
∣∣v(r) ≤ 1

2π

2π∫
0

|(Wnf)(θ)|dθ ‖g‖v (5.11)

for all g ∈ h∞v (D), Hence,

M∞(MWnfg, r)v(r) ≤ C‖g‖v

for all n and r, where the constant C > 0 is the supremum on the left-hand
side of (5.9). According to the remark concerning (5.7) the series on the
right-hand side of (5.8) converges uniformly on compact subsets of D, defines
an element of H∞v (D) and is bounded by ‖g‖v. This means that Mf maps
h∞v (D) continuously into H∞v (D).

As for the compactness of the operator Mf under the assumption (5.10),
one takes a sequence (gj)

∞
j=1 contained in the closed unit ball of h∞v (D) and

converging to 0 uniformly on compact subsets of D. One needs to show that
Mf maps such a sequence into a one converging to 0 with respect to the
norm; see for example [26], Section 2.4. Roughly speaking, one can improve
the boundedness proof to get this, by using the assumption (5.10) together
with the assumption on the convergence in the compact-open topology. One
needs a more sophisticated use of Theorem 5.2.

As usual, the proof for the necessity of the condition (5.9) for the bound-
edness requires a careful enough choice of appropriate test functions. To this
end we fix an arbitrary 0 < ε < 1 as well as n ∈ N and ϕ ∈ [0, 2π]. Us-
ing the Fejer approximation theorem we find a trigonometric polynomial
g(z) =

∑
k∈Z gkr

|k|eikθ, depending on n, ϕ and ε, such that

∣∣∣g(rmne
iθ)− Wnf(ϕ− θ)

|Wn(ϕ− θ)|v(rmn)

∣∣∣ < ε

v(rmn)
(5.12)

for all θ ∈ [0, 2π|, in particular

M∞(g, rmn)v(rmn) ≤ 2. (5.13)
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As a consequence,

1

2π

2π∫
0

|(Wnf)(θ)|dθ =
1

2π

2π∫
0

|(Wnf)(ϕ− θ)|dθ

≤ 1

2π

∣∣∣∣
2π∫
0

(Wnf)(ϕ− θ)g(rmne
iθ)dθ

∣∣∣∣ v(rmn) + ε

=
1

2π

∣∣∣∣
2π∫
0

f(ϕ− θ)(Wng)(rmne
iθ)dθ

∣∣∣∣ v(rmn) + ε

= |MfWng(rmne
iϕ)| v(rmn) + ε ≤ ‖Mf‖ · ‖Wng‖v + ε. (5.14)

Using Theorem 5.2 and (5.4), (5.13) we find a constant C > 0 such that

‖Wng‖v ≤ c2M∞(Wng, rmn)v(rmn) ≤ c2dM∞(g, rmn)v(rmn) ≤ 2Cc2.

Hence supn

2π∫
0

|(Wnf)(θ)|dθ <∞.

The proof for the necessity of the condition (5.10) for the compactness
of Mf needs a number of additional technical details. �

Since Riesz projection P , (4.3), is bounded by the assumptions of Theo-
rem 5.3, it follows that the boundedness and compactness of Mf : H∞v (D)→
H∞v (D) are also equivalent to (5.9) and (5.10), respectively.

Let us turn back to Toeplitz operators. Let Ta be a Toeplitz operator
on H∞v (D) with a given radial symbol a ∈ L1(D), i.e. a(z) = a(|z|) for almost
every z. Then, defining

γk =
1

Γ2k

1∫
0

r2k+1v(r)a(r)dr, k ∈ N0 and fa(θ) =
∞∑
k=0

γke
ikθ, (5.15)

it was shown in (5.1)–(5.2) that Ta coincides with the Taylor multiplier with
coefficients (γk)∞k=0. The previous theorem thus yields the main result on the
boundedness and compactness.

Theorem 5.4. Let the weight satisfy (B). If a ∈ L1 is radial then Ta is
bounded as an operator H∞v (D)→ H∞v (D) if and only if

sup
n

2π∫
0

|(Wnfa)(θ)|dθ <∞, (5.16)

and Ta is a compact operator H∞v (D)→ H∞v (D), if and only if

lim
n→∞

2π∫
0

|(Wnfa)(θ)|dθ = 0. (5.17)
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We finally recall that Theorems 1.1 and 3.3 of the article [21] contain
necessary and sufficient conditions for the boundedness and compactness of
Ta : Apv(D)→ Apv(D) for 1 < p <∞, with minimal assumptions on the radial
weights v. However, the characterization is in terms of the boundedness of
coefficient multipliers in Hardy spaces, which is another open problem.

6. Supplementary results on Toeplitz operators with radial
symbols

According to Theorem 4.1, the boundedness of the symbol does not suffice to
imply the boundedness of the Toeplitz operator of Tf : H∞v (D) → H∞v (D).
In this section we continue working with radial symbols and present results,
where additional regularity or decay of the symbol at the boundary of the
disk D implies the boundedness of Ta. The proofs are based on Theorem 5.4,
although here we will only sketch some ideas of them.

In Theorem 5.4, the conditions for the boundedness and compactness
of the Toeplitz operator may not be easy to verify for concrete weights and
symbols, but the results of this section also serve the purpose of presenting
some sufficient conditions that are quite easy to formulate and control. The
setting for the spaces and symbols is the same as in the previous section, but
in addition to condition (B) we also assume that, for some ε > 0, v satisfies
the following technical condition

sup
n∈N

∫ 1

0
rn−n

ε

v(r)dr∫ 1

0
rnv(r)dr

<∞. (6.1)

It is not difficult to see that (6.1) holds for example for the important
classes of standard, normal and exponential weights. For normal weights,
condition (6.1) with ε = 1/2 follows from Lemma 4.5. of [3]. In the case

v(r) = exp(−1/(1− r)) it is known that
∫ 1

0
rmv(r)dr, m > 1, is proportional

to the quantity m−3/4 exp(−Bm1/2) for some constant B > 0 independent of
m (see e.g. Lemma 2.2. in [7] or Lemma 4.28 in [1]). Hence, assuming ε < 1/2
we obtain

1∫
0

rn−n
ε

v(r)dr ≤ C(n− nε)3/4 exp(−B(n− nε)1/2)

≤ C ′n3/4 exp(−Bn1/2 + C ′′) ≤ C ′′′
1∫

0

rnv(r)dr

for some positive constants C,C ′ etc., since

(n− nε)1/2 = n1/2(1− nε−1)1/2 = n1/2
(

1− 1

2
nε−1 +O(n2ε−2)

)
= n1/2 − 1

2
nε−1/2 +O(n2ε−3/2) ≥ n1/2 − C ′′
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for all n. Thus, (6.1) holds. The same argument works for the more general
weights v(r) = exp(−α/(1− r)β), α, β > 0.

It was proven in [19] that normal and exponential weights satisfy (B).

Theorem 6.1. Let v satisfy (B) and (6.1) and assume that the symbol a ∈ L1

is real valued and radial. The operator Ta is a bounded operator H∞v (D) →
H∞v (D) in any of the following cases:
(i) The restriction a|[δ,1[ is differentiable (with respect to r) for some δ ∈]0, 1[
and there holds

lim sup
r→1

a′(r) <∞ or lim inf
r→1

a′(r) > −∞, (6.2)

and, in addition,

lim sup
r→1

|a(r) log(1− r)| <∞ (6.3)

(ii) The restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[, a′ satisfies (6.2)
and, for some constant C > 0, there holds the bound

|a′(r)| ≤ C

(1− r)
(

log(1− r)
)2 for r ∈]δ, 1[. (6.4)

(iii) The symbol a is continuously differentiable on [0, 1].

Theorem 6.1 holds also in the case of complex valued symbols a, namely,
the assumptions need to be satisfied by both Re a and Im a.

The symbol a(r) = 1/(1− log(1−r)) satisfies the second condition (6.2)
and, of course, (6.3) so that Ta : H∞v (D) → H∞v (D) is bounded. The same
is true for a(r) = (1− r)δ with any δ > 0. The latter symbol even induces a
compact operator, as can be seen by the next result.

Theorem 6.2. Let v satisfy (B) and (6.1) and assume that the symbol a ∈ L1

is real valued and radial.
(i) If the restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[, satisfies (6.2)
and, in addition,

lim sup
r→1

|a(r) log(1− r)| = 0 (6.5)

then the operator Ta : H∞v (D)→ H∞v (D) is compact.
(ii) Assume that the restriction a|[δ,1[ is differentiable for some δ ∈]0, 1[,
satisfies (6.2), and there holds

lim
r→1
|a′(r)|(1− r)

(
log(1− r)

)2
= 0. (6.6)

Then Ta is compact, if and only if limr→1 a(r) = 0.

Here, the case of complex valued symbols can be treated in the same
way as in the previous theorem.

The item (i) in both Theorems 6.1 and 6.2 follows from Theorem 5.4.
We do not present the proof but only refer to [5]. Recall that the coefficients
of the series fa in (5.16), (5.17) are given in (5.15), which involves integrals
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∫ 1

0
rna(r)v(r)dr: the proofs of (i) of Theorems 6.1 and 6.2 are based on quite

technical estimates and calculations with these expressions.
However, it is not so difficult to see that the sufficient condition (ii)

essentially implies (i) in Theorem 6.1. Assume a is real-valued and that (6.4)
holds. For all r ∈]δ, 1[ we get by the change of the integration variable log(1−
s) =: x and dx/ds = −1/(1− s) that

1∫
r

|a′(s)|ds ≤ C
1∫
r

1

(1− s)
(

log(1− s)
)2 ds = C

log(1−r)∫
−∞

1

x2
dx =

C

| log(1− r)|
.(6.7)

This implies that we can extend a as a continuous function to ]δ, 1] by setting

a(1) =

1∫
δ

a′(s)ds+ a(δ)
(

= lim
r→1

a(r)
)
.

Now, (6.7) yields for all r ∈]δ, 1[

|a(r)− a(1)| =
∣∣∣ 1∫
r

a′(s)ds
∣∣∣ ≤ C

| log(1− r)|
, (6.8)

which means that the function a−a(1) satisfies (6.3). Note that the Toeplitz
operator with the constant symbol a(1) is bounded as it is just a constant
multiplier.

It is plain that (iii) implies (ii) in Theorem 6.1.
Also, as regards to Theorem 6.2, the assumptions in (ii) imply those of

(i). Namely, if (6.6) holds, then we can repeat the calculation (6.7)–(6.8) so
that the constant C is replaced by a positive function C(r) with C(r) → 0
as r → 1. Then, we see from the analogue of (6.8) that the function a− a(1)
even satisfies (6.5). If in addition a(1) = 0 then also a satisfies (6.5). Note
that if limr→1 a(r) = a(1) 6= 0, then Ta is a compact perturbation of a non-
zero multiple of the identity which is not compact, and thus it cannot be a
compact operator.

In [5] it is shown that if v is a normal weight, the assumptions on a
in the previous theorems can be relaxed, namely the boundedness of Ta :
H∞v (D) → H∞v (D) follows just from (6.3) and the compactness from (6.5)
without any smoothness assumptions on the symbol. Also, in the case of
exponential weights v(r) = exp

(
− α/(1 − r)β), α, β > 0, the smoothness

requirements on a can be dropped, namely, if

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 <∞, (6.9)

then Ta : H∞v (D)→ H∞v (D) is bounded, and if

lim sup
r→1

|a(r)|(1− r)−1/2−β/4 = 0, (6.10)

then Ta is compact on H∞v (D).
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Let us finally consider reflexive weighted Bergman spaces Apv(D). For
radial symbols, the boundedness of Ta as an operator from the Bergman-
Hilbert space A2

v(D) into itself is characterized by the condition

sup
n∈N
|γn| <∞, (6.11)

where the numbers γn are as in (5.2). The idea of trying to characterize the
boundedness and compactness of Ta : Apv(D) → Apv(D) for 2 < p < ∞ (or
1 < p < 2) by interpolating does not seem to work, but one can derive a
sufficient condition similar to (5.9) for the boundedness of Ta in Apv(D).

To formulate and sketch the proof of the result we need some modi-
fications of the notions that were used in the case of weighted sup-norms.
We again assume that the weight v satisfies condition (B). First, instead
of the de la Valleé Poissin operators it is enough just to use the Dirichlet
projections Qng(z) =

∑n
k=0 gkz

k for holomorphic g(z) =
∑∞
k=0 gkz

k. It is
known that there are constants cp > 0 with Mp(Qng, r) ≤ cpMp(g, r) for all
0 < r < 1, 1 < p < ∞, where cp does not depend on g, n or r and we write

Mp(g, r)
p = (2π)−1

∫ 2π

0
|g(reiθ)|pdθ.

Analogously with the case of weighted sup-norms one picks up suitable
increasing numerical sequences (`n)∞n=1 with `1 = 0 and limn→∞ `n =∞ and
(sn)∞n=1 ⊂ (0, 1) with limn→∞ sn = 1 and then defines the operators

Zn = Q[`n+1] −Q[`n], n ∈ N.

These are used to derive an equivalent form of the weighted Lp-norm: for
some constants c2 ≥ c1 > 0, for every f ∈ Apv(D), there holds

c1‖f‖p,v ≤
( ∞∑
n=1

ωpnM
p
p (Znf, sn)

)1/p

≤ c2‖f‖p,v, (6.12)

where the numbers ωn are determined by the weight. The details of the
definitions of the various parameters and proof of (6.12) can be found in [13]
for p = 1 and in [20] for 1 < p < ∞. Examples and calculations in concrete
cases can be found in the paper [3]: there it is shown that one can obtain
(6.12) for the exponential weights v(r) = exp

(
− α/(1 − r)β), α, β > 0 by

using

`n = β1+1/βα−1/βn2+2/β − βn2, sn = 1−
(α
β

)1/β 1

n2/β
. (6.13)

Proposition 6.3. Let the weight satisfy (B), let a ∈ L1 be a radial function
and let fa(θ) =

∑∞
k=0 γke

ikθ be as in (5.2). Then the Toeplitz operator Ta :
Apv(D)→ Apv(D) is a well-defined, bounded operator, if

sup
n∈N

2π∫
0

|(Znfa)(θ)|dθ <∞, (6.14)
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and Ta : Apv(D)→ Apv(D) is compact, if

2π∫
0

|(Znfa)(θ)|dθ → 0 as n→∞. (6.15)

Proof. Let Mf be the convolution operator, or the sequence space mul-
tiplier, corresponding to Ta, see (5.2). For all g ∈ Apv(D) and z = reiθ ∈ D
we get

(ZnMfg)(z) = (MZnfg)(z) =

2π∫
0

Znf(θ − ψ)Zng(reidψ)dψ,

where we replaced g by Zng by the usual orthogonality relations of trigono-
metric monomials. The Young inequality ‖a ∗ b‖Lp(∂D) ≤ ‖a‖L1(∂D)‖b‖Lp(∂D)

yields

Mp(ZnMfg, r) ≤
2π∫
0

|(Znf)(θ)|dθMp(Zng, r) (6.16)

The inequality ‖Mfg‖p,v ≤ C‖g‖p,v thus follows by applying (6.14) and (6.12)
to both ‖Mfg‖p,v and ‖g‖p,v, and this implies the boundedness of Ta.

Assume next (6.15) holds, and let (gj)
∞
j=1 be a sequence which is con-

tained in the unit ball of Apv(D) and which converges to 0 uniformly on com-
pact subsets of D, and assume ε > 0 is given. We choose N ∈ N such that∫ 2π

0
|(Znf)(θ)|dθ < ε. The convergence of the sequence in the compact-open

topology can be used to find a large enough J ∈ N such that

sup
|z|≤rmn

|ZnMfgj(z)|v(z) <
ε

2πNωn
⇒ Mp(ZnMfgj , rmn) <

ε

Nωn

for all n ≤ N , all j ≥ J . This, (6.16) and (6.12) imply

‖Mfgj‖pp,v ≤
N∑
n=1

ωpnMp(ZnMfgj , rmn)p +

∞∑
n=N+1

ωpnMp(ZnMfgj , rmn)p

≤ ε+ ε

∞∑
n=N+1

ωpnMp(Zngj , rmn)p ≤ 2ε‖gj‖pp,v ≤ 2ε.

We infer that the sequence (gj)
∞
j=1 converges to 0 in the norm of Apv(D),

which proves the compactness of the operator. �
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