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A B S T R A C T

This paper presents the calibration and evaluation of the Global Flood Awareness System (GloFAS), an opera-
tional system that produces ensemble streamflow forecasts and threshold exceedance probabilities for large
rivers worldwide. The system generates daily streamflow forecasts using a coupled H-TESSEL land surface
scheme and the LISFLOOD model forced by ECMWF IFS meteorological forecasts. The hydrology model cur-
rently uses a priori parameter estimates with uniform values globally, which may limit the streamflow forecast
skill. Here, the LISFLOOD routing and groundwater model parameters are calibrated with ECMWF reforecasts
from 1995 to 2015 as forcing using daily streamflow data from 1287 stations worldwide. The calibration of
LISFLOOD parameters is performed using an evolutionary optimization algorithm with the Kling-Gupta
Efficiency (KGE) as objective function. The skill improvements are quantified by computing the skill scores as the
change in KGE relative to the baseline simulation using a priori parameters. The results show that simulation skill
has improved after calibration (KGE skill score > 0.08) for the large majority of stations during the calibration
(67% globally and 77% outside of North America) and validation (60% globally and 69% outside of North
America) periods compared to the baseline simulation. However, the skill gain was impacted by the bias in the
baseline simulation (the lowest skill score was obtained in basins with negative bias) due to the limitation of the
model in correcting the negative bias in streamflow. Hence, further skill improvements could be achieved by
reducing the bias in the streamflow by improving the precipitation forecasts and the land surface model. The
results of this work will have implications on improving the operational GloFAS flood forecasting (www.
globalfloods.eu).

1. Introduction

Flood early warning systems (FEWS) are principal components of
disaster risk management since they provide a unique opportunity to
identify upcoming flood hazards ahead of their occurrence. However,
the effectiveness of early warning systems depends on the skill with
which the occurrence and severity of floods can be predicted. In recent
years, global-scale operational flood forecasting systems have emerged
as promising support tools for disaster preparedness and response
worldwide, and major effort has been dedicated to improving the skill
of such systems (see reviews in Emerton et al., 2016; Hirpa et al., 2018).

Flood forecast skill is primarily affected by: (i) model errors due to

incomplete representation of physical processes and inaccurate para-
meterization, (ii) uncertainty in the model initial conditions, and (iii)
errors in the meteorological forcing (e.g., Fekete et al. 2004; Biemans
et al., 2009; Pappenberger et al. 2011; Nasonova, et al., 2011; Müller
Schmied et al., 2014; Sperna Weiland et al., 2015). Several studies have
investigated the relative contributions of the meteorological forcing
(precipitation), initial conditions, model structure or parameters un-
certainty to the errors in the streamflow simulations (e.g., Fekete et al.
2004; Li et al., 2009; Materia et al., 2010; Nasonova, et al., 2011; Elsner
at al., 2014; Sampson, et al., 2014; Sperna Weiland et al., 2015; Döll
et al., 2016). Even though precipitation uncertainty was generally
identified as the largest contributor to the error in the simulated
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streamflow (e.g., Sperna Weiland et al., 2015; Beck et al, 2016), cali-
bration of global-scale model parameters has been demonstrated to
improve streamflow simulations (e.g., Werth and Güntner 2010; Müller
Schmied et al., 2014; Beck et al., 2016).

Calibrating a global-scale hydrological model is a challenging task
mainly due to the high computational demand and the limited avail-
ability of reliable streamflow observations (e.g., Bierkens, 2015).
Hence, previous works have been limited to small number of basins,
performed at a relatively larger catchments and/or temporal scales
(e.g., monthly), or using a proxy streamflow data derived from satellite
observations (e.g., Werth and Güntner 2010; Sperna Weiland et al.,
2015; Revilla-Romero et al., 2015a,b). The increasing advances in the
computational power and progressively improving calibration algo-
rithms present an opportunity to perform model calibration at the
global scale and higher spatial and temporal resolutions.

Large-scale hydrological modelling using grid-based hydrological
routing model coupled with a land surface model has been used for
generating streamflow for large river basins or at continental and global
scales (e.g., Goteti et al., 2008; Decharme et al., 2010; Dadson et al.,
2011; Alfieri et al., 2013; Li et al., 2013; Wu et al., 2014). In the coupled
modeling systems the land surface model generates runoff from me-
teorological forcing by calculating the water balance, and a routing
model is used to calculate the flow in river channels.

The Copernicus Global Flood Awareness System (GloFAS, Alfieri
et al., 2013; www.globalfloods.eu) produces ensemble streamflow
forecasts and threshold exceedance probabilities for large rivers around
the world. The system employs a coupled land surface scheme and flow
routing model to generate operational forecasts at daily time steps and
0.1° grid resolution. The land surface scheme, referred to as Hydrology
Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL;
Balsamo et al., 2009) and used operationally in the Integrated Forecast
System (IFS), computes the surface and subsurface runoff. A simplified
version of LISFLOOD (Burek et al. 2013) is used for routing the runoff
produced by the land surface scheme through the river network and
computing the groundwater fluxes. GloFAS serves as a primary me-
chanism of support for flood early warning in regions without local
FEWS and provides complementary flood forecast information for areas
with alternative systems such as national or continental FEWS. Much
effort has been directed at improving GloFAS forecast skill (e.g., Zajac
et al., 2017; Hirpa et al., 2016; Revilla-Romero et al., 2015a, 2015b;
Zsoter et al., 2016), however calibration of the hydrological model has
not been previously performed.

In the present study we calibrate the hydrological model parameters
underpinning the operational GloFAS using daily streamflow observa-
tions from 1287 stations across the globe. The significant contribution
of this calibration work lies in its application to global-scale operational
flood forecasting system hence can help improve the flood early
warning through enhanced flood forecast skill. Furthermore, the cali-
bration covers hundreds of river basins with a wide range of climate
including snow-dominated boreal basins, equatorial basins with high
runoff, and dry basins with low runoff. To accommodate the high
computational demand of global-scale calibration of a distributed

hydrological model, an Evolutionary Algorithm with co-evolution of
multiple simulations running in parallel was used (e.g., Deb et al., 2002;
Tang at al., 2006).

The main objectives of the work are to improve the operational
flood forecasting skill by calibrating the flow routing and groundwater
model parameters, and to quantify the contribution of the flow routing
model parameters uncertainty to the streamflow forecast skill. We
quantify the skill gained as the result of model calibration by comparing
to baseline simulations produced using default parameter sets de-
termined based on the literature (see Feyen et al., 2007). The trans-
ferability of parameters to another period was evaluated using a dif-
ferent time period from calibration. While calibration of the routing
model alone is unlikely to remove all the errors in the streamflow si-
mulation, we aim to reduce the relative contribution of the parameter
error to the streamflow forecast uncertainty.

The remainder of this paper is organized as follows. The runoff
routing model and the calibrated parameters are described in Section 2.
The calibration method and data are presented in section 3, followed by
the evaluation method in Section 4. Results, discussions and conclu-
sions are presented in Sections 5, 6, and 7 respectively.

2. LISFLOOD model and parameters

LISFLOOD is a distributed hydrological model composed of sub-
models capable of separately simulating different hydrological pro-
cesses. In GloFAS, the model is run at 0.1° resolution globally and at
daily time step. The sub-models are used for the simulation of
groundwater storage, groundwater flow, and flow routing into and
through river channels. The groundwater storages and transport are
represented using two interconnected groundwater zones each con-
sisting of a linear reservoir (Burek et al., 2013). The outflow from each
zone is estimated based on the water storage and time constant of the
reservoir. The two reservoir time constants, the percolation from upper
to lower zone, and a loss from lower zone to deep groundwater are
calibrated parameters (see Table 1).

There are three routing components in LISFLOOD: i) routing the
surface runoff into stream channel, ii) subsurface runoff to the channel,
and iii) flow routing through the stream channel. The surface runoff
and in-channel routing are performed by solving kinematic wave
equations (Chow, 1998). For each model pixel at every time step (here
set to four hours), a 4-point implicit finite-difference solution of the
kinematic wave equations is applied to compute the flow of water to the
nearest downstream channel (Burek et al., 2013). The subsurface runoff
routing into the stream channel is modeled differently. The total out-
flow from upper and lower groundwater zones at a given time step is
routed to the nearest downstream channel pixel as a scaled sum of the
outflow from upper and lower groundwater zones.

The routing operations, implemented using the PCRaster software
(http://pcraster.geo.uu.nl/), require information about stream channel
characteristics such as channel length and gradient, flow width and
depth, and Manning’s roughness coefficient. For GloFAS, the river
network map, the flow direction map, the upstream area, and the flow

Table 1
A list of calibrated LISFLOOD parameters. The GloFAS operational model currently uses the default parameter values.

Parameter name Description [unit] Parameter values

Lower bound Upper bound Default value

UpperZoneTimeConstant Time constant for water in upper zone [days] 3 40 10
LowerZoneTimeConstant Time constant for water in lower zone [days] 40 500 200
GwPercValue Maximum rate of percolation going from the upper to the lower groundwater zone [mm/day] 0.01 2 0.5
GwLoss Maximum loss rate out of lower groundwater zone expressed as a fraction of lower zone outflow [−] 0 0.5 0
CalChanMan A multiplier applied to Channel Manning's coefficient n [−] 0.1 15 4
LakeMultiplier A multiplier to adjust the lake outflow width parameter [−] 0.5 2 1
adjust_Normal_Flood Adjusts the balance between normal and flood storage of a reservoir [−] 0.01 0.99 0.8
ReservoirRnormqMult A multiplier to adjust the magnitude of the normal outflow from a reservoir [−] 0.25 5 1
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length were obtained from the global river network database (Wu et al.
2012). The channel gradient between adjacent pixels was estimated as a
ratio of the elevation change to the flow length. The river widths were
taken from the Global Width Database for Large Rivers (GWD-LR;
Yamazaki et al. 2014). The bankfull water depth was empirically esti-
mated using long-term average discharge by applying Manning’s
equation.

In GloFAS, a total of 463 large lakes (> 100 km2) and 667 reservoirs
are incorporated to the LISFLOOD model (see Zajac et al, 2017 for the
locations). The attributes of the lakes and reservoirs were obtained from
global databases (Lehner and Döll, 2004; ICOLD, 2009; Lehner et al.,
2011). Outflow from a lake is estimated using its relationship with the
lake level using weir equation (Bollrich, 1992). The lake level variation
is estimated from the change in lake storage over time (Zajac et al.,
2017). Each reservoir is simulated based on its relative filling levels and
design parameters such as total storage capacity, storage limits and
outflow requirements. The reservoir parameters were estimated from
the metadata obtained from global database. However to improve the
simulation skill we calibrate to adjust the balance between normal and
flood storage limits of a reservoir, and the normal outflow from a re-
servoir (Table 1).

Irrigation water use is modeled as a monthly withdrawal from dis-
charge in the river network, but any potential outtake from ground-
water, precipitation or soil water is not accounted for. Open water (e.g.,
river channels and lakes) evaporation is estimated using the
Penman–Monteith equation with the required variables extracted from
ECMWF reforecast datasets consistent with the forcing data (see Section
3.2).

3. Calibration method and data

3.1. Calibration method

3.1.1. Algorithm
We used an Evolutionary Algorithm (EA) for the calibration of the

LISFLOOD model parameters. EA is a population-based optimization
algorithm in which each individual (e.g, a vector of model parameters)
in a large population represents a candidate solution for the optimiza-
tion problem. The goodness of fit for each individual is evaluated based
on selected objective functions, which are designed as either max-
imization (e.g, Kling-Gupta efficiency) or minimization (e.g., root mean
square error) equations constrained by physically meaningful model
parameter ranges. The basic principle of the EA is to modify and im-
prove the population through evolution over a range of generations,
and ultimately identify the best performing individual. The evolution
mechanisms from one generation (parent) to the next (offspring) are
inspired by biological evolution such as mutation, crossover and re-
production (Maier et al, 2014; Nicklow et al., 2010). EAs have been
previously used for calibration of hydrological and/or water resources
models (e.g., Muleta and Nicklow 2005; Kollat and Reed, 2005; Tang
et al., 2006; Khu et al., 2008; Hadka and Reed, 2013; Maier et al., 2014;
Beck at al., 2016).

In EA, the evolutionary loop starts by generating offspring (λ) from
the population (µ). In this work this was performed by varying the
population using a combination of a blend crossover (90%) and
Gaussian-based mutation (10%) algorithms (Fortin at al., 2012). De-
termining the fraction of the population varied by crossover or muta-
tion is part of the algorithm design (De Rainville et al., 2014), and its
impact on the accuracy of the optimum solution can be investigated in a
separate work. The offspring generation is followed by offspring eva-
luation in order to determine the best performing individuals. This was
performed though model simulation using the newly generated model
parameters. We applied a Non-dominated Sorting Genetic Algorithm
(NSGA-II; Deb et al., 2002) for the selection of the best performing
parameters from a mixed set of parents and offspring (µ+λ). The
evolutionary loop continues until a stopping criterion is met. EAs have

been shown to be one of the most efficient and effective algorithms in
hydrologic calibration and particularly the NSGA-II algorithm was
previously found to be superior to other algorithms with its rapid
convergence (Tang at al., 2006).

3.1.2. Implementation
The Kling-Gupta efficiency (KGE; Gupta et al., 2009) was selected as

the objective function for the calibration. Due to the high computa-
tional demands of the gridded LISFLOOD model at global-scale, it was
necessary to limit the total number of model simulations during the
calibration exercise. Here a combination of improvement based criteria
(i.e., improvements in the objective functions) and exhaustion-based
criteria (fixed number of generations) was employed for stopping the
calibration algorithm. Using a selected number of basins, we first de-
termined the rate of change of the objective function (KGE) with the
number of generations in the evolutionary algorithm. Typically there is
a fast improvement rate in the initial steps of the calibration, and then a
slower rate for longer generations until there is no further skill gain for
any additional generation after a convergence to an optimum para-
meter set. Since there was minor improvement beyond 10 generations
for most of the test basins we determined that the maximum number of
generations for the calibration runs to be 15. For the improvement
based criterion, we determined that if, after 5 generations the KGE
improvement for four consecutive generations is less than 0.001, the
algorithm stops. In other applications, if the computational time is not a
concern, one can run for a larger number of generations before ob-
taining the optimal parameter sets. Moreover, it might be desirable to
implement several other stopping criteria (see, Marti et al., 2009).

The EA algorithm was implemented using Python programming
language and is publicly available as Distributed Evolutionary
Algorithm in Python (DEAP; Fortin at al., 2012; De Rainville et al.,
2014; https://github.com/deap/deap). The µ and λ values are set to 12
and 24 respectively, and, as mentioned previously, the probability that
an offspring is produced by crossover (mutation) was set to 0.9 (0.1).
Multiple parallel runs in a given generation are performed by dis-
tributing on multiple cores on a Window® PC. The calibration was run
for a maximum of 372 simulations (15 generations, µ = 12 and λ =
24), unless the improvement criterion was met earlier, for each cali-
bration station before stopping. For LISFLOOD, these simulations take,
on average, approximately six hours for each calibration station on a PC
with 12 cores. For stations located in the same river basin, the cali-
bration was iteratively performed from upstream to downstream (in
ascending catchment area) using the streamflow from the calibrated
upstream subbasin(s) as inflow for the calibration of the next intersta-
tion area. This approach accounts for geomorphologic connections
along the drainage network and was shown to improve model perfor-
mance over independent single-site calibration (Wi et al., 2015; Xue
et al., 2016).

3.2. Forcing data

For this work, the surface and subsurface runoff from ECMWF re-
forecast were used as input to the LISFLOOD model. The runoff fields
were produced by the ECMWF land surface scheme, HTESSEL, which
performs the energy and water balance calculations over land and
water grids (e.g, Balsamo et al. 2009). The reforecast is created based
on a retrospective run of the most recent version of the ECMWF’s In-
tegrated Forecast System (IFS) which undergoes regular updates to
improve the weather forecast (see, ECMWF, 2017). The purpose of the
retrospective run is to generate long-term (20 years) datasets consistent
with the operational weather forecasts (Alfieri et al., 2014). This makes
the reforecast a suitable forcing data for the calibration of the opera-
tional LISFLOOD model parameters. The data record spans from June
1995 to June 2015, and due to frequent model updates it is based on
multiple model cycles: Cycle 41r1 (July through March) and Cycle 41r2
(April through June), with horizontal resolutions of∼32 km
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and∼18 km respectively. The runoff fields are interpolated using
nearest neighbour method from the native resolutions to 0.1° × 0.1°
grids before they were used for forcing LISFLOOD.

3.3. Streamflow data

Daily streamflow observations from 1287 stations around the world
were used for the model calibration and evaluation. The catchment
areas of the stations vary from 484 km2 to 4.8 × 106 km2, with a
median of 38,000 km2. The regional distribution of the stations is as
follows: 41.6% are located in North America, 25.6% in South America,
14.1% in Europe, 10.9% in Africa, 4.5% in Australia and Oceania, and
3.3% in Asia. The Global Runoff Data Centre (GRDC) was the primary
source of the streamflow data, but additional data from national hy-
drological services (e.g., South Africa, www.dwa.gov.za) and from the
R-ArcticNet database for the Arctic region (http://www.r-arcticnet.sr.
unh.edu/v4.0/AllData/index.html) were used. We only used stations

with more than four years of data during the study period (1995–2015).
For each station, the record was split into two for calibration and va-
lidation purposes (Fig. 1). If the record was shorter than eight years,
four years were used for calibration and the remaining days were used
for validation. Validation was not performed if the available data is less
than 1 year. If the record was equal to or longer than eight years, half
was used for calibration and half for validation. The most recent period
was used for the calibration because the earlier forcing data have
greater uncertainty.

4. Evaluation

The evaluation was performed separately for the calibration and
validation periods (see Fig. 2). For the calibration period, the im-
provement in streamflow simulations as a result of the calibrated
parameters (Qcal) was assessed by comparing with a baseline simulation
(Qdef ), which was generated using default model parameters. The Kling-

Fig. 1. The median year of streamflow data used for model calibration (a), for validation (b) and the length of data available for validation (c). The most recent data
available were used for calibration. Four years of data was used for calibration for those stations with validation period of less than 4 years, and the remaining
stations have equal length of both calibration and validation periods.
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Gupta efficiency (KGE), correlation (R), percent bias (B) and Nash–-
Sutcliffe efficiency (NSE) (Gupta et al., 2009) were used as evaluation
metrics. The relative improvements were expressed as skill scores:

=

−

−

KGE
KGE KGE
KGE KGESS

cal def

perf def (1)

where: KGESS denotes KGE skill score; KGEdef is KGE with default
parameters; KGEcal is KGE with calibrated parameters; and KGEperf in-
dicate KGE of a perfect simulation (=1). Positive (negative)
KGESSvalues indicate improved (deteriorated) skill after calibration.
The best KGESS value is 1. For each case, the KGE was computed with
reference to streamflow observations (Qobs). A similar skill score com-
putation was repeated for R and NSE. In order to have a comparable
range of skill scores (i.e., with the best score being 1), the B skill score
(BSS) was computed using the absolute values of the percent bias as
follows:

=

−

−

B
B B
B B
| | | |
| | | |SS

cal def

perf def (2)

where the Bperf (=0) is the B of a perfect simulation, Bcal is B after
calibration and Bdef is B with default parameters. The second evalua-
tion, during the validation period, was performed using streamflow
observations from a different time period, to assess the temporal
transferability of the calibrated model parameters.

5. Results

5.1. Streamflow with default parameters

To evaluate the accuracy of the baseline streamflow simulation, we
first compared it with observed streamflow data. The computed scores
during the calibration period (KGE, B and R) show a large regional
difference in the performance of the streamflow simulated with default
parameters (Fig. 3). The KGE score is high (e.g., > 0.2) in most parts of
the Amazon, southeastern United States, Europe, northwestern North
America and Russia. However, the KGE score is low (less than0) for
most part of Africa, Midwestern United States and Australia. The re-
gions with low KGE score also have large bias (positive or negative) in
the simulated streamflow (Fig. 3b). Specifically, large underestimation
in the United States and large streamflow overestimation in Africa (e.g.,
Nile, Congo, Niger basins) and Murray-Darling in Australia contributed

to the low KGE score in those regions. Tropical basins have high daily
streamflow temporal correlation (> 0.6), but parts of North America
have low temporal correlation (Fig. 3c). The streamflow overestimation
in the tropics is consistent with previous reports that atmospheric
models have a tendency of overestimating rainfall amounts (e.g., Beck
et al., 2017; Trenberth et al. 2011; Kang and Ahn, 2015). The reason for
the large streamflow underestimation in North America is, however,
unclear since atmospheric models tend to have low bias in high lati-
tudes.

5.2. Streamflow with calibrated parameters

5.2.1. KGE skill gain
To quantify the improvements in simulated streamflow as the result

of calibrating the LISFLOOD model parameters, we calculated the KGE
skill score for each calibrated river basin both for the calibration and
validation periods (see Fig. 4). The skill scores during the calibration
period show that the streamflow skill improved due to calibration for
the majority of the river basins. Overall, model calibration improved for
67% of the basins (with KGE skill score of > 0.08) with a median KGE
skill score of 0.15 (P90= 0.46 and P10=−0.002). However there was
no skill gain (29% with KGE skill score close to 0) or skill loss (4% with
negative KGE skill score,<−0.08) for the remaining basins after ca-
librating the LISFLOOD model parameters. If North America, where
there was a large negative bias and a considerable number of skill loss
after calibration was observed, is excluded the percentage of skill gain
would increase to 77%, and the remaining stations will have 1% skill
loss and 22% no skill.

The overall KGE skill score for the validation period is slightly worse
than the one for the calibration period. Globally, calibrating the model
parameters improved the performance for 60% of the stations; we
found skill loss for 10% during the validation period. The median KGE
skill score is 0.12 (P90=0.42 and P10=−0.075). In a similar pattern
to the calibration period, the skill score map shows that the majority of
the skill loss occurred in North America.

5.2.2. Regional breakdown
To investigate the regional variations and the impact of catchment

area on the skill gain we present the regional breakdown of the KGE,
NSE and R skill scores (Fig. 5). Results reveal that the skill score varies
across regions. On the one hand, the KGE skill improved
(KGESS > 0.08) for a significant number of sub-basins across all re-
gions: 84% in in South America, 82% in Europe, 67% in Australia and
Oceania, 62% in both Africa and Asia, and 52% in North America. This
indicates that the calibration of the LISFLOOD model parameters im-
proved the performance of the simulated streamflow; however the ex-
tent of the improvement varies across regions. On the other hand ca-
librating only the selected model parameters has limitations: there was
no added skill (KGE skill score∼ 0) compared to the baseline stream-
flow for 39% of basins in North America, 38% in Asia, 35% in Africa,
33% in Australia, 16% in South America, and 14% in Europe. Fur-
thermore, there is a small number of basins with negative KGE skill
score (e.g., 9% in North America). The median NSE skill score is similar
to those of KGE across all regions, but it has more spread for most of the
continents. The R skill scores show different patterns, notably in South
America where the large KGE skill gain after calibration has not been
reflected in R skill score. Possible influence of the inherent bias in
baseline simulation on the skill scores is investigated in Section 5.3.
While here we use the calibration period to examine the regional de-
pendence of the skill score, a similar pattern was observed for the va-
lidation period.

5.2.3. Separation by hydro-regions
To check if hydroclimate was a factor for the skill improvement, we

show the calibration skill score variations with hydro-regions (see
Fig. 6). The global river basins are classified by Meybeck et al. (2013)

Fig. 2. The schematics of the streamflow evaluation for the calibration and
validation periods (see Fig. 1 for the time periods).
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into hydro-regions (also called ‘hydrobelts’) based on mean annual
runoff and temperature. According to the classification by Meybeck
et al. there are five global hydro-regions: Boreal (mean annual tem-
perature below 0 °C), mid-latitude (mean annual temperature between
0 and 15 °C and runoff between 150 and 750mm), subtropical (mean
annual temperature between 15 and 25 °C and runoff between 150 and
750mm), equatorial (mean average temperature exceeding 20 °C and
runoff > 750mm), and dry (mean annual runoff less than 150mm)
regions. The results show that hydroclimate is an important factor with
regards to the calibration skill improvement. The equatorial and sub-
tropical basins showed the best skill score with almost all basins having
a positive KGE skill score. While the large majority of basins in mid-
latitude (primarily in North America as discussed above) have positive
skill score, there are several basins with poor skill after calibration.
Boreal and dry basins have large majority of basins with enhanced
streamflow skill, but also a handful of basins with negative KGE skill
score. The NSE and R skill scores also vary across regions. The equa-
torial and subtropical regions showed relatively higher NSE skill score
and lower R skill score compared to other regions.

5.3. The impact of bias on the skill score

A potential bias in streamflow may not be adjusted with tuning the
model parameters listed in Table 1. This is especially important when
there is a negative bias in the runoff forcing in which the water deficit
cannot be improved unless the runoff bias is first corrected. To examine
weather runoff bias contributed to the calibration skill, we present the
KGE skill score as a function of streamflow bias in the baseline simu-
lation (generated with default parameters) for different regions (see
Fig. 7). We found that the predominant stations with negative KGE skill
score are those with negative bias in the baseline streamflow. Fur-
thermore, almost all stations with positive bias in the baseline
streamflow have improved KGE skill score. This is because positive
streamflow bias can be corrected by tuning the groundwater percola-
tion or loss parameter to transfer more water to the deep groundwater
storage.

5.4. How do parameters adjust?

To understand how model parameters adjust to the bias in the

Fig. 3. Performance of the baseline simulation (with default LISFLOOD parameters).
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baseline streamflow, we look at two hydro-regions with contrasting
KGE skill scores. Equatorial and mid-latitude basins have pre-
dominantly large positive and negative streamflow biases respectively.
Fig. 8 presents the relative change in model parameter values after
calibration (normalized by the range) for equatorial basins. The nor-
malized change for each parameter is defined as (Pc-Pd)/(Pmax-Pmin),
where Pc is calibrated; Pd is default; Pmax is maximum; and Pmin is
minimum parameter values (see Table 1). The most important

parameter in improving the KGE in the equatorial basins (with pre-
dominantly positive bias) is ‘GwLoss’, which is a fraction of lower zone
outflow transferred to deep groundwater storage and does not rejoin
the river channel. This indicates that the calibration algorithm increases
the groundwater loss parameter to correct for positive bias in the si-
mulated streamflow. The KGE skill score is not as sensitive to changes in
other parameters in the region.

However, it is more challenging to improve the forecast skill when

Fig. 4. The KGE skill score during calibration (top) and validation (bottom) periods.

Fig. 5. Regional variations of KGE, NSE and R skill scores (B skill score is presented below).
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there is a water deficit in the simulated streamflow due to, for example,
an underestimation in the runoff depth. The LISFLOOD model, under
the current GloFAS setup, controls the timing of streamflow and the
groundwater percolation, but it does not have any parameter to adjust
for the deficit in the runoff depth. This is reflected in the mid-latitudes
(Fig. 9) in which a large number of basins have negative streamflow
bias. The KGE skill gain was obtained for the limited number of basins
with negative streamflow bias by tuning the channel Manning's

coefficient (using ‘calChanMan1′) perhaps through improving the flow
timing (i.e., correlation). The deep groundwater loss parameter
(‘GwLoss’) remains important for basins with positive bias in the region.

As a further step, we look at the bias skill score, i.e., the relative
change in the streamflow bias compared to the baseline simulation.
Even though bias was not explicitly used as an objective function in the
calibration algorithm, it is still generally expected to improve since it is
one component of the objective function (KGE, Gupta et al., 2009).

Fig. 6. Distribution of skill scores classified based on hydro-regions (Meybeck et al., 2013).

Fig. 7. KGE skill score as a function of bias in the baseline simulations.
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Fig. 10 shows the impact of calibrating model parameters on reducing
the streamflow bias. There is a clear separation in the bias skill score
based on the baseline streamflow: the bias was reduced for basins with
overestimation in baseline simulation and it was increased for basins
with streamflow underestimation. Similar to the case for KGE skill
score, the parameter responsible for the water transfer to deep
groundwater is the main responsible for the bias skill improvement. The
overall results indicate that the negative bias cannot be corrected with
the 8 parameters currently used in LISFLOOD model calibration, and
that methods to reduce the bias in the runoff volume (e.g., calibrating
the land surface model) should be explored.

6. Discussions

The calibration of the LISFLOOD parameters resulted in a sub-
stantial improvement of simulated streamflow KGE score (both during
the calibration and validation periods) for the majority of stations
around the world. The KGE skill score varies across different regions
mainly based on the bias in the baseline streamflow. On the one hand
river basins with positive bias in the baseline simulation showed the
largest improvements in the skill score after calibration and on the
other hand those with negative bias showed the lowest skill score.

There are possible reasons for the low skill score for some of the
river basins worldwide (4% of the 1287 stations had negative KGE skill
score). Firstly, it should be noted that the parameters for the land
surface model (H-TESSEL), responsible for the partitioning of

precipitation into runoff and evapotranspiration, were not calibrated in
this work. This means that only the parameters related to the flow
timing, variability and groundwater loss were altered during the cali-
bration process, without changing other hydrological model parameters
(such as those related to evaporation, infiltration, etc.). This limits the
effectiveness of the calibration algorithm for basins where, for example,
forcing bias is the main source of streamflow uncertainty. Secondly,
uncertainties in the observed streamflow due to errors in station sites,
data collection, human intervention, and other sources should always
be taken into account (e.g., Wilby et al., 2017). Careful manual in-
spection and corrections (e.g., locating on the river channel, matching
upstream area between provided and GloFAS estimated) have been
performed for the stations used in this work; however the quality
control of multi-source, diverse instrumentation global-scale hydro-
logical dataset remains a challenging task. Thirdly, uncertainty in the
forcing data may result in fitting model parameters to an erroneous
input data. This could introduce additional errors to model parameters
and could reduce the accuracy of streamflow simulation during the
validation period. Finally, the calibration skill loss may partly be at-
tributed to a premature stoppage of the evolutionary algorithm. Some
basins may need longer than the maximum 372 simulations (15 gen-
erations) set in this work to converge to a global maximum.

The following further steps can be taken to improve the skill score.
Firstly, the bias in the surface and subsurface runoff should be reduced.
This can be done through improving the skill in the meteorological
(mainly precipitation) forecasts and by calibrating the land surface

Fig. 8. Impact of the change in model parameters after calibration on the KGE skill score. Each dot in the scatter plot represents a calibrated sub-basin in the
equatorial hydroregion (where there is a large positive bias in the baseline streamflow). Horizontal axis shows the bias in the baseline streamflow and the vertical axis
shows the normalized change (after calibration) for each parameter. Zero on y-axis indicates no change.
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model (H-TESSEL, e.g., Orth et al., 2016). Calibration of the land sur-
face model parameters, not just the LISFLOOD model parameters, may
offset the large bias in precipitation forcing. Secondly, regionalization
of model parameters can be applied to transfer model parameters from
best performing basins to basins with similar characteristics, but with
poor scores or with limited streamflow data (e.g., Beck at al., 2016;
Samaniego et al, 2010). Finally, multiple objective functions (to ac-
count for the high flows) can be used and the EA calibration algorithm
can be run for longer generations to prevent a potential premature
stoppage. Longer runs with different stopping criteria (see Maier et al.,
2014) than those implemented in this work may result in better solu-
tions. This is, however, dictated by the time demands of such a com-
putationally demanding global scale calibration.

The distribution of streamflow observations available for use in this
calibration study is unevenly distributed around the world, leaving
GloFAS uncalibrated for several flood-prone rivers in developing re-
gions. For example, major river basins in Asia with history of frequent
flooding (e.g., Indus, Ganges, Brahmaputra, and Mekong) are not in-
cluded in this study. To fill the gaps in streamflow observations, future
calibration work could utilize satellite-based river level or width esti-
mations (e.g., Revilla-Romero et al., 2015a; Andreadis et al., 2007;
Brakenridge et al., 2007).

7. Conclusions

This work is a first attempt to calibrate the model underpinning
GloFAS operational flood forecasts using daily streamflow data from
1287 stations around the world. An evolutionary algorithm with KGE as

an objective function was applied. ECMWF reforecast was used as
model forcing and a combination of improvement based criteria and
exhaustion-based criteria were employed for stopping the calibration
algorithm. Results show that calibrating the routing and groundwater
model improved streamflow simulations (KGE skill score) compared
with the baseline (with default parameters) for the large majority of
stations. However, the skill gained varies depending on the bias in the
baseline simulation: the largest improvements occurred in areas with
positive bias in the baseline, while the lowest skill score was obtained in
basins with a negative bias. The disparate sensitivity of skill scores to
model parameters suggests that calibrating the routing and ground-
water model parameters is an important step but it is not sufficient for
reducing the streamflow forecast uncertainty. Future efforts in im-
proving the accuracy of GloFAS flood forecasts could mainly focus on
improving the global runoff estimation through reducing the errors in
the meteorological forecasts (such as bias reduction) and improving the
land surface model performance. In addition, explicitly including an
objective function that is exclusively based on peak flows could po-
tentially improve the flood forecasting.
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