
Computational pharmacology: new 
avenues for COVID-19 therapeutics 
search and better preparedness for future 
pandemic crises 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 
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Abstract

The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the 

exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing 

studies revealed pervasive issues in clinical research, such as the lack of accessible and organised 

data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted 

approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug

repositioning by employing computational pharmacology, data mining, systems biology, and 

computational chemistry to advance shared efforts in identifying key targets, affected networks, and

potential pharmaceutical intervention options. Our study revealed that formulating pharmacological 

strategies should rely on both therapeutic targets and their networks. We showed how data mining 

can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new 

therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how 

this information could be used to monitor disease progression or devise treatment strategies. 

Importantly, our work bridged the interactome with the chemical compound space to better 

understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to 

showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and 

experimental analyses should be combined to retrieve therapeutically valuable compounds. Based 

on the gathered data, we strongly advocate for taking this opportunity to establish robust practices 

for treating today’s and future infectious diseases by preparing solid analytical frameworks.

Introduction

A global healthcare crisis created by the COVID-19 pandemic led to an unprecedented challenge in 

healthcare. This infectious disease caused by the SARS-CoV-2 virus first emerged in December 

2019 in Wuhan, China and rapidly spread around the world affecting multiple countries. While the 

initial response of the World Health Organisation (WHO) was restrained to a ‘health emergency’, 

the status was soon recategorised as a ‘pandemic’ (1,2). COVID-19 patients presented with varying 

symptoms which were classified into three categories, namely mild, moderate, and severe. The 

disease progression, associated complications, and mortality were identified to show age and gender

dependent differences with comorbidities also playing a significant role (3,4). The initial therapeutic

management of COVID-19 was limited and the urgent nature of the pandemic prompted clinicians 

to try different approaches (3). A variety of protocols were developed to provide treatment and aid 



patient recovery where the therapeutic options included antiviral drugs, anti-inflammatory drugs, 

immunomodulators and other types of intervention (3,5,6). As more information was collected and 

emergency approvals for clinical trials produced data, the clinical strategies were further refined 

(3,5,6). This also presented an opportunity to explore drug repurposing and search for effective 

clinical management options capturing both infection prevention and the alleviation of symptoms 

(2,7,8). 

Repurposing drugs offers the advantage of reduced clinical development time and working with an 

already well-established pharmacological profile (9,10). Moreover, many researchers took full 

advantage of various in silico approaches, such as machine learning, bioinformatics or 

computational chemistry, to test new candidate molecules against various COVID-19 targets (11–

13). While computational methods undoubtedly help to refine the complex chemical space, the field

still requires a structured approach and practice establishment to ensure that outcomes are 

comparable and properly benchmarked (14–16). Thus, unsurprisingly most of the molecules that 

were selected for repurposing where not effective in treating severe COVID-19 cases leading to 

various controversies (10,17,18). The less-than-optimal results may also indicate that the research in

drug repurposing focuses too narrowly on either the targets or the chemical entities without 

considering broader systemic implications (10,13,19–21). 

Seeing the challenges and urgent need for new research and discovery strategies, we set out to 

explore the COVID-19 infection from the perspectives of computational pharmacology, systems 

biology, and cheminformatics bridging the system-wide effects with compound chemical features. 

Mining the data of available COVID-19 clinical trials allowed us to capture the links between 

compounds under investigation and their targets spanning both direct and expanded interactions 

(i.e., additional degrees of separation between interacting proteins). Since in-depth information on 

the COVID-19 clinical profile is limited and study-dependent (10,22), we used tested chemical 

entities as a proxy to understand the disease network and what pathways might be relevant if a drug 

proves to be beneficial. We employed several different techniques ranging from a direct to an 

extended interactome recreation which enabled us to identify a broader scope of affected signalling 

networks under a single drug influence (23,24). Our analysis of COVID-19 drug targets 

demonstrated that there is an overlap across certain target groups and the diversity of 

pharmaceuticals provides more options to adjust medications based on their systemic effects. 

Intriguingly, looking into the extended networks of drug targets, we found rich clusters of shared 

features. This allowed us to hypothesise that a direct drug-target interaction will have an effect on 

other associated interactors and this information could be used to assess drugs under investigation 

that share a predicted network (5,6,10,23–25). Moreover, this approach could be used to select 



combination therapy regimens. Under these assumptions, we extracted the most noticeable clusters 

of drugs that have multiple shared targets through their signalling networks and used the ontology-

based enrichment analysis to identify cellular processes, functional signalling networks, and linked 

pathways. Indeed, we were able to verify that compounds modulate a number of shared processes 

that are engaged through different network nodes. These findings have several important 

implications for future repurposing studies highlighting that focusing on a single target can lead to 

potentially missing a number of other relevant systemic effects (26). Selecting treatment options 

based on a network-centric perspective can provide insights into short- and long-term effects, and 

gathering such data could significantly improve how medical practitioners prescribe therapeutics 

and/or mitigate unwanted outcomes (5,27,28). Such methods could help establish robust practices to

collect and organise data for drug repositioning and clinical studies (10,22,29). 

We also explored the regulatory miRNA space and found that many target genes/proteins showed a 

staggering number of shared regulatory miRNAs. These findings also agree with the clinical 

miRNA observations in COVID-19; however, such data is still very limited (30,31). Our identified 

enrichment highlights that processes affected by the drugs used to treat viral infections have a 

complex regulatory interplay and analysing them further could help refine treatment options from 

biomarkers to RNA interference therapeutics (30,32,33).

While understanding the biological space is extremely important when optimising drug selection or 

identifying new antiviral and/or anti-inflammatory treatment methods, computational pharmacology

can aid in bridging compound chemical features with observed effects (34–36). Thus, we explored 

the chemical profiles of the drugs that are undergoing or have been undergoing clinical trials for 

COVID-19. Such information can be a valuable guide when designing a screening library either by 

narrowing down or expanding drugs to diversify the compound set (34–36). In our study, we 

demonstrated that drugs used to treat COVID-19 do not have clear structural patterns, aside from a 

steroid subgroup and certain smaller subclusters. Chemical space mining (> 2.1 M compounds) and 

our built quantitative structure-activity relationship (QSAR) models via machine learning (ML) and 

deep learning (DL) enabled us to extract the most relevant features of drugs predicted to have 

antiviral properties against the SARS-CoV-2 virus. We applied the models to investigate which 

chemical entities in the COVID-19 clinical trial set could have antiviral properties. Both models had

similar accuracy (ML- 96.77%; DL- 96.48%) differentiating between antiviral and control 

compounds when they were tested on the said drug set. Some of the identified drugs were already 

known antivirals tested for COVID-19 (e.g., ritonavir). To our surprise, when we used the trained 

models on 95 small fragment-like molecules that were experimentally verified to bind the Mpro 

protein on the SARS-CoV-2 virus (37), none were selected as antivirals. These results underscored 



that current libraries used to test compounds might be too narrow or biased. Thus, experimental 

activity data on targets of interest is crucial in establishing QSAR relationships (38).

Drug repurposing and new compound development need to be built on diverse compound screening

libraries with a strong understanding of their interactome and regulome. Such integrative 

approaches can prevent early failures in discovery pipelines or ineffective treatment regimens in 

repurposing studies (36,39). As can be seen from our in-depth analysis, evaluating compounds for 

COVID-19 should expand beyond direct drug-target interactions and consider a more complex 

space of affected networks in order to develop more robust combination therapies (Fig. 1). Thus, we

should take this opportunity to establish research and discovery practices for today’s and future 

infectious diseases by preparing solid analytical frameworks.

Methods

Data collection and mining

Data for COVID-19 associated clinical trials and drugs involved in treatment and/or clinical 

investigation protocols were primarily retrieved from the Open Targets platform that curates 

information on clinical testing, known targets, and compound information (40,41). Mining 

(November, 2021) returned 1,375 target-drug pairs which constituted 230 unique drugs and 356 

unique targets (i.e., some drugs have multiple main targets or different drug formulations). In 

addition, Open Targets were searched for compound and known target associations to extract the 

relevant chemical data (e.g., SMILES, InchiKey, etc.) - this provided information on 18,376 

compounds. To expand and verify the data sets, the information was cross-referenced against 

PubChem COVID-19 records (1,625 compound data) (42,43) and the STITCH database containing 

compound-protein interaction data (15,473,939 interaction points) (44). Additional interactome data

was retrieved mining the STRING database (135,660 interactions, 5922 new targets for the 

expanded interactome network) (45,46). Reactome database was used to extract information on 

relevant pathways (47). miRNA database was used from the OmicInt package associated repository 

to mine non-conding RNA interactions (48). ChEMBL compound database (>2.1 M chemical 

entities) was used to search for similar and control compounds when investigating COVID-19 

clinical trial drugs (49). COVID-19 CAS and Diamond/Xchem Mpro compound repositories were 

used to extract predicted and experimentally tested antiviral drugs (37,50). 

Computational pharmacology and bioinformatics analysis

COVID-19 clinical trial data mining, cleaning, and analysis was performed in R programming 

environment (v4.1.2) with RStudio (51). Specific libraries used for enrichment, clustering, and 

ontology analyses include STRINGdb (v2.6.0), ClusterProfiler (v4.2.0), EnrichGO (v4.2.0), 

EnrichPathway (v4.2.0), and BioMart (v2.50.1) (52–56).



Cheminformatics analysis

Python programming environment (v3.9.7) (57) was used for chemical descriptor extraction, 

Morgan fingerprinting, Mol2vec fingerprinting (58), compound similarity assessment, substructure 

search, and image generation. Used packages and analytical frameworks include Rdkit (v2021.9.4), 

NumPy (v1.22.1), Pandas (v1.3.5), Seaborn (v0.11.2), Matplotlib (v3.5.1), and Chemexpy (v1.0.10)

(59–64). Custom algorithmic assessments, comparative analyses, and data mining were performed 

using Rdkit (v2021.9.4) (59).

Machine and deep learning

Python programming environment (v3.9.7) (57) was used for machine and deep learning. The 

machine learning framework was implemented via Scikit-learn library (65)  where LGBMClassifier

(66) was used as a classifier with default parameters, train-test split at 0.2, where features comprised

vectorised and normalised Morgan fingerprints (radius=3, nBits=2048). Deep learning neural 

networks were built for Mol2vec (58) encoded chemical features using the following set-up 

facilitated by TensorFlow and Keras libraries (67,68): sequential addition of layers starting with a 

Dense layer (hidden units=200, activation=’relu’, and input shape=(300,)), followed by Dense 

layers with hidden units: 128, 100, 50 and a dropout of 0.25 after each. All layers except the last 

were activated with ‘relu’ function, the last dense layer had only 1 hidden unit and sigmoid 

activation. Binary cross-entropy with adam optimiser and metrics for accuracy were used for the 

model compilation. The analysis was run for 200 epochs using 256 units for batch size with 0.2 split

of the original data for validation. Deep learning was performed using Python 3 Google Compute 

Engine backend (Tensor processing units, TPU), RAM 12 GB, and HDD 107 GB.

Results

COVID-19 clinical trials represent a broad spectrum investigation of potential therapeutics to 

modify the disease course

We opted to use mined data from the Open Targets platform on referenced COVID-19 clinical trials 

(230 unique drugs with a known target status) so that our analyses were focused on a consistent set 

of compounds (40,41). Assessing clinical phase distributions for drugs that are undergoing or 

underwent clinical trials revealed that the majority of the therapeutics are in phase 2 (46.52%) with 

phase 3 and 4 being the other predominant categories at 28.26% and 20.43%, respectively (Fig. 2, 

A). Based on the available information, the largest proportion of clinical studies (50.87%) are still 

recruiting patients while other categories, such as ‘Not yet recruiting’ or ‘Completed’ distribute 

below the 20% mark (Fig. 2, B). Supplementary Figure 1 captures the clinical phase and status of 

every drug profile with a clear shift towards advanced clinical phases underscoring the emergency 

status of the disease and a large number of therapeutics under investigation to capture population-



based effects (40,41). Drug targets and types of drugs used to combat the COVID-19 infection and 

the associated complications (Fig. 2, C) further exemplify a broad therapeutic engagement. Most of 

the drugs in clinical trials are inhibitors (nearly half of all treatment options) with agonists (20.87%)

and antagonists (17.83%) comprising the other two main categories (Fig. 2, D). About two thirds of 

the pharmacological intervention options belong to a small-molecule category (Fig. 2, F). 

Antibodies (14.35%) and other proteins (10%) are two additional drug classes that are important in 

treating this viral infection (Fig. 2, F). However, it is necessary to note that an important evidence 

gap has been reported for the safety of the drugs tested for COVID-19. As reported in January, 

2021, 40.4% of completed trials did not post results on ClinicalTrials.gov or in the academic 

literature (22). 

COVID-19 treatment strategies highlight the need for a more in-depth understanding of drug 

pharmacological action

The original set of compounds (Open Targets, 230 unique drugs with a known target status) used to 

treat or investigated for the treatment of COVID-19 was searched for any shared proteins across the 

main known drug targets (Suppl. Fig. 2). Since a compound might be listed to engage one or more 

proteins, we aimed to cross-reference drugs and their targets to get insights into shared action (23). 

This analysis returned several smaller clusters with denser sets in the top left corner of the heatmap 

(Suppl. Fig. 2). For example, dipyridamole and pentoxifylline engage a broad spectrum of 

phosphodiesterases (PDEs), such as PDE3B, PDE1A, or PDE5A. Comparing dipyridamole and 

pentoxifylline action allowed identifying some additional main targets where these compounds 

differ. Specifically, dipyridamole inhibits the equilibrative nucleoside transporter-1 (ENT1 or 

SLC29A1) which serves a sodium-independent transporter for purine and pyrimidine nucleosides 

and pentoxifylline is believed to downregulate adenosine A2A receptor (A2AR)-mediated pathways

(69–71). Propofol, sevoflurane, and isoflurane also form a noticeable group in the heatmap (Suppl. 

Fig. 2). These drugs are used in anaesthesia protocols for patients requiring mechanical ventilation 

and prolonged, deep sedation to optimize oxygenation and ventilation during respiratory failure 

from COVID-19 (72–75). Analgesia drugs also form a cluster through their shared action on PTGS1

and PTGS2, also known as cyclooxygenase 1 and cyclooxygenase 2 (76). The corticosteroid section

(bottom left of the heatmap, Suppl. Fig. 2) have one shared target that stands out – nuclear receptor 

subfamily 3 group C member 1 (NR3C1). This receptor was implicated in the progression of the 

COVID-19 infection where a single cell transcriptome study revealed that the NR3C1-CXCL8-

Neutrophil axis determines the severity of the COVID-19 disease (77). 

Based on the drug-target network analysis, we concluded that in order to better understand 

pharmacological interaction processes, we needed to expand the drug interactome space.



Interactome investigation revealed new opportunities for drug repurposing and combination 

therapies

Taking into consideration the fact that targets are part of complex signalling networks prompted us 

to explore what the overlap size of the interactome is for each drug and if it could be used to find 

alternative therapies, repurpose existing ones, or help develop new drugs faster. In other words, the 

main known targets for each drug were expanded by mining protein-protein interaction networks to 

extract an estimated network that has links to the drug through its main target. These networks were

searched for overlaps in pairwise drug comparisons where the overall protein set consisted of 5922 

unique targets. On average each main drug target had about 97.6 interactors (Suppl. Fig. 3) ranging 

from no known interactors to a maximum number of 558 other proteins. This search allowed us to 

identify emerging patterns in data on a systemic level (Fig. 3) where three larger and two smaller 

clusters with relatively large, shared networks were found for different drugs. Clusters 1, 2, and 3 

were found to be the least diverse considering the number of seed proteins (or the main drug 

targets) (Fig. 3; Suppl. Table 1 and Suppl. Fig. 4). By contrast, clusters 4 and 5 showed the most 

diversity with 17 and 29 unique seed proteins, respectively. 

Exploring the two most diverse clusters, clusters 4 and 5, we can see that cluster 4 contains drugs 

used to treat hypertension, namely losartan, valsartan, telmisartan, candesartan, and ambrisentan. 

Losartan is an angiotensin II receptor blocker (ARB) used to treat hypertension and it has been 

proposed that this drug acting as a selective antagonist of the angiotensin II type 1 (AT1) receptor 

may offer some protection from lung damage induced by COVID-19 (78–80). As can be seen, 

cluster 4 drugs are predicted to mostly engage the same size networks; however, comparing and 

exploring drug-specific networks can help identify diverging biochemical processes that could be 

therapeutically relevant. One example of such an approach can be found in cluster 4 for ambrisentan

- a selective type A endothelin (ET-A) receptor antagonist. This selective antagonist is used to 

primarily treat pulmonary arterial hypertension and has been applied in COVID-19 combination 

therapy with dapagliflozin which inhibits sodium glucose co-transporter-2 (SGLT-2) (81). While 

dapagliflozin has not been listed in the Open Targets COVID-19 clinical trial data (November 

2021), we explored the extended interactome for SGLT-2 using the same principles as for other 

compounds. We then compared dapagliflozin with ambrisentan for any overlapping targets in their 

networks. The dapagliflozin network is relatively small – only 11 targets, while ambrisentan’s 

network size is 183 proteins.  The networks shared only two targets, namely adenylate cyclase 7 

(ADCY7) and glucagon (GCG) highlighting the different cellular process engagement with a two-

gene convergence point. Similarly, cluster 5 combines several different drug classes, e.g., aviptadil, 

prasugrel, chlorpromazine, and naltrexone, that converge through a shared interactor network (Fig. 



3; Suppl. Table 1 and Suppl. Fig. 4). Ticagrelor and prasugrel (P2Y12 platelet inhibitors) have been 

employed to manage acute coronary syndrome (ACS) and as a thromboprophylaxis in patients with 

COVID-19. Numerous studies explored combinations of an enhanced prophylactic doses to correct 

the parameters of viscoelastic coagulation (82–84). Other drugs, such as chlorpromazine 

(phenothiazine antipsychotic), naltrexone (opioid receptor antagonist), and fingolimod (a 

sphingosine 1-phosphate receptor modulator), have been recognised for their multi-modulation 

potential and have also been tested in various clinical settings (85–88). Considering our findings, it 

is important to highlight the need for the consolidation and further exploration of the pleiotropic 

effects of the drugs used to treat COVID-19. Consequently, we selected cluster 5, the most diverse 

cluster, to explore the occurring interactions more in-depth.

Interactome analyses accentuated diverse process networks that could be used to advance 

therapeutics development

Rather than exploring genes in isolation we examined what signalling networks and functional 

processes can be enriched for the identified clusters. Figure 4 highlights that cluster 5 identified 

during the interactome analysis (Fig. 3, Suppl. Table 1 and 2) also shows varied functional 

enrichment patterns ranging from calcium ion homeostasis to neutrophil migration. A proportion of 

genes from cluster 5 also belongs to the extracellular signal-regulated protein kinase (ERK) cascade

which has previously been reported as a potential therapeutic target in coronavirus infections where 

cascade inhibition was observed to lead to infection resolution  (89). As can be seen other clusters 

had different profiles where clusters 3 and 4 had several shared functional themes involving 

haemostasis (Suppl. Fig. 5). Haemostatic aspects of COVID-19 have been reported as a serious 

concern in stabilising patients and reducing tissue/organ damage (82,90,91). Furthermore, clusters 1

and 2 are good examples demonstrating how even a few genes/proteins (i.e., cluster drug main 

targets) can impact multiple different cellular functions through the extended network; such 

considerations can always be useful when predicting drug effects or exploring alternative uses 

(Suppl. Fig. 5) (5,7,10). To better understand specific functions in a gene cluster, it is helpful to 

explore if any of the genes in the over-represented functional groups belong to the same pathway. 

Cluster 5 has several clear themes where some genes are shown to play a role in multiple pathways 

and others are much more pathway specific (Fig. 5). As an example we can inspect one drug - 

cenicriviroc from cluster 5 (experimental drug, inhibitor of C-C motif chemokine receptors, namely 

CCR2 and CCR5) which has several targets, e.g., interleukin 10 (IL-10), CCR5, C-C motif 

chemokine ligand 20 (CCL20), C-X-C motif chemokine ligand 10 (CXCL10), CD86, and formyl 

peptide receptor 1 (FPR1), belonging to the IL-10 signalling pathway (Fig. 5; Suppl. Table 1 and 2).

Due to its apparent broad engagement spectrum, cenicriviroc has been included in clinical trials to 



assess its anti-inflammatory and immunomodulatory effects (92–95). Drugs with different targets, 

such as icatibant (bradykinin 2 receptor antagonist) or ozanimod (sphingosine 1-phosphate receptor 

agonist), show a potential pathway overlap through shared network targets and this understanding 

could be useful in managing their COVID-19 clinical trials (Fig. 5; Suppl. Table 2) (96,97). 

The identified enrichment clusters as well as individual drugs could be used to compare and match 

different combination therapy regimens, such as haemodynamics modulating and anti-

inflammatory. In the case of anti-inflammatory action, it is possible to compare drugs having 

immediate vs long-term effect in order to reduce tissue damage occurring in acute and chronic 

disease progression.

miRNAs represent a potentially new biomarker and therapeutic modulation space linking the 

drug interactome 

Seeing the complexity of the drug networks, we also analysed the non-coding regulatory layer for 

the most diverse cluster 5 (Fig. 3). We used the minded data of validated miRNAs and their 

regulome genes to explore the dynamics of miRNAs in the selected gene cluster (48). We found a 

rich network of miRNAs known to be involved in the regulation of multiple genes (Suppl. Fig. 6). 

We identified that some genes from cluster 5 are linked to miR-320 family which downregulation 

has been associated with the progression of disease severity and miR-320 have been suggested as 

potential biomarkers for SARS-CoV-2 (98,99). Other miRNAs from cluster 5 have also been 

reported in other studies as prognostic markers. For example, circulating miRNAs from ten 

COVID-19 patients (sampling done longitudinally with ten age and gender matched healthy donors)

allowed to profile the alteration of 55 miRNAs in COVID-19 patients during early-stage disease 

(30). Our enrichment recovered miR-31-5p (marked upregulation in COVID-19 patients) and other 

strongly associated biomarker miRNAs, namely miR-423-5p and miR-23a-3p (30). 

Compound chemical profiles capture certain interactome features and also reveal a highly 

heterogeneous chemical space

While various drugs showed interesting interactome overlaps, we assessed the chemical and 

pharmacological characteristics and investigated if network analyses can be superimposed to 

chemical data. Only 158 compounds out of 230 unique drugs used in COVID-19 investigational 

studies were selected for chemical profiling after filtering out similar drugs (i.e., only differences in 

formulation) and antibodies or small peptides. To analyse the chemical feature space, we employed 

chemical descriptors, structural analysis, and fingerprint-based approaches. We started compound 

analysis from a medicinal chemistry perspective (e.g., calculated partition coefficient - CLogP, 

molecular weight - MW, topological polar surface area  - TSPA, etc.) to gain important insights 

about any biases in the data, such as lipophilicity or hydrophilicity. As can be seen, compounds 



showed diverse characteristics (Fig. 6); however, no specific correlation patterns could be identified

for pairwise comparisons aside from the expected physicochemical relationships, e.g., MW vs C 

atom count. Such analyses provide initial glimpses into any emerging patterns that could be 

explained by linear dependencies and also help to evaluate any outliers or composition biases. We 

continued this analysis by performing cross-compound similarity evaluation using Morgan 

fingerprints (nBits=2048, radius=2) and Tanimoto similarity scores (Fig. 7) (58,100). Surprisingly, 

most of the compounds showed only borderline similarity fluctuating around 0.2 and just the steroid

group stood out with higher similarity scores forming a cluster. Other smaller groups can also be 

identified, e.g., angiotensin receptor blockers (Fig. 7). However, only cluster 2 (Fig. 3) drugs show 

clear links between network and chemical features (Fig. 7). Other categories are not only more 

dispersed (with partitioned clusters) but also show very little overall similarity. Overall, the 

assessment underlined specific fragments or structural elements, such as heterocycles, fused ring 

structures, and/or amphiphatic groups, as a few chemical features influencing the observed 

similarity across the analysed compounds.

The network-based representation of the SARS-CoV-2 infection has also found support in other 

studies searching for a framework to evaluate specific clinical outcomes (101–103). We, however, 

add to this proposition by bridging biological, pharmacological, and chemical spaces where 

searching for privileged structures to treat COVID-19 might involve a significantly larger chemical 

space and more variation than currently is considered (101–103). We used cluster 5 as our case 

study to further evaluate what chemical features exist for these compounds and if we could use that 

information to search for new drugs or design alternative compounds.

To explore cluster 5 compounds (Fig. 3, Suppl. Table 1 and 2) that were split into smaller groups 

based on chemical similarity in depth (Fig. 7), we isolated these compounds and assessed them as a 

separate set (Suppl. Fig. 7). Cluster 5 compounds share little similarity with the highest similarity 

score being 0.43 (Tanimoto similarity) between prasugrel and cenicriviroc. These drugs have 

several features contributing to the similarity where, for example, heterocycles and substituted 

benzenes, are among major elements linking these two groups. On the other hand, most other 

compounds from the cluster have marginal similarity. Another example of low similarity and 

different chemical structures can be found in the comparison between dexmedetomidine (used as an

anxiolytic, sedative, and pain management drug with ability to provide sedation without risk of 

respiratory depression) and melatonin (sleep-wake cycle regulating hormone) (Tanimoto 

similarity=0.09) (Suppl. Fig. 7) (104,105). These observations underline why selecting 

pharmacological management options cannot rely on the chemical similarity of drugs alone or just 

main known targets because pharmacological engagement depends on multiple direct and indirect 

effects contributing to the cellular and organism level response (Suppl. Table 2).



Machine and deep learning based QSAR models underlined the limitations in current chemical 

libraries used for drug design

We began building a QSAR model by first mining the ChEMBL database (>2.1 M compounds) to 

investigate if cluster 5 compounds had any matches based on similarity (49). To mine the database, 

we set the Tanimoto similarity threshold for >0.4 based on earlier observations of the existing 

heterogeneity within COVID-19 compounds (Fig. 7). This assessment returned various compounds 

that matched specific reference drugs from cluster 5 (Suppl. Table 3). Such findings demonstrate 

that while similarity-based search might lead to identifying more drugs, this may not be the most 

optimal strategy as more complex chemical relationships need to be established when searching for 

active compounds. Specifically, the earlier chemical space analysis motivated us to explore 

compound chemical characteristics not limited to similarity but relying on the drug’s ‘architecture’ 

features (58,100,106).

We first built a machine learning model (LightGBM) with a gradient boosting framework to take 

advantage of the tree-based learning algorithm for complex classification tasks (7,21,106–108). In 

order to develop this model, we needed a balanced dataset representing active and inactive 

compounds. A curated set of known antivirals and/or compounds resembling antivirals (COVID-19 

CAS) was used to build a reference compound set for the expected actives (n=48,876) (50). To 

prepare the inactives (n=50,000), we opted to randomly search ChEMBL database and select the 

least similar compounds when compared to the actives (<0.2 Tanimoto similarity score) (49). 

Chemical characteristics analysis (Suppl. Fig. 8 and Suppl. Fig. 9) confirmed that the selected 

groups are diverse without any noticeable biases in composition. We set aside 20% of combined 

data for the model evaluation. Each compound was prepared as a vectorised representation of 

Morgan fingerprints (nBits=2048, radius=3) to represent the chemical features which we reasoned 

captured both structural and composition elements. The model showed 96.77% accuracy without 

any marked overfitting and successfully classified the test compounds as active and inactive. 

Applying the model to the original dataset of 158 compounds in COVID-19 clinical trials, 13 drugs 

were predicted to have antiviral activity (Suppl. Fig. 10). Some known antiviral drugs, such as 

ritonavir or maraviroc, were also included in the returned group. Other interesting therapeutic 

options included menthol which has been suggested to have anti-inflammatory and antiviral 

properties (109) and amantadine which was shown to block the ion channel activity of Protein E 

from SARS-CoV-2 (a conserved viroporin among coronaviruses) (110). Surprisingly, when we used

the developed QSAR model to test experimentally validated antivirals against the COVID-19 Mpro 

protein (37), none of the compounds were classified to possess any activity against COVID-19. 



We developed a deep learning neural net to perform the same classification using a different type of 

compound feature encoding (Mol2vec) to mitigate any effects stemming from the model itself or 

compound preparation (58). The training set-up was again a randomised selection of compounds 

setting aside 20% to monitor the performance of the neural network and inspect for under-/over-

fitting. The model reached 96.48% accuracy after 200 epochs and returned 10 compounds from the 

COVID-19 clinical trial drug set as active against the virus. The compounds matched the ML model

for decitabine, maraviroc, ritonavir, ribavirin, amantadine, baricitinib, hydroxychloroquine, 

etoposide, and cobicistat (Suppl. Fig. 11). Again, the Mpro experimental dataset was returned as 

inactive.  

These interesting findings point to the fact that compounds expected to be effective against the 

SARS-CoV-2 virus based on searching known antivirals and/or similar compounds do not represent 

a complete and relevant chemical space. This might also explain why identifying new therapeutic 

strategies for COVID-19 drug repurposing has been difficult (111). Such observations highlight the 

need to combine both in silico analytics and experimental data to retrieve valuable compounds.

Finally, we also investigated the Mpro experimental dataset which included a range of compounds 

with varying similarity (Suppl. Fig. 12). We mined the ChEMBL database to search for compounds 

that showed a Tanimoto similarity higher than 0.6 for Mpro molecules based on fingerprint 

comparisons. This returned several compounds and we then inspected their maximum common 

substructures (MCS) to evaluate any shared features (Suppl. Fig. 12). Interestingly, the experimental

compound, namely Z1220452176, contained a functionalised indole ring which matched Melatonin.

Melatonin has been included in COVID-19 clinical trials and while two different QSAR models did

not predict it to be antiviral compound, it clearly shares a large substructure with the experimental 

compound (112). 

Discussion

The global spread of the SARS-CoV-2 virus resulted in a fast-evolving pandemic which prompted 

researchers and clinicians to investigate many different therapeutic avenues to combat the emerging 

healthcare crisis . While this created an opportunity to take advantage of drug repurposing 

strategies, the large number of ongoing studies revealed pervasive issues in clinical research 

(1,10,18,22). Specifically, the lack of accessible and organised data to effectively compare clinical 

protocols and experimental studies as well as missing updates on clinical trial outcomes create 

transparency problems. Consequently, this may negatively impact the research and meta-analyses in

this field (22). Such trends also highlight that we need to have a better preparedness for future 

infectious diseases where rapid information sharing might be critical.



With our study we aimed not only to assess the existing clinical trial data but also to expand the 

available information so that new perspectives could be applied in clinical studies and therapeutic 

decision making. We based our analyses on computational pharmacology and systems biology 

principles to understand the networks that drugs modulate beyond a single main target (Fig. 1) 

(24,113). Moreover, we reasoned that focusing on a single target limits our understanding about 

broader systemic effects and how to effectively select combination therapeutic regimens. We also 

wanted to bridge the interactome with the chemical compound space and explore shared similarities

and emerging patterns as combined information could prove to be useful when developing 

repurposing strategies further (6,10).

Clinical study and data organisation issues complicate drug repurposing

We began our analysis by exploring the current status of the COVID-19 clinical trial data based on 

drug clinical phases, drug mode of action, and known main targets. COVID-19 infection 

management options span multiple clinical phases and drug pharmacological action (Fig. 2). In 

combination, the results suggest that many different therapeutic avenues have been and are 

currently being explored to combat the infection as well as the associated complications. However, 

the overall clinical trial organisation and monitoring come with evidence gaps as there are no 

systematic data collection and verification, with some reports missing or not harmonised across 

different databases (22). Moreover, across academic reports and various databases, drug profiling 

might reflect different formulations, while in other cases this information is not exclusively 

reported. Consequently, the lack of an organised approach to monitor clinical trials and systemically

collect data hinders repurposing and/or new compound development. These shortcomings not only 

reflect the current challenges but also call to take action and improve our data collection 

approaches. Specifically, by creating a unified method to combine clinical and academic data, we 

can significantly improve our forecasting and analytical capabilities which might be very important 

in various clinical areas, such as drug repurposing, new drug development, and preparing for other 

epidemics (5,6,10,13). 

From a single target to network-centric pharmacology

As we focused on a selected set of compounds (Open Targets, 230 unique drugs with a known target

status) used to treat or investigated for the treatment of COVID-19, we explored how their known 

main targets can be used to get insights into shared action and/or help predict side effects (Suppl. 

Fig. 2) (6,9). This led to several interesting findings. 

First, our target-focused comparison revealed that while some drugs, e.g., dipyridamole and 

pentoxifylline, share a number of key targets, their differences in other targets might point to 



potential side effects. We used dipyridamole and pentoxifylline as a case study since these 

pharmaceuticals engage a broad spectrum of PDEs. Moreover, multiple studies have demonstrated 

the importance of phosphodiesterases in regulating various cellular processes (25,69,71,114–116). 

PDE1A stands out from the rest of the PDE family with earlier research suggesting that this enzyme

plays a role in myofibroblasts formation (117). Since PDE1A preferentially hydrolyses cyclic 

guanosine monophosphate (cGMP), which regulates a variety of cellular responses, including 

proliferation, transformation, extracellular matrix expression, apoptosis, and vascular tone, it makes 

sense that under a severe immune challenge curtailing abnormal pro-fibrotic processes might help 

preserve multiple tissue functions (117). Support for this also comes from a PDE5A inhibition study

(with sildenafil) where the inhibition has been shown to reduce cardiac hypertrophy, adverse 

remodelling, as well as cardiac inflammation and apoptosis in the hypertensive heart (118). When 

comparing dipyridamole and pentoxifylline action there are some additional main targets where 

these compounds differ and what could be used as a therapeutic guidance. Dipyridamole inhibits the

ENT1 that serves as a sodium-independent transporter for purine and pyrimidine nucleosides 

(70,115). Since adenosine is known to contribute to the pathophysiology of respiratory disease 

where adenosine challenge can lead to bronchospasm and dyspnoea, adenosine clearance can be 

therapeutically beneficial (115). ENT1 facilitates the removal of this nucleoside from the 

extracellular environment, thus terminating its action. Consequently, inhibition of ENT1 can lead to 

a rapid spike in extracellular adenosine concentration and increased adenosine receptor signalling. 

While dipyridamole has been suggested as a therapeutic option for COVID-19 with multiple 

beneficial properties and clinical trials are on-going (70,71), it might prove to be advantageous to 

consider the side effects when selecting broad spectrum therapeutics. Specifically, higher adenosine 

concentration has been documented to lead to bronchoconstriction and dyspnoea in asthmatic or 

chronic pulmonary disease (COPD) patients (119). Pentoxifylline is also known to act as an 

immunomodulator with anti-inflammatory properties. The 5′-nucleotidase inhibition of 

pentoxifylline leads to the reduced production of adenosine and inosine from their monophosphate 

forms. Through a nonselective phosphodiesterase inhibition as well as A2AR-mediated pathways, 

this drug downregulates the expression of tumor necrosis factor alpha (TNFα), IL-1, IL-6 and 

interferon gamma (IFNγ) (25,120). Current evidence also suggests that pentoxifylline 

downregulates the A2AR pathway where this therapeutic multi-modulatory action could protect 

from adenosine receptor overactivity (25,119,120). Thus, pentoxifylline has been suggested as a 

repurposing candidate to reduce tissue damage during the cytokine storm resulting from the SARS-

CoV-2 infection (25). Considering the clinical data and based on the target-centric analysis, this 

drug appears to have more clinical benefits in comparison to dipyridamole. Overall, PDEs 

modulators can prove to be useful in regulating multiple cellular functions and minimising tissue 



damage during uncontrolled or prolonged immune responses. Varying drug specificity towards 

PDEs also allows more flexibility in clinical approaches; for example, in contrast to other PDE 

inhibitors, apremilast offers a specific inhibition of PDE4 (114)(Suppl. Fig. 2). The lessons learnt 

could be applied to other similar infections, especially employing network-based assessments for 

drug actions.

Another key observation was that drugs with limited sets of known main targets, such as propofol, 

sevoflurane, isoflurane, cyclooxygenase inhibitors, or corticosteroids, reduce our ability to infer 

therapeutic and off-target effects. This likely explains why it has been difficult to draw conclusions 

about the efficacy of some of these drugs in COVID-19 treatment, e.g., in the case of corticosteroid 

or acetaminophen (paracetamol) use (121,122). The majority of the studies for non-steroidal anti-

inflammatory agents (NSAIDs) did not indicate any associations between their use and increased 

mortality rates or an increased risk for respiratory failure during COVID-19 and thus, NSAID use is

supported to manage COVID-19 symptoms, such as fever or muscle pain (121,123,124). There are 

reports where acetaminophen (paracetamol) was found to be linked with worse outcomes; yet other 

case studies do not report any significant differences between clinical outcomes for paracetamol or 

ibuprofen users (125,126). Corticosteroid treatment has also been linked to IL-6 levels where one 

study showed that alveolar macrophages, endothelial cells, and smooth muscle cells co-express 

NR3C1 and IL-6, implicating a potential corticosteroid role in cytokine release storm (127). 

However, corticosteroid use has diverging support as systemic studies are lacking and data collected

from meta-analyses does not allow to account for all patient subgroups (122,128). 

We appreciate that the more information we have about known drug targets, the better 

differentiation and selection of drugs can be achieved (24). Thus, until the compounds used in 

treating COVID-19 have extensive studies on their other potential targets, we must to rely on data 

mining to understand the larger modulation potential of each and every drug.

To compensate for these limitations, we propose to use an extended interactome analysis where 

drug main target or targets are used to search for close interactors and establish network-centric 

characteristics of a drug. For drugs in COVID-19 clinical trials, we identified several clusters that 

have multiple interactions where clusters 1, 2, and 3 were found to be the least diverse and two 

remaining clusters had the most diversity considering the number of seed proteins (or the main drug

targets) (Fig. 3; Suppl. Table 1 and Suppl. Fig. 4). One of the most diverse clusters – cluster 4,  

contains drugs used to treat hypertension where clustered pharmaceuticals mostly belong to the 

networks of the same size. One drug from this cluster, namely losartan, acts through angiotensin-

converting enzyme (ACE), angiotensin II (Ang II), and AT1 or ACE–Ang II–AT1 axis in the renin–

angiotensin system (RAS) which is a known molecular pathway for end-organ fibrosis (78). 



However, clinical studies focusing on another blocker, namely valsartan, did not report any 

significant benefits (80). Thus, comparing drugs based on their network similarity could aid in 

planning clinical trials. A good case example of identifying diverging biochemical processes can 

also be found analysing the extended network targets for ARBs and cetirizine (an antihistamine 

drug) which has an interesting gene uniquely belonging to a cetirizine cluster. Histidine 

decarboxylase (HDC) is a member of the group II decarboxylase family and converts L-histidine to 

histamine in a pyridoxal phosphate dependent manner. This histamine producing enzyme is known 

to be induced at inflammatory sites of both allergic and non-allergic reactions.  Since histamine 

regulates various physiologic processes, including neurotransmission, gastric acid secretion, smooth

muscle tone, and inflammation, its regulatory pathways can prove to be therapeutically valuable 

(129,130). In addition, cetirizine and other antihistamines have been tested in COVID-19 clinical 

trials and showed beneficial outcomes (129,131). Consequently, exploring therapeutics use from a 

network-centric perspective can reveal new therapeutic targets based on known drug efficacy and 

comparative studies. This information could be used either to repurpose or develop new drugs.

Integrating clinical studies, patient evaluation, and advanced omics analyses can enable pooling and

assessing clinical readouts which could make not only mono-therapies but also combination 

treatment more effective (5–7). Moreover, the latter therapeutic strategy might offer a better 

pharmacological intervention ensuring a targeted pathway modulation across multiple effectors to 

avoid disbalanced responses. Such views are gaining more support; that is, even though certain 

therapies have shown benefit in subsets of the treatment population, the complexity of the viral 

infection underscores combination therapy usefulness in increasing treatment efficacy (10). We 

discussed an example of ambrisentan - a selective ET-A receptor antagonist that has been used in 

combination with SGLT-2 inhibition to treat COVID-19 (81). Since endothelin is a potent 

vasoconstrictor with pro-inflammatory and atherosclerotic action, selectively inhibiting ET-A 

receptor can be expected to improve pulmonary haemodynamics and oxygenation as well as reduce 

tissue injury. Ambrisentan’s high potency and selectivity towards ET-A (4000 times greater affinity 

for the ET-A versus ET-B receptors)  have been hypothesised to mitigate adverse effects through 

ET-A receptors, while preserving the potential beneficial vasodilatation of NO and prostacyclin 

which release is mediated by ET-B receptors on vascular endothelial cells (81). To attenuate the 

injurious effects of COVID-19, concomitant SGLT-2 inhibition with dapagliflozin may also prove 

effective to reduce inflammatory cytokines and improve endothelial function as well as 

cardiovascular haemodynamics (81). As a drug class, SGLT-2 inhibitors depend on blood glucose 

concentration and kidney function since their action of lowering blood glucose levels is achieved 

via the kidney independently of insulin secretion and sensitivity status. Thus, SGLT-2 inhibition 

would be expected to reduce inflammation and improve in glucose homeostasis, cellular 



metabolism, endothelial function, and cardiovascular haemodynamics. Dapagliflozin and 

ambrisentan networks demonstrate well that while classical pharmacological assessment depends on

searching protocols and comparing data on a single target (or several known main targets), we can 

benefit from computational pharmacology-oriented data mining and algorithmic evaluations. In 

other words, network-centric approaches allow to simultaneously explore multiple targets and their 

associations across the network of interest (19,24,103). Seeing the value in the extended network 

analyses encouraged us to explore further if we could associate specific clusters with cellular 

processes and pathways as a way to capture specific cluster features and enrich the analytical space.

Enrichment analysis offers new pharmacological insights

Cluster enrichment analysis not only revealed specific cellular processes based on the cluster’s gene

composition but also uncovered shared similarities (Fig.4; Suppl. Fig. 5). For example, some genes 

from cluster 5 are linked to the ERK cascade which has been suggested as a potential therapeutic 

target in coronavirus infections (89). Calcium homeostasis also appears to be affected by the 

extended network genes in cluster 5 (Fig. 4) and since calcium-linked cellular processes have been 

implicated in various COVID-19 outcomes, this could be helpful in narrowing down specific 

clinical strategies (132,133). Less diverse clusters in terms of their seed proteins, namely clusters 1 

and 2, also help to illustrate that even a small number of main targets can be very important in their 

process modulation because of their interactome size (Fig. 3). We investigated whether the 

ontology-based process exploration can be mapped onto pathways. Using cluster 5 as a case study 

we identified diverse patterns for genes in the cluster. Some genes were mostly shared between 

several pathways, while others dominated across many signalling events.  Cenicriviroc served as a 

good example for a broad modulator where several members of the extended network belong to the 

IL-10 signalling pathway. The extensive regulatory potential of cenicriviroc has been taken 

advantage of in clinical management of COVID-19 (93). A different drug from the same cluster, 

namely HuMax-IL8 (experimental antibody inhibiting human IL-8), shares quite a few network 

members with cenicriviroc. IL-8 is a pro-inflammatory cytokine involved in neutrophil activation 

and has been linked to the COVID-19 pathogenesis. In addition, as SARS CoV-2 has led to an 

increase in complications including Acute Respiratory Distress Syndrome (ARDS), the crucial role 

of IL-8 in lung inflammation has been suggested as a possible new therapeutic target to modulate 

the hyper-inflammatory response in ARDS (134,135). Expanding this analysis with computational 

pharmacology could greatly increase research translational potential and help identify new 

therapeutic regimens, especially since ARDS has limited therapeutic options (135). Furthermore, 

some drugs, e.g., icatibant or ozanimod, appear to show a potential pathway overlap through shared 

network targets and such information could also be very helpful in clinical decisions. Specifically, 



such comparative analyses can help with not only off-target prediction but also finding new 

therapeutic combinations to manage acute and chronic disease progression. As a result, our 

exploration of the drug associated interactome reveals how critical it is to understand the broader 

pharmacological network of a drug. Such integrative analyses could help prioritise therapeutic 

repurposing and even predict unwanted outcomes. For example, hydroxychloroquine, after various 

clinical trials, was found not to show beneficial action and strong recommendations were issued 

against the drug’s inclusion in clinical protocols (136). Our analysis revealed that 

hydroxychloroquine did not have many shared targets in the extended network (Fig. 3) and 

exploring common targets could have helped predict some off-target effects or optimise treatment 

for the most suitable patient groups. For example,  hydroxychloroquine shares several extended 

network nodes with celecoxib (a NSAID) which has known cardiotoxic effects and similar issues 

were found for hydroxychloroquine in clinical trials (137). Understanding drug combination use is 

also integral in the intensive care settings where patients are treated with many pharmaceuticals at 

once. It has been reported that between 46 and 90% of patients admitted to the intensive care unit 

(ICU) are exposed to potential drug-drug interactions (138). 

miRNAs open new possibilities for therapeutics investigation

The interactome is only one aspect of the complex cellular features. We suggest a new clinically 

valuable avenue of miRNAs as biomarkers or even therapeutic targets in COVID-19. We used the 

most diverse cluster 5 (Fig. 3) to explore the non-coding regulatory layer by mining the data of 

validated miRNAs and their regulated genes. We identified a rich network of miRNAs known to be 

involved in the regulation of multiple genes from cluster 5 (Suppl. Fig. 6). Evidently, miRNAs have

multiple pleiotropic effects and could be used as therapeutic targets. Specifically, a drug or 

combination therapy could be used to influence this regulome layer by inducing expression or 

suppression of miRNAs to achieve a clinical effect (139). While reports are limited on the miRNA 

role in COVID-19, it is possible to appreciate their potentially significant function (31,99,140). As a

result, using compound target and/or interactome data we can extrapolate miRNA involvement and 

use that to guide therapeutic decisions or disease monitoring. It is also necessary to stress that 

seeking only significantly changed expression levels of miRNAs might lead to missing important 

clues for the overall pathways and processes that may be linked through miRNAs. This is also 

exemplified by miR-150 which lacks noticeable changes in people with COVID-19 but still 

regulates and interlinks a number of genes (Suppl. Fig. 6) (141). 

Computational pharmacology allows bridging the chemical and biological space

Computational pharmacology analyses and disease-associated process modelling/investigation can 

be further enriched by exploring the medicinal chemistry space and linking functional parameters 



with drug chemical characteristics. Such analyses could significantly improve our therapeutic 

evaluation strategies and also aid in uncovering broader trends leading to specific pharmaceutical 

action. As we profiled chemical features of compounds in COVID-19 investigational studies, we 

immediately identified a high heterogeneity across all pharmaceuticals (Fig. 7). Moreover, there 

was very little overlap between pharmacological action and physicochemical features with the 

exceptions being the steroid and angiotensin receptor blocker groups. This prompted us to theorise 

that a high similarity is not necessary for the COVID-19 drugs as the modulation of signalling 

pathways and/or biological processes is most likely achieved through different interactome nodes. 

This not only means that a broader chemical space can be considered as a therapeutic option but 

also that repurposing strategies should take into account the interactome of a drug (101–103). 

Importantly, such comparative analysis could offer a better combination therapy selection and a 

more robust approach towards clinical and repurposing studies (5,6).

Machine and deep learning have been shown to be highly effective when identifying lead 

compounds. Compound fingerprinting and graph convolution principles are employed to build 

neural networks; however, these methods do come with shortcomings depending on the neural 

architecture itself and the available data (6,12). We also saw the dependence on chemical training 

data in our QSAR model designed to predict antiviral compound properties that could guide the 

selection of COVID-19 antivirals (142). While we built two different QSAR models (machine 

learning: LightGBM and a deep learning neural network) both of which relied on different 

compound feature encoding, none of the experimentally tested antivirals against COVID-19 Mpro 

protein were identified to have antiviral properties. This contrasted with the results for the COVID-

19 clinical trial dataset as both QSAR models were successful in selecting drugs with predicted 

antiviral properties against COVID-19. Some of these identified drugs are known antiviral 

therapeutics. We reasoned that these discrepancies underscore the still limited chemical space for 

COVID-19. As modelling required a large number of molecules to train, we relied on COVID-19 

CAS data (containing known and/or predicted antivirals) (50). Consequently, it is likely that 

enriching the compound set and also including experimental data would significantly improve our 

ability to identify new compounds and avoid biases. Moreover, exploring a wider chemical feature 

space (not limited to similar compounds target- and structure-wise) could potentially lead to 

discovering broad action compounds where multi-action profile could help in managing more 

aspects of inflammation and reduce tissue damage.

Overall, compared to de novo drug discovery, repurposing can be an attractive option. This is 

because of the significantly lower development risks since drugs have established safety and 

pharmacological profiles allowing a direct entry into phase II clinical trials. Accelerated therapeutic 



translation, cost reduction, and possibility to explore combination therapies make therapeutic 

repurposing especially desirable (21,27). Despite the obvious advantages of drug repurposing, there 

are several major pitfalls. For example, the target population might differ significantly from the one 

that was involved in the original drug clinical trials. In addition, our understanding about targets and

the interactome might be limited which further complicates repurposing (6). Seeing this and some 

recent controversies, e.g., hydroxychloroquine use, we propose an integrative approach that relies 

on computational pharmacology, systems biology, medicinal as well as computational chemistry to 

efficiently evaluate potential therapeutic candidates. A comprehensive strategy is critical for the 

identification of COVID-19 therapeutic solutions and future drug repurposing (20,143). 

Chakraborty and colleagues provide an excellent summary of the conflicting results in COVID-19 

clinical trials which accentuates the need for better global strategies in clinical trials and 

epidemiological meta-analyses (10,22). Finally, the issue is not just COVID-19, we need to have a 

better preparedness for future pandemics and also learn how to use the existing data to advance 

treatments for other diseases. 

Conclusion

New compound development and drug repurposing need to incorporate diverse compound 

screening libraries with a strong understanding of their interactome and regulome. Importantly, 

employing computational pharmacology, data mining, systems biology methods, and computational

chemistry can greatly advance our efforts in identifying the key targets and their affected networks. 

Our study revealed that formulating optimal pharmacological intervention options should rely on 

integrative approaches. We explored not only the current trends and shortcomings in COVID-19 

drug repurposing, but also demonstrated the value of new perspectives using computational 

pharmacology and cheminformatics principles. The introduced in-depth analysis revealed the 

importance of expanding clinical studies beyond direct drug-target interactions and considering a 

more complex space of the affected networks. We also showed a number of interactions and 

pathways that could be exploited when considering combination therapies. The findings of miRNAs

networks offer a new strategy to search for valuable biomarkers or therapeutic management options.

Even though computational modelling is a powerful tool in prioritising compounds, it is important 

to include their biological action, experimental results, and extended network data to build better 

predictors. We demonstrated that the chemical space for COVID-19 investigational compounds 

might not be broad enough and could benefit from additional experimental evidence to create more 

robust models. Despite limitations in available data, it is still possible to extract valuable 

information that could potentially save time and resources by helping to better prioritise compounds

for in vitro screening. Finally, we strongly advocate for taking this opportunity to establish 



comprehensive practices for today’s and future infectious diseases by preparing solid analytical 

frameworks.
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