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Chapter 10
Identifying Limitations when Deriving
Probabilistic Views of North Atlantic
Hurricane Hazard from Counterfactual
Ensemble NWP Re-forecasts

Tom J. Philp, Adrian J. Champion, Kevin I. Hodges, Catherine Pigott,
Andrew MacFarlane, George Wragg, and Steve Zhao

Abstract Downward counterfactual analysis – or quantitatively estimating how our
observed history could have been worse – is increasingly being used by the
re/insurance industry to identify, quantify, and mitigate against as-yet-unrealised
“grey-swan” catastrophic events. While useful for informing site-specific adaptation
strategies, the extraction of probabilistic information remains intangible from such
downside-only focused analytics. We hypothesise that combined upward and down-
ward counterfactual analysis (i.e., how history could have been either better or
worse) may allow us to obtain probabilistic information from counterfactual research
if it can be applied objectively and without bias.

Here we test this concept of objective counterfactual analysis by investigating
how initial-condition-driven track variability of events in our North Atlantic Hurri-
cane (NAHU) record may affect present-day probabilistic views of US landfall risk.
To do this, we create 10,000 counterfactual NAHU histories from NCEP GEFS v2
initial-condition ensemble reforecast data for the period 1985-2016 and compare the
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statistics of these counterfactual histories to a model-based version of our single
observational history.

While the methodology presented herein attempts to produce the histories as
objectively as possible, there is clear – and, ultimately, intuitively understandable –
systematic underprediction of US NAHU landfall frequency in the counterfactual
histories. This limits the ability to use the data in real-world applications at present.
However, even with this systematic under-prediction, it is interesting to note both the
magnitude of volatility and spatial variability in hurricane landfalls in single cities
and wider regions along the US coastline, which speaks to the potential value of
objective counterfactual analysis once methods have evolved.
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10.1 Introduction

For centuries, the global re/insurance industry has estimated future risk by applying
statistical methods to historical loss data (Halley 1693), with the early methods
growing into an expansive research discipline now known as actuarial science.

While the advent of catastrophe modelling in the late 1980s and early 1990s saw
an evolution of traditional actuarial loss-based methods toward the incorporation of
explicit scientific information from a wide variety of non-loss focused sources,
probabilistic views of catastrophe risk have largely remained driven by historical
observations.

In very recent years, methods to derive views of probabilistic atmospheric risk
directly from climate models have begun to be developed (Carozza and Boudreault
2021; Jones et al. 2020). However, it is well known that ingesting climate model
information coherently into the historical, observation-based, and usually site-
specific, views of risk that are widely prevalent in the industry is likely to bring its
own suite of problems, both scientific and philosophical (Frigg et al. 2015).

Although extremely non-trivial, there is substantial demand to overcome this
challenge given increasing societal concern surrounding the need to quantify the
impact of a shifting climate on the frequency and intensity of catastrophic atmo-
spheric perils, from both acute and chronic onset perspectives. This demand is
evidenced, for example, by recent climate disclosure guidance issued by the Bank
of England to financial institutions (Bank of England 2019).

It is important to note that although the challenge of building the connection
between forward-looking climate and catastrophe models is yet to be fully over-
come, the re/insurance industry already looks to alternative methods to help improve
its ability to use information about extreme weather events from climate projections
as coherently and appropriately as possible. For example, for many years the
industry has employed the concept of “downward counterfactual” thinking to sen-
sitivity test observationally derived views of risk; the same type of thinking exists in
other financial markets, usually under the auspice of more generically-termed



“financial stress tests”. As this downward counterfactual term is not yet widely used
in catastrophe risk management, we explicitly define it here as “a thought about the
past where the outcome was worse than what actually happened”, with the definition
taken directly from the introductory discussion provided in Woo (2019), itself
following the formative definition provided by Roese (1997).
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While this language is relatively new to the risk management industry, methods to
incorporate the underlying ideas in risk modelling are not. The industry understands
well that – for rare and high impact events in particular – historical observations may
only paint a partial picture of future risk. Thus, deterministic “what-if?” scenario
analyses have been employed, which ultimately attempt to foresee those “grey
swans” that do not appear in our observed loss record, yet can easily be imagined,
rationally estimated, and thus mitigated against.

At present, this “downward counterfactual” or “what-if” thinking is applied
through such practical actions as formal reporting on Realistic Disaster Scenarios
(RDSs), which help to steer re/insurers on capital requirements, as well as quantify-
ing estimates such as maximum possible/probable loss in the case of an extreme
event happening. As an example, in the context of North Atlantic Hurricanes
(NAHUs), one of the Lloyd’s RDSs for 2021 poses the scenario: “A North-East
US hurricane, immediately followed by a South Carolina hurricane” (Lloyd’s 2021).

While already embedded in risk management processes, in a joint report on the
topic, Lloyd’s and RMS concluded that including more “downward counterfactuals”
in analyses of risk – that is, specifically re-imagining “how historical near misses
might have become major disasters” – is likely to “bring benefits to insurers”
(Lloyd’s 2017). For example, what if Hurricanes Matthew (2016) or Dorian
(2019) had rolled onshore in downtown Miami, as opposed to only grazing the
South Florida coastline? Would the building codes and practices put in place since
the highly destructive Hurricane Andrew (1992) work to limit outsized losses in this
region? And how have population dynamics in the past twenty years altered the
shape of risk in that area? While the Lloyd’s RDSs begin to touch on questions like
this, they are often less focused on re-imagining actual historical events. Other
industry-led research is beginning to unpick the potential value of this type of
targeted question (Chap. 9).

Thus, while more focus on downward counterfactual analysis is certainly likely to
be useful, it is not necessarily novel. Arguably, it relegates the potential value of the
work to deterministic applications only and doesn’t help to address the problem of
extracting potentially valuable and untapped probabilistic information from such
types of analyses.

At present, probabilistic information for catastrophe risk quantification in the
re/insurance industry is driven by stochastic modelling, itself underpinned almost
solely by historical event data. The stochastic modelling process acts to fill in holes
such that our spatial picture of risk is smoother (and more realistic) than if drawn
from raw observations. However, the statistics of the historical dataset are preserved
during the stochastic modelling process, at least to some extent. While this preser-
vation of underlying statistics may be highly desirable for well-observed perils and
long historical records, it is likely less desirable in places with sparse observational
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datasets (as is the case with many extreme weather perils). The preservation of
statistics in these sparsely observed areas may lead to an erroneous view of risk
purely by virtue of random chance or luck in the observed historical period. Thus,
identifying further information sources that can help to remove random luck in risk
quantification and to ultimately facilitate more optimized risk selection may prove
highly valuable. It is hypothesized here that counterfactual analysis may provide an
opportunity to build additional reliability on baseline stochastic modelling.
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For probabilistic counterfactual applications to be achieved, we must move away
from the single-sided “downward” philosophy of counterfactual analysis, toward
one where both “upward” and “downward” counterfactuals are considered simulta-
neously. If it were possible that this upward and downward analysis could be done
objectively, we may be able to extract information such that our stochastic,
observation-based methods for risk quantification become more robust and reliable.
At present, questions about validity of stochastic modelling output can only be asked
from a subjective “model completeness” perspective – i.e., do we believe that the
stochastic process is filling in the gaps in history appropriately?

To practically combine the two worlds of future focused climate-catastrophe
modelling with objective upward and downward counterfactual analysis, here we
propose to use NWP ensemble re-forecasts to create multiple counterfactual NAHU
histories, and to compare them to the observed historical record of NAHUs. At
present, the authors are only aware of one other study that attempts to extract
probabilistic information from re-forecast data in the case of Tropical Cyclones
(Ng and Leckebusch 2021). This study, while similar in fundamental philosophy,
is somewhat tangential to the applications hypothesized here. Ng and Leckebusch
(2021) utilize a multi-model archive to create basin-wide counterfactual climatol-
ogies of key catastrophe risk related variables, such as return periods of windspeeds.
Here we intend to accomplish something slightly different, focusing only on iden-
tifying historical NAHUs in re-forecast data and attempting to use these data to
evaluate – however loosely – the probabilities of intersection with the US coastline
of these historical storms. If the methods were to prove successful, it would allow
targeted adjustment of the stochastic track sets that typically drive contemporary
NAHU catastrophe models.

Thus, beyond the counterfactual aspect of the analysis, we also hope this work
will help to lay the foundation to connect traditional historical observation derived
views of catastrophe risk to weather and climate model derived views of risk, and
highlight where limitations currently exist that may limit the ability to do this
optimally.

10.2 Potential Real-World Applications

While beyond the scope of this experimental study, it is envisaged that a truly
objective implementation of counterfactual thinking would allow us to quantifiably
deconstruct our observational history, and begin to ask questions such as:



–
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1. Do counterfactual histories suggest that a specific country or city has been
particularly lucky or unlucky given our single historical record of landfalling
hurricanes, in a way that the hole-filling of traditional stochastic catastrophe
modelling may not reveal?

2. Was any single highly impactful historical event extremely unusual, even after
the stochastic process attempted to fill in gaps, or do we see these events regularly
in our NWP modelling?

3. Were highly active years such as 2005 and 2020 extreme outliers, as a traditional
observation-derived stochastic view would suggest, or are they more common
than they appear in our historical record?

4. Were particularly active/inactive periods in our history (e.g., Hall and Hereid,
2015) random or structural in a way that dynamical climate and NWP models
may reveal? Relatedly, are there correlations in active/inactive seasons following
one another, and is the assumption that individual hurricane seasons are inde-
pendent, as is often derived during stochastic modelling of NAHUs, a good one?

5. Considering the US coastline in aggregate, where does our observed history sit in
the distribution of possible outcomes, and what does the relative uncertainty
between stochastic modelling and counterfactual analysis look like?

Some of the above questions can be seen to fall under the more general area of
climate attribution research; it is important to note that it is necessary to use
counterfactual analysis in the climate attribution process to allow questions on
non-events to be asked, and thus for probabilistic views on events to be gleaned
(van Oldenborgh et al. 2021). For example, without explicit counterfactual data, it is
possible to ask “was the 2012 Superstorm Sandy event made more likely by climate
change?”, but it is impossible to ask the philosophical reverse of that question - i.e.,
“was the non-occurrence of event X made more likely by climate change?”
because there is no concrete event to begin to quantify changes from.

Further than facilitating the derivation of probabilistic information from climate
attribution research, the first four examples in the list above speak to investigating
the potential to “hedge” risk – with (1) and (2) focused on spatial hedging, and
(3) and (4) focused on hedging of temporal aspects, or certain parts of an
Exceedance-Probability (EP) curve.

The spatial distribution of risk is an important business consideration when a
(re)insurer constructs its portfolio geographically. Understanding a portfolio’s areas
of high or low levels of accumulation are key to determining whether to take on or
hedge additional risk in a specific geographic area, be that a city, county, or state.
The assessment of portfolio shape is typically determined using stochastic catastro-
phe models and calculating key statistics such as the average annual loss (mean
expected loss) and a range of return periods for the aggregate loss distribution.
Deterministic scenarios, such as the RDSs mentioned previously, also provide
context against (re)insurers’ risk appetite statements regarding the maximum down-
side they wish to be exposed to under given conditions, but are limited in the sense
that they fail to give statistics relating to the loss distribution. Identification of bias or
error within the stochastic tools used to make this assessment is important in



determining the underwriting strategy and capital management and influences deci-
sions regarding geographic portfolio mix, technical pricing assessment and any
mechanisms used to mitigate risk.

238 T. J. Philp et al.

(Re)insurers will typically mitigate their gross risk and manage their capital with
the use of ceded reinsurance protections. Various structures and vehicles can be used
to take the risk carried by the original insurer and pass it further up the risk chain to
another party in exchange for a premium. Some of these transactions focus on the
severity of potential losses, looking to cap the downside from a single event. In this
case, understanding the probability of large events occurring is crucial. Whether a
particular geography, or indeed an area in aggregate, has been “lucky” or “unlucky”
historically feeds directly into the real-world decision regarding how best to manage
capital through risk reduction; any objective information that can help better inform
this concept of historical luck would be greatly welcomed.

In addition to spatial conditions, the frequency distribution is another important
parameter for managing capital in the form of ceded reinsurance. An example of this
in the context of a core business decision is deciding when to buy cover that will pay
out dependent on the number of landfalling storms in a hurricane season. There is a
cost and benefit to the number selected, and determining the preferred choice relies
on assessing the probability of these protections being required. Hence, the applica-
tion of counterfactual analysis in this area could have very tangible use in the
(re)insurance market.

Finally, this type of analysis may seek to present opportunities to (re)insurers to
take on risk that – when looked at with traditional stochastic methods – appears not
to fit within their target risk profile, due to price or aggregation of risk in a particular
area. In turn, the analysis could help to benefit consumers of (re)insurance in areas
that have been “unlucky” in the past, by allowing risk to be reassessed and viewed
with a counterfactual perspective.

10.3 Methods & Data

Ten thousand counterfactual NAHU histories are generated from ensemble
reforecast NWP data for the period 1985–2016, along with one “best-estimate”
reforecast history that represents our historical baseline, from which to draw fair
comparisons. This section details the data selection and processing methods.

To circumvent any issues regarding tropical cyclogenesis biases in NWP output
(e.g., Halperin et al. 2013), the selection of the counterfactual ensemble data is
restricted to finding alternative tracks only of the NAHUs that are recorded in our
observational history. This immediately imposes a limitation on the output – and is a
key divergent point from the setup of Ng and Leckebusch (2021) – as we will not
capture certain types of counterfactual realities of NAHUs. For example, we are
unable to capture NAHUs that didn’t form in our observed reality but may have done
in a counterfactual one. Therefore, each one of the counterfactual histories will
always contain the same number of tracks as has been observed in our history.
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Ultimately, this means that the study is restricted to looking at track uncertainty of
historical storms only, as opposed to a more complete track uncertainty coupled with
genesis uncertainty. This means that, for the time being, the results would be unable
to unpick some of the broader questions presented earlier. The authors acknowledge
that this is likely to severely limit the real-world application of the data at present,
and stress that the results should be seen as experimental at this point. However,
given that the study is exploratory, and primarily aims to uncover potential limita-
tions with this type of application, we feel that adding in the cyclogenesis aspect at
this point has the potential to add a needless layer of complexity to experimental
methods and results.

10.3.1 Data Selection

The counterfactual histories are generated from NWP reforecast data, as opposed to
historical operational NWP forecast ensemble data, because a reforecast allows for a
consistent dataset whilst also using a contemporary NWP model across the entire
historical period of the study.

The NOAA PSL Global Ensemble Forecast System (GEFS) reforecast v2 (Hamill
et al. 2013) is utilized as the reference reforecast dataset. This initializes daily (00z
timestep) an 11-member (1 control + 10 initial condition ensemble members)
forecast, with a running period of 16 days, approximately 40–54-km spatial hori-
zontal resolution, and 6-hourly temporal resolution. The data used in the study runs
from 1985 to 2016.

Given the need to match to historically observed NAHUs, two more datasets are
employed, namely:

i. the observation-based International Best Track Archive for Climate Stewardship
(IBTrACS), which enables the identification of historical NAHUs and their real-
world intensities.

ii. the National Center for Environmental Protection’s Climate Forecast System
Reanalysis (NCEP-CFSR) (Saha et al. 2010), for allowing track matching
between the model world of the NWP reforecasts and the observation world of
the IBTrACS data.

Importantly, both datasets are available for the entire period of the GEFS
reforecast data.

10.3.2 Tracking and Storm Matching Part 1: Reanalysis
to Observations

Tropical Cyclones are identified and tracked in the NCEP-CFSR reanalysis using the
TRACK algorithm (Hodges 1994, 1995; Hoskins and Hodges 2002). Initially all



cyclonic systems are tracked in the NCEP-CFSR and the tracks are then matched to,
and filtered by, the IBTrACS tracks using mean separation matching (Hodges et al.
2017). Any amount of temporal overlap and a mean separation distance of 5 degrees
(geodesic) for the overlap periods causes a track match.
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10.3.3 Tracking and Storm Matching Part 2: Reforecast
to Matched Reanalysis

The TRACK algorithm is then applied to the GEFS reforecast. These tracks are
subsequently matched to the previously matched and filtered reanalysis tracks using
mean separation matching: the reforecast tracks are matched to the reanalysis tracks
using the first day of the forecast track that overlaps with the analysis track to within
a 4-degree (geodesic) radius, and the reforecast tracks have their first point within the
first 3 days of the forecast (Hodges and Klingaman 2019; Froude et al. 2007).

This allows for the TCs to be found in the NWP reforecast data before they are
identified in the observations. The resultant combined data files contain up to
12 tracks per historical track per day (due to the daily GEFS initialization) – one
reanalysis track of a historical storm, one control track of that storm from the GEFS
reforecast, and up to 10 GEFS initial condition ensemble members (the number of
GEFS ensemble members being dependent on whether the perturbed ensemble
members continue to develop the storm or not).

10.3.4 Tracking and Storm Matching Part 3: Reforecast
Tracks to Observational Tracks

A final matching and filtering step of the reanalysis and reforecast tracks to the
IBTrACS data is undertaken to confirm the tracking and matching process has been
successful, and to ensure that a historical hurricane “name” is attached to the
reforecast and reanalysis track data. First, a match occurs if there is at least one
timestamp that the NCEP-CFSR and the IBTrACS track are within 1 degree (geo-
desic) of each other. The variable used from the NCEP CFSR tracks to define the
center of the storm is the latitude & longitude of the maximum 850hPa vorticity
center. Using this method across the entire study period, there are ten unmatched
IBTrACS storms with the criteria at 1 degree. The spatial-matching region is
therefore relaxed successively: five more NAHUs are matched within 2 degrees,
and two more are matched within 5 degrees. Three storms remain unmatched,
namely Matthew (2004), Zeta (2005), and Barbara (2013). These storms are thus,
in effect, filtered from the historical dataset, both for our “observational” model
history, and also for our alternative history creation.
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At this step in the process the combined track files contain up to 12 tracks per
historical storm and, because of the daily initialization of the 11-member GEFS
reforecast, there is a new combined track file created each day that an observational
track exists. For example, in our observed record, Hurricane Andrew (1992) formed
on August 16th, 1992, and dissipated on August 29th, 1992. Thus, with 14 days of
existence, and with a maximum of 12 storm tracks per day, we have a maximum of
168 tracks across the 14 combined files for Hurricane Andrew. However, the
reanalysis track for a single storm will be identical in each of the daily files for a
single historical storm, as it is merely a reference track from a single model run that
will have been truncated to start on the date of the GEFS initialization. Thus, the
number of different GEFS tracks that are theoretically available for selection into the
counterfactual histories is 11 multiplied by the number of days a single storm is
active. In the case of Hurricane Andrew, this would be a maximum of 154 distinct
tracks that could be selected from for addition into the counterfactual histories.

10.3.5 Creation of Extended Landmasses for Track Selection
into Counterfactual Histories

There are many potential ways to construct the counterfactual histories from the
track files, and it is at minimum difficult, but arguably impossible, to completely
remove all levels of subjectivity from this process. While it would be possible to
collate all of the daily GEFS tracks for a single storm and simply randomly sample
from them, we realize that this may introduce structural issues. For example, it is
likely that sampling for Hurricane Andrew (1992) from GEFS data initialized at a
point shortly before US landfall, versus Hurricane Katrina (2005) initialized in the
Atlantic basin’s Main Development Region, would introduce structural biases.
Conversely, if generating counterfactual histories by selecting an ensemble member
at only the time and date that the storm first appears in the IBTrACS observed data,
we limit ourselves to very little data (i.e., we remove the potential to use all of the
ensemble reforecasts created after the start date of the storm in the record, and thus
only have the ability to select from a maximum of 11 GEFS versions of Andrew),
while at the same time we may also introduce steering biases that are present in the
more cyclogenesis prone regions (e.g., Main Development Region) of the Atlantic.
And further, if we introduced a single “spatial barrier” that the storm would have to
cross for it to be included in selection (for example, if we stated that the storm would
have to cross the 55th Meridian West for it to be included in the sample selection),
we would still be constrained both by limiting data and by introducing a potentially
difficult to untangle structural issue.

To attempt to combat any region-specific model bias issues, utilize as much data
as possible, and have the ability to piece together any unforeseen structural issues,
we introduce a novel methodology in which multiple theoretical “extended” land-
masses are generated at various distances from the US coastline. Once a historical
storm crosses the line of the theoretical extended landmass, the GEFS tracks for that



storm will be available for an ensemble member selection to create the alternative
histories. For example, on the date that Hurricane Andrew crosses the 300-km
extended landmass in the observational data, the GEFS reforecast data initialized
on that day becomes available for selection into the counterfactual histories. While
this means that we will only retain the storms that have occurred in our history, it’s
important to note that this method still allows for large divergence of the tracks – for
example, because the GEFS reforecast data is free-running and not constrained by
observations, some or all of the Hurricane Andrew tracks in the forecast may not
make actual landfall in the US. It is this aspect of the analysis that we hope will begin
to allow us to probabilistically re-evaluate our history, and even probabilistically
re-evaluate specific historical events.
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Ideally the number of landmasses should be so numerous as to use as much of the
ensemble data as possible, without being so exhaustive as to cause overly cumber-
some re-selection of data that has already been used. Four different “extended
landmasses” are created using QGIS and converted to a grid with a resolution of
0.1 degrees. These landmasses are generated at 300-km intervals at distances
between 400-km and 1300-km from the North American coastline. While the choice
of extended landmass distances will always carry some level of arbitrariness, they
are here chosen given knowledge about NAHU translation speeds and daily initial-
ization limitation of the GEFS data. With a mean NAHU translation speed between
18 and 25-km/h (Kim et al. 2020), it is likely that the average NAHU will travel
approximately 432–600 km distance in 24 h, which thus represents the maximum
distance that would be reasonable to employ between extended landmasses. Given
the further reality that NAHUs neither travel perpendicularly to extended landmass
contours, nor in straight lines, the distance between extended landmasses is reduced
to 300 km.

10.3.6 Counterfactual History Creation

2,500 histories per extended landmass are created, producing a total of 10,000
counterfactual histories. With the period of analysis, this creates 320,000 years
(or NAHU seasons) of data. It is important to note that, because of the finite number
of GEFS ensemble storms per observed historical event, generating this many
histories is likely to cause multiple selections of the same ensemble storm on
occasion. Thus, the 2500 histories at each extended landmass cannot be considered
entirely independent of one another. However, the method remains desirable for risk
management because:

i. this re-selection of the same ensemble member multiple times potentially better
allows the “worst-case scenario” of what the continuous chain of the most
deleterious events in a single season could have been.

ii. The method produces 10,000 versions of each individual historical year. This is a
somewhat standard number for the minimum number of years desirable for a
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catastrophe model stochastic set (Jewson et al. 2019), and allows us to delve
deeply into key loss years, such as 2005, while retaining probabilistic rigor.

To create the histories, the reanalysis tracks that make landfall with respect to the
theoretical extended landmass (i.e., by crossing the imaginary line of the extended
landmass) and have been successfully matched by name to a historical IBTrACS
Tropical Cyclone are identified. Tracks that form whilst already over the extended
landmass are also included so as not to impose a filtering of the storm number by
virtue of their point of genesis. Thus, the date on which they cross the line of, or first
form on, the extended landmass is used for ensemble selection. For example, for the
1300 km landmass, Hurricane Andrew’s (1992) GEFS ensemble member will be
selected for the initialization date that it crosses the line of said extended landmass.
Hurricane Wilma (2005), however, formed in the Caribbean Sea, and thus techni-
cally never crosses the 1300 km landmass line because it already forms on the
extended landmass. Therefore, Wilma (2005) is kept in the 1300 km landmass
selection on the date that it forms.

Thus, an ensemble track is randomly selected from the GEFS reforecast data for
each storm name on the date that it forms (if that formation point exists on the
extended landmass), or on the date that it first crosses the line of the extended
landmass.

A further filtering of the data occurs at this point: only an initial condition
ensemble member (i.e., not the GEFS control member) can be selected for inclusion
in the counterfactual histories. This decision was taken to remove the concept that
some member selections may have been “better-estimate” (in the case of picking the
control vs an initial condition member), and thus have introduced a probabilistic bias
for some alternative history tracks.

10.3.7 GEFS Based Observational History

For comparison of the counterfactual histories to “reality”, it is obvious that a direct
evaluation between the counterfactual alternative histories and the IBTrACS data
would be unfair; the limitations imposed by resolution and, relatedly, incomplete
physics will make the GEFS model NAHUs, both in terms of track and intensity,
look different from the observational IBTrACS history. Thus, the differences
between the reforecast and observational data are minimized by creating a GEFS
reforecast model view of our observed reality from which to make these
comparisons.

However, this again is not a trivial task. The reforecast data are not constrained by
observations while the forecasts are running, and thus the tracks of the GEFS data are
likely to vary from the orientation of both the tracks seen in the observational history
and in the reanalysis. We therefore use a “0km” landmass – in effect, just the US
coastline – to generate the GEFS model-based history at as close to a timestep as
possible from the GEFS initialization, and we only take the control run (i.e., the



unperturbed model run, which in this instance could be considered to be the model
best estimate) from the reforecast for this landmass. This is because, with the GEFS
model initialized so close to land (i.e., at the timestep before it makes landfall), the
GEFS model does not have a chance to materially impact the track or intensity of the
storm. Thus, we would likely end up with a cluster of events at landfall in most
situations. Further, this 0-km data is only intended to act as the benchmark data from
which to understand relativities in the counterfactual histories, so we only need a
single best estimate from which to do this.
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While the creation of the 0-km benchmark GEFS data means that IBTrACS-
derived observational US landfall locations should match fairly well with the 0-km
reforecast data, the storm could still be some way away from landfall because of the
timestep limitation enforced by the reforecast data. A cubic-spline interpolation is
thus applied to the GEFS and IBTrACS data to up-sample the tracks to 15-minute
temporal resolution, which allows for close temporal matching of the two datasets at
the precise point of landfall. This same interpolation is later applied to landfalling
storms in the alternative histories to allow for fair comparisons. The choice of cubic-
spline interpolation here follows similar temporal resampling studies (e.g., Baudouin
et al. 2019).

10.3.8 Intensity Downscaling

As mentioned previously, resolution and incomplete model physics data mean that
windspeeds are likely to be systematically different between the model data and the
IBTrACS observational data. While the potential issue is analytically negated by
creating a model-based observational history from which to draw direct compari-
sons, reporting coherently on impact-based narratives for risk-focused communities
is difficult to accomplish without attachment to easily understood intensity metrics,
such as the Saffir-Simpson scale.

Thus, a simple statistical downscaling is applied to the histories to bias-correct
them toward the usually higher observational intensities. The mean windspeed of all
category 1+ hurricanes at landfall in the IBTrACS data is calculated. Using the
names as matched in Sect. 10.3.4, the same hurricanes are then extracted from the
control run of GEFS from the 0-km landmass. The hurricanes in GEFS are then
interpolated to match the timing of the landfall in IBTrACS. The mean windspeed of
these GEFS landfalls is then calculated. The percentage difference between the two
is calculated, and this single factor scaling uplift is then applied to all GEFS data.
The authors acknowledge that this is an overly simplistic method for generating
accurate intensities across all Saffir-Simpson categories, but we purposefully keep
the method simplistic here so that we can better focus on questions relating to the
counterfactual analysis methods.

In Fig. 10.1, the red bars show the counts of US landfalls per Saffir-Simpson
category from the raw GEFS 0-km history, while the blue bars show the counts per



category after the downscaling has been applied. While crude, the overall results and
narratives are unlikely to be negatively impacted given that we are primarily looking
at the relative analytics of model-derived data for both our observational history and
our alternative history.

10 Identifying Limitations when Deriving Probabilistic Views of. . . 245

Fig. 10.1 Counts of
landfalling NAHUs in the
GEFS 0-km reforecast
history, split by Saffir-
Simpson Category, pre-(red)
and post- (blue) statistical
downscaling to bias correct
toward IBTrACS intensities.
As can be seen, in the
pre-downscaled data there
are virtually no Major
Hurricane (cat 3+) landfalls
in the entire 1985–2016
study period; the presence of
Major Hurricanes can thus
be said to be better
represented in the post-
downscaling data. Further
analysis can be found in
Fig. 10.2

10.4 Results

10.4.1 GEFS vs IBTrACS Observational History Differences

Before analyzing the differences between the statistics of the counterfactual histories
and the GEFS-derived “observational” history, it is also important to note that the
matching of these two landfalling data are not perfect. For example, 10 Tropical
Cyclones that appeared as being US landfalling in the GEFS data did not have a
corresponding landfall in the IBTrACS data. Upon unpicking, there were two key
reasons for the mismatches:

1. IBTrACS has a human element to the track distance recorded. For example, it is
up to a human forecaster to decide when a Tropical Cyclone has come into being,
and when it has dissipated, with the human forecaster usually having to decide
during an ongoing live event (though this can be corrected/adjusted later – but
with no less subjectivity). Conversely, the GEFS tracks are constrained by the
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objective nature of the TRACK algorithm, which defines the center of the storm
as the local vorticity maximum.

2. The eye of a hurricane coming very close to land and only crossing the coastline
in one of the datasets (e.g., Tropical Storm Cristobal, 2008). The relative diameter
of the eye in the different datasets may add complicating consequences here that
are not investigated in the analysis.

While this does not represent an issue given our GEFS model created history based
on observations, being constrained by the same criteria as the alternative histories, it
is important for us to stress again that the results presented here should not be
compared directly to raw IBTrACS data.

Figure 10.2 shows how the intensities of the matched and downscaled storms in
GEFS compare to their equivalents in IBTrACS. It can be seen that while the
downscaling has uplifted the GEFS intensities to being comparable to the IBTrACS
data, there are clear differences, such as the IBTrACS data having a skewed
distribution with a heavier tail than the downscaled GEFS data. IBTrACS conse-
quently sees more Tropical Storms and category 1 hurricanes, as well as more
category 5s. Given the simplicity of the downscaling, the effects of which can be
seen in these results, it was decided that only hurricane intensity storms would be
analyzed. No further sub-division by intensity (e.g., between minor and major
hurricane) is made in any of the analyses.

Fig. 10.2 Comparison of
Counts, split by Saffir-
Simpson Category, of
Matched NAHU US
Landfalls (0-km landmass)
in the IBTrACS data and the
Downscaled GEFS data. It
can be seen that while
overall counts per category
are somewhat comparable,
the statistical downscaling is
not perfect, and leads to a
less peaked + quicker
decaying distribution than
has been observed. For the
relativity comparison of this
study however, it is
envisaged that this will not
have significant impacts
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10.4.2 Extended Landmass Histories: US NAHU Landfalls,
All Categories

Table 10.1 shows the counts of NAHU landfalls in the US from the 0-km landmass
data, and the mean number of landfalls per history per extended landmass distance.
Figure 10.3 shows extended landmass histograms for the frequency of alternative
histories split by the number of US landfalling storms.

What is immediately obvious from the table is that the mean landfalls for each of
the extended landmasses are between approximately 41–52% of the observed (0-km
landmass distance) landfall number. Secondly, the table and histogram plots show a
consistent drop in US landfalling rates as the extended landmass is pushed further
and further away from the US coastline. At 400 km, the mean number of US
landfalling hurricanes in the histories is 28.5, and this drops away gradually until
the mean of 22.8 at 1300 km. The range of the data is quite stable throughout, usually
approximately +/� 8 hurricanes. It can therefore be said that this is a systematic
effect that occurs consistently across extended landmass distances.

While finding such a systematic effect was an unexpected result, it is an intuitive
one. On average, as one moves further from a coastline, the probability of a hurricane
making landfall decreases (Brettschneider 2008). Thus, this is purely a probabilistic
artefact that is imposed by the ensemble member selection from the extended
landmass generation method. This has wide-ranging impacts on reliable information
and potential conclusions that can be drawn from the results. Further discussion of
this is therefore picked up in Sect. 10.5.

10.4.3 City Specific Investigation

The box and whisker plots in Fig. 10.4 show the number of hurricanes making
landfall in the metropolitan areas of the cities Houston, Miami, New Orleans,
New York City and Tampa over the historical period used in the study for all
extended landmass distances aggregated together. While this figure was intended
to facilitate the unpicking of the relative risk of the different cities – both from a
mean activity and an extreme activity perspective – it is clear from the histograms in
Fig. 10.4 that probabilistic impacts of the extended landmass selection method will
be distorting these results. For example, Miami and New York City, both being

Table 10.1 No. of US NAHU landfalls (Cat 1–5) per landmass distance from the GEFS histories.
It should be noted that the 0-km landmass is the actual US coastline and is our GEFS based version
of the observational history. It is therefore a single history and not a mean count. The 400, 700, 1000
and 1300 km landmasses are all mean numbers of US NAHU landfalls generated from the
counterfactual GEFS histories at each of these distances

Landmass distance 0-km 400-km 700-km 1000-km 1300-km

Hurricane count 48 28.5 25.2 23.4 22.8



situated on the East Coast of the US, are much closer to the extended landmass
ensemble selection lines than the cities of Houston and New Orleans in the Gulf of
Mexico. Thus, there are likely to be probabilistic impacts that weight the east coast
cities to seeing more landfalls in the alternative histories than the Gulf coast cities.
Further, it is likely that there will be impacts even between the two east coast cities.
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Fig. 10.3 Histograms for the counts of US hurricane landfalls in each of the alternative histories for
the period 1985–2016, split by distance of the extended landmasses (top left: 400-km extended
landmass, top right: 700-km extended landmass, bottom left: 1000-km extended landmass, bottom
right: 1300-km extended landmass). The 0-km history is not shown because it is a single number, as
opposed to a distribution

There are also likely region-specific issues with the simplistic downscaling when
it comes to the North-East region. The sub/post/extra-tropical structure of the
cyclones that make landfall here tend to have a broader wind field than their tropical
counterparts, which weather forecast models more adequately capture the upper
bounds of intensities of (Hodges & Emerton, 2015). Thus, the number of hurricanes
in these regions may be over-inflated compared to the cities in the more tropical
regions.
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Fig. 10.4 Box and whisker plots for counts of hurricanes landfalling in the cities of Houston,
Miami, New Orleans, New York City, and Tampa from the counterfactual GEFS histories. Data has
been aggregated across all extended landmasses

We therefore encourage the cities in this part of the analysis to be viewed from a
single-city variability perspective, as it is hypothesized that this aspect of the results
still has the potential to be informative, if only from a fairly subjective basis. For
example, it is very intriguing to notice that there seems to have been the potential for
Miami to have been struck by up to 8 hurricanes in the historical period 1985–2016 –
and this is for histories constructed from data that could be considered probabilistically
weighted low, given what we can see for the numbers of landfalls from the counter-
factual extended landmass histories relative to the observational history. The historical
number of hurricanes observed over this period landfalling in Miami was just one.

10.4.4 Gate-Rate Maps

A key reason for stochastic modelling of Tropical Cyclone tracks is to appropriately
fill gaps and extend the variability of our observational history. This type of



variability is highlighted in the landfalling data that can be seen in Fig. 10.5, with
various hotspots of landfalling activity in stochastic TC event sets likely driven by
events that have occurred in a short historical period. While the stochastic track
modelling process does help to overcome this hotspot issue, historical statistics are
still preserved – at least to some extent – by the modelling process, and so it is always
unknown if the issue is fully overcome. It is hypothesized that the counterfactual
modelling process introduced here could help to unpick this issue because it offers
the potential to include an independent data source in identification of potential
hotspots. However, before this could be achieved, the probabilistic artefact from the
extended landmass method would need to be overcome. At present, we know that
the extended landmass selection method introduces a low bias toward landfalling US
NAHUs.
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To attempt to investigate whether the alternative histories can help to glean a
better picture on local variability, Fig. 10.6 shows hurricane frequency “gate-rate”
maps for the US that are generated by the alternative histories aggregated together.
This type of gate-rate map is a relatively standard output in evaluations of catastro-
phe model output. While difficult to glean anything concrete in this instance, it is
interesting to note that parts of south Florida and parts of the Gulf of Mexico look
comparatively much higher hazard than some of their immediate adjoining gates.
Additionally, when comparing back to the observed landfalls in Fig. 10.5, the peak
landfall gates in Fig. 10.6 are often slightly displaced from the peak regions of
observed landfalls. For example, the highest landfalling gate in the Gulf of Mexico
would likely be centered around New Orleans if derived from observations, but from

Fig. 10.5 Observed hurricane landfalls from the 0-km history (i.e., the best-estimate GEFS model-
based observed history) for the period 1985–2016



the alternative histories seems to be shifted further east toward the Florida panhan-
dle. Similarly, from observations, the highest landfalling region in Florida looks like
it would be on the mid-east coast of the state, while the alternative histories would
suggest the highest hazard gate is the southern-most gate.
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Fig. 10.6 Average number of NAHU landfalls per gate per counterfactual history for all extended
landmasses

While it is difficult to know whether these conclusions hold, they raise important
questions about how much trust should be put in probabilities derived from our
single observed history, and thus in the stochastically derived risk estimates. This
was the premise from which we hypothesized that these analyses could have real-
world value. However, we have to stress at this point that the results should not be
used practically given the biases apparent from the sampling issues driven by the
extended landmass track selection process. Having said this, we believe that, from
the foundational work presented herein, if the biases can be overcome there is large
potential value in the use of these data from which to build probabilistic views of risk
that are independent from traditional stochastic modelling techniques.

10.5 Discussion

Most importantly, there is a simple probabilistic US landfall artefact that falls out of
the alternative history building from the method employed herein. As we move
further and further from land, there is, on average, a lower and lower chance of a



storm making landfall. For example, if we were to select a random storm near the
Caribbean, it might have a 60% chance of US landfall, but if we selected a storm off
the coast of Africa, it might have a 30% chance of making landfall. Thus, when
adding ensemble members to the counterfactual histories from further and further
away, the probability of US landfall, on average, is weighted further and further
down. It is therefore currently impossible to use the data to compare to our 0-km data
and objectively make statements such as “across the entire US, we have been
unlucky/lucky in our observational history”. The probabilistic artefact imposes an
inability to reliably infer spatial information across the US coastline from this
analysis.
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A possible evolution of the method to overcome this issue could be to construct
extended landmasses that have a consistent objective probability of US landfall, and
to attempt to normalize the event rates of the ensemble history at a single “proba-
bility” distance to the US, as opposed to an arbitrary geographical/spatial distance.
However, the spatial pattern of probabilistic landfalls is neither simple nor static in
time, and it itself would have to be driven by historical data; this would negate the
benefit of doing this type of analysis in the first place, especially because we are
aiming to move beyond historical data to increase our understanding of uncertainty
in observationally derived stochastic hazard modelling.

This therefore represents an important question: how can we construct alternative
histories from model data in such a way to allow us to derive novel probabilistic
information? While this question may seem somewhat narrow in scope with this
single application (i.e., generating counterfactual NAHU histories) in mind, the
impacts of this are much more wide-ranging, and likely extend to the modelling of
any other atmospheric peril, as well as more longer-term climate change risk-
oriented questions.

Thus, while these limitations currently exist in the results, it seems likely that
overcoming them has the potential to unlock many opportunities for enhancing
views of atmospheric hazard for many risk-focused practitioners.

10.6 Suggestions for Future Research

As the discussion section presented, if the valuable applied aspects of this work are
to be achieved, it is the probabilistic challenge presented in previous sections that
needs significant attention. Further than this, there are two other immediate avenues
of research that would be valuable to address given the limitations already imposed.

The first is in addressing the tropical cyclogenesis aspect to include non-observed
hurricanes in alternative histories. While it could easily be included in the method-
ology above, it will introduce another complex issue that will need to be overcome
before the data are fully coherent. The second would be to add alternative NWP
models into the study to see how much model difference drives variability in the
results.
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