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Abstract

Soil moisture is a crucial meteorological variable to understand land surface and atmospheric

processes like the water cycle, the carbon cycle and the energy balance. However, its link with

those processes makes the measurement and modelling difficult. Data assimilation is a mech-

anism to combine observations with modelled estimates and uncertainties to provide the best

prediction for the state or parameter of a system. Proper uncertainty representation is an essen-

tial procedure to get a skilful result from the data assimilation.

In this thesis, we demonstrate uncertainty representation techniques in the forcing data, numer-

ical models and the parameters for soil moisture data assimilation. We use the Joint UK Land

Environment Simulator land surface model to estimate soil moisture and the Ensemble Trans-

form Kalman Filter and the four-Dimensional Ensemble Variational data assimilation methods to

combine soil moisture estimates with observations. Satellite observed, synthetic and in-situ soil

moisture data are assimilated.

When in-situ soil moisture observations for three soil layers are assimilated, employing stochas-

tic forcing via generated rainfall to account for errors in observed rainfall has shown substantial

improvement for ensemble spread as well as forecast skill of posterior surface soil moisture.

However, additional stochastic forcing via model error is needed to improve forecast skills for the

deeper layers. For parameter estimation, prior soil texture parameter errors are represented by

the Dirichlet distribution where both share positivity and boundedness. Synthetic data assimila-

tion results show that truth parameters can be recovered even though prior parameters are less

informed. The advantage over the Gaussian distribution is that the Dirichlet distribution automat-

ically assigns correlations for the prior covariancematrix. The robustness of themethod is tested

for different soil types. Posterior parameters obtained from assimilating in-situ and satellite ob-

servations showed improvement in soil moisture forecast skills beyond the assimilation window. It

is also shown that satellite observations are representative of the state of soil moisture for areas

with no or less woody vegetation cover.
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Chapter 1

Introduction

1.1 Motivation

Surface soil moisture is a crucial variable which plays a vital role in land surface hydrology and as

a result controls the land-atmosphere interactions. It links fundamental earth system processes:

the water cycle, energy balance and carbon cycles (Legates et al., 2011). Figure 1.1 shows a sim-

ple representation of the water cycle, linking the land surface and the atmosphere. Root zone soil

moisture determines the amount of evaporation and transpiration and related latent heat flux. It

also determines howmuch of the thermal infra-red radiation is reflected into the atmosphere, de-

termines the sensible heat flux and ground heat fluxes (Reichle et al., 2001; Margulis et al., 2002;

Reichle et al., 2002; O’Neill et al., 2017). Furthermore, soil moisture is an important variable to

forecast extreme weather events like drought and flooding and to suggest solutions for some of

the pressing issues of the globe: food insecurity, displacement and disease outbreaks.

In the years between 1900 and 2013, there were 642 drought events reported across the

world, and 291 (45%) were from Africa where agriculture is mainly based on rain-fed farming.

Particularly in Sub-Saharan Africa, 90% of the staple food production comes from rain-fed farm-

ing (Cooper et al., 2008) and a slight rainfall variability jeopardises food security which affects

millions in the region (Boyd et al., 2013). Soil moisture deficit, drought, is responsible for up to

60% of the losses for Africa’s staple food produce (Tadele, 2017).

To mitigate the effects of drought, different early drought warning and monitoring mech-

anisms have been developed. The Standard Precipitation Index (SPI) uses precipitation as a
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Introduction

Figure 1.1: Schematic representation of water cycle reproduced from Fandel et al. (2018).

drought indicator. However, precipitation is highly variable and using soil moisture (together

with groundwater) is preferable to precipitation since it can indicate the effects of natural water

demand and balance (Houborg et al., 2012). Luo et al. (2008) developed a drought index: the per-

centile of the current soil moisture with the climatology distribution. Sheffield and Wood (2008)

used soil moisture-based drought index to characterised the duration, intensity and severity of

a drought for the years 1950 − 2000. Narasimhan and Srinivasan (2005); Engda and Kelleners

(2016); Steinemann and Cavalcanti (2006); Luo et al. (2008) and Velpuri et al. (2015) also used

soil moisture for drought characterisation.

Soil moisture-based drought indices are better than precipitation-based indexes since soil

moisture responds to both precipitation and evapotranspiration (Engda and Kelleners, 2016). On

average, around 14% of the precipitation fall on land remains after three days in the top 5 cm of

the surface soil layer (McColl et al., 2017). From the study by Black et al. (2016) we can see that

water availability to plants can be described by the variable Ô defined as

Ô =


1 if Ú ≥ Úc

Ú−Úw

Úc−Úw
if Úw < Ú < Úc

0 if Ú ≤ Úw

(1.1)

where Ú is volumetric water content, Úc is the critical water content, and Úw is the wilting point.

Ô ranges between zero and one. When it is one, water stress does not affect plant growth (Clark
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et al., 2011).

Figure 1.2 shows the correlation of rainfall with soil moisture on the surface and beta as well

as the correlation between soil moisture and beta for three time periods for a region in Zambia,

the variable Ô has a better correlation with soil moisture than rainfall. . The main objective of the

study is to supply a weather insurance index which characterises agricultural drought based on

ensembles of satellite observed rainfall from Tropical Application of Meteorology Using Satellite

Data and Ground-Based Observations (TAMSAT) (Maidment et al., 2014). The figure suggested

that soil moisture is a better indicator of beta than rainfall is, i.e. how stressed plants are can be

better determined by soil moisture than by rainfall.

Figure 1.2: correlation between rainfall and upper-level soil moisture (left); upper-level soil moisture and

beta (middle); rainfall and beta (right) for (from top to bottom) May-August, September-October, Novem-

berApril. Black circles are the localities for which loss data are available; blue circles represent the loca-

tions in Zambia considered in the study (from west to east: Chikanta, Magoye, Makafu). The rainfall in the

figure is from an example TAMSAT ensemble member where top-level soil moisture and beta are outputs

of the Joint UK Land and Environment Simulator (JULES) processed-based land surface model by forcing

with the TAMSAT rainfall. This figure is adapted from Black et al. (2016).

Flooding affects the lives of individuals and as well as the economy (Silvestro et al., 2019).
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For example, in 2007, 8349 people were killed, more than 21 billion $US economic damage was

recorded, and 164million people were affected by flooding (Pappenberger et al., 2008). Soil mois-

ture is useful for flood prediction systems. Massari et al. (2018) used soil moisture to enhance

the skill of predicting and characterisation of flooding. In their work, the estimation of rainfall and

soil moisture estimation from a river flow model is improved by the help of surface soil moisture

observations.

Soil moisture is vital to investigate the effects of changing climate for carbon uptake (Zhao

and Li, 2015; Green et al., 2019). A prolonged dry condition impacts the plant transpiration and

photosynthesis, and hence it degrades the carbon uptake of the land. As a result, the ecosystem

could change from dense vegetation to grassland, for example, due to extended moisture stress

(Zeng, 1999; Seneviratne et al., 2010). Vegetation loss is directly related to the available soil

moisture which can change land surface properties like surface albedo, evapotranspiration and

then precipitation as a result of the soil moisture feedback (Koster et al., 2014; Zhang et al.,

2008; Liu et al., 2010). For the regions of moderate soil wetness where available soil moisture

limits evapotranspiration, the land-atmosphere coupling is strong. When soil moisture is between

the wilting point (below which there is no evaporation) and critical soil moisture (above which is

the maximum evapotranspiration), soil moisture is a determining factor for evapotranspiration

(Seneviratne et al., 2010).

Extreme weather events need more attention with the growing population, and climate

change will most likely exacerbate their occurrence and impact. Hence, accurate knowledge

of the state of the soil moisture can save lives and reduce suffering. As such, soil moisture ob-

servations are a valuable source of information to help characterise the occurrences and related

impacts of extreme events. The following section discusses the state of global soil moisture ob-

servations.

1.2 Soil moisture observations

Soil moisture content can be expressed in terms of mass (gravimetric) or volume. The gravimetric

representation is the ratio of the mass of water to the mass of dry soil (kgkg−1) whereas the

volumetric water content (m3m−3) is a ratio of the volume of water to the sum of the volume of

water, gas and soil.
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The gravimetric methods require soil sample collection, weighing before and after drying the

samples and calculating the soil moisture content. While known to be accurate and mostly used

for a one-time soil moisture measurement, these methods are labour intensive and disruptive as

they involve removing the soil sample physically and sending samples to the labs. Hence, using

gravimetric methods for continuous-time record of soil moisture is not feasible. An alternative

approach is an indirect method by measuring one variable and converting it into water content

using known relationships between water content and the measured variable. Indirect methods

can be implemented from very small spatial coverage (point measurement) up to large area cov-

erage. Satellite observations are remotely sensed, indirect measurements where the measuring

resolution could be up to 50 km by 50 km.

In-situ measurements which use indirect methods with automated networks for data entry

are a very efficient way of obtaining soil moisture observations, example the Mesoscale Networks

soil moisture data: see subsection 3.2.2. The advantage of such measurements is the ability to

be obtained at different soil depths, but it is not feasible to have such networks globally. In fact,

such measuring networks are limited to the developed world while soil moisture observations

are necessary for Africa’s agriculture where most of the farming is reliant on rainfall and highly

susceptible to drought. Mohanty et al. (2017) showed that only three in situ soil moisture sites

are present in Africa to validate satellite observed soil moisture data.

The International Soil Moisture Network, (ISMN) is an international effort to provide open

access to a homogeneous and quality-controlled data archive of in-situ soil moisture measure-

ments at several depths, Dorigo et al. (2011a), Dorigo et al. (2011b). This is a valuable resource

for scientific research, model calibration and validation. In addition to soil moisture, related vari-

ables like temperature and precipitation are included in the ISMN dataset. However, despite the

effort, the contributors to the network are mainly from the developed world. Top layer obser-

vations from in-situ measurements are important to validate observations from the satellites

despite the difference in spatial resolution.

Satellites, on the other hand, can observe the whole globe within few days but limited to

the top surface of the soil, up to 5 cm. Figure 1.3 is global volumetric soil moisture content

from the Soil Moisture Active Passive (SMAP) satellite, observed between June 1 - 7, 2015. The

SMAP satellite was launched in January 2015 to provide global soil moisture observations with

coverage every two to three days (O’Neill et al., 2017) to retrieve soil moisture in addition to
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existing satellite missions. For example, Scanning Multichannel Microwave Radiometer (SMMR)

and the Special Sensor Microwave - Imager (SSM/I) have been providing soil moisture retrievals

in the duration between 1978−1987 and 1987−2007 respectively. Karthikeyan et al. (2017) have

listed such other satellite missions.

Figure 1.3: SMAP volumetric soil moisture, June 1 - 7 2015 (O’Neill et al., 2017)

The availability of satellite soil moisture observations has made it possible to fill the gaps

due to lack of in-situ soil moisture data in a variety of applications. Lu et al. (2011) characterised

climate change and showed the changing pattern of climate in Africa using satellite soil moisture

observations. They retrieved 20 years (1988 - 2007) daily soil moisture data from Special Sen-

sor Microwave/Imagery (SSM/I) using a radiative transfer model. They computed the difference

between the second and first decade-average summer soil moisture, JJA for the Northern region

and DJF for the Southern region. It was indicated that the southern and central Africa is getting

wetter and Northern Africa is drier.

Wagner et al. (2013) highlighted the importance of satellite soil moisture data, from Ad-

vanced Scatterometer ASCAT, for several applications. They demonstrated applications in nu-

merical weather predictions, runoff forecasting, vegetation and crop growth monitoring, epi-

demic risk assessment and societal risk assessment for different parts of the world. Baugh et al.

(2020) analysed the impact of soil moisture data from Soil Moisture and Ocean Salinity (SMOS)

for streamflow predictions. Zhao et al. (2016) estimated global soil moisture using brightness
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temperature observations (highly correlated to soil moisture) from AMSRE.

In the cases where both direct and indirect soil moisture observations are absent, numerical

models can be used as a source of information about the state of the soil moisture based on the

known physics and meteorology at hand. The following section discusses the role of land surface

models for soil moisture prediction.

1.3 Land surface models

Land surface models (LSMs) play a major role in understanding the interaction between the land

surface and the atmosphere. They are essential parts of climate models to provide land surface

information on climate projections (Pitman, 2003). It is crucial to represent land surface pro-

cesses as accurate as possible in climate models to understand the changing climate. This is

because land surface variables like soil moisture, for example, as explained above, play a major

role in climate projections.

The ultimate power of land surface models other than helping to understand the dynamical

system of interest is that, they can predict the state of the system at the future time which obser-

vations can not tell and with a required spatio-temporal resolution. In the case of soil moisture,

land surface models provide estimates at various depths of the soil and without time gaps, as

long as the meteorological forcing variables are available. Based on the fundamental relation-

ship of variables, land surface models are also able to output variables or parameters which can

not be directly observed.

However, the limitation of land surface models, as any other numerical model, is the uncer-

tainty in the predicted values. Either due to the model uncertainty representing the physical pro-

cess, uncertainties in the meteorological data used to force the model and/or errors in parame-

ter values used, the prediction could be far from the observed data. Mathematical simplifications

to avoid over-parametrisation of the model or missing processes are a source of uncertainty in

land surface models (Notaro, 2008). Observations of meteorological variables like rainfall and

temperature are subject to measurement errors. And also a representation of highly complex

processes in land surface models is a rough approximation given heterogeneous land surfaces

in reality. Therefore, soil moisture estimates from land surface models are subject to errors due

to the errors in the model formulation, parameters used and uncertainties in the meteorological
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forcing data used to integrate the model.

1.4 Data assimilation

Independently, neither observations nor numerical models are perfect to represent the state of

the system. In-situ observations are better in accuracy but sparse in spatial coverage. Whereas

satellite observations are great in spatial coverage but limited to the top surface of the earth. On

the other hand, numerical models give estimates without time and space resolution or coverage

limitations provided that meteorological forcing data are available but could provide forecasts

which are far from the observed reality. Hence, combining observations with numerical models

can optimise the quality of estimates from numerical models. The technique called data assimi-

lation is a mechanism which enables us to combine numerical model outputs with observed data

and its uncertainty to obtain themost likely state of the system. Data assimilation is an important

procedure for different purposes in the environmental forecasting - meteorology, oceanography

and hydrology (Reichle, 2000). Especially in meteorology, weather forecasts are updated multiple

times a day by incorporating observations from different sources. In many operational weather

forecast centres, the forecast skill has improved as a result of data assimilation in addition to

advancements in the modelling and computing resources (Bauer et al., 2015; Dee et al., 2011).

In hydrology data assimilation is used for several purposes: to improve the estimation of the

root zone water content (Heathman et al., 2003), to improve the estimation of soil moisture and

streamflow (Lievens et al., 2015), for flood forecasting (Silvestro and Rebora, 2014), to study the

effect of assimilating the surface soil moisture on hydrological processes (Han et al., 2012) and

to estimate parameters for numerical models (Pinnington et al., 2018), to mention a few.

Ensemble-based data assimilation methods use ensembles of model runs to represent un-

certainties in the model state. In doing so, an appropriate spread among ensemble members is

an important step. However, due to small sample size or unaccounted for model error, under-

estimation of ensemble spread, which is known as ensemble collapse, will occur. The ensemble

spread being small is associated with high certainty, hence the posterior estimate from the data

assimilation will rely on the prior model state and will disregard observations. This leads to a

long-standing problem in ensemble data assimilation, which is called filter divergence (Wu et al.,

2013). In such a case, the growth of ensemble spread over time is smaller than the growth of root
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mean square error of the ensemble mean. Covariance inflation, additive, multiplicative or a com-

bination of them, are techniques which have been implemented to mitigate the issue of ensemble

collapse (Hamill andWhitaker, 2011; Luo and Hoteit, 2013; Wu et al., 2013). A special case where

ensemble collapse is acceptable is when repeated wetting and drying events eventually draw all

ensemble members to the same upper and lower bounds. In this case, observations and model

estimates will match, and ensemble collapse will not be a problem. This implies that there is no

need for the data assimilation as observations and model estimates agree within the observation

error.

In this thesis, we deploy stochastic forcing based on uncertainties of the forcing data, pa-

rameters and also in the model itself to enhance the ensemble spread of the prior model state.

By doing so, we aim to alleviate the filter divergence, and posterior soil moisture will benefit from

observations. As such, ensemble spread of posterior soil moisture will be a better predictor of the

accuracy of the ensemble mean of the posterior soil moisture. The following section discusses

the details of the aim of this thesis.

1.5 Thesis Aims

The aim of the thesis is to address the fundamental science of how data assimilation systems

should be developed for soil moisture assimilation, improving uncertainty representation for a

prior distribution, with physically meaningful mechanisms. This will enable us to improve the

skill of soil moisture forecast beyond the assimilation period. The JULES model, both in its full

implementation and only the water balance part (DRBC model: abbreviated for Darcy Richard

Brooks and Corey) is used to implement the data assimilation experiments with the following

objectives:

1. Apply stochastic forcing to generate ensemble spread for the ETKF

Ensemble forecasts of the DRBC model by initial condition perturbation have small spread.

This leads to ensemble collapse, where the model forecast statistics is represented by a

single ensemble member. Having small spread means the forecast has high certainty and

observations will not have a substantial impact when assimilated. Here we are addressing

the question:

Can we use stochastic forcing to generate ensemble spread for soil moisture data assimi-
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lation with ETKF?

2. Determine whether or not non-Gaussian distributions can be used to initialise model

ensembles for 4DEnVar

The four Dimensional Ensemble Variational (4DEnVar) uses ensemble perturbations from

the full nonlinear model trajectories to approximate the tangent linear and adjoint models.

The initialisation of those ensemble members which give rise to ensemble perturbations for

the 4DEnVar is usually done by sampling the parameter or state of interest from a prior

covariance matrix, assuming a Gaussian error. However, the parameters we consider here,

soil texture parameters, do not have Gaussian distributed errors but share fundamental

properties of other distributions, positivity and boundedness. Hence, we aim to answer:

Can the Dirichlet distribution be used to initialise model ensembles for 4DEnVar?

3. Investigate the improvement of soil moisture forecast skill as a result of posterior pa-

rameters

Assimilating soil moisture observations has been a way to improve estimates of soil mois-

ture from land surface models. As soil texture parameters are related to soil moisture es-

timates, parameter estimation using observed soil moisture data is essential. Hence, the

question we are asking is:

Does parameter estimation improve soil moisture forecast skill beyond the assimilation win-

dow?

1.6 Thesis outline

The rest of the thesis is organised as follows.

• Chapter 2 reviews different types of data assimilation methods and soil moisture data

assimilation studies. Challenges of existing data assimilation methods and improvement

strategies are discussed.

• Chapter 3 presents general information about the sites considered in the experiments. Fur-

thermore, the JULES land surface model and the hydrological part of it (called DRBC), me-

teorological forcing data and soil moisture data used for the data assimilation experiments

are described.
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• Chapter 4 shows techniques of ensemble spread generation in the DRBC model for ETKF.

Stochastic forcing is imposed into the model based on errors in the rainfall data and model

error. Data assimilation results show that stochastic forcing helps the model to gain spread

and improve soil moisture estimates.

• Chapter 5 introduces new sampling techniques for non-Gaussian prior errors. Soil tex-

ture parameters are positive and bounded and are sampled from the Dirichlet distribution.

Data assimilation results obtained from assimilating synthetic observations showed that it

is possible to restore the true parameters even if the prior is wrongly specified.

• Chapter 6 uses the sampling technique introduced in chapter 5 and presents the imple-

mentation of soil moisture data assimilation for parameter estimation. In-situ and satel-

lite observations assimilated into the JULES land surface model shows that posterior soil

moisture is more skilful compared to the prior estimate as a result of posterior parame-

ters. Retrospective forecast of soil moisture estimates with posterior parameters shows a

great improvement in accuracy compared to an open-loop model run which uses the prior

parameters.

• Chapter 7 summarises the findings of the thesis, presents the scope and limitations of the

work and suggests further work opportunities.
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Chapter 2

Review of data assimilation methods

and soil moisture data assimilation

In this chapter, we introduce data assimilation and review the literature on soil moisture data

assimilation. Section 2.1 introduces different data assimilation methods where subsection 2.1.1

and subsection 2.1.2 gives description of the methods used in this thesis. Section 2.2 discusses

studies on soil moisture data assimilation which are relevant for the work in this thesis.

2.1 Introduction to data assimilation

Data assimilation (DA) is a mathematical technique which aims to find the most likely estimate

of the true state or parameter, known as analysis or posterior, by optimally combining the prior

estimate from a numerical model with available observations and associated uncertainties. Pro-

viding the prior estimate involves finding the best guess for the initial state of the model and its

uncertainty. DA methods can generally be classified into variational and sequential. Sequential

methods solve the system of equations needed to find an optimal solution explicitly whenever

observations are incorporated. In conjunction with the optimal solution, the associated uncer-

tainty is also obtained at each assimilation step. Variational methods solve the system of equa-

tions needed to find an optimal solution implicitly by minimising the cost function, i.e. the misfit

between observations and model estimate, by considering all available observations in the as-

similation period. Then the optimal solution serves as an initial condition to obtain an optimal

trajectory of the model state. In both approaches, the uncertainties for the prior and observation
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are assumed to be Gaussian.

For Numerical Weather Prediction (NWP), for example, models are chaotic (small pertur-

bation of initial conditions can lead to a significant deviation in the model integration at later

times), data assimilation mostly focuses on finding better initial conditions. Whereas land sur-

face models are not chaotic, hence determining the error statistics in the forcing data and model

parametrisation aremore important for land surface data assimilation than improving initial con-

ditions (Darvishi and Ahmadi, 2014). In this thesis, we use variants of both sequential and varia-

tional methods and subsection 2.1.1 and subsection 2.1.2 discuss those methods in details.

Consider a dynamical system which describes the true state of the system by:

xt+1 =Mt+1,t(xt) (2.1)

were x ∈ Rn is a state vector andMt+1,t is a non-linear model which updates the state at time t+1

from time t. As the true state is unknown, the initial guess (xb ∈ Rn) and observations (y ∈ Rm)

are only approximations of the true state such that

xb = x+ ×b (2.2)

y =H(x) + ×o (2.3)

where ×b and ×o are background and observation errors respectively which are assumed to

be uncorrelated, unbiased and Gaussian with known covariances B = �[×b(×b)T ],R = �[×o(×o)T ],

H :Rn→Rm is the observation operator which maps the state space into the observation space,

can be linear or non-linear. The best estimate of x, called analysis or posterior xa, is the most

likely representation of the observations given the prior. In the following sections, we describe

the process of finding xa for sequential and variational methods.

For a probability density functions, pdf, the Bayes’ theorem gives us a basis for finding the

posterior such that:

pa(x|y) = pb(x)po(y|x)
po(y)

(2.4)
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where pa(x|y) is the pdf for the posterior, pb(x) is the pdf for the prior, po(y|x) is pdf for the

observations given the prior and po(y) is pdf for the observations (normalising factor).

As we are aiming to maximise the probability of pa(x|y), the normalising factor which is con-

stant wrt x can be omitted, hence

pa(x|y) ∝ pb(x)po(y|x). (2.5)

Assuming Gaussian probability density functions for pb(x) and po(y|x), applying the Bayes’

theorem and dropping constants results Equation 2.6:

pa(x|y) ∝ exp

(
−1
2
(x− xb)TB−1(x− xb)− 1

2
(y−H(x))TR−1(y−H(x))

)
(2.6)

While the objective is to maximize pa(x|y) in Equation 2.6, sequential and variational data as-

similationmethods differ in their approach. The following two sections describe how eachmethod

solves Equation 2.6.

2.1.1 Sequential methods

The basis for sequential data assimilation is the Kalman filter (KF) which was introduced by

Kalman (Kalman, 1960). The forecast and analysis steps are obtained sequentially together with

the error statistics. The method assumes that the model representing the dynamical system and

observation operator are linear and error statistics follow the Gaussian distribution.

The Extended Kalman Filter (EKF) is an extension of the KF when the system is non-linear.

It can give a good approximation of the posterior for a weakly non-linear observation system;

however, as the nonlinearity increases, the accuracy of the approximation declines (Hunt et al.,

2007). Incorporation of ensemble techniques in sequential data assimilation methods become

necessary to approximate the covariance evolution with a few ensemble members than the num-

ber of model runs required by EKF; hence the Ensemble Kalman Filter arises.

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation method which uses a
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Monte-Carlo approach to represent the error covariance matrix and use Bayes’ theorem to de-

termine the posterior pdf with a Gaussian assumption (Evensen, 1994; Margulis et al., 2002).

Compared to EKF, it is easier to calculate the forecast error covariance matrix. The downside of

EnKF and its variants is ensemble collapse where all ensemble members converge to a single es-

timate, i.e. ensemble spread becomes very small, and it does not have proper representation of

the model uncertainty. In such a case, the posterior estimates will be nearly identical to the prior

as observations will be disregarded due to the system being overconfident on the model.

The Ensemble Transform Kalman Filter (ETKF) is one of the variants of the EnKF which be-

longs to the family of Square Root Filters (SRFs) methods. Bishop et al. (2001) first introduced

it. Here we give a mathematical description of the ETKF by using the notations from Bishop et al.

(2001) and illustrations from Fairbairn (2009) and Hunt et al. (2007). The equation for the analy-

sis is similar to the original Kalman filter when the perturbation matrix replaces the background

error.

Consider Ne ensemble members of n dimensional model state vector and non-linear model

operatorM introduced in Equation 2.1 with the notation superscript a representing the analysis

(posterior) and superscript b representing background (prior) state,

{xa,it : i = 1,2, ...,Ne}. (2.7)

The following equation describes the evolution of the analysis state to give a new background

with a non-linear modelM:

x
b,i
t+1

=Mt+1,t

(
x
a,i
t

)
+ ×t (2.8)

where ×t ∼ N (0,Q) is a stochastic model error drawn from a Gaussian distribution with error

covariance matrix Q.

The background ensemble perturbations matrix, scaled by number of ensemble members Ne

is given by

Xb(∈�n×Ne ) =
1

√
Ne −1

(xb,1 − xb ,xb,2 − xb , ...,xb,Ne − xb) (2.9)
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where x̄b is ensemble mean

x̄b =
1

Ne

Ne¼
i=1

xb,i .

Here the time subscript is omitted. The background error covariance matrix becomes

Pb = Xb(Xb)T . (2.10)

The state ensemble members can be mapped to the observation space by

yb,i = Hxb,i (2.11)

The forecast ensemble perturbations become

Yb = HXb (2.12)

Then substituting equation 2.10 into the Kalman gain (of the Kalman Filter) equation becomes

K = PbHT (HPbHT +R)−1 (2.13)

= Xb(Xb)THT (HXb(Xb)THT +R)−1 (2.14)

= Xb(Yb)TS−1,S = HXb(Xb)THT +R (2.15)

x̄a = x̄b +K(y− ȳb). (2.16)

The analysis error covariance matrix is given by

Pa = (Ne −1)−1
Ne¼
i=1

(xa,i − x̄a)(xa,i − x̄a)T (2.17)

= (Xa)(Xa)T (2.18)

= (I−KH)Pb (2.19)

= (I−Xb(Yb)TS−1H)Xb(Xb)T (2.20)

= Xb(I− (Yb)TS−1Yb)XbT . (2.21)
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The analysis ensemble perturbation matrix Xa is updated according to

Xa = XbT (2.22)

such that

TTT = I− (Yb)TS−1Yb . (2.23)

Then the analysis step which maximises Equation 2.6 is updated by

xa = x̄a +Xa (2.24)

The ETKF is different from other Square Root Filters in finding the Tmatrix using the identity

I− (Yb)TS−1Yb = (I+ (Yb)TR−1Yb)−1. (2.25)

Using the above method is preferable because inverting the matrix R is much simpler than invert-

ing S. Then using the eigenvalue decomposition we get

(Yb)TR−1Yb = UËUT (2.26)

⇒ TTT = U(I+Ë)−1UT (2.27)

⇒ T = U(I+Ë)−1/2 (2.28)

where U is orthogonal andË is diagonal matrices. Once we get the analysis ensemble mean and

the analysis ensemble perturbation matrix, the analysis update evolves according to equation

2.24. The main advantage of ETKF is the easy in calculating (I +Ë)−1/2 since both matrices are

diagonal.

When the dynamical model is not chaotic (as in the case of DRBC model), ETKF suffers from

ensemble collapse. From equations 2.13 and 2.16, ensemble collapse refers to minimal value

for Pb , which makes the analysis mean mainly dependant on the background mean. As a result,

observations will have a very small influence and will not impact the analysis mean.
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2.1.2 Variational methods

Variational data assimilation methods are widely used in many meteorological services and have

been successful in forecasting the weather for a long time. Specifically, the four-dimensional

variational (4DVar) method is among the most commonly used (Lawless, 2013). However, one of

the caveats of using themethod is that calculating the tangent linear and adjoint models is costly

for complex models and large dimensional problems. Since its first implementation in 1997 at the

European Centre for Medium-RangeWeather Forecasts (ECMWF), the four-dimensional variational

(4DVar) data assimilation method becomes a preferred data assimilation method at most leading

operational Numerical Weather Prediction (NWP) centres (Köpken et al., 2004; Milan et al., 2019).

Its capability to assimilate observations at different times and being highly constrained to the

model dynamics makes it preferable among other data assimilation methods.

The objective in using the 4DVar is to minimise the misfit between the background and model

predicted state of the modelled dynamics and between observations and model predicted obser-

vations. Mathematically, the error or misfit distance is represented as:

J(x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+
1

2

N¼
t=0

(
yt −Ht(Mt,0(x

b)
)
)TR−1

(
yt −Ht(Mt,0(x

b))
)
, (2.29)

∇xJ = B−1
(
x− xb

)
+

N¼
t=0

MT
t,0H

T
t R
−1

(
yt −Ht(Mt,0(x

b))
)
, (2.30)

where B is the background error covariance matrix, Mt,0 = Mt−1Mt−2, ...,M0 is tangent lin-

ear model such that Mt =
�Mt,t−1(xt)

�xt
, MT

t,0 is the transpose of the tangent linear model or adjoint

model. Ht =
�Ht(xt)

�xt
is the tangent linear of the nonlinear observation operator. Here, the back-

ground error covariance matrix B is constant with time even though it evolves with the model

dynamics implicitly. Also, for some application like in meteorology, for example, the background

error covariance matrix B could become large or ill-conditioned and difficult to find the inverse as

a result. Then minimisation of Equation 2.29 could be slow and may not converge efficiently. To

avoid the computation of B and it’s inverse explicitly and to make sure Equation 2.29 converges

efficiently, preconditioning has been used (Bannister, 2017; Tian et al., 2008)
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Define U, a preconditioning matrix as:

B = UUT (2.31)

and

x = xb +Uw (2.32)

Substituting Equations 2.31 and 2.32, Equation 2.29 becomes

J(w) =
1

2
wTw+

1

2

N¼
t=0

(
HtMt,0Uw+dt

)T
R−1 (HtMtUw+dt) (2.33)

with tangent linear approximation

Ht(Mt,0(xb +Uw)) ≈Ht(Mt,0(xb)) +HtMt,0Uw, (2.34)

and

dt = yt −Ht(Mt,0(xb)). (2.35)

Now the explicit computation of the B is avoided so long as U, and w are known, but still

the tangent linear and adjoint models are needed for Equation 2.33. To ease those difficulties in

using the 4DVar but still keeping its non-sequential nature, there have been lots of efforts from

researchers (Tian et al., 2008; Liu et al., 2008; Bannister, 2017). The two main improved variants

of 4DVar are hybrid four-dimensional variational (hybrid-4DVar) and four Dimensional Ensemble

Variational (4DEnVar). In hybrid-4DVar, the background error covariance matrix is obtained by

blending the climatology error covariance matrix and the forecast error covariance matrix from

ensemble perturbations, tangent linear and adjoint models still required. Whereas in 4DEnVar,

the tangent linear and the adjoint models are not needed, and forecast error covariance matrix

is used from ensemble perturbations (Liu et al., 2008; Bannister, 2017).

The 4DEnVar uses ensembles of the full non-linear model trajectories to calculate the tan-

gent linear and adjoint models. As a result, approximations of the tangent linear and adjoint

Page 19



Review of data assimilation methods and soil moisture data assimilation

models become obsolete in the 4DEnVar. Here we give formulation of the 4DEnVar using the

notations from Liu et al. (2008).

Using a background perturbation Xb as described in Equation 2.9, the background error can

be approximated as

B ≈ XbXbT . (2.36)

The analysis is described by

x = xb +Xbw, (2.37)

(2.38)

where the vector w(∈ �n×1) provides the weights of each ensemble perturbations. Then the cost

function of the 4DEnVar becomes:

J(w) =
1

2
wTw+

1

2

N¼
t=0

(
HtMt,0X

bw+dt

)T
R−1

(
HtMtX

bw+dt

)
, (2.39)

and the gradient of the cost function is

∇wJ = w+

N¼
t=0

(HMXb)TR−1(HMXbw+dt). (2.40)

From the idea of the EnKF, the perturbation in the observation space becomes:

HMXb ≈ 1
√
Ne −1

(Ht(Mt,0(x
b,1))−Ht(Mt,0(x

b)),Ht(Mt,0(x
b,2))−H(Mt,0(x

b)), ...,

Ht(Mt,0(x
b,N ))−Ht(Mt,0(x

b))). (2.41)

As a result of the approximation in equation 2.41, the 4DEnVar avoids approximations of the tan-

gent linear model (M), adjoint model (MT ) as well as tangent linear approximation of the obser-

vation operator H which are needed in equations 2.39 and 2.40.

Liu et al. (2008) tested their newly formulated data assimilation method, 4DEnVar for one-

dimensional shallow water model and compared experimental results with 4DVar and EnKF. 4DEn-
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Var was able to give analysis which is as good as the analysis from 4DVar and EnKF but with less

computational cost. Liu et al. (2009) implemented with the Advanced ResearchWeather Research

and Forecasting (ARW-WRF) model. Experimental results of 4DEnVar were compared with three-

dimensional Ensemble Variational (3DEnVar), and they reported that 4DEnVar has overall better

analysis. Buehner et al. (2010) Compared the performance of 4DEnVar with EnKF and 4DVar (us-

ing static and flow-dependent Bmatrices) using the Environment Canada operational model. The

meteorological data they assimilated are from different sources, radiosondes, aircraft and satel-

lites. They have shown that 4DVar with evolving B matrix (4DVar-Ben) outperformed all other

data assimilation methods, whereas 4DEnVar has similar performance as EnKF but better than

the 4DVar with static Bmatrix.

Similarly, Fairbairn et al. (2014) compared ensembles of 4DEnVar with 4DVar and EnKF for

the best analysis. A toy model (Lorenz 2005, which represents waves propagation of unspecified

atmospheric quantity) was used for the data assimilation experiments. They demonstrated that

4DVar with perfect climatology B matrix performed less than the other two methods with flow-

dependent B matrix. When a similar flow-dependent background error covariance matrix is used

for all the three methods, similar analysis error was obtained. It was also shown that for large

ensemble size, ensemble-based methods perform significantly better than the 4DVar as they use

flow-dependent background-error covariance matrix. Whenever considering large ensemble size

is possible, ensemble-based methods are preferable as they avoid calculating the tangent linear

and adjoint models approximations with a reasonable high rank and flow-dependent representa-

tion of the background error covariance matrix.

So far, the implementation of the 4DEnVar uses a background error covariance matrix from

existing data assimilation systems and with a Gaussian assumption. The problem we are dealing

with here is, soil texture parameters (discussed in chapter 5) are positive and have bounded sum,

errors do not follow a Gaussian distribution. However, there are cases where the problem under

consideration is non-Gaussian, for example, in the case of soil texture parameters. In this thesis,

we demonstrate the use of non-Gaussian distributions for the 4DEnVar. Chapter 5 presents the

statement of the problem and experimental results.
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2.2 Soil moisture data assimilation

In this section, we review soil moisture data assimilation studies and set a frame of reference

for the work done in this thesis. Sequential and ensemble-based methods have been a popular

technique for soil moisture data assimilation. On the other hand, variational data assimilation

methods are also used. In both cases, soil moisture data from satellite observations, synthetic

observations and in-situ measurements are assimilated. Parameters in land surface processes

are crucial for modelling the system and yet less known, compared to atmospheric model pa-

rameters (Reichle, 2000). For soil moisture estimation, the role of parameters is paramount, see

section 5.5. Here we present a review of studies on soil moisture data assimilation both for pa-

rameter and state estimation, in some cases, joint parameter and state.

Several researchers implemented the EnKF and its variants for soil moisture data assimila-

tion. Reichle et al. (2002) assimilated synthetic near-surface soil moisture data with the EnKF into

a hydrological model at a catchment level as opposed to the grid level. They compared the per-

formance of the EnKF with the EKF and found that estimation error for volumetric soil moisture

has shown a slight improvement for the EnKF by increasing ensemble size. Margulis et al. (2002)

used the EnKF to assimilate radio brightness observations from the Southern Great Plains 1997

(SGP97) field experiment by using a radiative transfer model. They showed that the analyses are

better than the model estimate, which does not incorporate brightness measurements and with

good agreement when it is compared to ground measurement soil moisture data.

Similarly, Zheng et al. (2018), Han et al. (2012) and Liu et al. (2016) used the EnKF for soil

moisture data assimilation. Zheng et al. (2018) assimilated soil moisture observations from

NOAA-NESDIS Soil Moisture Operational Product System (SMOPS) into the NOAA-NCEP Global

Forecast System (GFS). Han et al. (2012) assimilated synthetic surface soil moisture observations

into the Soil and Water Assessment Tool (SWAT) hydrological model. They showed that surface

soil moisture data assimilation had improved the soil moisture updates. Rainfall was artificially

differed to investigate how surface soil moisture data assimilation compensates for the errors in

rainfall and effects on root zone soil moisture. However, verifying with real data is needed to fully

rely on their results. Liu et al. (2016) have shown that assimilating Active and Passive microwave

observations (radar backscattering and brightness temperature) to estimate soil moisture at two

layers and related dry biomass and Leaf Area Index LAI. The decision support system for agro-

technology transfer (DSSAT) crop growth model was used. The radar backscattering is sensitive
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to surface roughness and used to update vegetation biomass, whereas brightness temperature

is sensitive to soil moisture. In their study, they have shown that active and passive microwave

observations can help to improve soil moisture and monitor crop growth estimates compared to

the model only estimates.

Although EnKF and its variants are widely used for soil moisture DA method, there is a long-

standing associated downside of using the method. When small ensemble size is used or due to

model error, ensemble spread will be underestimated, and ensemble collapse or filter degener-

acy occurs (Wu and Zheng, 2018). Then it will lead to a scenario that the data assimilation result

is reliant on the dynamical model and ignores the observations. To overcome the filter degen-

eracy, covariance inflation, additive, multiplicative or both, could be used (Wu and Zheng, 2018).

Han et al. (2014) implemented multiplicative covariance inflation when they assimilated satellite-

based soil moisture observations for drought monitoring mechanism using EnKF. Wu et al. (2016)

deployed multiplicative covariance inflation. They assimilated top layer soil moisture observa-

tions into a land surface model using ETKF. Wu and Zheng (2018) has more literature on the

different types of inflation.

Reichle et al. (2001) assimilated radio brightness into a hydrological model which considers

the vertical flow of water using 4DVar to update soil moisture estimates at a finer scale by down-

scaling the radio brightness using a radiative transfer model as an observation operator. In their

work, precipitation is withheld from the hydrological model and instead, model error is accounted

whenever precipitation is observed in the data assimilation system where the model error is es-

timated from the brightness temperature. When a model error is used, area-averaged temporal

mean Root Mean Square Error (RMSE) of 0.034m3m−3 is obtained for the analysis soil moisture

compared to the reference experiment (with observed rainfall) with RMS error of 0.014m3m−3

where RMS error of 0.19m3m−3 is for a prior estimate when rainfall is withheld. In hydrological

models, land surface fluxes enter into the process additively, and errors in the fluxes can be rep-

resented as a model error. They have shown that accounting for a model error can compensate

for the absence of quantitative rainfall forcing data.

Heathman et al. (2003) estimated soil hydraulic parameters using a direct insertion data

assimilation method to a hydrology model. The study considered four sites in south-central Ok-

lahoma. A gravimetric surface soil water content which was measured from June 18 - July 16,

1997, for an experiment (Southern Great Plains 1997 SGP97) was used as a surrogate for re-
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motely sensed surface moisture data. Based on the estimated parameters, they showed that it

is possible to improve the soil water estimates of the root zone up-to 30cm deep by assimilating

the surface soil moisture. The work by Pinnington et al. (2018) also showed that assimilating

soil moisture data has improved estimate soil texture parameters in the JULES model. They fur-

ther updated soil moisture based on improved parameters; as a result, RMSE reduction for the

posterior soil moisture estimates compared to the open-loop model runs was observed.

Pinnington et al. (2018) also showed that improvement in rainfall data uncertainty improves

soil moisture estimation, both with and without data assimilation. The maximum RMSE reduc-

tion was obtained when data assimilation is used while the JULES model was forced with TAM-

SAT more accurate rainfall data. This result shows that errors in the forcing data, rainfall, need

to be taken into account. Dunne and Entekhabi (2005) also showed the importance of correct

characterisation of errors in rainfall. In their work, a twin experiment, using EnKF and Ensemble

smoother, with rainfall ensembles from a different site did not recover the truth soil moisture es-

timate with rainfall forcing from the site. Reichle et al. (2001); Ettema and Viterbo (2001); Zheng

and Eltahir (1998) have shown that precipitation is the main component of the forcing data in

hydrological models and yet prone to errors. Due to the direct relation between rainfall and soil

moisture, improving rainfall estimation will certainly improve soil moisture estimation.

From the above property of land surface models, it is difficult to maintain the spread of the

ensemble when ETKF is implemented, which is an inherent problem for ensemble-based data as-

similation methods. That means we encounter ensemble collapse or filter degeneracy (Morzfeld

et al., 2016; Wu and Zheng, 2018), and observations will not impact any more for the data as-

similation. In such a case, there are ad hoc methods as a rescue mechanism. Depending on the

particular situation, covariance inflation (additive or multiplicative), perturbing model parame-

ters, perturbing forcing data of the model or model error can be considered to mitigate ensemble

collapse. Here, we used stochastic forcing via generated rainfall (instead of the observed rainfall)

and by allowing for a model to be imperfect. The full description of stochastic rainfall generation

is given in subsection 4.3.1. The characterisation of the model error is addressed by including

model error covariance matrix to inflate the background error covariance matrix Pb . The magni-

tude and shape of the model error covariance matrix are given in section 4.4.
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2.3 Summary

Soil moisture data assimilation has been explored and advancements been shown on address-

ing key questions: how soil moisture data is used to improve state and parameter estimation?

However there are still areas where improvement is needed: considering errors of the forcing

data, how to limit the amount of stochastic forcing to respect the model dynamics but having

appropriate spread and how parameters with a non-Gaussian error are sampled? The following

challenges have been identified:

• As any other numerical model, land surface models are not perfect. Besides, the main me-

teorological forcing data, rainfall, is prone to errors. However, for the sake of simplicity, both

models and rainfall observations are considered to be perfect in most cases. Accounting

for model and forcing data uncertainty needs to be addressed in order the modelled state

represents what is observed in reality.

• In order to tackle the inherent problem of ensemble data assimilation methods; ensemble

collapse or ensemble degeneracy, different covariance inflation techniques have been im-

plemented. While it solves the problem, there is not much physical meaning for inflating

the covariance apart from making the model less certain. More meaningful approaches for

inflating the covariance would be intuitive to include in the data assimilation scheme.

• In chapter 4, errors in rainfall observations and in the numerical model are considered.

Reichle et al. (2001) has done similar work for satellite soil moisture data assimilation by

considering errors in rainfall where rainfall is estimated from brightness temperature. The

advantage here is that rainfall is a forcing data for all hydrological models and representing

errors by generating stochastic rainfall generation is easily accessible.

• Gaussian distributed errors are assumed in data assimilation. However, there are cases

where errors do not follow a Gaussian distribution. For example, soil texture parameters are

positive, and they sum up to a hundred.

In this thesis, both ETKF and 4DEnVar methods are used for the data assimilation experi-

ments. Stochastic forcing techniques and parameter sampling techniques are used for the JULES

model; however, the methods can be implemented for any land surface model.
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Models and Data

In this chapter, we describe sites considered in the experiments; we present the JULES land sur-

face model used in chapters 5 and 6 of this thesis. We also describe the DRBC model, which is

a part of the JULES hydrology, used in chapter 4 of this thesis. Then we describe different soil

moisture data products used for the data assimilation experiments.

3.1 Models

3.1.1 The JULES model

The Joint UK Land Environment Simulator (JULES) model is a community land surface model

which simulates land surface processes such as surface energy balance, hydrological cycle, car-

bon cycle and vegetation dynamics. The JULES model solves surface energy balance, with the

general formulation given by:

dT

dt
= Rn −G −H − äE , (3.1)

where T is surface temperature, R is net radiation, G is ground heat flux, H is sensible heat flux,

ä is the specific latent heat of evaporation and E is the rate of evaporation.

In doing so, the hydrology part of it includes a vertical flow of water in a soil column which

uses 1-Dimensional Darcy’s law andmoisture content of each soil layer by Richards equation. Hy-

draulic characteristics can be represented by two alternative equations, Van Genuchten’s equa-

tions, scientifically robust but more complex, and Brooks and Corey equations. Both alterna-
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tives are implemented in the JULES model, where the user chooses between the two. In subsec-

tion 3.1.2 we describe part of the hydrology in the JULES model which uses Darcy’s law, Richards

equation and Brooks and Corey for hydraulic characteristics, which we call it DRBC.

The JULES model is developed from the UK Met Office Surface Exchange Scheme (MOSES).

It can be used as a standalone model or coupled with the Unified Model, (Best et al., 2011). Fig-

ure 3.1 shows a schematic representation of the JULES model for a single grid cell. It shows the

nine surface types. The five plant functional types are broad-leaf trees, needle-leaf trees, tem-

perate (C3) grasses, tropical (C4) grasses, shrubs and the four non-vegetated types are urban,

inland water, bare-soil and land-ice. Based on the specifications of a particular location, a propor-

tion of the nine surface types are assigned. The JULES model can be configured to run a single

point or a gird scale.

Figure 3.1: Illustration of the main features of JULES, https://jules.jchmr.

org/content/about.

In this thesis, the JULES model is used to estimate soil moisture in its full implementation

as well as by considering only part of the water balance, the DRBC model, described in the next

subsection.

3.1.2 The DRBC model

To enable us to do the science by concentrating on the important part of the model for soil mois-

ture, we separated the water balance part of the JULES model and study its dynamical properties
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when soil moisture is assimilated. Soil moisture and evaporation for the top layer from JULES

and DRBC were compared, and a good agreement was observed (was observed).

A column of soil discretization showing the vertical flow of water and moisture content in

each layer, as explained by Essery et al. (2009) and Best et al. (2011), is depicted in Figure 3.2

W0 E1

W1

M1 E2
M2

W2

M3

E3

M4

W3

E4

W4

Figure 3.2: Soil layers with water flux and available water in each layer.

where Mk (kgm−2) is mass of soil moisture per unit area in layer k, Wk (kgm−2s−1) is the water

flux from soil layer k into the layer k + 1 for natural number k ≤ 4 , W0 (kgm−2s−1) is precipitation

and layer W4 is drainage and Ek (kgm−2s−1) is moisture flux due to evapo-transpiration from each

layer (Essery et al., 2009). Here we only considered bare-soil evaporation.

Mathematical expressions for Darcy’s law and Richards equation coupled with the Brooks

and Corey relationship are given as:

dMk

dt
= Wk−1 −Wk − Ek , (3.2)

Wk = âwkh

(
�è

�z
+1

)
, (3.3)

è = ès

(
Ú
Ús

)−b
, (3.4)

kh = khs

(
Ú
Ús

)2b+3
, (3.5)

Mk = âwÉzÚk , (3.6)

where è (m) is water suction, Éz is layer depth, âw is density of water, kh (ms−1) is hydraulic

conductivity and Ú (m3m−3) is volumetric soil moisture.

From the above equations, Equation 3.2 is the Richards equation which describes the change

of mass of water per unit time in each layer. The mass of water per unit area for each soil layer
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is a result of water coming into the layer from rainfall and water, leaving the layer due to evapo-

transpiration, infiltration in a given time. Equation 3.3 is Darcy’s law which describes the vertical

flow of water due to gravity and Equation 3.4 and Equation 3.5 Brooks and Corey relationships

relating soil water content, water suction and hydraulic conductivity. The rate of evaporation

from the top layer is given in Appendix A; details are given in Essery et al. (2009) for each soil

layer. Parameters ès ,khs ,Ús and b are empirical constants which can be calculated from the

soil texture, sand, silt and clay proportions of the soil using set of equations known by the name

pedo-transfer functions. For the DRBC model, the meteorological forcing variables are rainfall,

temperature, pressure, wind speed, and humidity and the JULES model takes additional forcing

variables longwave radiation, short wave radiation and snowfall.

3.2 Data

3.2.1 Site information

Sites considered in this thesis are from the observing networks of mesoscale weather events

(Mesonet), distributed over Oklahoma, south-central of the United States. At the moment there

are 120 stations, operational from 1991 to date and provide meteorological data with every five

minutes and soil moisture every 30 minutes. One of the reasons for choosing Oklahoma Mesonet

sites is the completeness of the data. For the year 2016, out of the 17520 data points of 30 min

time interval, only 14 data points are missed for one of the stations (Antlers station), for example.

The forcing data to be used in the JULES and DRBC models need processing so that the units are

in agreement with those expected by the models and the rainfall data needs to be in rates than

cumulative rainfall.

Oklahoma’s climate ranges from humid subtropical, hot-humid summer and mild to cold win-

ters in the east to semiarid with extreme temperatures in the west. The annual average temper-

ature varies from 52 F to 19 F, East to West. The annual average rainfall also ranges from 63 to

55 inches east to west. Figures 3.3, 3.4 and 3.5 show annual rainfall, temperature and elevation

respectively.

The land cover is mostly tall-grass in the east, and in some cases, woody vegetation is

present (Fuhlendorf and Engle, 2004). The topography varies from prairie, plains, and hills where

forests dominate the north-east. Figure 3.5 shows a topographic map with Mesonet sites where
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Figure 3.3: Oklahoma annual mean precipitation for a 30-year period (1981 - 2010) us-

ing quality assured observations from the National Weather Service cooperative observer net-

work, taken from http://climate.ok.gov/index.php/climate/map/normal_annual_precipitation/

oklahoma_climate, accessed on 12th Aug 2019.

Figure 3.4: Oklahoma annual mean temperature for a 30-year period (1981 - 2010) using quality

assured observations from the National Weather Service cooperative observer network, taken from

http://climate.ok.gov/index.php/climate/map/mean_annual_temperature2/oklahoma_climate, ac-

cessed on 12th Aug 2019.
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Table 3.1 shows the specification of just the subset considered in the assimilation experiments.

To closely look at the land cover for each station, we show an aerial map and station photos

of the two sites, one from the less vegetated in the north-west (Boise city) and the other, from

densely vegetated in the south-east (Mt Herman). The other stations are in between these two

extremes. The reason for considering sites with different properties is that that various sites will

hold different soil moisture dynamics and we will be able to test the data assimilation in different

scenarios.

Figure 3.5: Oklahoma topographic map with Mesonet sites, taken from https://www.mesonet.org/

index.php/site/about/oklahoma_topographic_map, accessed on 30th July 2019. The blue dots rep-

resent all sites and blue dots circled in red are sites we have used for the data assimilation experiments.

Station Soil class Latitude Longitude Elevation (m)

Antlers sandy loam 34.250 N 95.670 W 171.9 m

Boise City clay 36.690 N 102.50 W 1267 m

Buffalo loam 36.80N 99.640 W 559 m

Elk City loam 35.330N 99.40 W 584 m

Lane silty loam 34.310N 96.00 W 181 m

Mt. Herman loam 34.310N 94.820 W 284 m

Pawnee loam 36.360N 96.770 W 282.9 m

Table 3.1: Oklahoma mesonet sites used for the experiments

Figure 3.6 and Figure 3.7 show that Boise city is covered by only grass and no woody trees

around the site. Whereas Figure 3.8 and Figure 3.9 show that the land cover of Mt Herman station

is only grasses but surrounded by big trees. As one of the criteria, all Mesonet stations do not

have big trees inside the stations. The impact of having trees in the surrounding is that, satellite

soil moisture observation is sensitive to vegetation cover and affects the quality of observations.
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Figure 3.6: Aerial photo of Boise city station, picture taken on July 23, 2019 http://climate.ok.gov/

index.php/climate/climate_trends/temperature_history_annual_statewide/CD00/tavg/Annual,

accessed on April 7, 2020.

3.2.2 In-situ soil moisture data

In this section, a description of soil moisture data used in the data assimilation experiments is

given. The three soil moisture data are the JULES predicted soil moisture, Mesonet ground mea-

surement soil moisture data and SMAP satellite soil moisture data.

For Mesonet sites, soil moisture is measured indirectly from a reference temperature differ-

ence (ÉTref) using the heat-dissipation sensor, CSI 229-L, Illston et al. (2008). The initial and final

temperature is recorded before and after introducing a 50 mA current into the resistor for 21

seconds. The temperature difference is measured at four depths of the soil, 5 cm (103 sites),

25 cm (101 sites), 60 cm(76 sites) and 75cm (53 sites) and every 30-min. Then volumetric soil

moisture content Ú (m3m−3) can be found after converting the reference temperature difference

into matric potential MP (kPa) and then into volumetric water content.

The matric potential is given by:

MP = −cexp(aÉTref), (3.7)
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(a) (b)

(c) (d)

Figure 3.7: Boise city station as of 2017. Sub-figure a: vegetation cover outside the station, before trim-

ming. Sub-figure b: vegetation cover inside the station before trimming. Sub-figure c: vegetation cover

inside the station after trimming. Sub-figure d: as in sub-figure c but near the soil moisture measuring

instruments. Pictures are taken fromOklahoma Mesonet website https://www.mesonet.org/index.php/

site/sites/station_names_map#, access date Sept 5, 2019.
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Figure 3.8: Aerial photo of Mt Herman station, picture taken on July 23, 2019 http://climate.ok.gov/

index.php/climate/climate_trends/temperature_history_annual_statewide/CD00/tavg/Annual,

accessed on April 7, 2020.

(a) (b)

(c) (d)

Figure 3.9: As in Figure 3.7 but for MtHerman station.
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where ÉTref(
oC) is the reference temperature difference, a = 1.788oC−1 and c = 0.717kPa are

calibration constants.

Then volumetric water content Ú of the soil can be obtained using either the Van Genuchten

relationship

Ú = Úr +
Ús −Úr

(1 + (−Ó×MP)
n
)
(1− 1

n )
, (3.8)

where Ús (m3m−3) is soil moisture content at saturation, Úr (m3m−3) is residual volumetric soil

moisture. and The constants Ó and n are empirical constants. For Mesonet sites, soil character-

istics Úr , Ús , Ó and n are given for each soil layer. Alternatively, volumetric water content can be

obtained using the Brooks and Corey relationships, given in Equation 3.4 and Equation 3.5.

Illston et al. (2008) compared soil moisture data derived from the 229-L sensor and Van

Genuchten equations with soil moisture products obtained from neutron probe and gravimetric

methods. Based on the comparison, the maximum uncertainty from the 229-L was approximately

0.05m3m−3.

3.2.3 SMAP soil moisture data

The Soil Moisture Active Passive (SMAP) satellite has been operational since April 2015 and pro-

vides soil moisture products at different spatial resolutions. Following the malfunctioning of the

active (radar) microwave sensor in June 2015, only the passive(radiometer) microwave sensor

continues to provide land process information. The passive microwave sensor detects microwave

emissions from the soil surface in terms of brightness temperature, which is proportional to soil

physical temperature. Different algorithms are used to convert brightness temperature into soil

dielectric property and then to soil moisture. The proportionality constant between physical soil

temperature and brightness temperature is soil microwave emissivity which is characterized by

soil moisture variations (Karthikeyan et al., 2017).

The SMAP soil moisture resolution for the radiometer (Passive part) is 36km by 36km bright-

ness temperature observations, and the 9km by 9km resolution data are obtained by disaggre-

gation from the original data by Backus-Gilbert optimal interpolation method, Chaubell (2016). In

the method, the surface brightness temperature in the required pixel is calculated by a weighted

sum of the surface brightness temperature of the nearby pixels with the original resolution, (Poe,
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1990; Long and Brodzik, 2016).

(a) (b)

(c) (d)

Figure 3.10: Comparison of volumetric soil moisture for the top soil layer in Mesonet sites for the year

2017. Blue dots: SMAP satellite observed data. Blue vertical lines: SMAP observation error bars. Green

dots: Mesonet ground measurement data. Green vertical lines: Error bars for Mesonet observations. Black

line: JULES model output.

Figure 3.10 shows a comparison of ground measurement volumetric soil moisture data from

stations in Mesonet Oklahoma, satellite observed volumetric soil moisture data for the same

stations and model estimates from the JULES model using the soil properties and meteorological

forcing of the corresponding stations. The error bars are observation error standard deviations,

0.04m3m−3 and 0.05m3m−3 for SMAP and for Mesonet in-situ observations. The resolution for

mesonet ground measurement volumetric soil moisture data is a point measurement, i.e. 10

cm diameter soil at each measuring depth (5 cm, 25 cm 60 cm and 75 cm), Illston et al. (2008)

discusses the description of instrumentation for soil moisture measuring at Oklahoma Mesonet.

On the other hand, SMAP soil moisture observations considered in these plots are 9 km × 9 km.
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The frequency of Mesonet observations is at the same observation frequency with SMAP, two to

three days apart.

Looking at Figure 3.10, soil moisture observations for Mt Herman (Figure 3.10d) appear to

have a less defined pattern, compared to groundmeasurement observations. As photos from sta-

tions show, Mt Herman station has forests in the neighbourhood which has been included in the

original resolution, a potential source of observation noise. Zhang et al. (2019a) found that SMAP

soil moisture observations are less accurate for densely vegetated sites by comparing with in-situ

measurement soil moisture data. In relation to forest coverage in the neighbourhood, the SMAP

soil moisture observations are overestimated compared to both ground measurements and the

JULES model run with C3 (temperate) grass cover configuration. For stations Antlers and Lane,

Figure 3.10a and Figure 3.10c respectively, SMAP observation overestimated and observations

are with noise but better than the case for Mt Herman station, and SMAP soil moisture observa-

tions are reasonably representative of the ground observations with some expected noises.

On the other hand, for Boise City station, Figure 3.10c, SMAP soil moisture is underestimated

compared to both the ground measurement soil moisture and the JULES model run but less ob-

servation noise. Looking at Figure 3.6 and Figure 3.7, there is no forest in the neighbourhood, but

some bare soil is included rather. As a result, the satellite observations looked drier as it is the

disaggregated, including the bare soil with high evaporation areas.

From Figure 3.10, it is evident that there are systematic and random errors of the SMAP data

and the output from JULES. Keeping this in mind, data assimilation experiments are performed

in chapter 6 without any bias correction to see by how much the raw data is usable. The perfor-

mance of the data assimilation is evaluated by comparing with in-situ soil moisture data.
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Chapter 4

Stochastic forcing for ensemble spread

generation in soil moisture data

assimilation with ETKF

This chapter looks at uncertainty representation in the rainfall forcing data and in the DRBC

model. As such rainfall is generated stochastically based on observations and also Gaussian

model error is implemented, which both help to generate ensemble spread for Ensemble open-

loop (EnOL) soil moisture predictions. In-situ soil moisture data are assimilated using an ETKF

for state estimation. The RMSE and error-spread score ES are used to evaluate posterior soil

moisture accuracy and uncertainty, respectively.

4.1 Introduction

The accuracy of a modelled dynamics in representing the true state and degree of uncertainty

depends on several factors. Uncertainties of the initial conditions, parameter values and forcing

data impact the accuracy of the model prediction in addition to the model physics. In the case

of atmospheric models especially, altering the initial condition alone can result in a completely

different trajectory for the same model (Magnusson et al., 2008). Choice of parameter values

also plays a major role in modelling, especially for land surface models where parameter values

are often not well-known (Pinnington et al., 2020). Forcing data also has a direct effect on the

accuracy of the model state. Hence, to account for those uncertainties and encompass a general
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behaviour of the model under different circumstances, it is essential to consider multiple runs of

a model instead of a single prediction.

Ensemble methods consider multiple model integrations where each model integration, also

called ensemble member, represents a distinct evolution of the model by differing initial condi-

tions, forcing data and/or model formulation. Often, the mean is assumed to be a single fore-

cast which represents the best available estimate of the model dynamics, (Whitaker and Loughe,

1998). Ensemble spread represents the uncertainty in the model forecast whereby the smaller

the spread, the smaller the presumed uncertainty and vice versa.

Ensemble initialisation can be achieved by perturbing either initial conditions or parame-

ters or the driving data. Given an initial condition, by assuming errors follow a known distribu-

tion, ensemble members can be initialised using perturbed background state with errors sampled

from the chosen distribution (Browne and Wilson, 2015). This technique works best to provide

spread among ensemble members throughout the model integration window for chaotic models

like atmospheric models, as small perturbations can lead to a significant deviation in the dynam-

ics. However, for models like land surface models, perturbations of initial conditions do not give

spread among ensemble members. The dynamics of each ensemble member approaches a dy-

namical attractor and finally become identical after a while, which is called ensemble collapse.

Figure 4.1 shows that, after about threemonths, the dynamical system losesmemory of the initial

condition perturbation and ensemble collapses.

Ensemble methods are often used for ensemble prediction systems (Magnusson et al., 2008;

Wilks, 2007). In this chapter, however, ensemble methods are used to represent prior distribu-

tions of soil moisture predictions for ensemble data assimilation method, ETKF. The hydrology

part of the JULES model, the DRBC model, as described in subsection 3.1.2, is used for soil mois-

ture prediction. Ensemble initialisation and stochastic forcing mechanisms for ensemble spread

enhancement are discussed in section 4.2 and section 4.3 respectively.

4.2 Initial condition perturbation

To start with, consider the DRBC model as a perfect model, perfect parameters and also perfect

forcing rainfall data. Assuming the DRBC model to act as a function M and the forcing rain-

fall data appeared explicitly, the time evolution of the state variable x described in Equation 2.1
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becomes:

xt+1 =Mt+1,t(xt ,pt) (4.1)

where t is the time step and p observed rainfall. Equation 4.1 shows that, besides the perfect

model assumption, it results in a deterministic approach where only one model prediction is con-

sidered as a source of information about the predicted state.

The data assimilation method we will use here is the ETKF, described in subsection 2.1.1, a

sequential method which requires ensemble members of a model. Initial condition perturbations

are often used to generate ensemble members by drawing samples from a priori error covari-

ance matrix by assuming a Gaussian error. Hence, from a reference state xref, initialisation of

ensembles by perturbation follows as:

x
b,i
0

= xref + Øi , where Øi ∼N (0,Pb
0). (4.2)

where i = 1,2,3, ...Ne,P
b
0
is the background error covariance matrix. Hence following Equation 4.1

to get the ensemble members, time evolution of each ensemble member is given by

x
b,i
t+1

=Mt+1,t

(
x
b,i
t ,pt

)
for t = 0,1,2, ...Tmax. (4.3)

From Equation 4.3, the difference between each ensemble member is only the initial condi-

tion; the meteorological forcing data, including rainfall and parameter values, are the same for

each model integration.

Figure 4.1 shows top level soil moisture ensemblemembers (Ne = 200) predicted by the DRBC

model over a year by following Equation 4.2 and Equation 4.3. The reference state, meteorologi-

cal forcing data and parameter values for each site is taken fromOklahomaMesonet observation

in 2016 and the background error covariance matrix Pb
0
= 0.12I4×4 m3m−3.
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Figure 4.1: Open loop DRBC model estimate of volumetric soil moisture for Messonet sites, Oklahoma.

The light blue lines are the 200 ensemble members and the blue line is ensemble mean.

Figure 4.1 shows that for all the four sites initial condition perturbation does not give spread

among ensemble members except the first three months of the model integration. After that, the

system loses memory of the initial condition, and each ensemble member converges to a similar

prediction irrespective of their difference initialisation. Increasing the perturbation at the begin-

ning increases spread among ensemble members and for a bit longer time, however, it does not

give spread throughout the integration period. Besides, the perturbation should be reasonable

(not too big) since there is information about the uncertainties in the background. Hence, ini-

tial condition perturbation does not give appropriate spread among ensemble members for the

DRBCmodel and other ensemble generating techniques, stochastic forcing, are introduced in the

following section.
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4.3 Stochastic forcing

To stop the ensemble collapse in the DRBC model, observed in Figure 4.1, two stochastic forcing

methods are deployed. The first method is by introducing stochastic forcing through rainfall and

second by considering the model error.

Since rainfall measurements are prone to errors (Ettema and Viterbo, 2001), it is crucial to

take into account the errors in the observed rainfall. Rainfall is a driving meteorological data for

all land surface models, and the amount of noise is determined from the observed rainfall itself.

In this case, the model equation given in Equation 4.1 becomes,

xt+1 =Mt+1,t(xt ,Vt) (4.4)

where Vt is generated rainfall for a given observed rainfall at time t. Equation 4.4 shows that,

the stochastic forcing is acting on the model state every time step the model is integrated as op-

posed to the initial condition perturbation. For each ensemble member of soil moisture estimates,

different generated rainfall forcing generated from the same observed data are used. This as-

sures that each ensemble member will have spread among them as a result of a different rainfall

forcing.

Either due to simplifications in model parametrisation or the missing processes, the model

is by no means perfect in representing the observed physics. Maggioni et al. (2012) pointed out

that soil moisture estimates from a model are directly affected by errors in the model formula-

tion, in addition to errors in the meteorological deriving data and errors in model parameters.

Particularly for the DRBC model, the hydrological cycle is considered separately, and vegetation

dynamics is not modelled. Hence there is a strong case for representing the effects of model

error.

By assuming a Gaussian error, but perfect forcing the model becomes

xt+1 =Mt+1,t(xt ,pt) + qt ,qt ∼N (0,Q), (4.5)
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where Q is model error covariance matrix. As in the case of generated rainfall discussed above,

each ensemble member of soil moisture estimate will have different stochastic forcing and en-

sures ensemble spread between them is gained.

When stochastic forcing from both generated rainfall and model error is considered, the

model with stochastic forcing can be generalised as

xt+1 =Mt+1,t(xt ,Vt) + qt ,qt ∼N (0,Q), (4.6)

So far, the stochastic forcing from generated rainfall and model error is described in general

forms, subsection 4.3.1 and section 4.4 describe the actual stochastic forcing used in this thesis.

4.3.1 Stochastic rainfall generation

Rainfall forcing data can be generated stochastically using observed rainfall data to account for

uncertainties in the observed rainfall or to obtain generated rainfall from nearby stations where

there is no observed rainfall for a particular station. In either case, the Gamma distribution is a

widely used distribution to generate stochastic rainfall. The probability density function of the

Gamma distribution, f (p), as given by Roger Stern and Richard Coe (1984) and Wilks and Wilby

(1999) and many other authors is

f (p) =

(
p

Ô

)Ó−1
exp

(−p
Ô

)
ÔÈ (Ó)

(4.7)

where p ≥ 0,Ó,Ô > 0, p is a random variable, in this case the amount of rainfall. Ó and Ô are

constants where Ó is shape parameter, Ô is scale parameter and È is the gamma function.

The shape and scale parameters for the gamma distribution are approximated using the

moments method, Wilks (1990)

Ô =
ã2

Þ
,Ó = (

Þ

Ô
) (4.8)

where Þ is the mean rainfall for the considered period of time. However, rain is accompanied by

dry conditions, and the Dirac delta distribution is used to represent the dry events.

To calculate parameters for the Gamma distribution and probability of being rainy for a par-

Page 43



Stochastic forcing for ensemble spread generation in soil moisture data assimilation with ETKF

ticular time step (30 minutes in our case to match with a model time step), we need to consider

a broad range in the data so that we encounter rainy events. For Mesonet rainfall dataset, we

considered 31 days moving window (similar to Basinger et al. (2010)). The distribution we draw

rainfall from is G(p), similar to the one developed by Hyndman and Grunwald (2000) where

G(p) = rf (p) + (1− r)Ö0(p), (4.9)

f (p) is the gamma distribution, Ö0(p) is the Dirac delta function, r is the probability of occurrence

of rainfall.

Basinger et al. (2010) generate rainfall for rainwater harvesting with a moving window by

considering 30 years of rainfall data as a domain to draw samples. Here, a moving window is

used as in the case of Basinger et al. (2010), but we draw from a gamma distribution instead of

from a rainfall data.

From the observed rainfall data, the probability of a rainy event is given by the ratio of the

number of rainy periods divided by the total number of observations considered in that window.

Mathematically the probability of rain is given by:

r =
NR

NT

(4.10)

where NR is a number of rainy (wet) periods, and NT is the total number of observations in the

rainfall data. If the probability of being wet is r, then the remaining probability (the probability of

being dry) will be 1 − r. That means, we draw from a Gamma distribution with probability r and

draw from a Dirac delta distribution with probability 1−r. Then the generated rainfall ensemble is

used to force the DRBC model to get different state estimates for each rainfall ensemble so that

the mean will represent the best possible state estimate.

4.4 Experimental design

For numerical data assimilation experiments, we used ETKF as implemented in Employing Mes-

sage Passing Interface for Researching Ensemble (EMPIRE) at the University of Reading (Browne

andWilson, 2015) by coupling with the DRBCmodel. Soil moisture observations are fromMesonet

sites, converted from temperature difference into volumetric soil moisture using the Brooks and
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Corey equations as given in subsection 3.2.2. The reason for choosing the Brooks and Corey over

the Van Genuchten is that to be consistent with the DRBC model as the Brooks and Corey are

considered in the model.

Since the available observation of volumetric soil moisture are at three depths in the soil, 5

cm, 25 cm and 60 cm, the observation operator becomes

H = I3×4. (4.11)

The observation error covariance matrix R, as given by Illston et al. (2008), is a diagonal matrix

(since measurements in each point are independent to each other) with entries 0.052. Hence

R = 0.052I3×3. (4.12)

Each ensemble member is initialised with a Gaussian perturbation from a reference state. The

initial perturbation is chosen in such a way that uncertainty in the background is more than the

uncertainty in the observations, to put more trust in the observations than the model. The back-

ground error covariance matrix we choose is

Pb
0 = 0.12I4×4. (4.13)

To test different scenarios for the data assimilation, we considered the DRBC model to be perfect

in the first instance, followed by considering amodel error with Gaussian distributed and diagonal

covariance matrix, Q, with different magnitudes. The choice of the size of Q is in such a way

such that the incorporation of the model error does not distort the model dynamics. The three

covariance matrices we considered for the model error are Q0 = 0,Q1 = 0.0022I4×4 and ,Q2 =

0.012I4×4 where Q0 represents a perfect model.

On the other hand, we considered the forcing rainfall data as perfect and also with er-

rors. To account for the observation error in the rainfall, we used the stochastic rainfall gen-

erator discussed above. Generated rainfall events vary in standard deviation, ã, but the mean

is maintained. We considered three generated rainfall patters with varying standard deviations:

ã1 = ã0,ã2 = 2ã0 and ã3 = 5ã0 where ã0 is the standard deviation of observed rainfall. The rea-

son for considering generated rainfall with different standard deviations is to represent rainfall

patterns in the nearby places and also at different times.
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The background ensemble is initialized as in Equation 4.2 and the time evolution follows

Equation 4.6 for different combination of Q and ã given above.

The model time step is set to 30 minutes, observation frequency is 72 hours, and the number

of ensemble members is 200. The background state of soil moisture x0 is obtained from the four

soil layers from Mesonet sites.

4.5 Diagnostic tools

The data assimilation performance is often evaluated using the RMSE and time series plots of

the posterior state compared to the prior, which is the mean of ensemble open-loop model run

EnOL. In this chapter, in addition to the traditional metrics, appropriateness of ensemble spread of

the analysis is examined based on the error-spread score proposed by Christensen et al. (2015).

The method is motivated by Leutbecher and Palmer (2008) and compares ensemble RMSE with

root mean square deviation (RMSD), also known as ensemble standard deviation of the mean,

for forecast verification. Leutbecher and Palmer (2008) discussed that for a perfect ensemble of

the forecast, ensemble mean RMSE should be proportional to the RMSD. In an ideal situation, the

proportionality constant is close to one, and the scatter plot of ensemble-mean RMSE, and RMSD

will lie at 45 degrees. The use of ES in this work is different from the use in Christensen et al.

(2015) such that, series of analysis over the assimilation window is evaluated instead of the fore-

cast. Christensen et al. (2015) argued that the first two moments of a forecast distribution are

not enough to check if the forecast is proper or not. For that reason, the third-moment, skewness,

is included in the new metric they proposed. The error-spread score given in Christensen et al.

(2015) is

ESi = (si
2 − ei 2 − sieigi )2 (4.14)

where si is the standard deviation of distribution of ensemble members, ei = zi −mi is error in the

ensemble mean mi , zi is verification (observation) and gi is skewness of distribution of ensemble

members. Then ES is calculated by taking the average of all forecast-verification pairs at different

grid box and at different time. In our case however, there is only one grid box and the averaging

will be over time.

The way to interpret the ES score is that the distance between the ensemble mean and obser-
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vations should be proportional to the uncertainty of ensemble mean. This is because if the mean

is far from the observations (with larger RMSE) and with small uncertainty (smaller standard de-

viation), it gives false confidence on the mean. On the other hand, if the mean has smaller RMSE

but larger variance, the mean is accurate but has a small believability. That means the accuracy

and the associated uncertainty need to be proportional, i.e. the smaller the value of ES is the

better (certain) the forecast.

However, smaller ES can be achieved as long as the RMSE and RMSD are proportional. Con-

sidering the case where RMSE of the mean is larger, the forecast is far from the observed real-

ity. In this case, the forecast should not be considered as appropriate since it is not accurate.

Forecast appropriateness needs accuracy and precision, which means smaller RMSE and smaller

RMSD. Hence in our case, the forecast is considered to be appropriate when both RMSE and ES

are smaller, as close as possible to zero.

4.6 Results and discussions

In this section, posterior soil moisture predictions of the DRBC model obtained from assimilating

in-situ soil moisture data with data assimilation set-ups given in section 4.4 are presented and

discussed. Posterior soil moisture time series, RMSE and ES from different set-ups are compared.

The comparison is made for five sites and three soil layers (Appendix B) where data were assim-

ilated. Though the fourth layer soil moisture estimates are available, the discussion does not

include the fourth layer as there are no observations to compare with. For ease of representa-

tion, each ES is scaled (divided) by the ES from posterior soil moisture for data assimilation with a

deterministic model run, (with ã0 and Q0). Compared to the ES with EnOL, data assimilation with

ã0 and Q0 did not show a significant improvement due to ensemble collapse. Hence stochastic

forcing is introduced. In general, data assimilation has helped to reduce ES, though very small

improvement without stochastic forcing.

Figure 4.2 shows time series plots of top layer soil moisture ensemble mean and shades in

respective colours within ±1 standard deviation from the mean together with respective RMSE

and ES score plots for Antlers station, described Table 3.1. Each time series plot represents soil

moisture ensemble mean for a single rainfall forcing but varying model error. In Figure 4.2a, for

example, observed rainfall forcing, with standard deviation ã0 (standard deviation of observed
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rainfall) and model error with varying covariance matrix is used. The blue, purple and black lines

are forQ0,Q1 andQ2 respectively. The associated uncertainties, ensemble spread with ± 1 stan-

dard deviation from the means are displayed with blue, purple and grey (instead of black) shades.

Figure 4.2e and Figure 4.2f are RMSE and ES plots for the corresponding time series plots. The

colours used for the bar plots of RMSE and ES correspond to the colours of the shades in the

respective time series plots. The green dots and vertical lines are soil moisture observations with

observation error standard deviation of ± 0.05.

In Figure 4.2a, the blue line shows that posterior soil moisture estimates with perfect model

set-up are far from observations. This has been shownwith large RMSE and large ES in Figure 4.2e

and Figure 4.2f respectively. As discussed in Figure 4.1, EnOL soil moisture of the DRBC model

have shown a very narrow ensemble spread for a perfectmodel run with initial condition perturba-

tion. Having small spread is associated with high certainty; hence observations are givenminimal

weight in the data assimilation system. In this case, the posterior is almost the same as the EnOL

and far from the observations. Comparing the blue line with observations, the difference is larger

during the drying up periods, between June and August, for example. The most likely reason is,

the DRBC model does not include the vegetation dynamics, and as a result, evaporation from

bare soil is higher. Hence, the drier trend for the DRBC on the top layer. Occasionally, the DRBC

overestimate soil moisture. But for deeper layers, as there is no transpiration from plants, the

DRBC estimate tends to be wetter than the observations.

When stochastic forcing is introduced via model error with covariance matrix Q1 and Q2,

Figure 4.2a purple and black lines, the posterior soil moisture ensemble means are getting closer

to the observations. Hence corresponding RMSE and ES have reduced, the first column of Fig-

ure 4.2e and Figure 4.2f respectively. The value of RMSE and ES decreases as model error in-

creases. By applying model error only, error-spread score reduction ranges from 88% − 99%

across the five stations and three soil layers. With this method, the best reduction in the error-

spread score (99%) is obtained for Pawnee station first layer, Figure B.4f and Lane station third

layer, Figure B.12f. The smallest reduction (88%) is for Elk City station second layer, Figure B.7f

and Pawnee station second layer, Figure B.9f. There is no dependence between the soil layers

and the amount of reduction in the error-spread score when the model error is used. However,

when generated rainfall is used with a different value ofQ, the values of RMSE and ES are similar

to the value with Q2 and observed rainfall. For example, for Antlers station, implementing Q2 is

sufficient to get smaller RMSE and smaller ES.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Top layer posterior soil moisture ensemble mean for different values of Q and ã, as described
in section 4.4. The shades for each mean is ± 1 std from the mean. The bar plots at the bottom are

corresponding RMSE and ES score for each sigma and varying Q. The forcing data and parameter values

are from Antlers station, Oklahoma Mesonet for the year 2016.
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Similar patterns are observed for results given in Figures B.1 - B.4, once Q2 is implemented,

the variation in ã does not have a significant impact on the magnitude of the RMSE and ES. How-

ever, with Q1, the combination of model error with Q1 and generated rainfall has improved ES

score, for example, Elk city top layer presented in Figure B.2f.

When generated rainfall forcing is used separately (Q = 0), a substantial reduction in the ES

score is observed for the top layer though out the five stations we considered. The percentage

improvement ranges from 92% (Lane station) - 98% (Pawnee station). For the top layer, reduc-

tion in the ES score as a result of generated rainfall is slightly smaller percentage compared to

applying model error. For second and third layers, however, generated rainfall brought small im-

provement or even increased RMSE and ES score. This is because only a small fraction of rainfall

can reach the deeper layers, and as a result, the improvements in error-spread reduction we get

is much smaller than the top layer. In this set-up for the top layer, minimum RMSE and ES values

are obtained with ã3 except for Lane station, Figure B.3e, where ã2 gives the minimum RMSE and

ES. The only exception is Lane station where generated rainfall reduces the error-spread score

by 92% and model error by 89%. Whereas for the second and third layers, model error performs

much better (minimum 88% ) than generated rainfall in all the five stations (maximum 62%).

Figures B.5 - B.13 are times series plots of posterior soil moisture ensemble mean together

with the corresponding RMSE and ES for deeper layers, layers two and three. For the deeper lay-

ers, there is additional stochastic forcing from the top layer due to the propagation of information

downwards by the model besides the forcing considered in each layer.

Similar to what is observed for the top layer, Q2 resulted in the smallest RMSE and corre-

sponding ES, most of the time. In some cases, however, increasing from Q1 to Q2 has increased

RMSE or/and corresponding ES. Figures 4.3e and 4.3f show thatQ2 gives smallest RMSE but ES is

larger than the result obtained withQ1. Looking at the time series plots in Figure 4.3, the posterior

soil moisture ensemble mean with Q2 is closer to the observations compared to the mean with

Q1 but the spread with Q2 is larger than the spread with Q1. This shows that the predicted error

(spread) is much larger than the observed error. In this case, the decision is open as to whether

the result with Q1 or with Q2 should be considered appropriate. Here we argue that the result

with Q1 is better to be considered as the magnitude of the RMSE (0.015) is smaller compared to

the observation error and with high certainty, than RMSE of 0.005 with very high uncertainty.

Comparing the performance with the top layer, deeper layers shown very smaller or even
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: As for Figure 4.2 but for Buffalo station third layer.
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negative impact as variability (spread) in stochastic rainfall increases. For deeper layers, ã1 has

shown the best performance, i.e. smaller RMSE and ES, in most cases where ã3 was the best

for the top layer. It was observed that when stochastic forcing increases, especially using gen-

erated rainfall, RMSE and/or ES increase instead of decrease. For example, in Figure B.8f and

Figure B.10f, as ã increases, the value of ES also increases. This is because the contribution from

the upper layer and also the soil moisture dynamics is smoother and adding more stochastic

forcing pushes the dynamics away from observations.

In general, we have seen that top layer soil moisture observations are more dynamic than

deeper layers, as a response of rainfall. As we go deeper, the dynamics smooths out and be-

comes less variable. Compared to using model error, high-frequency soil moisture observations

are not well captured when generated rainfall is used. This is due to the dampening of the dy-

namics when the ensemble mean is calculated using different patterns of generated rainfall. This

phenomenon is true whether generated rainfall is applied alone or with model error and for all

rainfall patterns we considered. The effect of generated rainfall is more pronounced on the top

layer as rainfall has direct contact into the top layer. The incorporation of model error enhances

well the DA in reducing the gap between the observations and the model prediction irrespective

of the frequency of the model dynamics and soil layers.

4.7 Summary

In general, both methods of stochastic forcing, generated rainfall and model error, help reduce

the RMSE and ES score. This shows that the methods help to generate appropriate ensemble

spread. From the DA experiments results (Figure 4.2 - Figure B.13), it is shown that generated

rainfall reduces RMSE and ES score for the top layers better than for the deeper layers. When

each one of the methods is implemented separately, model error performs better than generated

rainfall in reducing the RMSE and ES score. Most of the time, applying Q2 has given the best

combination of RMSE and ES except Figure 4.3.

Generated rainfall dampens the model dynamics, make less variable, for soil moisture en-

semble mean plots. Even though it helps to capture the dynamics when the water is drying out

quickly (when observed rainfall is used), most of the observations are not well captured when

the dynamics are peaking quickly. The performance of the generated rainfall depends on the soil
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layer and also the observed soil moisture dynamics the model is trying to capture. However, the

inclusion of model error works for all soil layers and for different dynamics considered whether

high frequency or drying out quickly.

When both model error and generated rainfall are applied, the effect of model error is more

influential mainly for the error-spread metric. Considering soil moisture ensemble mean time

series plots, the effect of generated rainfall is reflected in dampening the dynamics. It is also

observed that the larger the ES with the perfect model, the largest percentage reduction when

stochastic forcing is applied and vice-versa.
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Chapter 5

Parameter estimation using the

Dirichlet distribution to initialise model

ensemble for 4DEnVar: twin

experiments

This chapter aims to suggest a novel technique of parameter estimation for soil moisture data

assimilation using 4DEnVar with the JULES model for parameter estimation.

5.1 Introduction

Numerical results in chapter 4 showed that initial condition perturbation for the DRBC (hydrol-

ogy part of the JULES) model did not provide ensemble spread except for the first few time steps.

The ETKF has been implemented for soil moisture estimation with the DRBCmodel by assimilating

groundmeasurements of soil moisture data. Other ensemble spread generating techniques have

been deployed to gain ensemble spread: introducing stochastic forcing via the forcing data (rain-

fall) and allowing for a model error. Error spread (Christensen et al., 2015) is used to evaluate the

performance.

In this chapter, we use a twin experiment to explore the impact of assimilating top layer soil

moisture data using the 4DEnVar with the JULES model to estimate soil parameters: percentage
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sand, silt and clay. The reason for using 4DEnVar in this chapter is that parameter estimation with

the ETKF (used in chapter chapter 4) is likely to result in a time-variant estimation of parameters

for each assimilation step (Pinnington et al., 2018). Having time-variant parameters contradicts

the fact that parameters are constant through the year for a particular area. Even if parameters

change due to changes in organic matter of the soil naturally, it takes longer time than the as-

similation window, which is one year in our experiment. If the soil parameters are changing with

human intervention, sequential data assimilation could be a way to estimate soil parameters. On

the other hand, 4DEnVar - as an example of variational data assimilation, will yield time-invariant

posterior parameters throughout the assimilation window. Another difference in this chapter from

chapter 4 is, here the full JULESmodel is used to considermore realistic assumption on themodel

while the DRBC model in chapter 4. As discussed in chapter 4, the DRBC model did not consider

processes like vegetation and bare soil evaporation was considered.

Parameter perturbation is better than initial condition perturbation (seen in chapter 4) at

keeping ensemble members spread for land surface models like JULES. Parameters act upon the

model state every time step when the model is integrated, as opposed to the initial condition

perturbation where the effect is only at the beginning of the model integration. Soil texture pa-

rameters can be sampled from different distributions. This technique is considered as parameter

perturbation since random errors are being added to the mean parameter where errors are from

the chosen distribution. In doing so, the actual error is not known but represented by the error

statistics when parameters are sampled. To start with, considering a diagonal covariance matrix

is the easiest to choose as correlations are not known. However, the correlation is not always

zero. For example, in our experiment, percentage sand, silt and clay are highly correlated as

their sum should be a hundred and the increase/decrease of one parameter will result in reduc-

tion/increase of another. As a result, errors are also correlated. Hence, considering a diagonal

covariance matrix is not realistic. However, even if we know that errors are correlated, determin-

ing the value of the correlation is a difficult task.

The Dirichlet distribution section 5.2 is a potential distribution to sample soil texture. Soil

texture parameters are needed to be positive, and their sum is bounded above by a hundred. The

Dirichlet distribution also shares this property of boundedness and positivity of individual param-

eters distribution. Hence sampling soil parameters from the Dirichlet distribution is meaningful,

and samples from the Dirichlet distribution will have non-zero correlations. Ensemble initialisa-

tion of the state (soil moisture) is then attained by running the JULES model so that the initial
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condition soil moisture is consistent with the soil texture parameters.

Considering the link between the properties of the Dirichlet distribution and soil texture pa-

rameters, sampling from a Dirichlet distribution is a promising method to get parameter ensem-

bles. On the other hand, in the data assimilation system, background errors (and observation

errors) are assumed to follow a Gaussian distribution. To this end, it is unclear whether or not

soil texture parameters sampled from a Dirichlet distribution can be used for soil moisture data

assimilation. Hence for comparison, we sampled soil texture parameters from the Dirichlet and

Gaussian distributions with the same correlations. Here the Gaussian distribution is truncated

so that samples are positive. To examine the benefits of having correlations in the Gaussian

distribution (which comes from the Dirichlet distribution), we have also sampled from a Gaussian

distribution without correlations. In section 5.2 and section 5.3 , basic descriptions of the Dirichlet

and Gaussian distributions are given.

5.2 The Dirichlet distribution

The Dirichlet distribution is a multivariate distribution characterised by a vector with dimension

D, say Ó1,Ó1, ...,ÓD , is given by (Lin, 2016)

p(x1, ...,xD |Ó1, ...,ÓD ) =
È (

´
i Ói )µD

i=1 È (Ói )

D½
i=1

x
Ói−1
i , (5.1)

where

D¼
i=1

xi = 1,xi > 0, (5.2)

and È is the Gamma function. Note that the condition for the vector Ói is, Ói > 0. The two key

parameters are the concentration parameter

Ò =

D¼
i=1

Ói and the base measure Ýi =
Ói

Ò
. (5.3)
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The first and second moments are defined as:

�(xi ) =
Ói

Ò
(0 < �(xi ) < 1), (5.4)

Var(xi ) =
Ói (Ò−Ói )

Ò2(Ò+1)
, (5.5)

Cov(xi ,xj ) =
−ÓiÓj

Ò2(Ò+1)
for i , j . (5.6)

From Equation 5.6 we can see that samples from a Dirichlet distribution inherit correlations

among themselves.

If Ói in Equations 5.4 - 5.6 is divided by a scaling factor k (positive constant), then the new

moments become

�2(xi ) =
Ói

Ò
= �(xi ). (5.7)

Var2(xi ) =
Ói (Ò−Ói )

Ò2(Ò
k
+1)

, Var(xi ), (5.8)

Cov2(xi ,xj ) =
−ÓiÓj

Ò2(Ò
k
+1)

, Cov(xi ,xj ) for i , j . (5.9)

From Equations 5.7 - 5.9 we can see that dividing each vector Ói by a positive constant k

maintains the means but not the variances and covariances. This property of the Dirichlet distri-

bution makes it possible to adjust the variance and covariance of the draws as required without

changing the mean. The parameter k is a scale factor which controls the variances and covari-

ances of the distribution. As the value of k increases (decreases), the variance and covariance

also increase (decrease) proportional to k, (k, 0) while maintaining the mean. The problem can

be reduced into two dimensions as clay fractions can be calculated as a residual:

clay = 100− (sand + silt).

On the other hand, Equation 5.2 shows that a random draw from a Dirichlet distribution re-

sults in parameters sum up to unity, and each parameter is positive. This property makes the

Dirichlet distribution a potential candidate to represent positive quantities with a bounded sum.
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5.3 The Gaussian distribution

The Gaussian or normal distribution, a widely used distribution in many disciplines, for a single

random variable, x can be written as

N (x|Þ,ã) = 1

ã
√
2á

exp
−1
2

(x −Þ)2

ã2
, (5.10)

where Þ is the sample mean and ã is sample standard deviation.

For an n-dimensional vector x, the multivariate Gaussian distribution is given by

N (x|µ,Σ) = 1

(2á)
n
2 |Σ|

1
2

exp

(
−1
2
(x−µ)⊺Σ−1(x−µ)

)
(5.11)

where µ is an n-dimensional mean vector, Σ is an n × n covariance matrix and |Σ| is the determi-

nant of Σ. Gaussian distribution is defined over �.

5.4 Ensemble initialisation

From 5.2 we have seen that to sample from a Dirichlet distribution, we only need to provide per-

centage sand, silt and clay, Ói in Equation 5.1. Variance and covariances will be automatically

assigned based on the Ói . To control the variance and covariances, scale factor k is introduced,

as in Equation 5.4 - Equation 5.9. Whereas to sample from a Gaussian distribution, we need to

provide a covariancematrix in addition to themeans. As the Gaussian distribution is not bounded,

there is a chance of getting negative samples, which will not represent soil texture proportions.

Hence, we add constraints in Equation 5.2 for the Gaussian distribution.

If a sample does not satisfy Equation 5.2, then it will be rejected, and re-sampling contin-

ues until the criteria are met. Ensemble initialisation techniques with the two distributions are

compared by setting the first two moments the same. The covariance matrix for the Gaussian

distribution is provided from the samples obtained from the Dirichlet distribution. The Gaussian

distribution with a diagonal covariance matrix (called Gaussian-diag) is also considered to ex-

amine the advantages (or disadvantages) of having correlations. Hence, parameter samples are

drawn from the three distributions, Dirichlet, Gaussian and diagonal Gaussian. The methodology
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of ensemble initialisation from those distributions is detailed in 5.4.1.

5.4.1 Methods

The following steps are for drawing soil parameters samples from the three distributions, i.e. the

Dirichlet, Gaussian and diagonal Gaussian distributions.

1. Sampling soil texture percentages from the Dirichlet distribution: Dirichlet

(a) Draw sand, silt and clay samples (fractions sumup to unity) fromaDirichlet distribution

by providing the mean sand, silt and clay percentage αi together with the number of

samples, Ne, need to be drawn and multiply the resulting samples by a hundred.

2. Sampling from a Gaussian distribution with correlations: Gaussian

(a) Calculate the covariance matrix, Σ, between sand and silt for the samples drawn from

the Dirichlet distribution.

(b) Draw sand and silt percentage samples from a multinomial Gaussian distribution,

Equation 5.11, by providing the covariance matrix Σ and the same mean sand and

silt percentage used for the Dirichlet distribution. Samples are accepted if sand, silt

∈ [0,100], if not redraw continues. Then calculate the corresponding clay percentage

samples as a residual, clay = 100− (sand+silt).

3. Sampling from a Gaussian distribution without correlation: Gaussian-diag

(a) Set the off-diagonal elements of the covariance matrix Σ to zero, i.e the only non-zero

entries of the new covariance matrix will be variances. Let the new covariance matrix

be Σd .

(b) Draw sand and silt samples as in step 2b but with Σd .

In subsection 5.4.2, numerical illustration of the methods is given.

5.4.2 Numerical illustration of the methods

To illustrate the methods discussed in subsection 5.4.1, soil parameter samples drawn from the

three sampling methods are plotted in figures 5.2, 5.3 and 5.4.
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Depending on the proportions of percentage sand, silt and clay, a given soil sample can fall

in one of the many soil classes. Figure 5.1 shows possible soil texture percentage combinations

and resulting soil classes. For example, the area shaded yellow represents a soil class classified

as clay. For this class, the sand percentage should be between 0 and 45; silt percentage should

be between 0 and 40 and the clay percentage between 40 and 100. At any point in the soil

triangle, percentage sand, silt and clay add up to a hundred. For example, the black dot in the

yellow shaded area represents a soil sample with sand, silt and clay percentage combinations

of 30,20,50. The three sides of a triangle represent sand, silt and clay. Percentage sand at a

given point is read by following a line parallel to silt axis, percentage silt is read by following a

line parallel to clay axis and percentage clay read by following a line parallel to the sand axis (red

arrows).

Figure 5.1: Soil class types and possible combinations of percentage sand, silt and clay for each

soil class.

To address a range of scenarios, mean soil parameters are taken from a variety of soil

classes as given in 5.1. From Figure 5.1, soil class clay (yellow), silt loam (light gray), sandy

loam (light green) and loam (gray) are considered. The mean sand, silt and clay (Ói ) are taken
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from Oklahoma Mesonet stations for each soil class, Table 5.1. In Oklahoma Mesonet, for a

particular station with known soil texture class, the mean sand, silt and clay percentages are

calculated by taking the sample mean over Oklahoma Mesonet stations with the same soil class

(Scott et al., 2013). For example, for Antlers station, the soil type is classified as sandy loam.

Based on 58 sites with sandy loam soil class in Oklahoma Mesonet, the average sand percentage

is 66.5 with a standard deviation of 9.5 and the average clay percentage is 12.8 with a standard

deviation of 3.9. Note that the calculation of silt percentage is omitted in the paper as silt = 100%

- (sand +clay). Table 5.1 contains a list of mean percentage parameters for the sites considered

in these experiments. To encompass cases with smaller and larger variances from the original

Dirichlet distribution, k = 0.5, 1. and 2. are considered respectively. As a result of the change

of covariances and variances proportional to k, the corresponding Gaussian and Gaussian-diag

distributions also considered with the three values of k.

Truth soil parameterStation Soil class

% Sand % Silt % Clay

Antlers sand loam 66.5 (9.5) 20.7 12.8 (3.9)

Boise City clay 17.4 (9.4) 29.8 52.8 (8.6)

Lane silty loam 21.1 (7.6) 60.2 18.7 (4.6)

Mt Herman loam 41.1 (6) 38.2 20.7 (4.2)

Table 5.1: Mean percentage sand, silt and clay (Truth parameters) for Mesonet sites (Scott et al.,

2013) used in the numerical experiments.

By performing steps 1a - 3b with the scale factor k = 0.5,1. and 2., Figure 5.2 - Figure 5.4 are

obtained. The number of samples, Ne, is 200. In Figure 5.2 - Figure 5.4, “Truth” refers to the mean

percentage parameter used to sample from distributions.
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(a) (b)

(c)

(d)

the standard deviation increases as

Figure 5.2: Sand percentage samples drawn from Dirichlet, Gaussian and diagonal Gaussian distributions

for Mesonet sites Antlers, Boise City, Lane and Mt Herman.

Figure 5.2 - Figure 5.4 are box plots of sand, silt and clay parameter samples. The boxes

are samples within the interquartile range (IQR - 50% of samples) where the solid horizontal

lines (with respective colours) in the box representing the median of each sample. The minimum

and maximum values are Q1 − 1.5 × IQR and Q3 + 1.5 × IQR respectively where Q1 and Q3 are

lower quantile and upper quantiles respectively, 49.3% of samples are found outside the IQR and

between the whiskers. Samples outside the minimum and maximum values account for 0.7%.

Figure 5.2 shows boxplots of sand percentage samples for the four Mesonet sites, the three

ensemble initialisation techniques and for three values of k. As k is a scaling factor for the stan-

dard deviation of the samples, the standard deviation increases as k increases from 0.5 to 2.,

Equation 5.8 and Equation 5.9. The green dashed lines are truth sand percentages for each site.
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Since the four stations are from different soil classes, the truth sand percentage is different for

each site. Soil class of each of the stations is given in Table 5.1. For Antlers station, the Gaussian-

diag has shown a slight bias. On the other hand, samples from Gaussian-diag (especially for k)

showed a slightly shorter IQR and also shorter whiskers, as a result of rejections of samples in

the truncation. Even if truncation is considered for the Gaussian distribution, the probability of

samples being outside the lower and upper bound is higher for the Gaussian-diag distribution.

As a result, more re-sampling results in shorter IQR and shorter whiskers for the Gaussian-diag

distribution.

(a) (b)

(c) (d)

Figure 5.3: As in Figure 5.2, but for prior silt percentages.

Figure 5.3 is as in Figure 5.2 except it is for silt percentage samples. The effect of k is the

same as in the case of sand percentages for all the methods and all the stations.
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(a) (b)

(c) (d)

Figure 5.4: As in Figure 5.2, but for prior clay percentages.

Figure 5.4 is similar to figures Figure 5.2 but for clay percentage samples. The Dirichlet and

Gaussian distributions have similar responses for varying k, but the Gaussian-diag has shown

a different pattern for clay percentage samples than sand and silt. Note that clay percentage

is calculated as a residual parameter for the Gaussian and Gaussian-diag distributions. The

Gaussian-diag has shown a relatively shorter IQR and shorter whiskers for sand and silt percent-

ages. Corresponding to sand and silt percentage, Figure 5.4 shows that the Gaussian-diag has

longer IQR and longer whiskers as the sum of sand, silt, and clay is a hundred for each sample.

In general, the three distributions resulted in similar soil texture samples except for sand and silt

samples from the Gaussian-diag have smaller standard deviations, and clay percentage samples

have larger standard deviations compared to the corresponding samples from the Dirichlet and

Gaussian distributions.

So far, we have sampled from the three distributions where each true percentage of the soil
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texture is far from their lower and upper bounds, 0 and 100. Another aspect of comparison of the

methods is handling of extreme cases, where one or more of the parameters are closer to zero or

a hundred. Section 5.4.2 illustrates the comparison with numerical examples where the soil class

is dominated by only one of the soil texture percentages. In reality, there are chances where one

of the soil texture parameters is dominant over the other two. For example, near the beaches,

there is almost entirely sand. On the contrary, there are cases where all the three soil texture

parameters are almost equally shared. Here we are investigating the performance of the above

three distributions using the soil parameter values in Table 5.2 to demonstrate such cases.

Soil parameterSoil class

% Sand % Silt % Clay

Sandy 94 3 3

Silty 3 94 3

Clay 3 3 94

Clay loam 33.3 33.3 33.3

Table 5.2: Example proportions of sand, silt and clay percentages for sandy, silty, clay and clay

loam soil classes.

Figures Figure 5.5 - Figure 5.7 are soil texture samples obtained using soil texture mean as in

Table 5.2 and sampling from the three distributions. Results showed that there is more bias when

the soil is dominated by one soil parameter. In such cases, samples have a higher probability of

hitting the bounds and bias is introduced to avoid samples outside the bounds. The bias in all

the three distributions. When the three soil textures are equal, the three distributions behave

similarly except in case of the clay percentage, and the Gaussian-diag distribution has shown

larger variance, as in the case of the previous section. The Dirichlet distributions look correctly

skewed in each case (i.e. skewed negative when truth close to the upper bound, skewed positive

when the truth is close to the lower bound and un-skewed when far from the bounds).
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(a) (b)

(c) (d)

Figure 5.5: Sand percentage samples drawn from Dirichlet, Gaussian and diagonal Gaussian distributions

for sandy, silty, clay and loam soil classes with extreme values.
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(a) (b)

(c) (d)

Figure 5.6: As in Figure 5.5 but for silt.
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(a) (b)

(c) (d)

Figure 5.7: As in Figure 5.5 but for clay

In this section, we have shown that soil texture parameters can be sampled from the three

distributions. Soil texture parameters determine the moisture content in the soil. In section 5.5

we have shown how soil moisture is sensitive to soil texture parameters using the JULES model

to estimate soil moisture.

5.5 Sensitivity analysis of soil moisture for soil parameters

Here, the sensitivity of soil moisture estimates from the JULES model due to changes in soil

texture is investigated. The soil texture percentage sand, silt and clay varies from the minimum

value (zero) to a maximum value (100) and increasing by ten. Soil moisture ensembles from the

JULESmodel were generated for a time length of one year, 2016. A column of soil with four layers

is considered for the JULES model. Figure 5.8 is a ternary diagram where the colour map is for
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top layer annual mean soil moisture estimate for Antlers station. The forcing data is 0.5-degree

resolution from WATCH Forcing Data methodology applied to ERA-Interim (WFDEI), Weedon et al.

(2014). Soil texture values inside a triangle are similar to discussed in the case of figure 5.1 but

the silt and clay axis are exchanged and the arrows accordingly.

Figure 5.8: Annual mean soil moisture predicted by the JULES model for the year 2016 with vary-

ing soil texture parameter combinations with the forcing data from Antlers station, Oklahoma

Mesonet.
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Figure 5.9: Hydraulic conductivity at saturation obtained from a pedo-transfer function for vary-

ing soil texture parameter combinations.

From Figure 5.8, we can see that the minimum soil moisture estimate is obtained for sandy

soil. On the contrary, the maximum soil moisture estimate is attained with a small percentage of

sand and a high percentage of silt and/or clay. What we have observed is intuitive in that water

passes quicker in larger soil particles than fine soil particles and vice-versa. This phenomenon is

supported by Figure 5.9; high water infiltration is when all soil is sand and infiltration decreases

with sand percentage.

In the region where percentage silt > 20 and percentage sand < 40 (wet region), the soil

moisture value is wet (≥ 0.3m3m−3) irrespective of the corresponding clay percentage. In this

region for a given percentage of clay, annual mean soil moisture estimate increases when the

percentage silt increases and as the percentage sand decreases. For percentage sand < 10,

annual mean soil moisture estimate reaches its maximum, for any combination of silt and clay.

For the region where percentage silt < 20 and % sand > 40, the soil remains drier no matter how

the percentage clay varies. When the silt percentage varies (any line parallel to the silt axis), the
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variation in annual mean soil moisture is marginal for any combination of sand and clay. This

shows that sand and clay percentage are the more important proportions and silt percentage is

the least important proportion to get the soil moisture estimate right.

Another interesting fact is that different combinations of soil percentages can give similar

annual mean soil moisture estimates (equifinality). As a result, conclusions from the comparison

of ensemble generating methods for parameter space (soil texture percentages) does not imply

for soil moisture estimates. i.e. one method being better in analysis soil texture proportions does

not necessarily mean that it is better for the soil moisture estimates and vice versa. Similar exper-

iments were conducted for all the five stations described in Figure 5.1 and similar sensitivity (of

annual mean soil moisture as soil texture parameters vary) was observed except the magnitude

of the annual mean soil moisture estimate for each particular station.

5.6 4DEnVar twin experiments with the JULES model for parameter

estimation

In data assimilation (DA), a twin experiment is a technique to test whether assimilating a model-

predicted set of observations can retrieve a chosen variable in the model using a DA method. In

such a set-up, observations are perfectly represented by the model within a range of observation

error. In reality, observations do not always obey the underlying physics of the model.

Here, twin experiments are conducted to estimate soil texture parameters, sand, silt and clay

(%). These parameters have a direct effect on the amount of moisture in the soil layer (see sec-

tion 5.5). Perturbed soil moisture predictions from the JULES model with Gaussian perturbation

are assimilated into the JULES model using the 4DEnVar DA technique. The numerical imple-

mentation of the 4DEnVar for the JULES model was provided by Ewan Pinnington, described in

Pinnington et al. (2020). In their work, model-predicted and observed data are assimilated with

the JULES model and successfully estimated parameters which determine the harvestable ma-

terial and selected variables in the JULES-Crop model. Details of the experimental set-up for this

chapter is given in subsection 5.6.1.
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5.6.1 Experimental design

Data assimilation experiments are performed to test the performance of ensemble initialisation

techniques described in subsection 5.4.1 for soil moisture data assimilation. Soil moisture ensem-

bles are generated by running the JULES model (version 4.8) using parameters sampled from the

three ensemble initialisation techniques, the number of ensemble members is Ne = 200. These

ensemble initialisation techniques can be used for any model which uses soil texture parameters.

The meteorological data used to force the JULES model are from WFDEI data with 0.5-degree

resolution, (Weedon et al., 2014).

A model truth was obtained by running the JULES model using the truth soil parameters

given in Table 5.1. Synthetic observations were sampled from the model truth with 4% Gaussian

noise, which matches the SMAP soil moisture observation error. Then observation error with

a standard deviation of 0.04 is considered. The square root of the background error covariance

matrix is calculated from the ensembles of parameters, see Equation 2.9 but used for parameters

instead of state space. The observation frequency is every five days with assimilation window

of one year, for 2016. After assimilating synthetic observations, diagnostic tools explained in

subsection 5.6.2 are used to evaluate the performance of each data assimilation experiment.

5.6.2 Diagnostic tools for experimental results

To evaluate the performance of assimilating soil moisture from the top layer, posterior in param-

eter space (analysis sand, silt and clay percentages) and posterior in state space (analysis soil

moisture) are compared with truth parameters and truth state space respectively.

For the parameters, boxplots of prior and posterior values are presented, (Figure 5.11, Fig-

ure 5.12 and Figure 5.13). For a given boxplot, the boxplot being longer shows that samples

have larger variance and less precise in locating the variable in the target. On the other hand,

a shorter boxplot refers to samples being precise and with a smaller uncertainty. If a boxplot for

posterior is shorter than the boxplot of the corresponding prior boxplot for the samemethod, then

the analysis is better than the prior in predicting the truth, more accurate analysis than the prior.

Hence the analysis is skilful as a result of top layer soil moisture data assimilation. Otherwise,

the posterior parameter is considered as not skilful in parameter space.

To investigate the performance of soil moisture data assimilation from a top layer in state

Page 72



Parameter estimation using the Dirichlet distribution to initialise model ensemble for 4DEnVar: twin

experiments

space, RMSE is calculated for each data assimilation experiment for prior and posterior soil mois-

ture compared to the truth soil moisture. The analysis RMSE in the state space for each ensemble

is calculated as

RMSEi =

√√√
1

N

N¼
t=1

(x
a,i
t − xt)2, (5.12)

where x is truth volumetric soil moisture, xa is posterior volumetric soil moisture, i represents

ensemble members, N is the total length of analysis and truth, 365 in this case as we consider

daily time step. The prior RMSE in state space is calculated as in Equation 5.12 but for prior

volumetric soil moisture xb instead of xa.

Prior and posterior RMSE metrics for state-space are calculated for the top layer where soil

moisture observations are assimilated, Figure 5.14. For the second layer, the corresponding RMSE

is calculated to investigate the effect of assimilating top layer soil moisture for root-zone soil

moisture estimates, Figure 5.15. For both soil layers, if analysis RMSE is less than the corre-

sponding prior RMSE, then the posterior soil moisture is considered to be skilful. However, as a

twin experiment, this shows that the data assimilation set-up is working. In a twin experiment,

one would expect that assimilating soil moisture estimates to reduce the RMSE in soil moisture

prediction. Among the three ensemble initialisation methods, the one with the smallest poste-

rior RMSE will be considered as the best. Based on these metrics for parameter and state space,

performances of each data assimilation experiment is discussed in subsection 5.6.4.

5.6.3 Effect of ensemble size

The presumption is that the more samples included, the better to represent the distribution under

consideration. However, the accuracy of representing the distribution is not proportional to the

number of samples, and the accuracy will saturate at some point in time. Besides, there are

factors which restrict the number of samples which can be considered. Computational time and

storage are among the challenges. Having a smaller sample size results in sampling error where

the distribution is misrepresented. Hence, there should be a reasonable compromise to include

a smaller number of samples with minimal sampling error. Here, we investigated the minimum

number of samples needed to be included to represent the PDF; the higher sample sizes the better

the PDF is represented. In the ideal scenario is, the RMSE being zero is a target. However, in this
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case, the benchmark is for RMSE to be less than the observation error, 0.04.

Figure 5.10: Posterior soil moisture RMSE for the three soil layers, with different ensemble size for

data assimilation experiments. The forcing data is from Antlers station and ensemble initialisa-

tion technique is using the Dirichlet distribution with scale factor k = 1.5.

Figure 5.10 shows RMSE for posterior soil moisture for varying ensemble size. In total, 200

data assimilation, experiments are performed, and corresponding analysis soil moisture is ob-

tained. The ensemble size for each experiment varies from 25 to 5000 with an increment of 25.

Then the RMSE is calculated for each soil moisture analysis using Equation 5.12.

The magnitude of RMSE is less than 0.04, observation error, even with the smallest ensemble

size, Ne = 25. In this case, one can use 25 ensemble members if computing time and storage

are unbeatable issues, especially for global models which could take too long to run a single

ensemble member. The ECMWF ensemble forecasting system uses 50 ensemble members . In

our case, the JULES model takes minutes to integrate for a single ensemble member as it is only

for a single grid. Besides, the parallel computing facilities at the University of Reading makes it

possible to consider a larger ensemble size. Therefore, 200 ensemble numbers will be used for

the data experiments throughout the chapter.
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5.6.4 Results and discussions

As discussed in section 5.5, soil texture parameters are an important part of soil moisture estima-

tion in land surface models, JULES in this case. Getting the right set of parameters is necessary

for soil moisture prediction. Hence, here soil texture parameters are updated in the data assim-

ilation, and soil moisture analysis is obtained by running the JULES model using the updated

parameters. As part of assessing the success of data assimilation experiments, prior and poste-

rior soil texture parameters are compared. Besides, posterior soil texture parameters obtained

from the three ensemble initialisation techniques are compared.

Figure 5.11 - Figure 5.13 are boxplots displaying prior and posterior soil texture parameters

from Dirichlet, Gaussian and Gaussian-diag ensemble initialisation techniques discussed in sub-

section 5.4.1. The green dotted line is the population mean; we called it truth instead of mean

so that it is not confused with the sample mean. For all the sites, a single data assimilation ex-

periment is conducted, and analysis ensemble members are updated by using the background

perturbation and analysis error covariance, as implemented in Pinnington et al. (2020).

Figure 5.11 shows that as a result of assimilating top layer soil moisture data, percentage

sand values are closer to the actual value of the corresponding prior parameter. The length of the

IQR for prior ismuch larger compared to the posterior in all the cases. This is observed for the four

stations with different soil class and all the three data assimilation experiments corresponding to

the three ensemble initialisation techniques. We can see that the posterior parameters are more

precise than the prior, which makes the posterior sand percentage skilful.
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(a) (b)

(c) (d)

Figure 5.11: Prior and posterior percentage sand with 200 ensemble members. Dirichlet, Gaussian and

Gaussian-diag represent the three ensemble initialisation techniques with k = 2. used for sampling prior

parameters.

Figure 5.12 is similar to Figure 5.11 but for silt. Compared to posterior sand percentages,

posterior silt percentages are less skilful. This is because soil moisture prediction in the JULES

model is less sensitive to the silt percentage compared to sand and clay percentage (section 5.5).

Predicted soil moisture values do not change thatmuch as silt percentage varies. The objective of

the assimilation is targeting to reduce the difference between observed and predicted soil mois-

ture values. From the ternary diagram (5.8), we have seen that a broader range of silt percentage

parameter resulted in similar soil moisture values. Hence, if the soil moisture estimate is attained

from a particular combination of parameters, there is no need for the DA system to go closer to

the truth parameter value.
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(a) (b)

(c) (d)

Figure 5.12: As in Figure 5.11 but for percentage silt.

Figure 5.13 is as in Figure 5.11 but for a percentage of clay. For all stations and all ensemble

initialisation techniques, posterior clay percentage has a smaller variance than the correspond-

ing prior. This result shows that assimilating top layer soil moisture has helped to recover truth

clay parameters. The result is consistent with the discussion in section 5.5 that soil moisture

predicted with the JULES model is highly sensitive to changes in clay percentage.
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(a) (b)

(c) (d)

Figure 5.13: As in Figure 5.11 but for percentage clay.

In most cases, we have seen that posterior parameters are more skilful than prior param-

eters. The exception in silt percentages is that soil moisture is less sensitive to changes in silt

percentage. As we have seen in section 5.5, soil texture parameters have a direct impact on the

soil moisture estimate. Having skilful posterior parameters is presumed to obtain skilful posterior

soil moisture estimate.

Comparing the performances amongst the three distributions, the Dirichlet and Gaussian

distributions have shown similar accuracies, both for prior and posterior parameters. The sim-

ilarity is consistent for all the soil texture parameters and all the sites. The Gaussian-diag dis-

tribution has also resulted in similar accuracy for posterior parameters. The prior sand and silt

samples from the Gaussian-diag distribution have smaller variance, and clay parameter samples

have larger variance compared to sand, silt and clay samples from the Dirichlet and Gaussian

distributions. This difference is because of rejections and re-sampling of sand and silt parame-

ters to avoid negative samples, and clay is calculated as a residual to complement the sum to a
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hundred.

The hypothesis was the Dirichlet distribution to outperform the other distributions as a re-

sult of the physical properties shared with the soil texture parameters. However, it turns out

that all the three distributions can be used interchangeably to sample soil texture parameters,

by imposing positivity, boundedness and sum to a hundred to the Gaussian and Gaussian-diag

distributions and with more input, covariance matrix, for the Gaussian distributions. The differ-

ences in the prior parameters did not havemuch effect on the data assimilation, and the posterior

parameters from the three distributions are similar.

It is not surprising that the Dirichlet and Gaussian distributions performing similarly as both

are using the same first and second moments during sampling. However, it is surprising to see

that Gauss-diag is also performing similarly in the data assimilation.

The posterior soil moisture corresponding to the posterior soil texture parameters is obtained

by running the JULES model with the posterior soil texture parameters. To evaluate the perfor-

mance of different data assimilation experiments for soil moisture, analysis soil moisture RMSE

is plotted for all the four stations, Figure 5.14. In addition to the top layer where observations are

assimilated, second layer soil moisture estimates are also impacted as a result of data assimi-

lated in the top layer. To examine the impact, RMSE is calculated and plotted for the second layer

as well, Figure 5.15.

Figure 5.14 shows that posterior soil moisture RMSE is less than the prior soil moisture RMSE

in all the three methods and all sites. This shows that assimilating top layer soil moisture to

estimate soil parameters is a useful technique to constrain the JULES model for soil moisture

prediction. This result is consistent with the results in parameter space: posterior soil parameters

obtained by assimilating top layer soil moisture data are more accurate and precise compared to

the prior soil parameters.

The impact of assimilating top layer soil moisture is not restricted to the top layer soil mois-

ture estimate; it also greatly affected the second layer. Figure 5.15 shows that, as a result of

assimilating top layer soil moisture, the RMSE of posterior soil moisture for the second layer is

much smaller than the corresponding RMSE of prior soil moisture estimates. The characteristics

for each site and ensemble initialisation technique are consistent with what is observed in the top

layer. This is as expected since soil parameters are assumed to be constant across a soil column

at different depth.
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(a) (b)

(c) (d)

Figure 5.14: Top soil layer prior and posterior soil moisture RMSE for 200 ensemble members. Dirichlet,

Gaussian and Gaussian-diag represent the three ensemble initialisation techniques which resulted in prior

soil moisture ensemble members and corresponding posterior soil moisture ensemble members after data

assimilation.
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(a) (b)

(c) (d)

Figure 5.15: Second layer prior and posterior soil moisture RMSE for 200 ensemble members. Dirichlet,

Gaussian and Gaussian-diag represent the three ensemble initialisation techniques which resulted in prior

soil moisture ensemble members and corresponding data assimilation experiments which resulted in the

posterior soil moisture ensemble members.

Figure 5.14b shows that RMSE for Boise City is different from RMSE for other sites in two as-

pects: the RMSE both for prior and posterior soil moisture prediction is smaller, and the RMSE

reduction of posterior soil moisture from the RMSE of prior soil moisture for Boise City is smaller

compared to any other site considered in this experiment. This is because for this station, the un-

certainty in the JULES model is smaller compared to other sites and the influence (contribution)

from observations is smaller - the system is overconfident on the model.

Comparing the three ensemble initialisation methods, prior soil moisture RMSE from the

Gaussian-diag is larger than the corresponding RMSE from Dirichlet and Gaussian distributions.

However, for the posterior soil moisture RMSE, the difference is negligible and all data assimi-

lation results using parameters from the three distributions showed a great performance in re-
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ducing the posterior soil moisture RMSE. As we have seen for parameter space, the results for

state-space also shows that the performance of the three ensemble initialisation techniques is

similar, and any of the distributions can be used for soil moisture data assimilation.

5.7 4DEnVar twin experiments with the JULES model for parameter

estimation with a wrong background

In section 5.6 twin experiments have shown that a model predicted soil moisture assimilation

could retrieve truth soil texture parameters where the background ensemble members encom-

pass the truth: background ensemblemembers were sampled around the truth parameters. Here,

we are investigating whether the truth parameters will be retrieved if the background soil texture

parameter ensemble members are far from the truth soil parameter. As such, the truth soil pa-

rameters are set to be 33.3% for sand, silt and clay while the background ensemble members

are as in section 5.6. Then the experiment is repeated with the remaining experimental set-ups

similar to section 5.6.

5.7.1 Results and discussions

Here, the skill of the posterior parameters is investigated by how close it is from the truth param-

eter and by its uncertainty reduction. The investigation is similar to the case where a known back-

ground, but here the position of the truth is different. We have considered the case when the truth

is outside the background ensemble members. i.e. observations are far from the background as

we are considering synthetic observations by perturbing the truth. Such a case happens where

there is no enough information about the background. Figure 5.16 - Figure 5.18 are comparisons

of prior and posterior soil texture parameters from the three methods of ensemble initialisation

for this set up.

Figure 5.16 shows prior and posterior sand percentage for three ensemble initialisation tech-

niques and for the four sites. In all the cases, the posterior sand percentage has moved towards

the truth sand percentage and with smaller uncertainty. The extent of being close to the truth

varies across the sites due to the differences between the prior parameter and truth for each

site and also due to the differences in the meteorological forcing for each site. Similar to the

case we have seen in section 5.6, the Dirichlet and Gaussian distributions behave very similarly,
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and truth parameters are estimated in a right direction though could not exact the truth in some

cases, Figures 5.16a and 5.16c. The Gaussian-diag has shown slightly worse performance than

the Dirichlet and Gaussian distributions.

Figure 5.17 is as in Figure 5.16 but for silt. The main difference in Figure 5.17 is that in Fig-

ure 5.17a, the posterior silt percentage for Gaussian-diag is worse than the prior silt percentage

(and also worse than the Dirichlet and Gaussian distributions) in predicting the truth silt. In sec-

tion 5.5 we have seen that soil moisture is less sensitive to silt percentage, hence having worse

silt posterior is not necessarily a bad thing for soil moisture prediction.

(a) (b)

(c) (d)

Figure 5.16: Prior and posterior percentage sand with 200 ensemble members. Dirichlet, Gaussian and

Gaussian-diag represent the three ensemble initialisation techniques with k = 2. used for sampling prior

parameters. Note that the truth is (33,33.3,33.3) for percentage sand, silt and clay.

Figure 5.18 shows the prior and posterior clay percentage where the truth is outside the dis-

tribution of the background ensemble members. In most cases, the posterior clay percentage is

close to the truth clay percentage than the prior clay. In Figure 5.18a, the Gaussian-diag posterior

has passed the truth and goes further. As the clay is calculated as a residual, it is complementing
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the other two parameters we have seen above.

(a) (b)

(c) (d)

Figure 5.17: As in Figure 5.16 but for silt.
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(a) (b)

(c) (d)

Figure 5.18: As in Figure 5.16 but for clay.

In general, from Figures 5.16 - 5.18 we have seen that even if the background parameters

are specified wrongly, far from the truth, the data assimilation is able to push the parameter

predictions towards the truth parameters. An exception has been observed for silt percentages

resulted from the Gaussian-diag distribution where the prior is better than the posterior parame-

ters. Figure 5.19 and Figure 5.20 are corresponding plots for soil moisture RMSE using the prior

and posterior soil parameters given in Figures 5.16 - 5.18.
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(a) (b)

(c) (d)

Figure 5.19: Prior and posterior soil moisture RMSE for 200 ensemblemembers, for the top layer. Dirichlet,

Gaussian and Gaussian-diag represent the three ensemble initialisation techniques which resulted in prior

soil moisture ensemble members and corresponding data assimilation experiments which resulted in the

posterior soil moisture ensemble members.

Figure 5.19 and Figure 5.20 show that posterior soil moisture after assimilating observations

have a better skill even if the background ensemble members were far from the observations.

The general pattern we have seen from the above experiments is that the performance of the

Dirichlet and Gaussian is very similar whereas the performance of Gaussian-diag distribution is

slightly better in some cases and worse in other cases. The comparison was made for informed

and uninformed background ensembles and different meteorological forcing.
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(a) (b)

(c) (d)

Figure 5.20: As in Figure 5.19 but for the second soil layer.

5.8 Comparison of methods for handling extreme soil texture

In section 5.6 and section 5.7 we have seen that assimilating top layer soil moisture into the

JULESmodel can improvemodel predicted soil moisture by parameter estimation. For both cases,

soil texture parameters were taken from the Mesonet sites. For all the four sites we considered,

soil texture percentages were somewhere in the middle of the soil triangle, i.e. none of the three

soil texture parameters was entirely dominant in contribution. However, in reality, there are cases

where only one of the soil textures is entirely dominant than the other two. Contrary to having

one soil texture being dominant, we also considered where all the three soil texture parameters

have exactly equal contribution to the soil class texture. Hence in this section, we are comparing

the performance of the three distributions by considering the case where the background soil

texture parameters are near the corners of the soil triangle as well as at the centre. Similar

meteorological forcing data are used for all the cases, to make the comparison solely on the soil
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type. The truth soil texture parameters considered in this experiment are as in Table 5.2 and the

background ensemble members are sampled around the truth soil parameters. Then the twin

experiment is repeated with the rest of the experimental set-ups as in section 5.6.

5.8.1 Results and Discussion

Figure 5.21 shows prior and posterior sand percentage where the prior percentage is sampled

using the respective truth as a mean from the Dirichlet, Gaussian and Gaussian-diag. In all the

cases, the posterior sand percentage is closer to the truth and has smaller uncertainty compared

to the corresponding prior. Both for prior and posterior parameters, Figure 5.21d shows less bias

and the truth parameters are retrieved. On the other hand, for Figures 5.21c, 5.21a and 5.21b,

both prior and posterior parameters are biased since the truth (population mean) parameter is

closer to the boundaries (0 or 100).

(a) (b)

(c) (d)

Figure 5.21: Prior and corresponding posterior percentage sand for k = 2 and 200 ensemble members.

Dirichlet, Gaussian and Gaussian-diag represent the three ensemble initialisation techniques used for

sampling prior parameters. The Truth was used as a mean for sampling from all the three distributions.
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(a) (b)

(c) (d)

Figure 5.22: As in Figure 5.21 but for silt.

Figure 5.22 is as in Figure 5.21 but for silt. Posterior sand percentages are less skilful than

the corresponding sand posterior as soil moisture prediction is less sensitive to silt percentage

changes.
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(a) (b)

(c) (d)

Figure 5.23: As in Figure 5.21 but for clay.

From Figure 5.21 - Figure 5.23 we have seen that, when the background soil texture per-

centages are equally shared among the three parameters (Figure 5.21d, Figure 5.22d and Fig-

ure 5.23d), all the three distributions have shown similar performance and less bias, for prior and

posterior parameters. Whereas, if one of the soil textures is dominant, prior parameters are bi-

ased and also posterior parameters as a result. Comparing the three distributions, there is no

substantial difference between them, all have shown better posterior than the prior. Figure 5.24

and Figure 5.25 are prior and posterior soil moisture RMSE for top soil layer and second layer

corresponding to prior and posterior parameters plotted in Figure 5.21 - Figure 5.23.
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(a) (b)

(c) (d)

Figure 5.24: Prior and posterior soil moisture RMSE for 200 ensemblemembers, for the top layer. Dirichlet,

Gaussian and Gaussian-diag represent the three ensemble initialisation techniques which resulted in prior

soil moisture ensemble members and corresponding data assimilation experiments which resulted in the

posterior soil moisture ensemble members.
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(a) (b)

(c) (d)

Figure 5.25: Prior and posterior soil moisture RMSE for 200 ensemble members, for the second layer.

Dirichlet, Gaussian and Gaussian-diag represent the three ensemble initialisation techniques which re-

sulted in prior soil moisture ensemble members and corresponding data assimilation experiments which

resulted in the posterior soil moisture ensemble members.

Figure 5.24 and Figure 5.25 show that at any corner of the soil triangle and at the centre,

the three ensemble initialisation methods can be used for sampling soil texture parameters. The

posterior soil moisture is more skilful than the prior, for all the three ensemble initialisation tech-

niques. When the mean parameters are closer to the boundaries, parameter ensembles become

closer to the truth. As a result, the RMSE is very small, even for the prior soil moisture. In com-

parison, when the mean parameter is at the centre, parameter ensembles have a larger variance,

and prior soil moisture RMSE is larger, Figure 5.24d and Figure 5.25d.

5.9 Summary

In this chapter, a novel ensemble initialisation technique using the Dirichlet distribution is in-

troduced for synthetic soil moisture data assimilation with the JULES model using 4DEnVar for

Page 92



Parameter estimation using the Dirichlet distribution to initialise model ensemble for 4DEnVar: twin

experiments

parameter estimation. Cases where known and unknown background ensembles are considered

to investigate the ability of the data assimilation set-up. In both cases, numerical results showed

that the JULES model is successfully constrained by assimilating top layer synthetic soil mois-

ture data to improve soil texture parameters as well as soil moisture estimates. Performance of

the Dirichlet distribution is compared to the Gaussian distribution. When the first two moments

are the same, prior and posterior soil parameters from the Dirichlet and Gaussian distribution

are similar. This might seem obvious; however, the new information here is that the Dirichlet

distribution can be used in the data assimilation where background errors are assumed to be

normally distributed. For the Gaussian distribution without correlations (Gauss-diag), numerical

results showed that posterior parameters and posterior soil moisture estimates are similar, but

the prior soil moisture has larger RMSE than the corresponding prior from Gaussian and Dirichlet

distributions.

Prior soil texture parameters from different soil classes were sampled to compare the distri-

butions with various circumstances. The same meteorological forcing data were considered and

used in the data assimilation. Even though the Dirichlet distribution shares the physical proper-

ties of soil texture parameters, the effect on sampling soil texture parameters is not significant

compared to the Gaussian distribution with and without correlations. In conclusion, based on nu-

merical results for posterior soil moisture estimates, any of the three distributions can be used to

sample soil texture parameters.

In a twin experiment, the data assimilation is presumed to retrieve the truth soil parameters.

However, for real soil moisture data, this might not be the case. As we are considering a perfect

model, any mismatch between the observation and model estimate soil moisture will be compen-

sated by adjusting the soil parameters, even if it is due to model error. As a result, the posterior

soil texture parameter may not necessarily be a valid parameter value.

As soil parameters determine hydraulic parameters which in turn determines the amount

of moisture in the soil, improving the prediction of soil parameters is presumed to improve soil

moisture estimates of a numerical model. By assimilating top layer soil moisture data into the

JULES land surface model, the truth soil parameters were restored, and as a result, posterior

soil moisture estimates have smaller RMSE compared to the prior soil moisture. This result is

in agreement with the results discussed in (Scott et al., 2013), where improving soil property

database lead into improved soil moisture estimates in Oklahoma Mesonet sites. To verify these
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experiments with real observations, in chapter 6 we have assimilated ground measurement, and

satellite observed soil moisture data for Mesonet site into the JULESmodel using the 4DEnVar for

parameters estimation.
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Chapter 6

Parameter estimation using the

Dirichlet distribution to initialise model

ensemble for 4DEnVar: with observed

data

In this chapter, ground measurements and satellite observed soil moisture data are assimilated

into the JULES model with 4DEnVar to improve soil moisture estimates from the JULES model

by parameter estimation. Performance of the prediction system is verified by hindcasting for the

following year where data is not assimilated.

6.1 Introduction

In chapter 5, we have successfully performed twin experiments with the 4DEnVar for parameter

estimation where the prior parameters are drawn using the Dirichlet and Gaussian distributions.

Results show that, for parameters and state, the posterior is closer to the truth compared to the

prior. While twin experiments have advantages because of the availability of truth parameter and

state to compare the data assimilation results with, it is vital to validate the method with real

data for actual use of the system. For example, in the twin experiment, the model is a perfect rep-

resentation of the observations, which is not attainable in reality. As such, in this chapter, ground
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measurement and satellite observed soil moisture data from Mesonet sites (see subsection 3.2.2

and subsection 3.2.3) are assimilated into the JULES model. To strengthen the validation, soil

moisture hindcast for the following year after data assimilation is obtained and compared with

observations in that year. This step is important as soil moisture can be obtained for the future

forecast and can be used for early warning systems like drought monitoring and flood warning

systems if the forcing data forecast are available from climate models. From the twin experiment,

improvements for the top layer soil moisture estimates have improved soil moisture estimates for

the deeper layer too. Here we also investigate if this holds for assimilation using real data or not.

From the comparison of twin experiment results in chapter 5, we have seen that posterior

parameters obtained by using the Gaussian and Dirichlet distributions show similar accuracy

when both distributions are set to have the same correlations for the prior. In this chapter, the

Dirichlet distribution will be used to draw prior soil texture parameters and initialise model en-

sembles, since the Dirichlet distribution shares positivity and boundedness properties with soil

texture parameters (section 5.2). In section 6.2, the experimental set-up and results from as-

similating ground measured soil moisture data from Oklahoma Mesonet sites into the JULES

model are presented. With a similar experimental set-up and forcing data as in section 6.2, high-

resolution satellite observed soil moisture data (SMAP 9 km by 9 km resolution data) assimilation

results are given in section 6.3. Then we investigate whether or not in-situ observations can be

used to validate the satellite data assimilation results.

6.2 In-situ soil moisture data assimilation

In this experiment, the JULES model is configured in such a way that the Oklahoma Mesonet site

description is met. To match Mesonet soil moisture measuring points 5 cm, 25 cm and 60 cm

deep from the surface (Illston et al., 2008), the standard JULES discretisation of each soil layer

thickness is changed into 10 cm, 30 cm, 40 cm and 2.2 m, from top to bottom. This corresponds

to measurement points are at the centre of each soil layer. The fourth layer thickness is chosen

such that the total depth of the column is 3 m as the JULES standard setting, (Best et al., 2011).
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6.2.1 Experimental design

In chapter 5, all experiments are based on synthetic data and the model is considered to be per-

fect, observation errors are Gaussian and the maximum value of k, which determines the magni-

tude of uncertainty in the background, used is 2. However, in real data assimilation applications,

the model does not represent reality perfectly, and the related error is not perfectly Gaussian. In

this experiment, the value of k is expected to be larger than the one used for the perfect model

assumption. Otherwise, the model ensemble predictions will have small spread while they are

away from the observations, which we have seen in chapter 4 with a perfect model assumption.

This will make the system too confident on the model prior, and observations will be disregarded.

Hence, the value of k = 10 is selected so that all the four stations with different soil type have

reasonable spread for soil moisture ensembles.

The forcing data to drive the JULES model is from Mesonet meteorological data except for

the longwave radiation (LW). LW is taken from the Watch Forcing Data methodology applied to

ERA-Interim data (WFDEI) (Weedon et al., 2014) 36 km resolution data, disaggregated from 3 hrs

to 30 min by cubic interpolation. Years 2016 - 2018 inclusive are considered for the forcing data

where 2016 is for spin-up the JULESmodel, 2017 for DA experiments and 2018 for hindcast based

on the assimilation results.

The background soil texture parameters, used as the mean value to draw from a Dirichlet

distribution, are taken from the measured values for each station, Scott et al. (2013). Compared

to the SMAP footprint, stations represent only a fraction of a pixel. 200 ensemble members of

prior soil texture parameters and the corresponding soil moisture ensemble are used for the ex-

periments. The JULES model is configured with 100% temperate (C3) grasses, a leaf area index

of 6 to generate soil moisture ensemble members corresponding to each ensemble member of

soil texture parameters. As we have seen aerial photos in chapter 3, there is a difference in veg-

etation coverage between stations. However, here we considered 100% temperate (C3) grasses

for all the stations. This tests the potential of the data assimilation experiment while little infor-

mation on the land cover is provided. The Van Genuchten equation was used to calculate the

hydraulic characteristics parameters. Gaussian observation error with error covariance matrix

R = 0.052Im3m−3 is used, based on the validation experiment done by comparingMesonet ground

measurement soil moisture observations with the gravimetricmethod, Illston et al. (2008) and ob-

servation frequency is every five days. Volumetric soil moisture data was obtained by using the
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Van Genuchten equation, to be consistent with the JULES model. Using the above experimental

set-up, results of assimilating in-situ surface soil moisture data for the four sites in Oklahoma

Mesonet is given in the following subsection.

6.2.2 Results and discussion

Here in-situ soil moisture data described in subsection 3.2.3 is assimilated into the JULES model

and soil texture parameters are updated. State updates are then obtained by running the JULES

model using the updated parameters.

Figure 6.1 shows data assimilation results using the 4DEnVar data assimilation method. The

posterior soil moisture is a single JULES run corresponding to the posterior soil texture parameter

obtained from the data assimilation as opposed to posterior soil texture parameter ensembles as

in chapter 5. Hence, themeasure of data assimilation performance is by comparing how close the

posterior soil moisture estimate xa is to the observations Obs compared to the prior soil moisture

estimate xb .
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(a) (b)

(c) (d)

Figure 6.1: Top layer soil moisture data assimilation results for stations in Oklahoma Mesonet and daily

rainfall. Black line: JULES prior trajectory. Blue line: JULES posterior trajectory. Light gray lines: JULES

prior ensemble members trajectory. Green dots: ground measurement soil moisture data from Oklahoma,

Mesonet, 2017. Green vertical lines: error bar for observations. Blue bars: Daily rainfall data.

Figure 6.1 shows that, the JULES posterior trajectory is closer to respective observations

than the JULES prior soil moisture trajectory. The improvement is as a result of posterior param-

eters obtained from assimilating soil moisture observations. In all the stations and throughout

the year, we can see that the JULES model responded to the forcing rainfall data and mimics the

trajectory of ground observations even if the magnitude is different.

The primary objective of data assimilation is to minimise the distance between the model

estimate and observed state. As such, figure 6.2 is a figure plotted to assess the performance of

data assimilation experiment results presented in figure 6.1 in terms of the distance of prior and

posterior soil moisture estimates from soil moisture observations in each month.
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(a) (b)

(c) (d)

Figure 6.2: Corresponding plot for Figure 6.1. Blue bars: distance of background soil moisture from obser-

vations. Orange bars: distance of posterior soil moisture from observations. Brown bars: where the blue

and orange bars overlap. Observations are top layer ground measurement soil moisture from Oklahoma

Mesonet in 2017.

From figure 6.2 we can generalise that, posterior soil moisture estimates are closer to the

observations compared to the prior, we see more blue color than the orange. However, looking

at particular times, Figure 6.2a representing Antlers station for example, prior soil moisture is

closer to observations compared to the posterior in January and October. This is due to the fact

that 4DEnVar, as one of the variational data assimilation methods, considers all the observations

to come up with an optimal trajectory to fit into the observations when the new initial condition

(analysis) is used and the model is integrated. Hence, it is not surprising to see the prior being

closer to the observations than the analysis sometimes. Note that as we are estimating param-

eters instead of the state, the new initial condition (analysis) is obtained by using the analysis

parameters to run the JULES model. Looking at the prior soil moisture for Antlers station, (Fig-
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ure 6.2a), it matches well the observations in Jan and Oct. In addition, the prior error is smaller

than the observation error in Jan and Oct. Hence the posterior which is obtained by considering

the whole year is likely to be worst than the prior for Jan and Oct. The same scenario is observed

for Boise City station in Feb (Figure 6.2b) and for Lane station in July (Figure 6.2c). Whereas for

Mt Herman station, Figure 6.2d, the prior soil moisture is far from the observations throughout

the year and as a result the posterior is closer to the observations throughout the year.

Considering the overall performance across the whole year (the whole assimilation window),

the posterior soil moisture estimates are closer to the observations than the prior soil moisture

model estimate, as shown in Table 6.1. Up to a 60% reduction is obtained by assimilatingMesonet

in-situ observations. Looking at specific times; however, posterior soil moisture with better im-

provement is observed where the prior soil moisture is far from the observations and vice versa.

6.2.3 Hindcasting

One way of verifying the prediction system is by hindcasting, i.e. forecasting retrospectively, and

compare with the observations.Comparing posterior with observations in the same time frame

of assimilation is a useful metric, however, comparing against the same observations which are

assimilated is somehow straightforward and does not necessarily show that the result is reliable.

It is worth checking with other sets of observations other than the ones which are assimilated.

Here, in addition to calculating the distance reduction by the posterior soil moisture estimates to

the observations, soil moisture is estimated for the following year data is assimilated is performed

and the hindcast soil moisture is compared with in-situ observations, Figure 6.3.
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(a) (b)

(c) (d)

Figure 6.3: Hindcast soil moisture for 2018 based on the posterior soil texture parameters corresponding

to the result obtained from assimilated Mesonet soil moisture data for 2017, depicted in figure 6.1. Black

line: JULES open-loop trajectory. Blue line: JULES hindcast trajectory. Green dots: ground measurement

soil moisture data from Oklahoma, Mesonet, 2018. Green vertical lines: error bar for observations. Blue

bars: Daily rainfall data.

Figure 6.3 depicts open-loop, hindcast and observed volumetric soil moisture for the year

2018. Open-loop runs xo and hindcast xf are soil moisture estimates for the year beyond the

assimilation window using prior and posterior soil texture parameters respectively. Similar to the

case in Figure 6.1 in the previous year, the soil moisture variables responded well for the forcing

rainfall data. For Boise City station, for example, Figure 6.3b, for the duration from January to

March there was almost no rainfall, and as a result soil moisture observation andmodel estimates

are drier than any other time.

Figure 6.4 shows the distance of the open-loop and hindcast soil moisture from the obser-

vations for each month. Similar to the assimilation period, the forecast soil moisture is skilful

compared to the open-loop most of the time. However, when the open-loop is closer to the ob-
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servations, the hindcast is less skilful, for example, Figure 6.4a, Sept-Dec. Note that Mesonet

observations are missing for Lane station in December 2018, Figure 6.3c and Figure 6.4c. Hence

the RMSE given in Table 6.1 is calculated over the available observations only.

(a) (b)

(c) (d)

Figure 6.4: Corresponding plot for Figure 6.3. Blue bars: distance of background soil moisture from obser-

vations. Orange bars: distance of posterior soil moisture from observations. Brown bars: where the blue

and orange bars overlap. Observations are ground measurement top layer soil moisture from Oklahoma

Mesonet for 2018.

Comparing the hindcast with open-loop model runs, most of the time, the hindcast is closer

to the observations. However, there is a variation of performance across stations. For example,

for Antlers station, the overall improvement of the hindcast (RMSE = 0.07) compared to the open-

loop model run (0.063) is slightly worse. For Lane station, the hindcast has RMSE = 0.071 and

open-loop run RMSE = .105. Comparing among the hindcast, Antlers station is slightly better

than Lane station. In general, soil moisture hindcast is skilful, and it reassures the performance

of the data assimilation results we see above, subsection 6.2.2.
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Another aspect we looked in the twin experiments is the impact of assimilating surface soil

moisture for deeper layers. In chapter 5 we have seen that deeper layers benefited from the

improvement on the top layer. The following subsection investigates whether or not the same

result holds with in-situ soil moisture data assimilation.

6.2.4 Investigating root-zone soil moisture content

Here we assess how the data assimilation on the top layer influences the layer below it. The as-

sessment is important because the soil moisture content in the second layer is vital for several

land surface processes. However, soil moisture observations for deeper layers are absent (satel-

lite observations) or scarce in general. On the other hand, data assimilation makes it possible for

the deeper layers to gain information from observations on the top layer Reichle et al. (2001). For

Mesonet sites, soil moisture is observed for the second layer as well, at 25 cm from the surface,

and observations are compared with the posterior soil moisture as a verification. In chapter 5 we

have seen that in a twin experiment, assimilating soil moisture on the top layer resulted in im-

proved posterior soil moisture. As in chapter 5, in this experiment, the JULES model is configured

with constant soil texture parameters for all the soil layers where which is not true in reality. For

mesonet sites, soil texture varies significantly with depth Scott et al. (2013).

Any alteration in the first layer will alter the soil moisture estimate for deeper layers in two

ways. First, the posterior parameter (if different from the prior) will alter soil moisture estimation

in the deeper layers. Second, the difference in posterior soil moisture for the top layer will affect

posterior soil moisture in the deeper layers as a result of infiltration. Hence, if the prior soil

moisture in the deeper layers is already close to the observations, the posterior soil moisture in

the deeper layer is most likely to be worse as a result of alterations from the top layer. Note that

there is no data assimilated for the deeper layer, we are assessing the impact of assimilating on

the top layer.
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(a) (b)

(c) (d)

Figure 6.5: Similar to figure 6.1 but for the second layer.

Figure 6.5 shows observed, background and posterior soil moisture for the second layer. Fig-

ure 6.5a and Figure 6.5b shows that posterior soil moisture which resulted from adjustments on

the top layer is less skilful than the background. However, Figure 6.5c and Figure 6.5d shows that

posterior soil moisture is more skilful than the corresponding background soil moisture.
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(a) (b)

(c) (d)

Figure 6.6: Similar to Figure 6.2 but for second soil layer.

Figure 6.6 is a corresponding plot to Figure 6.5, the distance of the background and poste-

rior soil moisture from the observation at each observation time. From the two figures we have

learned that, with constant soil texture parameter assumption, posterior soil moisture for the

second layer improves the background soil moisture estimates for the two sites and made worse

for the other two sites.

6.3 Satellite soil moisture (SMAP) data assimilation

In subsection 6.2.1, in-situ soil moisture observations from Oklahoma Mesonet were assimilated

into the JULES model where the forcing data is also observed meteorological data from Mesonet.

In this case, soil moisture observations and model output soil moisture estimates are represen-
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tative in spatial resolution. However, as we have discussed in section 1.2, in-situ soil moisture

observations have sparse spatial coverage, especially for the developing world. Hence, using

satellite soil moisture observations is a feasible alternative due to spatial coverage. The caveat

of using satellite observations where in-situ data is absent is that there is no way to validate

whether assimilating satellite observations improve the model forecast skill or not. So, here we

are assimilating satellite soil moisture observations from SMAP for Mesonet stations where in-

situ observations are available to validate the data assimilation results. It is important to note

that data assimilation results with SMAP observations for Mesonet sites being skilful does not

imply the same for other sites, but it gives insight that there is a chance.

The SMAP soil moisture resolution for the radiometer (Passive part) is 36km by 36km and the

9km by 9km resolution data are obtained by disaggregation from the original data by Backus-

Gilbert optimal interpolation method, Chaubell (2016). In the method, the surface brightness

temperature in the required pixel is calculated by a weighted sum of the surface brightness tem-

perature of the nearby pixels with the original resolution, Poe (1990) and Long and Brodzik (2016).

Here the assimilated soil moisture data is the L3, 9 km by 9 km SMAP satellite observed

soil moisture data, as discussed in subsection 3.2.3. The experimental set-up in this section is

as in subsection 6.2.1 except that soil moisture observations are 9 km by 9 km SMAP satellite

observed soil moisture, with observation frequency of two to three days and observation error

of 0.04, (Zhang et al., 2019a). Posterior soil moisture obtained from assimilating the SMAP soil

moisture data is verified against in-situ soil moisture data. In addition, soil moisture is hindcast

based on the assimilation results and compared with ground measurement observations.

6.3.1 Results and discussion

Here, data assimilation results obtained by assimilating SMAP high-resolution data is presented.

Figure 6.7 is a time series plot for prior ensemble members, posterior, background and SMAP

high-resolution soil moisture. The bottom box in each plot is observed rainfall for each station. As

discussed in subsection 3.2.3, observations for Antlers and Mt Herman are noisy and the JULES

model prior overestimated soil moisture for Boise city.

Figure 6.7 shows that for Boise city and Lane stations posterior soil moisture estimates (blue

lines) have moved towards the observations from the background (black lines). For Antlers sta-

tion, most of the time, the posterior is closer to the observations compared to the prior. However,
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for Mt Herman station, the background is already close to the observations, and as a result the

posterior did not move that much closer to the observations. Besides, since observations are

noisy, it is hard to tell whether it is the posterior or the background is closer to the observations.

Figure 6.8 is a distance between the background and posterior from the observations for each

month and clearly shows the performance of the data assimilation.

Figure 6.7: Top layer prior, background, posterior and SMAP satellite observed volumetric soil moisture

for stations in Oklahoma Mesonet, for the year 2017. The prior parameters are drawn from a Dirichlet

distribution with k = 10.

Figure 6.8 shows the distance from the observation for background and posterior soil mois-

ture estimates for eachmonth. The result shows thatmaximum improvement is attained for Boise

City station and little or no improvement for Mt Herman station. Compared to similar plot from

in-situ soil moisture data assimilation, Figure 6.4, posterior estimates are closer to the observa-

tions than the background. The exception is for Mt Herman station with improvements only a few

times, Figure 6.8d, where observations are noisy. Mt Herman station is near big trees and Zhang
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et al. (2019b) showed that SMAP observations are less accurate where the vegetation cover is

dense.

(a) (b)

(c) (d)

Figure 6.8: Blue bars: distance of background soil moisture from the concurrent soil moisture observa-

tions. Orange bars: distance of analysis soil moisture from the concurrent soil moisture observations.

Brown bars: where the blue and orange bars overlap. Observations are high resolution soil moisture from

SMAP. Both observation and model estimates are for top layer.

6.3.2 Hindcasting

Figure 6.9 is a soil moisture hindcast based on the high-resolution SMAP soil moisture and Fig-

ure 6.10 is the corresponding plot which shows the distance of the hindcast from the observa-

tions. Similar to the year data assimilation is performed, hindcast soil moisture is closer to the

observations compared to the open-loop model run in the following year.
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Figure 6.9: Hindcast of soil moisture from assimilating SMAP 9km resolution satellite observed soil mois-

ture.
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Figure 6.10: Hindcast of soil moisture from assimilating SMAP 9km resolution satellite observed soil mois-

ture.

Based on the data assimilation experiments with in-situ and satellite observations, we can

conclude that it is possible to constrain the JULES model soil moisture estimates via parameter

estimation. Table 6.1 is a summary of the data assimilation results. Up to a 70% reduction in

posterior RMSE is observed compared to the prior as a result of assimilating the SMAP satellite

observed soil moisture data, in the case of Boise City station.
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Table 6.1: RMSE of posterior xa, prior xb, hindcast xf and open-loop model run for the following

year xo with respect to the corresponding observations.

RMSE for Mesonet DA RMSE for SMAP DA

xa xb xf xo xa xb xf xo

Antlers 0.049 .071 .07 .063 .059 .073 .054 .072

Boise City .054 .11 .063 .115 .059 .213 .039 .185

Lane .048 .086 .071 .105 .065 .083 .054 .070

Mt Herman .037 .095 .047 .101 .068 .065 .069 .062

Table 6.1 shows the RMSE for the prior and posterior soil moisture during the assimilation

window. In addition, the RMSE of the hindcast and open-loop model run soil moisture for the

following year after assimilation is presented. Generally RMSE for xa is smaller than the RMSE of

xb, except for Mt Herman station in satellite data assimilation. Comparing prior and open-loop

run soil moisture estimates, the JULES model predicts in-situ observations better for 2017 than

2018 but vice versa for satellite observations. As a result, for satellite data assimilation, xf is

smaller than xa.

6.3.3 Verification of analysis and forecast soil moisture

From Figure 6.7, we have discussed results from assimilation of satellite soil moisture data. In

Figure 6.11, the results are compared with ground measurements from the respective sites.
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(a) (b)

(c) (d)

Figure 6.11: Verification of analysis soil moisture from assimilating SMAP 9km resolution satellite ob-

served soil moisture with ground measurements from Mesonet, top layer.

Figure 6.11 shows that the posterior soil moisture estimate, obtained after assimilating the

SMAP 9 km soil moisture data, are closer to the in-situ soil moisture data than the prior, except

for Mt Herman station. For Mt Herman station, the SMAP observations were closer to the prior soil

moisture estimates at the beginning, and also observations are noisier, Figure 6.11d shows that.

As a result, the posterior soil moisture has not moved much towards the in-situ soil moisture.
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(a) (b)

(c) (d)

Figure 6.12: Hindcast soil moisture from assimilating SMAP 9km resolution satellite observed soil mois-

ture with ground measurements from Mesonet, top layer.

Figure 6.12 is similar to Figure 6.11 but for the following year after the assimilation period.

Figure 6.12 shows that hindcast obtained from in-situ soil moisture data assimilation in the pre-

vious year is closer to the in-situ observations of the current year except Antlers station, Fig-

ure 6.12a. Looking at the open-loop run, it is already closer to the observations. Hence, the

hindcast which was obtained based on the previous year’s observations, is worse than the open-

loop-run.

For satellite observations, Boise city station (Figure 6.12b) and Lane station (Figure 6.12c)

show improved skill hindcast. However, Antlers (Figure 6.12a) and Mt Herman (Figure 6.12d) sta-

tions show less skilful hindcast compared to the open-loop run. The case of Antlers is more of due

to the fact that the open-loop itself is closer to the observations and for Mt Herman, observation

noise is also a factor, as we have seen in the previous results.
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6.4 Summary

In this chapter, ground measurement and satellite observation soil moisture data are assimilated

in the JULES model. Soil texture parameters are updated. Based on the updated parameters,

analysis soil moisture state is obtained for the assimilation window as well as forecast beyond

the assimilation window. For all the experiments, the analysis soil moisture has smaller RMSE

than the prior soil moisture as a result of improved posterior soil texture parameters, except

Mt Herman for satellite observations. Based on posterior soil texture parameters from in-situ soil

moisture data assimilation, retrospective soil moisture forecasts which aremore skilful compared

to open-loop soil moisture estimates are obtained (Table 6.1). For satellite observations, skilful

soil moisture hindcast are obtained for all the stations we considered except Mt Herman station.

Observations for Mt Herman station are noisy, and also the prior soil moisture estimates were

closer to the observations. As a result, the forecast which incorporated information from the

observations are less skilful compared to the prior soil moisture estimates.

For Mesonet sites, we have an in-situ soil moisture to compare with. Hence we investigate

if assimilating the SMAP soil moisture data has increased the models forecast skill. Hence we

compare the analysis and hindcast with in-situ observations. Figure 6.12 shows that the forecast

obtained from assimilating satellite soil moisture data are close to ground measurements com-

pared to the background, with Mt Herman station as an exception. This shows that the SMAP 9km

resolution data represents the state of surface soil moisture with some degree of uncertainty.

In the case of Mt Herman, assimilating the SMAP soil moisture resulted in worse hindcast than

the open-loop JULES model run. This is due to the fact that Mt Herman station has trees in the

surrounding area, which can be included for the SMAP 9k observations, which is responsible for

observation noise, Figure 3.9. Based on the data assimilation experiments, we can expect the

SMAP soil moisture data to be representative of the state of the soil moisture when the site is

away from the woody vegetations and vice-versa, which agrees with the finding by Zhang et al.

(2019a)
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Conclusion

As both models and data are not perfect representations of the soil moisture state separately,

data assimilation has been a way of improving state estimates. As such, data assimilation experi-

ments require determining of the model, parameters and observations uncertainties beforehand.

The success of the data assimilation experiments highly depends on how those uncertainties are

represented. The use of data assimilation is invaluable for sites where in-situ observations are

sparse or absent.

In Africa, and many parts of the developing world, in-situ soil moisture observations are not

available. The few available observations, if any, are patchy and investigation of spatial and long

term variability of the state of soil moisture is impossible. On the other hand, an accurate and

reliable estimate of the state of soil moisture is a crucial factor inmitigating the recurring drought

lead food insecurity and related socio-economic impacts caused by extreme weather events.

This research has looked at different techniques to constrain a numerical model with ground

measurement and satellite soil moisture data for a better prediction of soil moisture. Here the

study sites are chosen from data-rich automated networks in Oklahoma, Mesonet so that we can

verify the results. However, the methods can be used for data-sparse sites as well. In chapter 1,

the following objectives were set to be addressed in this thesis.

1. Apply stochastic forcing to generate ensemble spread for ETKF

2. Determine whether or not non-Gaussian distributions can be used to initialise model

ensembles for 4DEnVar
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3. Investigate the improvement of soil moisture forecast skill as a result of posterior pa-

rameters

The following sections address each of the objectives in turn and give summary for the chapters

4, 5 and 6.

7.1 Apply stochastic forcing to generate ensemble spread for ETKF

In chapter 4, Mesonet soil moisture data is assimilated into the DRBC model using the ETKF data

assimilation method. As the DRBC model is not chaotic, initial condition perturbation did not

give enough spread among ensemble members, leading to ensemble collapse. This makes the

data assimilation unsuccessful as observations will not have an impact, and the posterior will be

determined solely by the prior. Hence this chapter implemented stochastic forcing on the basis

of errors in rainfall observations and errors in the numerical model for appropriate posterior soil

moisture forecast. The forecast was verified based on the RMSE and ES score, which measures

the accuracy of the model estimate and the associated uncertainty. The following conclusions

were drawn from chapter 4.

• Both methods of stochastic forcing, generated rainfall and model error, help to gain en-

semble spread for the prior model estimates. As a result, reduction in the RMSE and ES is

observed for posterior soil moisture. Comparing the two stochastic forcing methods, ac-

counting for model error outperforms generated rainfall.

• Stochastic forcing via generated rainfall helped the DRBCmodel ensemblemembers to gain

spread throughout the integration window. As a result, filter degeneracy is alleviated, and

the assumed certainty of the model forecast within the DA is reduced. Hence, the contribu-

tion from observations has increased compared to the case where observed rainfall forcing

was used.

• Accounting for model error makes it possible for the DRBC model to compensate for the

misrepresentation of soil moisture estimates due to the missing processes, errors in pa-

rameter values or/and other sources of uncertainty. As a result, the posterior soil moisture

with the imperfect model assumption is a better representation of what is observed in reality

compared to a perfect model assumption.
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• The appropriateness of ensemble spread and the amount of stochastic forcing, via gener-

ated rainfall and model error, is measured by the RMSE and ES. ES indicates the represen-

tativeness of ensemble spread for the ensemble mean error, where RMSE is the accuracy of

the ensemble mean. The smaller the RMSE and the smaller the ES are the best measures to

determine the appropriateness of ensemble spread and associated stochastic forcing.

7.2 Determine whether or not non-Gaussian distributions can be

used to initialise model ensembles for 4DEnVar

In chapter 5, synthetic soil moisture observations are assimilated into the JULES model using the

4DEnVar data assimilation method. Soil texture parameters being positive and bounded, there

is a need for sampling techniques where the error distribution is not Gaussian. A new method of

parameter sampling using the Dirichlet distribution is implemented. Parameters are then used to

initialise soil moisture ensembles and also influence the model run at each time step. Because of

this, they maintain the spread on the ensemble without any additional stochastic forcing, unlike

what is observed in chapter 4. To investigate the robustness of the method, different parameter

backgrounds are considered in the experiments. Data assimilation results are compared with the

existing methods of using the Gaussian distribution. The following points are concluded based

on the experiments in chapter 5.

• The Dirichlet distribution is a viable distribution to sample soil texture parameters. For ex-

ample, the parameter samples from the Dirichlet distributions are implicitly correlated; it

respects the reality that the increase/decrease of one of the soil texture parameters re-

sults in increase/decrease on the other.

• Sampling from different combinations of sand silt and clay proportions, the data assimila-

tion results show that posterior parameters moved towards the truth, in all the cases.

• Data assimilation experiments showed that the Gaussian distribution with correlations,

from the Dirichlet distribution, is more consistent compared to not having correlations, es-

pecially when the background parameters are wrongly determined. The results from using

the Dirichlet distribution are similar to the Gaussian distribution when both have the same

means and correlations.
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• Assimilating top layer soil moisture has a potential of improving soil moisture estimates for

the deeper layers. In this twin experiment, constant parameter values are considered for all

layers and improvements on the top layer is expected to favour the deeper layers as well.

However, in practice, this set-up is not expected to bring improvements for deeper layers

where soil texture parameters vary with the soil depth.

7.3 Investigate the improvement of soil moisture forecast skill as a

result of posterior parameters

In Chapter 6, ground measurement and satellite observed soil moisture data are assimilated into

the JULESmodel for a year-long assimilation window. As in chapter 5, soil texture parameters are

estimated, and corresponding soil moisture estimates are obtained using the JULES model. The

posterior soil moisture estimates obtained by assimilating satellite observations are compared

with ground measurement soil moisture data for the respective sites. In addition to the year of

assimilation, soil moisture forecast for the following year is performed based on the posterior

parameters. The following conclusions were drawn:

• When in-situ observations are assimilated, posterior soil moisture for the assimilation win-

dow as well as a retrospective soil moisture forecasts have shown increased skill, as evi-

denced by a reduction in RMSE.

• When sites are less vegetated, the SMAP 9 km soil moisture data assimilation is also able to

reduce the RMSE for the posterior and hindcast. However, when the site is nearby a denser

vegetation, this is not the case.

• Compared to prior estimates, posterior soil moisture estimates have shown improved agree-

ment with in-situ observations, at least in the pattern of the dynamics on the time series

plots.

• Posterior soil moisture for the deeper layer has improved in some cases but got worse in

others. This is because a uniform parameter value is considered for all the layers, which is

not true in reality. We recall that we have seen improvement in all the cases in chapter 5

where synthetic observations were assimilated.
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7.4 Key findings

The key findings of this thesis are the following:

• We show that both generated rainfall and model error can enhance ensemble spread and

improved posterior surface soil moisture estimates. However, for the deeper layers gener-

ated rainfall alone did not give substantial improvement and consideringmodel error is nec-

essary. The advantage of using generated rainfall is soil moisture estimates are bounded

as governed by the model physics.

• Performance of stochastic forcing using the model error covariance matrix Q is not lim-

ited to the top layer like generated rainfall, however, characterising the magnitude of Q is

difficult, and soil moisture estimates could be non-physical for larger perturbations.

• We show that the Dirichlet distribution, a non-Gaussian distribution, can be used to initialise

model ensembles for 4DEnVar. Automatic assignment of correlations in the covariance ma-

trix makes the Dirichlet distribution preferable over the Gaussian distribution, apart from

that both distributions resulted improved the accuracy of posterior parameters.

• Posterior parameters obtained from assimilating in-situ and satellite observations showed

improvement in soil moisture forecast skills beyond the assimilation window.

7.5 Future work

Uncertainty representation is one of the key procedures for a successful data assimilation, to

obtain the optimal result by combining observations with the prior knowledge represented by the

model (Maggioni et al., 2012). In this thesis, we have explored techniques of error representation

in the model, rainfall forcing and parameters in different data assimilation experiments. Hence

we have identified the following points for further investigation.

• Parametrising the uncertainty in the model via Q. In chapter 4 we have considered the

different magnitude of model error and compare the effect on the analysis soil moisture

based on the RMSE and ES score. For this study, we managed to control the amount of

added noise by ES but did not characterise the model error covariance matrix Q. For a bet-
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ter representation of model error, it would be better to parametrise the covariance matrix,

based on the difference between the observations and model evolution, for example.

• Considering the uncertainty of parameters, the model and the forcing all together.

As we discussed above, neither models nor parameters are perfect. However to make to

things manageable and understand the effect of each separately, in chapter 4 we assume

that parameters are perfect and in chapter 5 and chapter 6 we assume a perfect model.

Considering all sources of uncertainty together would be useful to make a more realistic

representation of the reality and a further improvement in soil moisture prediction.

• Implementing ensemble initialisation for each layer separately. In chapter 5 and chap-

ter 6 we assumed constant parameters for all the layers. The assumption did not hamper

the deeper layer soil moisture prediction in chapter 5 since the observations are model

output with the same assumption. However, in chapter 6 where in-situ and satellite obser-

vations are assimilated, we have seen cases where deeper layer soil moisture predictions

got worse while the top layer improved. Hence, considering different parameters for each

layer would be important to improve deeper layer soil moisture predictions.

• Considering different observation error for different sites. In section 6.3 we consid-

ered constant observation error for each site irrespective of the vegetation cover near the

stations. However, SMAP soil moisture observations are affected by the vegetation cover

(Zhang et al., 2019a), and we have seen that for one of the stations, Mt Herman station.

Hence, taking the vegetation cover into account in the observation error would be helpful

for better use of satellite observations.
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Bare soil evaporation

Bare soil evaporation used in chapter 4, as given by Essery et al. (2009) is given as follows. Evap-

oration from the top surface E1 is given by a product of fraction of bare soil and total surface

evaporation,

E1 = e1Es ,

e1 =
(1− f r)gsoi l

gs

f r =

(
1− exp(−LAI)

2

)
gsoi l =

1

100

(
Ú1

Úc

)2
Es = (1− fa)ÑsE0,

gs = gc + (1− f r)gsoi l

Ñs =
gs

gs +ChU1

where E0 is potential evaporation given by

E0 =
1.2
ra

(qsat − q1), (A.1)

ra is aerodynamic resistance, Ch is a surface exchange coefficient between the surface and lower

level atmosphere for sensible and latent heat fluxes, page 5 and 6 on Essery et al. (2009), U1 is

atmospheric wind speed, qsat is saturated humidity and q1 is specific humidity.
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Numerical results from chapter 4

Figures B.1 - Figure B.13 are numerical results from chapter 4 which are not included in the main

document are given. The general trend of the results are: generated rainfall improved posterior

soil moisture for the top layer. For the deeper layers, slight improvement or negative impact was

observed and considering model error was needed.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Top layer posterior soil moisture ensemble mean for different values of Q and ã. The shades

for each mean is ± 1 std from the mean. The forcing data and parameter values are from Buffalo station,

Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.2: Top layer posterior soil moisture ensemble mean for different values of Q and ã. The shades

for each mean is ± 1 std from the mean. The forcing data and parameter values are from Elk city station,

Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.3: Top layer posterior soil moisture ensemble mean for different values of Q and ã. The shades

for each mean is ± 1 std from the mean. The forcing data and parameter values are from Lane station,

Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.4: Top layer posterior soil moisture ensemble mean for different values of Q and ã. The shades

for each mean is ± 1 std from the mean. The forcing data and parameter values are from Pawnee station,

Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.5: Second soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Antlers

station, Oklahoma Mesonet for the year 2016.

Page 128



Appendix

(a) (b)

(c) (d)

(e) (f)

Figure B.6: Second soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Buffalo
station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.7: Second soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Elk city

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.8: Second soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Lane

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.9: Second soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Pawnee

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.10: Third soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Antlers

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.11: Third soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Elk city

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.12: Third soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Lane

station, Oklahoma Mesonet for the year 2016.
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(a) (b)

(c) (d)

(e) (f)

Figure B.13: Third soil layer posterior soil moisture ensemble mean for different values of Q and ã. The
shades for each mean is ± 1 std from the mean. The forcing data and parameter values are from Pawnee

station, Oklahoma Mesonet for the year 2016.
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