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Monitoring multimode nonlinear dynamic
processes: an efficient sparse dynamic
approach with continual learning ability

Jingxin Zhang, Maoyin Chen, and Xia Hong, Senior Member, IEEE

Abstract— Industrial processes generally operate under
multiple modes and a global monitoring approach, built up-
on combining local models which are aimed at each mode,
requires complete data from all potential modes to be avail-
able. However, practical data are generated and collected in
a steady stream, which makes it difficult if not impossible to
process. This paper proposes an efficient sparse dynamic
inner principal component analysis algorithm for multimod-
e nonlinear dynamic process monitoring, which aims to
build a single monitoring model with continual learning
ability for successive modes. To reduce the storage and
computational costs, only a few representative data from
each mode are selected based on cosine similarity and
replayed for retraining when a new mode arrives, which are
sufficient to reflect the operating condition of each mode.
Inspired by replay continual learning, data from all existing
modes are preprocessed by its own statistics and then
regarded as a whole data set, followed by building a sin-
gle multimode monitoring model. The multimode dynamic
latent variables are extracted from data in raw format, via
a vector autoregressive model. Therefore, the proposed
method is not constrained by the mode similarity, which
makes it appropriate for diverse modes and convenient for
long-term monitoring tasks. Besides, the proposed method
can deal with nonlinearity and a regularization term is
added to avoid the potential overfitting issue. Compared
with state-of-the-art multimode monitoring methods, the
effectiveness of the proposed approach is demonstrated
by continuous stirred tank heater and a practical industrial
system.

Index Terms— Multimode nonlinear dynamic process
monitoring, sparse dynamic inner principal component
analysis, replay continual learning, alternating direction
method of multipliers

I. INTRODUCTION

To enhance operational safety, data-driven process mon-
itoring has attracted wide attention and acquired fruitful
achievements [1]–[4]. Industrial systems are essentially dy-
namic with internal variables’ relationship being nonlinear [5]–
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[7]. Therefore, there are many researches devoted to nonlin-
ear/dynamic process monitoring [6]. Canonical variate analysis
(CVA) established a state space model and was applied to
nonlinear dynamic process monitoring [6]. Dynamic and static
latent variables were extracted by dynamic inner principal
component analysis (DiPCA), which was utilized to monitor
linear dynamic processes [5].

Since industrial processes universally operate under multiple
conditions, multimode process monitoring has experienced
rapid development [1], [8], [9]. It has been mentioned in [1]
that multiple-model methods are the mainstream, where local
models are built for each mode correspondingly or a global
model is designed based on a weighted sum of local models
[10], [11]. For instance, mixture of CVA (MCVA) constructed
local CVA models within the framework of Gaussian mixture
model and was applied to multimode dynamic process mon-
itoring [11]. An improved mixture of probabilistic principal
component analysis (IMPPCA) [10] divided data into several
clusters and was applied to multimode monitoring [12], where
a global model was constructed via a weighted combination
of local principal component analysis (PCA) models based on
Bayesian inference. Moreover, a novel nonstationary discrete
convolution kernel was proposed to characterize the multi-
modality behavior [13], to overcome the limitations of radial
basis function kernel for multimode processes. Furthermore, a
Dirichlet process Gaussian mixed model was investigated to
identify the mode and nonlinear features were extracted based
on t-distributed stochastic neighbor embedding, and then a
monitoring index based on support vector data description was
designed for comprehensive monitoring [14]. The approaches
require complete data from all possible modes indicating that
the model may need to be retrained from scratch if a new
mode is encountered, thus consuming expensive storage and
computing resources. However, diverse novel modes would
appear continuously in future, and thus it is intractable to
collect complete data before learning in industrial systems
[1] and it may be unnecessary to build local models for each
mode. Aimed at above issues, it is valuable and meaningful
to investigate an efficient monitoring approach for multimode
dynamic modes, where the model is learned over time and
implemented. Data from previous modes are accumulated
efficiently with limited storage resources.

Recently, continual learning has attracted wide attention
and been applied to image processing, which extracts features
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from an infinite stream of data and accumulates the acquired
knowledge for future learning [15]–[17]. Therefore, continu-
al learning may provide an efficient solution for sequential
modes, where complete data are not required before learning.
The major challenge is catastrophic forgetting, namely, the
previously learned knowledge may be overwritten and the per-
formance on a previous mode may degrade over time signif-
icantly when new modes arrive. There are diverse techniques
on continual learning [16], [17], including regularization [18],
manipulating data memory replay [19] and parameter isolation
[20]. Regularization-based continual learning has already been
utilized for multimode process monitoring [12], [21]–[23],
where a single model is updated continuously by extracting
new features while preserving the previously learned knowl-
edge simultaneously. More specifically, a regularization term
is designed to make the parameters close to the previous
ones and one key point is to evaluate the importance of
model parameters accurately. For instance, a modified PCA
was proposed in [21] and denoted as PCA–EWC, where
the importance was measured by elastic weight consolidation
(EWC) [18]. However, PCA–EWC requires that data follow
Gaussian distribution and it is generally intractable to calculate
the Fisher information matrix accurately. To overcome this
drawback, a novel spare PCA was presented and synaptic intel-
ligence (SI) was adopted to evaluate the parameter importance
[22]. Besides, sparse representation was utilized to enhance
model interpretability and alleviate the catastrophic forgetting
issue further [15]. To settle dynamics of data, a sparse DiPCA
(SDiPCA) with continual learning ability was presented [12],
where modified SI (MSI) was investigated to estimate the
sensitivity of parameter changes to the loss. This method
was referred to as SDiPCA–MSI. However, the performance
would decrease suddenly when the modes are diverse, which
makes it only appropriate for short-term monitoring tasks [15].
Besides, PCA–EWC and SDiPCA–MSI ignore the nonlinear
relationship among data. In practical systems, various modes
would appear in a steady stream, where variables are dynamic
and nonlinear. Therefore, it is essential to investigate an
efficient method to deal with diverse successive modes, with
limited computing and storage resources.

Against this background, this paper investigates an effi-
cient nonlinear dynamic monitoring method for successive
modes, where data are generated and collected sequentially.
First, a nonlinear sparse DiPCA (NSDiPCA) algorithm is
presented to monitor a single nonlinear dynamic mode, where
data are mapped to a high-dimensional feature space and
a regularization term is introduced to avoid the potential
overfitting issue. Then, motivated by replay continual learning,
an efficient multimode NSDiPCA (MNSDiPCA) is proposed
for sequential modes, where representative data from each
mode are stored and combined with the current mode data for
future training when a new mode appears. Since significant
features are extracted from multimode data in raw format, the
proposed method can monitor the current and previous modes
accurately, without the requirement of mode similarity.

The contributions of this paper are summarized below:
a) This paper proposes an efficient MNSDiPCA for multi-

mode nonlinear dynamic process monitoring, where data

from diverse modes are collected over time and the model
is retrained when a new mode arrives.

b) Compared with traditional multiple-model methods [1],
[10], [11], data from all possible modes are not required
and only a few representative data are stored instead of all
samples, which are preprocessed by its statistics and then
regarded as a whole dataset. In addition, a single model is
established for sequential modes without the requirement
of mode identification.

c) Compared with current multimode monitoring methods
with continual learning ability [12], [21], [22], partial data
from previous modes are stored and significant features
are extracted from original data. Therefore, the proposed
method is free from mode similarity, which allows it to
monitor diverse modes and makes it appropriate for long-
term monitoring tasks.

The rest of this paper is organized as follows. Section II
introduces NSDiPCA for a single mode briefly and describes
the multimode problem. Section III describes the core of
MNSDiPCA for sequential modes and settles the optimization
problem by alternating direction method of multipliers (AD-
MM). In addition, the off-line training and online monitoring
phases are summarized. Continuous stirred tank heater (CSTH)
and a practical industrial system are employed to demonstrate
the effectiveness of the proposed method in Section IV.
Section V is devoted to the conclusion.

II. PRELIMINARY

A. The system model for single mode nonlinear dynamic
process

The proposed NSDiPCA seeks to extract dynamic latent
variables from observational data that contain most dynamic
variations. Let observational data set be denoted asX = {xk},
k = 1, · · · , N , as time instance. N is the number of samples
and x ∈ Rm is a sample vector of m variables.

Generally, a prelearning step is conducted before training,
which can be represented by a mapping function F : x 7−→
φ(x), and φ(x) ∈ RM . There are many choices about φ and
this step can also be regarded as unsupervised learning. For
instance, φ can be represented by autoencoder to filter out
noise or thin plate spline [24] to deal with nonlinearity. Similar
to [25], the following mapping function φ(x) is adopted to
cope with nonlinearity in this paper.

φ(x) =
[
x2m, · · · , x21, xmxm−1, · · · , xmx1, xm−1xm−2,

· · · , xm−1x1, · · · , x2x1, xm, · · · , x1] ∈ RM
(1)

where M = m2+3m
2 , and xi is the ith dimension of x, i =

1, · · · ,m. For convenience, φ(x) is denoted as xφ. The high-
dimensional data are denoted as Xφ ∈ RN×M by using (1)
and the kth sample is denoted as xφ,k correspondingly.

Similar to DiPCA, NSDiPCA establishes a vector autore-
gressive (VAR) model to extract the most predictable infor-
mation and characterize the dynamic relationship. The latent
variables are defined as

tk = xTφ,kw (2)
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where w ∈ RM is the weight vector with the constraint
‖w‖2 = 1. Meanwhile, tk could also be depicted by a linear
combination of the past ones, namely,

tk =

s∑
j=1

βitk−j + rk (3)

where rk is the Gaussian noise at kth instant, and s is
the autoregressive order. Let β = [β1 · · · βs]T , ‖β‖2 = 1.
According to (2) and (3), the prediction of dynamic latent
variables is reformulated as:

t̂k =

s∑
j=1

xTφ,k−jwβj

=
[
xTφ,k−1 · · · xTφ,k−s

]
(β ⊗w)

where ⊗ denotes the Kronecker product. The covariance
between tk and t̂k is maximized to extract the dynamic
information, namely,

N∑
k=s+1

wTxφ,k
[
xTφ,k−1 · · · xTφ,k−s

]
(β ⊗w) (4)

Construct the matrices based on Xφ,

X
(j)
φ = [xφ,j xφ,j+1 · · · xφ,N−s+j−1]

T
, j = 1, · · · , s+ 1

(5)
Z =

[
X

(1)
φ X

(2)
φ · · · X(s)

φ

]
(6)

To avoid potential overfitting in (4) and alleviate catastrophic
forgetting [15], the objective of NSDiPCA is reformulated as

min J(w,β) = −wT
(
X

(s+1)
φ

)T
Z (β ⊗w) + λ1β

TDβ

s.t. wTw = 1, βTβ = 1
(7)

where D is a weighting matrix to make β sparse and λ1 is a
predefined regularization coefficient.

Define a recursively reduced data set from Xφ and extract
l dynamic latent variables successively by optimizing the
objective (7). The estimation of s and l can refer to [5].

B. Problem statement
Define multiple modes MK , K = 1, 2, · · · . Let observa-

tional data be denoted as X0
K ∈ RNK×m and NK is the

number of samples in each modeMK . Traditional multimode
process monitoring methods [9]–[11] need to store all normal
data from each mode, which would consume expensive storage
resources. To our best knowledge, massive industrial data may
contain limited effective information and it is not essential to
store all historical data.

Replay continual learning is adopted to alleviate the catas-
trophic forgetting of a single model for successive modes [17],
[19], [26], where data in raw format or pseudo-samples from
a generative model are replayed when a new mode arrives and
the model needs to be retrained. In this paper, to decrease the
storage and computational costs, a small amount of original
data are selected from the past modesM1, · · · ,MK−1, which
are sufficient to reflect the information of each mode and are
replayed for future learning. For sequential modes, a single

model is built based on data from existing modes, including
the representative data from previous modes and normal data
from the current mode MK . Since dynamic latent features
are extracted from data in raw format, MNSDiPCA is able
to monitor multiple diverse modes accurately with acceptable
storage and computational costs.

III. METHODOLOGY

A. Selection of representative data

The key idea of the proposed approach is to select previous
data for retraining so model training data sets are interleaved
with current mode and selected data from previous modes,
to achieve continual learning ability of model. In order to
achieve minimal/important data sets from previous modes,
cosine similarity is adopted for data selection. If the cosine
similarity Scos is higher than αsim, we regard that data have
similar information. For arbitrary samples xi and xj , cosine
similarity is calculated by

Scos =

∣∣xTi xj∣∣
‖xi‖ ‖xj‖

(8)

The procedure of selecting data is summarized as follows:
a) Randomly select a sample xi from X , put it into X̃;
b) Randomly select a sample xj from X , calculate the cosine

similarity (8) between xj and every sample in X̃ . If the
similarity is lower than αsim, put it into X̃ , otherwise,
discard it;

c) Repeat step b) until X is null.

B. Proposed MNSDiPCA for multiple modes

When the Kth mode arrives (K = 2, · · · ), collect normal
dataX0

K . Here, for the past K−1 modes, a small amount of o-
riginal data X̃

0

1, · · · , X̃
0

K−1 have been selected by Section III-
A.X0

K and the selected data are normalized to zero means and
unit variances, which are denoted as XK and X̃1, · · · , X̃K−1

respectively. Construct XK =
{
X̃1, · · · , X̃K−1,XK

}
∈

RN
K×m and NK is the number of training samples. MNS-

DiPCA aims to build a single monitoring model on XK to
monitor K modes simultaneously.

Data XK are mapped to high-dimensional feature space
by using (1), which are denoted as Xφ,K ∈ RN

K×M .
Similar to (5) and (6), construct X(j)

φ,K (j = 1, · · · , s + 1)

and ZK =
[
X

(1)
φ,K X

(2)
φ,K · · · X(s)

φ,K

]
. For K modes, the

objective function of MNSDiPCA is designed as

JK(w,β,Xφ,K)

=−wT
(
X

(s+1)
φ,K

)T
ZK (β ⊗w) + λ1β

TDβ
(9)

with the constraint wTw = 1, βTβ = 1. ADMM [27] in
Section III-C is utilized to settle the optimization issue (9)
and the parameters are iteratively updated.

Replay methods store raw data [26], [28] or generate
pseudo-samples via a generative model [29], which are re-
played to alleviate forgetting when a new mode appears.
Within the framework of multivariate statistic analysis, it may
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be not appropriate to train another separate generative model.
To reduce the storage space and computation, only limited data
are selected based on similarity and are sufficient to reflect the
operating condition of each mode. Then, data from different
modes are normalized by their means and variances, which are
then integrated and regarded as one mode. Since the processed
data cover sufficient information from all existing modes, the
single monitoring model could provide excellent performance
for successive diverse modes.

In comparison, regularization-based methods introduce an
extra regularization term in the loss function to make the
parameters close to the previous ones and preserve significant
features of previous modes. Therefore, they are effective for
multiple modes when data from different modes have a certain
degree of similarity [12], [21]. One key point is to accurately
evaluate the importance of model parameters and select proper
hyperparameters, which would influence the monitoring per-
formance. However, if the modes are diverse, the previously
learned knowledge fails to provide valid information for fu-
ture new modes and the model needs to be retrained from
scratch. The proposed MNSDiPCA method is free from this
constraint due to algorithmic simplicity and replay mechanism
for continual learning, which makes it appropriate for long-
term monitoring tasks. In addition, the estimated parameters
are less than regularization-based methods, and thus requiring
less manual intervention.

C. Optimization procedure by ADMM

The parameters w and β are optimized alternatively [27].
The weighting matrix D is updated after each iteration.
Assume that the parameters wi, ziw, uiw, βi, ziβ and uiβ are
known after ith iteration, the updating procedure at (i+ 1)th
iteration is described below.

1) Update parameters about w

argmin
w

JK(w,βi,Xφ,K)

s.t. wTw = 1
(10)

According to chapter 9 in [27], ADMM has the form:

wi+1 := argmin
w

(
JK(w,βi,Xφ,K) + ρw

∥∥w − ziw + uiw
∥∥2
2

)
zi+1
w :=

wi+1 + uiw
‖wi+1 + uiw‖2

ui+1
w :=uiw +wi+1 − zi+1

w
(11)

where

JK(w,βi,Xφ,K) + ρw
∥∥w − ziw + uiw

∥∥2
2

=−wT
(
Xs+1
φ,K

)T
ZK

(
βi ⊗w

)
+ ρw

∥∥w − ziw + uiw
∥∥2
2

and ρw is a regularization coefficient and predefined by users.
Taking the derivative with regard to w and let it be zero, then

wi+1 =2ρw

(
Gβ,K +GT

β,K − 2ρwIM

)−1 (
uiw − ziw

)
(12)

where Gβ,K =
s∑
j=1

(X
(s+1)
φ,K )TX

(j)
φ,Kβj .

Algorithm 1 Solution of MNSDiPCA based on ADMM
Require: Data Xφ,K , l, s.
Ensure: Weight matrixW , loading matrix P and latent score matrix

T .
1: Construct X(j)

φ,K (j = 1, · · · , s+1) and ZK by (5) and (6), let
g = 1.

2: Initialize w0 and β0 with unit vector, z0w = w0, u0
w = 0,

z0β = β0, u0
β = 0, i = 0.

3: Extract the dynamic component one by one:
a) Calculate wi+1, zi+1

w and ui+1
w by (11) and (12);

b) Calculate βi+1, zi+1
β and ui+1

β by (14) and (15);
c) Update the weighting matrix D by (16);
d) Calculate the objective function (9). Let i = i + 1, return to

step 3a) until convergence.
4: The optimal parameters are denoted as wg and βg , and calculate

the loading vector pg =
XT
φ,KXφ,Kwg

wTg X
T
φ,K

Xφ,Kwg
.

5: Let tg = Xφ,Kwg , deflate Xφ,K as Xφ,K = Xφ,K −
Xφ,Kwgp

T
g and then (X

(s+1)
φ,K )TX

(j)
φ,K is calculated by (17).

6: Let g = g + 1, return to step 2 until extracting l dynamic
components.

7: The parameters are denoted as W = [w1 · · · wl], P =

[p1 · · · pl], and T = [t1 · · · tl]T .

2) Update parameters about β

argmin
β

JK(wi+1,β,Xφ,K)

s.t. βTβ = 1
(13)

Here, ADMM has the form [27]:

βi+1 := argmin
β

(
JK(wi+1,β,Xφ,K) + ρβ

∥∥β − ziβ + uiβ
∥∥2
2

)
zi+1
β :=

βi+1 + uiβ∥∥∥βi+1 + uiβ

∥∥∥
2

ui+1
β :=uiβ + βi+1 − zi+1

β
(14)

where

JK(wi+1,β,Xφ,K) + ρβ
∥∥β − ziβ + uiβ

∥∥2
2

=− (wi+1)TGK

(
β ⊗wi+1

)
+ λ1β

TDiβ

+ ρβ
∥∥β − ziβ + uiβ

∥∥2
2

where ρβ is a regularization parameter. Taking the derivative
with regard to β and let it be zero, then

βi+1 =
(
λ1D

i + ρβIs
)−1(

1

2

(
Is ⊗wi+1

)T
GT
Kw

i+1 + ρβ
(
ziβ − uiβ

))
(15)

where GK =
(
X

(s+1)
φ,K

)T
ZK and

(
Is ⊗wi+1

)T
GT
K =[(

X
(s+1)
φ,K

)T
X

(1)
φ,Kw

i+1 · · ·
(
X

(s+1)
φ,K

)T
X

(s)
φ,Kw

i+1

]T
.

3) Update D

Di+1 = diag
{
di+1
1 , di+1

2 , · · · , di+1
s

}
di+1
j =

1∣∣βi+1
j

∣∣+ ε
, j = 1, · · · , s (16)
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Algorithm 2 Off-line training procedure of MNSDiPCA
1: When the Kth mode arrives, collect normal data X0

K .
Calculate the means µ̃1, · · · , µ̃K−1,µK and variances
Σ̃1, · · · , Σ̃K−1,ΣK of X̃

0
1, · · · , X̃

0
K−1,X

0
K . Data from each

mode are normalized and denoted as X̃1, · · · , X̃K−1,XK .
2: Construct XK =

{
X̃1, · · · , X̃K−1,XK

}
, map XK to high-

dimensional feature space and get X0
φ,K by using (1).

3: Calculate the mean µφK and variance Σφ
K of X0

φ,K , and the
normalized data are denoted as Xφ,K .

4: Conduct Algorithm 1 to settle the optimization issue (9), and get
the parameters W , P , and T .

5: Build a VAR model for latent variables and T s+1 is predicted
by (20).

6: Perform PCA on prediction error matrix E in (24).
7: Calculate two test statistics by (22) and (25).
8: Calculate the corresponding thresholds by KDE.
9: Select the representative data X̃

0
K from X0

K according to
Section III-A.

where ε is a small positive value for numerical stability.
The solution of MNSDiPCA is summarized in Algorithm

1, where the dynamic components are acquired one by one.
When K = 1, let X1 = X1 and the aforementioned
solution is also applied. Note that we only need to map the
original data into a high-dimensional feature space once. When
g ≥ 2, Xφ,K is reconstructed by Xφ,K − Xφ,Kwgp

T
g .

Once a dynamic component is extracted, (X
(s+1)
φ,K )TX

(j)
φ,K

(j = 1, · · · , s) is calculated recursively by

(X
(s+1)
φ,K )TX

(j)
φ,K

=(X
(s+1)
φ,K )TX

(j)
φ,K − p

T
gw

T
g (X

(s+1)
φ,K )TX

(j)
φ,K

− (X
(s+1)
φ,K )TX

(j)
φ,Kwgpg + p

T
gw

T
g (X

(s+1)
φ,K )TX

(j)
φ,Kwgpg

(17)
instead of recursion of XK and mapping data repeatedly.

D. MNSDiPCA for process monitoring

Similar to DiPCA [5], define the latent score t = Xφ,Kw

and matrix T = [t1 · · · tl]T . Similar to (5), construct T j from
T , j = 1, · · · , s + 1. Then, the dynamic relations between
T s+1 and T 1, · · · ,T s can be represented by a VAR model,
namely,

T s+1 =T 1Θs + T 2Θs−1 + · · ·+ T sΘ1 + V

=T̄sΘ+ V
(18)

Algorithm 3 Online monitoring procedure of MNSDiPCA
1: Preprocess the testing sample x0 according to the mean value

and variance of training data, which is then denoted as x.
2: Map x to a high-dimensional space by (1) and get xφ, which is

preprocessed by µφK and Σφ
K .

3: Calculate the dynamic latent variable by (18), the prediction by
(20) and the dynamic residual by (21).

4: Calculate test statistics by (22) and (25).
5: Confirm the operating condition: both statistics are below the

thresholds, the process is normal; otherwise, faulty.

where T̄s = [T 1 T 2 · · · T s] and Θ = [Θs Θs−1 · · · Θ1].
The least squares estimate for Θ is

Θ̂ =
(
T̄s

T
T̄s

)−1

T̄s
T
T̄ s+1 (19)

Then, the prediction of T s+1 is calculated by

T̂ s+1 = T̄sΘ̂ (20)

Define the dynamic residual V :

V = T − T̂ s+1 (21)

Perform PCA on V and obtain the principal component
matrix P v , and Λv =

1
NK−s−1

V TV . Jth,T 2
v

and Jth,SPEv are
the thresholds of statistics T 2

v and SPEv, respectively. Similar
to [12], an index is designed through V and calculated by

T 2
ϕ = vTΦvv (22)

Φv =
P vΛ

−1
v P

T
v

Jth,T 2
v

+
I − P vP

T
v

Jth,SPEv

(23)

The static prediction error is calculated by

E =X
(s+1)
φ,K − T s+1P

T (24)

Similarly, perform PCA on E, and get the principal com-
ponent matrix P r and Λr = 1

NK−s−1
T Tr T r. Jth,T 2

r
and

Jth,SPEr
are the thresholds of T 2

r and SPEr. A monitoring
index is calculated to monitor the static error accordingly.

T 2
c = eTΦce (25)

Φc =
P rΛ

−1
r P

T
r

Jth,T 2
r

+
I − P rP

T
r

Jth,SPEr

(26)

Two thresholds are determined by kernel density estimation
(KDE) [10], [12]. The training and online monitoring phases
are summarized in Algorithms 2 and 3, respectively. The
monitoring performance is evaluated by fault detection rate
(FDR) and false alarm rate (FAR) in this paper.

IV. COMPARATIVE SCHEMES AND CASE STUDIES

A. Comparative analysis and experiment design
In this paper, take three sequential modes as an instance to

manifest the effectiveness of the proposed method. SDiPCA–
MSI [12], PCA–EWC [21], IMPPCA [10] and MCVA [11]
are adopted as comparison. Similar to [30], the virtues and
drawbacks of five methods are summarized in Table I. The
performance is evaluated by the monitoring performance on
new and previous modes, as designed in Table II.

Similar to [12], [21], Situations 1–11 are designed to
illustrate the continual learning ability of MNSDiPCA and
the catastrophic forgetting issue of NSDiPCA. For each mode,
typical data are selected by cosine similarity and stored once
the learning procedure finishes, which can reflect the operating
condition. When a new mode is encountered, representative
data are replayed and employed to build a single model,
thus it needs moderate storage and computing resources. For
instance, when the second mode M2 arrives, data X2 are
collected and the stored data X̃1 are replayed for retraining
to establish the model B, which aims to monitor modes
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TABLE II
COMPARATIVE SCHEMES AND SIMULATION RESULTS OF FOUR CASES (FDRS (%) AND FARS (%))

Methods Training sources Model Testing Case 1 Case 2 Case 3 Case 4

(Model + data) label sources FDR FAR FDR FAR FDR FAR FDR FAR
Situation 1 NSDiPCA X1 A M1 99.80 4.20 100 1.60 100 0.75 100 1.27
Situation 2 MNSDiPCA X̃1,X2 B M2 97.58 1.20 100 0.38 98.30 0 100 1.12
Situation 3 MNSDiPCA - B M1 100 3.80 100 4.48 100 1.61 100 6.09
Situation 4 NSDiPCA X2 C M2 99.80 6.60 100 0.38 98.42 0.73 100 1.38
Situation 5 NSDiPCA - C M1 100 15.80 100 84.0 100 32.80 100 26.36
Situation 6 MNSDiPCA X̃1, X̃2,X3 D M3 97.78 0.80 100 0.44 98.60 9.73 100 0.71
Situation 7 MNSDiPCA - D M1 100 2.40 100 8.16 100 1.12 100 0.45
Situation 8 MNSDiPCA - D M2 100 2.80 100 0.38 98.42 1.06 100 1.12
Situation 9 NSDiPCA X3 E M3 100 4.40 100 4.52 99.24 24.40 100 47.69

Situation 10 NSDiPCA - E M1 100 15.40 100 73.6 100 19.88 100 62.82
Situation 11 NSDiPCA - E M2 100 14.40 100 0.38 98.48 13.02 100 8.87
Situation 12 SDiPCA X1 F M1 100 2.20 100 0.80 100 10.56 100 0.01
Situation 13 SDiPCA–MSI F + X2 G M2 100 0.40 100 0 98.30 1.63 100 0.25
Situation 14 SDiPCA–MSI - G M1 99.80 0.40 100 44.48 100 6.96 100 0.82
Situation 15 SDiPCA–MSI G + X3 H M3 99.20 2.20 100 0.33 99.11 13.99 100 34.20
Situation 16 SDiPCA–MSI - H M1 99.00 2.40 100 28.16 100 5.71 100 16.64
Situation 17 SDiPCA–MSI - H M2 99.20 3.80 99.45 0 98.36 0.33 100 1.25
Situation 18 PCA X1 I M1 92.80 7.80 100 1.44 100 0 99.71 0
Situation 19 PCA–EWC I + X2 J M2 91.00 8.00 99.45 0 98.06 0 100 0.13
Situation 20 PCA–EWC - J M1 88.20 6.60 100 11.52 100 1.24 99.71 2.18
Situation 21 PCA–EWC J + X3 L M3 93.20 7.20 99.95 2.75 98.92 10.75 100 37.51
Situation 22 PCA–EWC - L M1 93.40 7.80 100 38.88 100 0.99 99.70 16.73
Situation 23 PCA–EWC - L M2 94.60 9.40 99.45 0 98.12 2.79 100 1.63
Situation 24 IMPPCA X1,X2 N M1 67.40 3.80 100 37.44 100 3.48 99.71 0.36
Situation 25 IMPPCA - N M2 54.80 4.20 99.45 0 98.18 1.71 100 1.63
Situation 26 IMPPCA X1,X2,X3 O M1 98.40 1.40 100 10.40 100 2.36 99.71 0.45
Situation 27 IMPPCA - O M2 100 13.00 99.45 0 98.24 7.73 100 0.38
Situation 28 IMPPCA - O M3 96.00 0 100 1.10 98.73 25.26 100 69.23
Situation 29 MCVA X1,X2 P M1 100 15.20 100 10.72 100 23.98 99.71 5.82
Situation 30 MCVA - P M2 58.27 14.80 100 4.14 98.12 17.01 100 0.50
Situation 31 MCVA X1,X2,X3 Q M1 100 14.60 100 7.84 100 23.98 99.71 7.82
Situation 32 MCVA - Q M2 57.06 14.20 100 3.95 98.12 20.83 100 6.00
Situation 33 MCVA - Q M3 24.19 12.20 99.95 28.30 99.94 34.13 100 62.72

M1 and M2 simultaneously. Thus, the continual learning
ability of MNSDiPCA is reflected. Correspondingly, Situation
5 is designed to illustrate the catastrophic forgetting issue of
NSDiPCA, namely, the model C built for modeM2 should fail
to monitor the mode M1. Situations 6–11 are designed in a
similar manner. Since significant features are assimilated from
data in raw format that are collected from the existing modes,
it can provide excellent performance for new and previous
modes simultaneously based on a single model.

For Situations 12–23, SDiPCA–MSI and PCA–EWC pro-
vide continual learning ability based on a continually updated
model for multimode linear processes. A regularization ter-

TABLE I
COMPARISON OF FIVE MULTIMODE MONITORING METHODS

MNSDiPCA SDiPCA–MSI
PCA–EWC

IMPPCA
MCVA

new mode performance good good good
previous mode performance good medium good

training efficiency fast fast slow
testing efficiency fast fast fast

storage space medium low large
require previous mode data yes no yes

m is added to prevent the mode-sensitive parameters from
changing dramatically, thus avoiding a sudden performance
degradation for the previously learned modes. SDiPCA–MSI
and PCA–EWC discard raw data after finishing the learning
procedure and only store the learned knowledge. Therefore,
they need the least storage and computing resources among the
comparative methods. However, they require similarity among
various modes and need to retrain the model from scratch
once the modes are especially diverse [15], which makes them
appropriate for short-term monitoring tasks.

IMPPCA and MCVA require complete data from all po-
tential modes before learning and the model may need to be
retrained from scratch when a new mode arrives. Since all
observation data are stored and would be utilized for retraining
in future, they need expensive storage space and computing
resources with the successive emergence of modes. Different
from three aforementioned methods, a global monitoring mod-
el is built based on a weighted sum of local models and the
weight could be evaluated by posterior probability.

B. CSTH case

The CSTH process is a popular benchmark that is widely
utilized for monitoring multimode dynamic processes. It mixed
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the cold water and hot water together to obtain the desired
product. Three key parameters are controlled by PI controllers,
namely, level, temperature and flow. Detailed information can
refer to [31]. In this paper, three sequential modes are designed
in Table III. A step fault occurs in the level from the 501th
sample and the fault amplitude is 0.05.

TABLE III
NORMAL OPERATING MODES OF CSTH

Case
number

Mode
label

Level
SP

Temperature
SP

Hot water
valve

Case 1
M1 11 10.5 5
M2 13 10.5 4
M3 12 11 5

The detail settings of five methods are listed in the sup-
plementary material owing to the limitation of paper length
and the monitoring results are listed in Table II. According
to Situations 1–11, MNSDiPCA is capable of monitoring
multiple modes accurately based on a single model, where
the FDRs are higher than 97.5% and the FARs are lower
than 4%. In addition, the FARs of Situations 4 and 8 are
6.60% and 2.80%, which indicates that the information of
other modes (M1 and M3) is beneficial to enhancing the
detection accuracy of mode M2. However, NSDiPCA suffers
from the catastrophic forgetting issue in multimode process,
where the FARs of Situations 5, 10 and 11 are higher than
14%. Briefly speaking, the NSDiPCA model based on one
mode data fails to detect the faults in another mode, and the
previously learned knowledge would be overwritten. SDiPCA–
MSI is able to monitor this case, and the FDRs approach
100% and the FARs are less than 4%. PCA–EWC cannot offer
excellent performance, where the FDRs are lower than 95%
and the FARs are higher than 6.50%. IMPPCA and MCVA
are not able to monitor this case, and the FDRs of Situations
24, 25, 30, 32 and 33 are lower than 70%. The monitoring
charts of Case 1 are described in Figure 1 in the supplementary
material owing to the limitation of paper length.

Different from four comparative methods, MNSDiPCA
needs to select representative data from each mode and the
number of selected data is listed in Table IV. Let αsim = 0.9,
less than 8% of the training samples are stored and would be
replayed for future learning, which allows it to cost limited
computing and storage resources. SDiPCA–MSI and PCA–
EWC would discard training data once the learning procedure
finishes. Conversely, IMPPCA and MCVA need to store all
training data and would be used when a novel mode arrives,
thus they require the most expensive computing and storage
costs. For Case 1, the proposed MNSDiPCA and SDiPCA–
MSI may be optimal for successive dynamic processes, in

TABLE IV
STORED DATA OF PREVIOUS MODES BASED ON COSINE SIMILARITY

Data X̃1 (M1) X̃2 (M2) X̃3 (M3)
Case 1 79 76 74
Case 2 318 54 108
Case 3 247 171 225
Case 4 128 122 34

terms of detection accuracy, computing and storage costs.

C. Coal pulverizing system

This paper utilizes real data from the coal pulverizing
systems to illustrate the effectiveness of the proposed method,
which is one crucial unit of the 1030–MW ultra-supercritical
thermal power plant and locates at Zhoushan, Zhejiang
Province, China. The schematic diagram of the system has
been depicted in Figure 2 in the supplementary material owing
to the paper length, which is composed of coal feeder, coal
mill, rotary separator, raw coal hopper and stone coal scuttle.
To improve combustion efficiency and guarantee operating
safety, the raw coal is ground into pulverized coal with desired
temperature and fineness. In accordance with the historical
records and demands, three types of faults are considered,
including novelty from outlet temperature (Case 2), rotary
separator (Case 3) and the coal feeder (Case 4). The data
information is outlined in Table V and the key variables are
selected by expert experience.

The experiment design and the monitoring results of three
cases are summarized in Table II. The detail settings of five
methods are listed in the supplementary material owing to the
limitation of paper length. Take Case 4 as an example to illus-
trate the results specifically and partial monitoring charts are
described in Fig. 1. When the modeM2 arrives, MNSDiPCA
establishes a single model based on a few representative data
X̃1 and data X2, which provides excellent performance for
two modes simultaneously. The FDRs of Situations 2 and 3
are 100%. However, the NSDiPCA model based on data X2

is not able to monitor the previous modeM1, and the FAR of
Situation 5 is 26.36%. SDiPCA–MSI, PCA–EWC, IMPPCA
and MCVA can monitor two modes M1 and M2 accurately.
The FDRs of Situations 13, 14, 19, 20, 24, 25, 29 and 30 are
perfect. Besides, the FARs are lower than 6%. When the mode
M3 appears, the MNSDiPCA model is retrained from scratch
and enables to detect the faults in three modes. The FDRs of
Situations 6–8 are 100% and the FARs are lower than 1.2%.
However, the FAR of Situation 9 is 47.69%, which implies that
it is hard to build an efficient NSDiPCA model E only based
on normal data X3. Similarly, the model E fails to monitor the
mode M1, which reflects the catastrophic forgetting issue of
NSDiPCA. The performance of the remaining four methods is
not acceptable, where the FARs of Situations 21, 28 and 33 are
higher than 35%. The aforementioned analysis is also applied
to Cases 2 and 3. Owing to the limitation of paper length,
the partial monitoring charts of Cases 2 and 3 are described
Figure 3 and Figure 4 in the supplementary material.

For the proposed MNSDiPCA, the representative data from
each mode are selected by cosine similarity, as summarized in
Table IV. Except mode M1 in Case 2, less than 10% of the
samples are selected, which indicates that MNSDiPCA needs
moderate storage resource. With regard to SDiPCA–MSI and
PCA–EWC, there is no need to allocate additional space to
store historical data, thus requiring the least storage resources.
With the successive emergence of modes, the computational
complexity of IMPPCA and MCVA is the highest, because
the amount of training samples increases significantly and
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TABLE V
EXPERIMENTAL DATA OF THE PRACTICAL COAL PULVERIZING SYSTEM

Case
number Key variables Mode

number
Number of

training data
Number of
testing data

Fault
location Coal type Fault cause

Case
2

9 variables: pressure of air powder
mixture, outlet temperature, primary
air pressure and temperature, etc.

M1 1440 1440 626 Aomeng Air leakage at primary air interface
M2 1080 1080 533 Yinni Hot primary air electric damper failure
M3 2160 2880 909 Yinni Pulverizer deflagration

Case
3

9 variables: rotary separator speed
and current, coal feeding capacity,
bearing temperature, etc.

M1 2880 1080 806 Aomeng Frequency conversion cabinet short circuit
M2 2880 2880 1230 Aomeng Cooling fan trip of inverter cabinet
M3 2880 2160 587 Shenhun Frequency conversion cabinet short circuit

Case
4

14 variables: speed of coal feeder,
rotary separator speed and current,
coal feeding capacity, etc.

M1 2160 1440 1101 Shenhun Coal block of the coal pipe
M2 2520 1440 801 Aomeng The coal feeder belt is broken
M3 1080 1080 846 Aomeng The coal feeder does not drop coal
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the model needs to be retrained from scratch when a new
mode appears. Conversely, the computational complexity of
SDiPCA–MSI and PCA–EWC is only related to the current
mode data, and the complexity may be the least. The complex-
ity of MNSDiPCA is middle because the number of training
data may be much less than that of IMPPCA and MCVA.

In conclusion, MNSDiPCA, SDiPCA–MSI and PCA–EWC
build a single model and provide continual learning ability
for all existing modes. The major difference is the manner of
preserving the significant information from previous modes.
MNSDiPCA inherits the core of replay continual leaning [26],
and only a few representative data are stored and utilized when
a new mode arrives, which contain sufficient information of
each mode. However, SDiPCA–MSI and PCA–EWC adopt
the spirit of the regularization continual learning and build
a continually updated model, where the parameters sensitive
to modes are desired to change little. They require that data
among different modes are similar to a certain degree. Once
the modes are diverse, the performance would be decreased
abruptly [15]. MNSDiPCA is free from this constraint, and
thus may be better than SDiPCA–MSI and PCA–EWC for
Cases 2–4. IMPPCA and MCVA need complete data from
all modes before learning and the mode may be misidentified
when the modes are relatively similar.

V. CONCLUSION

This paper has introduced an efficient nonlinear dynamic
method with continual learning ability for multimode process
monitoring, where data from different modes are collected in a
sequential fashion. A few data from previous modes have been
selected by cosine similarity and would be replayed together
with the current mode data to extract the significant features
when a new mode is encountered. Therefore, it is able to
deliver outstanding performance for the existing diverse modes
based on a single model. A pre-learning step is conducted
to map the original data into a high-dimensional feature
space to settle the nonlinearity. In addition, a regularization
term is added to avoid the potential overfitting issue and the
catastrophic forgetting issue may be further alleviated simulta-
neously. In comparison to traditional multimode methods, the
proposed approach can alleviate the storage burden and reduce
the computational cost. Compared with several state-of-the-
art multimode monitoring methods, the effectiveness of the
proposed MNSDiPCA algorithm is demonstrated via CSTH
case and a practical coal pulverizing system.

In this work it has been assumed that the mode information
is available and sufficient data are collected before retraining
the model. In our future work, the mode identification would
be investigated automatically and an adaptive method with
continual learning ability will be investigated for online real-
time monitoring.
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