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1. Introduction
Imbalance in Earth's top-of-atmosphere radiative forcing leads to accumulation of “excess heat” in the climate 
system. Over 93% of the excess heat is stored in the ocean, causing ocean warming and sea-level rise (Meyssignac 
et al., 2019). Excess heat invades the ocean from the surface, like a drop of dye spreads in a water tank. This 
process can be conveniently described using a mathematical tool called Green's functions (GFs). Here, we exam-
ine how accurately excess heat in the ocean can be estimated using GFs.

A change in ocean heat content can be understood in terms of excess and redistributed heat content. Excess 
heat is defined as the change (warming or cooling) that is added to the ocean by air-sea fluxes, and then 
carried to depths by ocean transports. Redistributed heat, on the other hand, is defined as the change of 
the pre-existing heat in the ocean (i.e., spatial redistribution). Isolating excess heat is useful because: (a) 
excess heat change can be constrained by observations of transient tracers in the ocean (see Section 6), and 
(b) excess heat change dominates global/basin integrated ocean heat content change. Under CO2 forcing, 
climate models show that excess heat largely accumulates in the North Atlantic and the Southern Ocean, 
while redistributed heat tends to accumulate at low latitudes (Gregory et al., 2016; Newsom et al., 2022). 

Abstract Ocean heat uptake is caused by “excess heat” being added to the ocean surface by air-sea 
fluxes and then carried to depths by ocean transports. One way to estimate excess heat in the ocean is to 
propagate observed sea surface temperature (SST) anomalies downward using a Green's function (GF) 
representation of ocean transports. Taking a “perfect-model” approach, we test this GF method using a 
historical simulation, in which the true excess heat is diagnosed. We derive GFs from two approaches: (a) 
simulating GFs using idealized tracers, and (b) inferring GFs from simulated CFCs and climatological 
tracers. In the model world, we find that combining simulated GFs with SST anomalies reconstructs 
the Indo-Pacific excess heat with a root-mean-square error of 26% for depth-integrated changes; the 
corresponding number is 34% for inferred GFs. Simulated GFs are inaccurate because they are coarse 
grained in space and time to reduce computational cost. Inferred GFs are inaccurate because observations 
are insufficient constraints. Both kinds of GFs neglect the slowdown of the North Atlantic heat uptake as 
the ocean warms up. SST boundary conditions contain redistributive cooling in the Southern Ocean, which 
causes an underestimate of heat uptake there. All these errors are of comparable magnitude, and tend to 
compensate each other partially. Inferred excess heat is not sensitive to: (a) small changes in the shape of 
prior GFs, or (b) additional constraints from SF6 and bomb  14C.

Plain Language Summary Ocean warming is caused by “excess heat” being added to the ocean 
surface by air-sea fluxes and then carried to depths by ocean currents. Tracking global ocean warming is 
important for monitoring climate change. However, a substantial amount of ocean warming occurs at depths, 
where temperature measurements are scarce. A workaround is to treat well-observed surface ocean warming as 
a heat source, and propagate it downward using ocean currents. This method of estimating the interior ocean 
warming is called the Green's function (GF) method. But how accurate is the GF method? Here, we address this 
question by treating a computer simulation of the historical ocean as the real world, and comparing simulated 
ocean warming (as the “truth”) with that estimated using the GF method. We find that the GF method broadly 
reconstructs simulated ocean warming. The results contain some inaccuracies because: (a) neither computer 
simulations nor observations give an accurate estimate of ocean currents, and (b) part of the surface temperature 
changes cannot be treated as a source of the interior ocean warming.
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Excess and redistributed heat are both theoretical constructs; neither of them is directly observable in the 
ocean.

Excess heat at depths can be estimated by propagating its surface “source” downward using boundary GFs of 
the tracer equation (Holzer & Hall, 2000). We refer to this method as the GF method. The source or boundary 
condition (BC) of excess heat is often computed from observed sea surface temperature (SST) in the literature 
(e.g., Messias & Mercier, 2022; Zanna et al., 2019). Boundary GFs represent the ocean's surface-to-interior trans-
port. They can be derived from: (a) simulating idealized tracers in a model (e.g., Khatiwala et al., 2005; Zanna 
et al., 2019) or (b) solving an inverse problem using tracer observations (e.g., Holzer et al., 2010; Khatiwala 
et al., 2009). The GF method adds useful information to the in-situ estimate of ocean heat content change. The 
two estimates are directly comparable for basin integrals; regionally, their differences indicate redistributed heat 
in the ocean.

We refer to GFs derived from model simulations as “simulated GFs,” and GFs inferred from tracer obser-
vations as “inferred GFs.” In practice, both types of GFs are at best approximations of the real-world ocean 
transport, due to various assumptions, simplifications and trade-offs. Simulated GFs are often coarse 
grained in space and time, hence they do not fully capture the covariance between the true GFs and surface 
BCs. In addition, simulated GFs rely on a model's ocean transports, but no model is perfect. Inferred GFs, 
on the other hand, do not rely on a model; but they too are inaccurate, because observations are insufficient 
constraints.

As well as the GFs, surface BCs are not perfectly known for estimating excess heat. SST anomalies, as used by 
Zanna et al. (2019), are contaminated by redistributed temperatures which are not BCs of excess heat. This error 
affects both types of GFs.

The accuracy of the GF method for estimating excess heat in the ocean has not been examined in the literature. In 
this study, we address this problem using a HadCM3 historical simulation (1860–2008). We treat this simulation 
as the real world, and compare excess heat diagnosed in it (as the “truth”) with that estimated using simulated/
inferred GFs. This approach is useful because it allows a separation of excess and redistributed heat and a quan-
tification of different errors, both of which are not accessible in observations.

Because our historical simulation agrees well with observations for large-scale ocean heat uptake, our error esti-
mates are relevant to applying the GF method to the real world. Importantly, our result pinpoints the main error 
sources in the GF method, and provides a quantitative benchmark for each of them. Nonetheless, we expect that 
at least some of our error estimates are HadCM3 specific, especially since HadCM3 is a coarse resolution model 
and not constrained by observations. Future studies with high-resolution models or ocean state estimates would 
be useful to provide a more robust error estimate.

Setup of the HadCM3 historical simulation and definitions of excess and redistributed heat are explained in 
Section 2. In Section 3, we explain how to solve the passive tracer equation using GFs. Section 4 explains the 
method of simulating GFs. Section 5 evaluates excess heat estimates based on simulated GFs. The same pattern 
is repeated in Sections 6 and 7, but for inferred GFs. Finally, a summary is given in Section 8 and discussions in 
Section 9.

2. Historical Simulation and Temperature Tracers
2.1. Setup of Historical Simulation

HadCM3 is an Atmosphere-Ocean General Circulation Model (AOGCM) that has been used extensively for 
climate studies (Gordon et al., 2000). The HadCM3 atmosphere model is based on the UK Met Office Unified 
Model, with a horizontal resolution of 2.5° × 3.75° and 19 vertical layers. The HadCM3 ocean model is based on 
the Cox (1984) model with a horizontal resolution of 1.25° × 1.25° and 20 vertical levels (vertical resolution is 
enhanced near the surface). Horizontal eddy mixing of tracers in the HadCM3 ocean is parameterized using the 
Gent and Mcwilliams (1990) and Redi (1982) schemes.

We run a pre-industrial control experiment and a historical experiment in parallel with HadCM3. Both experi-
ments start from a pre-industrial state at 1860 and run to 2008. (This choice omits the ocean's slow response to the 
global cooling before 1860 cf., Gebbie and Huybers (2019).) The historical experiment is conducted by adding 
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historical effective radiative forcing QERF (space and time dependent) to the sea-water surface. To compute QERF 
the atmosphere model ECHAM6.3 (Giorgetta et al., 2013) is forced with time-dependent historical changes in all 
forcing agents and fixed pre-industrial SSTs and sea ice concentrations, following the design of the piClim-histall 
experiment (Pincus et al., 2016). This ECHAM6.3 simulation is used in Gregory et al. (2020) to compute the 
global-mean QERF. Note that we choose to force HadCM3 with QERF instead of adding forcing agents to its atmos-
phere; Appendix A explains the motivation for this choice.

2.2. Evolution Equations of Temperature Tracers

2.2.1. Historical and Control Temperatures

Evolution of ocean potential temperature Θ in the control and historical experiments can, in general, be written as

𝜕𝜕Θ

𝜕𝜕𝜕𝜕
+ Φ(Θ) = Ψ,

initial condition:Θ(0) = Θ0.

 (1)

Θ0 is the pre-industrial state at 1860. Ψ is the source/sink of Θ; it is zero everywhere except at the surface (ignor-
ing geothermal heat flux). Φ is the ocean transport operator that evolves an ocean tracer field forward in time. A 
simple form of Φ can be given as

Φ(𝜒𝜒) = 𝐯𝐯 ⋅ ∇𝜒𝜒 − ∇ ⋅ (𝜅𝜅𝛿𝛿∇𝛿𝛿𝜒𝜒) −
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝜕𝜕

𝜕𝜕𝜒𝜒

𝜕𝜕𝜕𝜕

)

. (2)

χ is the concentration of a tracer. v is a 3D velocity vector. κδ and κz are isopycnal and vertical eddy diffusivi-
ties, respectively. ∇δ computes the lateral gradient of a scalar on isopycnal surfaces. Note that the Φ operator in 
modern ocean models is more complex than Equation 2.

The control and historical Θ fields are different because the two experiments have different Φ and Ψ. The ocean 
transport operator Φ is different because global warming affects ocean transports in many ways; for exam-
ple, a reduction in high-latitude convection. The surface source Ψ = Qctrl/(ρ0cpdz1) in the control experiment, 
where Qctrl is the net surface heat flux (W m −2) under the pre-industrial condition. In the historical experiment 
Ψ = (Qctrl + QERF + Q′)/(ρ0cpdz1); the two additional terms come from: (a) the historical forcing (QERF) and (b) 
climate feedbacks (Q′) in response to the forcing. ρ0cpdz1 is the top layer thermal inertia (J K −1 m −2), wherein ρ0 
is reference density, cp specific heat capacity, and dz1 top layer thickness.

2.2.2. Linear Equations of Temperature Evolution

Φ is a non-linear operator when applied to Θ, because Φ itself depends on Θ; for instance, v in Equation 2 
is a function of Θ. To facilitate a linear decomposition of temperature change, we define two linear versions 
of Φ, denoted as Lctrl and Lhist, using velocities and diffusivities from the control and historical experiments, 
respectively. Unlike the Φ operator, which is a function of ocean states, the L operator is a pre-computed 
quantity, for example, an array of coefficients. The evolution equation of Θ in the control experiment can be 
rewritten as

𝜕𝜕Θctrl

𝜕𝜕𝜕𝜕
+ 𝐿𝐿ctrl (Θctrl) =

1

𝜌𝜌0𝑐𝑐𝑝𝑝d𝑧𝑧1
𝑄𝑄ctrl,

initial condition:Θctrl(0) = Θ0.

 (3)

Similarly, the evolution equation of Θ in the historical experiment can be rewritten as

𝜕𝜕Θhist

𝜕𝜕𝜕𝜕
+ 𝐿𝐿hist (Θhist) =

1

𝜌𝜌0𝑐𝑐𝑝𝑝d𝑧𝑧1
(𝑄𝑄ctrl +𝑄𝑄ERF +𝑄𝑄′) ,

initial condition:Θhist(0) = Θ0.

 (4)

It is important to note that Lctrl and Lhist are linear operators when applied to any tracer fields. For instance, we 
have Lhist(Θhist) − Lhist(Θctrl) = Lhist(Θhist − Θctrl). The same does not hold for the Φ operator because it is nonlinear 

 19422466, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S002999 by T
est, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

WU AND GREGORY

10.1029/2022MS002999

4 of 35

in Θ. In Section 2.2.3, we will use the linearity of Lhist to derive the governing equation of redistributed tempera-
ture. Lctrl and Lhist both have time-varying coefficients due to variability and change in ocean transports.

2.2.3. Excess and Redistributed Temperatures

Temperature anomaly in the historical simulation relative to the control can be written as the sum of two passive 
tracers, Θe and Θr

Θa = Θhist − Θctrl = Θe + Θr . (5)

The excess temperature Θe is the part of Θa driven by changes in surface heat fluxes (Equations 3 and 4 have 
different right-hand-side forcing terms). Its evolution equation is defined as

𝜕𝜕Θe

𝜕𝜕𝜕𝜕
+ 𝐿𝐿hist (Θe) =

1

𝜌𝜌0𝑐𝑐𝑝𝑝d𝑧𝑧1
(𝑄𝑄ERF +𝑄𝑄′) ,

initial condition:Θe(0) = 0.

 (6)

We implement Equation 6 by simulating Θe as a passive tracer in the historical simulation from 1860 to 2008. 
The redistributed temperature Θr is the part of Θa driven by changes in ocean transports (Equations 3 and 4 have 
different transport operators). Its evolution equation can be derived by combining Equations 3–6 and making use 
of the linearity of Lhist.

𝜕𝜕Θr

𝜕𝜕𝜕𝜕
+ 𝐿𝐿hist (Θr) = 𝐿𝐿ctrl (Θctrl) − 𝐿𝐿hist (Θctrl) ,

initial condition:Θr(0) = 0.

 (7)

Note that changes in ocean transports acting on Θctrl are the source term of Θr. For convenience, we compute Θr 
as Θa − Θe (Equation 5) instead of using Equation 7. In the historical simulation, Θe and Θr are both affected by 
unforced variability and forced climate change. We focus on multi-decadal changes in Θe and Θr to highlight the 
role of forced response.

The key difference between Θe and Θr is that Θe only comes from the surface, while Θr has sources throughout the 
volume of the ocean. The global volume integral of Θr is zero, because the effect of L integrates to zero over the 
global ocean. (Θr defined in Gregory et al. (2016) does not have exactly zero volume integral.)

2.2.4. Converting Temperature to Heat Content

We compute ocean heat content anomaly 𝐴𝐴 a as 𝐴𝐴 ∫

𝜌𝜌0𝑐𝑐𝑝𝑝 (Θhist − Θctrl) d

3
𝐫𝐫 . r is a 3D position vector of the ocean, 𝐴𝐴  

an arbitrary control volume, and ρ0cp ≡ 4 × 10 6 J K −1 m −3. Applying the same procedure to Θe and Θr results in 
excess heat content 𝐴𝐴 (e) and redistributed heat content 𝐴𝐴 (r ) , respectively 𝐴𝐴 (a = e +r ) .

2.3. Evaluation of Historical Simulation

The HadCM3 historical simulation captures the surface and depth integrated ocean warming in observations 
reasonably well (Figure  1). The global mean SST in HadCM3 generally follows that in HadISST (Rayner 
et al., 2003), but it does not capture the early 21st century warming hiatus in HadISST (Figure 1a). HadCM3 
also tends to overestimate the surface cooling after volcanic eruptions compared to observations (Figure 1a); 
this is a common feature among CMIP5 models (D. M. Smith et al., 2016; Marotzke & Forster, 2015). In both 
HadCM3 and observations of Cheng et  al.  (2017), the global integrated 𝐴𝐴 a (0–2,000 m) increases by about 
300 ZJ in 2008 relative to 1946–1955 (1 ZJ = 1 × 10 21 J); more than half of that is stored in the Indo-Pacific 
(Figures 1b–1d). HadCM3 does not capture the observed plateauing of 𝐴𝐴 a increase after the 1963 Mount Agung 
eruption (Figures 1b and 1c).

We compare 𝐴𝐴 e and 𝐴𝐴 r simulated in HadCM3 with those in Bronselaer and Zanna (2020) (BZ2020). BZ2020 
infers 𝐴𝐴 e by scaling the pattern of anthropogenic carbon in the ocean; 𝐴𝐴 r is then derived by subtracting inferred 

𝐴𝐴 e from observed 𝐴𝐴 a change.
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HadCM3 and BZ2020 have similar patterns of 𝐴𝐴 e changes during 1951–2008 (Figure 2 left column, changes are 
integrated over 0–2,000 m). In both of them, 𝐴𝐴 e tends to accumulate in the subtropical gyres and the North Atlan-
tic, but features little signal at low latitudes. HadCM3 has larger 𝐴𝐴 e changes than BZ2020 in the North Atlantic 
and the Arctic. This is partly due to different definitions of 𝐴𝐴 e . The 𝐴𝐴 e of BZ2020 is defined in a fixed-circulation 
scenario, which has a smaller QERF + Q′, hence a smaller 𝐴𝐴 e , than a free-circulation scenario (i.e., the HadCM3 
simulation) at northern high latitudes (Winton et al., 2013). 𝐴𝐴 r is less coherent in space than 𝐴𝐴 e in both HadCM3 
and BZ2020; the two data sets show very different 𝐴𝐴 r changes in the subpolar North Atlantic and the Southern 
Ocean (Figure 2, right column).

2.4. Heat Uptake by Control Ocean Transport

How important is the control ocean transport Lctrl in shaping the regional pattern of 𝐴𝐴 e ? We investigate this ques-
tion using the pseudo excess temperature 𝐴𝐴 Θ∗

e

𝜕𝜕Θ∗
e

𝜕𝜕𝜕𝜕
+ 𝐿𝐿ctrl (Θ

∗
e ) =

1

𝜌𝜌0𝑐𝑐𝑝𝑝d𝑧𝑧1
(𝑄𝑄ERF +𝑄𝑄′) ,

initial condition:Θ∗
e(0) = 0.

 (8)

𝐴𝐴 Θ∗
e is evolved by the control transport Lctrl, as if heat uptake does not affect ocean transports. This is in contrast 

with Θe which is evolved by the historical transport Lhist. We implement Equation 8 by simulating 𝐴𝐴 Θ∗
e as a passive 

tracer in the control experiment from 1860 to 2008. Pseudo excess heat content is denoted as 𝐴𝐴 
∗
e = ∫


𝜌𝜌0𝑐𝑐𝑝𝑝Θ

∗
ed

3
𝐫𝐫 .

Figure 1. Surface and depth integrated ocean warming in the HadCM3 historical simulation. (a) Global averaged sea surface 
temperature. (b) Global integrated ocean heat content. Panels (c and d) are the same as panel (b), but for basin integrals. 
Global and basin integrals are calculated for the 0–2,000 m layers. All quantities are shown as anomalies relative to the 
1946–1955 average. For comparison, observational estimates from Rayner et al. (2003) (HadISST) and Cheng et al. (2017) 
(heat content) are also plotted. 1 ZJ = 1 × 10 21 J.
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Changes of 𝐴𝐴 a , 𝐴𝐴 e and 𝐴𝐴 
∗
e in 1999–2008 relative 1946–1955 are shown in Figure 3 (a change is denoted as 

“Δ”). 𝐴𝐴 Δa is much less uniform than 𝐴𝐴 Δe and 𝐴𝐴 Δ∗
e across latitudes (Figures 3a and 3b), highlighting the role 

of 𝐴𝐴 Δr in shaping the patterns of 𝐴𝐴 Δa . A similar result is found in Zika et al. (2021) but on a shorter timescale 
(2006–2017).

The latitude distributions of 𝐴𝐴 Δe and 𝐴𝐴 Δ∗
e  are very similar, especially in the southern subtropics (Figure 3, 

compare red and blue lines). This suggests that the patterns of 𝐴𝐴 Δe is mostly driven by the climatological 
ocean transport (i.e., Lctrl), not its transient response (i.e., differences between Lhist and Lctrl). A similar 
conclusion was found in several climate models under 1% increase of the atmospheric CO2 concentration 
(Couldrey et al., 2021; Gregory et al., 2016). Differences between 𝐴𝐴 Δe and 𝐴𝐴 Δ∗

e  are most evident at north-
ern mid latitudes, where 𝐴𝐴 Δe is redistributed equatorward relative to 𝐴𝐴 Δ∗

e  in 0–200 m (Figures 3e and 3f 
shading). This redistribution pattern implies a weakening of the poleward ocean transport in the historical 
simulation.

3. Formulating Tracer Evolution Using Green's Functions
Evolution of a passive tracer in the historical simulation is governed by

(

𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐿𝐿hist

)

𝑋𝑋(𝐫𝐫, 𝜕𝜕) = Ψ(𝐫𝐫, 𝜕𝜕),

Ψ(𝐫𝐫, 𝜕𝜕) = 0 for 𝐫𝐫 ∈ {ocean interior} .

 (9)

r is a 3D position vector of the ocean and t is time. X is the concentration of a passive tracer and Ψ is its 3D source/
sink. All tracers studied here have no source/sink in the ocean interior, therefore we set Ψ to zero everywhere 
below the surface. At the surface, 𝐴𝐴 Ψ = ∕d𝑧𝑧1 , where 𝐴𝐴  is air-sea tracer fluxes, and dz1 the top layer thickness. (𝐴𝐴  
has a unit of K m s −1 for Θe.)

Figure 2. Linear trends of excess and redistributed heat content (0–2,000 m integrated) during the 1951–2008 period. (a and b) Bronselaer and Zanna (2020) (based on 
anthropogenic carbon). (c and d) HadCM3 historical simulation. 1 GJ = 1 × 10 9 J.
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3.1. Concentration GF Formulation

The general solution of Equation 9 is given in Holzer and Hall (2000). When X has zero initial conditions, the 
solution of Equation 9 can be written as a superposition of all tracer pulses emitted from the surface. For concen-
tration BCs, the superposition is given as

𝑋𝑋(𝐫𝐫, 𝑡𝑡) =
∫
Ω

d2𝐫𝐫s
∫

𝑡𝑡

−∞

𝐺𝐺c (𝐫𝐫, 𝑡𝑡|𝐫𝐫s, 𝑡𝑡s)𝑋𝑋
s (𝐫𝐫s, 𝑡𝑡s) d𝑡𝑡s. (10)

X s is X at the surface. rs is a surface position vector. Gc is the GF of Equation 9 that propagates concentration 
BCs. Ω denotes the global ocean surface. The two integrals sum up X(r, t) emitted from X s anywhere in Ω and 
anytime prior to t.

Figure 3. Excess heat content change resulting from (1) historical and (2) control ocean transports. These two quantities are denoted as 𝐴𝐴 Δe (red line) and 𝐴𝐴 Δ∗
e (blue 

line), respectively. Total heat content change (𝐴𝐴 Δa  = 𝐴𝐴 Δe +𝐴𝐴 Δr ) is shown as black lines. (a and b) Zonal-and-depth integrated change (0–2,000 m). (c and f) Depth 
distribution of panels (a and b). A change is calculated as the difference between 1999–2008 and 1946–1955. In panels (e and f), contours indicate 𝐴𝐴 Δe and 𝐴𝐴 Δ∗

e ; 
shading indicates 𝐴𝐴 Δe minus 𝐴𝐴 Δ∗

e . Contour levels are 10, 30, and 45 in panel (c); 5, 15, and 25 in panel (d); 10, 20, 30, 50, and 70 in panel (e); and 5, 10, 15, and 25 in 
panel (f). 1 PJ = 1 × 10 15 J. 1 TJ = 1 × 10 12 J.
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Formally Gc is defined as a special solution of Equation 9 that satisfies
( �
��

+ �hist

)

�c(�, �|�s, �s) = 0,

�c(�, �|�s, �s) = �(� − �s) �(� − �s) for � ∈ Ω,

�c(�, 0|�s, �s) = 0 for � ∈ {ocean interior} .

 (11)

δ is the Dirac delta function.

3.2. Interpretations of Concentration GFs

Gc can be interpreted from two perspectives. When we fix the surface coordinate (rs, ts), Gc(r, t) is a time-evolving 
3D field in the ocean. The 3D field depicts how a tracer injected at (rs, ts) spreads in the ocean subject to zero 
concentration BCs at all other times and surface locations. The BCs remove any tracer that surfaces after ts, hence 
we have 𝐴𝐴 lim

𝜏𝜏→∞
𝐺𝐺c = 0 , where τ = t − ts is elapsed time. This perspective is useful for probing GFs from forward 

simulations in an ocean model (see Section 4).

When we fix the field coordinate (r, t), Gc(rs, ts) is a time-evolving 2D map of the ocean surface. It shows how 
sensitive X(r, t) is to individual pulses in its surface history X s. Holzer and Hall (2000) interpreted the 2D map as 
a measure of how a tracer injected at (r, t) surfaces in the time-reversed flow after t − ts. This perspective is useful 
for inferring GFs from tracer data (see Section 6). Causality requires that Gc = 0 whenever t <ts.

Gc(r, t | rs, ts) is also referred to as a “joint water-mass composition and transit-time distribution” which measures 
the fraction of water at (r, t) that has made its last surface contact at location rs and time ts (Haine & Hall, 2002). 
Since all the water at (r, t) can be traced back to the surface eventually, the following must be satisfied.

∫Ω
d2�s ∫

�

−∞
�c(�, �|�s, �s) d�s = 1. (12)

Gc has been used to study the transit-time distribution of the ocean (e.g., Ito & Wang, 2017; Maltrud et al., 2010; 
Peacock & Maltrud,  2006) and to estimate the ocean's uptake of anthropogenic carbon and heat (Gebbie & 
Huybers, 2019; Khatiwala et al., 2009; Newsom et al., 2020; Zanna et al., 2019).

3.3. Air-Sea Flux GF Formulation

The solution of Equation 9 can also be written in terms of the air-sea tracer flux 𝐴𝐴 𝑋𝑋 , when X has zero initial 
conditions.

�(�, �) = ∫Ω
d2�s ∫

�

−∞
�f(�, �|�s, �s)�(�s, �s) d�s (13)

Gf is the boundary GF that propagates the surface source/sink into the ocean. Formally Gf is defined as a special 
solution of Equation 9 that satisfies

( �
��

+ �hist

)

�f(�, �|�s, �s) =
1
d�1

�(� − �s) �(� − �s) ,

�f(�, 0|�s, �s) = 0 everywhere.
 (14)

Note that Equation 14 does not impose zero concentration BCs as Equation 11, hence tracers are not removed 
when they surface. Gf has been used to probe atmosphere transports (Holzer, 1999) and to define a tracer age 
(Holzer & Hall, 2000).

3.4. Limitation of Boundary GFs

We want to stress that Gc and Gf are both boundary GFs; that is they only account for tracers emitted from the 
surface. The redistributed temperature Θr cannot be accounted for using Gc or Gf because it has non-zero source 
below the surface (Equation 7).
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4. Simulating GFs in an Ocean Model
4.1. Approximations of Simulated GFs

The boundary GFs, Gc and Gf, can be generated for an ocean model by simulating passive tracers in it. By 
definition, we need to compute a GF for every possible (rs, ts), which is computationally demanding. To reduce 
computational cost, we make the following approximations.

First, we assume that ocean transports are constant. Taking Gc as an example, this assumption means: (a) Gc is 
the same for Lctrl and Lhist, (b) Gc does not depend on ts, hence Gc(r, t | rs, ts) = Gc(r, t − ts | rs, 0). Note that Gc(r, 
t − ts | rs, 0) only needs to be solved once (at ts = 0) for every rs. The constant-transport assumption neglects 
variability and forced-change in ocean transports; we refer to the resulting errors as a “unforced-transport error” 
and a “forced-transport error,” respectively.

Second, we assume that the boundary terms, X s and 𝐴𝐴 𝑋𝑋 , are dominated by large-scale patterns, hence we can 
approximate tracers emitted from them using coarse-grained GFs. Specifically, we derive GFs using surface 
patches defined in Figure 4. For Gc, we divide the global ocean into 27 regions based on the climatological 
surface densities in HadCM3, similar to Khatiwala et al.  (2009). For Gf, we divide the global ocean into 20° 
latitude bands for each basin (20 patches in total). This step greatly reduces the dimension of GFs at the surface 
(the dimension of rs is about 1 × 10 4 in a 1° × 1° model). X s and 𝐴𝐴 𝑋𝑋 are averaged onto the corresponding patches 
when convolved with GFs.

Finally, we approximate the Dirac delta function in Equations 11 and 14 using a boxcar (rectangular) function 
with a unit height. The boxcar function lasts for 1 year after it is activated, so that the resulting GFs capture the 
effect of ocean transports averaged over a year, not that of a particular month. Using surface patches and the 

Figure 4. Surface patches for simulating boundary Green's functions Gc and Gf. Shading indicates the patch index. Gc 
propagates concentration boundary conditions, while Gf propagates surface sources/sinks.
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boxcar function neglects the covariance between GFs and the boundary terms within patches and years. We refer 
to this error as a “patch error.”

4.2. Defining Simulated GFs

GFs resulting from the above approximations are referred to as simulated GFs. Formally simulated concentration 
GF Gc (denoted as 𝐴𝐴 �̂�𝐺c ) is defined as

(

𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐿𝐿ctrl

)

�̂�𝐺c(𝐫𝐫, 𝜕𝜕|𝑝𝑝, 0) = 0,

�̂�𝐺c(𝐫𝐫, 𝜕𝜕|𝑝𝑝, 0) = 𝑀𝑀c(𝐫𝐫, 𝑝𝑝)𝑀𝑀𝜕𝜕(𝜕𝜕, 0)for 𝐫𝐫 ∈ Ω,

�̂�𝐺c(𝐫𝐫, 0|𝑝𝑝, 0) = 0 for 𝐫𝐫 ∈ {ocean interior} .

 (15)

The boxcar function Mt(t, 0) is activated when t > 0 and switched off after 1 year. t = 0 is assigned to the beginning 
of the control experiment. Mc is a mask function that returns unity if r is within the surface patch p and zero other-
wise. Ω denotes the global ocean surface. Similarly, simulated air-sea flux GF Gf (denoted as 𝐴𝐴 �̂�𝐺f ) is defined as

( �
��

+ �ctrl

)

�̂f (�, �|�, 0) =
1
d�1

�f(�, �)�t(�, 0),

�̂f (�, 0|�, 0) = 0 everywhere.
 (16)

Mf is a different mask function than Mc, because we use different surface patches to define 𝐴𝐴 �̂�𝐺f and 𝐴𝐴 �̂�𝐺c (Figure 4). 

𝐴𝐴 �̂�𝐺c and 𝐴𝐴 �̂�𝐺f are solved by integrating Equations 15 and 16, respectively, in the control experiment for 200 years 
(from 1860).

4.3. Estimating Tracers Using Simulated GFs

Simulated GFs can be used to compute the boundary response of a passive tracer following

�̂�𝑋(𝐫𝐫, 𝑙𝑙) =
∑

𝑝𝑝

∑

𝑙𝑙s≤𝑙𝑙

[

�̂�𝐺c (𝐫𝐫, 𝑙𝑙 − 𝑙𝑙s|𝑝𝑝, 0)
]

�̂�𝑋
s (𝑝𝑝, 𝑙𝑙s) , (17)

�̂�𝑋(𝐫𝐫, 𝑙𝑙) =
∑

𝑝𝑝

∑

𝑙𝑙s≤𝑙𝑙

[

�̂�𝐺f (𝐫𝐫, 𝑙𝑙 − 𝑙𝑙s|𝑝𝑝, 0)
]

̂𝑋𝑋 (𝑝𝑝, 𝑙𝑙s) . (18)

All quantities in Equations 17 and 18 are defined on a yearly grid. 𝐴𝐴 �̂�𝑋s and 𝐴𝐴 ̂𝑋𝑋 are X s and 𝐴𝐴 𝑋𝑋 averaged onto the corre-
sponding patches, respectively. p is surface patch index and l is year number. To reduce the unforced-transport 
error, we simulate GFs from four initial conditions (1860, 1870, 1880, and 1890 of the control experiment), and 
use their ensemble means (denoted by “[ ]”) in Equations 17 and 18.

We introduce 𝐴𝐴
∑

̂�̂�𝜒 s as a shorthand for 𝐴𝐴
∑

𝑝𝑝

∑

𝑙𝑙s≤𝑙𝑙
̂ (𝐫𝐫, 𝑙𝑙 − 𝑙𝑙s|𝑝𝑝, 0) �̂�𝜒

s (𝑝𝑝, 𝑙𝑙s) . Using this notation, the 𝐴𝐴 �̂�𝐺c estimate of 

Θe can be written as 𝐴𝐴 Θ̂e =
∑

[

�̂�𝐺c

]

Θ̂s
e (substitute Θe for X in Equation 17), where 𝐴𝐴 Θ̂s

e is Θe at the surface averaged 
onto patches. Similarly, the 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 Θ∗

e can be written as 𝐴𝐴 Θ̂∗
e =

∑
[

�̂�𝐺c

]

Θ̂s∗
e  .

4.4. Error Definitions

𝐴𝐴 Θ̂e is inaccurate because of the patch, unforced-transport and forced-transport errors. We quantify these errors 
using Equations 19–21. Because 𝐴𝐴 Θ∗

e is not affected by forced change in ocean transports, we use it to isolate 
the patch and unforced-transport errors. We note that different members of 𝐴𝐴 �̂�𝐺c give similar estimates of 𝐴𝐴 Θ∗

e for 
large-scale changes examined in Section 5; the spread is <20% compared to the ensemble mean in most regions 
(not shown). Similarly, Maltrud et al. (2010) suggested that the first moment of 𝐴𝐴 �̂�𝐺c (i.e., mean age) can be robustly 
estimated using just a few members. We therefore assume that the 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 Θ∗

e , that is 𝐴𝐴
∑

[

�̂�𝐺c

]

Θ̂s∗
e  , is 

dominated by the patch error (Equation 19, 𝐴𝐴 Θ∗
e without “^” is the model truth). The change of the 𝐴𝐴 �̂�𝐺c estimate 

resulting from replacing 𝐴𝐴
[

�̂�𝐺c

]

 with 𝐴𝐴 �̂�𝐺c (a single realization) gives the unforced-transport error (Equation 20). A 
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larger ensemble of 𝐴𝐴 �̂�𝐺c is useful to refine the unforced-transport error; however, it is unlikely to change the error 
substantially (e.g., by a factor of two).

𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎 =
∑

[

�̂�𝐺c

]

Θ̂s∗
e − Θ∗

e (19)

𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞 𝚝𝚝𝚞𝚞𝚝𝚝𝚞𝚞𝚝𝚝𝚝𝚝𝚞𝚞𝚞𝚞𝚝𝚝 𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞𝚞 =
∑

�̂�𝐺cΘ̂
s∗
e −

∑
[

�̂�𝐺c

]

Θ̂s∗
e (20)

Because Θe is evolved by the historical ocean transport, we use it to compute the forced-transport error. The 𝐴𝐴 �̂�𝐺c 

estimate of Θe, that is 𝐴𝐴
∑

[

�̂�𝐺c

]

Θ̂s
e , is affected by the patch and forced-transport error; the patch error is solved in 

Equation 19, therefore the forced-transport error is given as Equation 21.

𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 𝚝𝚝𝚏𝚏𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚏𝚏𝚏𝚏𝚝𝚝 𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 =
∑

[

�̂�𝐺c

]

Θ̂s
e − Θe − 𝚝𝚝𝚝𝚝𝚝𝚝𝚏𝚏𝚙𝚙 𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 (21)

In practice, there is also a “BC error” when estimating Θe using 𝐴𝐴 �̂�𝐺c . This is because surface excess temperature 
𝐴𝐴 (Θs

e) is poorly known. Using SST anomaly 𝐴𝐴 (Θs
a) to approximate 𝐴𝐴 Θs

e is not accurate because 𝐴𝐴 Θs
a is contaminated by 

redistributed temperature. We compute the BC error by replacing 𝐴𝐴 Θs
e with 𝐴𝐴 Θs

a in the 𝐴𝐴 �̂�𝐺c estimate (Equation 22).

𝙱𝙱𝙱𝙱 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎 =
∑

[

�̂�𝐺c

]

Θ̂s
a −

∑
[

�̂�𝐺c

]

Θ̂s
e. (22)

We compute the errors for the 𝐴𝐴 �̂�𝐺f estimate (Equation 18) in a similar way as for the 𝐴𝐴 �̂�𝐺c estimate (Equation 17). The 

only difference is that the boundary term 𝐴𝐴 𝑋𝑋 is the same for 𝐴𝐴 Θ∗
e and Θe in the 𝐴𝐴 �̂�𝐺f estimate by definition.

4.5. Surface Concentration BCs

𝐴𝐴 Θs∗
e  , 𝐴𝐴 Θs

e and 𝐴𝐴 Θs
a are supplied as anomalies relative to 1860–1880 when evaluating Equation 17. This step is to 

exclude a shock in 𝐴𝐴 Θs
e (+0.15°C in global mean) shortly after the start of the historical simulation. Because 𝐴𝐴 Θs∗

e  
does not show a similar behavior, we suspect that the shock is due to an abrupt change in ocean transports. If 
not removed, the shock would cause a warm bias in the 𝐴𝐴 �̂�𝐺c estimate of Θe, because 𝐴𝐴 �̂�𝐺c is derived from the control 
experiment. Since this warm bias can be removed easily, we do not count it as a forced-transport error.

A comparison between 𝐴𝐴 Θs
a , 𝐴𝐴 Θs

e and 𝐴𝐴 Θs∗
e  is shown in Figure 5 for the 1999–2008 average. 𝐴𝐴 Θs

a (black line) consistently 
has less warming than 𝐴𝐴 Θs

e (red line) in the Southern Ocean and the North Atlantic (north of 40°N) by as much 
as 2°C (Figures 5a and 5b). This difference is likely caused by a reduction of convection and a slow down of the 
Atlantic meridional overturning circulation, as shown in Gregory et al. (2016).

𝐴𝐴 Θs
e (red line) and 𝐴𝐴 Θs∗

e  (blue line) are very similar at most latitudes (Figures 5a and 5b). The exception is the 
North Pacific and the North Atlantic, where 𝐴𝐴 Θs

e is much warmer than 𝐴𝐴 Θs∗
e  . This implies a reduction of the ocean's 

surface-to-interior transport in those regions during the historical simulation (because global warming stratifies 
the ocean and thus inhibits heat uptake).

4.6. Potential Nonlinear Errors

Equation 19 assumes that the function Φ is strictly linear when operating on passive tracers in models. This is not 
necessarily true because some models use flux-limited transport schemes, which makes Φ nonlinear even when 
operating on passive tracers. This nonlinear error is included in the error computed from Equation 19, but it is 
likely small compared to the patch error.

Excess temperature Θe can alternatively be defined as a dynamical tracer that affects ocean transports (i.e., replac-
ing Lhist with Φ in Equation 6). This definition leads to a set of “dynamical” GFs, as opposed to “passive” GFs of 
Section 3 (their distinctions are further discussed in Appendix B). The GF estimate of the dynamical Θe (Equa-
tion B1) contains a nonlinear error because the dynamical ocean response is not a linear function of the forcing. 
In contrast, the GF estimate of the passive Θe (Equation 6) does not have a nonlinear error, because Equation 6 is 
strictly linear. The errors introduced in Section 4.1 can all be eliminated by simulating GFs for Equation 6 at very 
fine space and time resolution. The nonlinear error, however, cannot be eliminated by any means.
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5. Estimating Excess Heat Using Simulated GFs
In this section, we examine how well simulated GFs can reproduce excess heat changes in the historical 
simulation. The inaccuracy is partitioned into the patch, unforced-transport, forced-transport and BC errors 
(Equations 19–22).

We focus on three metrics when comparing the model truth with the GF estimates: (a) global/basin volume inte-
gral (0–2,000 m), (b) zonal-and-depth integral (0–2,000 m), and (c) depth distribution of (b) (0–1500 m). Metric 
(a) is shown as anomalies relative to 1946–1955. Metrics (b) and (c) are shown as changes between 1999–2008 
and 1946–1955 (denoted using “Δ”). The root-mean-square error (RMSE) of the GF estimate (total error) and 
the RMS value for each error source (Equations 19–22) are listed in Figures 6–8. Each realization of GFs gives 
an unforced-transport error; we report the unforced-transport error averaged over four realizations. Since our 
metrics are all extensive quantities, we also report their normalized RMSEs; that is the ratio between RMSE and 
root-mean-square magnitude (RMSM).

5.1. Concentration GF Estimate

In this subsection, we evaluate the GF estimate of 𝐴𝐴 e and 𝐴𝐴 
∗
e based on Equation 17 (referred to as the 𝐴𝐴 �̂�𝐺c estimate). 

𝐴𝐴 
∗
e is the same as 𝐴𝐴 e except that it is evolved by the control ocean transport (see Section 2.4). 𝐴𝐴 �̂�𝐺c is simulated in 

the control experiment. The BCs 𝐴𝐴 Θs
e and 𝐴𝐴 Θs∗

e  are diagnosed in HadCM3 (i.e., BCs are perfectly known). Θe and 
𝐴𝐴 Θ∗

e are converted to excess heat 𝐴𝐴 e and 𝐴𝐴 
∗
e , respectively, following the procedure of Section 2.2.4. We exclude 𝐴𝐴 e 

and 𝐴𝐴 
∗
e resulting from the Arctic patch to be consistent with Zanna et al. (2019).

Figure 5. Surface temperature anomaly 𝐴𝐴 (Θs
a) and surface excess temperature (𝐴𝐴 Θs

e and 𝐴𝐴 Θs∗
e  ). 𝐴𝐴 Θs∗

e  is the same as 𝐴𝐴 Θs
e except that it is evolved by the control ocean transport 

instead of the historical one. Values shown are differences between 1999–2008 and 1860–1880. (a and b) Zonal average over a basin. (c and d) Spatial map.
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5.1.1. Patch and Unforced-Transport Errors

We start with 𝐴𝐴 
∗
e  . The 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 

∗
e  is inaccurate because of the patch error. For all metrics, the RMS 

value of the unforced-transport error is less than 1/3 of the patch error (compare numbers in Figures  6 
and  7). The global integrated 𝐴𝐴 

∗
e  (black line) increases by about 300  ZJ over 1860–2008, of which two 

thirds are stored in the Indo-Pacific and one third in the Atlantic (Figure 6). For this metric, the 𝐴𝐴 �̂�𝐺c estimate 
(blue line) reproduces the  model truth well, with a RMSE of 16 ZJ for the global integral and 8 ZJ for basin 
integrals (Figure 6).

The zonal-and-depth integrated 𝐴𝐴 Δ∗
e (black line) has a RMSM of 13.6 PJ m −1 in the Indo-Pacific and 6.2 PJ m −1 

in the Atlantic, averaged over latitudes (Figures 7a and 7b). The 𝐴𝐴 �̂�𝐺c estimate of this metric (blue line) has an error 
of 24% in the Indo-Pacific and 42% in the Atlantic (Figures 7a and 7b). The patch error is most evident in the 
North Atlantic (underestimate) and in the Southern Ocean (overestimate) (Figures 7a and 7b, compare black and 
blue lines).

The latitude-depth pattern of 𝐴𝐴 Δ∗
e (black contour) has a RMSM of 14.9 TJ m −2 in the Indo-Pacific and 5.2 TJ m −2 

in the Atlantic, averaged over latitudes and 0–1,500 m (Figures 7c and 7d). The 𝐴𝐴 �̂�𝐺c estimate of this metric (blue 
contour) has an error of 26% in the Indo-Pacific and 44% in the Atlantic (Figures 7c and 7d). The patch error is 

Figure 6. Estimating the global/basin integrated (0–2,000 m) excess heat 𝐴𝐴 e and 𝐴𝐴 
∗
e in the historical simulation using simulated Green's functions (GFs) (Sections 5.1 

and 5.2). Black and gray lines show 𝐴𝐴 
∗
e and 𝐴𝐴 e in HadCM3, respectively. 𝐴𝐴 

∗
e is the same as 𝐴𝐴 e except that it is evolved by the control ocean transport. Blue and green 

lines are the 𝐴𝐴 �̂�𝐺c estimates of 𝐴𝐴 
∗
e and 𝐴𝐴 e , respectively. The 𝐴𝐴 �̂�𝐺f estimates of 𝐴𝐴 

∗
e and 𝐴𝐴 e are identical and both shown by red lines. The root-mean-square magnitude 

(RMSM) of the model truth and the root-mean-square errors (RMSEs) of different GF estimates are listed. The RMS values of the patch, unforced-transport and 
forced-transport errors are listed for the 𝐴𝐴 �̂�𝐺c and 𝐴𝐴 �̂�𝐺f estimates from left to right. The two 𝐴𝐴 �̂�𝐺f estimates have different RMSEs because 𝐴𝐴 

∗
e and 𝐴𝐴 e are different in the model 

truth.
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strongest in the upper 200 m (Figures 7c and 7d shading). Below that, the 𝐴𝐴 �̂�𝐺c estimate follows the model truth 
broadly, except in the Atlantic around 60°N (Figures 7c and 7d, compare black and blue contours).

5.1.2. Forced-Transport Error

We next examine the 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 e . By definition, this estimate is inaccurate because of the patch and 
forced-transport errors; we subtract the patch error (Section 5.1.1) from the total error to derive the forced-transport 
error (Equation  21). Global warming stratifies the ocean and weakens the surface-to-interior transport. The 
forced-transport error arises because 𝐴𝐴 �̂�𝐺c does not capture this weakening effect, hence tends to overestimate 
warming at depths. This is evident in Figure 6; the 𝐴𝐴 �̂�𝐺c estimate (green line) overestimates 𝐴𝐴 e (gray line) in both 
global and basin integrals. The overestimate is strongest at northern mid latitudes (Figures 7e and 7f shading).

Figure 7. Estimating latitude distribution of excess heat change 𝐴𝐴 Δe and 𝐴𝐴 Δ∗
e in the historical simulation using 𝐴𝐴 �̂�𝐺c (Section 5.1). (a and b) Zonal-and-depth integral 

(0–2,000 m). (c–f) Depth distribution of panels (a and b). In all panels, black and gray lines show 𝐴𝐴 Δ∗
e and 𝐴𝐴 Δe in HadCM3, respectively; blue and green lines show the 

𝐴𝐴 �̂�𝐺c estimates of 𝐴𝐴 Δ∗
e and 𝐴𝐴 Δe , respectively. Shading in panels (c and d) indicates errors in the 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 Δ∗

e (the patch error). Shading in panels (e and f) indicates 
errors in the 𝐴𝐴 �̂�𝐺c estimate of 𝐴𝐴 Δe minus the patch error (the forced-transport error). For each metric, the root-mean-square magnitude (RMSM) of the model truth and 
the root-mean-square error (RMSE) of the 𝐴𝐴 �̂�𝐺c estimate are listed, along with the RMS values of the patch, unforced-transport and forced-transport errors. All changes 
are calculated as differences between 1999–2008 and 1946–1955.
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In the North Atlantic, the forced-transport error is associated with a 1 Sv slowdown of the overturning circula-
tion at 45°N after 1960 (not shown). In contrast, the overturning circulation shows little change compared to the 
control in the North Pacific, implying the forced-transport error there is associated with parameterized transports. 
Interestingly, the forced-transport error is nearly zero in the Southern Ocean. This is probably because the South-
ern Ocean circulation has a strong wind-driven component (Marshall & Speer, 2012), hence is less sensitive to 
surface warming compared to the North Atlantic circulation.

The forced-transport error is more than twice as large as the patch error for global/basin integrated 𝐴𝐴 e (Figure 6), 
and about the same size as the patch error for zonal integrated 𝐴𝐴 Δe (Figure 7). The patch and forced-transport 
errors partially compensate each other for zonal integrated 𝐴𝐴 Δe in some regions (Figure 7, compare middle and 

Figure 8. Estimating latitude distribution of excess heat change 𝐴𝐴 Δe and 𝐴𝐴 Δ∗
e in the historical simulation using 𝐴𝐴 �̂�𝐺f (Section 5.2). (a and b) Zonal-and-depth integral 

(0–2,000 m). (c–f) Depth distribution of panels (a and b). In all panels, black and gray lines show 𝐴𝐴 Δ∗
e and 𝐴𝐴 Δe in HadCM3, respectively; the 𝐴𝐴 �̂�𝐺f estimates of 𝐴𝐴 Δ∗

e and 
𝐴𝐴 Δe are identical, and shown by red lines. Shading in panels (c and d) indicates errors in the 𝐴𝐴 �̂�𝐺f estimate of 𝐴𝐴 Δ∗

e (the patch error). Shading in panels (e and f) indicates 
errors in the 𝐴𝐴 �̂�𝐺f estimate of 𝐴𝐴 Δe minus the patch error (the forced-transport error). For each metric, the root-mean-square magnitude (RMSM) of the model truth and 
the root-mean-square error (RMSE) of the 𝐴𝐴 �̂�𝐺f estimate are listed, along with the RMS values of the patch, unforced-transport and forced-transport errors. The two 𝐴𝐴 �̂�𝐺f 
estimates have different RMSEs because 𝐴𝐴 

∗
e and 𝐴𝐴 e are different in the model truth. All changes are calculated as differences between 1999–2008 and 1946–1955.
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bottom row shading), hence the RMSE of the 𝐴𝐴 �̂�𝐺ce estimate is only slightly larger than that of the 𝐴𝐴 �̂�𝐺c
∗
e estimate 

in Figure 7.

5.2. Air-Sea Flux GF Estimate

In this subsection, we evaluate the GF estimates of 𝐴𝐴 e and 𝐴𝐴 
∗
e based on Equation 18 (referred to as the 𝐴𝐴 �̂�𝐺f esti-

mate). 𝐴𝐴 �̂�𝐺f is simulated in the control experiment. The BCs 𝐴𝐴 Θe
 are diagnosed in HadCM3 as (QERF + Q′)/(ρ0cp). 

𝐴𝐴 Θ∗
e
 is the same as 𝐴𝐴 Θe

 by definition, therefore the 𝐴𝐴 �̂�𝐺f estimates of 𝐴𝐴 e and 𝐴𝐴 
∗
e are identical. Θe and 𝐴𝐴 Θ∗

e are converted 
to excess heat 𝐴𝐴 e and 𝐴𝐴 

∗
e , respectively, following the procedure of Section 2.2.4.

The 𝐴𝐴 �̂�𝐺f estimate has smaller RMSEs than the 𝐴𝐴 �̂�𝐺c estimate for global/basin integrals (Figure 6) and zonal-and-depth 
integrals (Figures 7 and 8, top row). In particular, the unforced- and forced-transport errors of the 𝐴𝐴 �̂�𝐺f estimate are 
much smaller than those of the 𝐴𝐴 �̂�𝐺c estimate. Note that the basin integrated 𝐴𝐴 

∗
e and 𝐴𝐴 e are largely determined by 

their surface fluxes, which are directly supplied to the 𝐴𝐴 �̂�𝐺f estimate.

In contrast, the 𝐴𝐴 �̂�𝐺f estimate is less accurate than the 𝐴𝐴 �̂�𝐺c estimate for the latitude-depth patterns of 𝐴𝐴 Δ∗
e  and 

𝐴𝐴 Δe in the Indo-Pacific (compare Figure 7 with Figure 8 for (c) and (e)). This is because the 𝐴𝐴 �̂�𝐺f estimate 
has a larger patch error, especially in 0–200 m (compare shading in Figure 7c with Figure 8c). In the Atlan-
tic, the 𝐴𝐴 �̂�𝐺f and 𝐴𝐴 �̂�𝐺c estimates have similar RMSEs for the latitude-depth patterns of 𝐴𝐴 Δ∗

e  and 𝐴𝐴 Δe , but the 
forced-transport error is smaller in the 𝐴𝐴 �̂�𝐺f estimate, especially below 200 m (compare shading in Figure 7f 
with Figure 8f).

5.3. GF Estimate in a Real-World Application

In this subsection, we simulate a real-world application of the GF method in the model world. Specifically, we 
estimate excess heat 𝐴𝐴 e in the historical simulation using: (a) simulated 𝐴𝐴 Θs

a and (b) 𝐴𝐴 �̂�𝐺c derived from HadCM3. 
This setup corresponds to Zanna et al. (2019) who reconstructed the real-world 𝐴𝐴 e by combining: (a) observed 

𝐴𝐴 Θs
a and (b) 𝐴𝐴 �̂�𝐺c derived from an ocean model. To distinguish the 𝐴𝐴 Θs

e-based 𝐴𝐴 �̂�𝐺c estimate (examined in Section 5.1) 
from the 𝐴𝐴 Θs

a-based 𝐴𝐴 �̂�𝐺c estimate (to be examined below), we refer to the latter as the 𝐴𝐴 �̂�𝐺+

c
 estimate. The 𝐴𝐴 �̂�𝐺+

c
 estimate 

suffers an additional BC error compared to the 𝐴𝐴 �̂�𝐺c estimate, because of the differences between 𝐴𝐴 Θs
e and 𝐴𝐴 Θs

a (see 
Section 4.5).

5.3.1. BC Error

The BC error is the largest error for the latitude-depth pattern of 𝐴𝐴 Δe (Figures 9e and 9f); it is as large as the 
forced-transport error for basin integrated 𝐴𝐴 e (Figures 9a and 9b) and depth integrated 𝐴𝐴 Δe (Figures 9c and 9d). 
For zonal-and-depth integrated 𝐴𝐴 Δe , the BC error causes an underestimate in most of the Atlantic and south of 
40°S of the Indo-Pacific (Figures 9c and 9d, compare orange and green lines). In the Southern Ocean, the under-
estimate caused by the BC error partially compensates the overestimate caused by the patch and forced-transport 
errors, reducing the total error there.

5.3.2. Total Error

When all error terms are considered, the 𝐴𝐴 �̂�𝐺+

c
 estimate (orange line) reconstructs the model truth (black line) with 

an error of 48% and 39% for basin integrated 𝐴𝐴 e in the Indo-Pacific and Atlantic, respectively (Figures 9a and 9b). 
In the Indo-Pacific, the total error is 26% for zonal-and-depth integrated 𝐴𝐴 Δe and 39% for its depth distribution 
(Figures 9c and 9e). These numbers are larger in the Atlantic, at 37% and 68%, respectively (Figures 9d and 9f). 
For depth-integrated 𝐴𝐴 Δe , the largest error occurs at mid and high latitudes, for example, an overestimate in the 
North Pacific (Figures 9c and 9d, compare black and orange lines).

6. Inferring GFs From Tracer Data
6.1. Introducing the Inverse Problem

The GF model Equation 10 connects X at (r, t) with its surface history X s via Gc at r. This forms a constraint on 
Gc at r for every pair of X(r, t) and X s in observations. In this section, we introduce a method to infer Gc from such 
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constraints. This problem is the “inverse” of the forward problem discussed in Section 5, which uses X s and Gc at 
r to estimate X(r, t). Inferring Gc is useful as it only requires tracer data; for example, one can use it to estimate 
the real-world Gc from observed tracers.

Observations are insufficient constraints on Gc. We assume that ocean transports are constant to reduce the number 
of unknowns in Gc. This allows us to rewrite Gc(r, t, | rs, ts) as Gc(r, 0, | rs, ts − t) and rewrite Equation 10 as

��(�, ��) = ∫Ω
d2�s ∫

��

−∞
�c(�, 0|�s, �s − ��)�s

� (�s, �s) d�s. (23)

n is an index for different observations; tn is the time of the nth observation. For example, one can assign n = 1 
to CFC-11 observed at year 1994, n = 2 to CFC-12 at year 2000 and n = 3 to CFC-12 at year 1994. Note that Gc 

Figure 9. Estimating excess heat 𝐴𝐴 e in the historical simulation using 𝐴𝐴 �̂�𝐺c and 𝐴𝐴 Θs
a (Section 5.3). This estimate is referred to as the 𝐴𝐴 �̂�𝐺+

c
 estimate. (a and b) Basin-volume 

integral. (c and d) Zonal-and-depth integrated change (0–2,000 m). (e and f) Depth distribution of panels (c and d). In all panels, black lines are the model truth, orange 
lines are the 𝐴𝐴 �̂�𝐺+

c
 estimate, and green lines are the 𝐴𝐴 �̂�𝐺c estimate in Figures 6 and 7. Shading in panels (e and f) indicates the boundary condition (BC) error (Equation 22). 

For each metric, the root-mean-square magnitude (RMSM) of the model truth and the root-mean-square errors (RMSEs) of the two Green's function estimates are 
listed, along with the RMS values of the patch, forced-change and BC errors.
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in Equation 23 depends on ts − tn, not tn alone, which is different from Gc in Equation 10. Causality requires that 
Gc(r, 0 | rs, τ) = 0 for τ > 0, where τ = ts − tn.

6.2. Maximum Entropy Method

At every r, N observations of Xn and 𝐴𝐴 𝐴𝐴s

𝑛𝑛 impose N constraints on Gc via Equation 23. In practice, N is much 
smaller than the number of unknowns in Gc; the latter is at least the number of locations in rs. Among infinitely 
many Gc that satisfy constraints, we choose the one that is the most “similar” to an initial guess of Gc (denoted 
as Gpr). This method is called the Maximum Entropy (MaxEnt) method and was first applied to infer Gc by 
Khatiwala et al. (2009) and Holzer et al. (2010). Formally, the above procedure can be cast as a constrained opti-
mization problem, and solved using the method of Lagrangian multipliers.

Given N observations of tracers at r, Xn(r, tn), n = 1, …, N, the MaxEnt estimate of Gc is a function of 𝐴𝐴 𝐴𝐴s

𝑛𝑛 and Gpr

�ME(�, 0|�s, �) =
1
�
�pr(�, 0|�s, �) exp

(

�
∑

�=1

���s
� (�s, �� + �)

)

. (24)

Z is a normalization factor to ensure that GME integrates to unity over the global ocean surface (Ω) and all τ 
values, which is required by Equation 12. To determine the N unknowns (a1, …, aN), we substitute GME and 𝐴𝐴 𝐴𝐴s

𝑛𝑛 
into Equation 23

�′
� (�, ��|�1,… , �� ) = ∫Ω

d2�s ∫

��

−∞
�ME(�, 0|�s, �s − ��)�s

� (�s, �s) d�s, (25)

and solve for a1, …, aN that minimize the misfit between Xn and 𝐴𝐴 𝐴𝐴′
𝑛𝑛 . Formally, the desired an is given as

argmin
𝐚𝐚

(

‖𝐱𝐱
′(𝐚𝐚) − 𝐱𝐱‖

2

2
+ 𝜆𝜆‖𝐚𝐚‖

2

2

)

, (26)

where x, x′ and a are column vectors of Xn, 𝐴𝐴 𝐴𝐴′
𝑛𝑛 and an, respectively. ‖  ⋅  ‖ is the 2-norm of a vector (i.e., 

𝐴𝐴 ‖𝐚𝐚‖
2

2
= 𝑎𝑎2

1
+⋯ + 𝑎𝑎2

𝑁𝑁
 ). Each row of x′(a) and x are normalized so that model-data misfits of different tracers are 

comparable. The regularization term 𝐴𝐴 𝐴𝐴‖𝐚𝐚‖2
2
 is included to prevent overfitting, because there are errors in observa-

tions and in Equation 23. We set λ to unity based on the L-curve method (Hansen & O’Leary, 1993). Derivation 
of Equation 24, the L-curve method, and how we choose λ are described in Appendix C.

There are other methods to infer Gc from observations. For example, Gebbie and Huybers (2010) and DeVries 
and Primeau (2011) estimate the operator L (Equation 9) from observations. Once L is derived, one can use it to 
calculate Gc analytically.

6.3. Transient Tracers in the Ocean

6.3.1. Introducing CFCs, SF6, and Bomb Δ 14C

Observations of CFC-11, CFC-12, and SF6 (Fine, 2011) are often used as data constraints in the MaxEnt method 
(i.e., Xn in Equation 23). CFCs and SF6 are man-made chemical tracers that have been released into the atmos-
phere since the 1930s and gradually taken up by the ocean. CFCs and SF6 are stable in the oxygenated open 
ocean. Once entering the ocean, they are advected and diffused by ocean transports, like passive tracers.

We also explore the use of bomb  14C as data constraints in the MaxEnt method.  14C is commonly expressed as 
Δ 14C, which is the deviation of the  14C/ 12C ratio relative to a standard value.  14C is naturally generated in the 
atmosphere by cosmic rays. The  14C content of a water parcel decays with a half-life of 5,730 years once it is out 
of contact with the atmosphere. During the 1950s and 1960s, the nuclear weapon tests dramatically increased 
Δ 14C in the atmosphere. This “bomb Δ 14C” signal invades the ocean in a way similar to CFCs and SF6.

6.3.2. Spatial Distribution

We use results from a historical simulation of CESM2 (Danabasoglu et al., 2020) to demonstrate passages of 
CFCs, SF6 and bomb Δ 14C in the ocean (Figure 10). The CESM2 historical simulation is conducted under the 
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CMIP6 protocol (Eyring et al., 2016; Orr et al., 2017). We derive bomb Δ 14C as anomalies in Δ 14C relative to 
its 1850–1870 climatology. Measurements of CFCs, SF6 and Δ 14C from historical cruises are made available as 
gridded and profile data by Global Ocean Data Analysis Project (GLODAP; Key et al., 2004; Olsen et al., 2016).

Both CFC-11 and bomb Δ 14C invade the ocean from the surface, similar to how excess heat is carried to depths, 
for example, at the 150°W section (Figures 10c and 10f, shading). A major difference between CFC-11 and  14C 
is that the latter has a much longer air-sea equilibration timescale than the former (10 years vs. weeks) (Broecker 
& Peng, 1974). This has two consequences for CFC-11 and bomb Δ 14C in the ocean. First, the surface CFC-11 
(solid line) follows its atmospheric history (dashed line) closely for global mean, while the surface bomb Δ 14C 

Figure 10. Transient tracers in the ocean from the CESM2 historical simulation. (a) Sea surface concentrations of CFC-11, CFC-12, and SF6 (solid lines) and their 
atmosphere mixing ratios (dashed lines). Both quantities are shown as global mean. Dashed lines are multiplied by arbitrary scaling factors. (b and c) CFC-11 at year 
1994 at the surface and the 150°W section (shading and black contours). For these two metrics, CFC-12 and SF6 have similar patterns compared to CFC-11, but with 
different magnitudes. Panels (d–f) are the same as panels (a–c), but for bomb Δ 14C. CFC-11 and bomb Δ 14C in HadCM3 (Section 6.4) and observations are shown as 
red and green contours, respectively, in the bottom row. 1 nmol = 1 × 10 −9 mol.
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shows a slower increase and decay compared to its atmospheric history (Figures 10a and 10d). Second, and more 
importantly, the surface CFC-11 and bomb Δ 14C have very different patterns in the ocean (compare Figures 10b 
and 10e), because the pattern of bomb Δ 14C is more affected by ocean transports (due to slow air-sea equilibra-
tion). CFC-12 and SF6 have similar air-sea equilibration timescales and spatial patterns as CFC-11.

6.4. Simulated Tracer Observations

To derive GME as one would do with observations, we include CFCs, SF6, and bomb Δ 14C in the historical simu-
lation (see Appendix D for details). The resulting CFC-11 and bomb Δ 14C are similar to the gridded GLODAPv1 
observations. Taking the 150°W section as an example, this is evident as a good agreement between red and green 
contours in Figures 10c and 10f. In polar regions, tracers in HadCM3 tend to penetrate to greater depths than those 
in CESM2, implying that HadCM3 has a stronger convection than CESM2 there. To isolate the forced-transport 
error, we also simulate CFCs, SF6, and bomb Δ 14C in the control experiment. In Section 7, we use simulated 
observations in the historical and control experiments to estimate 𝐴𝐴 e and 𝐴𝐴 

∗
e , respectively.

6.5. A Baseline Setup for Computing GME

It is important to note that GME is not uniquely defined, but depends on the choice of data constraints and priors. 
Because we want to test the application of GME in the real world, we construct a GME using HadCM3 equivalents 
of real-world observations. We refer to this GME as GMEb.

6.5.1. Data Constraints

We use four tracers simulated in HadCM3 to compute GMEb; they are CFC-11 and CFC-12 at year 1994 and clima-
tological temperature and salinity. These four tracers are available in observations from the gridded GLODAPv1 
data (Key et al., 2004). We choose this data set because it has a nearly global coverage, hence one could compute 
GME everywhere in the ocean.

For climatological temperature and salinity, we repeat their surface BCs in time, and truncate the time integral 
in Equation 25 from (−∞, tn] to [tn − 7,999, tn] years. The 8,000-year limit is an upper bound of the timescale to 
tracer equilibrium in the global ocean under concentration BCs. One can set tn to an arbitrary number for clima-
tological tracers because their Xn and 𝐴𝐴 𝐴𝐴s

𝑛𝑛 are both constant in time.

6.5.2. Space and Time Average

All data on the HadCM3 grid are averaged onto a 10° × 10° grid before solving for GME. Because every interior 
point has a GME, the spatial averaging reduces the total number of GME to be solved. Despite the low resolution, 
the coarse grid can still capture most of spatial variability in the surface BCs of CFCs, SF6 and bomb Δ 14C, 
because they all exhibit coherent spatial structures (Figures 10b and 10e). On the time dimension, we focus on 
annually averaged quantities as for simulated GFs (Sections 4 and 5). After the coarse-grained averaging, GME(r, 
0 | rs, τ) now becomes a 10° × 10° resolution 2D map defined on a yearly grid for a given r.

6.5.3. Computing Prior GFs

We use 𝐴𝐴 �̂�𝐺c simulated in a 1,000-year control run of the FAMOUS climate model as Gpr for GMEb.

�pr(�, 0|�s, �) =
1

�(� (�s))
�̂c(�,−�|� (�s) , 0) , 0 ≥ � ≥ −999 years, (27)

where p(rs) returns the index of surface patch that rs is in and A(⋅) returns the surface area of a patch given its 
index. FAMOUS is a low resolution version of HadCM3, which uses most of the HadCM3 codes, but runs about 
10 times faster (R. S. Smith et al., 2008). The FAMOUS 𝐴𝐴 �̂�𝐺c is generated using the same procedure and surface 
patches as described in Section 4. Because deep oceans ventilate on millennial timescales, Gpr derived from 
Equation 27 does not satisfy Equation 12 at every r. We fill in the rest of Gpr by assuming that the fraction of water 
ventilated at τ ≤ −1,000 years is uniformly distributed over a 7,000-year period and the global ocean surface

 19422466, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S002999 by T
est, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

WU AND GREGORY

10.1029/2022MS002999

21 of 35

�pr(�, 0|�s, �) =
1

7, 000�o

(

1 −
999
∑

�=0
∫Ω

�pr(�, 0|�s, �) d2�s

)

, −1, 000 ≥ � ≥ −7, 999 years. (28)

A0 is the surface area of the global ocean 𝐴𝐴

(

𝐴𝐴0 =
∑27

𝑖𝑖=1
𝐴𝐴(𝑖𝑖)

)

 . We simply set Gpr to zero for τ ≤ −8,000 years.

7. Estimating Excess Heat Using Inferred GFs
In this section, we examine how well inferred GFs GME can reproduce excess heat change in the historical simula-
tion. We derive GME by updating a prior estimate of Gc to fit simulated tracer observations (Section 6.2).

7.1. Error Definitions

The GME estimate of 𝐴𝐴 e is inaccurate for the following reasons. First, the GMEb estimate suffers an “informa-
tion error,” because observations are insufficient constraints on Gc. Although this problem is regularized by the 
MaxEnt method, it is likely that GME still differs from the true Gc in many aspects. The GME estimate also suffers 
the patch, unforced-transport and forced-transport errors like the 𝐴𝐴 �̂�𝐺c estimate discussed in Section 5. We assume 
that the former two error sources are small for the GME estimate because: (a) the GME estimate resolves surface 
BCs at 10° × 10° resolution; and (b) the unforced-transport error is found small for the 𝐴𝐴 �̂�𝐺c estimate. We partition 
errors in the GME estimate into the information, forced-transport and BC errors as below, similar to Section 4.4.

𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒 𝚎𝚎𝚒𝚒𝚒𝚒𝚒𝚒𝚒𝚒 =
∑

𝐺𝐺MEΘ
s∗
e − Θ∗

e (29)

𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 𝚝𝚝𝚏𝚏𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚝𝚏𝚏𝚏𝚏𝚝𝚝 𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 =
∑

𝐺𝐺MEΘ
s
e − Θe − 𝚒𝚒𝚝𝚝𝚏𝚏𝚏𝚏𝚏𝚏𝚒𝚒𝚝𝚝𝚝𝚝𝚒𝚒𝚏𝚏𝚝𝚝 𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏 (30)

𝙱𝙱𝙱𝙱 𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎𝚎 =
∑

𝐺𝐺MEΘ
s
a −

∑

𝐺𝐺MEΘ
s
e (31)

We compare the model truth with the GME estimates using the same metrics as Section 5. They are: (a) global/
basin volume integral (0–2,000 m), (b) zonal-and-depth integral (0–2,000 m), and (c) depth distribution of (b) 
(0–1,500 m). All metrics are showed as anomalies relative to the 1946–1955 average. A change (denoted using 
“Δ”) is calculated as the difference between 1999–2008 and 1946–1955.

7.2. Evaluating a Baseline Estimate

In this subsection, we evaluate the GMEb estimate of 𝐴𝐴 e and 𝐴𝐴 
∗
e . This estimate is calculated from Equation 23, 

wherein we replace Gc with GMEb. We use GMEb derived from the historical and control experiments to esti-
mate 𝐴𝐴 e and 𝐴𝐴 

∗
e , respectively. 𝐴𝐴 

∗
e is the same as 𝐴𝐴 e except that it is evolved by the control ocean transport (see 

Section 2.4). GMEb is a particular GME constrained by simulated observations in HadCM3 (see Section 6.5). The 
BCs 𝐴𝐴 Θs

e and 𝐴𝐴 Θs∗
e  are diagnosed in HadCM3 (i.e., BCs are perfectly known). Note that Section 5 uses the same 𝐴𝐴 �̂�𝐺c 

to estimate 𝐴𝐴 e and 𝐴𝐴 
∗
e , which is different from here.

7.2.1. Information Error

The GMEb estimate (blue line) reproduces the global/basin integrated 𝐴𝐴 
∗
e in HadCM3 (black line) well (Figure 11), 

with an error of 25% for the global ocean, 27% for the Indo-Pacific and 38% for the Atlantic. (A percentage error 
is calculated as the ratio between RMSE and RMSM.) A constant 50 ZJ offset between the GMEb estimate and the 
model truth is evident in Figure 11a after 1965 (compare blue and black lines).

The GMEb estimate broadly captures the latitude-depth pattern of 𝐴𝐴 Δ∗
e in the Indo-Pacific and the Atlantic, with a 

greater error in the latter (Figures 12a–12d compare black and blue lines/contours). The error for depth integrated 
𝐴𝐴 Δ∗

e is 25% and 35% in the Indo-Pacific and the Atlantic, respectively. In both basins, 𝐴𝐴 Δ∗
e is underestimated by 

0–5 PJ m −1 at most latitudes, except south of 50°S where it is overestimated (Figures 12a and 12b compare black 
and blue lines). The overestimate is evident over the 0–1,500 m depths, while the underestimate mostly comes 
from the 0–400 m depths (Figures 12c and 12d shading). For these zonal integrated metrics, the GMEb estimate 
has a similar accuracy compared to the 𝐴𝐴 �̂�𝐺c estimate (Section 5.1) in both basins.
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7.2.2. Forced-Transport Error

The forced-transport error causes an overestimate in the GMEb estimate, especially at northern mid latitudes 
(Figures 12e and 12f, shading), similar to that in the 𝐴𝐴 �̂�𝐺c estimate. The forced-transport error is more than twice as 
large as the information error for the global and the Atlantic integrated 𝐴𝐴 e (Figure 11), while it is about the same 
size as the information error for zonal integrated 𝐴𝐴 Δe (Figure 12). In the Atlantic, the underestimate caused by 
the information error is partially compensated by the overestimate caused by the forced-transport error, reducing 
the total error there (except south of 50°S) (Figure 12b).

7.2.3. Effects of Data Constraints

How do data constraints improve on the initial guess Gpr? We examine this question by comparing RMSEs 
between the GMEb estimate and the Gpr estimate. The Gpr estimate is calculated using the same equation as the 
GMEb estimate, except replacing GMEb with Gpr. The GMEb estimate has a smaller RMSE compared to the Gpr 
estimate for all the metrics examined in Figures 11 and 12 (shown by numbers in the legends). The reduction of 
RMSE is between 20% and 40% (the number is different for different metrics). The exceptions are the global and 
the Atlantic integrated 𝐴𝐴 e , for which the GMEb estimate has a greater RMSE than the Gpr estimate (Figure 11c). 
We suspect that this increase of RMSE is related to the forced-transport error, because the same behavior is not 
found for 𝐴𝐴 

∗
e .

Figure 11. Estimating global/basin integrated (0–2,000 m) excess heat 𝐴𝐴 e and 𝐴𝐴 
∗
e in the historical simulation using GMEb (Section 7.2). Black and gray lines show 𝐴𝐴 

∗
e 

and 𝐴𝐴 e in HadCM3, respectively. Blue and green lines are the GMEb estimates of 𝐴𝐴 
∗
e and 𝐴𝐴 e , respectively. 𝐴𝐴 

∗
e is the same as 𝐴𝐴 e except that it is evolved by the control 

ocean transport. The root-mean-square magnitude (RMSM) of the model truth, the root-mean-square errors (RMSEs) of the GMEb estimate (first number) and the prior 
estimate (second number), and the RMS values of the information and forced-transport errors are listed.
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7.3. GF Estimate in a Real-World Application

In this subsection, we simulate a real-world application of the GF method in the model world. Specifically, we 
estimate excess heat 𝐴𝐴 e in the historical simulation using: (a) simulated 𝐴𝐴 Θs

a and (b) GMEb derived from simulated 
observations. This calculation can be repeated using the real-world 𝐴𝐴 Θs

a and observations. To distinguish the 𝐴𝐴 Θs
e

-based GMEb estimate (examined in Sections 7.2) from the 𝐴𝐴 Θs
a-based GMEb estimate (to be examined below), we 

refer to the latter as the 𝐴𝐴 𝐴𝐴+

MEb
 estimate. The 𝐴𝐴 𝐴𝐴+

MEb
 estimate suffers an additional BC error compared to the GMEb 

estimate, because of the differences between 𝐴𝐴 Θs
a and 𝐴𝐴 Θs

e . The BC error of the 𝐴𝐴 𝐴𝐴+

MEb
 estimate is similar to that of the 

𝐴𝐴 �̂�𝐺+

c
 estimate in Section 5.3 (compare Figures 9 and 13). In particular, the BC error is at least as large as the infor-

mation and forced-transport errors for all metrics examined in Figure 13.

Figure 12. Estimating latitude distribution of excess heat change 𝐴𝐴 Δe and 𝐴𝐴 Δ∗
e in the historical simulation using GMEb (Section 7.2). (a and b) Zonal-and-depth integral 

(0–2,000 m). (c–f) Depth distribution of panels (a and b). In all panels, black and gray lines show 𝐴𝐴 
∗
e and 𝐴𝐴 e in HadCM3, respectively; blue and green lines show the 

GMEb estimates of 𝐴𝐴 
∗
e and 𝐴𝐴 e , respectively. Shading in panels (c and d) indicates errors in the GMEb estimate of 𝐴𝐴 

∗
e (the information error). Shading in panels (e and f) 

indicates errors in the GMEb estimate of 𝐴𝐴 e minus the information error (the forced-transport error). For each metric, the root-mean-square magnitude (RMSM) of the 
model truth, the root-mean-square errors (RMSEs) of the GMEb estimate (first number) and the prior estimate (second number), and the RMS values of the information 
and forced-transport errors are listed. All changes are calculated as differences between 1999–2008 and 1946–1955.
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When all errors are considered, the 𝐴𝐴 𝐴𝐴+

MEb
 estimate reconstructs the model truth with an error of 50% for basin 

integrated 𝐴𝐴 e and 40% for zonal-and-depth integrated 𝐴𝐴 Δe (Figures 13a–13d, RMSEs of orange lines). In the 
Indo-Pacific the error is largest around 40°S, while in the Atlantic the error is of similar magnitude across lati-
tudes (Figures 13c and 13d, compare black and orange lines). It is important to note that the GMEb estimate is more 
accurate than the 𝐴𝐴 𝐴𝐴+

MEb
 estimate for all metrics examined here. This highlights the need to reduce the BC error 

when applying inferred GFs to estimate the real-world excess heat.

7.4. Sensitivity of the GMEb Estimate

In this subsection, we examine how sensitive the GMEb estimate is to the choice of data constraints and priors. 
For each sensitivity experiment, we focus on two metrics: (a) basin integral and (b) zonal-and-depth integrated 
change. Both metrics are calculated for 𝐴𝐴 e only and integrated over the 0–2,000 m layers.

Figure 13. Estimating excess heat 𝐴𝐴 e in the historical simulation using GMEb and 𝐴𝐴 Θs
a (Section 7.3). This estimate is referred to as the 𝐴𝐴 𝐴𝐴+

MEb
 estimate. (a and b) 

Basin-volume integral. (c and d) Zonal-and-depth integrated change (0–2,000 m). (e and f) Depth distribution of panels (c and d). In all panels, black lines are the 
model truth, orange lines are the 𝐴𝐴 𝐴𝐴+

MEb
 estimate, and green lines are the GMEb estimate in Figures 11 and 12. Shading in panels (e–f) indicates the boundary condition 

(BC) error (Equation 31). For each metric, the root-mean-square magnitude (RMSM) of the model truth and the root-mean-square errors (RMSEs) of the two Green's 
function estimates are listed, along with the RMS values of the information, forced-change and BC errors.
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7.4.1. Constraints From SF6 and Bomb Δ 14C

In the first experiment, we add SF6 and bomb Δ 14C at year 1994 as additional constraints, while keeping other 
settings unchanged. Adding SF6 alone or SF6 and Δ 14C together has little impact on the GMEb estimate (not 
shown). For instance, the RMSE change due to SF6 is less than 2% for all the metrics.

How much can SF6 and bomb Δ 14C improve on the GMEb estimate if it has little prior knowledge of ocean trans-
ports? We examine this question by replacing the FAMOUS prior in GMEb with a uniform prior; the resulting GME 
is referred to as GMEu. The uniform prior is defined as

�pr (�, 0|�s, �) =
1

8, 000�0
, 0 ≥ � > −8, 000 years,

�pr (�, 0|�s, �) = 0, � ≤ −8, 000 years, (32)

where A0 is the surface area of the global ocean. The uniform prior assumes that a water parcel, regardless of 
its interior location, contains equal amounts of water from all surface locations and times over the previous 
8,000 years. When the uniform prior is used, we relax the regularization parameter λ (see Section 6.2) from unity 
to 0.1 so that more modification to the prior is allowed compared to when the FAMOUS prior is used.

The GMEu estimate of 𝐴𝐴 e (red line) is about 50% lower than the GMEb estimate (gray line) in both the Indo-Pacific 
and the Atlantic (Figure 14). The GMEu estimate is improved by adding bomb Δ 14C (green line) as a constraint, but 
not by adding SF6 (blue line) (Figure 14). This is because bomb Δ 14C and CFCs have very different surface BCs 

Figure 14. Sensitivity of the GMEu estimate to additional constraints from SF6 and bomb Δ 14C. (a and b) Basin integrated 𝐴𝐴 e . (c and d) Zonal-and-depth integrated 
𝐴𝐴 Δe . The model truth is shown in black lines. The GMEu estimates constrained by different tracers are color coded. For comparison, the GMEb estimate is included as 

gray lines. The root-mean-square magnitude (RMSM) of the model truth and the root-mean-square errors (RMSEs) of different estimates are listed.
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(Figures 10b and 10e), which provides additional constraints (equations) to the inverse problem. In contrast, the 
surface BCs are very similar between SF6 and CFCs. The improvement due to bomb Δ 14C is much greater in the 
Indo-Pacific than in the Atlantic. This is probably because the surface BCs of Θe and bomb Δ 14C are more alike 
in the Indo-Pacific than Atlantic (compare Figures 10e and 5d). In particular, the pattern of surface Θe peaks in 
the North Atlantic, whereas the pattern of surface bomb Δ 14C is at its minimum in that region.

7.4.2. Perturbing Prior GFs

In the second experiment, we replace the FAMOUS prior in the GMEb estimate with Inverse Gaussian (IG) 
distributions of different shape, following Holzer et al. (2018). The IG distribution is the analytical form of Gc 
for constant 1D flow; a narrower IG distribution implies that the flow has a higher Peclet number (Waugh & 
Hall, 2002). The method of constructing the IG prior is described in Appendix E. The three IG priors tested here 
are called IG-0.5, IG-1.0, and IG-1.5.

Replacing the FAMOUS prior with the IG priors leads to a change in RMSE of less than 20% for all metrics 
examined in Figure 15. Among the three IG priors, IG-1.0 (corresponds to a Peclet number of one) gives the clos-
est estimate compared to the FAMOUS prior. The RMSE of the GMEb estimate (first column) is always reduced 
compared to that of the Gpr estimate (second column) regardless of which prior is used (Figure 15 numbers in the 
legends), except for the Atlantic integral. This highlights the constraints of CFCs and climatological temperature 
and salinity on the passage of excess heat in the ocean.

Figure 15. Sensitivity of the GMEb estimate to the choice of prior (Gpr). (a and b) Basin integrated 𝐴𝐴 e . (c and d) Zonal-and-depth integrated 𝐴𝐴 Δe . The model truth is 
shown in black lines. The GMEb estimates with different Gpr are color coded. For each Gpr, the RMSEs of the GMEb and Gpr estimates are listed from left to right. IG-0.5, 
IG-1.0, and IG-1.5 are approximations of the FAMOUS prior using Inverse Gaussian forms of different shape.
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7.4.3. Perturbing Time of Constraints

In the third experiment, we alter the year of data constraints in the GMEb estimate from 1994 to 1984, 1989, 1999, 
and 2004, while keeping other settings unchanged. The resulting change in RMSE is about 2% in the Indo-Pacific 
and 5% in the Atlantic (Figure 16 RMSEs in the legends).

8. Summary
8.1. Excess Heat and Green's Functions

The ocean stores over 93% of the “excess heat” that has entered the climate system in recent decades (Meyssignac 
et al., 2019). This excess heat is added to the ocean surface by air-sea fluxes (warming or cooling) and carried 
to depths by ocean transports. One method to estimate excess heat is to propagate its surface BCs downward 
using a GF representation of ocean transports. The GFs can be derived from: (a) simulating idealized tracers in 
a model (“simulated GFs”) or (b) solving an inverse problem using tracer observations (“inferred GFs”) (Holzer 
et al., 2010; Khatiwala et al., 2009; Zanna et al., 2019). The BCs are often derived from SST anomaly in the 
literature.

8.2. Errors in the GF Method

The GF estimate of excess heat is inaccurate for the following reasons.

Figure 16. Sensitivity of the GMEb estimate to the time of data constraints. (a and b) Basin integrated 𝐴𝐴 e . (c and d) Zonal-and-depth integrated 𝐴𝐴 Δe . The model truth is 
shown in black lines. The GMEb estimates with different data years are color coded. The prior estimate is shown in gray lines. The root-mean-square magnitude (RMSM) 
of the model truth and the root-mean-square errors (RMSEs) of different estimates are listed.

 19422466, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S002999 by T
est, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

WU AND GREGORY

10.1029/2022MS002999

28 of 35

1.  Patch error: Simulated GFs are coarse grained in space and time, hence they partially neglect the covariance 
between the true GFs and surface BCs.

2.  Transport error: Simulated/inferred GFs do not resolve time-varying ocean transports due to unforced varia-
bility and forced change.

3.  Information error: Observations are insufficient constraints for inferring GFs.
4.  BC error: SST anomalies are contaminated by redistributed changes.
5.  Model error: Modeled ocean transports encoded in simulated GFs are different from those of the real world.

8.3. HadCM3 Perfect-Model Test

How different errors affect the accuracy of the GF method has not been examined in the literature. Here, we 
investigate this question using a historical simulation (1860–2008) conducted in the HadCM3 AOGCM. We treat 
this simulation as the real world, and compare excess heat 𝐴𝐴 e diagnosed in it (as the “truth”) with that estimated 
using simulated/inferred GFs. Details on how different errors are computed are given in Sections 4.4 and 7.1. We 
focus on evaluating 𝐴𝐴 e derived from GFs instead of GFs themselves, because not every detail in GFs matters for 
estimating 𝐴𝐴 e .

8.4. Estimating Excess Heat Using Simulated GFs

We generate simulated GFs in a 200-year pre-industrial control experiment of HadCM3.

8.4.1. How Accurate Is the Method?

The simulated GFs reconstruct 𝐴𝐴 e in the Indo-Pacific with a RMS error of 48% for the volume integral and 26% 
for zonal-and-depth integrated changes; the corresponding numbers are 39% and 37% in the Atlantic, respectively 
(including all errors except the model error). The volume integral is most affected by the forced-transport and BC 
errors; the patch error is <1/3 of the BC error in terms of the RMS value. The zonal-and-depth integral is affected 
by the patch, forced-transport and BC errors to a similar degree; the BC error is slightly larger than the other two 
in the Indo-Pacific. The unforced-transport error is <1/3 of the patch error for all metrics examined here. Results 
of this subsection are summarized in Figure 9.

8.4.2. Underestimated or Overestimated?

The patch error causes an underestimate of 𝐴𝐴 e in the North Atlantic, and an overestimate of 𝐴𝐴 e south of 40°S. The 
forced-transport error causes an overestimate of 𝐴𝐴 e at most latitudes, especially in the northern subtropics.  The 
BC error causes an underestimate of 𝐴𝐴 e in the Southern Ocean. This underestimate partially cancels out the patch 
and forced-transport errors, reducing the total error in the Southern Ocean. Note that the degree to which this 
error compensation would work may be different in the real world and in other models.

8.5. Estimating Excess Heat Using Inferred GFs

We compute inferred GFs by using HadCM3 equivalents of the GLODAPv1 data as constraints to update a prior 
estimate of GFs. The GLODAPv1 data consist of CFC-11 and CFC-12 at year 1994 and climatological temper-
ature and salinity (Key et al., 2004).

8.5.1. How Accurate Is the Method?

The inferred GFs reconstruct 𝐴𝐴 e in the Indo-Pacific with an error of 50% for the volume integral and 34% for 
zonal-and-depth integrated changes; the corresponding numbers are 44% and 42% in the Atlantic, respectively 
(including all errors). The volume integral is most affected by the BC error; the information and forced-transport 
errors are about 2/3 of the BC error (in terms of the RMS value) in the Indo-Pacific. The zonal-and-depth integral 
is affected by the information, forced-transport and BC errors to a similar degree; although the BC error is slightly 
larger than the other two in the Indo-Pacific. Results of this subsection are summarized in Figure 13.

8.5.2. Underestimated or Overestimated?

The information error causes an underestimate of 𝐴𝐴 e at most latitudes (except south of 50°S). The forced-transport 
and BC errors have the same effects as discussed with simulated GFs. In the Atlantic, the information error 
partially compensates the forced-transport error, reducing the total error there. It is unclear whether the same 
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compensation would occur in the real world or in other models. Removing the BC error improves the estimate 
with inferred GFs significantly.

8.5.3. Sensitivity to Data Constraints and Priors

The estimate of 𝐴𝐴 e from inferred GFs is not sensitive to: (a) shifting the data year by ±10, (b) small changes in 
the shape of prior GFs, or (c) adding 1994 SF6 and bomb  14C as additional constraints, although bomb  14C (but 
not SF6) helps when a less informative prior is used.

9. Discussions
9.1. Model Error of Simulated GFs

Because we use GFs simulated in HadCM3 to estimate excess heat 𝐴𝐴 e in the HadCM3 world, our results do not 
include the model error. To explore this error, one could perturb simulated GFs to generate an ensemble of esti-
mates (Zanna et al., 2019). An alternative would be to use more than one AOGCM; by treating one of them as 
though it were perfect, one could make an estimate with the GFs of another. This approach would not include the 
effect of errors common to all models.

9.2. Is Air-Sea Flux GF a Better Option?

As well as concentration BCs, one can propagate surface heat fluxes to estimate 𝐴𝐴 e using simulated GFs (with 
a different configuration). In HadCM3, we find that this method gives a better estimate of 𝐴𝐴 e than propagating 
concentration BCs. However, observations of surface heat flux are not adequate for the purpose of estimating 𝐴𝐴 e . 
For example, the Objectively Analyzed air-sea Fluxes (Yu et al., 2008) are not available before 1985 and do not 
have the accuracy to resolve the global mean energy imbalance.

9.3. Simulated GFs Versus Ocean Model

Evolution of passive tracers in the model world can be studied using simulated GFs as well as ocean models. 
Ocean models are more accurate than simulated GFs for this regard, because they do not suffer the patch and 
transport errors. In addition, GFs are computationally expensive to derive.

Nonetheless, simulated GFs are useful for the following purposes. First, simulated GFs encapsulate the effect of 
a model's ocean transports in a form that can be easily shared within the community. Especially, GFs are much 
easier to use than 3D ocean models. Second, simulated GFs can be used to quantify the surface sources and times-
cales of a tracer response (e.g., Marzocchi et al., 2021; Wu et al., 2021; Zanna et al., 2019).

9.4. Improving Simulated GFs

Simulating GFs with finer surface patches can reduce the patch error. At the limit that every grid box is a patch, 
the patch error is completely eliminated. What is the best strategy to simulate GFs given a limited amount of 
computer time? Air-sea fluxes and surface concentrations of a tracer often exhibit low-dimensional structures 
in space. Designing patches around these structures can reduce the patch error at low computational cost (see 
Appendix F for two examples). On the time dimension, simulating GFs starting from various years in a historical 
simulation (e.g., Marzocchi et al., 2021) can reduce the unforced- and forced-transport errors. For instance, a set 
of GFs per year can capture time variation of ocean transports on interannual and longer timescales. Simulating 
GFs starting from every 10 years of the historical run would be less accurate, but more appealing computation-
ally. Sensitivity tests to find the optimal time interval for time-dependent GFs would be useful.

9.5. Improving Inferred GFs

To reduce the information error, one could add observations in the GLODAPv2 data set (Olsen et al., 2016) as 
additional constraints. At present, CFCs only constrain GFs at multi-decadal and shorter lead times, limited by 
their surface histories. It is important to maintain observations of transient tracers in the ocean, so that new obser-
vations can be added to constrain GFs over longer lead times in the future.
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9.6. Excess Temperature BCs

To derive excess temperature BCs, one could combine modeled patterns of surface excess temperature and 
observed global-mean SST anomalies to form hybrid excess temperature BCs. These new BCs may help reduce 
the contamination of redistributive cooling in the SST BCs (e.g., Figure 5). Note that there are uncertainties in 
the modeled patterns of excess temperature because of the spread in the modeled surface heat fluxes (e.g., in the 
CMIP6 ensemble).

Appendix A: Forcing the Historical Simulation
We did not conduct the historical simulation by prescribing CO2 and other forcing agents in the atmosphere. 
This is because HadCM3 does not include an up-to-date treatment of anthropogenic aerosol forcing, especially 
aerosol-cloud interaction. (In the historical experiments of Stott et al. (2000), the effect of tropospheric aerosol 
on cloud reflectivity was approximately represented by prescribed perturbations to surface albedo.) In addition, 
since our focus is on heat uptake, it is convenient to prescribe the heat flux which is added to the ocean. The 
use of surface forcing omits any non-radiative effects of forcing agents and their radiative effects directly in the 
atmosphere. But those effects are relatively minor and not important in this work. As shown in Section 2.3, the 
historical simulation is sufficiently close to observations for the purposes of this study.

Appendix B: Passive and Dynamical Θe Definitions
In Section 2, we define excess temperature Θe as a passive tracer evolved by the pre-computed transport operator 
Lhist (Equation 6). Alternatively, we can define Θe as a dynamical tracer that affects ocean transports.

�Θe

��
+ Φ(Θe) =

1
�0��d�1

(�ERF +�′) ,

initial condition:Θe(0) = 0.
 (B1)

Φ is the ocean transport operator in general (Equation 2). Φ(Θe) is a nonlinear function of Θe because Θe affects 
Θ which affects Φ. Integrating Equation B1 in the historical simulation gives the same evolution of Θe as that 
derived from Equation 6. The two definitions, however, correspond to different constructions of GFs.

The GFs of Equation 6 are “passive” GFs; they are evolved by the same Lhist operator (see Equation 14) regard-
less of the time and location of the Θe perturbation, because Lhist is a pre-computed quantity. To simulate GFs 
for Equation 6 one only needs pre-computed velocities and diffusivities in principle. In contrast, the GFs of 
Equation B1 are “dynamical” GFs; they are evolved by different Φ operators, because Φ depends on the location 
and time of the Θe perturbation. To simulate GFs for Equation B1 one needs a full ocean model to interactively 
compute Φ for every Θe perturbation.

Because Φ depends on the forcing, the solution of Equation B1 cannot be written as a superposition of impulse 
responses scaled with the forcing. That is, the GF estimate of the dynamical Θe has a nonlinear error. The GF esti-
mate of the passive Θe, however, does not have a nonlinear error, because Lhist is independent of the forcing (i.e., 
Equation 6 is strictly linear). The unforced- and forced-transport errors (Section 4.1) arise because we neglect the 
time-evolution of GFs to reduce computational time, not because the GF method is inherently inaccurate.

Appendix C: Maximum Entropy Method
C1. Problem Formulation

Inferring Gc(r, 0 | rs, τ) from Xn(r, tn) and 𝐴𝐴 𝐴𝐴s

𝑛𝑛 (𝐫𝐫s, 𝑡𝑡s) is an underdetermined problem. Among infinitely many 
estimates of Gc that satisfy Equation  23, we choose one based on the principle of Minimum Discrimination 
Information (MDI) (Kullback, 1959). Recall that Gc is like a Probability Distribution Function (PDF) (Section 3). 
The principle of MDI states that: to update a prior PDF using new facts (i.e., constraints), the new PDF should be 
chosen such that it is the “nearest” to the prior PDF. The distance between two PDFs is measured using relative 
entropy in MDI.
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Applying the principle of MDI, we determine the best estimate of Gc by solving the following constrained opti-
mization problem. The Lagrangian function of the problem is given as

(�, �1,… , �� ) = �KL
(

�|�pr
)

+
�
∑

�=1

��
(

�� (�, ��) −�′
� (�, ��)

)

. (C1)

G is an unknown PDF. Gpr is a prior PDF. DKL(G | Gpr) is the Kullback-Leibler divergence, or the relative entropy, 
between G and Gpr

�KL
(

�|�pr
)

= ∫Ω
d2�s ∫

0

−∞
�(�, 0|�s, �) log

�(�, 0|�s, �)
�pr(�, 0|�s, �)

d�. (C2)

an is the Lagrange multiplier. N is the total number of constraints. Each constraint takes the form 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝐴𝐴′
𝑛𝑛 . 𝐴𝐴 𝐴𝐴′

𝑛𝑛 is 
an estimate of Xn using G, calculated by substituting G into Equation 23.

�′
�(�, ��) = ∫Ω

d2�s ∫

��

−∞
�(�, 0|�s, �s − ��)�s

�(�s, �s) d�s. (C3)

C2. Exact Solution

The optimization problem is solved by setting 𝐴𝐴 𝐴𝐴∕𝐴𝐴𝜕𝜕 = 0 and 𝐴𝐴 𝐴𝐴∕𝐴𝐴𝜕𝜕𝑛𝑛 = 0 simultaneously. Because 𝐴𝐴  is a func-
tion of the function G (i.e., 𝐴𝐴  is a functional), we use the Euler-Lagrange equation to solve 𝐴𝐴 𝐴𝐴∕𝐴𝐴𝜕𝜕 = 0 . First, we 
substitute Equations C2 and C3 into Equation C1 and rewrite 𝐴𝐴  as

(�, �1,… , �� ) = ∫Ω
d2�s ∫

0

−∞
�(�s, �, �1,… , �� ) d� +

�
∑

�=1

����(�, ��) , (C4)

where

� = �(�, 0|�s, �) log
�(�, 0|�s, �)
�pr(�, 0|�s, �)

−
�
∑

�=1

���(�, 0|�s, �)�s
� (�s, � + ��) . (C5)

Next, we solve ∂f/∂G = 0. This yields GME in Equation 24, where GME is a function of N unknowns a1, ⋯, aN. 
Substituting GME into Equation 23 turns 𝐴𝐴 𝐴𝐴′

𝑛𝑛 into a function of the N unknowns a1, ⋯, aN as well. Finally, a1, ⋯, 
aN are determined by using N constraint equations derived from setting 𝐴𝐴 𝐴𝐴∕𝐴𝐴𝜕𝜕𝑛𝑛 = 0 . Collecting Xn, 𝐴𝐴 𝐴𝐴′

𝑛𝑛 and an into 
column vectors x, x′, and a, respectively, the N constraint equations can be written as

𝐱𝐱
′(𝐚𝐚) = 𝐱𝐱, (C6)

where a can be solved using standard numerical routines, for example, fsolve in MATLAB.

The principle of MDI is also known as the principle of Maximum Entropy (MaxEnt) (Jaynes, 1957), which maxi-
mizes the negative relative entropy subject to constraints. Here, we refer to the procedure of deriving Equation 24 
as the MaxEnt method following Khatiwala et al. (2009).

C3. Least Squares Solution

In practice, an exact fit between Xn and 𝐴𝐴 𝐴𝐴′
𝑛𝑛 (i.e., Equation C6) is not desirable, because there are errors in Equa-

tion 23 and in observations. Solving for a using Equation C6 sometimes results in an overfitted GME that is diffi-
cult to interpret physically. For instance, a GME may have extremely large values at just a few rs and τ locations, as 
opposed to a much broader distribution in Gpr derived from models. These extreme cases often come with large 
an values, which modify Gpr via the exponential function in Equation 24.

To avoid overfitting, we relax the equality constraints and solve for a in a least squares sense with Tikhonov regu-
larization (Tikhonov & Arsenin, 1977). This gives an in Equation 26. The regularization term 𝐴𝐴 𝐴𝐴‖𝐚𝐚‖2

2
 penalizes 

large an values that cause GME to deviate from Gpr substantially.
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We determine the λ value using the L-curve method (Hansen & O’Leary, 1993). A smaller λ value corresponds 
to a smaller model-data misfit and a larger 𝐴𝐴 ‖𝐚𝐚‖

2

2
 value. Setting λ = 0 gives a without the regularization (i.e., 

Equation C6). The L-curve method finds the smallest λ allowed before any further decrease of λ leads to a rapid 
increase of 𝐴𝐴 ‖𝐚𝐚‖

2

2
 . The L-curve method requires repeating the minimization process for different λ values, which is 

computationally prohibitive if carried out at each interior location. We choose λ by applying the L-curve method 
to the centers of the subtropical gyres, where ocean tracers tend to accumulate. We find that the optimal λ value 
is between 0.1 and 10 in those locations; λ values within that range give a similar model-data misfit and a similar 

𝐴𝐴 ‖𝐚𝐚‖
2

2
 value. Based on this evidence, we set λ to unity globally in this study.

Appendix D: Simulating Tracer Observations
We include CFCs, SF6 and bomb Δ 14C in the HadCM3 historical simulation. All these tracers are simulated in the 
ocean with zero initial conditions and prescribed surface concentration boundary conditions (BCs) from 1860 to 
2008. The BCs are derived by interpolating monthly outputs of the CESM2 historical simulation to each timestep 
of HadCM3 linearly. CESM2 is chosen here because it is the only model available to us that includes CFCs, SF6 
and Δ 14C in a historical simulation.

For simplicity, we choose not to simulate the air-sea gas transfer of chemical tracers in HadCM3, which is 
different from the CMIP6 biogeochemical protocol (Orr et al., 2017). This is because the MaxEnt method is not 
concerned with the air-sea gas transfer. GME is determined by the relationship between 𝐴𝐴 𝐴𝐴s

𝑛𝑛 and Xn, which is only 
affected by ocean transports (e.g., Lhist or Lctrl).

The radioactive decay of  14C can be accounted for by adding an exponential decay term in Equation 23 (see 
Holzer et al., 2010). Because the history of bomb Δ 14C is very short compared to its half-life, we neglect its radi-
oactive decay in this study. The method of simulating Δ 14C (hence the  14C/ 12C ratio) as a tracer was first proposed 
by Toggweiler et al. (1989).

Appendix E: Inverse Gaussian Prior
Following Waugh and Hall (2002) the Inverse Gaussian (IG) distribution is given as

IG(𝜏𝜏𝜏Γ𝜏Λ) =

√

Γ3

4𝜋𝜋Λ2𝜏𝜏3
exp

(

−
Γ(𝜏𝜏 − Γ)

2

4Λ2𝜏𝜏

)

for 𝜏𝜏 𝜏 0. (E1)

Γ > 0, Λ > 0, and Γ 3/(2Λ 2) are the mean, the width and the shape parameter of the IG distribution, respectively. 
Equation E1 is the analytical form of Gc for 1D flow with constant velocity and diffusivity; Γ 2/Λ 2 is the Peclet 
number of the flow (Waugh & Hall, 2002).

We generate an ensemble of IG priors by fitting a scaled IG distribution to the FAMOUS prior (Equation 27) 
with varying Λ/Γ ratios.

�pr(�, 0|�s, �) = �(�, �s) IG(−�,Γ,Λ) (E2)

A higher Λ/Γ ratio corresponds to a more diffusive flow, in which water parcels are ventilated over a wider range 
of timescales. The Λ/Γ ratio is zero for pure advective flow.

For every rs and a given Λ/Γ ratio, we choose Γ such that the resulting IG prior has the same mean age as the 
FAMOUS prior for 0 ≥ τ > −1,000 years. The mean age between τ1 and τ2 is calculated as

(

�2
∑

�=�1

��(�, 0|�s, �)

)

∕

(

�2
∑

�=�1

�(�, 0|�s, �)

)

. (E3)

b(r, rs) determines the fraction of water at r that is formed at rs over all τ values (i.e., the denominator of Equa-
tion E3); we set this parameter to be the same as the one in the FAMOUS prior.

We generate the IG prior for the Λ/Γ ratio of 0.5, 1.0, and 1.5 to cover its likely range in the ocean (Waugh 
et al., 2006). These priors are referred to as IG-0.5, IG-1.0, and IG-1.5, respectively.
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Appendix F: Alternative Patch Designs
Instead of decomposing BCs into pulses in the lon-lat space, one could project BCs onto Empirical Orthogonal 
Functions (EOFs), and construct GFs based on the leading EOFs. (EOFs are the optimal coordinates to capture 
the spacetime variability of a field.) This method has one limitation: the sources of a tracer are often interpreted in 
terms of water-mass formation sites, but EOFs do not always project back to isolated regions in the lon-lat space.

One could also reduce the patch error by prescribing a spatial pattern within every patch when simulating GFs. 
Such a pattern can be derived from long-term trends for surface excess temperature or long-term averages for 
surface heat fluxes, for instance. In this way, the covariance between the true GFs and BCs are better incorporated 
into simulated GFs than assuming that BCs are uniform within every patch. However, because tracers exhibit 
different patterns in their BCs, there is no universal pattern that would work for every tracer.

Notation
r 3D position vector of the ocean
rs 2D position vector of the ocean surface
t time variable in general
ts time variable of surface source
Qctrl Net surface heat fluxes in the pre-industrial control experiment
QERF Effective radiative forcing of the historical experiment
Q′ Changes in surface heat fluxes due to climate feedbacks
Θctrl Ocean potential temperature in the pre-industrial control experiment
Θhist Ocean potential temperature in the historical experiment
Φ 3D ocean transport operator in general
Lctrl,Φ saved from the pre-industrial control experiment
Lhist,Φ saved from the historical experiment
Θa Historical ocean temperature anomaly, Θa = Θhist − Θhist
Θe Excess temperature tracer evolved by Lhist

𝐴𝐴 Θ∗
e  Excess temperature tracer evolved by Lctrl

Θr Redistributed temperature tracer, Θa = Θe + Θr
𝐴𝐴 a  Historical ocean heat content anomaly, extensive form of Θa
𝐴𝐴 e  Excess heat content evolved by Lhist, extensive form of Θe
𝐴𝐴 

∗
e  Excess heat content evolved by Lctrl, extensive form of 𝐴𝐴 Θ∗

e

𝐴𝐴 r  Redistributed heat content, extensive form of Θr
X Concentration of a tracer, X could be Θa, Θe, 𝐴𝐴 Θ∗

e , etc.
X s X at the surface

𝐴𝐴 �̂�𝑋s  X s averaged onto a yearly grid and surface patches
G Boundary GF of tracer transport equation in general
Gc G defined for surface concentration BCs
Gf G defined for air-sea tracer fluxes or surface sources/sinks

𝐴𝐴 �̂�𝐺c  Simulated Gc defined for yearly- and patch-averaged surface conditions

𝐴𝐴 �̂�𝐺f  Simulated Gf defined for yearly- and patch-averaged surface sources/sinks
GME Maximum entropy estimate of Gc in general
Gpr Prior estimate of Gc used in GME
GMEb GME constrained by GLODAPv1 data and the FAMOUS prior
GMEu, GME constrained by GLODAPv1 data and the uniform prior

Acronyms
GF Green's function
BC boundary condition
MaxEnt maximum entropy
IG Inverse Gaussian
RMSE root-mean-square error
RMSM root-mean-square magnitude
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Data Availability Statement
Outputs from the historical simulation are published at https://doi.org/10.5281/zenodo.6790458. Simulated tracer 
Green's functions are published at https://doi.org/10.5281/zenodo.6792335. The CESM2 data are available at 
https://esgf-node.llnl.gov. For the use of the HadCM3 model, contact UM_collaboration@metoffice.gov.uk.
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