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Abstract
A long noted difficulty when assessing calibration (or reliability) of forecasting systems is that calibration, in general, is
a hypothesis not about a finite dimensional parameter but about an entire functional relationship. A calibrated probability
forecast for binary events for instance should equal the conditional probability of the event given the forecast, whatever the
value of the forecast. A new class of tests is presented that are based on estimating the cumulative deviations from calibration.
The supremum of those deviations is taken as a test statistic, and the asymptotic distribution of the test statistic is established
rigorously. It turns out to be universal, provided the forecasts “look one step ahead” only, or in other words, verify at the
next time step in the future. The new tests apply to various different forecasting problems and are compared with established
approaches which work in a regression based framework. In comparison to those approaches, the new tests develop power
against a wider class of alternatives. Numerical experiments for both artificial data as well as operational weather forecasting
systems are presented, and possible extensions to longer lead times are discussed.

Keywords Forecasting · Calibration · Uniform central limit theorems

1 Introduction

A probability forecast (for binary or “yes vs no” events) is
called calibrated (or reliable) if the probability of the event,
conditionally on the forecast taking a specific value, is equal
to that same value; this should hold for any value the fore-
cast may assume. Similar definitions of calibration exist for
other types for forecasts, for instance conditional mean or
conditional quantile forecasts.

In the context of an operational forecasting system for
real world variables (e.g. environmental or economic), cal-
ibration can only be assessed in a statistical sense. That is,
provided with an archive of verification–forecast pairs, we
may formulate calibration as a statistical hypothesis and per-
form statistical tests for that hypothesis. Typically though,
calibration is a hypothesis not about a finite dimensional
parameter but about an entire functional relationship, a long
noted difficulty when assessing the calibration of forecasting
systems. Tests for calibration based on estimating deviations
from that functional relationship at specific values of the
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forecast meet with the problem of a very general alterna-
tive hypothesis. A possible remedy is to consider weaker
forms of calibration instead, for instance that the average of
the forecast agrees with the average of the verification. This
unconditional calibration is but a necessary consequence of
full calibration, and forecasting systems exhibiting merely
unconditional calibration are generally inadequate for deci-
sion support. Regression based tests (e.g. Mincer–Zarnowitz
regression, see Mincer and Zarnowitz 1969; Diebold and
Lopez 1996; Engle and Manganelli 2004; Gaglianone et al.
2011, and references therein) provide a viable alternative,
but they operate within a specific parametric model class
(typically linear), effectively testing the hypothesis that the
optimal recalibration function from that model class is the
identity. Although such tests will provide good power in situ-
ations where this hypothesis is violated, there generally exist
uncalibrated forecasting systems which nonetheless satisfy
this null hypothesis, and regression based tests will fail to
identify these.

The aim of the present paper is to discuss tests that use an
estimate of the supremum of all cumulative deviations from
calibration. The tests are thereby able to take the functional
character of the calibration hypothesis fully into account.
The asymptotic distribution of the test statistic is established
and turns out to be universal, that is, independent of the
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specifics of the underlying data source, the only structural
assumption being that forecasts always verify at the next
time step in the future. The main analytical fact employed in
the present work is that under the hypothesis of calibration,
the estimated cumulative deviations can (asymptotically) be
expressed through a Wiener process. More precisely, the
cumulative deviations converge in distribution, for the topol-
ogy of uniform convergence, to a Wiener process but with
nonuniform time rescaling. The asymptotic distribution of
the test statistic is given by that of an appropriate functional
of the Wiener process (basically the supremum norm). To
the best of our knowledge, no other testing methodology has
been rigorously shown to develop power against alternatives
of comparable generality (i.e. to be consistent in the sense of
Bierens 1990) in the current context (but see Sec. 3.4 for a
brief discussion of the work of Bierens 1990; De Jong 1996).
In addition to the quantitative tests, plots of the estimated
cumulative deviations (which we will refer to as “Random
Walk Plots”) may serve as a qualitative tool to identify spe-
cific forecast values forwhich calibration is particularly poor.

Relevant concepts and notation will be introduced and
made precise in Sect. 2. In particular, the concept of cali-
bration for probability forecasts (of binary events), and in
fact also for more general types of forecasts will be dis-
cussed. Conditionalmean forecasts, and conditional quantile
forecastswill serve as further examples. Sect. 3 introduces
uniform calibration tests, with detailed instructions as to
how to perform them as well as their asymptotic properties,
in particular regarding size and power. The mathematical
analysis is deferred to the Supplement for the interested
reader. The section furthermore contains a brief review of
relevant existing literature. In Sect. 4, Monte–Carlo experi-
ments using artificial data are discussed, confirming that the
uniform calibration tests exhibit the correct size. We also
confirm numerically that uniform calibration tests develop
power against a wide class of alternatives, and compare these
testswith established regression based tests. Section 5 applies
uniform calibration tests to forecasts from an operational
weather forecasting centre. Themain purpose of these exper-
iments is to demonstrate the feasibility of the methodology,
and to illustrate further practical aspects. Section 6 con-
cludes and discusses further avenues of research, for instance
regarding forecasts with larger lead times.

2 Calibration of probability, mean, and
quantile forecasts

To introduce calibration formally, let {Yk, k = 1, 2, . . .} be a
series of verifications (i.e. observations), which in the present
paper we assume to be random variables on some probability
space (�,F ,P) having values either in the real numbers or
just in the binary set {0, 1}. These two cases will be referred

to as the continuous and the binary case, respectively. We
consider corresponding forecasts { fk, k = 1, 2, . . .} which
are radom variables with values in the real numbers in both
cases. Our tests will be based on the joint data {(Yk, fk), k =
1, 2, . . .} to which we refer as the verification–forecast pairs.
The index k is a temporal index or time step, and the forecast
fk corresponds to the verification Yk which obtains at some
point tk in actual time. Typically, the forecast fk is issued
at some point prior to tk , and the lag Lk between the time
when fk is issued and the time it verifies (i.e. tk) is often
referred to as the lead time. Although the lead time is often
independent of k, there are examples where this is not the
case, for instance in seasonal forecasting systems that focus
on specific periods of the year; we will however assume the
lead time to be constant and drop the subscript on L for
notational simplification.

A fundamental assumption of this paper is that the lead
time L is never larger than tk − tk−1, or if measured in time
steps rather than absolute time, the lead time is equal to (or
smaller than) one. (This is the “small lead time” condition
alluded to in the title of this paper.) We can therefore assume
that when issuing the forecast fk , the forecaster has access
not only to all previous forecasts but also to all previous
verifications, that is, she knows (Y1, . . . ,Yk−1). Therefore,
this information can in principle factor into the forecast.

The concept of calibration (or reliability) refers, strictly
speaking, to different things depending on the type of fore-
casts. We start with the binary case. Here, a common
interpretation of calibration is that for each k, the forecast
fk is equal to the probability of the event Yk = 1, conditional
on the forecast fk itself. We might express this as

P(Yk = 1| fk) = fk for all k = 1, 2, . . . . (1)

This definition of calibration though makes no reference to
(temporally) previous forecasts and verifications. To develop
tests, however, and to rigorously establish their statistical
properties, the temporal dependencies of the verification–
forecast pairs have to be taken into account. Rather than
introducing specific assumptions concerning these depen-
dencies ad hoc (or worse still, tacitly), the approach of the
present paper is to obtain all necessary information regarding
these temporal dependencies from the calibration assump-
tion itself, potentially at the expense of using a stronger but
nonetheless well motivated calibration hypothesis.

As noted previously, the forecaster has access to all previ-
ous forecasts and verifications when issuing the forecast fk ,
and in an ideal world, the forecaster would take this infor-
mation into account in an optimal way. Therefore, we would
expect that for each k the forecast fk is equal to the probabil-
ity of the event Yk = 1, conditional on the current forecasts
as well as all previous forecasts and observations. We might
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write this as

P(Yk = 1| f1:k,Y1:k−1) = fk for all k = 1, 2, . . . (2)

where here (and in the following) we use the shorthand
Yk:l := (Yk, . . . ,Yl) for any k ≤ l. Condition (2), which
implies condition (1), will constitute our null hypothesis, and
the main aim of the present paper is to develop statistical
tests for this hypothesis. We need to emphasise however that
even though the null hypothesis (2) is assumed throughout
our analysis for binary forecasts, the tests are expected to
develop power only against alternatives to what we will call
the restricted hypothesis (1). This is due to the great gener-
ality of the alternative to the hypothesis expressed in Eq. (2).

To formulate a calibration hypothesis for other types of
forecasting problems we use the concept of identification
functions (for a general discussionof identification functions
in connection with the elicitability or identifiability problem
see e.g. Gneiting 2011; Steinwart et al. 2014). In the context
of the present paper, a verification function is simply a mea-
surable function � : V ×R → R (where V is either the real
line or the set {0, 1}, depending on the type of verifications
considered).

We say that the forecasts { fk, k = 1, 2, . . .} are calibrated
(for the verification {Yk, k = 1, 2, . . .}) if φk := �(Yk, fk)
is integrable for all k = 1, 2, . . . and furthermore

E(φk | f1:k,Y1:k−1) = 0 for all k = 1, 2, . . . . (3)

We will focus on mean forecasts and quantile forecasts as
further examples. In the first case, we require

E(Yk | f1:k,Y1:k−1) = fk for all k = 1, 2, . . . , (4)

which can be written as in Eq. (3) with �(Y , f ) = Y − f .
In the case of conditional quantiles (of a fixed level α), we
require that

P(Yk ≤ fk | f1:k,Y1:k−1) = α for all k = 1, 2, . . . , (5)

which can be written as in Eq. (3) with�(Y , f ) = 1{Y≤ f } −
α. Regarding power, a remark similar to the onemade for the
binary case applies to our calibration tests for general iden-
tification functions: even though hypothesis (3) is imposed,
power can only be demonstrated against equivalent forms of
the restricted hypothesis (1), namely against

E(φk | fk) = 0 for all k = 1, 2, . . . . (6)

(This form of calibration is referred to as T –calibration in
Gneiting and Resin 2021 ).

3 Methodology andmain results

In this section, we will introduce and motivate the test statis-
tics and present the main results regarding the properties of
the tests. (The proofs can be found in the Supplement for
the interested reader.) The Random Walk Plots as a qualita-
tive way to assess (departure from) calibration will also be
discussed.

Assumptions

From now on, we make the following assumptions (these are
made precise in Assumptions 1 in the Supplement and aug-
mented by several integrability conditions, which are always
satisfied in the cases of probability and quantile forecasts):

(1) the calibration hypothesis (2) (or (3), (4), (5) for gen-
eral identification functions, the conditional mean, or the
conditional quantile case, respectively) is in force;

(2) the verification–forecast pairs {(Yk, fk), k = 1, 2, . . .}
form a strictly stationary and ergodic process;

(3) the distribution of the forecast fk conditionally on
(Yl , fl) for l = 1, . . . , k − 2 is continuous (see Sup-
plement for precise statements).

With regards to the interpretation of condition 3, note that fk
is notmeasurablewith respect to (Yl , fl) for l = 1, . . . , k−2;
the information necessary to compile the forecast fk will
only be complete in the next step. The condition therefore
means that provided with this incomplete information, the
distribution of the forecast has no atoms; no single forecast
value carries nontrivial probability.

3.1 Forecasts for binary verifications

One of the most popular tools to assess the calibration (or
reliability) of binary forecasts is the reliability diagram. If
we write hypothesis (1) as

P(Yk = 1| fk = p) = p for all k = 1, 2, . . . ; p ∈ [0, 1],
(7)

estimate the left hand side for several values of p and plot
those estimates versus p, we obtain what has been called a
reliability diagram (see for instanceWilks 1995; Atger 2004;
Bröcker and Smith 2007; Bröcker 2012). It should exhibit a
graph close to the diagonal, up to “random fluctuations”,
provided the forecasting system is calibrated. This however
requires dividing the range of fk into several bins in a some-
what arbitrary fashion. An original motivation to develop the
presented methodology was to remove this requirement and
construct a test that assesses calibration uniformly across the
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entire unit interval. An alternative methodology to circum-
vent the problem of binning (as well as other problems) has
been developed in Dimitriadis et al. (2021, 2022) using iso-
tone regression. The methodology provides a robust way of
reconstructing reliability diagrams as well as score decom-
positions but no statistical tests.

To motivate our test statistic, we integrate Eq. (7) over
p ∈ [0, ζ ] against the distribution function F of fk . (Note
that by stationarity, F does not depend on k.) We obtain

P(Yk = 1, fk ≤ ζ ) =
∫ ζ

0
p dF(p). (8)

The hypotheses (7) and (8) are entirely equivalent. Estimat-
ing the difference between both sides of hypothesis (8) by
empirical averages gives

1√
n
Un(ζ ) := 1

n

n∑
k=1

(Yk − fk)1{ fk≤ζ }. (9)

(By 1{A} we denote the indicator function of the event A; to
include the factor 1√

n
in the definition of Un in Eq. (9) will

turn out to be convenient.) We would then expect that for
every ζ ∈ [0, 1] the random quantity Un(ζ )/

√
n should be

small for large n. If in addition a central limit theorem holds,
Un(ζ ) would be normally distributed with mean zero and a
certain variance. The variance of this quantity can be calcu-
lated from its definition using hypothesis (2), but essentially
the same calculations give the following more general result:
Defining the function G(ζ ) := ∫ ζ

0 p(1 − p) dF(p) we find

E
(
Un(ξ)Un(η)

) = G(ξ ∧ η), (10)

where a ∧ b denotes the minimum of a and b. For each
n ∈ N, we might thus regard Un as a stochastic process in
the continuous parameter ζ ∈ [0, 1]; this process has mean
zero and covariance function given by Eq. (10). Note that the
covariance function is independent of n.

A Wald–type test statistic could be constructed by first
evaluating Un at several points ζ1, . . . , ζK , then forming a
K–dimensional rowvectorun := (Un(ζ1), . . . ,Un(ζK )) and
finally using un	−1

n utn as a test statistic, where 	n is a con-
sistent estimator of the covariance of un .

In this approach, the indicators f → 1{ f≤ζk } for k =
1, . . . , K would serve as test functions or instruments in the
sense of Nolde and Ziegel (2017), see also Bröcker (2021).

Our test will generalise this idea, based on the following
fact:

Uniform Central Limit Theorem (See Thm. 1 in the
Supplement for precise statement) If Assumption 1 in the
Supplement holds, then Un converges in distribution to the
process U := W ◦ G with respect to the topology of uni-

form convergence on the unit interval. HereW is the Wiener
process (aka standard Brownian motion).

It is easy to see that the limit in distribution of Un(ζ ) as
n → ∞ is given by U(ζ ) pointwise for every ζ ∈ [0, 1].

Since the Wiener process {W (t); t ∈ [0, 1]} is a Gaussian
process with mean zero and covariance function given by
EW (t)W (s) = t ∧ s, we find that {W (G(ζ )), ζ ∈ [0, 1]} is
a Gaussian process with mean zero and covariance function

E [W (G(ξ))W (G(η))] = G(ξ) ∧ G(η) = G(ξ ∧ η), (11)

the last equality being true because G is monotonically
increasing. Comparing with Eq. (10) we find that U and
W ◦G have the same mean and covariance function. As they
are Gaussian processes, it follows that they have the same
distribution.

As a (preliminary) candidate for a test statistic, we con-
sider

τn := sup
ζ∈[0,1]

|Vn(ζ )|, with Vn(ζ ) :=
√

1

G(1)
Un(ζ ).

(12)

Due to the central limit theorem being uniform, we can con-
clude that for n → ∞ we get

τn
D→ sup

ζ∈[0,1]
1√
G(1)

|U(ζ )|

= sup
ζ∈[0,1]

1√
G(1)

|W ◦ G(ζ )|

= sup
ζ∈[0,G(1)]

1√
G(1)

|W (ζ )|

D= sup
ζ∈[0,G(1)]

|W
(

ζ

G(1)

)
|

(by time rescaling of Wiener process)

= sup
ζ∈[0,1]

|W (ζ )|.

(13)

Here
D→ means convergence in distribution, and the second

to last equality
D= is an equality in distribution only. We

stress that by taking the supremum, we are able to remove
the dependence on the function G (up to the scaling factor
G(1)).

The distribution of the supremum of the Wiener process
is well known, see Erdös and Kac (1946); in the follow-
ing, the symbol K will denote the corresponding cumulative
distribution function. Strictly speaking, τn as in Eq. (12)
is not a test statistic as it contains the unknown factor
G(1) = E fk(1 − fk). This factor or nuisance parameter
has to be replaced with a consistent estimator, for instance an
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empirical average; the uniform central limit theoremwill still
hold with a consistent estimator replacing G(1), see Corol-
lary 1 in the supplement. A python package containing code
for all uniform calibration tests discussed in the present paper
is available online (Bröcker 2020).

3.2 General identification functions; conditional
mean and quantile forecasts

In the case of general identification functions, similar consid-
erations apply andwewill refrain from a detailed calculation.
Starting from the general calibration condition (3) and taking
the same steps as for probability forecasts for binary verifi-
cations, we are led to the statistic τn as in Eq. (13) but with

Vn(ζ ) := 1√
nγn

n∑
k=1

φk1{ fk≤ζ }, (14)

with γn := 1
n

∑n
k=1 φ2

k as an estimator for E(φ2
k ).

For mean forecasts, this gives

Vn(ζ ) := 1√
nγn

n∑
k=1

(Yk − fk)1{ fk≤ζ }, (15)

with γn := 1
n

∑n
k=1(Yk − fk)2 as an estimator for E((Yk −

fk)2). In the case of conditional quantile forecasts, we have

Vn(ζ ) = 1√
α(1 − α)n

n∑
k=1

(1{Yk≤ fk } − α)1{ fk≤ζ }. (16)

Since Assumption 1 and Corollary 1 in the Supplement apply
to general identification functions and random functions of
the form (14), we can argue as before and conclude that for

n → ∞ we get τn
D→ supξ∈[0,1] |W (ξ)|. Remarkably, in

case of conditional quantile forecasts, the test statistic does
not contain any additional nuisance parameter that needs esti-
mating. Note also that in Eqs. (14, 15, 16) we have ζ ∈ R

because now our forecasts range over the whole real line.
Still the distribution of the supremum is given by that of the
supremum of a standard Wiener process over the unit inter-
val.

3.3 Power considerations

As said previously, the uniform calibration tests are only
guaranteed to develop power against violations of the rela-
tion (1) (or relation (6) in the case of general identification
functions). We will demonstrate this here from a theoretical
perspective and carry out a few numerical experiments in
Sect. 4.3, where we will furthermore compare the uniform
calibration tests with established tests discussed in Sect. 3.4.

Our theoretical analysiswill focus on the binary case as the
considerations for general identification functions are very
similar.

Proposition (Power of Uniform Calibration Tests) Suppose
that Assumptions (2,3) in Sect. 3 are satisfied, but that for
eack k ∈ N, Eq. (1) fails to be true on a set �k ⊂ � with
positive probability.

Then τn → ∞ almost surely and the hypothesis is rejected
with probability converging to one as n → ∞.

Note that although the set �k ⊂ � on which Eq. (1) fails
to be true depends on k, the probability of �k does not due
to stationarity.

We will write {gk, k = 1, 2, . . .} for a potentially uncal-
ibrated set of forecasts corresponding to the verifications
{Yk, k = 1, 2, . . .}.
For the proof, we observe that

P(Yk = 1|gk) = gk + ψ(gk) for k = 1, 2, . . . (17)

for some functionψ , simply because P(Yk = 1|gk) is always
a function of gk . The hypothesis (1), if in force, would imply
that ψ = 0 almost surely with respect to the distribution of
gk ; this distribution does not depend on k due to stationarity.
Now we assume this to be no longer the case. More specifi-
cally, we assume that there is some ε > 0 and a set A ⊂ [0, 1]
which contains forecasts with positive probability such that
either ψ(x) ≥ ε for all x ∈ A, or ψ(x) ≤ −ε for all x ∈ A.

This is equivalent to saying that there exists a ζ∗ ∈ [0, 1]
such that

E(ψ(gk)1{gk≤ζ∗}) = η �= 0. (18)

This expectation value does not depend on k if we assume
stationarity. The random function Un now reads as

Un(ζ ) = 1√
n

n∑
k=1

(Yk − gk)1{gk≤ζ }

= 1√
n

n∑
k=1

(Yk − (gk + ψ(gk))1{gk≤ζ }

+ 1√
n

n∑
k=1

ψ(gk)1{gk≤ζ },

(19)

which we write as U(1)
n (ζ ) + U(2)

n (ζ ).
ForU(1)

n , we can again apply the uniform central limit the-
orem, and in particular, the conclusion of Eq. (13) still holds,
essentially because fk := gk + ψ(gk) is now a calibrated
forecast. For the second contribution however we have

1√
n
U(2)
n (ζ ) → E(ψ(gk)1{gk≤ζ }) (20)
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by the law of large numbers, and in view of Eq. (18), we
see that U(2)

n (ζ∗) behaves like
√
nη, which diverges to either

+∞ or −∞, depending on the sign of η. As a result, the
test statistic τn will diverge to ∞ and the hypothesis will
be rejected with probability converging to one as n → ∞.
This demonstrates that the test will exhibit asymptotically
unit power against any alternative of the form (17) (unless ψ

is zero with probability one), that is, the test is consistent.

3.4 Existingmethods for testing forecast calibration

De Jong (1996) presents a test for the correct specification
of time series models, based on the work of Bierens (1990).
The test is similar to those presented here in that a functional
central limit theorem is applied to a family of instruments
indexed by a continuous parameter. There are a number of
differences however, both in terms of the setup as well as
the potential performance, and therefore a direct comparison
would require an extensive discussion (including of the asso-
ciated caveats) which was deemed to be beyond the scope of
the present paper. The de Jong test assesses a stronger hypoth-
esis, more akin to (2) and including regression parameters.
The test is thus likely to have less power against the alterna-
tives discussed here.

For essentially the same reasons, the results pertaining to
the asymptotic distribution of the test statistic make stronger
assumptions (including for instance a mixing condition).

The calibration of binary, mean, or quantile forecasting
systems can also be tested by regressing the forecast errors
on a vector of instruments or test functions, which in the
notation of the present paper are random variables which are
measurable with respect to { f1:k,Y1:k−1} for each k ∈ N

(recall the discussion in Sec. 3.1). For the case of conditional
mean forecasts or binary probability forecasts, square loss is
used (Mincer and Zarnowitz 1969; Gaglianone et al. 2011),
while quantile loss (i.e. skewed absolute loss, Engle andMan-
ganelli 2004) is a proper loss function for the quantile case.
If the forecasting system is calibrated, the optimal regres-
sion coefficient is zero, and this is the hypothesis assessed
by regression based tests (we refer to the Supplement, Sec. 1
for details of the tests).

We stress that this regression hypothesis is weaker than
(i.e. implied by) Eq. (4) (or (5) in the quantile case), since
the former merely requires that the regression residuals are
orthogonal to some specific test functions, while the latter is
equivalent to this being true for any test function. In case that
the test function is taken as a function of fk , the hypothesis is
even implied by the restricted hypothesis (6), since the latter
still requires that the residuals are orthogonal to any function
of fk . According to Gaglianone et al. (2011), empirical stud-
ies indicated that simply taking fk as a test function appeared
to be a good choice in the context of assessing models for

forecasting Value at Risk (essentially quantile forecasts for
financial portfolio values). Therefore, in our numerical exper-
iments in Sect. 4.3, we will compare the uniform calibration
tests proposed in the present work with regression tests using
fk as test function.

3.5 Larger lead times

We will finish this section with a discussion as to how the
conditions for calibration need to be modified for larger lead
times, and why in that case a rigorous testing methodology
is harder to develop. As discussed above, the lead time is,
roughly speaking, the lag between the time when the fore-
cast is issued and when the verification obtains. This means
that if the forecast fk has a lead time L (where L might
be larger than one), then at the time the forecast is issued,
only the verifications Y1, . . . ,Yk−L are available to the fore-
caster while the verifications Yk−L+1, . . . ,Yk are still in the
future. Therefore in the conditioning in hypotheses (2,4,5),
we merely have to replace the verifications Y1:k with Y1:k−L .
Hypothesis (1) for instance will now read as

P(Yk = 1| f1:k,Y1:k−L) = fk for all k = 1, 2, . . . . (21)

As discussed, a difficulty lies in the fact that the verification–
forecast pairs are dependent random variables, with the only
a priori information about the nature of the dependencies
being the calibration hypothesis itself. In that regard, the
hypothesis (2) for the case of lead time L = 1 provides a
lot more information than the corresponding hypothesis (21)
for larger lead times. As a consequence, the statistical prop-
erties of the test can be derived in the case of lead time L = 1
under minimal additional assumptions, while we expect that
further assumptions will be required for the case of higher
lead times. This is entirely analogous to the difficulties one
faces when testing calibration of ensemble forecasting sys-
tems (see Bröcker and Ben Bouallègue 2020). Having said
this, a key result for our methodology (Thm 1 in the Sup-
plement) remains true even in the case of larger lead times,
provided a mixing condition is imposed. Thus there does
exist an avenue for extending the presented methodology to
larger lead times.

A straightforward alternative is based on the observation
that in the case of lead time L > 1, the original time series
V := {(Yk, fk), k ∈ N} of verification–forecast pairs can be
split into the L time series Vl := {(y(l)

k , f (l)
k ), k ∈ N}, where

y(l)
k := YL(k−1)+l and f (l)

k = fL(k−1)+l for l = 1, . . . , L
and k ∈ N. Each of the L time series Vl will now have
unit lead time (because L steps in the original time series V
now correspond to a single time step in the new time series
Vl ). Therefore the presented tests can be applied to the new
time series Vl individually for each l = 1, . . . , L . These
tests are not independent though and multiple testing has to
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be accounted for, for instance by a Bonferroni correction.
As is usually the case when accounting for multiple testing
with this approach, the resulting tests are conservative even
asymptotically.

4 Monte–Carlo experiments with synthetic
data

In this section, we will present Monte–Carlo experiments
using artificial data . In Sects. 4.1 and 4.2, the null hypothesis
will be assumed valid in order to confirmwhether the uniform
calibration tests exhibit the correct size. In Sect. 4.3 we study
the power of uniformcalibration tests in comparisonwith that
of regression based tests. All experiments were done using
the mentioned python package franz (Bröcker 2020).

The artificial data for our experiments is generated with
an autoregressive process of order one.We define the process
{Xn, n = 1, 2, . . .} recursively trough

Xn+1 = aXn + Rn+1 for n = 0, 1, . . . (22)

where X0, R1, R2, . . . are independent and normally dis-
tributed with mean zero and variances E(X2

0) = 1
1−a2

and

E(R2
k ) = 1 for all k = 1, 2, . . .. Further, a = 0.8 for most

experiments except for a few experiments with the condi-
tional mean forecasts (where still 0 < a < 1, see below).
These choices render the AR process {Xn, n = 1, 2, . . .}
stationary and ergodic.

4.1 Binary forecasts

As binary verification we consider Yk = 1{Xk≥θ} · Zk +
1{Xk<θ} · (1 − Zk), where θ is a fixed threshold and
{Zk, k = 1, 2, . . .} are independent and identically dis-
tributed Bernoulli variables (also independent from the {Xk})
with success probability ps = 0.95. The additional Bernoulli
variables {Zk} represent a form of observational noise or con-
fusion of the observables.

As forecasts we use fk = P(Yk = 1|Xk−1), which can be
calculated explicitly through

fk = ps(1 − N (θ − aXk−1) + (1 − ps)N (θ − aXk−1),(23)

for k = 1, 2, . . ., where N (.) denotes the standard normal
cumulative distribution function. The verification-forecast
pairs satisfy the calibration hypothesis (2) because the
AR process is Markov. Furthermore, the distribution of Xk

is continuous (in fact it is normal); it then follows from
Eq. (23) that the forecasts { fk, k = 1, 2, . . .} are station-
ary and ergodic and have a continuous distribution. Hence
the conditions stated at the beginning of Sect. 3 are satis-

Table 1 Rejection frequencies (in percent) for uniform calibration tests
in 5000 independent Monte–Carlo runs. Nominal size is 5%, and the
expected fluctuation is approximately 0.3%

(a) Binary Forecasts
Thresholds

N 0 5/9 10/9 15/9

91 3.8 4.5 3.6 3.8

182 4.3 4.7 4.6 4.0

364 4.7 4.0 4.8 4.5

728 4.9 4.8 4.4 4.5

(b) Conditional Mean Fc’s
AR Coefficients

N 0.2 0.4 0.6 0.8

91 3.2 4.6 4.8 4.6

182 4.0 4.0 4.8 4.7

364 4.6 4.6 4.6 4.5

728 4.6 5.0 4.9 5.1

(c) Quantile Forecasts
Quantile levels

N 0.6 0.7 0.8 0.9

91 4.5 5.0 4.5 3.9

182 4.6 4.1 4.8 5.0

364 4.6 4.6 4.5 4.8

728 4.7 4.6 4.8 4.8

fied and hence our test should exhibit the stated asymptotic
behaviour.

To verify that the tests have the correct size,we ranMonte–
Carlo experiments. Each experiment comprised 5000 runs;
in each run, the test was applied to a set of N verification-
forecast pairs, where N varied between 91 and 728 (i.e.
between roughly three months and two years of daily fore-
casts). Then the test statistic and finally the p–value was
computed. The runs constituted identical and statistically
independent experiments. The relative proportion of runs
rejecting the hypothesis at the 5% significance level (empir-
ical rejection rates) are recorded in Table 1 and should be
equal to or smaller than the nominal size of 5%.

Sub–table 1(a) applies to binary forecasts and shows
empirical rejection rates for different values of N and thresh-
old values θ (as the standard deviation of Xk is 15/9, these
threshold values correspond to 0, 1/3, 2/3, 1 times the stan-
dard deviation). The conclusion from the results is that the
uniform calibration test is conservative for N small (as it
should be) and appears to approach the nominal size for larger
N .

Random Walk plots are shown in Fig. 2, panel (a), which
exhibits five typical realisations of the processVn . Thefluctu-
ations of the process are readily apparent, but the magnitude
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of the increments is not necessarily homogenous for different
values of ζ , as the limiting process is a Wiener process with
(nonuniform) re-scaling of time, rather than a pure Wiener
process. The dashed lines indicate quantiles for the supre-
mum of V for the levels 0.1, 0.05, 0.01 and 0.005. That is,
the path ofV exceeds the innermost pair of dashed lines with
probability 0.1, the pair of lines next further out is exceeded
with probability 0.05 and so on, while V exceeds the outer-
most pair with probability 0.005. Plotting these lines gives a
direct visual indication as to whether a given path ofVwould
be typical under the null hypothesis.

4.2 Conditional mean and quantile forecasts

A similar experiment was applied to conditional mean fore-
casts. As verificationwe consider Yk = Xk , that is the current
state of the AR process; forecasts were based on the previous
state Xk−1. More specifically, we use fk := E(Yk |Xk−1) =
aXk−1. The verification-forecast pairs satisfy the calibration
hypothesis (2), again because the AR process is Markov. It
follows as before that the forecasts { fk, k = 1, 2, . . .} are
stationary and ergodic and have a continuous distribution.
Hence the conditions stated at the beginning of Sect. 3 are
satisfied and hence our test should exhibit the stated asymp-
totic behaviour.

Again,Monte–Carlo experimentswere run using the same
setup as for the binary case, with the exception that we now
vary the AR coefficient a. Thereby, we explore different
levels of predictability in the AR process. Sub–table (b) of
Table 1 applies to mean forecasts and shows empirical rejec-
tion rates for different values of N , and for different values of
the AR coefficient. The conclusion is again that the uniform
calibration test is conservative for N small and appears to
approach the nominal size for larger N . The rejection rates
tend to get larger for larger predictablity; they even exceed
5% for N = 728 and an AR coefficient of 0.8 but note that
the difference from the nominal size is not statistically sig-
nificant.

Finally, similar experiments were conducted for condi-
tional quantile forecasts. As verification we consider again
the current state of the AR process Yk = Xk , while as fore-
casts we use quantiles of Xk conditionally on Xk−1. These
can be computed directly using the quantile function of the
normal distribution since the noise in our AR process is nor-
mal. As once more the conditions stated at the beginning
of Sect. 3 are satisfied, the uniform calibration test should
exhibit the stated asymptotic behaviour. Empirical rejection
rates are shown in sub–table 1(c) for different values of N ,
and for different quantile levels. Once again, we find that
the uniform calibration test is conservative for N small and
appears to approach the nominal size for larger N .

As a final remark, we note that according to the theoretical
results, the uniform calibration tests should not only show the

right rejection rates at typical sizes but the entire distribution
of the p–values should be uniform (at least asymptotically
for large n). We carried out further experiments for binary,
mean, and quantile forecasts, varying both the number of
Monte–Carlo runs as well as size of the verification–forecast
archive. We will not provide detailed results here but the
general message seems to be that at a size N = 728 of
the verification–forecast archive, the p–values for the binary
and quantile forecasts are indistinguishable from uniformity,
while for the mean forecasts a uniform distribution of p–
values gets rejected by a Kolmogorov-Smirnov test (p–value
of 0.002), although this does not seem to affect the size of
the test. This finding however is strongly dependent on the
specific setup. In particular, it emerges from the proof of the
uniform central limit theorem that the decay of correlations in
the forecast time series plays a role, as do large outliers in the
sumUn (see Eq. 9). Outliers cannot happen in the binary case
and the quantile case (as the entries in the sum are bounded)
but they can in the conditional mean case. We have there-
fore repeated the experiment with an AR process featuring
bounded and uniformly distributed noise, thus removing the
possibility of outliers. The p–values of all uniform calibra-
tion tests (at N = 728) now show no indication of deviation
from uniformity, according to a Kolmogorov-Smirnov test
(p–value of 0.468), consistent with the above discussion.

4.3 Monte–Carlo experiments regarding power

We will now discuss a few numerical experiments, largely
in order to compare the power of uniform calibration tests
with that of regression based tests. In all regression tests, the
test function (or instrument) will be the forecast itself (see
discussion at the end of Sec. 3.4). As in Sect. 4, data will be
generated through an AR process. The verifications will be
as before for binary, mean, and quantile forecasts. Consider
a forecast f̃k given by

f̃k := fk + εφ( fk) for k ∈ N (24)

where fk are the calibrated forecasts considered in Sect. 4,
φ is a distortion we will select below, while ε serves as a
parameter controlling the amount of distortion or deviation
from calibration. As will be discussed in detail below, a fur-
ther transformation is going to be applied to the forecasts
f̃k for each k = 1, . . . , N , depending on the type of fore-
cast used, resulting in forecasts gk ; these are the definite
(uncalibrated) forecasts for our experiment. As a measure
of deviation from calibration, we will use the relative mean
square deviation between gk and fk , namely

ρ :=
√
E(gk − fk)2√
E( fk − E fk)2

, (25)
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Fig. 1 Power function of
uniform calibration tests (solid
lines) and of regression based
tests (dashed lines), applied to
forecasts of binary events
(panel a) and mean forecasts
(panel b). Different plot symbols
correspond to different sizes of
the verification–forecast archive

(a) (b)

which due to stationarity does not depend on k. We estimate
this quantity through empirical averages.

We start with forecasts for binary events. As a distortion
we use φ(x) = sin(2πx). With this choice, it is guaranteed
that x + εφ(x) ∈ [0, 1] if x ∈ [0, 1], provided ε is small
enough which we will ensure. We apply another transforma-
tion to the forecast; namely we use

gk := f̃kλ

1 + f̃k(λ − 1)
for all k = 1, 2, . . . , (26)

as our definitive forecast, where λ is chosen so that E(gk) =
E(Yk). By this transformation, we ensure that gk is at least
unconditionally calibrated.

Figure 1, panel (a) shows the power of the uniform calibra-
tion tests as a function of the bias ρ (see Eq. 25) as solid lines.
Experiments for N = 91, 182, 364 and 728 we carried out
but only results for N = 182 and 728 are shown to avoid clut-
ter (marked with � and �, resp). The other experiments do
not alter the qualitative conclusions. The power of the regres-
sion test is also shown as dashed lines. It is clear that in this
situation the regression based test has more power especially
for smaller distortions and smaller N . This is probably not
surprising, since a simple linear regression will achieve a lot
in terms of recalibrating these forecasts (save the problem
that the recalibrated forecasts will not necessarily be in the
unit interval anymore). This finding however is entirely spe-
cific to the distortion chosen in this particular example, as we
will see for the other types of forecasts.

For the mean forecasts, we use a distortion of the form

φ(x) = x exp(− 3

10
x2). (27)

The exponential factor merely ensures that if fk is large,
then fk ∼= gk , or in other words forecasts with large magni-
tude remain calibrated. Thereby, we avoid a situation where
the test power against this alternative is due to very few
instances with forecasts exhibiting a large magnitude. Fur-
ther, we apply a linear transformation to the forecasts, that is
we use

gk := β0 + β1 f̃k for all k = 1, 2, . . . , (28)

as our definite forecasts. The parameters β0, β1 were deter-
mined by linear regression in an offline experiment with
5000 data points. Since the verification is now (nearly) opti-
mally regressed on the forecasts, we expect the regression
based tests to have close to no power, despite the gk still
showing substantial deviation from calibration, as we will
see soon.

Figure 1, panel (b), shows the results of the Monte–Carlo
experiment for N = 91, 364 and 720, marked with •,� and
�, resp. (The experiment for N = 182 is in line with the con-
clusions.) The power of the uniform calibration tests and the
regression tests are shown as solid and dashed lines, respec-
tively. As expected, the regression based test develops close
to no power despite substantial deviations from calibration;
the uniform calibration test however develops good power for
increasing deviation from calibration and for increasing N .
Five RandomWalk Plots are shown in Fig. 2, panel (b). If the
Null were true, the paths should look like that of a Wiener
process, but this is evidently not the case for forecast values
around ζ = 0. This illustrates the usefulnes of RandomWalk
Plots as a qualitative tool to investigate at which forecast val-
ues the deviation from calibration is particularly pronounced.
Regression based tests in contrast do not have this feature.

The setup for conditional quantile forecast is essentially
the same, except that as distortion we use

φ(x − q) = (x − q) exp(− 3

10
(x − q)2), (29)

which is similar to Eq. (27) but for a recentering at q which
is the unconditional quantile of the verification Yk . Further,
we apply a linear recalibration to the forecasts as in Eq. (28),
but now with the parameters determined through quantile
regression. Again, despite substantial deviation from cali-
bration, we expect the regression based tests to have close to
no power.

Figure 3 shows the results of the Monte–Carlo experi-
ment, where panels (a) and (b) are for quantile forecasts of
level 0.7 and 0.9, respectively. The power of the uniform
calibration tests and the regression tests are shown as solid
and dashed lines, respectively, marked with � for N = 182
and with � for N = 728. (The experiments for other N
and quantile levels support the conclusions.) For level 0.7,
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(a) (b)

Fig. 2 Random Walk plots with five typical realisations of the pro-
cess Vn . The dashed lines indicate nested regions that the path of V
leaves with probability 0.1 (innermost), 0.05, 0.01 and 0.005 (outer-
most) under the null hypothesis. Panel (a) shows Random Walk plots

for synthetic data satisfying the null hypothesis (see Sec. 4.1). Panel (b)
shows five realisations of the process Vn with a the deviation from
calibration of ρ ∼= 0.2 (see text for details)

Fig. 3 Power function of
uniform calibration tests (solid
lines) and of regression based
tests (dashed lines), applied to
quantile forecasts of level 0.7
(panel a) and 0.9 (panel b).
Different plot symbols
correspond to different sizes of
the verification–forecast archive

(a) (b)

the regression based test develops close to no power while
the uniform calibration test however develops good power
for increasing deviation from calibration and increasing N .
For level 0.9, the power of all tests is generally smaller with
only the uniform calibration test for N = 728 developing
appreciable power. We also observe that for this level, the
regression based test shows increasing (albeit small) power
for fewer data but this appears to be a size problem (poten-
tially due to the somewhat unsophisticated way in which we
chose the regression parameters).

5 Application to temperature forecasts

The proposed methodology was applied to operational
weather forecasts. The verifications comprise temperature
measurements from several weather stations in Germany,
taken daily at 12UTC. The forecasts are based on themedium
range ensemble prediction system of the EuropeanCentre for
Medium Range Weather Forecasts (ECMWF, see Appendix
A for information regarding data availability). The system
produces ensemble forecasts for the global atmosphere and
gets initialised four times a day. It comprises 50 ensemble
members, where each ensemble member represents a possi-
ble future evolution of the global atmosphere out to a lead
time of 10 days. For our study however, we will only use
the forecasts initialised at 12UTC and with a lead time of

24 hours, or if measured in observation time steps rather than
absolute time, the lead time is equal to 1 as per the standing
assumption in this paper.

Below we present results for two weather stations (Bre-
men and Nuremberg, German Weather Service (DWD)
Station ID’s 691 and 3668, respectively). We stress that
the results are not to be understood as a comprehensive or
representative calibration study of the ECMWF ensemble
forecasting system, either in its entirety or of parts of it. The
aim of the experiments is merely to demonstrate the feasibil-
ity of applying the methodology to operational forecast data,
and to confirm that quantitatively the results are plausible.

The verification–forecast pairs cover a period between
1st of December 2014 to 30st of September 2020 (result-
ing in about 2130 values). The verifications and ensembles
were converted to anomalies by subtracting a climate normal
of the form

c(k) = c1 + c2 cos(ωk) + c3 sin(ωk)

where ω = 2π

365.2425
. (30)

The coefficients c1, c2, c3 were found by a least squares fit
onto the entire set of temperature measurements from the
station under concern. In the actual experiments to follow,
only the first 1000measurements (of the 2130 available)were
used, as in practice this size is not uncommon for forecast–
verification archives. The fact that the climate normal has
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already beenfitted to and subtracted from these values strictly
speaking constitutes an in–sample calibration of the data.
This was deemed not to be a problem here though given that
the climate normal comprises a low-complexity model and
that the experiment is for illustrative purposes only.

The ensemble forecasts were used to generate mean fore-
casts, (binary) probability forecasts, and quantile forecasts
as follows. We write Xn for the entire ensemble at time
n; this ensemble comprises 50 ensemble members, and the
k’th ensemble member is written as X (k)

n so that Xn =
(X (1)

n , . . . , X (K )
n ) with K = 50 in our case. The assumption

underlying the waywe generate mean, probability, and quan-
tile forecasts is basically that the ensemblemembers at time n
are randomly drawn from the forecast distribution (Talagrand
et al. 1997), that is the conditional distribution of the verifi-
cation Yn , given the information available to the forecaster
(which, as discussed, includes all forecasts and verifications
up to and including time n − 1). In particular, the ensem-
ble members are completely exchangeable (see Bröcker and
Kantz 2011, for a discussion of this point). As the ensemble
members are real valued in our case, wemay assume that they
are sorted in ascending order, that is X (1)

n ≤ . . . ≤ X (K )
n for

each n = 1, 2, . . . (this will simplify subsequent notation).
We consider probability forecasts for the binary event

Yn > 0, that is whether the measured temperature exceeds
the climate normal. The forecast is constructed by a (reg-
ularised) frequency estimator, that is we count the relative
number of ensemble members exhibiting the same event

fn := Nn + 1/2

51
for n = 1, 2, . . . , (31)

where Nn is the number of ensemble members X (k)
n such

that X (k)
n > 0. (Our regularisation of fn amounts to assuming

that there is an additional fictitious ensemble member “split
in half”, one half always exhibiting the event while the other
one never does.) It needs to be mentioned that the forecasts
only assume a discrete set of 51 values, while our conditions
require that the range of forecasts be continuous. This also
causes the paths in Panels (a) and (b) in Fig. S1 to look
somewhat different from the other panels, as the forecast
values do not range continuously over the abscissa. We have
not fully analysed this problem but it seems plausible that it is
immaterial, in the sense that the stated mathematical results
about the limiting distribution of τn still hold in the limit of
an infinitely large ensemble.

Mean forecasts are generated by simply taking the ensem-
ble mean

fn := 1

K

K∑
k=1

X (k)
n for n = 1, 2, . . . . (32)

Table 2 The p–values for probability, mean, and quantile forecasts
(rows) and two stations (Nuremberg and Bremen; columns).Probability
and mean forecasts for Bremen (2nd column, rows 1, 2) show no evi-
dence for deviations from calibration while others do

Nuremberg Bremen

Probability fc. 0.0474 0.2113

Mean fc. 1.6431 · 10−6 0.1714

Quantile 1
2 fc. 0.0010 0.0035

Quantile 3
4 fc. 3.0229 · 10−5 0.0475

Finally, regarding quantile forecasts, we note that the con-
ditional probability of finding the verification Yn to be equal
to or larger than the k’th ensemble member X (k)

n is given by
k/(K + 1) (see for instance Bröcker and Ben Bouallègue
2020, for a proof). We will use k = 25 and k = 38 here,
that is we take fn := X (k)

n with k = 25 resp. with k = 38
for n = 1, 2, . . . as quantile forecastswith levelsα = 25

51
∼= 1

2
resp. α = 38

51
∼= 3

4 . Except for the climate normal, no attempt
wasmade to recalibrate these forecasts to improve calibration
or to increase the performance in any way, and the following
results should be considered with this in mind.

Table 2 contains the p–values, with the four rows and the
two columns corresponding to the four types of forecasts
and the two stations, respectively. Figure S1 in the Supple-
ment shows all corresponding random walk plots, with the
arrangement of the plot panels being the same as in Table 2.

Figure 4 shows a random walk plot as well as a classical
reliability diagram with nine equidistant bins and consis-
tency region (left and right panels, respectively, see Bröcker
and Smith 2007). The forecasts are probability forecasts for
Nuremberg (corresponding to the first row and first column
of Table 2). From the table and the figures we obtain a
mixed picture, with some experiments showing no evidence
for deviations fromcalibrationwhile others do.Quantile fore-
casts turn out to be unreliable throughout, while probability
and mean forecasts are unreliable for Nuremberg but reliable
for Bremen (the quantile forecast of level 3/4 for Bremen
and the probability forecasts for Nuremberg give p ∼= 5%
and might be considered on the verge). The results in Fig. 4
provide further indication as to which forecast values exhibit
deviations from reliability.

The random walk plot as well as the reliability dia-
gram suggest that low probability forecasts predict too many
events.

There seems to be less of a coherent message for higher
probability forecasts.

The consistency region of the reliability diagram must be
interpreted with care though as the underlying methodology
does not take temporal correlations into account.

Although the results must not be interpreted as a repre-
sentative calibration analysis of this forecasting system, they
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Fig. 4 A random walk plot as
well as a classical reliability
diagram with nine equidistant
bins and consistency bars (left
and right panels, respectively).
The forecasts are probability
forecasts for Nuremberg
(corresponding to the first row
and first column of Table 2)

(a) (b)

demonstrate the advantage of testing calibration uniformly
over all values of the forecast, rather than using unconditional
tests. An unconditional test corresponds to taking the value
of the functionVn at the end point ζ∞ as a test statistic (where
ζ∞ = 1 for probability forecasts and ζ∞ = ∞ formean fore-
casts and quantile forecasts). It turns out that the blue lines
in Fig. S1 delineate regions for this statistic with probability
approximately 0.05, 0.025, 0.005, and 0.0025. Considering
1
2 -quantile forecasts for Nuremberg or 3

4 -quantile forecasts
for Bremen for instance (Fig. S1, panels e and h), a test for
unconditional calibration based on Vn(ζ∞) would provide
p–values of at least 0.05 resp. about 1 judging from the plot
(in fact about 0.2 and 0.95), and the hypothesis would not
be rejected, while the conditional test based on the entire
path gives p-value of about 0.001 resp. 0.047 (see Tab. 2),
thus rejecting the null hypothesis. In both cases, we see from
Fig. S1, panels (e,h) that the event {Yk < fk} happens too
frequently as long as fk < 0, but too rarely if fk > 0. These
effects however cancel out on average over all forecasts,
meaning that the overall frequency of the event {Yk < fk} is
about 1/2 which it is expected to be under unconditional cal-
ibration. Therefore, the lack of calibration goes undetected
by an unconditional test.

6 Future work

It is clear that the restriction to unit lead time is a severe one,
and an extension to larger lead times is needed. Themain dif-
ficulties have been mentioned at the end of Sect. 2 already,
along with possible avenues for solution. The uniform cen-
tral limit theorem (Thm 1 in the Supplement) holds in case of
larger lead times as well, provided several technical assump-
tions are imposed. (The proof will be presented elsewhere
as it requires a number of modifications and is substan-
tially longer.) Unfortunately, the limiting process, although
Gaussian, will not have the simple representation in terms
of a Wiener process as we have encountered here for unit
lead time. The correlation structure of that process will be
more complicated and depends on the correlation structure
of the time series of verification–forecast pairs. As already
discussed at the end of Sect. 2, the calibration hypothesis

provides a lot more information on that correlation structure
in the case of lead time L = 1 than for larger lead times. This
means that for larger lead times, more information regard-
ing this correlation structure will have to be estimated from
the data itself and factored into the test statistics, most likely
requiring further assumptions.

Regarding higher dimensional forecasts, for instance con-
ditional mean forecasts for multi–dimensional verifications,
again more work is needed to extend the presented method-
ology to that situation. The same is true for extensions to
higher order identification functions in the sense of Fissler
and Ziegel (2016) (such as the pair of mean and variance).

The difficulties are broadly similar to those one would
encounter for higher lead times, although they seem to be
easier to resolve in the case of higher dimensional forecasts
but for unit lead time. The uniform central limit theorem
(Theorem 1 in the Supplement) also holds in case of higher
dimensional forecasts, although again the proof will require
some modifications. The limiting process has a relatively
simple correlation structure and we conjecture that it can be
represented in terms of a multi–parameter Wiener process or
Brownian sheet. But again some information regarding this
correlation structure will have to be estimated from the data
itself, although probably not as much as in the case of larger
lead times.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10144-
9.
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permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A. Data availability

Observations of 2 metre temperature are available for a wide
range of Weather stations from the German Weather Service
(DWD) for download through the open data portal (DWD
2020). In the present study, we used data from two stations,
namely Bremen and Nuremberg, DWD Station ID’s 691
and 3668, respectively.

Historical ECMWFforecasts are nowavailable underCre-
ative Commons 4.0 licence (ECMWF 2020). To access the
data, it is necessary to registerwithECMWFand then retrieve
the data using ECMWF’s MARS system. For this study, we
used the 50 perturbed forecasts for 2m temperature, lead time
24 hours.
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