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Two-step Scalable Spectral Clustering Algorithm
Using Landmarks and Probability Density

Estimation
Xia Hong, Junbin Gao, Hong Wei, James Xiao and Richard Mitchell

Abstract—Spectral clustering is one of the most important
clustering approaches, often yielding performance superior to
other clustering approaches. However, it is not scalable to
large data sets in its original form due to the computational
burden of the required large-matrix eigen-decomposition. In this
paper, a two-step spectral clustering algorithm is introduced by
extending recent advances of scalable spectral clustering based
on low-rank affinity matrix using landmarks. In the first step, a
scalable spectral clustering algorithm using raw landmark-based
affinity matrix is adopted. In the second step, a novel low-rank
affinity matrix is learnt via the probability density estimators,
constructed from the estimated clusters as derived from the first
step. Since the prior information on cluster labels can be utilised
in the second step, this learnt affinity matrix reflects intrinsic
pairwise data relationships much better. While the proposed more
complicated algorithm results in a higher computational cost than
the previous landmark-based spectral research, it can be shown
that the associated computational cost still scales well with data
size. It is demonstrated that the proposed algorithm is capable
of achieving far superior performance than other state-of-the-art
algorithms for several benchmark multi-class image data sets.

Index Terms—Spectral clustering, probability density estima-
tion, low-rank matrix, landmarks.

I. INTRODUCTION

Clustering is one of the most important research topics in
machine learning, computer vision, data mining and various
scientific applications [1], [2], [3], [4], [5]. When dealing with
empirical data, people often get a first impression on their
data by trying to identify groups of “similar behavior”. Data
clustering is an unsupervised classification paradigm which
divides observed data into different subsets (clusters), such
that similar objects are allocated to the same subset while
dissimilar objects are assigned to different subsets. Most recent
advances include: clustering of data with temporal effects [6],
3D point clouds [7] and explainable clustering approaches
using neural networks [8].

Spectral clustering techniques [9], [10], [11] have been
shown to be among the most effective clustering algorithms,
due to their ability to work with nonlinear separable prob-
lems [10]. The effectiveness can be explained by considering
that the data in the original space are mapped onto a new
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embedded space where patterns of similar points are built
on the basis of pairwise similarity of objects to be grouped.
The embedding space is spanned by the eigenvectors of the
Laplacian matrix, which is derived from the graph affinity
matrix in graph theory. The eigenvalues and eigenvectors of a
suitably chosen affinity matrix are calculated to partition the
data [12], [13]. Then the K principal eigenvectors are used
for clustering the original data, with structural properties of
the data set being identified correctly for a block diagonal
matrix [10].

Recent developments in sensors, data-storage and data-
acquisition devices have made large data-sets widely available.
Spectral clustering is a flexible class of clustering algorithms
that can produce high-quality clustering on small data sets.
Yet it is known that it suffers from a high computational
cost due to its computational complexity of O(N3) for the
eigenvectors computation of its graph based affinity matrix,
where N is the data size. Hence spectral clustering is not
widely viewed as a competitor to classical algorithms such as
hierarchical clustering and k−means [1] for large-scale data
mining problems, and spectral algorithms, in their original
form, have limited applicability to large-scale problems.

There is some interesting work on scalable spectral cluster-
ing and other associated recent work related to spectral clus-
tering (see Section II). Notably Cai and Chen [14] proposed
an affinity matrix using a set of random sampled data points
as landmarks, so that the spectral embedding can be efficiently
calculated via the landmark-based representation. Recently, the
notion of scalable spectral clustering with cosine similarity has
been proposed which also leads to computational efficiency by
exploiting the properties of low-rank matrices [15].

Of particular interest to this work is the design of a low-
rank affinity matrix directly from the data in order to achieve
a drastic reduction in computational complexity of spectral
clustering while still maintaining high performance. In this
paper, a two-step spectral clustering algorithm is introduced,
which is inspired by the recent advances of scalable spectral
clustering based on low-rank affinity matrices using land-
marks [14]. Specifically, the first step is a scalable spectral
clustering algorithm using raw landmark-based affinity matrix.
Since the effectiveness of spectral clustering depends on the
affinity function between each pair of data objects, it is vital to
construct a weight matrix that faithfully reflects the similarity
information among objects. While the landmark-based affinity
matrix is useful in achieving scalable computation, this is
constructed in the original high-dimensional data input space.
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Here, the proposed method includes a new second step in
which a low-rank affinity matrix is learnt from the probability
density estimators, constructed from the estimated clusters
given in the first step. Since the prior information on cluster
labels can be utilised in the second stage, the affinity matrix in
second step should reflect intrinsic pairwise data relationships
much better. While the proposed algorithm results in a more
complicated algorithm with a slightly higher computational
cost than the previous landmark-based spectral research [15],
it has been shown that the associated computational cost still
scales well with data size. It is demonstrated that the proposed
algorithm is capable of achieving far superior performances
than other state-of-the-art algorithms for several benchmark
multi-class image data sets.

The novel contributions of the paper are as follows:
1) A new scalable spectral clustering algorithm is proposed

which is based on low-rank matrices using landmarks
and avoids handling the affinity matrix directly.

2) The proposed algorithm is iterative by incorporating the
idea of probability density estimators to learn the affinity
function in the second step, i.e. the proposed affinity
matrix can learn the data class associations from the
conventional landmark-based spectral clustering in the
first step.

3) The algorithm can also be used for semi-supervised
problems in which there exists a limited number of
labelled data points.

4) As shown in experiments given here, the proposed
algorithm significantly outperforms other state-of-the-
art algorithms in terms of clustering performance with
higher yet still scalable computational costs.

The paper is organised as follows: Section II reviews the
related research in spectral clustering followed by Section
III which introduces the basics of spectral clustering and
in particular low-rank matrix based scalable spectral clus-
tering. Section IV introduces the proposed two-step spectral
clustering algorithm using landmarks and probability density
estimation, followed by some discussions to analyse the con-
tributions, rationale and computational complexities of the
proposed approach. Section V compares the proposed two-step
spectral clustering algorithm with a number of state-of-the-
art methods with superior results over a few benchmark data
sets. The experimental results of varying parameter settings are
included to provide insights. Finally, a computer vision image
segmentation example is provided to illustrate the usefulness
of the approach.

II. RELATED WORK

In recent decades, considerable efforts have been devoted
to expand spectral clustering modelling paradigms and associ-
ated optimization algorithms. Some representative works are
classified based on their main characteristics.

• Scalable spectral algorithms: The Nyström method [16],
[17] is an efficient technique to generate low-rank matrix
approximation by sampling a subset of the columns of
the affinity matrix [18]. A similar technique has been
applied in clustering large scale social networks data via a

pre-coarsening sampling based on Nyström method [19].
The majority of these algorithms are based on “sampling
and approximation”, which unavoidably lose informa-
tion due to data reduction, although researchers work
towards improving the performance of such sampling and
approximation approaches [20]. Cai and Chen [14] has
introduced the idea of landmarks to achieve low rank
affinity matrices, by which this work is inspired.

• Learning affinity: Bach and Jordan [21] first took a
point of view of learning affinity. The works of [22],
[23] combine techniques of matrix factorization [22] and
sparse coding [23]. The notion of local scaling between
each pair of points’ affinity was introduced in [24] and
subsequently a self-tuning mechanism for scaling param-
eters is introduced. Ding et al. proved the equivalence
between spectral clustering and matrix factorization [25].
Spectral clustering with sparse coding has been found
to be effective for clustering high-dimensional data [11].
These are effective in finding a suitable sparse representa-
tion base on which the affinity matrix is constructed [26].
Along this line, learning affinity has been further explored
under the framework of deep learning [27], [28], [29],
[30]. Learning affinity is linked with metric learning [31],
thus it opens door for utilising metric learning-based
clustering.

• Modified spectral clustering models with dimensionality
reduction: Most recent works are well motivated to ad-
dress challenges in high-dimensional data sets, and may
also be related to learning affinity and scalability. In-
corporating dimensional reduction in spectral clustering,
these works are combined with other active areas such as
multi-view learning, (see [5] and references within). It
is therefore necessary to modify the objective functions
and develop new optimization methods for extended
family of spectral clustering. The one-step multi-view
spectral clustering (OMSC) method leads also to scalable
computational costs at O(N) [40]. Similarly, Spectral
Rotation for One-step Spectral Clustering (SR-OSC) has
been introduced with a new composite objective function
so that several layers of learning in the new model are
jointly optimized [40] with O(N2).

III. PRELIMINARIES

This section introduces the main concepts of scalable
spectral clustering with the aim of achieving computational
efficiency for large-sized data. The works of scalable spectral
clustering exploiting the properties of low-rank affinity matri-
ces are reviewed in particular.

A. Spectral clustering

Let {xi}Ni=1, each xi = [xi,1, ..., xi,d]
T ∈ ℜd, be a given

data set, and X = [x1, ...,xN ]T. The goal of clustering is
to partition these points into K disjoint sets, for some given
K. The spectral clustering is based on a weighted undirected
graph G(V,E), where each of the vertices in G corresponds
to a data point xi, and the weight of each edge wi,j > 0
encodes the similarity between a distinctive data pair {xi,xj}.
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Algorithm 1 The normalised spectral clustering algorithm of [10].
Require: Similarity matrix W ∈ ℜN×N , number K of clusters to construct.

1: Compute the normalised weighted matrix W̃ according to (3).
2: Perform the singular value decomposition (SVD) of W̃ as W̃ = UΛUT, where U = [u1, ...,uN ] is the orthonormal

matrix, consisting of eigenvectors of Lsym. Λ = diag{λ1, ..., λN}, λ1 > ... > λN >= 0 are eigenvalues.
3: Let UK ∈ ℜN×K be the sub-matrix of U of the first K eigenvectors as Uk = [u1, ...,uK ].
4: Form the matrix T = {ti,j} ∈ ℜN×K by normalising the rows to norm one, i.e. to set

ti,j = ui,j

/√√√√ K∑
j=1

u2
i,j . (4)

5: for i = 1, ..., N do
6: Let yi ∈ ℜK be the vector corresponding to the i-th row of T .
7: end for
8: Cluster the points yi, i = 1, ..., N with the k-means algorithm [1] into clusters C1, ..., CK .
9: Return: Find clusters k ∈ {1, ...,K} with {k,yi ∈ Ck} and assign original data points xi according to clusters index set

of k = 1, ...,K.

It is often assumed wi,i = 0, ∀i. Regardless of the similarity
function used, a weighted graph G is induced with an affinity
matrix W = [wi,j ] ∈ ℜN×N . The degree matrix D of G is
calculated as

D = diag(W1), (1)

where 1 denotes a vector of all ones. The graph Laplacian of
G is defined as

L = D −W . (2)

A normalised version [9] is defined as

Lsym = I −D−1/2WD−1/2 = I − W̃ , (3)

where W̃ is called normalised affinity matrix. The normalised
spectral clustering algorithm of [9] is given as [10], presented
in Algorithm 1.

It is known that the spectral clustering suffers from a
high computational cost associated with W for large N . The
general spectral clustering algorithm needs to construct an
affinity matrix, followed by its eigen-decomposition which has
computational cost at O(N3), it is thus of limited use for large
data sets without additional treatments.

Research efforts have been devoted to develop fast, approx-
imate algorithms in order to handle large-scale data sets. One
line of research is sample based, which allows extrapolation of
the complete grouping solution using only a small number of
samples, e.g. [14] in which the Nyström method is employed
for spectral grouping, and [32] in which the power method
was explored. However their accuracy has been criticised in
a recent research [33]. Other research includes sparse coding
which are based on matrix factorisation techniques [34].

B. Landmark based sparse coding (LSC) [14]
Consider a nonlinear functional mapping F : x ∈ ℜd →

z ∈ ℜq , then, from the given data set X , Z = [z1, ...,zN ]T ∈
ℜN×q can be constructed with zi = [zi,1, ..., zi,q]

T ∈ ℜq

obtained via F from xi ∈ ℜd. The low-rank landmark-based
affinity matrix has been designed [14] with the form of

W = ZD̃
−1

ZT, (5)

where D̃ = diag{
∑

i zi,1, ...,
∑

i zi,q} ∈ ℜq×q , i.e., the
diagonal elements of D̃ is the column sum of Z.

Definition: Landmarks [35]

It is proposed that Z is based on a set of q ≪ N
representative landmark points cj , j = 1, ..., q which are
randomly selected from the data set or k-means clustering
algorithm, so that [35]

zi,j =
Kh(xi, cj)∑

j′∈<i> Kh(xi, cj′)
, (6)

r where Kh(., .) is a kernel function in the form of

Kh(xi, cj) = exp{−∥xi − cj∥2/(2h2)}, (7)

where h is a preset kernel width and < i > denotes the set
of r nearest landmarks to xi.

The calculation of landmarks is equivalent to computing

zi,j = Kh(xi, cj), (8)

followed by row sorting, and for any landmarks that are further
than the rth landmark, it is set zi,j = 0, then each row is
normalised by its sum. Hence Z is sparse and row-normalised.
It can be verified that the resultant degree matrix D is an
identity matrix [14], so that affinity matrix W is automatically
normalised.

Denote
W = Z̃Z̃

T
(9)

with Z̃ = ZD̃
−1/2

. Without directly dealing with W , let the
thin SVD of Z̃ be Z̃ = U Z̃ΛZ̃V

T
Z̃

, where U Z̃ ∈ ℜN×q ,
and UT

Z̃
U Z̃ = I , V T

Z̃
V Z̃ = I . ΛZ̃ = diag{λ1, ..., λq}, λ1 ≥

...λq ≥ 0 are singular values. Thus

U Z̃ = Z̃V Z̃Λ
−1

Z̃
. (10)

Alternatively it can be also shown that the
eigen-decomposition of Z̃

T
Z̃ = V Z̃Λ̃Z̃V

T
Z̃

,
Λ̃Z̃ = diag{λ2

1, ..., λ
2
q}, λ1 ≥ ...λq ≥ 0 are eigenvalues. This
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Algorithm 2 Landmark-based sparse coding (LSC) [14].
Require: N data points x1, ...,xN ∈ ℜd, number K of clusters to construct.

1: Produce q landmark points using k−means (LSC-K) or random selection (LSC-R).
2: Construct a sparse affinity matrix Z, with affinity calculated according to (6).
3: Compute the first K eigenvectors and eigenvalues Z̃

T
Z̃ denoted by V Z̃Λ̃Z̃V

T
Z̃

, where Z̃ = ZD̃
−1/2

.
4: Compute U Z̃ using (10).
5: Form the matrix T = {ti,j} ∈ ℜN×K by normalising the rows to norm one, i.e. to set

ti,j = ui,j

/√√√√ K∑
k=1

u2
i,j . (11)

6: for i = 1, ..., N do
7: Let yi ∈ ℜK be the vector corresponding to the i-th row of T .
8: end for
9: Cluster the points yi, i = 1, ..., N with the k−means algorithm into clusters C1, ..., CK .

10: Return: Find clusters k ∈ {1, ...,K} with {k,yi ∈ Ck} and assign original data points xi according to clusters index set
of k = 1, ...,K.

shows that instead of directly conducting SVD for Z̃, an
eigen-decomposition can be applied to the Z̃

T
Z̃ ∈ ℜq×q ,

which only has cost of O(q3). The results are used in
calculating U Z̃ according to (10). Further computational
savings can be achieved by only computing the first K
eigenvectors.

Note that to control computational complexity in LSC, only
a small subset of the input data set are used as landmarks,
which intermediate a pair of data points for the construction of
their affinity function. There is always a question if a limited
number of landmarks can sufficiently represent information
of a full large data set. A large number of landmarks tend
to produce better clustering results, but the computational
costs will increase at the rate of O(q2N). Although k-means
clustering, as in LSC-K, may be used for landmark selection
for improved clustering, it is still an issue that they may not
suit clusters of non-convex geometries and complex shapes.

The steps of LSC is summarised in Algorithm 2. Clearly,
computational efficiency of LSC has benefited from using a
low-rank affinity matrix with nonzero diagonals.

C. Scalable spectral clustering with cosine similarity [15]

In the following, the recent work [15] is outlined which
is based on the idea of construction low rank affinity matrix
using cosine similarity. Consider a low rank affinity matrix in
the form of [15]

W = XXT − I. (12)

It is assumed that N is large and either d ≪ N or X
is sparse. Each row of X is normalised. One example of
X is the document term matrix. This yields to the cosine
similarity-based affinity matrix, which is slightly restrictive but
still has important applications such as document clustering.
In comparison to (5), the affinity matrix with zero diagonals
is enforced in (12).

It is shown that efficiency can be achieved by avoiding
computing W explicitly [15]. Specifically for D, we have

D = diag
(
X(XT1)− 1

)
. (13)

Moreover, representing W̃ [15]

W̃ = D−1/2XXTD−1/2 −D−1 = X̃X̃
T −D−1, (14)

where X̃ = D−1/2X .
The idea in [15] is to use the first K-th left singular vectors

of X̃ [15] as approximation of the first K eigenvectors of
W̃ under the assumption that D−1 ≈ 1

β I for some β > 0,
which is obviously untrue. This means D−1 is totally dropped
regardless their significance/influence to the spectral clustering
results. To have a better result of approximation, D−1 should
have a low conditional number. For this purpose, an outlier
set denoted as C0 is created which is removed from data
points in Z, if they correspond to the set of the smallest
diagonal elements in D−1. Then the left singular vectors of X̃
(size reduced) are calculated via the efficient low-rank SVD
algorithm. In this situation, the size of outliers C0 can be a
large number since there are many redundancies in the data.
Removing these data points from SVD calculation enhances
robustness as well as greatly reduces computation costs. The
idea of generating an outlier set C0 is a good one as it improves
numerical stability and robustness. Note that the computation
procedure is made simpler in [15] in which the eigenvector of
the affinity matrix in spectral clustering was approximated as
top-K left singular vectors of X̃ .

In our proposed algorithm as follows, it is shown that the
computational efficiency does not need be compromised too
much if the affinity matrix with zero diagonals is enforced
without any approximation as used in [15]. In our proposed
method, the term of zeroing diagonals can be fully taken into
account efficiently, removing any discrepancy issues.

IV. THE PROPOSED TWO-STEP LSC ALGORITHM USING
PROBABILITY DENSITY ESTIMATION

In the following, a novel two-step iterative landmark-based
spectral clustering algorithm, based on a novel composite
LSC (cLSC) affinity matrix, is proposed. Conventional spectral
clustering algorithms often start with a given affinity function
which defines pairwise relationship of data points in the input
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space only. In contrast, the affinity function employed in the
second step aims to capture the pairwise relationships of data
points in both input and output spaces, which can help to
improve clustering performance.

In Section IV-A, we initially introduce a modified LSC
(mLSC) which rectifies the LSC algorithm so that diagonals
of affinity matrix are zeros. This mathematical property also
happens in the second step.

The main contribution of the proposed two-step method is
the new second step in Section IV-B, in which a low-rank
affinity matrix is learnt from the probability density estimators
from the estimated clusters from mLSC.

A. A modified LSC (mLSC) based on two stages of SVD
The initial step of the proposed algorithm is based on a

modification of LSC (see Section III-B [14]) employing two
stages of singular value decomposition which can rectify the
landmark based affinity matrix so that the convention of an
affinity matrix diagonals wi,i = 0 is satisfied. A computation-
ally efficient algorithm, referred to as mLSC, is introduced
below based on two stages of singular value decomposition.

We form Z̃ = [z̃1, ..., z̃N ]T as described in LSC in Section
III-B [14], except for W which is modified as

W = Z̃Z̃
T −A, (15)

where A = diag{a1, ..., aN}, and

ai = z̃T
i z̃i (16)

is a diagonal entry of ZD̃
−1

ZT. The modified LSC (mLSC)
affinity matrix is no longer normalised and it can be easily
verified that associated degree matrix is

D = I −A = diag{1− a1, ..., 1− aN}. (17)

The normalised affinity matrix for modified LSC (mLSC) is

W̃ = D−1/2Z̃Z̃
T
D−1/2−D−1A = Z̄Z̄

T−AmLSC , (18)

where Z̄ = D−1/2Z̃, and the ith element of the diagonal
matrix AmLSC can be calculated as ai/(1− ai).

In order to exactly compute top-K eigenvectors of W̃
without directly handling W̃ , consider initially calculating thin
SVD (the first stage) Z̄ = U Z̄ΛZ̄V

T
Z̄ , where U Z̄ ∈ ℜN×q is

the left singular vector matrix, and UT
Z̄U Z̄ = I , V T

Z̄V Z̄ = I ,
ΛZ̄ = diag{λ1, ..., λq}, λ1 > ... > λq >= 0 are singular
values of Z̄.

We have

UT
Z̄W̃U Z̄ = UT

Z̄Z̄(Z̄
T
U Z̄)−UT

Z̄AmLSCU Z̄

= Λ̃Z̄ −UT
Z̄AmLSCU Z̄ = BmLSC ∈ ℜq×q, (19)

where Λ̃Z̄ = Λ2
Z̄ . The computation cost of obtaining BmLSC

is O(Nq2).
The second stage of SVD is for BmLSC = UBSBUT

B , so
that

UT
Z̄W̃U Z̄ = UBSBUT

B (20)

or
UT

BUT
Z̄W̃U Z̄UB = SB. (21)

Let UK ∈ ℜN×k be the sub-matrix of U = U Z̄UB ∈ ℜN×q ,
we have UT

KUK = I . Spectral clustering will be carried based
on normalised eigenvectors matrix UK .

The steps of mLSC is summarized in Algorithm 3.
The computational cost of obtaining U is O(Nq2). The

computational cost of the first SVD is O(q3 + q2N), if the
fast approach in LSC is adopted [14]. The second SVD costs
O(q3). The total computation cost for this step is higher than
that of LSC, but still at the rate O(N) for q ≪ N , and large
N .

B. The proposed spectral clustering algorithm using proba-
bility density estimation

In the second step, the proposed algorithm goes beyond
using raw landmarks to define data relationships, but this is
learnt from the clusters from the first step (mLSC). Specifically
in order to improve clustering results, the probability density
estimation of the clusters are exploited with the aim of uncov-
ering the pairwise relationship of the data in the output spaces.
Note that in the first step of mLSC, there were no cluster
labels available so the original affinity matrix has to be defined
using input features alone. However the condition changes
after spectral clustering algorithm has been applied. Indeed, if
there exist clusters, then the spectral clustering algorithm will
identify these to a certain degree of confidence. Hence in the
second step of the proposed algorithm, the affinity matrix can
be adjusted based on the assumption that there exists some
prior knowledge about the probability distribution about the
clusters. The basic idea behind our proposed approach is to
successively apply spectral clustering based on a new low-rank
affinity matrix which is iteratively generated as a composite
of probability density function estimation and a new set of q
landmarks in the second step.

1) Probability density estimation: Consider the unsuper-
vised setting whereby the initial clusters need to be generated
at first. Specifically, a set of q representative landmark points
cj , j = 1, ..., q is randomly selected from the data set. Then
zi,j is formed based on (6). Then Algorithm 3 is initially
applied to find K clusters, and this produces K clusters
Ck, k = 1, ...,K. We label a set of randomly drawn data
samples from these clusters Ck as x̃i,Ck

, i = 1, ..., Nq , where
Nq < q ≪ N is a predetermined number in order to control
computational cost. It is also assumed that Nq is smaller than
the number of the data points in each cluster in first step.

After the first step of mLCS is applied (Algorithm 3), the
Parzen window probability density function (PDF) estima-
tor [36] for each class (cluster) can be written as

fCk
(x) =

1

Nq(2π)d/2
∏

σk,j

×
Nq∑
i=1

exp{−1

2
(x− x̃i,Ck

)TΣ−1
k (x− x̃i,Ck

)}, (23)

for k = 1, ...,K, where Σk = diag{σ2
k,1, ..., σ

2
k,d}, σk,j is

called the bandwidth, which can be set using “Scott’s rule of
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Algorithm 3 The proposed modified landmark-based sparse coding (mLSC).
Require: N data points x1, ...,xN ∈ ℜd, number K of clusters to construct.

1: Produce q landmark points using random selection.
2: Construct a sparse affinity matrix Z, with affinity calculated according to (6).
3: Find sparse affinity matrices Z̃ = ZD̃

−1/2
, the degree matrix D using (17) and Z̄ = D−1/2Z̃.

4: Compute U Z̄ using SVD of Z̄ = U Z̄ΛZ̄V
T
Z̄ .

5: Find AmLSC , BmLSC using (18) and (19).
6: Perform the singular value decomposition (SVD) of BmLSC = UBSBUT

B

7: Calculate U = U Z̄UB.
8: Form the matrix T = {ti,j} ∈ ℜN×K by normalising the rows to norm one, i.e. to set

ti,j = ui,j

/√√√√ K∑
k=1

u2
i,j . (22)

9: for i = 1, ..., N do
10: Let yi ∈ ℜK be the vector corresponding to the i-th row of T .
11: end for
12: Cluster the points yi, i = 1, ..., N with the k-means algorithm into clusters C1, ..., CK .
13: Return: Find clusters k ∈ {1, ...,K} with {k,yi ∈ Ck} and assign original data points xi according to clusters index set

of k = 1, ...,K.

thumb” [37] that minimises the mean integrated squared error
to true, unknown density, as

σk,j ≈ Sk,jN
−1/(d+4)
q , (24)

in which Sk,j is the standard deviation of samples in the jth
feature of cluster k. Note that the “Scott’s rule of thumb” band-
width estimator could provide the fastest way implementing
Parzen window PDF estimator of reasonable confidence for
low-dimensionality data. However since it originates from a
strong assumption about data, it can be unreliable for high-
dimensional data sets. Hence we adopt the following heuristics
in this work:

σk,j = σj ≈ max{1
d

d∑
j=1

Sk,jN
−1/(d+4)
q , σpre} (25)

which uses a shared variance for all features, and σpre is a pre-
determined parameter that is empirically found for numerical
stability.

However, the above PDF formula can still cause numerical
problems for high-dimensional data sets due to the fact that∏

σk,j tends to either too large or too small as d increases.
Since it is reasonable to assume that this term should be in
the same scale for all classes, the following scaled quantity is
employed

pCk
(xi) =

1

Nq

Nq∑
i=1

exp{−1

2
(xi− x̃i,Ck

)TΣ−1
k (xi− x̃i,Ck

))},

(26)
for k = 1, ...,K. Consider a nonlinear and probabilistic
functional mapping P : x ∈ ℜd → p ∈ ℜK , so that from
the given data set X , P = [p1, ...,pN ]T can be constructed
with pi ∈ ℜK obtained via P from xi ∈ ℜd. We propose
that P = {pi,j} ∈ ℜN×K is based on a set of K normalised

Parzen window density estimators

pi,j =
pCj

(xi)∑K
k=1 pCk

(xi)
, (27)

hence P is row normalised. Define

P̃ = PD̄
−1/2

, (28)

where D̄ = diag{
∑

i pi,1, ...,
∑

i pi,K} ∈ ℜK×K . Denote
P̃ = [p̃1, ..., p̃N ]T ∈ ℜN×K .

The computational cost of constructing P̃ is higher than
that of Z̃ in spite of K ≪ q, since each entry involves Nq

terms of Gaussian functions instead of only one term in Z̃.
Hence the computational cost is in the order of O(KNqN)
versus O(qN).

2) The proposed low rank composite affinity matrix:
In order to improve clustering results, more landmarks are
sampled in the Second step from X , with the computational
cost also controlled via a reasonably low value of q. Our
proposed algorithm is based on P which contains information
from clustering using landmarks in the previous step, as well
as new data samples for current iteration step which builds
Z̃ = [z̃1, ..., z̃N ]T as described in LSC. Our proposed W is
a composite of landmarks and current PDFs, defined as:

W = γZ̃Z̃
T
+ (1− γ)P̃ P̃

T − Ā, (29)

where 0 < γ < 1 is a preset parameter. Ā = diag{ā1, ..., āN},
where

āi = γz̃T
i z̃i + (1− γ)p̃T

i p̃i (30)

are diagonal entries of W . Similarly the proposed composite
LSC (cLSC) affinity matrix is no longer normalised and it can
be easily verified that the associated degree matrix is

D = I − Ā = diag{1− ā1, ..., 1− āN}. (31)
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The normalised affinity matrix for composite LSC (cLSC) is

W̃ =

γD−1/2Z̃Z̃
T
D−1/2 + (1− γ)D−1/2P̃ P̃

T
D−1/2 −D−1Ã

= γZ̄Z̄
T
+ (1− γ)P̄ P̄

T −AcLSC , (32)

where Z̄ = D−1/2Z̃ and P̄ = D−1/2P̃ and the ith element
of the diagonal matrix AcLSC can be calculated as āi/(1−āi).

In order to exactly compute top-K eigenvectors of W̃
without directly handling W̃ , consider initially calculating thin
SVD (the first stage) Z̄ = U Z̄ΛZ̄V

T
Z̄ , where U Z̄ ∈ ℜN×q is

the left singular vector matrix, and UT
Z̄U Z̄ = I , V T

Z̄V Z̄ = I ,
ΛZ̄ = diag{λ1, ..., λq}, λ1 > ... > λq >= 0 are singular
values of Z̄.

We have

UT
Z̄W̃U Z̄ = γUT

Z̄Z̄(Z̄
T
U Z̄)

+ (1− γ)UT
Z̄P̄ (P̄

T
U Z̄)−UT

Z̄AcLSCU Z̄

= γΛ̃Z̄ + (1− γ)UT
Z̄P̄ (P̄

T
U Z̄)−UT

Z̄AcLSCU Z̄

= BcLSC ∈ ℜq×q, (33)

where Λ̃Z̄ = Λ2
Z̄ . The main computational cost of obtaining

BcLSC is O(Nq2).
Similarly to mLSC, the second stage of SVD in the second

step is for BcLSC = UBSBUT
B , so that

UT
Z̄W̃U Z̄ = UBSBUT

B (34)

or
UT

BUT
Z̄W̃U Z̄UB = SB. (35)

Let UK ∈ ℜN×k be the sub-matrix of U = U Z̄UB ∈ ℜN×q ,
we have UT

KUK = I . The Second step: spectral clustering is
carried out based on normalised eigenvector matrix UK , and
a new set of clusters Ck is updated.

We are now ready to summarise the steps of cLSC in
Algorithm 4. The key differences to other methods are that
the proposed new type of affinity matrix is learnt from
the landmark-based spectral clustering. In an unsupervised
setting, Algorithm 3 is initially applied to obtain the initial
clusters, followed by the Parzen window probability density
function estimators. However, it can also be employed in the
semi-supervised setting since the required probability density
function estimators can be easily initialized from a small
number of labelled data samples. Specifically, in a semi-
supervised setting, the Parzen window probability density
function estimators of labelled data points (if provided) can be
obtained directly. The computational cost is the double that of
conventional spectral clustering, plus that of PDF estimation,
both can be controlled as they are much smaller than the data
size in large-scale data problems.

Remarks:

Analysis to the proposed affinity function in step 2: The
proposed affinity function in Step 2 is very different from that
of Step 1 or other conventional spectral clustering algorithms
in that it aims to capture the pairwise relationships of data
points in output space as well as in input space. To explain this

in a simple scenario, consider γ → 0, the contribution of PDF
estimation function to affinity function (before normalisation)
for a distinctive data pair {xi,xj} can be approximately
represented as

wi,j ∝
K∑

k=1

pCk
(xi)pCj (xj) (37)

of which the output is high (but low otherwise) if both xi

are xj has high probability of belonging to any of the same
clusters (output space). Hence, the affinity function may be
more useful than using input space data features alone as in
Step 1, or any predetermined affinity function in unsupervised
setting without output information.

Analysis to computation complexities: In comparison to
previous work based on landmarks [14], the idea of making the
algorithm scalable is similar, i.e, designing the low-rank matrix
decomposition of the affinity matrix. The actual affinity matrix
is used for analysis only, but not used in actual calculation
at all. The computational cost of the proposed algorithm is
scalable at O(N), with scaling factors determined by q ≪ N ,
Nq ≪ N and K ≪ N for large N . However, our algorithm
has higher computation costs than [14], since spectral based
clustering is carried out twice rather than once. There is
also PDF estimation between the two steps. Additionally,
the proposed algorithm employs more complicated two-stage
SVD in each Step in order to ensure our affinity matrix has
zero diagonals, coming with additional costs. The effects of
the affinity matrix having zero diagonals or not on actual
clustering results are difficult if not impossible to analyse, thus
is out of scope in this paper.

V. NUMERICAL EXPERIMENTS

A. Classification of handwritten images

1) Clustering results in comparison with other benchmark
algorithms: Four benchmark data sets of handwritten digits,
pendigits, usps, mnist and fashion-mnist are used for compar-
ing the proposed algorithm with some other state-of-the-art
approaches described in Section III. A brief summary of the
four data sets is provided in Table I. We used this type of data
set since it is generally large with high dimensionality, thus
likely to benefit from a scalable algorithm in its application.
The data set pendigits is a handwritten digit data set of 250
samples from 44 writers, collected as sampled coordinate
information of each digit from a tablet. The data set usps is
a standard handwritten database, and mnist is a handwritten
digits data set, presented as a fixed-sized image. The fashion-
mnist data set is proposed as a more challenging replacement
data set for mnist. It is a data-set comprised of 60,000 small
square 28×28 pixel gray scale images of items of 10 types
of clothing, such as shoes, T-shirts, dresses, and more. A
visualisation comparison between these is shown in Figure
1. Note that these data sets are originally divided into training
and test data sets for supervised classification tasks. In this
work we merge the two parts for our unsupervised setting.
As such, the label information given in the data sets are used
only for validation, not training. Each data point is normalised
to have the unit norm in the pre-processing step. Note that
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Algorithm 4 The proposed two-step spectral clustering based on a novel composite LSC affinity matrix (cLSC).
Require: Data matrix X ∈ ℜN×d, number K of clusters to construct, number of landmarks q, weighting γ. (Or labels for

some data points in X for semi-supervised setting.)
1: Initialization:
2: Apply Algorithm 3 to obtain clusters Ck, k = 1, ...,K; (For semi-supervised learning using directly existing labelled

clusters).
3: Calculate P and P̃ using (27) and (28).
4: Produce a new set of q landmark points using random selection, and find sparse affinity matrices Z̃ = ZD̃

−1/2
based on

the new set of q landmark points.
5: Find degree matrix D using (31).
6: Compute the first q eigenvectors and eigenvalues Z̄ = U Z̄ΛZ̄V

T
Z̄ , where Z̄ = D−1/2Z̃.

7: Find AcLSC , BcLSC using (30) and (33).
8: Perform the singular value decomposition (SVD) of BmLSC = UBSBUT

B .
9: Calculate U = U Z̄UB.

10: Form the matrix T = {ti,j} ∈ ℜN×K by normalising the rows to norm one, i.e. to set

ti,j = ui,j

/√√√√ K∑
k=1

u2
i,j . (36)

11: for i = 1, ..., N do
12: Let yi ∈ ℜK be the vector corresponding to the i-th row of T .
13: end for
14: Cluster the points yi, i = 1, ..., N with the k-means algorithm [1] into clusters C1, ..., CK .
15: Return: Find clusters k ∈ {1, ...,K} with {k,yi ∈ Ck} and assign original data points xi according to clusters index set

of k = 1, ...,K.

(a) (b)

Fig. 1. 10 sample images per class are shown as visual comparison between (a) mnist and (b) fashion-mnist; Each data-set has 70000 images.

for validation of all the comparable algorithms, the predicted
cluster labels need to be mapped into those provided by the
database via the well known Kuhn-Munkres algorithm [38]
which is also used in [14].

Table II outlines the clustering accuracy, which is the per-
centage of data points that are correctly clustered, of applying
the proposed method during the second step with γ = 0.001.
The results of a number of comparative methods are listed
in comparison, which demonstrates the proposed method’s
superior results of classification accuracy. Further explanation
for experiments in Table II is given below:

1) Original NJW. This is named the same way as [15]
which is based on the normalised spectral clustering
algorithm of [10]. We used Gaussian functions as the
affinity functions, where the width is set by trial and
error for the best result.

2) Scalable NJW. This is Algorithm [15]. We set the
default fraction of outliers as 0.01, and the clustering
classification is carried out on non-outlier parts of the
data set.

3) Nyström. We followed [14] to choose [39] as a com-
parison, which is a MATLAB implementation with
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TABLE I
A SUMMARY OF FOUR IMAGE DATA SETS.

Data sets Number of data size (N ) Number of features(d) Number of classes (K)
pendigits 10992 16 10
usps 9298 256 10
mnist 70000 784 10
fashion-mnist 70000 784 10

TABLE II
CLUSTERING ACCURACY IN PERCENTAGE % (MEAN± STANDARD DEVIATION).

Data sets Original NJW Scalable NJW Nyström LSC-K LSC-R The Proposed cLSC
pendigits 74.8 73.6 70.8± 4.1 82.9± 3.4 81.4± 5.2 95.9± 0.4
usps 67.5 67.9 65.3± 2.9 71.9± 3.6 72.7± 2.8 90.6± 0.3
mnist 72 .46 1 52.8 54.3± 2.5 72.6± 5.7 72.0± 5.2 88.9± 0.3
fashion-mnist NA 56.0± 0.1 55.9± 1.9 57.6± 1.8 57.3± 2.1 74.5± 0.4

1cited from [14] for reference only since our calculation shows out of memory for mnist and fashion-mnist.

TABLE III
RECORDED RUNNING TIME OF THE PROPOSED CLSC ALGORITHM (SECONDS) .

Data sets No. of Land marks (×102)
3 4 5 6 7 8 9 10

pendigits 2.37 2.45 3.19 3.67 4.23 4.61 4.96 6.27
usps 4.18 4.97 5.40 5.90 6.61 7.58 8.50 9.18
mnist 89.39 98.59 104.57 107.63 122.96 127.78 139.61 149.59
fashion-mnist 85.80 91.75 100.84 111.83 119.62 127.87 132.57 136.20

orthogonalisation, available online http://alumni.cs.ucsb.
edu/∼wychen. The hyper-parameter is set by trial and
error for the best result too.

4) LSC-K and LSC-R. The two landmark algorithms [14]
are also available online http://www.cad.zju.edu.cn/
home/dengcai/Data/Clustering.html. Table II reports the
results of landmark q = 1000, r = 6. The kernel width
h for landmark is set as the mean distance between two
data points in the data set.

5) The proposed cLSC with γ = 0.001. The results uses the
same parameters q = 1000, r = 6 for a fair comparison.
The results are recorded in which step 2 has Nq = 250.
The kernel width h for landmark is also set as the mean
distance between two data points in the data set.

Note that in Table II, since the results for Nyström and
landmark based algorithms (LSC-K, LSC- and the proposed
algorithm) are subject to random effects, the related experi-
ments are repeated 20 times, with mean and standard deviation
being reported. To demonstrate the computational costs of the
proposed algorithm, Table III shows a set of recorded running
time with Nq = 250, obtained from MATLAB 2018a on a
desktop, with specification of Intel(R) Core(TM) i5-7500 CPU
@ 3.40GHz, 16.0 GB RAM, 64-bit operating system.

2) Cluster results with respect to landmark size q: The
proposed algorithm is applied over the three data sets by
varying the parameters, and the clustering results are plotted in
Figures 2–5, showing the clustering accuracy versus number of
landmarks with γ = 0.001 of the first step (initialisation step)
and second step for the three data sets with r = 6. The kernel

width h for landmark is set as the mean distance between two
data points in the data set. These results clearly demonstrate
that improvements in terms of both mean and variance are
significant by using the PDF-estimation based affinity matrix.

3) Clustering results with respect to choice of γ: The
proposed algorithm is applied to the three data sets by varying
γ in the range 0 < γ < 1. The data experiments are
based on fixing landmark sizes to three typical values of
q = 100, 200, 500 respectively. The PDF estimation sample
size is set as Nq = q for convenience. The kernel width h
for landmark is also set as the mean distance between two
data points in the data set, and r = 6. Figures 6-9 show the
clustering accuracy for the first step (initialization step) and
second step. Note that the first step does not use γ, so the plot
is flat with random effects due to random landmarks.

• The percentage contribution of PDFs used in the second
stage affinity matrix construction is quantified as (1−γ).
This can be interpreted as the information obtained in the
first stage spectral clustering has been used as a prior for
the second stage in order to improve the clustering results
by the proposed algorithm. The remaining γ percentage
contribution to affinity matrix is due to using more
landmarks. If γ is close to one, it means that both first
and second stages are based on two sets of independent
landmarks totally. If γ is close to zero, then the second
stage completely uses PDF results from the first stage
to build its affinity matrix (without using the new set of
landmarks), followed by its use in spectral clustering in
second stage.
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Fig. 2. Clustering accuracy versus number of landmarks for pendigits data set; (a) Nq = 50; (b) Nq = 100; and (c) Nq = 250; The results show that it is
better to have more landmarks to cover the input data space, as well having sufficient samples in PDF estimation Nq .
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Fig. 3. Clustering accuracy versus number of landmarks for usps data set; (a) Nq = 50; (b) Nq = 100; and (c) Nq = 250. The results show that it is
better to have more landmarks to cover the input data space, as well as having sufficient samples in PDF estimation Nq .
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Fig. 4. Clustering accuracy versus number of landmarks for mnist data set; (a) Nq = 50; (b) Nq = 100; and (c) Nq = 250. The results show that it is
better to have more landmarks to cover the input data space, as well as having sufficient samples in PDF estimation Nq .

• As shown in Figures 6– 9, it can be seen that the second
stage always improve clustering results even with γ close
to one, since there are twice as many landmarks than the
first step. However, it is best to set γ close to zero, in
which case the PDFs of the first stage are used almost
completely in constructing the affinity matrix.

• The performance is quite stable for a range of small
values of γ, e.g. γ < 0.1, except for the most challenging
fashion-mnist data set. The results have clearly shown
that PDF-based affinity matrices is superior to the raw
landmark-based one, in both higher mean accuracy and

smaller standard deviation.

4) Semi-supervised experiments: The above two-step spec-
tral clustering algorithm is based on unsupervised scenario
where no prior information on clusters are given. During the
second step clustering there is prior information which are the
estimation of clusters from the first step, i.e. the class labels
are obtained. In the semi-supervised setting, it is assumed
that we have a small number of labelled data points, also
denoted as Nq . These can simply be used to construct PDF
(26) directly, followed by the final affinity matrix construction
in a single step. We perform experiments using a range of Nq
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Fig. 5. Clustering accuracy versus number of landmarks for fashion-mnist data set; (a) Nq = 50; (b) Nq = 100; and (c) Nq = 250. The results show that
it is better to have more landmarks to cover the input data space, as well as having sufficient samples in PDF estimation Nq .
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Fig. 6. Clustering accuracy versus value of γ for pendigits data set; (a) q = Nq = 100; (b) q = Nq = 200; and (c) q = Nq = 500; It can be seen that
the second stage improves clustering results mostly when γ is close to zero.
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Fig. 7. Clustering accuracy versus value of γ for usps data set; (a) q = Nq = 100; (b) q = Nq = 200; and (c) q = Nq = 500; It can be seen that the
second stage improves clustering results mostly when γ is close to zero.

to denote the number of labelled data samples in each class
in a semi-supervised setting. In the semi-supervised case, the
true labels as given in the three data sets are randomly sampled
and quantities of (26) are constructed directly from sampled
labelled data points using provided in data sets, which are
directly used to establish the affinity matrix. Note that the
spectral clustering algorithm is carried out only once based
on the composite affinity matrix of Equation (29). Figure 11
has compared the clustering accuracy’s of the semi-supervised
with its unsupervised counterparts, in which the landmark size
is set as q = 500, r = 6 and γ = 0.001. The results have

shown that the proposed algorithm is comparable to semi-
supervised counterparts, even though this is an unsupervised
approach and do not have training labels for these parameter
settings. Note that the landmarks numbers q and Nq are
restricted to be quite small in comparison to data size since
the main aim of our proposed algorithm is scalable clustering.

B. A medical image segmentation application

Image segmentation is an important step towards image
understanding and interpretation. The staining method [41]
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Fig. 8. Clustering accuracy versus value of γ for mnist data set; (a) q = Nq = 100; (b) q = Nq = 200; and (c) q = Nq = 500; It can be seen that the
second stage improves clustering results mostly when γ is close to zero.
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Fig. 9. Clustering accuracy versus value of γ for mnist data set; (a) q = Nq = 100; (b) q = Nq = 200; and (c) q = Nq = 500; It can be seen that the
second stage improves clustering results mostly when γ is close to zero.
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Fig. 10. Clustering accuracy versus value of Nq of Semi-supervised approaches for three data sets; (a) pendigits; (b) usps; (c) mnist; and (d) fashion-mnist;
The results have shown that the proposed algorithm is comparable to semi-supervised counterpart, in spite of being an unsupervised approach.
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Fig. 11. Segmentation results of a tissue image stained with hemotoxylin and eosin (H & E); Top row: The original image and Segmented blue Nuclei based
on step 1 and Step 2 respectively, after a standard threshold method; Middle row: segmented three clusters from step 1; left image, after thresholding, yields
the top middle segmented image; Bottom row: segmented three clusters from step 2; left image after thresholding, yield top right segmented image.

helps pathologists distinguish different tissue types. The image
in the left-top corner of Figure 11 shows the tissues stained
with hemotoxyline and eosin (H & E). We will use this
as a demonstration of applying the proposed method for
segmentation based on image colors in an automated fashion.
The aim is to segment the cell nuclei which is in dark blue
color based on colour features [42]. In making use of colour
information, various colour spaces, such as RGB [43], HSV
[44], L*a*b* [45], etc. were attempted. Different from the
RGB colour space, in which colour information is mixed
with red (R), green (G), and blue (B) channels, HSV and
L*a*b* colour spaces separate the colour information from
the brightness/intensity of an image. In such a way, the colour
information can be dealt with separately in case only colour
information is interesting in segmentation.

The original image (size 227×303) is as shown in the top-
left corner of Figure 9, which was converted from RGB color
space to CIE L*a*b* (CIELAB) and HSV space respectively.
CIE L*a*b* (CIELAB) is a color space specified by the
International Commission on Illumination. It describes all the
colors visible to the human eye and was created to serve
as a device-independent model to be used as a reference.
In L*a*b* color space, chromaticity-layer ‘a*’ indicating
where color falls along the red-green axis, and chromaticity-
layer ‘b*’ indicating where the color falls along the blue-
yellow axis. Alternatively, HSV (hue, saturation, value) is an
alternative representation of the RGB color model, designed by
computer graphics researchers to more closely align with the
way human vision perceives color-making attributes. The HSV
representation models the way paints of different colors mix

together, hue ‘H’ is the color portion of the model, saturation
‘S’ describes the amount of gray in a particular color. The
value dimension ‘V’ resembles the mixture of those paints
with varying amounts of black or white paint. From these
understanding, we choose ‘a*’, ‘b*’ values from CIE L*a*b*
space, and ‘H’ from HSV to form a three dimensional feature
since they can capture color information in the original image.

We obtain the input data matrix X by vectorizing two
converted images as N = 227 × 303 = 68781. Our d = 3
input features are from the two converted images, based on
‘a*’, ‘b*’ values from CIE L*a*b* space, and ‘H’ from HSV
since these features are most relevant for the sake of generating
initial clusters which are separated in color space. The number
of clusters is preset as K = 3. Nq = q = 500, γ = 0.001,
r = 6 are predetermined. The segmentation process and
results are plotted in Figure 11 and as explained as follows.
The proposed algorithm produces three clusters from step 1
(Figure 11 middle row). Three clusters are finally obtained
from step 2 as shown (Figure 11 bottom row). Similarly, for
easy visual comparison, the Kuhn-Munkres algorithm [38] has
been applied so that the clusters from the two steps match each
other.

Since ‘L*’ layer in the converted CIE L*a*b* (CIELAB)
image contains the brightness values of each color, these are
finally used to extract the brightness values of the pixels
in the blues clusters (the two images below the original
images). By applying a standard threshold method to these
clusters, we obtain the dark blue pixels and return the final
segmented blue Nuclei. Note that since blueness amongst
three clusters can be quantified, hence the total process,
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between clustering and segmentation, can be fully automatic.
Alternatively, human intervention can be included if this is
preferable. For comparison the segmentation based on clusters
both steps 1 and 2 are shown as the top middle and top right
images respectively. Note that in medical image segmentation
applications, often there is no labelled information which
makes it difficult to quantify the results, however this example
can still demonstrate how to segment colors in an automated
fashion using the proposed two-step spectral clustering al-
gorithm using landmarks and probability density estimation,
which clearly matches with human vision. Future research will
explore other useful computer vision applications.

VI. CONCLUSIONS

This paper has investigated a novel two-step scalable spec-
tral clustering algorithm which includes an additional step
based on a new affinity matrix, defined based on class prob-
ability density using the estimated clusters. The proposed
algorithm follows the idea of landmark-based low-rank affinity
matrices to control the computational costs so the algorithm
scales well with data size. The second stage makes use of an
improved affinity function incorporating cluster labels, which
become available within the algorithm. The class PDF-based
affinity function is conceptually different from the affinity
function in the first step, which is able to associate data
samples that is close in output space than purely from the input
space as the original spectral clustering. It is demonstrated that
the proposed algorithm is capable of achieving far superior
performances than other state-of-the-art algorithms for several
benchmark multi-class image data sets. Various experiments
have been carried out over a range of parameter settings in
order to gain insights. The algorithm has a higher computa-
tional cost than the previous landmark-based spectral cluster-
ing research, but still scales well with data size. Finally, an
example is provided to demonstrate the working process and
usefulness of the proposed algorithm in color based medical
image segmentation that can help pathologists to distinguish
different tissue types. Though out of the scope of this paper,
future work would investigate combining other active research
areas such as HPC and machine learning production - this
would be highly relevant to scalable computational methods.
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