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ABSTRACT
Joint retrieval of vegetation status from synthetic aperture radar 
(SAR) and optical data holds much promise due to the complimen-
tary of the information in the two wavelength domains. SAR pene-
trates the canopy and includes information about the water status 
of the soil and vegetation, whereas optical data contains informa-
tion about the amount and health of leaves. However, due to 
inherent complexities of combining these data sources there has 
been relatively little progress in joint retrieval of information over 
vegetation canopies. In this study, data from Sentinel–1 and 
Sentinel–2 were used to invert coupled radiative transfer models 
to provide synergistic retrievals of leaf area index and soil moisture. 
Results for leaf area are excellent and enhanced by the use of both 
data sources (RSME is always less than 0:5 and has a correlation of 
better than 0:95 when using both together), but results for soil 
moisture are mixed with joint retrievals generally showing the low-
est RMSE but underestimating the variability of the field data. 
Examples of such synergistic retrieval of plant properties from 
optical and SAR data using physically based radiative transfer mod-
els are uncommon in the literature, but these results highlight the 
potential for this approach.
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1. Introduction

With the launch of the Sentinel–1 (Torres et al. 2012) and Sentinel–2 (Drusch et al. 2012) 
satellites, a new era in Earth Observation has started that allows for the development of 
novel approaches that use these observations at high temporal frequencies and fine 
spatial resolution with complementary information from the optical and microwave 
spectral domains. One important application for these data is the monitoring of crops 
(Torres et al. 2012).
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Optical remote sensing of crops and crop yield has a long history, stretching back as 
nearly as far as the advent of satellite remote sensing itself (e.g. Idso et al. (1977), Tucker 
(1980)). Most early examples use vegetation indices (primarily NDVI – the Normalised 
Difference Vegetation Index) from AVHRR or Landsat data and calibrate empirical relation-
ships with variables such as yield or leaf area. Indeed, even today the majority of studies 
using optical remote sensing data to monitor crops continue to focus on the use of 
vegetation indices. For example, NDVI for yield determination in soybean (Liu and Kogan  
2002), the Perpendicular Vegetation Index (PVI) for determining absorbed radiation in 
cotton and wheat crops (Wiegand et al. 1986) and the Transformed Soil–Adjusted 
Vegetation Index (TSAVI) for determining green crop area in wheat (Broge and 
Mortensen 2002). Viña et al. (2011) compared a large number of vegetation indices to 
estimate the leaf area index of maize and soybean and found that those designed to be 
sensitive to chlorophyll concentration (e.g. the MERIS Terrestrial Chlorophyll Index, MTCI) 
gave the best predictions. Other vegetation indices analysed by Viña et al. (2011) were 
NDVI, the Enhanced Vegetation Index (EVI), the simple ratio (SR), the Green 
Atmospherically Resistant Vegetation Index (GARVI) and Wide-Dynamic Range 
Vegetation Index (WDRVI).

The advantage of these and similar techniques is that they are relatively straight 
forward to apply and computationally cheap to implement. In principle, they give reason-
able results for the areas and cover types over which they were calibrated. However, their 
major shortcoming is that with little or no underlying physics they are not generalisable 
beyond the areas which they were calibrated for and applications on an appreciable scale 
are unlikely to yield accurate results. In particular, such techniques are not amenable to 
combining data from different sensors and different domains of the electromagnetic 
spectrum. To combine data from optical sensors such as Sentinel-2 with SAR sensors 
such as Sentinel-1 some form of physically based model is required.

Examples of crop remote sensing using physical models of radiative transfer (RT) in the 
optical domain are far less numerous than those using empirical techniques. One 
approach that has been used by a number of authors is to use a vegetation canopy 
radiative transfer model to calibrate the vegetation indices. Féret et al. (2011) used the 
PROSPECT-5 model to develop relationships between spectral indices and leaf pigment 
concentrations using partial least squares at the leaf level. The study included maize and 
soybean crops as well as a number of tree species. They showed that it is possible to 
construct simple polynomial relationships that describe a large amount of variability in 
the data. However, it is likely to be more complex when moving to a full canopy due to the 
influence of soil optical properties and the physical structure of the canopy. Punalekar 
et al. (2018) inverted the PROSAIL model against Sentinel–2A data to determine the leaf 
area index for several areas of pasture land in the UK, and from that inferred biomass. They 
used a look–up table based approach and demonstrated that it produced more accurate 
estimates than an empirical relationship calibrated against NDVI. They also noted that for 
operational management of pasture in the UK the frequent impact of cloud on the 
Sentinel–2 data would likely limit its usefulness. This is something that can be directly 
addressed using Sentinel–1 data.

The retrieval of biogeophysical parameters over agricultural landscapes also has a long 
tradition in microwave remote sensing. The general challenge is the separation of the 
different contributions of surface properties to the Synthetic Aperture Radar (SAR) signal. 
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These typically comprise components such as soil moisture, surface roughness, vegeta-
tion water content and vegetation structural effects and need to be disentangled during 
a retrieval process.

Unlike in the optical domain there has been a greater focus on physical modelling for 
SAR applications. Attempts to describe the backscattering from vegetation covered areas 
have been made since the late 1970s. They have evolved from the simple ‘cloud’ model of 
Attema and Ulaby (1978) to multilayered, multi-constituent models like the MIchigan 
MIcrowave Canopy Scattering Model (MIMICS) proposed by Ulaby and Elachi (1990) or the 
radiative transfer model of Karam et al. (1992). More complex radiative transfer (RT) 
models have been developed to take into account the 3-dimensional canopy structure 
(e.g. Floury, 1999; Martinez et al. (2000); Disney and Lewis (2003); Lewis et al. (2003); 
Bracaglia (1995)). Some examples of empirical indices from SAR data also exist, for 
example Kim and van Zyl (2001) proposed the Radar Vegetation Index (RVI), which is 
sensitive to the fresh biomass and vegetation water content (Kim and Won 2003). Mattia 
et al. (2003) used ENVISAT ASAR data for the retrieval of fresh biomass and LAI values over 
wheat fields by means of the HH/VV ratio and Satalino et al. (2006) used the same 
approach for the retrieval of LAI and compared results with LAI derived from in-situ 
data. They concluded that LAI can be retrieved with the same accuracy as with optical 
(MERIS) data. McNairn et al. (2012) used Radarsat2 data for the retrieval of LAI data and 
concluded that, similar to Mattia et al. (2003), the co–pol ratio as well as the HV/VV ratio 
and HV backscatter is a good estimator of LAI. However, with the availability of fully 
polarimetric data, they suggest the usage of H from the H, A, alpha decomposition as well 
as the volume component from the Freeman–Durden decomposition for the retrieval of 
LAI. Paloscia et al. (2012) used dual frequency X- and L-Band data for the retrieval of plant 
moisture content. Using an empirical model combining L-Band HH-pol and X-Band VV-pol 
backscatter values in dependency of the growth structure of the plants, they inverted 
plant moisture content within the expected range and accuracy. Usually vegetation 
biomass and LAI over agricultural fields is estimated from SAR data at high frequencies. 
However, from the SIR-X/C as well as multi-frequency airborne campaigns it has been 
observed that L-band backscattering exhibits a high sensitivity to vegetation biomass of 
crops characterised by large leaves (e.g. corn and sunflowers); whereas higher frequencies 
(C and X bands) showed good agreement with the development of plants with narrow 
leaves (e.g. wheat) (Ferrazzoli and Guerriero 1996, Mattia et al. 2003).

The advent of Sentinel–1 and Sentinel–2 in orbit at the same time provides an 
opportunity to develop new retrieval techniques to exploit the synergies between the 
microwave (specifically SAR) and optical domains. Because of a historical lack of contem-
poraneous observations in these domains the combination of SAR and optical instru-
ments for crop monitoring is less common than the use of either one on its own but the 
potential of this combination to provide information to crop models is significant as the 
two types of observations contain very different and complementary information. Prévot 
et al. (2003) present one of the few examples; they used PROSAIL and the zero order SAR 
model of Attema and Ulaby (1978) to assimilate both optical and SAR data into the STICS 
crop model. A small number of parameters were retrieved: the sowing date, duration of 
maximum LAI, the field capacity of the first soil layer and parameters that control stem 
density and evaporation. Interestingly, the authors note that whilst the optical data 
improved the model outputs the SAR data did not improve the model performance. 
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They suggest that the main reason for this is that the relatively low volumes of SAR data 
available made it difficult to characterise the soil moisture correctly. There is clearly the 
potential to improve on this situation: with the advent of Sentinel–1 the amount of SAR 
data available will be much greater and newer data assimilation techniques are capable of 
dealing with a larger number of parameters.

Other examples using both SAR and optical data tend to involve some level of 
empirical calibration, which limits the generality of the solution. Hosseini et al. (2019), 
for example, used a neural network to estimate the biomass of maize from SAR 
(RADARSAT–1) and optical data (RAPIDEYE). In a first step the authors calibrated a water 
cloud model (for the SAR data) and several vegetation indices (for the optical data) against 
biomass observations. The neural network was then used to predict the optical biomass 
estimates using the SAR-based estimates as inputs. This approach improved the overall 
prediction of the biomass estimates compared to the individually calibrated models. It is 
very likely, however, that the results of this study will be site dependant because of the 
individual model calibrations.

This paper examines synergistic retrievals from Sentinel–1 and Sentinel–2 data by 
inverting coupled optical and microwave radiative transfer models. The retrieval of the 
actual state of the land surface is typically an undetermined problem; the number of 
observables is typically much smaller than the number of unknown parameters in both 
the optical and SAR domain. However, the SAR and optical data contain complementary 
information that can be exploited by advanced retrieval algorithms which helps to 
alleviate this problem.

2. Data and methods

2.1. Satellite data

Sentinel–1 and Sentinel–2 data were downloaded from the Sentinel data hub API (https:// 
www.sentinel-hub.com/) for the sites described in Section 2.2. For Sentinel–2, Level–2a 
surface reflectance data were acquired, resampled to a common spatial resolution and 
co–registered with the Sentinel–1 data using the ESA SNAP toolbox. The surface reflec-
tance data, as opposed to, say, a Level–1 product, is motivated by the need to eliminate 
the influence of the atmosphere on the data, which will introduce error into the retrieval 
algorithm. Cloudy pixels were eliminated based on the Level–2a internal cloud mask 
(European Space Agency, E. 2015). No further pre–processing was carried out on the 
Sentinel–2 data.

Additional pre-processing steps for the original single look complex (SLC), Level–1 
Sentinel–1 data, all using the SNAP toolbox, included thermal noise removal (to remove 
thermal noise in the data), radiometric correction (to correct the backscatter values for the 
local terrain), speckle filtering using a combined spatial and multi-temporal Lee filter (to 
reduce the impact of speckle), final sigma 0 conversion and backscatter normalisation to 
account for changes in incidence angles across the swath (Weiß et al. 2020). The objective 
of applying these steps is to produce backscatter values that are consistent with those 
predicted by the RT model and hence reduce errors in the retrieved soil moisture and LAI. 
Following preliminary experiments (results not shown), the input to the retrieval scheme 
was selected to be the HV polarisation from Sentinel–1 data and for Sentinel–2 bands 4 
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(665 nm), 5 (705 nm), 6 (740 nm), 7 (783 nm) and 8 (842 nm) were selected, where the 
wavelength indicated represents the centre of the band–pass function. No increase skill 
was observed from including additional optical bands or SAR polarisations.

2.2. Field data

Field data were acquired as part of the Munich North Isar (MNI) campaign which takes 
place in farmland to the north of the city of Munich (Germany). The MNI fields used in this 
study are labelled 508, which is growing wheat, 515 which is growing maize and 542 
which is growing triticale (a hybrid of wheat and rye). The campaign started end of 
March 2017 and continued until harvesting of the corresponding crops. Measurements 
of leaf area index (LAI) were acquired by sampling across the fields and then averaging to 
provide a per–field LAI. Soil moisture measurements were carried out at the sampling 
locations indicated in Figure 1. The sampling points within each field are referred to in this 
manuscript as ‘low’, ‘mid’ and ‘high’ representing their positions from South to North 
within the field. The figure shows the fields using the NDVI from Sentinel–2 to highlight 
the vegetation, and calculated as ðB7 � B4Þ=ðB7þ B4Þ, where B4 and B7 are bands 4 and 7 
described in the previous section. LAI was measured using a Li–Corr LAI2000 instrument. 
Each sampling location is equipped with a data logger (Decagon EM50) and probes that 
measure the soil moisture dynamics (Decagon 5TM) in 5 cm, 10 cm and 30 cm depths with 
two repetitions each.

2.3. Radiative transfer models

2.3.1. Optical radiative transfer
The semi–discrete model of Gobron et al. (1997) represents canopy reflectance via the 
addition of three terms: 

ρcanopy ¼ ρ1ðz0;Ω;Ω0Þ þ ρ0ðz0;Ω;Ω0Þ þ ρMðz0; μ; μ0Þ (1) 

where ρcanopy is the canopy reflectance, ρ1 is the reflectance due to photons that have had 
a single interaction with the canopy, ρ0 is the reflectance due to photons that have only 
interacted with the soil and ρM is the reflectance due to photons that have had multiple 
interactions within the canopy, possibly including the soil. A hotspot term is included in ρ1 

and ρ0 to account for the enhanced probability of a photon exiting the canopy if it leaves 
along the same or similar path via which it entered. Leaf optical properties are prescribed 
using the PROSPECT model (Jacquemoud and Baret 1990) and soil optical properties via 
the model of Price (1990). PROSPECT parameters were held constant at typical values for 
healthy cereal crops. In addition, a very simple model of the impact of soil moisture on the 
first component of the Price reflectance spectra (Price 1990) was included such that 

ρ�s1 ¼ ρs1ð1 � αθmÞ; (2) 

where ρs1 is the first orthogonal component reflectance spectra from the Price model, θm 

is the soil moisture (m3=m3), ρ�s1 is the modified reflectance spectra and α is a term that 
weights the influence of the soil moisture on the reflectance. The effect of this modifica-
tion is a first-order approximation to make the soil darker when it is wetter.
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Figure 1. Sentinel–2 NDVI images of the three fields used in this study. From left to right they are 
growing wheat, maize and triticale. The images were acquired on the 26th of June 2017. The grid lines 
mark out the Eastings and Northings of the UTM grid with units of metres.
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To convert from the top–of–canopy reflectance spectra computed by the semi–dis-
crete model to the wave bands of Sentinel–2 the model outputs were convolved with the 
spectral response functions of the instrument.

2.3.2. Microwave radiative transfer
For the microwave domain, the semi–empirical single scattering radiative transfer model 
developed by De Roo et al. (2001) was used to model the backscatter values of Sentinel–1. 
The total single-scattering pq–polarised backscattering coefficient ðm2=m2Þ is expressed 
by the following equation: 

σ0
pq ¼ σ0

gpq
þ σ0

cpq
þ σ0

gcgpq
þ σ0

cgpq
(3) 

where each component represents a different scattering mechanism. For a particular 
polarisation configuration, these components are: σ0

gpq
, the direct backscatter contribution 

of the underlying soil surface (including two-way attenuation by the canopy); σ0
cpq

, direct 

backscatter contribution from the canopy; σ0
gcgpq

, ground–canopy–ground scattering 

contribution and; σ0
cgpq

, the combined ground–canopy and canopy–ground scattering 

contribution. For the soil backscattering term, σ0
gpq

, the model of Oh et al. (1992) is used. 

The other components are modelled as a uniform water cloud following Attema and 
Ulaby (1978).

2.4. Retrieval algorithm

To link a satellite observation to the state of the land surface, si, at acquisition time ti 

a forward model or observation operator (Kaminski and Mathieu 2017) is needed that 
simulates the satellite observations given si. In the current study, the observation opera-
tors for Sentinel–1 and Sentinel–2 are provided by the models described in sections 2.3.2 
and 2.3.1 respectively. The observation operators are denoted by Hbðsi; xb; gbÞ and 
Hoðsi; xo; goÞ, using the index b for backscatter and o for optical. The vectors xb and xo 

denote uncertain parameters in the formulation of the respective observation operators 
while gb and go are known variables, for example, sun–sensor geometry. The retrieval is 
formulated by concatenating the unknown sequence of states si at all times ti into one 
long vector s, the state trajectory. A dynamic model is also introduced that will help 
constrain the solution. If the model was perfect, M would fulfill the equation 

0 ¼ MðsÞ � s (4) 

The above four pieces of information are represented by a probability density function 
(PDF), with respective means b (for backscatter), o (for optical), p (prior), and m (for the 
deviation of MðsÞ from s) and respective covariance matrices CðbÞ, CðoÞ, CðpÞ, and CðmÞ
which quantify the respective uncertainties. Cb and Co include the uncertainty that arises 
from errors in the respective observation operators that cannot be corrected for by 
perfect state and parameter values.

For a compact notation all unknown quantities are assembled, that is, the trajectory s 
and the parameters in the observation operators xb and xo, into one long vector ~x called 
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the control vector. The retrieval is then achieved by finding an ~x that minimises the cost 
function 

Jð~xÞ ¼ Jbð~xÞ þ Joð~xÞ þ Jpð~xÞ þ Jmð~xÞ; (5) 

which is the sum of four contributions, one dedicated to each piece of information: 

Jbð~xÞ ¼
1
2

X

i¼1;nb

ðHbð~si; ~xb; gbÞ � biÞ
T CðbÞ� 1

ðHbð~si; ~xb; gbÞ � biÞ; (6) 

where nb is the number of S1 acquisitions; 

Joð~xÞ ¼
1
2

X

i¼1;no

ðHoð~si;~xo; goÞ � oiÞ
T CðoÞ� 1

ðHoð~si; ~xo; goÞ � oiÞ; (7) 

where no is the number of S2 acquisitions; 

Jpð~xÞ ¼
1
2
ð~x � pÞT CðpÞ� 1

ð~x � pÞ; (8) 

Jmð~xÞ ¼
1
2
ðMðsÞ � sÞT CðmÞ� 1

ðMðsÞ � sÞ: (9) 

In this implementation the dynamical model is kept both simple and generic, and, as with 
Lewis et al. (2012), the solution is allowed to infer a state vector that deviates from the 
model prediction. Such an approach is often called ‘weak–constraint variational’ 
(Zupanski 1997) in contrast to variational approaches that exclude deviations from the 
model trajectory, that is, where the model equations act as a strong constraint on the 
minimisation problem. The advantage of the weak-constraint approach (in particular with 
high uncertainty CðmÞ) is that it leaves high flexibility to fit the Sentinel observations. In 
other words, the retrieved trajectory will be primarily determined by observations rather 
than by the dynamical model – the output will be primarily an satellite data product 
rather than a model output constrained by observations.

The form of the model used here follows that of Lewis et al. (2012), who use a simple 
linear (more precisely a simple affine) model: 

MðsÞ ¼ Asþ b ; (10) 

where the model parameters (i.e. the matrix A and the vector b) can be specified to suit 
a particular problem. In the following retrievals the matrix A of Equation 10 is populated 
such that a given component variable vi of the state vector si at a given point in time i will 
be simulated as 

vi ¼ aivi� 1 þ bi (11) 

with ai ¼ 1 and bi ¼ 0. This equates to a simple zero-order model (‘today is like tomor-
row’). The consequence of using a model formulation like this is that it imposes a degree 
of temporal smoothness on the results, but also allows the information from each 
observation to influence the retrievals at other time steps. This is analogous to the 
temporal constraints on linear BRDF inversion described by Quaife and Lewis (2010).

The minimisation of Eq. 5 is performed iteratively and relies on the capability to 
evaluate J and its gradient. The Automatic Differentiation tool TAPENADE (Hascoët and 

8 T. QUAIFE ET AL.



Pascual 2013) was applied to generate code that efficiently evaluates the gradient of J, the 
so-called adjoint of J. Figure 2 illustrates the algorithm described in this section.

3. Results and discussion

3.1. Retrievals

For each of the evaluation points described in 2.2 retrievals of leaf area index and soil 
moisture using Sentinel–1 and Sentinel–2 individually and together were compared to 
the field data. Figure 3 shows the results for each of these combinations for the mid point 
of field 508. The general pattern here is indicative of the results for each of the evaluation 
locations and the full results are summarised using Taylor diagrams described later in this 
section. Sentinel–1 only retrievals tend to capture the mean soil moisture reasonably well 
but the variability, especially later in the growing season, is not well correlated with the 
field observations. This is likely due to the poor representation of LAI in the retrieval, 
which is consequently very poorly correlated with the field observations and is biased low 
for most of the growing season. The retrieval algorithm is adjusting the soil moisture to be 
too high to compensate for the low LAI. This is perhaps unsurprising and suggests a level 
of equifinality between the two variables in the SAR signal. The Sentinel–2 only retrievals 
show a much stronger correlation with LAI, representing the phenology of the crops well, 
with a small bias in the order of 1.0 LAI units. The soil moisture appears to represent the 
mean well but this is not borne out across all of the data points (see Figure 6) where in 
general the RMSE and correlation of the Sentinel–2 only soil moisture results is poor. For 
the joint retrieval the LAI matches very well. The influence of Sentinel-2 on the retrievals 
pulls the Sentinel–1 results into line via the dynamic model that is implemented in the 
retrieval algorithm. In turn this allows the soil moisture to take on a more realistic 
temporal evolution, albeit somewhat biased high and not exhibiting sufficient variability 
in this example.

Figures 4 and 5 show the joint retrieval results for each of the evaluation points for leaf 
area index and soil moisture respectively. For LAI the results are consistently good, in 
particular for fields 508 and 542. The phenological profile is well captured despite the fact 
that this is somewhat different between the fields. Field 542, for example, which is 
growing triticale starts its greening–up phase weeks later than the wheat growing in 
field 508 and this is well captured by the satellite data. Field 515 shows a positive bias in 
the retrieval results, which then appears to become unbiased towards the end of the 
season. The same is observed in the ‘mid’ point of field 542. A consistent pattern observed 
for the wheat field is that the ground observed LAI appears to slow its decline towards the 
end of the season, whereas the retrieved LAI continues to reduce. This could be due to the 
effective LAI of the retrieval being reduced to compensate for a yellowing of the wheat 
foliage as the plant becomes senescent, whereas the optical measurement technique 
used to estimate the LAI relies only on the amount of light intercepted and is hence not 
sensitive to changes in the leaf colour. However, this pattern is not observed in the maize 
or triticale measurements and both of these species yellow as they pass maturity in much 
the same way as wheat.

The joint Sentinel–1 plus Sentinel–2 retrievals of soil moisture for each point are shown 
in Figure 5. For field 508 the retrievals capture the magnitude, with a small positive bias, 
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and some of the early season dynamics. For field 542 the ground observed soil moisture is 
quite variable and the retrievals generally don’t capture that variability, except for the 
‘low’ validation point. As with field 508 there is a small positive bias. For field 515 there 
exists a significant positive bias in the retrievals.

Statistical summaries of the results for all nine points and the three possible combina-
tions of sensors entering the retrievals are shown in Figure 6 for LAI and Figure 7 for soil 
moisture using Taylor diagrams (Taylor, 2001). The Taylor diagram allows for easy com-
parison of multiple experiments. The relative standard deviation of the retrievals to the 
ground observations is on both the x–axis and y–axis and increases radially from the 
origin. Correlation is shown on the polar axis such that the smaller the angle between 
a point and the horizontal axis the more correlated it is with the observations. Because 
there is an algebraic relationship between the relative standard deviation, correlation and 
RMSE it is also possible to plot the RMSE on the Taylor diagram; these are the radial 
contours that emerge from the 1.0 point of the x–axis. For LAI the Taylor diagram shows 
a clear picture. The Sentinel–1 only retrievals have very poor reproduction of the varia-
bility in the ground–truth data and the RMSE is > 0:75 for all experiments. The Sentinel–2 
only retrievals over–estimate the variability in the observations, but tend to have 
a correlation better the 0.8 and an RMSE > 0:5. For the joint retrievals the results are 
better than the individual cases for all points with RSME always less than 0:5 and 
a correlation of better than 0.95. The Taylor diagram for the soil moisture is less clear 
and, by reference to Figure 5, much more dependent on the crop type. The joint retrievals 
tend to have a lower RMSE and higher correlation than the retrievals from either Sentinel 
on its own but this is not always the case. Especially for field 515, a high RMSE can be 
observed resulting from a visible bias in the retrievals, while for field 508, this bias is 
marginal resulting in small RMSE values. In addition, the joint retrievals also appear to 

Figure 2. Flow chart outlining the algorithm and data described in Section 2. The box labelled ‘other 
variables’ is intended to indicate that, although we have not done so here, the system can be used to 
retrieve any of the variables that can be computed from output of the dynamical and RT models used.
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suppress the variability quite significantly in most cases, whereas the individual retrievals 
especially tend to contain too much variability.

The overall number of validation points in this study is relatively small: nine points in 
total, evenly split across three different crop types. This represents, in part, the complex-
ities of undertaking such fieldwork. To build further confidence in the retrieval technique 
presented here would require expanding the experiments to a wider range of crop and 
soil types with a larger number of samples for each. The technique is likely to work with 
similar levels of accuracy for other grass crops as these most closely satisfy the underlying 
assumptions of the radiative transfer models used (i.e. the vegetation canopy can be 
represented as a homogeneous turbid medium) but it is unknown how the technique will 
work for other types of crops (for example, root vegetables such as potato). In addition, 
the soil type is similar in each of the fields studied here and so sampling across a wider 
range of soils will help strengthen understanding of the performance of the retrievals. 
However, given the less conclusive soil moisture results shown in this study, it is difficult 
to anticipate how the retrievals will be affected by different soil types.

Figure 3. Comparisons of the retrievals for Sentinel–1 (left hand column) and Sentinel–2 (middle 
column) individually and jointly (right hand column) for field 508, ‘mid’ sampling point. Stars indicate 
field observations. Dark points retrievals at Sentinel–2 acquisition times and light grey points retrievals 
at Sentinel–1 acquisition times.
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The within–field sampling strategy was determined prior to the current study and 
consequently the available LAI data were not acquired at the points at which the soil 
moisture probes are placed and at which the satellite data retrievals were carried out. 
Instead, field averages have been used. Given the high quality of the results for LAI this 
does not appear to have induced any problems with the results; for the field studied the 
averaged LAI likely provides a good approximation of the LAI at each of the individual 
points. If it were possible to have individual LAI time series at each of the sampling points 
this may allow further nuance in the retrievals to be undertood, such as the extent to 
which they can capture within–field LAI variability.

3.2. Future work

One aspect of the current study that can clearly be improved upon is the inclusion of 
other variables from the respective radiative transfer models in the retrieval. This was not 
attempted during this study as the complexity of the overall system was already high and 

Figure 4. LAI retrievals using all Sentinel–1 and Sentinel–2 data from the 2017 growing season for 
each field (columns) and each sampling point (rows). Stars indicate field observations. Dark points 
retrievals at Sentinel–2 acquisition times and light grey points retrievals at Sentinel–1 acquisition 
times.
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the objective was to gain confidence in the LAI and soil moisture retrievals. Arguably the 
next most important variable to consider would be leaf water content as this has an 
impact on both the microwave signal and the short–wave infra red channels of Sentinel– 
2. This should be the next step forward in similar studies looking to exploit synergies 
between these two Sentinel missions. Including leaf pigments such as chlorophyll should 
also be a priority and may help to improve retrievals as plants become senescent.

Prior and data uncertainties required as inputs to the retrieval algorithm described in 
Section 2.4 in this study were assigned on the basis of expert elicitation, which is common 
practice in Bayesian inference, but more analytical methods could be employed for this 
purpose. Specifically, understanding the errors in the Sentinel–2 Level–2a surface reflec-
tance and the microwave and optical radiative transfer models used as observation 
operators here have the potential to improve the retrievals. In addition, being able to 
objectively specify the off–diagonal elements in the covariance matrices is known to 
improve the performance of such algorithms (Pinnington et al. 2016).

Figure 5. Soil moisture retrievals using all Sentinel–1 and Sentinel–2 data from the 2017 growing 
season for each field (columns) and each sampling point (rows). Stars indicate field observations. Dark 
points retrievals at Sentinel–2 acquisition times and light grey points retrievals at Sentinel–1 acquisi-
tion times.
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The particular choice of Sentinel–1 polarisation (HV) and Sentinel–2 band combination 
(4 through 8) employed was based on preliminary experiments that suggested these 
worked well with the choice of radiative transfer models. It is not necessarily the case that 
the combination used here will be the best in every situation or even optimal for this 
particular experiment. For Sentinel–2 for example, including all bands may lead to over 
confidence in the results and biasing the retrievals towards the optical data unless errors 
are correctly specified in the matrix CðoÞ. It is likely that this will need to include off– 
diagonal elements as well to represent correlated uncertainties in bands that are close to 
each other spectrally. In the examples in this paper CðoÞ was set as a diagonal matrix. If 
other parameters had been targetted for retrieval it is possible additional skill could have 
been gained from other bands.

The software used for the retrievals in this study was designed to allow flexibility but 
not computational efficiency. Ultimately, time series retrieval is likely too slow to be used 
across entire images. Consequently, some further work is required to make this tool more 
efficient. Analysis of the computational performance of the retrievals (not shown here) 
revealed a large amount of time being used in the optical radiative transfer model, despite 
the fact that there are relatively far fewer data points collected by Sentinel–2. The bulk of 
this is being used to perform multiple scattering calculations (ρM in Equation 1). A future 

Figure 6. Taylor diagram showing summary results for LAI for each experiment. Distance from the 
origin indicates the level of variability compared to observations, with the dark dashed line represent-
ing the variability in the observations. The angle subtended with the horizontal axis represent 
correlation with the observations and the radial contours extending from the black dot represent 
relative RMSE. The closer a point to the black dot (which represent the observations) the better the 
retrieval has performed.
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evolution of the system should probably include a modified version of the semi–discrete 
model with an approximation to the multiple scattering term.

4. Conclusions

The study has demonstrated a joint retrieval algorithm for LAI and soil moisture from 
Sentinel–1 and Sentinel–2 data using physically based radiative transfer models. The 
inversion scheme uses adjoint versions of the computer code of these models to perform 
the cost–function minimisation and the values of the retrieved variables are constrained 
temporally using a dynamic model that prescribes the degree of smoothness in their 
evolution. By comparison against field observations from agricultural sites in Germany it 
was shown that the joint retrieval improves estimates of leaf area index in every case 
compared to individual retrievals, and soil moisture in the majority of cases. There are very 
few examples of joint retrievals using physically based radiative transfer in the optical and 
SAR domains and none, to our knowledge, using Sentinel–1 and Sentinel–2. The results 
presented here show promise for future developments in this field. More generally this 
approach paves the way for combining a much wider range of observation types in 
retrieval systems or terrestrial data assimilation systems that aim at providing 
a consistent view on the terrestrial state that is informed by observations. For example, 
using a range of microwave frequencies, optical and thermal data. In addition, the matrix- 
based dynamic model could be informed by process-based models to provide prior 
information on likely magnitudes and timing of events, for example, under what condi-
tions vegetation is likely to start greening–up.

Figure 7. As Figure 6 but for soil moisture.
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