
Essays on Stochastic Volatility Models

with Jump Clustering

ICMA Centre

Henley Business School

Thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

Jian Chen

October 2022



Declaration of Original Authorship

I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Jian Chen

© Copyright by Jian Chen, 2022

All Rights Reserved



Acknowledgements

This thesis would not have been completed without support from many people. Fore-

most, I am indebted to my supervisors Professor Andrew Urquhart and Professor

Michael P. Clements for their excellent guidance, inspiring comments and encourag-

ing suggestions through all the three years of my studies and research. They offered

great helps in constructing new ideas, and provided patient support in drafting re-

search papers. I can still remember how they guided me in doing research and build

up my confidence, especially in the first year of my PhD. I benefited tremendously

from the numerous discussions with them.

I also benefited from having conversations with Emese Lazar, Alfonso Dufour,

Shixuan Wang, Tobias Kuna, Xiaohan Xue, Shuyuan Qi, Yu Zhang and other friends

and colleagues. I feel fortunate to have had the opportunities to work with them. I

also would like to thank the ICMA centre who provided financial support and the

University of Reading who provided Academic Computing Cluster Service.

Additionally, I would like to express my deep gratitude to examiners Dr. Emese

Lazar and Dr. Thomas Conlon for reviewing the thesis and offering many construc-

tive comments.

Last but not the least, my special thanks go to my beloved Mengyang Xu for

her support, encourages and having faith in me.



To my parents.



Abstract

This thesis investigates models of stochastic volatility which are able to accommo-

date the clustering of jumps typical of many high-frequency financial time series,

both in terms of describing significant features of the data, and forecasting. Chap-

ter 1 gives an overview on the jump-diffusion stochastic volatility models, clustering

behaviours of jumps and contributions of this thesis to current literature.

Chapter 2 examines the clustering behaviour of price and variance jumps using

high-frequency data, modelled as a marked Hawkes process embedded in a bivari-

ate jump-diffusion model with intraday seasonal effects. We find that the jumps of

both individual stocks and a broad index exhibit self-exciting behaviour. The three

dimensions of the model, namely positive price jumps, negative price jumps and

variance jumps, impact one another in an asymmetric manner, that is positively

and significantly correlated with jump size. We estimate model parameters using

Bayesian inference by Markov Chain Monte Carlo, and find that the inclusion of the

jump parameters improves model fitness. We quantify the jump intensity and study

characteristics of jump clusters, we find under high-frequency settings, jump clus-

tering activities can last 2.5 to 6 hours in average, we also find that the model with

marked Hawkes process models mostly outperform others in terms of reproducing

two cluster-related characteristics.

Chapter 3 uses a bivariate jump-diffusion model incorporating jump clustering

features by embedding a multivariate marked Hawkes process for high-frequency

forecasting. In the out-of-sample period, we use a particle filter to estimate variance

at each state and forward simulating return and variance distributions. We apply

i



a Kalman filter to correct errors that arise with microstructure noises in the high-

frequency data. The simulation studies show the effectiveness of the Kalman filter.

We show that the inclusion of jump clustering significantly improves the performance

of high-frequency volatility forecasting and daily realised volatility forecasting. In

high-frequency volatility forecasting, we find that forecasting performance is espe-

cially better with forecasting horizons of less than two hours. We also show that

expected losses of two risk measures, value-at-risk and expected shortfall, can be

reduced by up to 15% using models with jump clustering features.

Chapter 4 forecasts Bitcoin’s returns and return jumps using a self-exciting pro-

cess embedded in a stochastic volatility model. We show the existence of the jump

clustering feature, which varies depending on the frequency of the data. In an

out-of-sample setting, we use a particle filter to sample latent states and conduct

one-step-ahead probabilistic forecasting on future jumps (underlying intensities).

We assess the forecasts by a continuous ranked probability score. We further de-

velop a statistic that takes the discrepancies between the predicted probabilities of

positive and negative jumps. We find that high and low values of the difference in

predicted probabilities of positive and negative jumps is able to predict returns, and

that a trading strategy based on this has a Sharpe ratio of 4.36.

Lastly, Chapter 5 concludes the thesis and discusses future research.
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Chapter 1

Introduction

This chapter will introduce the background of our studies, including some concepts

and recent studies on jump-diffusion stochastic volatility models and how current

literature models arrivals of jumps. It will also introduce the motivations for our

studies and the contributions of this thesis.

1.1 Continuous-Time Jump-Diffusion Stochastic

Volatility Models

Jumps often refer to significant discontinuities in a continuous-time process. The

earliest study incorporating jumps in asset prices traces back to Merton (1976). It

proposes a continuous-time stochastic volatility model incorporating jumps in the

price process and applies the model in option pricing. The model takes the following

form:

dPt = µdt+
√

VtdW
P
t + ξPt dN

P
t , (1.1)

where Pt denotes the logarithm of asset prices, µ is a drift term. Vt denotes the

variance, which assumes to be constant in the model. dW P
t is a standard Wiener

process. ξPt denotes the size of price jump and dNP
t is a counting process with a

constant intensity λ0. Later literature (see e.g. Heston 1993, Bates 1996) allows a
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time-varying variance, which is modelled by a mean-reversion process:

dVt = γ(θ − Vt)dt+ σV

√
VtdW

V
t , (1.2)

where γ and θ denotes mean reversion speed and long-run variance mean, respec-

tively. σV presents volatility of volatility. dW V
t is another standard Wiener process

for the variance. A leverage effect can be captured by allowing two Wiener processes

to be correlated with a correlation ρ = corr(dW Y
t , dW V

t ) (see discussions by Black

1976, Jacquier et al. 2004). In addition, Duffie et al. (2000) discovered jumps in

the variance process (also see discussions by Eraker 2004), which let the variance

process become:

dVt = γ(θ − Vt)dt+ σV

√
VtdW

V
t + ξVt dN

V
t , (1.3)

where ξVt dN
V
t is the variance jump component. On top of this, Duffie et al. (2000)

also let two jump sizes be correlated:

ξPt ∼ N (µj + ρjξ
V
t , σ

2
j ), (1.4)

where the size of price jumps ξPt is assumed to follow a normal distribution with a

mean being linearly correlated with the size of variance jumps ξVt .

There are also many other extensions based on this model in the literature. For

example, Carr & Wu (2003) introduce a stochastic volatility model incorporating

Lévy jump, which allows infinite activities of jumps. Bandi & Reno (2016) add an

additional price and variance co-jumps component. Also see discussions by Bakshi

et al. (1997), Pan (2002), Eraker (2004), Jacod & Todorov (2009, 2010), Todorov &

Tauchen (2011).

1.2 Self-Exciting Point Processes

Models introduced up till now may model jumps differently, but they make assump-

tions on jumps that they arrive independently with a constant underlying intensity
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p(dNt = 1) = λ0. However, another class of stochastic point process (Hawkes pro-

cess) allows the intensity to depend past jumps. It is proposed by Hawkes (1971a,b).

On top of this, a multivariate version and its extension with mark values are intro-

duced by Liniger (2009). The model not only allows impact by its past jumps

(self-exciting), but also by jumps in other dimensions (cross-exciting). This section

will introduce a marked Hawkes process in a general form.

We consider a counting process Nt on the σ-algebra of X ’s Borel set, BX , with

d dimensions Nt = {N i
t}i=1,...,d observed over the time interval t ∈ [0, T ] labeled by

different marks which belongs to some mark space κi ∈ K ⊂ Rd. d sequences of

event times with marks are observed in pairs {(ti, κi)} on X × K and the ground

process Ng is a bounded finite point process; i.e. Ng (·) =
∑d

i=1 Ni (·) < ∞. The

corresponding intensity of ground processes is given by:

λi
g(t) = λi

0 +
d∑

q=1

ϑi
q

∫
[0,t)×K

ϕi (t− s)ωi
q(κq)Nq (ds× dκ) (1.5)

where λi
0 is defined as an immigration intensity of dimension i, which is constant; ϑ

is a branching coefficient matrix; ϕi is a decay function such that ϕ : R+ → R+ and

we assume an exponential decaying kernel ϕi(t− s) = βie−βi(t−s), βi > 0,. ωi
q(κq) is

a impact function of marks such that ω : R → R+.

Under a general marked Hawkes process, the immigrant events arrive in a Poisson

process with the immigration intensity λ0 and marks κ. They further presage arrivals

of offspring events, the intensity of which will decay exponentially with the speed

parameter β. ϑ is defined as a (d × d) branching matrix ϑ := ϑi
q; q, i ∈ {1, .., d}

and ϑi
q governs the mean increase of the intensity of the process in the dimension i

that is raised by events in the dimension q. The impact function ωi
q(κq) measures

the increase of intensity in the dimension i that is led by the mark value κq in the

dimension q. Further details of Marked Hawkes Process and its interpretations can

be seen in Liniger (2009).

For the purpose of letting the ground intensity λi
g(t) to be stationary so that the

process {N i
t}i=1,...,d has stationary increments, we assume the following conditions
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(1 and 2) hold:

Condition 1 The branching matrix ϑ satisfies the condition that its spectral radius

or L1 − norm is smaller than 1 (||ϑ|| < 1).

Condition 2 The non-negative decay function ϕ(·) satisfies
∫∞
0

ϕi(t)dt = 1, and∫∞
0

tϕi(t)dt < ∞,∀i ∈ {1, ..., d}.

See a more detailed definition and proof for the stability of a marked Hawkes process

in Daley et al. (2003) with which most of our mathematical setup is in line.

The marked Hawkes process was proposed and originally applied to the field of

seismology and neurophysiology, genome analysis and criminological research (see

e.g. Brillinger 1988, Reynaud-Bouret & Schbath 2010, Mohler et al. 2011). It has

attracted many studies in the finance field in the recent decade.

Aı̈t-Sahalia et al. (2015) incorporate a multivariate Hawkes process into an Itô’s

semimartingale and study the cross-impact of international stock markets. Li &

Zinna (2018) propose a pricing model for asset returns and variance swap rates,

and find evidence of self-exciting behaviours of jumps. Lee & Seo (2017) apply a

MMPH to take into account both the impact of marked values and periodicity. They

assume a symmetric structure in their study of price and variance. They find that

intraday periodicity is an important aspect of the modelling of price and variance

dynamics. Fulop et al. (2015) also find evidence of self-exciting jumps, especially

during a financial crisis. Maneesoonthorn et al. (2017) use high-frequency data to

detect jumps in daily asset prices, and show that self-excitation is apparent in these

estimates. Their modelling uses daily-frequency data.

1.3 Motivations and Contributions

This thesis considers a stochastic volatility model in the high-frequency setting.

This is motivated by potential intraday dynamics of jump dependency. Specifically,

a jump can raise the probability of a jump happening in the following few hours, but
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this may not show up in daily movements. A potential explanation for this intraday

dependency of jumps comes from information asymmetry (Grossman 1976). Sup-

pose a publicly-listed company releases information which tend to be negative and

may deteriorate the company’s stock price. The most informed investors would liq-

uidate the company’s stock from their portfolio, which may create a negative jump

in company’s stock price. Less informed investors may follow suite, potentially pro-

ducing further negative jumps clustering together. Thus, modelling jump clustering

in an intraday level can be important.

Based on the potential intraday dynamics of jump dependency, Chapter 2 for-

malise this idea and propose a stochastic volatility model embedded with a three-

dimensional marked Hawkes process. It also considers the impact of intraday pe-

riodicity. To our best knowledge, we are the first to propose a model for high-

frequency asset prices with jump dependencies. In the empirical studies, we retrieve

five-minutes data of five US individual stocks and a broad index (S&P 500). Re-

garding the model estimation, we combine the non-parametric estimations with the

Bayesian estimation to estimate the model. This is to increase the stability of

Bayesian Markov chain Monte Carlo algorithm. Our results indicate evident jump

clustering in both individual and index data. We also show the importance of jump

sizes in modelling and an asymmetric impact structure among three dimensions of

jump (positive, negative price jumps and variance jumps). In addition, we show

that jump clustering behaviours can be ’hidden’ by intraday periodicity.

We evaluate our model proposed in comparison to benchmark models in two

ways. First, we report deviance information criteria, and the Bayes Factor. Results

are shown to favour the modelling price and variance jumps with the marked Hawkes

process. Second, we define a cluster of jumps and evaluate models we consider in

terms of their ability to reproduce characteristics found in the data - namely mean

and standard deviation of cluster’s length. This emphasises the models’ capability

to capture aspects of particular importance. Consequently, the model with marked

Hawkes process generally outperforms the other models in terms of reproducing
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these characteristics.

Chapter 3 investigates the contribution of including jump clustering to forecasts

on variance and risk measures based on the model in Chapter 2. The model esti-

mation remains unchanged in the in-sample. During the out-of-sample, we apply

a particle filter to iteratively estimate variance at each state and forward simulate

return and variance distributions, from which we retrieve the forecasts of variance

and two risk measures, namely value-at-risk (VaR) and expected shortfall (ES). We

also consider a range of forecast horizons from five minutes to one trading day.

Furthermore, we apply a Kalman filter to correct forecast errors caused by incon-

sistently estimated parameters. Through a simulation study, we show that the

micro-structure noise in high-frequency data can lead to inconsistent estimation of

parameters.

In the empirical work, we examine an individual stock and an index data (Ap-

ple Inc. and S&P 500 Index). We first examine the performance of high-frequency

variance forecasts in terms of mean square error, forecast bias, R-square from a

Mincer-Zarnowitz regression and Diebold-Mariano test of our model against oth-

ers. We also look at forecast performance after the arrivals of different types of

jumps. Forecast results favour the model with jump clustering features in general.

We also find the data associated with more jumps reports comparatively bigger im-

provements in variance forecasting when including jump clustering in the model. In

addition, results show that negative jump clustering contributes more in forecasting

and performance is relatively better with forecasting horizons of less than two hours.

We set the forecast horizon to one trading day and forecast on daily realised

volatility. We benchmark two popular classes of realised volatility forecasting models

in current literature, namely heterogeneous autoregressive (HAR) family models and

realised GARCH family models. The forecasting results indicate the superiority of

models incorporating jump clustering features.

Lastly, we take quantiles of predicted return distributions and retrieve predicted

VaR and ES. In the evaluation of out-of-sample forecasting, we adopt a loss function
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proposed by Fissler & Ziegel (2016) to jointly assess forecasts of VaR and ES. We

find that the inclusion of jump clustering in a model can reduce the expected loss of

VaR and ES by up to 15%. Similar to high-frequency variance forecasting, we also

examine expected losses after the arrivals of different types of jumps across a range

of forecast horizons. The results suggest that the model with jump clustering fea-

tures outperform others, especially after negative price jumps and when the forecast

horizon is less than one hour. In addition, we adopt two backtesting techniques on

VaR and ES forecasts, namely the DQ (dynamic quantile) test proposed by Engle &

Manganelli (2004) and a DES (dynamic expected shortfall) test proposed by Patton

et al. (2019). The backtesting results suggest that the forecasts of VaR and ES by

our model are least likely serially correlated.

Chapter 4 use the same model but in a more parsimonious form. The fourth

chapter aims to apply the model on Bitcoin data and predict price jumps in the

data. Similar to the third chapter, we estimate the static parameters in the in-sample

period by Bayesian MCMC and fix them at their posterior mean in the out-of-sample

period. In the out-of-sample, we adopt a particle filtering to iteratively estimate

variance at each state and conduct one-period-ahead probabilistic forecasting on

both positive and negative jumps. We assess the probabilistic forecasting by a

continuous ranked probability score (CRPS). We take two measures on true values

of jumps, which are Bayesian estimated jumps and non-parametrically estimated

jumps. In our empirical studies on Bitcoin data in a range of frequencies, CRPS

and associated DM test results show that our forecasting framework outperform two

other benchmark models, especially when data frequency is higher than 30 minutes.

We further propose a new statistic that takes the differences between the pre-

dicted probability of positive jumps and that of negative jumps. We show that the

empirical distribution of this statistic has evident tails and those tails have strong

indications on Bitcoin returns. Specifically, returns are more likely associated with

positive variations when the predicted probability of positive jumps is higher than

that of negative jumps, and vice versa. We further demonstrate this point by a
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regression analysis. In addition, we propose a trading strategy to long the returns

on the right tail of the statistic and short the returns on the left tail of the statistic.

We consider the impact of transaction costs, trading gaps and liquidity costs. The

Sharpe ratio of our strategy can reach up to 4.36 with costs. We also find that the

exceptional performance of the Sharpe ratio stems from a low standard deviation

of strategy returns. The performance of maximum drawdown further shows our

jump prediction framework’s ability to mitigate downside risks. We further conduct

a battery of robustness checks, including higher transaction costs, longer trading

gaps, a range of performance evaluation ratios and assessing if the strategy works

better during different periods.

This thesis will be organised as follow. Chapter 2 studies stochastic volatil-

ity model embedded with a marked Hawkes process and its application in high-

frequency data. Chapter 3 conducts high-frequency forecasting on variance and two

other risk measures based on the model. Chapter 4 studies forecasting return jumps

in Bitcoin data with a more parsimonious model. Chapter 5 summarises the findings

of the thesis and discusses opportunities for future research.

To improve the readability of the thesis, we make each chapter self-contained.

We introduce models and parameters in each chapter, but we strive to align all

notations throughout the thesis whenever possible.



Chapter 2

Modelling Price and Variance

Jump Clustering Using the

Marked Hawkes Process

2.1 Introduction

Understanding the behaviour of large market movements or jumps in asset pric-

ing and its variance is essential to risk management. There are many studies that

examine the importance of including both price and volatility jumps in asset pric-

ing models (see for example, Eraker (2004), Asgharian & Bengtsson (2006), and

Barndorff-Nielsen & Shephard (2006)). These studies often assume serial indepen-

dence of the jump components, and use daily data in their empirical studies. How-

ever, less is known about the extent to which one jump presages subsequent jumps,

especially at the intraday level. In this chapter, we study the clustering behaviour

of jumps using intraday high-frequency data and a marked Hawkes process (MHP)

embedded in a bivariate jump-diffusion model. We find evidence of self-excitation

behaviour of jumps in both individual stocks and in a broad equity index, and that

jumps in prices and volatilities impact one another in an asymmetric manner. We
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also find evidence that the magnitudes of the jumps matter. Further, we demon-

strate that the inclusion of jump parameters in a model significantly improves the

fit of the model. Lastly, we simulate jump intensity under our model settings and

study the cluster characteristics where we the find model with a MHP outperform

other benchmark models in terms of reproducing some characteristics of original

data.

A potential explanation of why jumps might cluster comes from information

asymmetry (Grossman 1976). Suppose a publicly-listed company’s financial report

indicates lower profitability. The most informed trader or investor would liquidate

the company’s stock from their portfolio, which may have a negative effect on the

company’s stock price. Less informed investors may follow suite, potentially pro-

ducing negative variations or negative jumps clustering together. Lee (2012) also

find evidence of jumps in stock market that is caused by information releases both

in macro level and firm level. For these reasons one might want to allow for jump

clustering in traditional asset pricing models, especially in recent times given the

higher than normal volatility in financial markets.

Some previous studies provide models of events clustering, where they model

events by using a self-exciting process or Hawkes process (HP) (as proposed by

Hawkes (1971a,b)). HP differs from a Poisson process, where events arrive ran-

domly and independently of each other. HP relaxes the assumption of independent

arrivals of events, and allows the underlying intensity of events to depend on past

events. Additionally, HP can be extended to marked Hawkes process (MHP) and

multivariate marked Hawkes process (MMHP) (e.g., Liniger (2009). These models

emphasise the impact of marked values (jump sizes) by allowing the intensities of

events to depend on occurrences of past events. In addition, intensities are allowed

to depend on the marked values attached to other past events (e.g., price jumps may

depend on variance jumps).

In recent studies there have been many financial applications. Aı̈t-Sahalia et al.

(2015) apply a multivariate HP in studying jumps among international markets (see
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also Gresnigt et al. (2016) and Lee & Seo (2022)). Lee & Seo (2017) apply a MMHP

to take both the impact of marked values and periodicity into account. They assume

a symmetric structure in their study of price and variance. They find that intraday

periodicity1 is an important aspect of the modelling of price and variance dynamics

(also see studies by Andersen & Bollerslev (1997) and Boudt et al. (2011)). In Lee

& Seo (2017)’s study, they cut off the first and last 30 minutes in every trading

day to reduce intraday periodicity, and study the interaction between price and

variance jumps. These studies provide a number of valuable insights regarding the

the application of Hawkes models. However they use non-parametric methods to

filter out financial market jumps. We are interested in incorporating the jump

clustering feature into a general stochastic volatility model.

A strand of literature considers parametric models of price and variance dynamics

for processes comprising both continuous and jump components. They accommo-

date Poisson or Lévy processes in a continuous time semimartingale, and commonly

adopt the assumption that jumps arrive randomly and increments are mutually in-

dependent (see e.g., Merton 1976, Duffie et al. 2000, Eraker 2004). More recently,

potential interactions between price and variance jumps have been studied by Jacod

& Todorov (2010) and Bandi & Reno (2016). Our goal is to investigate whether

allowing for jump clustering provides superior models that better capture the char-

acteristics of actual data.

Maneesoonthorn et al. (2017) is similar to our study in some respects. They use

high-frequency (intraday) data to detect jumps and calculate variance estimates, and

show that self-excitation is apparent in these estimates. However, their modelling

uses daily-frequency data. Consequently they may miss intraday clustering: a jump

can raise the probability of a jump happening in the following few hours, but this

may not show up in daily movements.

1The variance of returns can vary over a trading day, and the variation pattern tends to be highly

correlated with trading volume which is often higher during market opens and closes (Andersen &

Bollerslev 1997).
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Our interest is investigating the stochastic volatility model in the high-frequency

setting: a jump occurring in one day might in fact comprise a number of jumps within

that day. At a daily level, any interdependencies in the intraday jumps would not be

evident. Consider again a company disclosing negative news during trading hours.

Traders are able to liquidate their assets very quickly, perhaps within the same day,

establishing intraday movements in prices and volatilities. Hence jump clustering

or their self-exciting behaviours, will be apparent in high-frequency data and may

diminish on a daily level. Other aspects may be of interest too: whether jump size

is a determinant of clustering behaviour, and the nature of the relationship between

the magnitude of the jumps and the effect on the future intensity of jumps.

Our main contribution is to study the intraday dynamics of jump clustering

within a general continuous-time asset pricing model. Our methodological con-

tribution it to embed a MMHP in a price and variance state space model, and

simultaneously estimate variances, jump magnitudes, the effects price and variance

jumps have on each other, etc. In addition, we consider intraday periodicity, and

the potential this has to ‘hide’ clustering behaviour. In the estimation, we estimate

the model in a hybrid fashion of non-parametric estimation and Bayesian inference

to increase stability of Bayesian estimation algorithm.

In our empirical work, we find that both high-frequency stocks and an index

exhibit self-exciting features. We also find that allowing for intraday periodicity

reduces the number of variance jumps to less than 10% of the number that is found

in the model when the periodicity is ignored. Most variance jumps happen during

the market open and close and are not identified as jumps when we allow for intraday

periodicity. Our model also quantifies jump intensity, for example, using S&P 500

data, we show jump intensity or probability of jumps is lower than 1% during a

‘peaceful’ period and becomes as high as 50% in during a cluster, although it decays

quickly in the next few hours. We also show that price and variance jumps interact

in an asymmetric fashion. Specifically, negative price jumps are more likely to

be produced by past negative jumps rather than positive jumps, while positive
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jumps are as likely to be produced by past jumps of either sign. In addition, in

some individual stocks, jump sizes are positively correlated with the following jump

intensity: larger jumps tend to escalate higher jump intensity in the future.

To judge the support the data lends the various models in our study, we report

the DIC (Deviance Information Criteria), and the Bayes Factor. These are shown

to favour the modelling of returns and variance with marked HP models.

We also evaluate the range of models we consider in terms of their ability to

generate features found in the data - namely aspects of the clustering of jumps.

This goes beyond the general fit of the models to the data, and highlights the ability

of the models to capture aspects of particular importance. The MMHP generally

outperforms the other models in terms of reproducing these characteristics. There is

some evidence that the simpler HP is already sufficient to reproduce some features

of the clustering of variance jumps.

The findings in this chapter may be relevant to risk managers, high-frequency

traders and other practitioners, who may benefit from knowledge of the inter-

dependencies of jumps.

The chapter is organised as follows. Section 2 contains the theoretical framework.

Section 3 presents the estimation method, along with jump detection methods. Sec-

tion 4 discusses the empirical findings. Section 5 we describes the simulation tests.

We conclude in section 6. Some technical results are confined to an appendix.

2.2 Theoretical Setup

In this section, we introduce a continuous-time price and variance jump-diffusion

process embedded with a MMHP, details of the MMHP, and the discretised form of

the model.
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2.2.1 Continuous-Time Representation of Price and Vari-

ance Process

We let Pt be natural logarithm of asset prices and Vt be the variance at time t, and

consider the following jump diffusion process:

dPt · st = µdt+
√
VtdW

P
t + ξP+

t dNP+
t + ξP−

t dNP−
t (2.1)

dVt = γ(θ − Vt)dt+ σV

√
VtdW

V
t + ξVt dN

V
t , (2.2)

where st is a periodic component, µ is a drift term, γ and θ denotes the mean rever-

sion speed and long-run variance mean, respectively, and σV refers to the volatility

of volatility. W P
t and W V

t are Wiener processes of return and variance respectively,

and we let increments of them be correlated E(dW P
t , dW V

t ) = ρdt. Vt denotes the

variance in the process. In terms of the jump components in the processes, we

separate price jumps into positive and negative groups, however, we only consider

positive variance jumps in our study since decrease of variance is captured by γ and

θ. For ease of estimation, we let sizes of price jumps follow a normal distribution

ξPt ∼ N(µP , σP ) and those of variance jumps follow an exponential distribution with

mean µV , ξ
V
t ∼ exp(µV ). In addition, {ξP+

t , ξP−
t , ξVt } denotes the size of the jumps.

In terms of jump components, we employ the following three-dimensional marked

Hawkes process to present the jump components in the processes:

P (N i
t = 1) = λi

tdt, i = {P+, P−, V }, (2.3)

where λi
t denotes the stochastic intensity of the counting process which is defined

as a MMHP in Equation (2.4). This constitutes a departure from the literature.

The continuous-time asset pricing model typically assumes a constant stochastic

intensity (see e.g., Duffie et al. 2000, Eraker 2004, Bandi & Reno 2016). Our model

alows mutually dependent jump intensities, which may be correlated with jump size.

Another departure from the literature is our use of intraday data to investigate the

dynamics of price, variance and jump clustering, as opposed to the use of daily data

in most previous studies.
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2.2.2 A Three-Dimensional Marked Hawkes Process

Here we introduce a MMHP, the corresponding intensity of the jump processes in

Eq. (2.3) is given by:

λi
t = λi

0 +
d∑

q=1

ϑi
q

∫
[0,t)×Ξ

ϕi
q (t− s)ωi

q(ξq)Nq (ds× dξ) , (2.4)

where λi
0 denotes the immigration2 intensity of dimension i (three dimensions are

indicated in Eq. (2.3)) which is constant; ϑ is a branching coefficient matrix; ϕi
q

is a decay function such that ϕ : R+ → R+ and we assume a exponential decaying

kernel ϕi
q(t − s) = βi

qe
−βi

q(t−s), βi
q > 0,. ωi

q(ξq) is an impact function of jump sizes,

such that ω : R → R+.

Remark 1 (Interpretations) Under a general Hawkes process, the immigrants

arrive as a Poisson process with immigration intensity λi
0 and jump sizes ξ. They

further produce the arrivals of further jumps, the intensity of which will decay ex-

ponentially with the speed parameter β. ϑ is defined as a (3 × 3) branching matrix

ϑ := ϑi
q; q, i ∈ {P+, P−, V } and ϑi

q governs the mean increase of intensity to the

process in dimension i that is produced by jumps in dimension q. The impact func-

tion ωi
q(ξq) measures the increase of intensity in dimension i that is led by the jump

sizes ξq in the dimension q. Further details of MMHP and its interpretations can be

seen in Liniger (2009).

Remark 2 (A Simple Example) For a simple example of MMHP, given an oc-

currence of jump in dimension q (size: ξq), the underlying intensity of dimension i

will increase from λi
0 to λi

0 + ϑi
q ·ωi

q(ξq). Then, the incremental part of the intensity

ϑi
q · ωi

q(ξq) will decay at a speed of ϕi
q(dt) = βi

qe
−βi

q ·dt for every dt.

2We denote jumps that arrive when λi
t = λi

0 as immigrant jumps or immigrants. They are also

first jumps in clusters of jumps. The other subsequent jumps arriving when λi
t > λi

0 in clusters can

be seen as being produced by the immigrant jump. We use this notation throughout the thesis.
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See a more detailed definition and stationary assumptions of a MMHP in Daley

et al. (2003) with which most of our mathematical setup is in line.

Remark 3 (Impact Functions) Inspired by Liniger (2009), we normalised our

impact functions to satisfy some stationary conditions, denoting ω̃q(·) as the impact

function before being normalised. The normalised impact function is given by:

ωi
q(ξq) =

ω̃i
q(ξq)

E[ω̃i
q(ξ)]

(2.5)

and we consider four impact functions (before normalisation) as. follow:

ω̃i
q(ξq) = α̃i

q + β̃i
qξq + γ̃i

qξ
2
q (I)

ω̃i
q(ξq) = ξ

α̃i
q

q (II)

ω̃i
q(ξq) = eα̃

i
qξq (III)

ω̃i
q(ξq) = α̃i

q + β̃i
qlog(1 + ξq) (IV )

(2.6)

We assume the parameters in the above impact functions {α, β, γ} satisfy those

within each function, as at least one of the parameters is strictly positive. Also

noticeably, the jump sizes have no impact on intensity processes when ω(ξ) ≡ 1. In

addition, we assume an identical independent distribution of jump sizes.

2.2.3 Discretised Form of Return and Variance Processes

Similar to previous studies, we apply an Euler discretisation to the processes with

∆t = 1
78×252

(equivalent to five minutes) and obtain the following forms:

(Pt − Pt−1)st = µ+
√
Vt−1ϵ

P
t + ξP+

t ∆JP+
t + ξP−

t ∆JP−
t (2.7)

Vt = αv + (1 + βv)Vt−1 + σV

√
Vt−1ϵ

V
t + ξVt ∆JV

t , (2.8)

where Pt and Vt denotes the logarithm of the asset price and the variance at time t,

st is a periodic component and st = It,τ · fτ , where τ = 1, 2, ..., 78 and It,τ is a time
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indicator when τ correspond to time t, It,τ = 1.3 µ denotes the drift term, and σV

denotes the volatility of volatility. The mean reversion speed and level of variance are

translated to αv and βv, where αv = γθ and βv = −γ (γ, θ are mean reversion speed

and level of variance, see Section 2.3), ϵPt and ϵVt are two random variables that follow

a normal distribution N(0, 1) with correlation corr(ϵPt , ϵ
V
t ) = ρ. ξit, i = {P+, P−, V }

denotes jump magnitudes, and we specify them to follow distributions as follows:

ξP+
t ∼ N(µP+, σP+)1ξP+>0 (2.9)

ξP−
t ∼ N(µP−, σP−)1ξP−<0 (2.10)

ξVt ∼ exp(µV ), (2.11)

where the sizes of price jumps follow truncated normal distributions and variance

jump sizes follow a exponential distribution with a parameter µV , while ∆J i
t =

J i
t − J i

t−1, i = {P+, P−, V } is a Bernoulli random variable with the corresponding

time-varying intensity λi
t, so:

∆J i
t ∼ Bernoulli(λi

t), i = {P+, P−, V }, (2.12)

∆J i
t = 1 can be viewed as an occurrence of a jump and λi

t can be regarded as the

probability of a jump happening at time t. Here is where we make distinctions

between the models, in the simplest and the most adopted setting where jumps are

assumed to follow a Poisson process, underlying intensity λi
t is constant at λ

i
t ≡ λi

0,

such that the probability of a jump happening is the same over time and jumps arrive

independently. For a multivariate HP, without considering the impact of marks, the

intensity process is specified as follows:

λi(t) = λi
0 +

∑
q

ϑi
q

∑
0<s<t

ϕi(t− s), i, q = {P+, P−, V }, (2.13)

3We employ 5-minutes data, and therefore, have 78 observations in a trading day, our time t

is indexing every 5 minutes, and when τ correspond to time t, we adjust returns by the periodic

component fτ .
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where ϑi
q is a branching matrix and ϕi(·) is an exponential decaying kernel (see

details of interpretations in Remark 1 and 2). In addition, by adding an impact

function on jump sizes ωi
q()̇, a MMHP can be introduced to define the intensity of

dimension i at time t as follows:

λi(t) = λi
0 +

∑
q

ϑi
q

∑
0<s<t

ϕi(t− s)ωi
q(ξq), i, q = {P+, P−, V }, (2.14)

where ωi
q(·) is the impact function and ωi

q(·) ≡ 1 in the previous multivariate HP

setting without the impact of jump size. We adopt four different impact functions

(see Remark 3). By adding components of the right-hand side of Equation (2.14)

in addition to λi
0, intensity or probability of a jump happening is allowed to depend

on past jumps through the branching matrix ϑi
q and jump sizes through impact

functions ωi
q(·).

Unlike previous studies (e.g., SVCJ model proposed by Duffie et al. (2000)), we

do not specify a dependent structure between the size of the price and variance

jump; instead, they are assumed to be identically independently distributed and

treated as latent variables in the estimation. We focus on how the size of jumps

estimated impact underlying intensity of jumps.

2.3 Parameter Estimation

In this section, we discuss our estimation approaches. We estimate our model in a

hybrid fashion of non-parametric estimation and Bayesian inference (Markov Chain

Monte Carlo (MCMC)). Specifically, we estimated jumps {∆JP+
t ,∆JP−

t ,∆JV
t } and

the periodic component st non-parametrically, and apply them in Bayesian inference.

Reason for this is to increase stability of MCMC algorithm. Due to the inclusion

of MMHP, we have more static parameters to be estimated jointly than traditional

stochastic volatility models, for example, we have 78 parameters in st and additional

parameters in the branching matrix and impact function, plus they are all in 3 × 3

dimensions. We found parameters becomes very unstable and converge very slowly
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if treating jumps as latent variables, but this can be improved when estimate jumps

and the periodic component non-parametrically. The question left is the potential

measurement errors of this approach. We conduct a simple simulation study on this

issue and results shows our estimation strategies is reasonably powerful4.

2.3.1 Price Jump Detection

We denote rt = (Pt − Pt−1) · st as returns adjusted for intraday periodicity. Our

non-parametric jump filtering method is mainly based on Mancini et al. (2015) and

Figueroa-López & Mancini (2019). We identify a jump at time t, Jt = 1, when the

squared return is greater than a threshold, r2t > V̂ 2
t ·2∆log 1

∆
. V̂ 2

t is a non-parametric

estimator of spot variance based on pre-truncated returns:

V̂ 2
t =

n∑
t̃=1

fh(t− t̃)r2t · 1{r2t≤9∆0.99} (2.15)

where fh(·) is weight function, fh(t) = 1
h
· e−|t/h|

2
with a bandwidth h = 200∆ for

simplicity. The idea of this filtering is to extract those standardised squared returns

(rt∆/V̂ 2
t ) which is not generated by a Brownian motion, whose absolute value is

greater than the threshold
√

2log(1/∆).

2.3.2 Variance Jumps Detection

In testing variance jumps, we set our null hypothesis H0 : |V̂ 2
t − V̂ 2

t−| = 0 against

the alternative hypothesis that there is a variance jump |V̂ 2
t − V̂ 2

t−| > 0. So, the

test statistic in this test should be a function on the difference of spot variance

4We simulate data using our model with impact function IV , we set parameters at posterior

mean of estimated parameters using S&P 500 Index data, and simulate 10000 times. We find our

price jump detection has a power at approximately 71% in average, and variance jump at 66%

(percentages of simulated jumps being correctly detected). We also find the estimated periodic

component st is approximately overlap with true value with an error of less than ±7.6%. We

choose not to present other simulation results (e.g. model fitness of simulated data) since it may

strongly rely on data generating process, but examining power of estimation approach is useful for

us.
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f(V̂ 2
t , V̂

2
t−). Following Jacod & Todorov (2010), we construct our test statistics as

follows:

Lv(t) = 2log(
1

2
(V̂ 2

t + V̂ 2
t−))− log(V̂ 2

t )− log(V̂ 2
t−) (2.16)

and nbLv(t) → X 2
1 , where n denotes the number of observations and b = 1

2
− δ,

where δ = 1
78×252

. The temporal variance estimator V̂ 2
t is specified in Eq. 2.15.

2.3.3 Intraday periodic Effects

High-frequency financial data displays intraday periodicity, (see for example, Hecq

et al. (2012); Andersen et al. (2019)). As is shown in Figure 2.1, the mean absolute

return of the S&P 500 shows a clear U-shape, the mean absolute value of overnight

returns (first five-minute return of a day) is much higher than returns at other time.

We also find that most of returns during the market open are identified as jumps, as

shown in Figure 2.2 (up left). The duration between two jumps mostly appears to

be 78 units of times (δ) or its multiples, which could imply most price jumps occur

at the market openings.

[INSERT FIGURE 2.1 ABOUT HERE]

[INSERT FIGURE 2.2 ABOUT HERE]

Boudt et al. (2011) show that taking intraday periodicity into account can im-

prove the overall accuracy of jump detection. Therefore, we adopt a weighted stan-

dard deviation (WSD) estimator proposed by Boudt et al. (2011), which is based on

a shortest half scale estimator proposed by Rousseeuw & Leroy (1988). Using this

approach we define the order statistics of returns r̄(1),i ≤ r̄(2),i ≤ ... ≤ r̄(Ti),i. The

shortest half-scale statistics are determined as follows:

ShortHi = 0.741 ·min{r̄(hi),i − r̄(1),i, ..., r̄(Ti),i − r̄(Ti−hi+1),i}, (2.17)

where hi =
Ti

2
+1, which makes the statistics essentially minimum differences among

all of the return’s halves. The shortest half-scale estimator for periodicity is given
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by:

f̂ShortH
i =

ShortHi

1
T

∑T
j=1 ShortH

2
j

, (2.18)

where T denotes the number of observations within a day and the WSD estimator

can be obtained as follow:

f̂WSD
i =

WSDi

1
T

∑T
j=1WSD2

j

, (2.19)

where:

WSDj =

√√√√1.081 ·
∑Tj

k=1wk,j r̄2k,j∑Tj

k=1wk,j

, (2.20)

wk,j = I(r̄k,j/f̂
ShortH
i ) is a weight function with a identification function I(·), such

that I(x) = 1 if x ≤ 6.635 and 0 otherwise. We use the WSD estimator (f̂WSD
i ) as

a periodic component (st) estimator.

Looking back to interarrival times (durations between jumps) after adjusted by

intraday periodic effects (de-periodisation) in Figure 2.2 (two figures on the right-

hand side), as a comparison, we filter price and variance jumps without considering

intraday periodicity 5 (two figures on the left-hand side). After de-periodisation,

duration between two jumps generally decreases exponentially over time in the his-

tograms and tends to exhibit a decline in periodicity, while before de-periodisation,

interarrival times are mostly lie in 78 or 78’s multiples (78 five-minutes interval

stands for 6.5 trading hours which is a typical trading day), which imply most

jumps occur at market openings and closings.

2.3.4 Bayesian Inference on Parameters

We next conduct a Bayesian inference on price, variance, and jump processes. We

perform non-parametric jump tests and estimate the periodic components as known

inputs in the inference, and treat jump sizes, the branching matrix and variance

5In this chapter, we refer ”without considering periodic effects” and ”before de-periodisation”

to setting the periodic component st ≡ 1.
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{ξP+, ξP−, ξV ,ϑ, Vt} as latent variables. We follow Rasmussen (2013) to conduct

the estimation of parameters in the Hawkes process. We embed the process in

the price and variance dynamics. We denote the static parameter vector as Θ =

{µ, αv, βv, σV , ρ, λ
i
0, β

i,Φi}, where Φi denotes parameters in the impact function (2.6)

and depends on which function is used. We also denote the data we can observe

and other non-parametric estimations we derive from the available data as Yt =

{Pt, J
P+
t , JP−

t , JV
t }. Then, joint posterior distribution can be given using a Bayes

formula as:

P (Θ, ξP+, ξP−, ξV ,ϑ, Vt|Yt) ∝ P (Yt|Θ, ξP+, ξP−, ξV ,ϑ, Vt)P (ξP+, ξP−, ξV ,ϑ, Vt|Θ)P (Θ),

(2.21)

The posterior given in Equation 2.21 is apparently not available in closed form due

to the complexity of the processes. Therefore, we adopt a Markov Chain Monte

Carlo (MCMC) method to generate a sequence of draws on parameters and latent

variables and simulate the posterior. The specification of priors and details of the

algorithm are in Appendix A.1.

2.4 Empirical Application

In this section, we introduce our dataset and models. We will firstly report pa-

rameters estimated in the price and variance process and MMHP kernels. We then

compare the models in terms of their fit to the data, and finally present a test of

the ability of the models to reproduce jump clustering characteristics of the actual

data.

2.4.1 Data

We retrieved five-minute price data from Bloomberg for four individual stocks across

different industries; namely, Apple (AAPL), Boeing (BA), J.P. Morgan (JPM), Coca

Cola (KO) and S&P 500 Index from 3/1/2012 to 31/12/2019. We chose these stocks
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as they are large firms that have high liquidity, are from different industries, and

are likely to be followed by analysts and therefore react to news quickly. This

actually put us in a disadvantageous place in terms of showing the usefulness of

considering jump clustering, since small-cap and less-liquid stocks potentially exhibit

more evident jump clustering behaviours. However, we show that jump clustering

also exist in large-cap liquid stocks. We also examine three ETF data, namely

iShares FTSE China Index Fund (FCHI), iShares MSCI Spain ETF (IBEX) and

SPDR S&P 500 Trust ETF (SPY), full results are in the Appendix. We cleaned

the data following the approach in Barndorff-Nielsen et al. (2008). We set the time

unit δ = 1
M ·252 years where M is number of daily observations. Here we plot the

log return, estimated variance, estimated price and variance jump sizes of Apple

(AAPL) stock and the S&P 500 Index, respectively, from 2012 to 2019.

[INSERT FIGURE 2.3 ABOUT HERE]

[INSERT FIGURE 2.4 ABOUT HERE]

We filtered price and variance jumps before and after we de-periodise stock

returns. Table 2.1 shows that the impact that including intraday periodicity has

on the number of jumps detected is mixed. For some individual stocks, the number

of price jumps triples while others do not increase at all, and the S&P 500 Index

has less price jumps considering intraday periodicity. Also, the reduced number of

variance jumps suggest that most variance jumps happen during market opens.

[INSERT TABLE 2.1 ABOUT HERE]

2.4.2 Parameters Estimated in Price and Variance Process

We estimate parameters in (2.7) and (2.8), but as a comparison, we model the

intensity of jumps {JP+
t , JP−

t , JV
t } differently. We specify seven models (M1 to

M7) in Table 2.2 to present different methods in modelling jump intensity. M1 is
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our benchmark model, SVCJ model proposed by Duffie et al. (2000) 6. M2 and

M3 are models with jump clustering effect modelled by multivariate HP, but M3

consider intraday periodicity. M4 to M7 model jumps by MMHP with different

impact functions.

[INSERT TABLE 2.2 ABOUT HERE]

In Table 2.3, we report parameters we estimate in the price and variance processes

with M1. We would skip these parameters in other models since we find little

differences, our interests are more in parameters of jump components:

[INSERT TABLE 2.3 ABOUT HERE]

There are some discrepancies in Table 2.3 between our results and the results in

other similar models examined by, for example, Asgharian & Bengtsson (2006), who

used daily data. This is probably due to the high-frequency data we use which is

more turbulent and contaminated by microstructure noise, and the drift term and

mean reversion level can be masked by noise and become less significant. Note also

that our correlation ρ is also lower than that estimated using daily data.

2.4.3 Significance of jump clustering with and without In-

traday periodicity

In this subsection, we report parameters of Hawkes kernels we estimate in M2

and M3. We set the impact function to ωq(ξq) ≡ 1, where we assume that jump

sizes do not have impact on future jump intensity. A summary of the results is

in Table 2.4 with full results reported in the Appendix. In Table 2.4, we give the

posterior mean of the parameters, and number of which are significant. For price

jumps, there is a clear trend showing that without periodicity (M2) as indicated by

6They assume constant jump intensity but let jump sizes to be correlated: ξPt ∼ N (µJ +

ρJξ
V
t , σJ)



2.4 Empirical Application 25

{ϑp+
p+, ϑ

p+
p−, ϑ

p−
p+, ϑ

p−
p−}, are significantly greater than 0, but this self-excitation feature

only appears in individual stocks data, not the S&P 500 Index. This result provides

supports for previous studies such as Foschi et al. (2019). However, with periodic

components (M3), price jumps in the S&P 500 also have the self-exciting feature.

In addition, we find that jumps in variance, to some extent, can produce future

price jumps after considering periodicity. Similarly, variance jumps also become

self-excited and can be produced by price jumps after considering periodicity. We

also find that the decaying speed of some variance jumps is faster than others when

we examine the values of {βv
v , β

v
p−, β

v
p+}.

The results can also indicate the asymmetry of the branching coefficient matrix

ϑ. Specifically, posterior mean of ϑp+
p− is not statistically significantly different from

that of ϑp+
p+ (0.029 and 0.04 in M2; 0.159 and 0.172 in M3). This shows that there is

no clear evidence whether positive jumps is produced by positive or negative price

jumps. However, posterior mean of ϑp−
p− is statistically significantly greater than

ϑp−
p+ (0.042 and 0.019 in model M2; 0.216 and 0.108 in M3). This suggest negative

jumps are more likely produced by itself rather than produced by positive jumps.

Additionally, the impact of variance jump on other types of jump is mixed.

Although it seems the intensity contributed by variance jumps is higher, it also

is often associated with faster decaying speed. This result is different from that

proposed by Maneesoonthorn et al. (2017), who find that variance jumps persist

longer and price jumps are short-lived. However, they use daily data while we use

five-minute data. We also suspect that another reason for this contradictory findings

is very small number of variance jumps filtered out compared to the number of price

jumps after considering periodicity. We find these small number of variance jumps

are just scattered around price jumps by chance, which may also be the reason for

the fast decaying speed because it is not really signalling future jumps. Additionally,

variance jumps are less likely self-excited but more likely produced by price jumps.
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2.4.4 Significance of Impact from Jump Sizes

We next examine the impacts of jump sizes. The results of the jump-size-related

parameters, β̃ and γ̃ in M4 and β̃ in M7 are also reported in the table 2.4. These

parameters are from impact functions (see Equation 2.6) of MMHPs.

In table 2.4, some of the coefficients of jump size are significantly great than 0,

and they are associated with high decaying speed (β). For example, given β = 0.5,

the intensity heightened by past jumps will decay to 5% of the original after five time

units (30 minutes), and it will decay to 0.3% within the same time if β = 1. However,

the percentage will be 41% if β = 0.15. Therefore, the value of β should also be

taken into account when judging whether a parameter is statistically significant or

meaningful in generating future jumps.

As can be seen in Table 2.4, in terms of the coefficients of jump sizes, some

{β̃p+
p+ , β̃

p+
p− , β̃

p−
p−}, {γ̃v

p−, γ̃
p−
v } in M4 and {β̃p+

p+ , β̃
p+
p− , β̃

p−
p−} in M7 are significantly pos-

itive overall. This may suggest that the underlying intensity of positive jumps can

be produced by the occurrence of both positive and negative jumps, and they are

positively correlated with sizes in the sense that the larger sizes of price jumps can

generate higher intensity in future positive price jumps. With regard to negative

jumps, they can also be produced by past positive and negative jumps, but the

results here imply that only negative jumps are correlated with jump size in esca-

lating the intensity of negative jumps. Moreover, the interaction between negative

price jumps and variance jumps is captured by the coefficients of squared jump sizes

{γ̃v
p−, γ̃

p−
v }, but interestingly, they are not significant in the log transform of jump

sizes.

Furthermore, M5 and M6 may not illustrate whether jump sizes impact the

intensity of jumps in any dimensions. Although the parameters in M5 are mostly

significant, they do not provide any information as to whether there is a ‘size effect’

or they are self-excited without ‘size effect’, because it will not become self-excited

if the parameters are not significant, which is the case in M6.
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In addition, we use parameters estimated in M4 to simulate jump intensities

and plot them in Figure 2.5, the jump intensity can goes from less than 1% to over

50%. As an example, we plot negative return jump intensities of S&P 500 Index 15

trading days around 3/21/2017 at the bottom, the S&P 500 Index was turbulent

during the day and dropped by 1.2% at close. As can be seen from the figure, a

cluster of 6 jumps occurred and escalate jump intensity to around 0.2 during the

trading day.

[INSERT FIGURE 2.5 ABOUT HERE]

2.4.5 Model Fit

To assess the goodness-of-fit of our models (M1 to M7), we apply the deviance

information criterion (DIC) of Spiegelhalter et al. (2002) and the Bayes factor of

Kass & Raftery (1995). The DIC is calculated by model log-likelihood penalised by

model complexity and can be easily applied in a MCMC algorithm; a lower value

indicates a better fit of the model. Table 2.5 shows that in the M1 model, jumps

modelled using Poisson process provides the highest DIC, while that using MMHP

with impact function (2.6, V II) provides the lowest DIC (M7), hence the best

fit. In addition, three of the four MMHP models (M4, M5, M7) outperform the

multivariate-HP model without impact of jump size (M3). Further, not surprisingly,

M6 with an exponential impact function underperform theM3 since the parameters

in M6 suggests there are few self-exciting features in the data.

Table 2.6 reports the log values of the Bayes factor across seven models. We

find that M1 underperforms all other models. In addition, the results show a large

discrepancy between other models against M2 and M3, which suggests the impor-

tance of considering intraday periodicity. Additionally, the log Bayes factor of M6

against M3 is negative, which is in line with the results for the DIC. However, we

cannot tell from the results whether M4 or M7 provides better fit. Overall, M7

presents better results but M4 prevails for the S&P 500 Index data. The marginal
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likelihood computation of data given different models can be seen in Appendix 6.4.

[INSERT TABLE 2.5 ABOUT HERE]

[INSERT TABLE 2.6 ABOUT HERE]

2.5 Clusters and Simulation Test

We next evaluate the models by focusing on their ability to capture features of

the data of particular interest. We do this by simulating data from the estimated

models and seeing whether these data have the features that characterise the actual

data. This approach has been used by Hess & Iwata (1997) and Clements & Krolzig

(2004) to assess whether a number of time-series models can reproduce business

cycle features. Our approach is in line with that used in Clements & Krolzig (2004).

2.5.1 Cluster

In this section we explain how we define a cluster of jumps. The way we define a

cluster of jumps is similar to Foschi et al. (2019). The intuition is that jumps may

escalate their underlying intensity to be above a ”normal” level for a short period,

before the intensity returns to the ”normal” level. For example, suppose k jumps

occurred, and these k jumps are a cluster. If k = 1, there are no jumps in the cluster

other than the original one. In this case, the intensity returns to normal before any

other jumps occur. Jumps occurring subsequent to this are assumed to belong to a

new cluster. The formal definition is as follows.

Definition 1 (Cluster) Given occurrence of k jumps at time t1, ..., tk during the

period [t1, T ] starting with a immigrant jump at t1, these k jumps form a cluster if

the intensity: 1) before the occurrence of t1 jump, is within a range around ground

intensity λt1− ∈ [λ0, λ̃] and 2) above the threshold λ̃ during the period [t1, T ]. The λ̃

is a tolerance level.
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Remark 4 Alternatively, we could say the cluster does not exhaust until kth jump

λ(ti) > λ̃, ∀ti ∈ [t1, T ] and the cluster will come to end if the intensity returns to

the tolerance level.

2.5.2 Non-parametric Intensity Estimation

The models provide estimates of parameters from which the underlying intensity of

jumps can be calculated, allowing us to determine the average number of jumps in

a cluster. However, this would make the determination of the degree of clustering

dependent on the model, and would favour those models which by design incorpo-

rate this feature over others which do not. To enable a fair comparison between

the models, we estimate the feature of interest on the models’ simulated output,

not as a function of the models’ parameters. We use a kernel density estimation

(KDE) to estimate underlying the intensity of jumps and then determine the clus-

ters. The KDE method used here is very similar to that used in Section 2.3.2. So,

the underlying intensity in dimension i at time t is defined as:

λ̂i
t =

t−1∑
τ=t−h

Kh(τ − t)∆N i
τ , (2.22)

where Kh(·) is a kernel function with bandwidth h, such that
∫
Kh(x)dx = 1 and

Kh(x) =
1
h
K(x

h
). Here, we also take exponential kernel K(x) = 1

2
exp(−x) and for

simplicity, we set h = 40∆t. In terms of the tolerance level, we take λ̃ = 0.05
2h

e−
1
h .

Remark 5 We experiment with different bandwidths. The choice of bandwidth does

not unduly affect our results for a reasonable range of values, but clearly too large

or too small values do give unreasonable results. For example, given an h = 200∆t,

when jumps arrive at a Poisson rate λ̂i
t ≡ 0.01, we find they are clustered with

significantly more than one jump per cluster, even though they arrive independently
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by virtue of the Poisson process assumption. Similarly, given an h = 5∆t, there are

no signs of clustering in the outputs of any of the models. Additionally, λ̃ = 0.05
2h

e−
1
h

is calculated as 5% of the underlying intensity when in the previous time period an

immigrant jump occurred.

2.5.3 Characteristics of Interests

We choose the average number of jumps in a cluster, and the standard deviation of

the number of jumps in a cluster, as the two characteristics of interest. Clustering

is a feature of the data, so we compare the models in this dimension - their ability

to match this feature of the data - irrespective of their overall fit. Poisson processes

treat occurrences of jumps as independent events, so there should, on average. be

only one jump in each cluster, and we would expect such processes to fail to match

the data in this regard. On the other hand, multivariate HP and MMHP emphasise

clustering of jumps, and are expected to produce clusters with more than one jump.

However, unlike HP, MMHP allows jumps with larger sizes to raise higher intensities,

which also take a longer time to die away. Hence the distribution of the number of

jumps under HP and MMHP can be different, and may allow some discrimination

between these two models.

We consider M1, M3, M4 and M7, and treat these models as the DGP, setting

their parameters to their posterior means of the Bayesian model estimation. The

feature value from the actual data can then be compared to the empirical distri-

butions of the features from the models. If the feature value on the actual data is

‘extreme’ relative to a model’s distribution, we infer that the model is unable to

capture that feature.

Specifically, denote by Ci the ith characteristic (either the first or second mo-

ments of the number of jumps). Assume there are J simulations. We rank the

characteristic on each replication: {C(1)
i ...C

(J)
i }. A confidence interval with a signif-

icance level SL is given by [F−1
Ci

(SL
2
), F−1

Ci
(1− SL

2
)], where FCi

denotes the empirical

cumulative distribution of characteristic Ci. For example, taking J = 10000, and
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significance level at 5%, the upper and lower limit of the confidence interval will then

be F−1
Ci

(2.5%), and F−1
Ci

(97.5%), confidence interval, thus, is taken as [C
(250)
i , C

(9750)
i ].

2.5.4 Testing Results

Table 2.8 presents the summary statistics for number of jumps in clusters. On

average, there are two-to-three jumps per cluster, with more jumps in clusters for

some individual stock data. Additionally, there is a clear pattern that the average

number of variance jumps is lower than that of price jumps. Also, around a half of

the clusters consist of more than one jump. We also collect time spans that clusters

of jumps cover and denote it as cluster length, as can be seen in the summary

statistic table, cluster length of negative return jumps averagely ranges from 30 to

70 time intervals, in the sense, 2.5 to 6 hours. This imply that a negative return

jump can have impact on jump probabilities in the next 2.5 to 6 hours. Additionally,

the impact can last up to 408 time intervals standing for around 5 trading days. In

addition, it is clear that negative return jumps last longer than positive return jumps

and variance jumps. This result implies market practitioners to be careful about

market risks after spotting a jump, since jumps can escalate the probability of jumps

in the next 2.5 to 6 hours.

We simulate 50000 series of data (J = 50000) and each contains 100000 data

points, Table 2.9 reports the results from each of the models (M1, M3, M4, M7).

In terms of price jumps, the HP model (M3) is clearly unable to reproduce the

features, while the MMHP-class models (M4 and M7) perform better. However, in

S&P 500 (SPX) data, M7 outperforms M4.

In the case of variance jumps, the results are different. For example, for the

JPM and KO data, the HP model (M3) is able to adequately capture the clustering

feature. This is likely due to the smaller average number of jumps, and standard

deviation, for variances compared to prices. These results are in line with the

empirical results in Section 4 (see Table 2.4) where variance jumps are less likely

impacted by their mark values or jump sizes. It is noticeable that, although M4
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and M7 are both MMHP-type models, M4 always provides higher estimates of the

two features.

[INSERT TABLE 2.8 ABOUT HERE]

[INSERT TABLE 2.9 ABOUT HERE]

2.6 Conclusion

In this chapter, we propose a dynamic bivariate jump-diffusion process, in which

jump intensities are modelled by a three-dimensional Marked Hawkes Process to

allow the occurrences and sizes of jumps to affect future intensities and thus, capture

the clustering features. Unlike other stochastic volatility state-space models that

apply daily data, we use intraday high-frequency data. In addition to conducting

non-parametric methods on jump detection, we further employ a intraday periodic

component in the process. Also, a Bayesian MCMC algorithm is constructed to

jointly estimate parameters and latent variables in the model.

We find evidence of strong intraday jump clustering in our empirical study. We

find that that the self-excitation feature tends to be hidden by the periodicity. We

quantify the changing patterns of jump intensity, and show that jump intensity can

rise to over 0.5 after the occurrence of large jumps. We investigate the interactions

between positive price jumps, negative price jumps, and variance jumps. These are

apparent in the branching coefficient matrix ϑ, which represents the extent to which

jumps in one dimension affect intensity in other dimensions. This turns out to be

asymmetric. Further, our results from the Marked Hawkes Process suggest that the

extent to which jumps inflate future intensities is positively correlated with jump

sizes: large jumps tend to escalate the probability of jumps in the near future. We

assess the fit of the various models via DIC and the Bayes factor, and find that

modelling jumps by the Marked Hawkes Process is preferred by these criteria.

Additionally, we study the numbers of jumps in clusters, in price and variance,

and we find a cluster of jumps can cover 2.5 to 6 hours on average. Using the
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mean and variance of the number of jumps in clusters, we consider the ability of

the models to reproduce these two characteristics, by simulating artificial data from

the models. The MMHP models generally outperform other models, although the

simpler HP model is able to capture the properties of variance jumps.

Our study suggests the clustering of jumps in financial markets may warrant

more attention in the risk management literature. A possible area for future research

would be to extend this approach to analyse risk premium using option data.

A Appendices for Chapter 2

A.1 Bayesian MCMC Algorithm and Specification of Priors

In order to obtain the posterior distribution in Equation (2.21), we randomly sample

from a set of conditional posterior derived from Bayes’s rule. A MCMC algorithm

is constructed to approximate the posterior implied by model estimated. Therefore,

for i = 1, 2, ..., n, ..., N :

1. Sample static parameters

Draw Θ
(i)
1 from p

(
Θ

(i)
1 |Y,Θ(i−1)

2 ,Θ
(i−1)
3 , ...,Θ

(i−1)
k , ξP+(i−1), ξP−(i−1), ξV (i−1),ϑ(i−1), V (i−1)

)
,

...

Draw Θ
(i)
k from p

(
Θ

(i)
k |Y,Θ(i−1)

1 ,Θ
(i−1)
2 , ...,Θ

(i−1)
k−1 , ξP+(i−1), ξP−(i−1), ξV (i−1),ϑ(i−1), V (i−1)

)
.

2. Sample jump sizes

for t = 1,2, ... , T:

Draw ξP+(i) from p
(
ξP+(i)|Y,Θ(i), ξP−(i−1), ξV (i−1),ϑ(i−1), V (i−1)

)
,

Draw ξP−(i) from p
(
ξP−(i)|Y,Θ(i), ξP+(i), ξV (i−1),ϑ(i−1), V (i−1)

)
,

Draw ξV (i) from p
(
ξV (i)|Y,Θ(i), ξP+(i), ξP−(i−1),ϑ(i−1), V (i−1)

)
.
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3. Sample variance

for t = 1,2, ... , T:

Draw Vt from p
(
V (i)|Y,Θ(i), ξP+(i), ξP−(i), ξV (i),ϑ(i−1)

)
,

4. Sample Branching Coefficient Matrix

for t = 1,2, ... , T:

Draw ϑ(i) from p
(
ϑ(i)|Y,Θ(i), ξP+(i), ξP−(i), ξV (i), V (i)

)
We set N = 100, 000 as the total number of iterations and n = 30, 000 as the

burn-in period, which will be discarded. For those conditional posterior distributions

where corresponding conjugate priors can be found and posteriors can be obtained

in closed form, we adopt Gibbs sampling; for those posteriors that are unknown,

we use Metropolis-Hastings (MH) to approximate posteriors. MH involves drawing

a sample from a proposal density and another random number from a uniform

distribution to decide whether the proposal draw should be accepted or rejected.

Ultimately, we specify priors in our model as follows:

[INSERT TABLE 2.7 ABOUT HERE]

Moreover, when we run the MCMC algorithm, the original data and estimated

data are amplified by 10,000 times. Results reported in Table 2.3 are transformed

back and annualised, see Broadie et al. (2007) for details of this transformation

technique.

A.2 Marginal Likelihood of Models

We compute marginal likelihood of data given different models as follow:

p(Yt|Mi) =
p(Yt|Θi,Mi)p(Θi|Mi)

p(Θi|Yt,Mi)
, (IA.2.23)

where i = 1, ..., 7 denotes 7 different models, Mi denotes corresponding static pa-

rameters. The likelihood of data given models and static parameters is further



A Appendices for Chapter 2 35

marginalised over k latent variables X
(k)
t as follows:

p(Yt|Θi,Mi) =

∫
p
(
Yt|X(k)

t ,Θi,Mi

)
p
(
X

(k)
t |Θi,Mi

)
dX

(k)
t , (IA.2.24)

Using the output of previous MCMC outputs, it is simply the marginal likelihood

of data averaged over latent variables. Similarly, the conditional posterior of static

parameters is also marginalised over latent variables:

p(Θi|Yt,Mi) =

∫
p
(
Θi|Yt, X

(k)
t ,Mi

)
dX

(k)
t , (IA.2.25)

Following methods proposed by Chib (1995) and Chib & Jeliazkov (2001), we decom-

pose the static parameter vector Θi into two components: θ1,i denoting parameters

in price and variance processes, and θ2,i, denoting parameters in jumps components

(Hawkes kernel). Therefore,

p(Θi|Yt,Mi) = p(θ1,i|Yt,Mi)p(θ2,i|θ1,i, Yt,Mi), (IA.2.26)

The likelihood of a multivariate HP is derived in Liniger (2009).

A.3 Full Parameter Posteriors Results

Table 2.10 to 2.21 provide full posteriors of parameters from M1 to M7 specified

in the main text. These are corresponding to the Table 2.4 in the main text where

we summarise these parameter results. Note, we skip results of parameters in price

and variance process (Equation 2.7 and 2.8) and focus on parameters in the Hawkes

kernel only. Additionally, data applied include 4 individual stock data (from 2012

to 2019), S&P 500 index data and 3 ETF data (from 2000 to 2017).
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2.7 Figures and Tables for Chapter 2

Figure 2.1: Intraday Periodicity Component of S&P 500 with and without Overnight

Return

Notes: The intraday periodicity component st is estimated by a weighted standard deviation
estimator, which is estimated using the data from 1/1/2012 to 31/12/2019
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Figure 2.2: Histogram of Interarrival Times between S&P 500 Index Price(up two) and

variance(down two) Jumps before(left two) and after(right two) De-periodisation (Ad-

justed by Intraday periodicity)

Notes: The interarrival times are calculated using the data from 1/1/2012 to 31/12/2019
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Figure 2.3: Log Return, Estimated Variance, Estimated Price Jump Size and Estimated Variance Jump Size of AAPL Stock

Notes: The data period is from 1/1/2012 to 31/12/2019
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Figure 2.4: Log Return, Estimated Variance, Estimated Price Jump Size and Estimated Volatility Jump Size of S&P 500 Index

Notes: The data period is from 1/1/2012 to 31/12/2019



2
.7

F
ig
u
re
s
a
n
d

T
a
b
le
s
fo
r
C
h
a
p
te
r
2

4
0

Figure 2.5: Return Jumps and Corresponding Intensities of S&P 500 Index

Notes: This figure plot positive and negative return jumps and their intensities of S&P 500 Index from 1/1/2012 to 31/12/2019. Negative jump
intensity from 3/13/2017 to 3/28/2017 is plotted at the bottom. There are totally 6 jumps on 03/21/2017 when S&P 500 Index fluctuated in a
range of 3% and closed at dropping 1.2%, it recorded the biggest drop since 6 months ago at the time.
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Table 2.1: Number of Price and Variance Jumps in four Individual Stocks and S&P 500

Index (2012 - 2019)

No. of
AAPL

(Apple Inc.)

BA

(Boeing Co.)

JPM

(JPMorgan

Chase & Co.)

KO

(Coca-Cola

Co.)

SPX

(S&P 500)

Without Intraday periodicity

Positive Price Jump 676 (0.43%) 708 (0.45%) 649 (0.41%) 406 (0.25%) 573 (0.35%)

Negative Price Jump 518 (0.33%) 583 (0.37%) 548 (0.35%) 449 (0.28%) 525 (0.32%)

Variance Jump 807 (0.51%) 885 (0.56%) 873 (0.55%) 645 (0.41%) 975 (0.59%)

With Intraday periodicity

Positive Price Jump 1851 (1.18%) 1519 (0.97%) 817 (0.52%) 639 (0.4%) 477 (0.29%)

Negative Price Jump 2189 (1.39%) 1451 (0.92%) 876 (0.55%) 605 (0.38%) 718 (0.44%)

Variance Jump 293 (0.18%) 270 (0.17%) 148 (0.09%) 118 (0.07%) 281 (0.17%)

Notes: Total number of observations is around 163,000.

Table 2.2: Specification of M1 to M7

Price and variance process with jumps modelled by:

M1 Correlated jump size components (SVCJ) model

M2 Hawkes Process Without Intraday periodicity (St ≡ 1)

M3 Hawkes Process With Intraday periodicity

M4 Marked Hawkes Process with impact function (2.6, I)

M5 Marked Hawkes Process with impact function (2.6, II)

M6 Marked Hawkes Process with impact function (2.6, III)

M7 Marked Hawkes Process with impact function (2.6, IV )
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Table 2.3: Posterior Mean and Standard Deviation of Parameters in Price and Variance

Process

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

µ(∗10−5) 2.819 3.056 11.371 3.618 -0.721 2.049 -0.264 0.655 6.068 0.979

γ 0.032 0.002 0.042 0.003 0.046 0.001 0.119 0.001 0.080 0.002

θ(∗10−5) 51.021 1.385 43.744 1.283 38.647 0.490 8.392 0.073 3.335 0.042

σV (∗10−3) 4.579 0.536 4.747 0.936 4.506 0.431 3.272 0.302 2.271 0.206

ρ -0.150 0.049 -0.090 0.047 -0.145 0.048 -0.118 0.047 -0.131 0.047

µY (∗10−3) -0.171 1.253 0.034 1.239 -0.009 1.492 0.013 1.492 -0.022 0.946

σY 0.2455 0.0204 0.2399 0.0207 0.3452 0.0399 0.3479 0.0455 0.1445 0.0122

µV 0.3008 0.0246 0.3251 0.0277 0.5780 0.0660 0.7160 0.0914 0.3117 0.0261

ξP+(∗10−3) 2.03 3.40 2.02 2.61 2.43 2.47 2.27 2.30 1.87 1.25

ξP−(∗10−3) -2.13 2.94 -2.09 2.98 -2.52 3.00 -2.62 4.33 -1.87 1.74

ξV (∗10−3) 1.14 1.25 1.21 1.04 1.36 1.02 1.44 1.13 1.07 0.31

Notes: Parameters are estimated with data from 1/1/2012 to 31/12/2019 inflated by 78*100 times.
Significant values are marked bold (confidence level: 95%).
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Table 2.4: Summary of Select Parameter Posteriors

Individual Stocks S&P 500 ETF

p+ p− v p+ p− v p+ p− v

ϑ in M2

p+ 0.029 (4/4) 0.019 (4/4) 0.004 (0/4) 0.002 (0/1) 0.003 (0/1) 0.002 (0/1) 0.029 (1/3) 0.014 (1/3) 0.008 (1/3)

p− 0.04 (4/4) 0.042 (4/4) 0.006 (0/4) 0.006 (0/1) 0.007 (0/1) 0.002 (0/1) 0.019 (2/3) 0.047 (2/3) 0.012 (1/3)

v 0.014 (0/4) 0.007 (0/4) 0.003 (0/4) 0.003 (0/1) 0.002 (0/1) 0.002 (0/1) 0.004 (0/3) 0.005 (0/3) 0.014 (2/3)

ϑ in M3

p+ 0.159 (4/4) 0.108 (4/4) 0.009 (3/4) 0.101 (1/1) 0.045 (1/1) 0.026 (1/1) 0.101 (3/3) 0.052 (3/3) 0.012 (3/3)

p− 0.172 (4/4) 0.216 (4/4) 0.009 (3/4) 0.116 (1/1) 0.254 (1/1) 0.009 (1/1) 0.065 (3/3) 0.191 (3/3) 0.023 (3/3)

v 0.54 (4/4) 0.409 (4/4) 0.106 (3/4) 0.265 (1/1) 0.13 (1/1) 0.04 (0/1) 0.155 (3/3) 0.103 (2/3) 0.056 (2/3)

β̃ in M4

p+ 146.2 (3/4) 106.7 (1/4) 175.4 (0/4) 108.8 (1/1) 279.6 (0/1) 69.5 (0/0) 118.5 (2/3) 388 (3/3) 157.9 (1/3)

p− 152.2 (4/4) 97.5 (4/4) 200.2 (0/4) 315.1 (1/1) 84.5 (1/1) 128.4 (0/0) 379.7 (3/3) 64.7 (1/3) 44.3 (2/3)

v 90.4 (4/4) 80.95 (4/4) 41.8 (1/4) 144.5 (1/1) 98.4 (1/1) 153.6 (0/0) 53.4 (1/3) 65 (1/3) 34.1 (1/3)

γ̃ in M4

p+ 106.4 (3/4) 326.75 (0/4) 237 (0/4) 141.7 (1/1) 871.8 (0/1) 322.4 (0/1) 85.8 (1/3) 225.1 (2/3) 131.2 (2/3)

p− 89.4 (0/4) 160.2 (0/4) 406.3 (4/4) 155.7 (0/1) 121.4 (0/1) 217.2 (1/1) 244.3 (2/3) 115.8 (1/3) 174 (2/3)

v 316 (0/4) 400.5 (4/4) 115.2 (4/4) 204.4 (0/1) 996.4 (1/1) 456.5 (1/1) 392.5 (2/3) 164.4 (1/3) 134.7 (2/3)

β̃ in M7

p+ 146.1 (3/4) 123.1 (1/4) 132.9 (0/4) 61.1 (1/1) 82.8 (0/1) 198.2 (0/1) 122.7 (3/3) 418.1 (2/3) 111.5 (2/3)

p− 180.4 (4/4) 137.9 (4/4) 150.2 (0/4) 267 (1/1) 41.5 (0/1) 87.3 (0/1) 309.9 (3/3) 66.1 (2/3) 41.6 (2/3)

v 122.1 (0/4) 77.6 (0/4) 36.8 (4/4) 139.1 (0/1) 124.2 (0/1) 198.1 (0/1) 62 (1/3) 64.7 (0/3) 33 (0/3)

Notes: This table presents posterior means and the number of significant results of some parameters in models. The rows record the responses
to the dimensions of variables in the columns. For example, ϑ denotes the mean number of jumps of one dimension that is produced by another
dimension. So, the 0.04 (ϑp+

p− in the 2nd row, 1st column) means in individual stock data, there are, on average, 0.04 negative price jumps (p−)
produced by positive price jumps (p+). Additionally, there are in total four individual stocks and this parameter is significant for all of them,
hence, (4/4).
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Table 2.5: Deviance Information Criterion (DIC) of M1 to M7

AAPL BA JPM KO SPX

M1 509667 509182 509078 510329 509041

M2 509625 497819 487591 443632 417988

M3 493133 488032 484395 441840 417714

M4 492641 487608 484026 441473 416766

M5 492839 487773 484163 441613 416933

M6 494106 488585 484741 442036 417429

M7 492620 487599 484019 441458 416752

Notes: DIC of different models are calculated by using the data from 1/1/2012 to 31/12/2019.
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Table 2.6: Log Bayes Factor (BF) of M1 to M7

AAPL KO

M7 M6 M5 M4 M3 M2 M7 M6 M5 M4 M3 M2

M1 8376.1 6779.1 8319.6 8368.6 7232.4 336.7 M1 1176.9 1033.3 1146.9 1167.2 1042.6 143.1

M2 8039.4 6442.4 7982.9 8031.9 6895.7 M2 1033.8 890.2 1003.8 1024.1 899.5

M3 1143.7 -453.3 1087.1 1136.2 M3 134.3 -9.3 104.3 124.7

M4 3.5 -1589.4 -49.0 M4 9.7 -133.9 -20.3

M5 56.6 -1540.4 M5 30.0 -113.6

M6 1597.0 M6 143.6

BA SPX

M7 M6 M5 M4 M3 M2 M7 M6 M5 M4 M3 M2

M1 5008.8 4642.8 4968.2 5001.0 4848.5 254.3 M1 470.9 277.2 430.2 463.0 307.3 88.1

M2 4754.6 4388.6 4713.9 4746.7 4594.2 M2 382.8 189.2 342.1 374.9 219.2

M3 160.4 -205.6 119.7 152.5 M3 163.6 -30.0 122.9 155.7

M4 4.9 -358.1 -32.8 M4 -1.9 -185.8 -32.8

M5 40.7 -325.3 M5 40.7 -152.9

M6 366.0 M6 193.7

JPM

M7 M6 M5 M4 M3 M2

M1 1651.7 1435.9 1628.5 1646.9 1503.7 204.1

M2 1447.6 1231.8 1424.4 1442.8 1299.7

M3 147.9 -67.8 124.7 143.1

M4 4.8 -211.0 -18.4

M5 23.2 -192.6

M6 215.8

Notes: The table presents the log Bayes factor of M7 to M2 (row) against M1 to M6 (column).
They are calculated by using the data from 1/1/2012 to 31/12/2019.



2.7 Figures and Tables for Chapter 2 46

Table 2.7: Priors Specification

General Parameters M4’s Impact Function

µ N(0, 1) α̃ N(0, 0.2)1α̃>0

ξ N(0, 1)1ξ>0 β̃ N(0, 10)1β̃>0

θ N(0, 1)1θ>0 γ̃ N(0, 30)1γ̃>0

σV IG(2.5, 0.1)

ρ U(−1, 1) M5’s Impact Function

ξP+ N(0, 50)1ξP+>0 α̃ N(0, 0.3)1α̃>0

ξP− N(0, 50)1ξP−<0

ξV N(0, 10)1ξV >0 M6’s Impact Function

ϑ N(0, 0.1)1ϑ>0 α̃ N(0, 30)1α̃>0

λp+
0 N(0, 0.001)1λp+

0 >0

λp−
0 N(0, 0.001)1λp−

0 >0 M7’s Impact Function

λv
0 N(0, 0.001)1λv

0>0 α̃ N(0, 0.2)1α̃>0

β N(0, 0.3)1β>0 β̃ N(0, 10)1β̃>0

Notes: The table presents priors settings in MCMC algorithm of parameter estimations
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Table 2.8: Summary Statistics of Clusters

No. of cluster MNJ SDNJ Max(NJ) ML Max(L)
No. of cluster

containing only 1 jump

P+ 621 2.981 2.489 21 39 293 206

AAPL P− 643 3.404 2.921 24 67 395 208

V 198 1.480 0.900 6 12 53 138

P+ 607 2.502 2.038 14 37 304 247

BA P− 580 2.502 2.141 22 69 408 239

V 213 1.268 0.574 4 11 55 168

P+ 454 1.800 1.242 9 25 274 257

JPM P− 468 1.872 1.381 12 36 178 256

V 117 1.265 0.621 4 10 31 95

P+ 409 1.562 0.991 7 14 105 272

KO P− 375 1.625 1.188 10 32 263 239

V 99 1.192 0.444 3 18 47 82

P+ 336 1.420 0.846 7 27 109 242

SPX P− 386 1.860 1.215 9 39 122 203

V 223 1.260 0.589 4 9 48 179

Notes: MNJ denotes mean number of jumps in clusters, SDNJ denotes standard deviation of
number of jumps in clusters, max(NJ) denotes maximum number of jumps in a cluster. ML

denotes mean of cluster length (length of a cluster of jumps cover) and Max(L) denotes maximum
value of cluster length. Cluster length figures are rounded to integers.
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Table 2.9: Simulation Results

Characteristics Positive Price Jump JP+ Negative Price Jump JP− Variance Jump JV

AAPL Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 2.981 1.097** 1.481** 3.27 2.72 3.404 1.134** 1.571** 3.631 3.31 1.48 1.016** 1.077** 2.125** 1.678

SDNJ 2.489 0.324** 0.972** 2.874 2.315 2.921 0.389** 1.105** 3.257 2.84 0.9 0.116** 0.3** 2.116** 1.312

BA Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 2.502 1.095** 1.356** 2.862 2.592 2.502 1.096** 1.386** 2.702 2.47 1.368 1.02** 1.164† 1.743** 1.405

SDNJ 2.038 0.321** 0.763** 2.397 2.117 2.141 0.321** 0.838** 2.269 1.92 0.774 0.103** 0.435* 1.399** 0.838

JPM Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.8 1.052** 1.24** 2.04 1.858 1.872 1.058** 1.308** 2.271 1.875 1.265 1.011** 1.093 1.597* 1.363

SDNJ 1.242 0.231** 0.592** 1.384 1.255 1.381 0.242** 0.702** 1.774 1.588 0.621 0.135* 0.381 1.013 0.714

KO Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.562 1.046** 1.208** 1.773 1.595 1.632 1.043** 1.22** 1.927 1.797 1.192 1.007** 1.077 1.175 1.152

SDNJ 0.991 0.215** 0.532** 1.403† 1.241 1.118 0.207** 0.555** 1.404 1.311 0.444 0.134† 0.325 0.297 0.349

SPX Data M1 M3 M4 M7 Data M1 M3 M4 M7 Data M1 M3 M4 M7

MNJ 1.42 1.03** 1.171** 1.799* 1.526 1.86 1.051** 1.347** 2.148 1.749 1.26 1.021** 1.042** 2.241** 1.477

SDNJ 0.846 0.174** 0.461** 1.327** 1.011 1.215 0.226** 0.763** 1.637* 1.267 0.589 0.1** 0.251 2.291** 1.127†

Notes: MNJ denotes the mean of the number of jumps in clusters, and SDNJ denotes standard deviation of number of jumps in clusters.
† indicates less than 10 p.c. of simulations were further out in the tails than the sample estimate.
* indicates less than 5 p.c. of simulations were further out in the tails than the sample estimate.
** indicates less than 1 p.c. of simulations were further out in the tails than the sample estimate.



Table 2.10: Posterior Mean and Standard Deviation of Parameters in a 3-dimensional

Hawkes Structure Model (without impact of marks and before de-periodisation)

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.00330 0.00014 0.00331 0.00014 0.00352 0.00015 0.00241 0.00013 0.00355 0.00015

λp−
0 0.00223 0.00012 0.00277 0.00013 0.00304 0.00014 0.00262 0.00013 0.00327 0.00014

λv
0 0.00342 0.00014 0.00382 0.00015 0.00369 0.00015 0.00266 0.00013 0.00415 0.00016

ϑp+
p+ 0.03554 0.01182 0.03620 0.01210 0.01960 0.00947 0.02536 0.00881 0.00221 0.00198

ϑp+
p− 0.04232 0.01299 0.04612 0.01358 0.02118 0.00900 0.04953 0.01255 0.00633 0.00497

ϑp+
v 0.01008 0.00722 0.02093 0.01226 0.01524 0.00894 0.00943 0.00716 0.00252 0.00217

ϑp−
p+ 0.01497 0.00708 0.01453 0.00712 0.01334 0.00630 0.03505 0.01175 0.00267 0.00223

ϑp−
p− 0.04958 0.01412 0.04782 0.01516 0.00990 0.00474 0.05925 0.01444 0.00728 0.00494

ϑp−
v 0.00409 0.00368 0.01232 0.00824 0.00479 0.00383 0.00537 0.00478 0.00166 0.00153

ϑv
p+ 0.00240 0.00221 0.00223 0.00205 0.00183 0.00167 0.00755 0.00591 0.00185 0.00168

ϑv
p− 0.01002 0.00610 0.00677 0.00458 0.00199 0.00186 0.00613 0.00428 0.00164 0.00156

ϑv
v 0.00191 0.00181 0.00252 0.00228 0.00167 0.00157 0.00585 0.00489 0.00160 0.00150

βp+
p+ 0.68178 0.16344 0.59151 0.12052 0.57802 0.14065 0.76889 0.18061 0.74664 0.19683

βp+
p− 0.56162 0.10462 0.60227 0.09931 0.54975 0.10842 0.46517 0.07440 0.50810 0.19709

βp+
v 0.81568 0.18226 0.67359 0.14879 0.68958 0.15207 0.69433 0.17980 0.91608 0.19418

βp−
p+ 0.71016 0.20938 0.63989 0.18798 0.68816 0.21710 0.81714 0.20306 1.01213 0.31245

βp−
p− 0.50305 0.10923 0.45823 0.08488 0.82526 0.21626 0.39147 0.06942 0.63878 0.20944

βp−
v 1.32656 0.20856 0.76492 0.23168 1.14300 0.23922 1.35068 0.20559 1.62522 0.20297

βv
p+ 0.81999 0.38924 0.84159 0.39234 0.82782 0.39647 0.91125 0.36048 0.80049 0.39342

βv
p− 1.17967 0.32656 1.12093 0.38056 1.14203 0.51008 1.12435 0.42582 1.13095 0.52980

βv
v 0.86550 0.35562 0.88270 0.33751 0.87288 0.36475 0.87369 0.31989 0.90542 0.36437

Notes: The posterior mean and standard deviation of parameters presented here are from Hawkes
Process kernel without impact of marks and before the de-periodisation of asset returns, λ0 denotes
ground intensity, ϑi

q denotes average number jumps in dimension i directly induced by jumps in

dimension q and βi
q denotes corresponding decaying speeds. Values that are significant greater

than 0 are marked bold.
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Table 2.11: Posterior Mean and Standard Deviation of Parameters in a 3-dimensional

Hawkes Structure Model (without impact of marks and after de-periodisation)

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.00614 0.00025 0.00605 0.00022 0.00351 0.00017 0.00294 0.00015 0.00224 0.00013

λp−
0 0.00832 0.00026 0.00587 0.00022 0.00378 0.00017 0.00287 0.00015 0.00354 0.00016

λv
0 0.00032 0.00005 0.00037 0.00006 0.00021 0.00004 0.00013 0.00003 0.00045 0.00006

ϑp+
p+ 0.20806 0.01786 0.16167 0.01974 0.13636 0.02342 0.13007 0.02281 0.10092 0.02319

ϑp+
p− 0.20664 0.01653 0.19215 0.02182 0.14830 0.02288 0.14247 0.02651 0.11623 0.02015

ϑp+
v 0.51729 0.03704 0.52772 0.11636 0.63656 0.14956 0.47720 0.17511 0.26506 0.07930

ϑp−
p+ 0.13529 0.01650 0.10573 0.01740 0.10586 0.02271 0.08574 0.02524 0.04465 0.01640

ϑp−
p− 0.25920 0.01818 0.23425 0.02314 0.20301 0.02422 0.16834 0.02646 0.25364 0.02764

ϑp−
v 0.69279 0.06351 0.39147 0.07927 0.47086 0.12745 0.07905 0.03002 0.12979 0.04001

ϑv
p+ 0.01044 0.00324 0.00716 0.00319 0.00596 0.00329 0.01071 0.00511 0.02611 0.00963

ϑv
p− 0.01344 0.00296 0.00972 0.00367 0.00714 0.00305 0.00395 0.00258 0.00923 0.00417

ϑv
v 0.07827 0.00654 0.17261 0.04368 0.09809 0.04709 0.07522 0.04262 0.03961 0.02038

βp+
p+ 0.12117 0.01041 0.11566 0.01547 0.09937 0.01811 0.12295 0.02234 0.21823 0.04982

βp+
p− 0.11220 0.00999 0.10362 0.01261 0.10945 0.01710 0.09344 0.01964 0.08306 0.01326

βp+
v 0.20506 0.01952 0.30404 0.05798 0.31869 0.05943 0.25182 0.06742 0.20584 0.04950

βp−
p+ 0.08885 0.01174 0.08602 0.01493 0.09502 0.02363 0.14859 0.06176 0.10027 0.04142

βp−
p− 0.11870 0.00848 0.07749 0.00767 0.10688 0.01323 0.10233 0.01681 0.12371 0.01361

βp−
v 0.20236 0.02960 0.20768 0.04413 0.12934 0.03286 0.80471 0.26233 0.50963 0.13780

βv
p+ 0.22734 0.04973 0.50029 0.20026 0.60695 0.29642 0.77601 0.29353 0.39222 0.13254

βv
p− 0.58238 0.07723 0.28513 0.09334 0.75154 0.23179 0.98805 0.39534 0.73104 0.26899

βv
v 0.81287 0.08481 0.45652 0.09065 0.37431 0.17468 0.58253 0.26971 0.84221 0.28391

Notes: The posterior mean and standard deviation of parameters presented here are from Hawkes
Process kernel without impact of marks and after the de-periodisation of asset returns, λ0 denotes
ground intensity, ϑi

q denotes average number jumps in dimension i directly induced by jumps in

dimension q and βi
q denotes corresponding decaying speeds. Values that are significant greater

than 0 are marked bold.
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Table 2.12: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M4 with Impact Function in (3,I)

AAPL BA JPM KO SPX
Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

λp+
0 0.00612 0.00023 0.00606 0.00023 0.00352 0.00017 0.00294 0.00015 0.00204 0.00012

λp−
0 0.00831 0.00027 0.00585 0.00023 0.00378 0.00017 0.00285 0.00015 0.00316 0.00015

λv
0 0.00032 0.00006 0.00037 0.00006 0.00021 0.00004 0.00013 0.00003 0.00045 0.00006

ϑp+
p+ 0.20829 0.02419 0.16158 0.03535 0.13168 0.03988 0.13486 0.04573 0.09832 0.03326

ϑp+
p− 0.21114 0.03222 0.19654 0.04000 0.15552 0.04286 0.14697 0.04857 0.11868 0.03603

ϑp+
v 0.45925 0.10253 0.43934 0.08845 0.51326 0.09822 0.20127 0.07229 0.15662 0.06325

ϑp−
p+ 0.13627 0.02443 0.10744 0.03145 0.10404 0.03962 0.09896 0.05475 0.04209 0.02363

ϑp−
p− 0.27075 0.02750 0.23857 0.04907 0.20978 0.05534 0.16519 0.04724 0.24716 0.05054

ϑp−
v 0.63048 0.10784 0.31285 0.08253 0.37472 0.12442 0.03664 0.01949 0.08132 0.03594

ϑv
p+ 0.01067 0.00632 0.00793 0.00473 0.00789 0.00521 0.01183 0.00631 0.02156 0.00920

ϑv
p− 0.01336 0.00703 0.00991 0.00601 0.00739 0.00534 0.00490 0.00414 0.01498 0.00930

ϑv
v 0.07778 0.03655 0.16434 0.05265 0.06754 0.04484 0.04852 0.02975 0.03448 0.02189

α̃p+
p+ 0.97416 0.09700 0.76704 0.13990 0.71245 0.18259 0.70893 0.19824 0.71323 0.23096

α̃p+
p− 0.72934 0.09873 0.76222 0.13167 0.67490 0.17297 0.54608 0.19875 0.41058 0.17879

α̃p+
v 0.93715 0.19454 0.94516 0.17803 0.93956 0.16687 0.92654 0.32840 0.84887 0.33894

α̃p−
p+ 0.96261 0.14692 0.85797 0.19914 0.82133 0.25826 0.75185 0.42238 0.81270 0.40030

α̃p−
p− 0.94005 0.07901 0.74820 0.11945 0.71399 0.15097 0.23268 0.13182 0.79495 0.12775

α̃p−
v 0.95978 0.16387 0.92208 0.25022 0.88269 0.31130 0.85018 0.50531 0.89902 0.42340

α̃v
p+ 0.76874 0.37434 0.66766 0.37879 0.70095 0.44143 0.70675 0.37005 0.89826 0.35017

α̃v
p− 0.61114 0.29131 0.56857 0.35743 0.62784 0.40925 0.69567 0.53492 0.59252 0.38865

α̃v
v 0.88711 0.40324 0.91462 0.27271 0.75310 0.55147 0.84580 0.53004 0.81844 0.53569

β̃p+
p+ 12.336 9.266 114.598 38.797 117.469 49.177 127.306 61.701 152.884 57.198

β̃p+
p− 126.667 25.019 113.505 34.130 128.460 40.277 172.487 49.704 314.183 66.177

β̃p+
v 54.909 25.092 45.207 19.200 44.557 18.055 50.909 21.313 141.187 60.648

β̃p−
p+ 17.911 15.513 69.594 45.746 72.918 49.944 108.575 57.129 99.159 85.393

β̃p−
p− 27.951 10.489 120.237 41.126 113.076 44.550 292.318 58.596 109.312 40.885

β̃p−
v 35.135 6.266 64.226 11.175 86.451 15.259 103.813 18.359 94.327 17.310

β̃v
p+ 112.355 105.966 163.111 106.549 121.636 88.755 128.249 71.296 53.837 40.402

β̃v
p− 181.231 109.559 204.412 118.370 146.250 123.512 114.385 117.338 216.466 123.595

β̃v
v 98.630 58.258 70.364 39.277 181.977 82.841 106.838 57.549 169.595 92.600

γ̃p+
p+ 186.560 67.756 314.537 115.346 422.911 151.209 329.930 118.325 303.706 116.684

γ̃p+
p− 125.282 117.297 141.093 126.830 179.378 166.713 238.005 200.273 286.940 231.737

γ̃p+
v 56.276 29.719 39.842 20.747 35.468 18.393 44.973 23.352 127.693 66.238

γ̃p−
p+ 238.799 196.609 326.542 259.990 292.087 233.692 263.461 197.922 569.203 452.882

γ̃p−
p− 77.679 43.561 131.250 73.712 132.494 73.551 120.568 68.910 93.167 51.580

γ̃p−
v 39.580 16.308 63.365 25.890 87.073 35.646 99.123 40.529 90.342 36.793

γ̃v
p+ 705.482 562.387 634.251 514.056 658.541 557.710 335.421 279.414 322.709 274.488

γ̃v
p− 531.400 244.004 990.111 447.520 524.398 231.843 640.237 279.640 591.601 258.801

γ̃v
v 106.996 34.276 73.700 23.644 164.735 53.434 107.278 35.115 174.010 55.825

βp+
p+ 0.12158 0.01149 0.11739 0.01631 0.10952 0.02008 0.12870 0.02246 0.19814 0.03905

βp+
p− 0.11080 0.01077 0.10442 0.01343 0.10575 0.01727 0.09084 0.01949 0.09205 0.01440

βp+
v 0.22777 0.03936 0.34432 0.06662 0.33201 0.06631 0.66478 0.22257 0.28837 0.11187

βp−
p+ 0.08952 0.01297 0.08422 0.01623 0.09802 0.02793 0.10356 0.04791 0.11448 0.05412

βp−
p− 0.12016 0.00961 0.07871 0.00818 0.10687 0.01497 0.12535 0.01846 0.13088 0.01691

βp−
v 0.19048 0.03651 0.24269 0.07333 0.14678 0.05520 1.32189 0.25565 0.63149 0.22212

βv
p+ 0.21374 0.06768 0.46466 0.11664 0.47112 0.13588 0.60953 0.14057 0.37113 0.09652

βv
p− 0.51603 0.08436 0.33698 0.09702 0.98972 0.39125 1.25219 0.53831 0.44950 0.19617

βv
v 0.69185 0.28231 0.47511 0.10024 0.51419 0.25153 1.09478 0.40708 0.92367 0.34199
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Table 2.13: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M5 with Impact Function in (3,II)

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.00650 0.00024 0.00623 0.00024 0.00357 0.00017 0.00298 0.00015 0.00214 0.00013

λp−
0 0.00867 0.00026 0.00606 0.00023 0.00386 0.00017 0.00292 0.00015 0.00316 0.00016

λv
0 0.00033 0.00006 0.00037 0.00006 0.00022 0.00004 0.00013 0.00003 0.00046 0.00006

ϑp+
p+ 0.13332 0.01230 0.11131 0.01460 0.09824 0.01769 0.09687 0.01784 0.02180 0.00531

ϑp+
p− 0.12844 0.01256 0.12504 0.01537 0.09960 0.01574 0.09319 0.01745 0.06339 0.01163

ϑp+
v 0.52265 0.08956 0.49529 0.09203 0.52104 0.11734 0.34839 0.11284 0.31874 0.07431

ϑp−
p+ 0.09290 0.01281 0.07571 0.01308 0.07407 0.01623 0.07468 0.01777 0.03319 0.01224

ϑp−
p− 0.15790 0.01246 0.15170 0.01622 0.13303 0.01698 0.09998 0.01765 0.11956 0.01460

ϑp−
v 0.64707 0.10851 0.40574 0.08826 0.46309 0.12245 0.02573 0.02091 0.22188 0.06259

ϑv
p+ 0.00653 0.00217 0.00413 0.00162 0.00264 0.00146 0.00661 0.00242 0.00857 0.00258

ϑv
p− 0.00824 0.00222 0.00621 0.00244 0.00438 0.00201 0.00137 0.00088 0.00567 0.00259

ϑv
v 0.07668 0.02568 0.14199 0.03843 0.05963 0.02970 0.03804 0.02263 0.03692 0.01790

α̃p+
p+ 1.35343 0.02302 1.43771 0.03724 1.59853 0.06256 1.47903 0.05589 1.74059 0.10898

α̃p+
p− 1.40912 0.02612 1.43862 0.03463 1.51280 0.04855 1.60243 0.06482 1.75226 0.08034

α̃p+
v 0.68348 0.01697 0.60081 0.01570 0.56284 0.01789 0.75482 0.03983 0.85844 0.03261

α̃p−
p+ 1.54341 0.04486 1.64435 0.06515 1.67849 0.08592 1.57839 0.08441 2.17473 0.32345

α̃p−
p− 1.29636 0.01807 1.46012 0.03068 1.43374 0.03498 1.55487 0.05736 1.44522 0.03494

α̃p−
v 0.69368 0.01689 0.79001 0.02679 0.87784 0.03858 1.11668 0.30002 0.77644 0.03540

α̃v
p+ 2.19339 0.28668 2.00773 0.27217 2.09955 0.47320 1.70393 0.16487 1.83283 0.15765

α̃v
p− 1.82858 0.13467 2.16948 0.33942 2.06214 0.33973 2.46239 0.98466 1.93706 0.30765

α̃v
v 1.04050 0.06671 0.82261 0.03644 1.20562 0.14069 1.23322 0.19042 1.13290 0.12418

βp+
p+ 0.11308 0.01042 0.10391 0.01632 0.08273 0.01650 0.11455 0.02208 0.19360 0.05507

βp+
p− 0.10217 0.01120 0.09445 0.01368 0.10875 0.01945 0.09171 0.02168 0.06432 0.01300

βp+
v 0.18899 0.02603 0.26852 0.04283 0.29923 0.05110 0.24300 0.07002 0.16650 0.03103

βp−
p+ 0.09006 0.01276 0.08047 0.01573 0.08624 0.02374 0.10981 0.03711 0.03252 0.01658

βp−
p− 0.11755 0.00959 0.07286 0.00854 0.10314 0.01455 0.09846 0.01954 0.08943 0.01330

βp−
v 0.14747 0.02401 0.17366 0.03637 0.11899 0.02694 1.00748 0.35908 0.31662 0.08099

βv
p+ 0.17083 0.06222 0.47735 0.12837 0.68198 0.17002 0.84676 0.16036 0.36851 0.10899

βv
p− 0.43831 0.11316 0.19947 0.09075 0.47813 0.20911 0.48289 0.24102 0.40234 0.19356

βv
v 0.38443 0.11985 0.44479 0.08216 0.31307 0.11433 0.46535 0.17524 0.56217 0.18991
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Table 2.14: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M6 with Impact Function in (3,III)

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.01143 0.00056 0.00915 0.00068 0.00507 0.00018 0.00400 0.00016 0.00305 0.00014

λp−
0 0.01371 0.00047 0.00827 0.00126 0.00545 0.00018 0.00379 0.00015 0.00456 0.00021

λv
0 0.00060 0.00007 0.00056 0.00007 0.00028 0.00005 0.00017 0.00004 0.00060 0.00007

ϑp+
p+ 0.00006 0.00000 0.00007 0.00000 0.00011 -0.00001 0.00009 0.00000 0.00005 0.00000

ϑp+
p− 0.00007 0.00000 0.00006 0.00000 0.00009 0.00000 0.00007 0.00000 0.00006 0.00000

ϑp+
v 0.00008 -0.00002 0.00010 -0.00003 0.00016 -0.00007 0.00013 -0.00006 0.00005 0.00000

ϑp−
p+ 0.00006 0.00000 0.00006 -0.00001 0.00008 -0.00001 0.00009 0.00000 0.00005 0.00000

ϑp−
p− 0.00006 0.00000 0.00006 0.00000 0.00008 0.00000 0.00007 0.00000 0.00005 0.00000

ϑp−
v 0.00009 -0.00002 0.00009 -0.00002 0.00011 -0.00004 0.00013 -0.00005 0.00005 0.00000

ϑv
p+ 0.00006 0.00000 0.00006 -0.00001 0.00007 -0.00001 0.00007 -0.00001 0.00005 0.00000

ϑv
p− 0.00006 0.00000 0.00006 0.00000 0.00007 -0.00001 0.00006 -0.00001 0.00006 0.00000

ϑv
v 0.00011 -0.00002 0.00011 -0.00002 0.00030 -0.00007 0.00026 -0.00009 0.00005 0.00000

α̃p+
p+ 76.87 38.39 172.94 14.69 309.63 24.90 274.61 21.53 33.54 24.58

α̃p+
p− 120.87 11.81 86.75 23.00 221.57 18.99 127.52 15.24 76.98 18.27

α̃p+
v 450.43 270.72 544.29 270.49 842.50 454.42 653.43 394.25 22.18 13.20

α̃p−
p+ 120.73 30.95 97.21 46.85 196.46 69.19 245.04 22.57 20.10 9.97

α̃p−
p− 65.85 29.25 86.48 21.36 207.23 12.22 107.40 29.11 41.31 17.38

α̃p−
v 459.55 246.12 442.22 230.43 601.77 359.60 637.63 394.25 36.18 17.38

α̃v
p+ 59.55 33.24 91.62 45.44 158.55 78.08 151.82 73.35 59.91 13.95

α̃v
p− 61.61 30.22 64.34 32.29 122.71 65.94 66.93 37.50 114.39 20.98

α̃v
v 645.59 211.22 624.81 191.26 1313.45 193.38 1134.12 293.83 84.69 41.04

βp+
p+ 0.04589 0.03880 0.03979 0.02294 0.19189 0.09594 0.08542 0.04899 0.35121 0.19313

βp+
p− 0.03244 0.01647 0.01941 0.01833 0.05512 0.02359 0.07072 0.04668 1.19699 0.17788

βp+
v 0.46667 0.28598 0.38110 0.27483 0.45879 0.27567 0.53490 0.28477 0.42752 0.26675

βp−
p+ 0.11988 0.08915 0.04028 0.03321 0.07900 0.05587 0.02598 0.01278 0.33085 0.21382

βp−
p− 0.02449 0.02402 0.02443 0.02497 0.02562 0.00962 0.10978 0.09547 0.08839 0.09358

βp−
v 1.86442 0.67745 1.26552 0.66575 1.81690 0.68076 1.86605 0.68096 1.73658 0.65074

βv
p+ 0.14406 0.13055 0.14933 0.12080 0.38713 0.17633 0.25034 0.14138 0.51891 0.21285

βv
p− 0.09106 0.08775 0.18525 0.17740 0.38869 0.27276 0.39946 0.30728 0.19799 0.16801

βv
v 0.45538 0.25960 0.34455 0.19880 0.83013 0.36459 0.71708 0.35528 0.57692 0.27855
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Table 2.15: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M7 with Impact Function in (3,IV)

AAPL BA JPM KO SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.00613 0.00024 0.00608 0.00023 0.00353 0.00016 0.00295 0.00015 0.00204 0.00012

λp−
0 0.00832 0.00026 0.00586 0.00022 0.00380 0.00017 0.00285 0.00015 0.00316 0.00015

λv
0 0.00032 0.00005 0.00037 0.00006 0.00022 0.00004 0.00013 0.00003 0.00045 0.00006

ϑp+
p+ 0.20862 0.02615 0.16109 0.03259 0.13096 0.03569 0.13186 0.04370 0.09918 0.03948

ϑp+
p− 0.21149 0.03561 0.19730 0.04604 0.15698 0.04828 0.14827 0.05173 0.11890 0.04446

ϑp+
v 0.44549 0.09725 0.42280 0.08843 0.49393 0.08588 0.27489 0.11581 0.14952 0.06475

ϑp−
p+ 0.13659 0.02663 0.10816 0.03491 0.10088 0.05103 0.09973 0.04895 0.04736 0.03001

ϑp−
p− 0.27081 0.02802 0.23946 0.04961 0.21210 0.05607 0.16586 0.05072 0.24750 0.05385

ϑp−
v 0.63490 0.11437 0.30649 0.07671 0.36193 0.13386 0.03164 0.01687 0.08040 0.03352

ϑv
p+ 0.01070 0.00656 0.00785 0.00490 0.00808 0.00571 0.01197 0.00774 0.02090 0.01029

ϑv
p− 0.01361 0.00866 0.00908 0.00633 0.00802 0.00626 0.00491 0.00390 0.01645 0.01306

ϑv
v 0.08187 0.04178 0.16946 0.05311 0.07721 0.05674 0.07153 0.05545 0.03888 0.03206

α̃p+
p+ 0.96440 0.09572 0.70241 0.13000 0.61822 0.16370 0.65305 0.19086 0.62300 0.22606

α̃p+
p− 0.70786 0.09902 0.74073 0.13653 0.64089 0.17826 0.50842 0.19726 0.40153 0.18887

α̃p+
v 0.97440 0.19769 0.98004 0.19410 0.97931 0.15848 0.96860 0.39723 0.94272 0.38951

α̃p−
p+ 0.94585 0.14716 0.77060 0.19843 0.58027 0.25794 0.51131 0.25629 0.61649 0.33722

α̃p−
p− 0.94127 0.08157 0.73462 0.12013 0.72950 0.15446 0.30713 0.15102 0.88875 0.13791

α̃p−
v 0.98659 0.17102 0.97663 0.23496 0.96178 0.34537 0.96636 0.51104 0.97328 0.39955

α̃v
p+ 0.73776 0.37681 0.60610 0.36778 0.59985 0.40224 0.61942 0.39351 0.82641 0.35318

α̃v
p− 0.64406 0.36564 0.62760 0.43047 0.52020 0.35895 0.60304 0.43494 0.49545 0.37966

α̃v
v 0.96067 0.49317 0.97029 0.30020 0.91373 0.70692 0.95266 0.75424 0.93144 0.79753

β̃p+
p+ 17.533 14.591 147.356 35.796 157.514 44.888 152.813 61.910 201.927 92.121

β̃p+
p− 137.153 32.565 124.215 46.387 142.579 51.328 187.722 57.913 319.850 98.916

β̃p+
v 22.409 18.033 16.484 12.423 15.277 11.371 21.806 16.711 53.592 40.740

β̃p−
p+ 26.671 23.553 113.589 61.586 173.174 102.264 215.240 103.316 205.412 158.799

β̃p−
p− 27.571 10.278 127.141 41.694 107.398 43.634 264.586 59.111 59.457 42.580

β̃p−
v 11.735 7.975 19.301 12.672 28.223 18.073 23.356 15.402 25.003 16.298

β̃v
p+ 129.163 116.298 195.043 127.331 165.095 125.401 167.624 111.260 92.976 74.566

β̃v
p− 167.105 127.181 178.418 127.805 190.498 167.410 151.589 137.256 269.653 221.244

β̃v
v 34.427 15.035 24.529 10.915 63.710 20.646 32.870 14.516 64.142 25.258

βp+
p+ 0.12229 0.01143 0.12133 0.01628 0.11723 0.02051 0.13274 0.02188 0.20435 0.03835

βp+
p− 0.11111 0.01070 0.10356 0.01330 0.10446 0.01699 0.09084 0.01915 0.09217 0.01469

βp+
v 0.22029 0.04185 0.33863 0.08313 0.32689 0.07471 0.39025 0.18467 0.28517 0.13060

βp−
p+ 0.09031 0.01303 0.08554 0.01513 0.10803 0.02455 0.10739 0.03644 0.11533 0.04229

βp−
p− 0.12089 0.00990 0.07924 0.00846 0.10560 0.01492 0.11708 0.01852 0.12703 0.01769

βp−
v 0.18778 0.03254 0.24841 0.06815 0.14623 0.05293 1.99858 0.54406 0.71286 0.24029

βv
p+ 0.22012 0.05897 0.58323 0.13571 0.62347 0.16982 0.82809 0.17549 0.46870 0.11512

βv
p− 0.52030 0.10805 0.40219 0.19699 1.15156 0.22189 1.64153 0.27352 0.50852 0.20679

βv
v 0.75158 0.34721 0.50411 0.12457 0.56593 0.27920 0.89291 0.41545 0.91520 0.43494
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Table 2.16: Posterior Mean and Standard Deviation of Parameters in a 3-dimensional

Hawkes Structure Model (without impact of marks and before de-periodisation)

FCHI IBEX SPDR

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.004 0.000 0.003 0.000 0.002 0.000

λp−
0 0.003 0.000 0.003 0.000 0.002 0.000

λv
0 0.004 0.000 0.004 0.000 0.002 0.000

ϑp+
p+ 0.002 0.002 0.006 0.003 0.078 0.009

ϑp+
p− 0.002 0.002 0.045 0.008 0.010 0.004

ϑp+
v 0.003 0.002 0.003 0.002 0.008 0.006

ϑp−
p+ 0.001 0.001 0.034 0.006 0.006 0.004

ϑp−
p− 0.021 0.006 0.038 0.008 0.082 0.014

ϑp−
v 0.002 0.001 0.004 0.003 0.008 0.005

ϑv
p+ 0.001 0.001 0.018 0.006 0.004 0.004

ϑv
p− 0.002 0.002 0.018 0.008 0.014 0.007

ϑv
v 0.001 0.001 0.016 0.007 0.025 0.009

βp+
p+ 0.747 0.185 0.888 0.185 0.863 0.062

βp+
p− 1.304 0.110 1.112 0.155 0.899 0.144

βp+
v 0.725 0.197 0.732 0.208 0.703 0.199

βp−
p+ 0.777 0.141 1.062 0.117 0.664 0.129

βp−
p− 0.567 0.100 0.548 0.075 0.793 0.080

βp−
v 1.318 0.373 1.389 0.360 1.262 0.328

βv
p+ 0.702 0.204 1.148 0.167 0.653 0.187

βv
p− 0.607 0.177 0.927 0.155 0.714 0.154

βv
v 0.813 0.234 1.290 0.172 1.067 0.175

Notes: The posterior mean and standard deviation of parameters presented here are from Hawkes
Process kernel without impact of marks and before the de-periodisation of asset returns, λ0 denotes
ground intensity, ϑi

q denotes average number jumps in dimension i directly induced by jumps in

dimension q and βi
q denotes corresponding decaying speeds. Values that are significant greater

than 0 are marked bold.



2.7 Figures and Tables for Chapter 2 56

Table 2.17: Posterior Mean and Standard Deviation of Parameters in a 3-dimensional

Hawkes Structure Model (without impact of marks and after de-periodisation)

FCHI IBEX SPDR

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.003 0.000 0.003 0.000 0.001 0.000

λp−
0 0.004 0.000 0.004 0.000 0.001 0.000

λv
0 0.000 0.000 0.001 0.000 0.000 0.000

ϑp+
p+ 0.112 0.013 0.091 0.012 0.100 0.021

ϑp+
p− 0.093 0.015 0.059 0.010 0.043 0.015

ϑp+
v 0.149 0.025 0.189 0.022 0.126 0.027

ϑp−
p+ 0.042 0.010 0.050 0.012 0.065 0.018

ϑp−
p− 0.211 0.016 0.197 0.017 0.165 0.024

ϑp−
v 0.164 0.027 0.119 0.021 0.026 0.015

ϑv
p+ 0.007 0.003 0.015 0.005 0.015 0.007

ϑv
p− 0.019 0.005 0.016 0.005 0.035 0.012

ϑv
v 0.026 0.016 0.070 0.021 0.073 0.034

βp+
p+ 0.219 0.025 0.219 0.028 0.209 0.039

βp+
p− 0.124 0.026 0.222 0.039 0.227 0.081

βp+
v 0.397 0.074 0.548 0.077 0.420 0.087

βp−
p+ 0.185 0.048 0.152 0.033 0.165 0.039

βp−
p− 0.165 0.012 0.165 0.013 0.188 0.023

βp−
v 0.482 0.102 0.526 0.112 1.051 0.327

βv
p+ 0.532 0.106 0.240 0.055 0.646 0.137

βv
p− 0.247 0.051 0.410 0.114 0.325 0.084

βv
v 0.581 0.205 0.564 0.119 0.788 0.184

Notes: The posterior mean and standard deviation of parameters presented here are from Hawkes
Process kernel without impact of marks and before the de-periodisation of asset returns, λ0 denotes
ground intensity, ϑi

q denotes average number jumps in dimension i directly induced by jumps in

dimension q and βi
q denotes corresponding decaying speeds. Values that are significant greater

than 0 are marked bold.



2.7 Figures and Tables for Chapter 2 57

Table 2.18: Posterior of Parameters of Marked Hawkes kernel in M4 with Impact Func-

tion in (3,I)

FCHI IBEX SPDR
Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

Post.
mean

Post.
std. dev.

λp+
0 0.003 0.000 0.003 0.000 0.001 0.000

λp−
0 0.004 0.000 0.004 0.000 0.001 0.000

λv
0 0.001 0.000 0.001 0.000 0.000 0.000

ϑp+
p+ 0.112 0.018 0.091 0.017 0.101 0.031

ϑp+
p− 0.092 0.022 0.058 0.018 0.046 0.016

ϑp+
v 0.056 0.040 0.060 0.034 0.049 0.042

ϑp−
p+ 0.035 0.017 0.042 0.017 0.062 0.026

ϑp−
p− 0.217 0.024 0.200 0.023 0.168 0.038

ϑp−
v 0.123 0.043 0.055 0.044 0.013 0.010

ϑv
p+ 0.006 0.004 0.012 0.008 0.015 0.009

ϑv
p− 0.019 0.007 0.016 0.008 0.037 0.020

ϑv
v 0.011 0.009 0.019 0.014 0.028 0.018

α̃p+
p+ 0.959 0.122 0.963 0.152 0.932 0.253

α̃p+
p− 0.940 0.178 0.733 0.195 0.288 0.202

α̃p+
v 0.924 0.678 0.927 0.545 0.963 0.833

α̃p−
p+ 0.788 0.300 0.817 0.268 0.829 0.313

α̃p−
p− 0.939 0.084 0.940 0.092 0.818 0.156

α̃p−
v 0.986 0.341 0.935 0.755 0.949 0.737

α̃v
p+ 0.722 0.415 0.779 0.408 0.781 0.473

α̃v
p− 0.820 0.264 0.451 0.290 0.731 0.318

α̃v
v 0.959 0.769 0.934 0.691 0.973 0.614

β̃p+
p+ 19.991 17.657 17.786 16.553 27.412 20.455

β̃p+
p− 28.016 27.435 125.783 56.375 280.218 61.124

β̃p+
v 66.099 30.008 60.078 19.427 26.926 18.916

β̃p−
p+ 104.166 84.914 89.332 68.702 69.072 47.433

β̃p−
p− 28.103 11.602 28.178 10.695 71.506 28.584

β̃p−
v 12.041 8.697 53.781 32.445 37.745 24.673

β̃v
p+ 134.740 113.922 107.709 115.620 89.732 61.755

β̃v
p− 81.606 55.260 260.896 90.044 106.356 92.986

β̃v
v 35.231 26.852 54.180 26.875 19.788 16.964

γ̃p+
p+ 167.724 65.677 234.029 139.398 289.586 108.182

γ̃p+
p− 141.825 118.879 925.977 141.438 877.951 338.995

γ̃p+
v 140.530 70.431 126.067 41.242 221.596 55.311

γ̃p−
p+ 140.492 135.005 563.262 174.851 585.436 226.470

γ̃p−
p− 258.639 31.179 161.399 107.240 264.687 46.598

γ̃p−
v 176.232 40.447 113.148 70.907 147.470 83.924

γ̃v
p+ 989.742 454.925 777.175 539.579 158.086 122.841

γ̃v
p− 1336.195 242.598 836.646 426.098 140.314 109.936

γ̃v
v 591.180 332.004 178.997 122.933 241.731 99.832

βp+
p+ 0.222 0.027 0.223 0.031 0.223 0.052

βp+
p− 0.128 0.028 0.240 0.046 0.272 0.059

βp+
v 0.470 0.115 0.604 0.107 0.518 0.150

βp−
p+ 0.262 0.092 0.200 0.073 0.185 0.054

βp−
p− 0.165 0.013 0.164 0.015 0.189 0.023

βp−
v 0.394 0.077 0.357 0.076 1.198 0.353

βv
p+ 0.700 0.167 0.353 0.154 0.571 0.205

βv
p− 0.290 0.054 0.462 0.103 0.375 0.077

βv
v 0.587 0.204 0.752 0.119 0.750 0.168
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Table 2.19: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M5 with Impact Function in (3,II)

FCHI IBEX SPDR

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.003 0.000 0.003 0.000 0.001 0.000

λp−
0 0.004 0.000 0.004 0.000 0.001 0.000

λv
0 0.000 0.000 0.001 0.000 0.000 0.000

ϑp+
p+ 0.083 0.011 0.078 0.012 0.087 0.022

ϑp+
p− 0.078 0.012 0.051 0.009 0.034 0.012

ϑp+
v 85.452 30.895 192.658 61.408 142.890 70.663

ϑp−
p+ 0.031 0.009 0.041 0.010 0.053 0.016

ϑp−
p− 0.158 0.013 0.159 0.016 0.122 0.020

ϑp−
v 138.764 46.791 94.184 33.300 38.076 23.512

ϑv
p+ 0.004 0.002 0.011 0.004 0.014 0.005

ϑv
p− 0.016 0.004 0.011 0.003 0.036 0.009

ϑv
v 0.674 0.668 19.850 9.338 0.000 0.000

α̃p+
p+ 1.318 0.031 1.348 0.039 1.322 0.064

α̃p+
p− 1.544 0.050 1.482 0.054 1.778 0.160

α̃p+
v -1.024 -0.034 -1.364 -0.036 -1.244 -0.061

α̃p−
p+ 1.717 0.121 1.665 0.098 1.598 0.112

α̃p−
p− 1.207 0.017 1.196 0.020 1.275 0.038

α̃p−
v -1.104 -0.033 -0.984 -0.033 -0.600 -0.049

α̃v
p+ 2.068 0.429 1.893 0.209 1.595 0.160

α̃v
p− 1.837 0.112 1.686 0.122 1.441 0.070

α̃v
v 0.255 0.135 -0.629 -0.033 22.022 -9.326

βp+
p+ 0.202 0.026 0.195 0.029 0.214 0.051

βp+
p− 0.111 0.023 0.202 0.038 0.143 0.062

βp+
v 0.375 0.071 0.507 0.082 0.426 0.128

βp−
p+ 0.157 0.067 0.139 0.035 0.153 0.052

βp−
p− 0.154 0.013 0.157 0.016 0.180 0.027

βp−
v 0.303 0.062 0.289 0.053 0.190 0.074

βv
p+ 0.443 0.142 0.261 0.093 0.601 0.174

βv
p− 0.227 0.040 0.496 0.157 0.371 0.066

βv
v 0.626 0.282 0.417 0.101 0.217 0.154
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Table 2.20: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M5 with Impact Function in (3,III)

FCHI IBEX SPDR

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.004 0.000 0.002 0.000 0.000 0.000

λp−
0 0.006 0.000 0.004 0.000 0.002 0.000

λv
0 0.001 0.000 0.001 0.000 0.000 0.000

ϑp+
p+ 0.000 0.000 0.000 0.000 0.000 0.000

ϑp+
p− 0.000 0.000 0.000 0.000 0.000 0.000

ϑp+
v 0.000 0.000 0.000 0.000 0.000 0.000

ϑp−
p+ 0.000 0.000 0.000 0.000 0.000 0.000

ϑp−
p− 0.000 0.000 0.000 0.000 0.000 0.000

ϑp−
v 0.000 0.000 0.000 0.000 0.000 0.000

ϑv
p+ 0.000 0.000 0.000 0.000 0.000 0.000

ϑv
p− 0.000 0.000 0.000 0.000 0.000 0.000

ϑv
v 0.000 0.000 0.000 0.000 0.000 0.000

α̃p+
p+ 31.511 12.774 67.592 11.938 15.903 8.277

α̃p+
p− 80.099 20.888 25.586 17.731 43.478 36.040

α̃p+
v 98.249 78.788 208.437 46.617 180.038 5.861

α̃p−
p+ 46.316 8.615 59.871 11.480 19.686 20.426

α̃p−
p− 54.922 14.958 59.317 8.152 23.822 14.449

α̃p−
v 23.828 15.754 71.632 68.347 50.547 23.737

α̃v
p+ 66.493 16.519 59.378 20.031 40.302 14.454

α̃v
p− 45.470 14.235 23.994 9.607 89.200 14.957

α̃v
v 24.577 15.399 128.280 74.043 169.166 14.789

βp+
p+ 0.094 0.097 0.000 0.000 0.000 0.000

βp+
p− 0.024 0.027 0.050 0.048 1.835 0.696

βp+
v 0.116 0.120 0.255 0.094 0.252 0.045

βp−
p+ 0.407 0.229 0.141 0.105 0.434 0.123

βp−
p− 0.032 0.031 0.000 0.000 0.181 0.235

βp−
v 0.456 0.345 0.288 0.188 1.293 0.346

βv
p+ 0.198 0.136 0.402 0.153 0.437 0.250

βv
p− 0.071 0.052 0.216 0.150 0.175 0.118

βv
v 0.476 0.356 0.263 0.158 0.434 0.138
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Table 2.21: Posterior Mean and Standard Deviation of Parameters of Marked Hawkes

kernel in M7 with Impact Function in (3,IV)

FCHI IBEX SPDR

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λp+
0 0.003 0.000 0.003 0.000 0.001 0.000

λp−
0 0.004 0.000 0.004 0.000 0.001 0.000

λv
0 0.001 0.000 0.001 0.000 0.000 0.000

ϑp+
p+ 0.112 0.016 0.091 0.015 0.102 0.030

ϑp+
p− 0.093 0.021 0.058 0.024 0.046 0.021

ϑp+
v 0.070 0.047 0.050 0.035 0.052 0.034

ϑp−
p+ 0.037 0.015 0.044 0.017 0.060 0.026

ϑp−
p− 0.217 0.022 0.209 0.028 0.161 0.032

ϑp−
v 0.102 0.058 0.033 0.025 0.016 0.013

ϑv
p+ 0.006 0.004 0.014 0.008 0.015 0.008

ϑv
p− 0.020 0.010 0.016 0.008 0.037 0.015

ϑv
v 0.008 0.006 0.030 0.020 0.027 0.019

α̃p+
p+ 0.969 0.121 0.972 0.145 0.901 0.233

α̃p+
p− 0.939 0.176 0.762 0.216 0.432 0.279

α̃p+
v 0.946 0.647 0.890 0.679 0.964 0.639

α̃p−
p+ 0.854 0.294 0.788 0.269 0.828 0.284

α̃p−
p− 0.945 0.080 0.897 0.089 0.788 0.145

α̃p−
v 0.968 0.554 0.964 0.700 0.946 0.761

α̃v
p+ 0.630 0.391 0.776 0.368 0.580 0.379

α̃v
p− 0.706 0.295 0.387 0.256 0.719 0.265

α̃v
v 0.949 0.729 0.967 0.635 0.963 0.664

β̃p+
p+ 15.029 12.261 14.103 11.749 40.901 25.159

β̃p+
p− 28.766 22.435 114.227 89.751 225.554 75.350

β̃p+
v 46.936 23.724 90.428 20.642 26.283 14.013

β̃p−
p+ 71.969 52.118 105.040 64.317 71.047 63.593

β̃p−
p− 25.674 8.766 49.204 21.485 84.030 22.107

β̃p−
v 27.901 14.912 29.798 33.365 39.667 31.935

β̃v
p+ 182.262 137.057 111.030 102.291 173.228 50.529

β̃v
p− 137.855 89.911 293.846 108.216 111.663 57.667

β̃v
v 44.341 30.037 26.862 18.316 27.375 20.229

βp+
p+ 0.221 0.025 0.227 0.032 0.215 0.044

βp+
p− 0.127 0.028 0.233 0.048 0.234 0.057

βp+
v 0.428 0.075 0.592 0.149 0.571 0.185

βp−
p+ 0.237 0.073 0.187 0.051 0.198 0.056

βp−
p− 0.164 0.013 0.164 0.015 0.191 0.022

βp−
v 0.411 0.119 0.429 0.126 0.988 0.182

βv
p+ 0.926 0.249 0.297 0.090 0.896 0.228

βv
p− 0.291 0.061 0.527 0.104 0.372 0.074

βv
v 1.751 0.337 0.541 0.178 0.802 0.189



Chapter 3

Jump Clustering and

High-Frequency Forecasting on

Volatility and Risk Measures

3.1 Introduction

Financial market jumps refer to significant discontinuities in the processes of price

and variance. Its importance has been highlighted in studying stochastic volatility

models for many years (see e.g., Duffie et al. 2000, Eraker 2004, Jacod & Todorov

2010, Todorov & Tauchen 2011). Early studies adopted an assumption that jumps

arrive independently, while recent studies (e.g., Aı̈t-Sahalia et al. 2015) reveal that

jump activities have a dependent structure where jumps in one dimension1 can raise

the probability of future jumps in both its own dimension and other dimensions and

therefore they model jumps by a Hawkes Process. While these models are based on

daily frequency data, dynamics of price and variance on an intraday level has also

attracted much attention in recent years due to the availability of high-frequency

1In this chapter, we specify three dimensions of jumps in the model - positive return jumps,

negative return jumps and variance jumps. See details in the model specification section.
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data (see e.g., Stroud & Johannes 2014, Chen et al. 2021).

However, how useful in practice are these different specifications of models? Does

the dependent structure of jumps, or jump clustering feature, help forecast volatility

and other risk measures? Are different jumps contributing to the forecast in different

ways? This article aims to answer these questions, which are important to financial

practitioners who require information on future market movements.

Hawkes Process (HP), proposed by Hawkes (1971a,b) as a self-exciting process,

was initially used to model unexpected shocks and has attracted applications in

finance recently. For example, Aı̈t-Sahalia et al. (2015) incorporate a multivariate

HP into an Itô semimartingale process and study cross-impact among international

stock markets. Li & Zinna (2018) propose a pricing model for asset returns and

variance swap rates, and find strong evidence of price and variance co-jumps and

self-exciting behaviours of jumps. These papers study dynamics of daily data, while

Boswijk et al. (2018) propose a model-free test on self-excitation in high-frequency

jumps. Chen et al. (2021) look at 5-minute frequency data and propose a stochastic

volatility model with self-exciting jumps. They find that self-exciting jumps that

occur during the day can form clusters lasting between 3 to 20 trading hours. In ad-

dition, Stroud & Johannes (2014) propose a stochastic volatility model incorporating

both price and volatility jumps, periodic effects and announcement effects.

In this chapter, we propose a forecasting framework under a stochastic volatility

model featuring jump clustering and employ high-frequency intraday data. We use a

Bayesian Markov chain Monte Carlo (MCMC) algorithm to estimate parameters in

the in-sample period as is commonly adopted by literature (e.g. Eraker 2004, Stroud

& Johannes 2014). In the out-of-sample period, a particle filter to forward simulate

return and variance distribution. From simulated return and variance distributions,

we obtain intraday point forecasts from 5 minutes to 6.5 hours (one trading day) for

variance, realised volatility, Value-at-Risk (VaR) and expected shortfall (ES). To our

knowledge, we are the first to consider jump clustering in intraday risk management

and high-frequency forecasting.
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In addition, we show estimated parameters in the stochastic volatility model are

affected by microstructure noise in the high-frequency data. Forecasts by forward

simulations are subjected to accumulated forecast errors due to the inconsistent es-

timated parameters, especially when forecasting with long forecasting horizons. To

circumvent this issue, we implement the Kalman filter from forecasting in the meteo-

rology field to correct the forecast errors in this chapter. We show the accumulation

of forecast errors across forecast horizons due to the microstructure noise through

a simulation study and show the usefulness of the Kalman filter in correcting this

error. This is our another novel contribution.

Under this forecasting framework, we find strong evidence that the inclusion of

jump clustering improves high-frequency volatility forecasting using an individual

stock and a broad index data. We examine a range of forecasting horizons and a

model with jump clustering features outperforms all other models across all fore-

cast horizons in variance forecasting, and the forecast performance is comparatively

better with forecast horizons less than 2 hours. We also find that the forecasting

performance after arrivals of negative return jumps is especially better than the

performance after arrivals of other types of jumps.

In daily realised volatility forecasting, we benchmark two popular classes of re-

alised volatility forecasting models (HAR-class and Realised-GARCH class) and

show our model outperforms benchmark models by comparing MSE, forecast bias,

DM test results and through regression analysis. This confirms that intraday jump

clustering features provide additional information in forecasts of lower frequency,

i.e. daily realised volatility.

In VaR and ES forecasting, our model reports the lowest expected loss by using

a loss function proposed by Fissler & Ziegel (2016); joint expected loss of VaR and

ES can be reduced by up to 15% when including jump clustering in a model. We

also adopt two popular backtesting methods and show VaR and ES violations of

our model forecasts are least likely serially correlated. Noticeably, we also look

at conditional performance by extracting forecasts after occurrences of different
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jumps. Similar to variance forecasting, we find negative jump clustering adds more

value than other types of jump do when using higher-frequency data and shorter

forecasting horizons. We find that the benefits of including jump clustering in a

model is higher with an individual stock data which contains more jumps than a

broad index data, suggesting that our model works better when time-series with

large numbers of jumps.

The rest of this chapter is organised as follows. Section 3.2 introduces our model.

Section 3.3 presents in-sample estimation, out-of-sample forecasting and error cor-

rection approaches. Section 3.5 presents our empirical results. Section 3.6 concludes

the chapter. Some technical results are confined to the appendix B.5.

3.2 Model Specifications

3.2.1 Return and Variance Process

We consider 5-minute high-frequency stock market data with M = 78 observations

in a trading day (6.5 hours). Letting Pt denote the natural logarithm of an asset

price at time t, we model the asset return at time t as Yt = Pt−Pt−1, which follows:

Yt · st = µ+
√

Vt−1ϵ
Y
t + ξY+

t JY+
t + ξY−

t JY−
t , (3.1)

where st = Itkf̂
WSD
k , k = 1, ...,M is a periodic component, Itk is a period indicator

and Itk = 1 when time t corresponds to period k. f̂WSD
k is a weighted standard

deviation estimator to adjust return for intraday periodicity (see Section 3.3.1). µ

denotes the drift term of return, ϵYt is an identical independent distributed ran-

dom variable following N (0, 1). We separate positive and negative return jump

components to capture dynamics of their underlying intensities, {ξY+
t , ξY−

t } denote

return jump sizes with truncated normal distributions ξY+
t ∼ N (µY+, σY+)1ξY +>0,

ξY−
t ∼ N (µY−, σY−)1ξY −<0 and {JY+

t , JY−
t } are return jump indicators with under-

lying probabilities P (J i
t = 1) = λi

t, which will be introduced in Section 3.2.2. Vt
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denotes the variance process of the return, which evolve via

Vt = Vt−1 + κ(θ − Vt−1) + σV

√
Vt−1ϵ

V
t + ξVt J

V
t , (3.2)

where κ and θ denote the mean reversion speed and long-run variance mean, re-

spectively, and σV refers to the volatility of volatility, ϵVt is a random variable in

the process that follows N (0, 1). We further let random variables in these two pro-

cesses be correlated with a correlation corr(ϵYt , ϵ
V
t ) = ρ. Similar to return jump

components, ξVt denotes the size of variance jump with an exponential distribu-

tion ξVt ∼ exp(µV ), J
V
t denotes the variance jump indicator. At this stage, our

model resembles the specifications of most jump-diffusion models (e.g. Duffie et al.

(2000);Eraker (2004);Stroud & Johannes (2014);Aı̈t-Sahalia et al. (2015)).

3.2.2 Marked Hawkes Process

Early literature adopts a simple assumption on jump components, that jumps are

serially independent, which makes the underlying intensity a constant value (λi
t ≡

λ0). In this chapter, we assume a multivariate marked Hawkes process (MHP) on

λi
t to capture the dynamic dependent structure among jump components. λi

t is

specified as follows:

λi
t = λi

0 +
∑
q

ϑq,i

∑
0<t̃<t

ϕq,i(t− t̃)ωq,i(ξ
q), i, q ∈ {Y+, Y−, V }, (3.3)

where λi
0 denotes a base line intensity of dimension i, which is constant. ϑ is

a branching coefficient matrix. It governs the mean increase of intensity to the

process in dimension i that is produced by the events in dimension q. ϕq,i is a decay

function such that ϕ : R+ → R+, and we assume an exponential decaying kernel

ϕq,i(t − t̃) = βq,ie
−βq,i(t−t̃), βq,i > 0. ωq,i(ξ

q) is a non-decreasing impact function of

jump sizes, such that ω : R → R+. We adopt a normalised impact function as

follows:
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ωq,i(ξ
q) =

ω̃q,i(ξ
q)

E[ω̃q,i(ξq)]
, ω̃q,i(ξ

q) = α̃q,i + β̃q,ilog(1 + |ξq|) (3.4)

For a simple example, the underlying intensity of dimension i at time t (λi
t) equals

a constant value λi
0 when there are no jumps. If a jump occurs in dimension q

with size ξq, responding to that jump, the intensity in dimension i will increase

by ϑq,i · ωq,i(ξ
q), where ωq,i(ξ

q) captures the impact of different sizes of jump sizes.

This incremental intensity will decay at a speed of ϕq,i(1) = βq,ie
−βq,i·1 every time

interval. See a detailed interpretation and explanation of MHP by Liniger (2009).

3.3 Model Estimation and Forecasting

In this section, we discuss our non-parametric estimations2 on intraday periodic

component st and jump detection Jt. Then we discuss our Bayesian inference on

parameters and latent variables in the in-sample period. In the out-of-sample period,

we adopt a particle filter to estimate latent state and forward simulate distributions

of return and volatility. We also use a Kalman filter to adjust simulated distribu-

tions.

3.3.1 Intraday Periodicity

The theory of intraday periodicity in high-frequency data has been well-established

(see, e.g., Andersen & Bollerslev (1997)). Chen et al. (2021) show that intraday pe-

riodicity, especially overnight returns, can strongly hinder jump clustering features.

Boudt et al. (2011) show that intraday periodicity can improve the accuracy of jump

detection. We follow them and apply a weighted standard deviation estimator in

2The reason for conducting non-parametric estimations on st and Jt is to improve the efficiency

in the Bayesian estimation. Due to the inclusion of MHP parameters, we found difficulties in

parameters convergence due to a large number of latent variables being estimated simultaneously,

while these non-parametric estimations partially solve the problem. Additionally, we conduct

simulations on this issue and try both approaches in simulated data. The power of jump detection

under our non-parametric method is even higher.
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the model. We firstly transform {Yt} to an (M × T ) matrix, and define the order

statistics of returns Ȳ(1),k ≤ Ȳ(2),k ≤ ... ≤ Ȳ(T ),k for k = 1, ...,M . We further define

a shortest half-scale statistic as follows:

ShortHk = 0.741 ·min{Ȳ(h′),k − Ȳ(1),k, ..., Ȳ(T ),k − Ȳ(T−h′+1),k}, (3.5)

where h′ = T
2
+1, this statistics is essentially the minimum differences among return’s

halves. Then a shortest half-scale estimator is defined by:

f̂ShortH
k =

ShortHk

1
M

∑M
k=1 ShortH

2
k

, k = 1, ...,M, (3.6)

and the weighted standard deviation estimator can be obtained as follows:

f̂WSD
k =

WSDk

1
M

∑M
k=1 WSD2

k

, WSDi =

√√√√1.081 ·
∑T

k=1 wi,kȲ 2
i,k∑T

k=1wi,k

, i = 1, ..., T, (3.7)

where wi,k = I(Ȳi,k/f̂
ShortH
k ) is a weight function with a identification function I(·),

such that I(x) = 1 if x ≤ 6.635 and 0 otherwise.

3.3.2 Jump Detection

Denoting the return of an asset at time t adjusted by periodicity as rt = Yt · st, our

goal is estimating {JY
t , J

V
t }. Notice we further separate return jumps to positive

and negative, but we only consider positive variance jumps since results show very

few negative variance jumps. Additionally, downside movements of variance are

captured by its mean-reversion structure (κ, θ).

There are plenty of techniques for detecting return jump activities in a finite

time interval, and most detection methods rely on a continuous return variation

estimator (see a comprehensive review by Maneesoonthorn et al. (2020)). We follow

Mancini et al. (2015) and Figueroa-López & Mancini (2019) to construct our test.

We identify a jump at time t, Jt = 1, when the squared return is greater than a

threshold, r2t > V̂ 2
t · 2∆log 1

∆
. V̂ 2

t is a non-parametric estimator of spot variance
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based on pre-truncated returns:

V̂ 2
t =

n∑
t̃=1

fh(t− t̃)r2t · 1{r2t≤9∆0.99} (3.8)

where fh(·) is weight function, fh(t) = 1
h
· e−|t/h|

2
with a bandwidth h = 200∆ for

simplicity. The idea of this filtering is to extract those standardised squared returns

(rt∆/V̂ 2
t ) which is not generated by a Brownian motion, whose absolute value is

greater than the threshold
√

2log(1/∆).

In filtering variance jumps, we follow Jacod & Todorov (2010) and set up test

statistic for variance jumps as follow:

Lv(t) = 2log(
1

2
(V̂ 2

t + V̂ 2
t−))− log(V̂ 2

t )− log(V̂ 2
t−) (3.9)

and N bLv(t) → X 2
1 , where b = 1

2
− ∆t. The V̂ 2

t is a spot variance estimator, and

The temporal variance estimator V̂ 2
t is specified in Eq. 3.8.

3.3.3 Bayesian Inference on Parameters

In the in-sample period, we conduct a Bayesian inference on static parameter vector

Θ = {µ, κ, θ, σV , ρ, µY+, σY+, µY−, σY−, µV , λ
i
0, βq,i, α̃q,i, β̃q,i} for i, q ∈ {Y +, Y −, V }

and latent variables Zt = {Vt, ξ
Y+
t , ξY−

t , ξVt ,ϑ}. Therefore, the joint posterior distri-

bution is given by:

p (Θ,Zt|Yt) ∝ p (Yt|Zt) p (Zt|Θ) p (Θ) (3.10)

We adopt the Markov chain Monte Carlo (MCMC) approach to simulate the pos-

terior, the algorithm is a hybrid of Metropolis-Hastings and Gibbs sampling, since

not all posterior distributions are available in closed forms. In terms of sampling

parameters in MMHP and the branching matrix ϑ, we follow Rasmussen (2013) and

construct our sampling steps. A detailed specification of priors and the algorithm

is provided in Appendix B.1.



3.3 Model Estimation and Forecasting 69

3.3.4 Out-of-Sample Forecasting Method

In the out-of-sample period, following Stroud & Johannes (2014), we firstly fix static

parameters Θ at their posterior mean, which is Θ̂ estimated in the in-sample period.

Then, for every time t in out-of-sample, we firstly adopt a particle filter proposed by

Pitt & Shephard (1999) to filter Zt by sampling from p
(
Zt|Yt, Θ̂

)
. Then, we do out-

of-sample forecasting by sampling from p
(
Zt+1|Zt, Θ̂

)
and p

(
Yt+1|Zt+1, Θ̂

)
. Full

details of particle filter sampling and re-sampling scheme is provided in Appendix

B.2.

Specifically, we approximate forecast distributions of return and variance by

forward simulations. Given a forecast horizon of τ 3 and the number of simulations

of n, for ni = 1, ..., n and s = 1, ..., τ , we firstly calculate underlying intensity λi
t+s

using Equation 3.3, notice λi
t+s is calculated by summing up the impact of past

jumps (J
i,(ni)
[0,t+s]), for speeding up calculations, we only consider jumps in the past 20

trading days (J
i,(ni)
[t+s−780,t+s]). Then jumps are sampled from a Bernoulli distribution:

J
i,(ni)
t+s ∼ Bernoulli(λi

t+s), i = {Y+, Y−, V }, (3.11)

and corresponding jump sizes (ξ
i,(ni)
t+s ) are sampled from their truncated normal and

exponential distributions as mentioned in Section 3.2.1. Further, we simulate:

V
(ni)
t+s ∼ p

(
V

(ni)
t+s |V

(ni)
t+s−1, J

V,(ni)
t+s , ξ

V,(ni)
t+s , Θ̂, xt+s

)
(3.12)

Y
(ni)
t+s ∼ p

(
Y

(ni)
t+s |Z

(ni)
t+s , Θ̂

)
, (3.13)

where xt+s is an error correction term introduced in Section 3.4. We aggregate

simulated variance and returns over forecast horizon τ . Note we also consider the

3Since we do forecasts of different frequencies by aggregating τ steps forward-simulated forecasts,

’τ forecast horizon’ in this chapter also means one-step forecast under τ frequency. For a specific

example, for 5-minute data, there are 78 observations in a trading day (6.5 hours). When we set

τ = 6 (0.5 hours), at time t, we aggregate forecasts at t+ 1, t+ 2, ..., t+ 6 to get forecast of t+ τ

at time t. Therefore, τ denotes the data or forecast frequency (0.5 hours), which is also a forecast

horizon (6 small steps forecasts).
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daily realised volatility measure proposed by Andersen & Bollerslev (1997), which is

calculated by summing up intraday squared returns (setting τ = M), so we simulate

the distribution of realised volatility by:

V
(ni)
t,τ =

τ∑
s=1

V
(ni)
t+s , Y

(ni)
t,τ =

τ∑
s=1

Y
(ni)
t+s , R̂V

(ni)

t,τ =

√√√√ τ∑
s=1

(Y
(ni)
t+s )

2, (3.14)

4 and point forecasts of variance and realised volatility is calculated by their posterior

mean:

V̂t,τ =
1

n

n∑
ni=1

V
(ni)
t,τ , R̂V t,τ =

1

n

n∑
ni=1

R̂V
(ni)

t,τ (3.15)

Further, we consider two prevailing risk measures in the financial market, Value-at-

Risk (VaR) and Expected Shortfall (ES), which are defined as follows:

V aRα
t ≡ inf{Yt ∈ R|FY (Yt|Ft−1) ≥ α}, ESα

t ≡ E[Yt|Yt ≤ V aRα
t ,Ft−1]. (3.16)

where FY (·|Ft−1) is a cumulative distribution of asset returns Yt over a time horizon

and under a significance level α ∈ (0, 1). In our forecasting approach, given the

availability of posterior return distribution over horizon τ , we take α percentage

quantile and posterior mean of simulations lower than α percentage quantile as our

VaR and ES forecasts:

V̂ aRt,τ = Y
(o=α∗n)
t,τ ÊSt,τ =

α∗n∑
o=1

Y
(o)
t,τ (3.17)

where o is an order indicator of n particles from Y
(ni)
t,τ . They are sorted in an

ascending manner as Y
(o=1)
t,τ , ..., Y

(o=n)
t,τ . This is our novel contribution - including

jump clustering in variance and risk forecasting, and examining its benefits under a

high-frequency setting.

4Xt,τ denotes variable {Xt}’s aggregated value from time t to t + τ , it is also Xt:t+τ , this

notation is used throughout this chapter.
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3.4 Error Correction by Kalman Filter

The reason for correcting the simulated posterior distribution of variance by an error

correction term is due to the potential accumulation of forecast errors (see Figure

3.1 plotting variance forecasts against a proxy actual values, the gap between them

widens with increasing forecast horizons). We suspect these errors possibly come

from microstructure noise (MN). More importantly, these errors can accumulate

when aggregating forecasts over τ forecast horizons. We conduct a simulation study

on resources of forecast errors and how they accumulate across forecast horizons in

Section 3.4.3. However, we also highlight that how the nature of high-frequency

data affects parameter estimations of stochastic volatility models is a big topic. In

this chapter, we focus more on correcting these errors. To our knowledge, we are

the first to do so.

Figure 3.1 plots SPX variance forecasts by the SVIJ-MHP model without error

correction and its actual values under different forecast horizons. Clearly, the gap

between forecasts and actual values widens with the increase of the forecast horizon.

One could argue that one option to avoid this is to estimate the model with forecast-

horizon-corresponded data frequency (e.g. estimate the model using daily data and

forecast daily variance). However, this may lose intraday dynamics, especially intra-

day jump clustering features. Thus, we estimate the model with higher-frequency

data and conduct a further error-correction step. Our error correction strategy as-

sumes a continuous and auto-correlated component in the forecast errors. We aim

to estimate and forecast this component iteratively. For example, at time t+ τ , we

firstly estimate the continuous component in forecast errors (denoted as xt,τ and ut,τ

respectively). Then, we forecast the continuous component for the next τ (xt+τ,τ )

from t + τ to t + 2τ . Lastly, we compute xt for each time point in this period

xt+τ,1, xt+τ+1,1, ..., xt+2τ−1,1 to adjust forecasts of each time point. In this way, we

can do variance forecasting with higher frequency data (e.g. forecast daily variance

with 5-minute data) without losing the advantages of considering jump clustering
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in the higher frequency.

[INSERT FIGURE 3.1 ABOUT HERE]

3.4.1 Kalman Filter

We are inspired by earlier papers in the field of meteorology (e.g. Evensen (1994))

which use Kalman filter (KF) to capture and correct forecast biases. KF regards

forecast biases as a latent state in the error series. It assumes a serial linear corre-

lation of biases and iteratively estimate and predict biases. We find it valuable in

the financial forecasting field given a serial-correlated component in forecast errors.

To our knowledge, we are the first to do so.

Denoting forecast error from t to t + τ as ut,τ and the continuous term as xt,τ ,

our approach for correction is firstly letting xt accumulate for τ forecasting horizon

(xt,τ ), then we use a KF to recursively update and predict xt,τ , xt+τ,τ , xt+2τ,τ , .... Our

goal is to forecast xt for the next τ , x̂t+τ,τ , given information at time t+τ . We firstly

let:

ut,τ = F · xt,τ + ηt,τ , ηt,τ ∼ N (0, σ2
η) (3.18)

we further let xt,τ to be a linear function of its lag:

xt,τ = Q · xt−τ,τ + δt,τ , δt,τ ∼ N (0, σ2
δ ) (3.19)

The initial state, x0,τ , is assumed to follow a normal distribution N (µx0,τ , σ
2
x0,τ

).

Then, the system of forecast errors forms a KF. In the update stage, the estimated

continuous term x̂t,τ is recursively updated by:

x̂t,τ = Q · x̂t−τ,τ +Kt,τ (ut,τ − F · x̂t−τ,τ ), (3.20)

which is a linear combination of previously predicted x̂t−τ,τ and ut,τ . Kt is a weight-

ing coefficient, called Kalman gain, which is given by:

Kt,τ =
F · pt−τ,τ

F · pt−τ,τ + σ2
η

(3.21)
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where pt,τ is updated state error covariance, which encrypts the state error covariance

that KF thinks the estimated error has. It is updated by:

pt,τ = pt−τ,τ (1−Kt,τ ) (3.22)

Then, in the predictive stage, the forecast of xt for the next τ is given by:

x̂t+τ,τ = Q · x̂t,τ (3.23)

and state error covariance forecast is given by:

pt+τ,τ = Q · pt,τ + σ2
δ (3.24)

Notice this error correction requires the estimation of the initial state and param-

eters in the Kalman filter {µxt , σxt , F,Q, ση, σδ}. Therefore, we further separate the

out-of-sample period to a validation period and the remaining out-of-sample period.

In the validation period, we estimate the initial state and parameters of the Kalman

filter using the expectation–maximisation (EM) algorithm proposed by Shumway

& Stoffer (1982). In the remaining out-of-sample period, we do the out-of-sample

forecasting.

3.4.2 Error Correction in Variance Forecasting with Longer

Forecasting Horizons

This section introduces how we nest the KF in variance forecasting with a particle

filter (Eq. 3.12).

If not considering the error correction, at time t, for forecast horizon s = 1, ..., τ ,

we forward simulate variance by sampling from the predictive distribution:

V
(ni)
t+s ∼ P (V

(ni)
t+s |V

(ni)
t+s−1, J

V,(ni)
t+s , ξ

V,(ni)
t+s , Θ̂)

then, we aggregate forward simulated variance over τ for each particle and take

particle means as point forecast (V̂t,τ ) (Eq. 3.14, 3.15). However, We showed this
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forecast is subjected to certain accumulated errors. Assuming the accumulated error

term on V̂t,τ is xt,τ . Section 3.4.1 introduces how we can estimate x̂t−τ,τ and forecast

x̂t,τ by KF. The question left is how we translate the estimated continuous errors

over forecast horizon τ (x̂t,τ ) to each step of variance forecast (V̂t,s, s = 1, 2..., τ).

Therefore, we introduce the following proposition:

Proposition 1 Given a variance process in Eq. 3.2 and a forecast horizon τ , if the

forecast at time t, V̂t,τ is biased by x̂t,τ , assuming forecast errors are accumulated

evenly across the forecast horizon τ , then for each step across the forecast horizon

s = 1, 2, ..., τ , variance forecasts should be adjusted by f(τ) · x̂t,τ , where:

f(τ) = κ

[
1 + τ − 1− (1− κ)τ+1

κ

]−1

(3.25)

where κ denotes the mean-reversion speed parameter of the variance process (see

Eq. 3.2). A proof can be seen in Appendix B.4. The essential idea of this regime

is firstly letting the error accumulate for a τ period. Then, we estimate it by a KF

(x̂t,τ ), so, for each small step forecasting within τ horizon, we adjust the forecast by

x̂t,τ · f(τ), and transition coefficients in the Kalman filter F and Q:

V̂
(ni)
t+s := V̂

(ni)
t+s + F ·Q · x̂t,τ · f(τ)

which becomes Eq. 3.12. Again, we remark the reason for translating x̂t,τ to x̂t+s,1

for s = 0, 2, .., τ−1 is better captures jump clustering features in a higher frequency.

We will show in our empirical works that jump clustering features can diminish with

the decrease in data frequency.

3.4.3 Simulation Studies on a Simple ASV Model

In this section, we perform simulations on a simple ASV model (the ASV model in

Table 3.3) to study the resources of forecast errors and the effectiveness of KF. For

simplicity, we do not consider the intraday periodicity in this section. The model

reads:

Yt = µ+
√
Vt−1ϵ

Y
t + ηt, (3.26)
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Vt = Vt−1 + κ(θ − Vt−1) + σV

√
Vt−1ϵ

V
t (3.27)

Interpretations of parameters in this model are the same as those in Eq. 3.1 and

3.2. Similarly, we assume a correlated Brownian motion (corr(ϵYt , ϵ
V
t ) = ρ) to add

the leverage effect in this model. In addition, we consider the MN by adding an

additional noise (ηt) in the return process. Inspired by Li et al. (2021), we consider

the following 4 different types of MN:

ηt =



1
5
·
√
Vt−1 · ϕt (Gaussian noise)

1
5
·
√
Vt−1 · ωB

t

√
υ−2
υ

(t-distributed noise)

1
5
·
√
Vt−1 · ωA

t (correlated Gaussian noise)

1
5
·
√
Vt−1 ·

(
1
2
ωA
t + 1

2
ωB
t

√
v−2
v

)
(Gaussian-t mixture noise)

(3.28)

where ϕt is a random variable from the standard normal distribution N (0, 1). ωB
t

is a random variable from a t-distribution with a degree of freedom υ. ωA
t is a

correlated Gaussian random variable defined as follow:

ωA
t = ϕt +

Λ∑
j=1

βjϕt−j, βj =
d(1 + d) · · · (j − 1 + d)

j!
(3.29)

where Λ is a cut-off value, and d ∈ (−0.5, 0.5). The correlated Gaussian-t mixture

noise setting can capture some characteristics of MN in the stock market: 1) slowly-

decaying auto-correlations; 2) volatility-dependence; 3) large bounce-backs in the

transaction data (see Clinet & Potiron (2021) and Jacod et al. (2017)). Jacod et al.

(2017) also show the ratio of MN’s size to volatility is time-varying ranging from 0.1

to 0.7. We take a conservative estimate as 1
5
, but we remark that this is a trivial

issue. We also tried MN with bigger sizes, and the effect of MN on the model can

only become more evident.

We use this model as the data generating process (DGP), and set the parameters
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in the DGP as follow5:

µ = 0.3∆t κ = 0.05∆t θ = 0.3∆t σV = 0.2∆t ρ = −0.3

d = 0.3 Λ = 100 υ = 2.5
(3.30)

where we take ∆t = 1
78

standing for 5-minute frequency.

We firstly conduct five simulations with different MN specifications, and simulate

10,000 days’ 5-minute data for each simulation (780,000 data points). Then we esti-

mate the model by Bayesian MCMC (with 100,000 iterations and a 50,000 burn-in

period). Table 3.1 reports the posterior mean and standard deviation of parameters.

As is shown in the table, some estimated parameters deviate from their actual val-

ues with the presence of MN. For example, κ inflates by nearly three times. Also, ρ

becomes insignificant with MN. This step aims to show that estimated parameters

can become inconsistent with the presence of MN.

[INSERT TABLE 3.1 ABOUT HERE]

Then, we show that forecasting with these inconsistent parameters can lead

to the accumulation of forecast errors. Using the simulated data with correlated

Gaussian-t mixture MN, we set the last 1000 days’ data as the out-of-sample data.

Then we estimate the model, and forecast variance. We firstly use estimated pa-

rameters under DGP with the Gaussian-t mixture noise (inconsistent parameters)

to forecast variance. Then we use estimated parameters under DGP without noise

(consistent parameters) to do the forecast as a comparison. Figure 3.2 plots the

implied variance and actual variance. The figure shows that implied variance tracks

the actual variance.

[INSERT FIGURE 3.2 ABOUT HERE]

Then, we correct errors in variance forecasts using the KF. Forecast results are

plotted in Figure 3.3, 3.4 and 3.5. The top three graphs plot variance forecasts (V̂t)

5We estimate the model using S&P 500 log returns (times 100 as a multiple) from 2012 to 2019,

and retrieve these parameters.
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against actual in each figure. The middle three graphs plot forecast errors of forecasts

(red line, ut,τ in Eq. 3.18), error forecasts by KF (green line, x̂t,τ in Eq. 3.23) and

forecast errors after the correction using KF (blue line). The bottom three graphs

plot error-corrected forecasts. Figure 3.3 plots forecasts using consistent parameters,

and Figure 3.4 and 3.5 plots forecasts using estimated consistent parameters. We

consider multiple forecast horizons τ as we do in the empirical studies.

[INSERT FIGURE 3.3 ABOUT HERE]

[INSERT FIGURE 3.4 ABOUT HERE]

[INSERT FIGURE 3.5 ABOUT HERE]

As shown in Figure 3.3, when using consistent parameters in the forecasting,

KF does not capture anything in forecast errors, and error forecasts (green line, x̂t,τ

in Eq. 3.23) are almost horizontal. Also, there are nearly no differences between

forecasts with and without error correction. However, when using inconsistent pa-

rameters, forecast errors can be captured by KF, and the green line tracks forecast

errors. In addition, we also show how forecast errors can accumulate with the in-

crease in forecast horizons. Variance forecasts deviate further from actual variance

when forecast horizons are greater than 24 (see Figure 3.4 and 3.5). Therefore, we

show that 1) microstructure noise in the high-frequency data can lead to parameters

being estimated inconsistently; 2) forecasting using these inconsistent parameters is

subject to forecast errors which are auto-correlated and can accumulate over forecast

horizons; 3) KF is useful in correcting these errors.

3.5 Empirical Application

We apply the model to 5-minute high-frequency data of an individual stock and a

broad index. In this section, we introduce our dataset and in-sample estimations,

and we will then report our out-of-sample forecasting performance along with eval-

uation methods.
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3.5.1 Data

We retrieve 5-minute high-frequency data from Bloomberg for Apple Inc. (AAPL)

and S&P 500 (SPX) from 3/1/2012 to 31/12/2019. We separate these eight years of

data into 4,1,3 years for in-sample estimation, Kalman filter parameter estimation,

and out-of-sample forecasting period. We remark that the one-year window is a

pseudo out-of-sample period when we conduct the forecast, but only for the purpose

of estimating parameters in the Kalman filter. We also examine 10-minute and 30-

minute data to investigate the dynamics of jump clustering. The number of jumps

detected in both data are reported in Table 3.2, clearly AAPL reports more return

jumps than SPX does. For comparisons, we use four other stochastic volatility

models as benchmarks described in Table 3.3.

[INSERT TABLE 3.2 ABOUT HERE]

[INSERT TABLE 3.3 ABOUT HERE]

3.5.2 In-Sample Estimation and model Fitness

We conduct non-parametric estimations on the periodic component st = Itkf̂
WSD
k ,

k = 1, ...,M and jumps component {JY+
t , JY−

t , JV
t }. Figure 3.6 plots fWSD

k of AAPL

and SPX with and without overnight returns, two graphs on the right-hand side are

simply two graphs on the left-hand side without the first points. This figure shows

that intraday periodicity appears an ’U-shape’. Additionally, Figure 3.7 and Figure

3.8 plots some variables in the return and variance processes. These figures show

that there are much more return jumps than variance jumps. Also, AAPL has more

return jumps than SPX does.

[INSERT FIGURE 3.6 ABOUT HERE]

[INSERT FIGURE 3.7 ABOUT HERE]

[INSERT FIGURE 3.8 ABOUT HERE]



3.5 Empirical Application 79

Parameters estimated in the model are reported in Table 3.4, MHP parameters of

SVIJ-MHP model are reported separately in Table 3.5. In assessing model fitness, we

calculated the deviance information criterion (DIC) at the bottom of Table 3.4. The

DIC is calculated by model log-likelihood penalised by model complexity and can be

calculated simultaneously with MCMC estimation. A smaller value of DIC indicates

a better fitness of the model. In addition, we also calculate the log-likelihood of the

model and Bayes factor (likelihood of two models). We plot the cumulative log Bayes

factor of 4 other models against SV model in Figure 3.9. As a result, SVIJ-MHP

model reports the best fitness of models in terms of DIC and Bayes factor. Figure

3.9 also indicates the importance of including jumps in a model. From the figure,

we can see log-likelihood of SVJ, SVIJ and SVIJ-MHP model are higher than that

of ASV and SV model.

[INSERT TABLE 3.4 ABOUT HERE]

[INSERT TABLE 3.5 ABOUT HERE]

[INSERT FIGURE 3.9 ABOUT HERE]

3.5.3 High-Frequency Variance Forecasting

To show the usefulness of the Kalman filter in error corrections, we plot variance

forecasts of SPX using 5-minute data before and after the correction by Kalman filter

in Figure 3.10. We compare variance forecasts by using mean square error (MSE),

forecast bias ( V̂t,τ−Vt,τ

V̂t,τ+Vt,τ
), Diebold Mariano (DM) test6 (Diebold & Mariano 1995),

and Mincer-Zarnowitz regressions (Vt,τ = β0 + βmzV̂t,τ + vt,τ , (Mincer & Zarnowitz

1969)).

Remark 6 (Proxy for Actual Values of Variance) Our proxy of true values of

6 For example, we have two time-series of forecast errors (et,1 and et,1) from two different

models. We calculate Diebold-Mariano statistic as DM = s̄/

(√
(γ0 + 2

∑h−1
k=1 γk)/n

)
, where s̄ =

E(e2t,1−e2t,1) and γk denotes the autocovariance of e2t,1−e2t,1 at lag k. n denotes number of forecasts

and we take h = n
1
3 + 1.
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variance is estimated using the full sample in the SVIJ-MHP model (model-implied

variance). Note that we are aware of the suspicion of using model-implied variance

as true values. We find difficulties in choosing a relatively ’perfect’ proxy for high-

frequency variance, and there is limited literature studying high-frequency variance

forecasting. To robustify our results, we also use several different proxies. We follow

Stroud & Johannes (2014), who use hourly RV as actual values in hourly variance

forecasting. We also use implied variance by SV model as actual values. We addi-

tionally conduct simulation studies, and use simulated variance as actual values. We

find results are similar, and all these additional results are confined to the appendix

B.5. We also remark that this proxy problem only arises in high-frequency variance

forecasting. Daily RV, VaR and ES forecasting in later sections do not have this

issue. Their results also indicate the superiority of our model and the importance of

considering jump clustering.

Table 3.6 reports the forecast performances of AAPL and SPX across different

forecast horizon τ , forecasts by the SVIJ-MHP model provide the lowest MSE,

smallest BIAS and highest R2 in Mincer-Zaenowitz regressions, p-value of DM test

also indicates that forecasts by SVIJ-MHP model are significantly different from

those by other models. We also assess 10-minutes and 30-minutes data, and full

results are provided in appendix B.5.

[INSERT FIGURE 3.10 ABOUT HERE]

[INSERT TABLE 3.6 ABOUT HERE]

In addition, to evaluate the effect of including jump clustering features, we also

consider conditional performance by extracting h forecasts after different types of

jumps. The purpose is to evaluate the forecasting contribution of jump clustering ef-

fect produced by different types of jumps. For example, Table 3.7 report conditional

MSE of variance forecasts across different τ and h using AAPL 5-minute data, and

Table 3.8 reports p-values of corresponding DM tests. Further, conditional MSE of

using SPX data and associated DM test are provided in Table 3.9 and Table 3.10.
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In general, the SVIJ-MHP model provides the best performance, especially using

AAPL 5-minute data. For example, in 0.5-2 hours variance forecasts, MSE of the

SVIJ-MHP model after negative return jumps is reduced by over 10% in AAPL data,

while this figure is less than 3% in SPX data. However, results of DM tests sug-

gest forecasts by SVIJ-MHP model are mostly different from those by other models

except 2-3 hours forecasts after variance jumps using SPX 5-minute data.

[INSERT TABLE 3.7 ABOUT HERE]

[INSERT TABLE 3.8 ABOUT HERE]

[INSERT TABLE 3.9 ABOUT HERE]

[INSERT TABLE 3.10 ABOUT HERE]

In terms of 10,30-minutes data, we compare forecasts performance after return

jumps in Table 3.11 and 3.12, and that after variance jumps in Table 3.13. We only

provide DM test results here, and full results can be found in appendix B.5. We

find that in SPX data, forecasts by SVIJ-MHP model become indifferent to those

by other models with 10-minutes data. It still performs well in forecast half an hour

variance after negative return jumps but generally becomes indifferent with other

models in 30-minutes data after all types of jumps, while forecasts using AAPL data

provide better performance in general. We also find that forecast performance after

negative return jumps tends to be better than that after positive return jumps and

variance jumps. Furthermore, we find advantages of using higher frequency data.

For example, in forecasting 2-hour variance after negative return jumps, forecasts

using 5-minute data outperform those using 10 and 30-minutes data. This suggests

that advantages of jump clustering diminishes with the increase in data frequency.

[INSERT TABLE 3.11 ABOUT HERE]

[INSERT TABLE 3.12 ABOUT HERE]

[INSERT TABLE 3.13 ABOUT HERE]
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These results suggest 1) Using AAPL data, which has more jumps in data, pro-

vides generally better variance forecasts performance than SPX when using SVIJ-

MHP model; 2) negative return jump clustering helps more in forecasting variance;

3) higher-frequency data provides better forecasting performance; 4) forecast per-

formance is comparatively better with forecasting horizons of less than 2 hours.

Our results are also in line with those in Chen et al. (2021), which show that

the cluster lengths of high-frequency jumps are around 2-3 hours, negative jump

clusters last longer and variance jumps are comparatively short-lived. Our results

also indicate that contributions of including jump clustering to variance forecasting

are greater with forecasting horizons less than 2 hours. This provides implications

to market practitioners, especially high-frequency traders, that market risks can be

raised up by jumps, especially 2 hours after spotting a jump.

3.5.4 Daily Realised Volatility Forecasting

Realised volatility (RV) has become a very popular volatility estimator since pro-

posed by Andersen & Bollerslev (1997). Forecasting on RV has also attracted many

studies. In our RV forecasting, we benchmark a heterogeneous autoregressive (HAR-

RV) model, and its extension with continuous jump (HAR-RV-CJ) and signed jump

(HAR-RV-SJ) (see Corsi (2009);Andersen et al. (2007);Patton & Sheppard (2015)).

We also consider realised GARCH family models, including realised-GARCH model,

its log-linear form and realised-EGARCH model (see Hansen et al. (2012);Hansen

& Huang (2016)). In addition, we compare our model with models without error

corrections, and ’no-change’ forecasts as a baseline benchmark, which simply takes

the previous day’s RV as forecasts.

We obtain point estimates of daily RV by calculating the posterior mean of the

simulated posterior distribution. Figure 3.11 plots the upper and lower 5% quantile

of the RV distribution and daily RV of SPX in the out-of-sample period. Table 3.14

reports MSE, forecast bias and p-values of DM test on SVIJ-MHP forecasts against

others. The R2 in the table denotes goodness-of-fit in the Mincer-Zarnowitz regres-
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sion (regressing true value with forecasts). In general SVIJ-MHP model outperform

all other models with the lowest MSE and highest R2. Results of the DM test also

suggest SVIJ-MHP forecasts are significantly different from other forecasts. We

also find that in SPX data, SVIJ-MHP model does not outperform other stochastic

volatility models as much as it does in AAPL data. However, the DM test suggests

their forecasts are indifferent. We also highlight that RV forecast results using a

model without error correction by KF also report a reasonable R2, which shows

good fitness. However, they also report very high MSE and BIAS.

[INSERT FIGURE 3.11 ABOUT HERE]

[INSERT TABLE 3.14 ABOUT HERE]

We further run a regression to examine the significance of SVIJ-MHP model

forecasts. We further regress forecast errors of SVIJ-MHP model with forecasts by

other models:

RVt − R̂V t,SV IJ−MHP = b0 + b1R̂V t,other, (3.31)

and Table 3.15 reports the results, all coefficients are tested to be insignificant

suggesting other models’ forecasts do not help explain forecast errors of SVIJ-MHP

model.

[INSERT TABLE 3.15 ABOUT HERE]

Overall, in RV forecasting, SVIJ-MHP outperforms HAR-class models and realised-

GARCH class models. It also outperforms other benchmark stochastic volatility

models, which shows the predictability of our model. Moreover, comparing forecast

results from SVIJ-MHP and SVIJ model, the improvement in AAPL data can in-

dicate the advantages brought by the inclusion of the MHP processes, hence, jump

clustering features.
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3.5.5 VaR and ES Forecasting

As two popular risk measures, VaR and ES can provide estimates of potential losses

for banks and financial institutions. Our estimates of VaR and ES are based on

posterior distributions of simulated return. To evaluate out-of-sample forecasting

performance, we adopt a loss function proposed by Fissler & Ziegel (2016) to calcu-

late the loss of VaR and ES jointly:

LFZ(Yt, V aR,ES, αve) = − 1

αveES
1{Yt < V aR}(V aR−Yt)+

V aR

ES
+ log(−ES)− 1

(3.32)

where αve denotes significant levels of VaR and ES. Table 3.16 and 3.18 report

expected losses of VaR and ES forecasts using AAPL and SPX 5-minute data, and

the expected loss of forecasts by the SV model is scaled to 1. We also conduct a DM

test on SVIJ-MHP forecasts against other forecasts. Results suggest that SVIJ-

MHP model reports the lowest expected loss. Additionally, the model performs

better under higher significant levels than those under lower significant levels. The

inclusion of the MHP process can reduce the expected loss by up to 15% compared

to the expected loss of SVIJ model forecasts. Further, according to DM test results,

SVIJ-MHP forecasts are significantly different from forecasts by other models.

[INSERT TABLE 3.16 ABOUT HERE]

[INSERT TABLE 3.18 ABOUT HERE]

In backtesting VaR and ES, we firstly adopt a Dynamic Quantile (DQ) test

proposed by Engle & Manganelli (2004). This test focus on whether violations

of VaR (Yt < V aRt) are serially independent distributed or correlated with VaR

estimator. Defining a ’Hit’ variable as Hitt = 1{Yt < V aRt} − αve, consider the

following regression:

Hitt = c0 + c1Hitt−1 + c2V aRt−1 + uv,t (3.33)

We are interested in the coefficient estimates {c0, c1, c2} are jointly equal to 0, the DQ

test gives a test statistic which is asymptotically chi-squared distribution (X 2(3)).
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We also backtest ES forecasts by a Dynamic Expected Shortfall (DES) regression

proposed by Patton et al. (2019):

λs
e,t = d0 + d1λ

s
e,t−1 + d2ESt−1 + ue,t, (3.34)

where λs
e,t =

1
αve
1{Yt < V aRt} Yt

ESt
−1, similarly, we looks at whether {d0, d1, d2} are

jointly equal to 0. Table 3.17 and 3.19 reports the coverage ratio of VaR forecasts,

p-value of DQ and DES tests. We can see from the results that SVIJ-MHP model

reports the lowest coverage ratio in all cases, in the sense that SVIJ-MHP provides

lower forecast values of VaR when including jump clustering features. Regarding DQ

and DES tests, SVIJ-MHP provides the least number of tests being rejected across

all forecast horizons and significance levels, meaning that SVIJ-MHP forecasts of

VaR and ES are least likely serially correlated and least likely correlated with VaR

and ES estimates. However, we also notice that DQ and DES tests of SPX 5-minute

data perform differently compared to those of AAPL 5-minute data. DQ and DES

tests in SPX data report a much lower number of tests being rejected.

[INSERT TABLE 3.17 ABOUT HERE]

[INSERT TABLE 3.19 ABOUT HERE]

Similar to variance forecasts, we also consider 1) conditional performance af-

ter different types of jumps; 2) performance with different data frequencies (10,30-

minutes). We found SVIJ-MHP outperforms other models in forecasting VaR and

ES with forecasting horizons of less than 1 hour in terms of DM tests. Also, perfor-

mance after negative return jumps is better than that after positive return jumps

and variance jumps. Further, performance using AAPL data is better than that

using SPX data. Details of evaluation on condition performance and performance

using data with different frequencies are confined to the appendix B.5.
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3.6 Conclusion

In this chapter, we propose a high-frequency forecasting framework based on a high-

frequency stochastic volatility model featuring jump clustering. We apply a Bayesian

MCMC algorithm in the in-sample estimation of static parameters. In out-of-sample

forecasting, we use a particle filter to estimate latent states at each time point and

forward simulate distributions of variance, returns and squared returns. We obtain

point forecasts by taking the posterior mean of distributions. We find MN in the

high-frequency data can affect models’ estimated parameters, and we further apply

a Kalman filter to correct the forecast errors due to inconsistent parameters. We

conduct a simulation study to show the accumulation of forecast errors due to the

inconsistent parameters due to MN and the effectiveness of error correction by KF.

These are our novel contributions and to our knowledge, we are the first to do so.

In our empirical research, we apply 5-minute data of an individual index (AAPL)

and a broad Index (SPX) and consider forecasting on variance, realised volatility

and two other risk measures, VaR and ES. Our results suggest that including jump

clustering features in forecasting models, especially forecasting on high-frequency

variance and risk measures. We also find strong evidence that negative return

jumps contribute more to forecasting performance than other types of jumps do.

In addition, we show the importance of correcting errors when integrating forward

simulated forecasts under high-frequency data.

We also examine conditional performance by considering forecast performance

h period after occurrences of different types of jumps across different forecasting

horizons. We find forecasts by our model outperform and are significantly different

from forecasts by other models, especially when the forecasting horizon is less than

2 hours. Additionally, this advantage of including jump clustering tends to become

less significant with decreasing data frequency. Further, we find an individual stock

data containing more jumps provides better performance than a broad index data.

We also highlight that although jump clustering mostly happens intradaily, it
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is also necessary to consider it in forecasting on daily measures. For example, our

results suggest including jump clustering help improve the performance of realised

volatility forecasting in terms of lower MSE and higher R2 in Mincer-Zarnowitz

regressions against two popular classes of realised volatility forecasting models (HAR

and realised GARCH).

Overall, in forecasting VaR and ES, we find that expected losses of VaR and

ES can be reduced up to 15% by including jump clustering. Furthermore, we find

a similar pattern in variance forecasting that conditional forecast performance is

better after negative return jumps with forecast horizons of less than 2 hours. We

further backtest the dependence of VaR and ES violations by adopting DQ and DES

tests, and we find our model significantly reduce the dependency of violations.

Volatility and VaR/ES forecasting are important for financial applications. With

the increasing popularity of high-frequency trading and emphasis on financial market

jumps, our studies are particularly useful for high-frequency traders and practition-

ers who are interested in intraday dynamics and high-frequency forecasting.

B Appendices for Chapter 3

B.1 Bayesian MCMC Algorithm and Specification of Priors

To obtain the joint posterior distribution in Equation 3.10, we adopt a Bayesian

MCMC algorithm that randomly samples from a set of conditional posterior distri-

butions. For i = 1...300, 000, our sampling plan is as follow:
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Algorithm 1 Bayesian MCMC Algorithm
For i = 1 : 300, 000:

1: Sample k static parameters:

Draw Θ
(i)
1 from p

(
Θ

(i)
1 |Yt,Θ

(i−1)
2 ,Θ

(i−1)
3 , ...,Θ

(i−1)
k , ξ

Y+(i−1)
t , ξ

Y−(i−1)
t , ξ

V (i−1)
t ,ϑ(i−1)

)
,

...

Draw Θ
(i)
k from p

(
Θ

(i)
k |Yt,Θ

(i−1)
1 ,Θ

(i−1)
2 , ...,Θ

(i−1)
k−1 , ξY+(i−1), ξY−(i−1), ξV (i−1),ϑ(i−1)

)
.

2: Sample return and variance jump sizes

for t = 1, 2, ..., T :

Draw ξ
Y+(i)
t from p

(
ξ
Y+(i)
t |Yt,Θ

(i), ξ
Y−(i−1)
t , ξ

V (i−1)
t ,ϑ(i−1)

)
,

Draw ξ
Y−(i)
t from p

(
ξ
Y−(i)
t |Yt,Θ

(i), ξ
Y+(i)
t , ξ

V (i−1)
t ,ϑ(i−1)

)
,

Draw ξ
V (i)
t from p

(
ξ
V (i)
t |Yt,Θ

(i), ξ
Y+(i)
t , ξ

Y−(i−1)
t ,ϑ(i−1)

)
.

3: Sample variance

for t = 1,2, ... , T:

Draw Vt from p
(
V

(i)
t |Yt,Θ

(i), ξP+(i), ξP−(i), ξV (i),ϑ(i−1)
)
,

4: Sample the branching coefficient matrix

for t = 1, 2, ..., T :

Draw ϑ(i) from p
(
ϑ(i)|Yt,Θ

(i), ξ
Y+(i)
t , ξ

Y−(i)
t , ξ

V (i)
t

)

We ran our MCMC for 300,000 iterations and took the first 50,000 as a burn-in

period. For those conditional posterior distributions whose corresponding conjugate

priors are available, we use Gibbs sampling methods, for those posteriors that are

not available in closed form, we adopt the Metropolis-Hastings sampling method to

approximate posteriors. Metropolis-Hastings method draws samples from a proposal

distribution and a uniform-distributed random number. Then it decides whether the

proposal draw should be accepted or rejected. Details of posterior distributions are

provided by Stroud & Johannes (2014) and Rasmussen (2013). Our specification of

priors are as follow:

[INSERT TABLE 3.20 ABOUT HERE]
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B.2 Particle Filter

Our particle filter algorithm follows Pitt & Shephard (1999) and Stroud & Johannes

(2014), Creal (2012) also gives a review on particle filter methods. Our ultimate

goal of using a particle filter is to sample from p
(
Zt|Yt, Θ̂

)
to obtain latent state

at each time t where Zt = {Vt, ξ
P+
t , ξP−

t , ξVt ,ϑ}. We adopt a sequential importance

sampling with re-sampling scheme:

Algorithm 2 Sequential Importance Sampling with Re-sampling

At t = 0, for i = 1, ..., N

Draw Z(i)
0 ∼ g0(Z0), set ω

(i)
0 =

p(Z(i)
0 )

g0(Z(i)
0 )

For t = 1, ..., T :

1: For i = 1, ..., N , draw Z(i)
t ∼ gt

(
Zt|Zt−1, Yt, Θ̂

)
.

2: Compute importance weights ω
(i)
t ∝ ω

(i)
t−1

p
(
Yt|Z(i)

t ,Θ̂
)
p
(
Z(i)

t |Z(i)
t−1,Θ̂

)
gt
(
Z(i)

t |Z(i)
t−1,Yt,Θ̂

) .

3: Normalise importance weights ω̂
(i)
t =

ω
(i)
t∑N

j=1 ω
(j)
t

.

4: Re-sample N particles by {ω̂(i)
t }Ni=1 and reset ω

(i)
t = 1

N
.

More details and explanations about the algorithm can be found in Creal (2012).

B.3 Kalman Filter

Our goal of using a Kalman filter is to recursively update and predict the continuous

component of forecast errors xt,τ , xt+τ,τ , xt+2τ,τ , ... given forecast errors ut,τ , ut+τ,τ , ut+2τ,τ , ....

The algorithm is as follow:
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Algorithm 3 Kalman Filter

At time t, when the forecast error ut,τ comes in, we update xt,τ :

1: Compute Kalman gain: Kt,τ = F ·pt−τ,τ

F ·pt−τ,τ+σ2
η

2: Update xt,τ estimates: x̂t,τ = Q · x̂t−τ,τ +Kt,τ (ut,τ − F · x̂t−τ,τ )

3: Update estimates uncertainty: pt,τ = pt−τ,τ (1−Kt,τ )

Then we predict xt+τ,τ :

1: Predict xt+τ,τ : x̂t+τ,τ = Q · x̂t,τ

2: Predict xt+τ,τ uncertainty: pt+τ,τ = Q · pt,τ + σ2
δ

B.4 Proof of Proposition 1

Given estimated forecast error at time t over forecast horizon τ as x̂t,τ , assume it

spreads evenly across each step over τ as x̂t,1 = x̂t+1,1 = · · · = x̂t+τ−1,1. Considering

Vt,1 and Vt+1,1, using the variance process in Eq. 3.2, we obtain:

Vt+1,1 = Vt,1 + κ(θ − Vt,1) + σV

√
Vt,1ϵ

V
t + ξVt J

V
t (IB.4.35)

Here we neglect the impact of the jump component. We adjust Vt,1 by x̂t,1, Vt,1 :=

Vt,1 + x̂t,1. Therefore, the increment adding to Vt+1,1 by doing this step is equal

to x̂t,1 · (1 − κ). Similarly, we can obtain the contribution of adding x̂t+s,1, s =

0, 1, ..., τ − 1 at each step to the total variance forecasts Vt,τ as
∑τ−s

i=0 (1 − κ)i · x̂t,1.

Therefore, we can obtain the following equation:

x̂t,τ =
τ−1∑
s=0

τ−s∑
i=0

(1− κ)i · x̂t+s,1 (IB.4.36)

Denoting f(τ) =
∑τ−1

s=1

∑τ−s
i=0 (1− κ)i, we can calculate:

f(τ)(1− κ)− f(τ) =
τ∑

i=1

(1− κ)i − τ (IB.4.37)

which becomes a geometry sequence, and we can solve the equation as follow:

x̂t,1 = x̂t,τ · f(τ), f(τ) = κ

[
1 + τ − 1− (1− κ)τ+1

κ

]−1

(IB.4.38)
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B.5 Supplementary Results

In this section, we describe the results of variance forecasts using realised variance

and SV-model-implied variance as actual values. We also conduct some simulation

studies, see a brief introduction in Section 1. We also look at additional forecast

evaluation results using different data frequencies.

In our high-frequency variance forecasting (Section 4.3), we used model-implied

variance as actual variance values. We first estimated variance using full sample,

and split it into in-sample and out-of-sample period to do further estimation and

forecasting. Clearly, one may argue using model-implied variance as actual values is

suspicious, therefore, in this appendix, we show results of high-frequency forecasting

using realised variance (RV) as actual values and also results using simulated data

to robustify our results.

We firstly follow Stroud & Johannes (2014) who use 5-minute data to calculate

hourly RV as actual values of variance. So, for variance at time t with τ forecast

horizon, we denote:

Vt,τ = RVt,τ =
τ∑

s=1

(Yt+s)
2

where Yt denotes return at time t. We select forecast horizon from 30 minutes to

3 hours τ ∈ {6, 12, 24, 36} since daily RV (τ = 78) is evaluated in Section 4.4.

However, we are using 5-minutes data to calculate RV, it is common to using it to

calculate daily RV, we have to note here that using it to calculate high-frequency

RV may also be suspicious.

In addition, we also conduct simulation studies and use simulated variance as

actual values to compare forecasts. Data generating process (DGP) is using the

model specified in Section 2, and parameters in DGP is set at parameters estimated

using in-sample SPX data (see Section 4.2). However, using simulated data is also

subjected to limitations, which may highly depend on DGP.

Furthermore, we use the implied variance (estimate the variance using full sam-

ple) by SV model instead of that by SVIJ-MHP model as we did in the main chapter.



B Appendices for Chapter 3 92

As a consequence, results using RV as actual values and results in simulation

studies are similar to those we report in the main text (using model-implied variance

as actual values).
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3.7 Figures and Tables for Chapter 3

Figure 3.1: S&P 500 Index variance forecasts by SVIJ-MHP model and true values with

different forecast horizons
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Figure 3.2: Implied Variance of SV model using Simulated Data with Different Frequen-

cies
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Figure 3.3: Simulated Volatility Forecasting and KF Correction with Consistent Parameters
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Figure 3.4: Simulated Volatility Forecasting and KF Corrections with Inconsistent Parameters
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Figure 3.5: Simulated Volatility Forecasting and KF Corrections with Inconsistent Parameters (2)
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Table 3.1: Estimated Parameters in Simulation Studies

µ κ θ σV ρ µ κ θ σV ρ

TRUE 0.3 0.1 0.3 0.2 -0.3 0.3 0.1 0.3 0.2 -0.3

without Noise Presence of Correlated Gaussian Noise

Posterior mean 0.29 0.094 0.32 0.23 -0.192 0.29 0.343 0.41 0.22 -0.006

Posterior std. dev. 0.01 0.016 0.01 0.02 0.033 0.01 0.007 0.01 0.02 0.003

Presence of Gaussian Noise Correlated Gaussian-t Mixture Noise

Posterior mean 0.31 0.239 0.36 0.18 -0.001 0.32 0.338 0.38 0.20 0.005

Posterior std. dev. 0.01 0.039 0.01 0.03 0.003 0.01 0.009 0.01 0.02 0.008

Presence of t-distribution noise

Posterior mean 0.31 0.370 0.43 0.25 0.019

Posterior std. dev. 0.01 0.008 0.02 0.01 0.007

Notes: this table presents posterior mean and standard deviation of estimated parameters. We
simulate 780,000 data points for each simulation (5 in total) with different specifications of
microstructure noise.

Figure 3.6: Periodic Components of AAPL and SPX with and without Overnight Return

Estimated Using Data from 2012 to 2015 (in-sample)
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Figure 3.7: 5-min price, returns, estimated spot variance, return jumps, and variance

jumps of AAPL

Figure 3.8: 5-min price, returns, estimated spot variance, return jumps, and variance

jumps of SPX
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Figure 3.9: Cumulative Bayes Factor of AAPL and SPX

*The dash line ’KF OOS’ marks the point before which parameters in Kalman Filter (KF)

are estimated.

Figure 3.10: SPX Variance Forecasts with KF across Different Forecasting Horizons
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Figure 3.11: 5% and 95% Quantile of RV Posterior Distribution Using SPX Data

Table 3.2: Number of Jumps Detected in Samples

AAPL SPX

In-Sample Out-of-Sample In-Sample Out-of-Sample

Positive Return Jumps 909 756 337 165

Negative Return Jumps 953 904 473 298

Variance Jumps 177 153 162 112

Table 3.3: Stochastic Volatility Models Considered

Leverage Effect Return Jumps Variance Jumps Jump Clustering Intraday Periodicity

SV x

ASV x x

SVJ x x x

SVIJ x x x x

SVIJ-MHP x x x x x
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Table 3.4: Parameters Estimated in Stochastic Volatility Models

AAPL

SV ASV SVJ SVIJ SVIJ-MHP

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

µ(∗10−5) 10.35 5.714 7.112 6.214 6.761 5.749 6.257 5.861 5.990 5.591

κ 0.036 0.001 0.036 0.001 0.041 0.003 0.041 0.003 0.041 0.003

θ(∗10−5) 79.78 1.223 79.93 1.347 63.34 1.890 61.73 2.475 61.20 2.338

σv(∗10−3) 6.357 0.786 6.367 0.913 5.670 1.088 5.659 0.885 5.614 0.807

ρ -0.190 0.049 -0.183 0.049 -0.180 0.048 -0.184 0.049

µY+ 0.035 0.007 0.034 0.007 0.034 0.008

σY+ 0.045 0.006 0.045 0.005 0.045 0.005

µY− -0.037 0.009 -0.038 0.009 -0.037 0.009

σY− 0.046 0.006 0.047 0.006 0.046 0.005

µV 0.561 0.063 0.560 0.063

DIC -384719 -384694 -449190 -450340 -457330

logL 201508 201444 216806 217280 221039

SPX

SV ASV SVJ SVIJ SVIJ-MHP

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

µ(∗10−5) 12.91 1.552 6.804 1.589 5.346 1.228 5.352 1.207 5.737 1.191

κ 0.112 0.002 0.111 0.002 0.119 0.002 0.121 0.003 0.123 0.002

θ(∗10−5) 4.596 0.048 4.628 0.050 4.307 0.046 4.240 0.060 4.241 0.060

σv(∗10−3) 3.025 0.305 3.025 0.310 2.969 0.280 2.965 0.302 2.973 0.292

ρ -0.166 0.049 -0.163 0.049 -0.164 0.049 -0.162 0.048

µY+ 0.010 0.002 0.010 0.002 0.010 0.002

σY+ 0.015 0.002 0.015 0.002 0.015 0.002

µY− -0.012 0.003 -0.012 0.003 -0.012 0.003

σY− 0.013 0.002 0.013 0.002 0.013 0.001

µV 1.047 0.162 1.046 0.161

DIC -634698 -634617 -648981 -649500 -650586

logL 318536 318451 321166 321412 322391

Notes: DIC denotes deviance information criterion and LogL denotes log-likelihood. Parameter
are estimated using five minutes returns data in the in-sample period (2012-2015) scaled by
M ∗ 100 (M = 78 for 5-minutes data).
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Table 3.5: Parameters Estimated in the Marked Hawkes Process of SVIJ-MHP Model

AAPL SPX AAPL SPX

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

Post.

mean

Post.

std. dev.

λY+
0 0.0088 0.0003 0.0018 0.0001 (Parameters in the impact function Eq. 3.4)

λY−
0 0.0101 0.0004 0.0026 0.0002

λV
0 0.0011 0.0001 0.0006 0.0001

ϑY+,Y+ 0.1288 0.0348 0.1052 0.0310 α̃Y+,Y+ 0.8168 0.1983 0.9679 0.2827

ϑY−,Y+ 0.1855 0.0449 0.0956 0.0336 α̃Y−,Y+ 0.7668 0.1676 0.9328 0.2824

ϑV,Y+ 0.4019 0.1559 0.2490 0.0888 α̃V,Y+ 0.1789 0.1598 0.2087 0.1546

ϑY+,Y− 0.1005 0.0325 0.0510 0.0077 α̃Y+,Y− 0.8824 0.2552 0.9255 0.6632

ϑY−,Y− 0.1897 0.0304 0.2101 0.0395 α̃Y−,Y− 0.7244 0.1323 0.9173 0.1706

ϑV,Y− 0.3399 0.1862 0.2485 0.1509 α̃V,Y− 0.2543 0.2231 0.3880 0.2745

ϑY+,V 0.0048 0.0036 0.0247 0.0126 α̃Y+,v 0.7827 0.5705 0.9039 0.4674

ϑY−,V 0.0118 0.0060 0.0174 0.0050 α̃Y−,V 0.4633 0.3068 0.8864 0.6242

ϑV,V 0.0951 0.0565 0.1211 0.0622 α̃V,V 0.3171 0.2121 0.3014 0.2030

βY+,Y+ 0.0947 0.0136 0.1730 0.0427 β̃Y+,Y+ 164.88 64.589 97.591 35.554

βY−,Y+ 0.0786 0.0094 0.0694 0.0168 β̃Y−,Y+ 192.54 61.447 174.18 178.24

βV,Y+ 0.1694 0.0343 0.2465 0.0573 β̃V,Y+ 26.065 7.2412 34.902 8.9053

βY+,Y− 0.0559 0.0121 0.2852 0.1398 β̃Y+,Y− 105.90 61.360 226.41 114.14

βY−,Y− 0.0955 0.0107 0.0890 0.0144 β̃Y−,Y− 227.55 23.3034 214.19 44.717

βV,Y− 0.1188 0.0380 0.2010 0.0639 β̃V,Y− 23.673 10.307 26.995 14.668

βY+,V 0.3086 0.0997 0.3787 0.1284 β̃Y+,V 195.59 164.16 292.20 138.67

βY−,V 0.3097 0.0822 0.5744 0.2220 β̃Y−,V 443.14 164.66 294.28 134.65

βV,V 0.3324 0.0895 0.3435 0.1196 β̃V,V 21.678 12.127 30.812 13.691

Notes: this table presents posterior means and standard deviations of parameters of the MHP
kernel estimated in the in-sample period. Significant (95% of posterior is greater than 0)
parameters are made bold.
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Table 3.6: Variance Forecasts Performance of AAPL and SPX

AAPL

MSE BIAS

τ SVIJ-MHP SVIJ SVJ ASV SV SVIJ-MHP SVIJ SVJ ASV SV

1 0.978 0.991 0.998 0.997 1 0.000 -0.001 -0.002 -0.002 -0.002

6 0.940 0.984 1.004 1.005 1 -0.005 -0.006 -0.012 -0.012 -0.012

12 0.936 0.976 0.998 1.000 1 -0.005 -0.005 -0.008 -0.008 -0.008

24 0.931 0.972 1.003 1.004 1 -0.005 -0.005 -0.008 -0.007 -0.008

36 0.926 0.967 0.996 0.999 1 -0.005 -0.005 -0.007 -0.007 -0.007

78 0.932 0.961 0.999 1.001 1 -0.006 -0.007 -0.009 -0.009 -0.009

R2
mz DM test

τ SVIJ-MHP SVIJ SVJ ASV SV SVIJ SVJ ASV SV

1 99.3% 99.3% 99.3% 99.3% 99.3% 0.0000 0.0000 0.0000 0.0000

6 97.8% 97.6% 97.6% 97.6% 97.6% 0.0000 0.0000 0.0000 0.0000

12 95.0% 94.8% 94.8% 94.7% 94.7% 0.0000 0.0000 0.0000 0.0000

24 90.8% 90.1% 90.1% 90.0% 90.2% 0.0000 0.0000 0.0000 0.0000

36 88.0% 87.0% 87.0% 87.1% 87.1% 0.0001 0.0000 0.0000 0.0000

78 83.7% 81.2% 81.0% 81.0% 81.2% 0.0000 0.0000 0.0000 0.0000

SPX

MSE BIAS

τ SVIJ-MHP SVIJ SVJ ASV SV SVIJ-MHP SVIJ SVJ ASV SV

1 0.978 0.996 0.999 1.001 1 -0.001 -0.002 -0.004 -0.004 -0.004

6 0.966 0.995 0.999 1.000 1 -0.005 -0.006 -0.007 -0.007 -0.007

12 0.966 0.991 0.999 1.000 1 -0.006 -0.006 -0.007 -0.007 -0.007

24 0.965 0.991 1.000 1.001 1 -0.004 -0.004 -0.005 -0.005 -0.005

36 0.967 0.990 1.000 0.999 1 -0.006 -0.007 -0.007 -0.007 -0.007

78 0.969 0.990 1.001 1.001 1 -0.008 -0.008 -0.009 -0.009 -0.009

R2
mz DM test

τ SVIJ-MHP SVIJ SVJ ASV SV SVIJ SVJ ASV SV

1 96.4% 96.4% 96.4% 96.4% 96.4% 0.0022 0.0000 0.0002 0.0025

6 84.8% 84.5% 84.5% 84.5% 84.4% 0.0034 0.0002 0.0003 0.0005

12 82.7% 82.3% 82.3% 82.3% 82.2% 0.0009 0.0000 0.0000 0.0000

24 75.2% 74.7% 74.7% 74.7% 74.4% 0.0007 0.0000 0.0000 0.0000

36 67.5% 67.0% 66.8% 66.7% 67.0% 0.0025 0.0000 0.0001 0.0000

78 62.8% 61.1% 61.4% 61.1% 61.1% 0.0024 0.0001 0.0001 0.0002

Notes: R2
mz denotes R2 of Mincer-Zarnowitz regressions, DM test reports p-value of DM test of

forecasts by SVIJ-MHP model against those by other models. MSE of forecasts by SV model are
scaled to 1. Best performing models are marked bold.
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Table 3.7: Conditional Performance of Variance Forecasts Using AAPL 5-minutes Data

After Positive Return Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.942 0.941 0.950 0.949 0.946 0.949 SVIJ-MHP 0.935 0.937 0.935
SVIJ 0.991 0.993 0.994 0.994 0.994 0.991 SVIJ 0.975 0.974 0.973

1 SVJ 0.989 0.991 0.993 0.992 0.994 0.996 24 SVJ 1.005 1.003 1.001
ASV 0.984 0.989 0.988 0.991 0.993 0.995 ASV 1.010 1.006 1.004
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.923 0.931 0.936 0.932 0.939 SVIJ-MHP 0.935 0.938
SVIJ 0.985 0.990 0.988 0.986 0.987 SVIJ 0.970 0.972

6 SVJ 0.999 1.002 1.003 1.002 1.001 36 SVJ 0.994 0.997
ASV 1.004 1.005 1.006 1.005 1.003 ASV 1.001 1.001
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.918 0.928 0.927 0.940 SVIJ-MHP 0.937
SVIJ 0.978 0.976 0.975 0.978 SVIJ 0.960

12 SVJ 0.992 0.992 0.993 0.999 78 SVJ 0.998
ASV 0.998 0.996 0.995 1.000 ASV 1.001
SV 1 1 1 1 SV 1

After Negative Return Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.892 0.890 0.894 0.900 0.900 0.900 SVIJ-MHP 0.898 0.907 0.909
SVIJ 0.999 1.001 0.999 0.998 0.998 0.993 SVIJ 0.975 0.975 0.976

1 SVJ 1.001 1.002 1.001 1.000 0.999 0.998 24 SVJ 1.006 1.007 1.005
ASV 1.005 1.007 1.004 1.004 1.001 0.998 ASV 1.011 1.011 1.010
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.887 0.895 0.892 0.904 0.911 SVIJ-MHP 0.923 0.928
SVIJ 0.993 0.994 0.992 0.990 0.987 SVIJ 0.964 0.967

6 SVJ 1.009 1.009 1.008 1.004 1.004 36 SVJ 0.991 0.995
ASV 1.006 1.007 1.008 1.007 1.006 ASV 0.994 0.998
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.885 0.891 0.899 0.906 SVIJ-MHP 0.937
SVIJ 0.984 0.980 0.980 0.979 SVIJ 0.961

12 SVJ 0.994 0.996 0.998 0.998 78 SVJ 0.998
ASV 0.997 0.998 1.000 0.999 ASV 1.001
SV 1 1 1 1 SV 1

After Variance Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.947 0.951 0.976 0.981 0.979 0.976 SVIJ-MHP 0.883 0.924 0.928
SVIJ 1.002 1.001 0.998 1.000 1.000 0.996 SVIJ 0.986 0.977 0.980

1 SVJ 0.999 0.999 1.000 1.001 1.001 0.998 24 SVJ 1.038 1.020 1.010
ASV 1.008 1.010 1.006 1.006 1.005 1.001 ASV 1.040 1.027 1.017
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.877 0.894 0.894 0.907 0.925 SVIJ-MHP 0.928 0.939
SVIJ 1.004 1.006 1.003 1.001 0.996 SVIJ 0.972 0.975

6 SVJ 1.010 1.009 1.006 1.004 0.999 36 SVJ 1.000 0.996
ASV 1.010 1.013 1.010 1.011 1.008 ASV 1.013 1.007
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.877 0.882 0.891 0.912 SVIJ-MHP 0.946
SVIJ 0.991 0.993 0.993 0.994 SVIJ 0.961

12 SVJ 0.988 0.993 0.998 1.001 78 SVJ 0.994
ASV 0.990 0.993 0.995 0.999 ASV 0.995
SV 1 1 1 1 SV 1

Notes: The table presents variance forecast performance by extracting h forecasts after different
types of jumps. The purpose is to evaluate the forecasting contribution of jump clustering effect
produced by different types of jumps.
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Table 3.8: p-value of DM test on Variance Forecasts by SVIJ-MHP Model against Others

(AAPL 5-min)

After Positive Return Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.071 0.011 0.003 0.000 0.002 0.000 SVIJ 0.000 0.000 0.000

SVJ 0.063 0.008 0.001 0.000 0.000 0.000 SVJ 0.000 0.000 0.000

ASV 0.027 0.001 0.000 0.000 0.000 0.000 ASV 0.000 0.000 0.000
1

SV 0.051 0.001 0.000 0.000 0.000 0.000

24

SV 0.000 0.000 0.000

SVIJ 0.057 0.056 0.040 0.012 0.007 SVIJ 0.001 0.000

SVJ 0.037 0.035 0.021 0.003 0.001 SVJ 0.000 0.000

ASV 0.029 0.028 0.015 0.002 0.001 ASV 0.000 0.000
6

SV 0.037 0.038 0.022 0.003 0.001

36

SV 0.000 0.000

SVIJ 0.001 0.000 0.000 0.000 SVIJ 0.000

SVJ 0.000 0.000 0.000 0.000 SVJ 0.000

ASV 0.000 0.000 0.000 0.000 ASV 0.000
12

SV 0.000 0.000 0.000 0.000

78

SV 0.000

After Negative Return Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.006 0.005 0.006 0.004 0.000 0.000 SVIJ 0.000 0.000 0.000

SVJ 0.006 0.005 0.006 0.004 0.000 0.000 SVJ 0.000 0.000 0.000

ASV 0.004 0.003 0.003 0.002 0.000 0.000 ASV 0.000 0.000 0.000
1

SV 0.008 0.006 0.007 0.004 0.000 0.000

24

SV 0.000 0.000 0.000

SVIJ 0.002 0.001 0.001 0.000 0.000 SVIJ 0.002 0.000

SVJ 0.001 0.000 0.000 0.000 0.000 SVJ 0.000 0.000

ASV 0.001 0.000 0.000 0.000 0.000 ASV 0.000 0.000
6

SV 0.001 0.000 0.000 0.000 0.000

36

SV 0.000 0.000

SVIJ 0.001 0.001 0.000 0.000 SVIJ 0.000

SVJ 0.000 0.000 0.000 0.000 SVJ 0.000

ASV 0.000 0.000 0.000 0.000 ASV 0.000
12

SV 0.000 0.000 0.000 0.000

78

SV 0.000

After Variance Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.039 0.056 0.027 0.023 0.004 0.000 SVIJ 0.037 0.017 0.003

SVJ 0.041 0.059 0.027 0.024 0.004 0.000 SVJ 0.019 0.006 0.001

ASV 0.030 0.041 0.021 0.019 0.002 0.000 ASV 0.020 0.003 0.001
1

SV 0.043 0.066 0.030 0.032 0.006 0.000

24

SV 0.017 0.004 0.001

SVIJ 0.020 0.020 0.010 0.005 0.001 SVIJ 0.050 0.048

SVJ 0.020 0.018 0.008 0.004 0.000 SVJ 0.026 0.010

ASV 0.020 0.015 0.006 0.003 0.000 ASV 0.027 0.014
6

SV 0.019 0.015 0.007 0.003 0.000

36

SV 0.028 0.016

SVIJ 0.023 0.019 0.014 0.027 SVIJ 0.041

SVJ 0.019 0.011 0.007 0.016 SVJ 0.021

ASV 0.019 0.012 0.007 0.014 ASV 0.023
12

SV 0.019 0.012 0.007 0.012

78

SV 0.025

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: Values in different intervals are colored differently. Results are under AAPL 5-min data.
Denoting the difference of squared forecast error between two models as dt = e2t,1 − e2t,2, the null
hypothesis of the test is E(dt) = 0,∀t. A smaller p-value indicates a higher likelihood rejecting
the null.
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Table 3.9: Conditional Performance of Variance Forecasts Using SPX 5-minutes Data

After Positive Return Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.972 0.965 0.961 0.994 0.995 0.995 SVIJ-MHP 0.979 0.981 0.981
SVIJ 0.995 0.991 0.990 0.998 0.999 0.998 SVIJ 0.997 0.992 0.991

1 SVJ 0.991 1.000 0.998 0.999 0.999 0.999 24 SVJ 1.006 1.001 0.999
ASV 1.002 1.005 1.004 1.000 1.000 1.001 ASV 1.009 1.003 1.000
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.933 0.938 0.944 0.946 0.949 SVIJ-MHP 0.979 0.985
SVIJ 0.982 0.981 0.981 0.981 0.979 SVIJ 0.990 0.991

6 SVJ 0.998 0.996 0.997 0.996 0.998 36 SVJ 0.994 0.998
ASV 1.007 1.004 1.004 1.003 1.002 ASV 0.995 0.998
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.959 0.957 0.959 0.961 SVIJ-MHP 0.988
SVIJ 0.997 0.995 0.992 0.994 SVIJ 0.990

12 SVJ 1.000 0.998 0.997 0.997 78 SVJ 1.003
ASV 1.002 0.998 0.998 0.998 ASV 1.001
SV 1 1 1 1 SV 1

After Negative Return Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.924 0.935 0.944 0.954 0.954 0.955 SVIJ-MHP 0.982 0.984 0.981
SVIJ 0.977 0.977 0.977 0.976 0.977 0.977 SVIJ 0.996 0.998 0.994

1 SVJ 0.997 0.997 0.997 0.997 0.998 0.998 24 SVJ 1.005 1.007 1.003
ASV 1.001 1.001 1.002 1.002 1.002 1.002 ASV 1.006 1.009 1.005
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.986 0.985 0.984 0.985 0.986 SVIJ-MHP 0.980 0.983
SVIJ 1.000 1.000 0.999 0.999 0.998 SVIJ 0.991 0.992

6 SVJ 0.999 0.998 0.998 0.998 0.999 36 SVJ 0.996 0.998
ASV 1.000 1.001 1.001 1.001 1.002 ASV 0.997 0.999
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.975 0.980 0.980 0.980 SVIJ-MHP 0.987
SVIJ 0.996 0.996 0.995 0.994 SVIJ 0.993

12 SVJ 0.997 0.999 0.999 0.999 78 SVJ 1.002
ASV 0.999 1.000 1.002 1.001 ASV 1.002
SV 1 1 1 1 SV 1

After Variance Jumps
τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ-MHP 0.961 0.958 0.957 0.956 0.960 0.961 SVIJ-MHP 0.976 0.982 0.981
SVIJ 0.995 0.995 0.995 0.993 0.996 0.997 SVIJ 1.012 1.001 0.996

1 SVJ 0.994 0.995 0.996 0.996 0.998 0.998 24 SVJ 1.026 1.017 1.006
ASV 1.001 1.001 1.002 1.002 1.002 1.002 ASV 1.034 1.022 1.011
SV 1 1 1 1 1 1 SV 1 1 1

SVIJ-MHP 0.956 0.952 0.953 0.954 0.958 SVIJ-MHP 0.967 0.978
SVIJ 1.004 1.003 1.004 1.002 1.001 SVIJ 0.992 0.995

6 SVJ 0.999 0.997 0.998 0.998 1.001 36 SVJ 0.991 0.997
ASV 1.006 1.004 1.005 1.007 1.007 ASV 0.988 0.994
SV 1 1 1 1 1 SV 1 1

SVIJ-MHP 0.977 0.975 0.977 0.979 SVIJ-MHP 0.987
SVIJ 0.999 0.998 0.998 0.999 SVIJ 0.995

12 SVJ 1.001 1.000 1.001 1.001 78 SVJ 1.007
ASV 0.999 0.998 0.999 0.998 ASV 1.003
SV 1 1 1 1 SV 1

Notes: The table presents variance forecast performance by extracting h forecasts after different
types of jumps. The purpose is to evaluate the forecasting contribution of jump clustering effect
produced by different types of jumps.
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Table 3.10: p-value of DM test on Variance Forecasts by SVIJ-MHP Model against

Others (SPX 5-min)

After Positive Return Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.073 0.027 0.021 0.008 0.017 0.009 SVIJ 0.087 0.067 0.007

SVJ 0.075 0.053 0.045 0.024 0.021 0.004 SVJ 0.051 0.029 0.004

ASV 0.063 0.048 0.037 0.041 0.015 0.001 ASV 0.060 0.041 0.009
1

SV 0.061 0.022 0.012 0.010 0.003 0.000

24

SV 0.050 0.026 0.004

SVIJ 0.085 0.078 0.085 0.065 0.009 SVIJ 0.089 0.076

SVJ 0.103 0.095 0.088 0.065 0.003 SVJ 0.013 0.002

ASV 0.071 0.069 0.065 0.043 0.003 ASV 0.012 0.002
6

SV 0.081 0.074 0.074 0.048 0.003

36

SV 0.035 0.012

SVIJ 0.068 0.041 0.044 0.015 SVIJ 0.082

SVJ 0.055 0.037 0.020 0.011 SVJ 0.004

ASV 0.032 0.022 0.008 0.002 ASV 0.004
12

SV 0.053 0.031 0.015 0.004

78

SV 0.003

After Negative Return Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.021 0.012 0.011 0.008 0.004 0.001 SVIJ 0.050 0.048 0.040

SVJ 0.014 0.009 0.009 0.008 0.004 0.000 SVJ 0.062 0.049 0.022

ASV 0.048 0.069 0.085 0.065 0.042 0.003 ASV 0.064 0.051 0.026
1

SV 0.026 0.038 0.055 0.038 0.030 0.002

24

SV 0.052 0.027 0.013

SVIJ 0.028 0.026 0.026 0.035 0.017 SVIJ 0.070 0.028

SVJ 0.026 0.021 0.020 0.024 0.006 SVJ 0.014 0.011

ASV 0.025 0.023 0.017 0.022 0.006 ASV 0.007 0.012
6

SV 0.030 0.025 0.017 0.024 0.009

36

SV 0.032 0.013

SVIJ 0.052 0.023 0.016 0.010 SVIJ 0.048

SVJ 0.046 0.021 0.018 0.007 SVJ 0.021

ASV 0.015 0.023 0.020 0.004 ASV 0.021
12

SV 0.032 0.017 0.009 0.002

78

SV 0.016

After Variance Jumps

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 h = 78 τ Models h = 1 h = 2 h = 3

SVIJ 0.062 0.029 0.026 0.021 0.007 0.005 SVIJ 0.170 0.173 0.096

SVJ 0.083 0.028 0.024 0.015 0.006 0.005 SVJ 0.107 0.086 0.052

ASV 0.072 0.054 0.054 0.041 0.023 0.018 ASV 0.124 0.118 0.078
1

SV 0.060 0.035 0.034 0.027 0.014 0.012

24

SV 0.091 0.053 0.019

SVIJ 0.066 0.071 0.069 0.067 0.023 SVIJ 0.135 0.065

SVJ 0.100 0.090 0.082 0.068 0.020 SVJ 0.073 0.023

ASV 0.081 0.078 0.075 0.061 0.022 ASV 0.027 0.027
6

SV 0.089 0.088 0.087 0.077 0.027

36

SV 0.112 0.060

SVIJ 0.088 0.060 0.063 0.049 SVIJ 0.078

SVJ 0.083 0.063 0.063 0.041 SVJ 0.042

ASV 0.053 0.043 0.041 0.026 ASV 0.038
12

SV 0.084 0.056 0.057 0.032

78

SV 0.052

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: Values in different intervals are colored differently. Results are under SPX 5-min data.
Denoting the difference of squared forecast error between two models as dt = e2t,1 − e2t,2, the null
hypothesis of the test is E(dt) = 0,∀t. A smaller p-value indicates a higher likelihood rejecting
the null.
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Table 3.11: p-value of DM test on Variance Forecasts by SVIJ-MHP Model against

Others (AAPL,SPX 10-min)

After Positive Return Jumps

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.051 0.062 0.045 0.035 0.058 SVIJ 0.0863 0.1063 0.0993 0.0967 0.0725

SVJ 0.052 0.055 0.078 0.040 0.011 SVJ 0.0752 0.1026 0.0767 0.0609 0.0723

ASV 0.036 0.019 0.019 0.003 0.001 ASV 0.0520 0.0949 0.0980 0.1132 0.1513
1

SV 0.017 0.018 0.014 0.002 0.001

1

SV 0.0784 0.0915 0.1052 0.0890 0.1110

SVIJ 0.008 0.002 0.001 0.005 0.000 SVIJ 0.4747 0.7910 0.1621 0.2161 0.1559

SVJ 0.006 0.000 0.000 0.000 0.000 SVJ 0.2944 0.9349 0.2374 0.1055 0.0184

ASV 0.008 0.002 0.001 0.000 0.000 ASV 0.1899 0.3206 0.0947 0.1045 0.0660
6

SV 0.003 0.001 0.000 0.000 0.000

6

SV 0.1262 0.0897 0.1100 0.0830 0.0483

SVIJ 0.075 0.088 0.036 SVIJ 0.8547 0.8330 0.6956

SVJ 0.005 0.000 0.000 SVJ 0.1177 0.0709 0.0579

ASV 0.007 0.002 0.002 ASV 0.1112 0.0791 0.0456
12

SV 0.006 0.000 0.001

12

SV 0.6711 0.1589 0.1063

SVIJ 0.016 SVIJ 0.7143

SVJ 0.004 SVJ 0.1051

ASV 0.005 ASV 0.7321
39

SV 0.005

39

SV 0.7684

After Negative Return Jumps

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.015 0.007 0.007 0.005 0.001 SVIJ 0.066 0.061 0.061 0.057 0.066

SVJ 0.008 0.003 0.002 0.001 0.000 SVJ 0.064 0.060 0.059 0.054 0.064

ASV 0.012 0.006 0.005 0.003 0.000 ASV 0.066 0.061 0.061 0.057 0.067
1

SV 0.010 0.004 0.002 0.002 0.000

1

SV 0.066 0.061 0.061 0.056 0.065

SVIJ 0.020 0.010 0.006 0.002 0.000 SVIJ 0.055 0.050 0.061 0.049 0.034

SVJ 0.014 0.003 0.001 0.000 0.000 SVJ 0.041 0.055 0.056 0.029 0.015

ASV 0.009 0.002 0.001 0.000 0.000 ASV 0.026 0.027 0.041 0.026 0.008
6

SV 0.013 0.003 0.001 0.000 0.000

6

SV 0.030 0.042 0.047 0.033 0.009

SVIJ 0.036 0.012 0.010 SVIJ 0.607 0.697 0.160

SVJ 0.015 0.001 0.000 SVJ 0.090 0.111 0.048

ASV 0.017 0.002 0.001 ASV 0.062 0.066 0.026
12

SV 0.015 0.002 0.000

12

SV 0.018 0.050 0.016

SVIJ 0.015 SVIJ 0.796

SVJ 0.002 SVJ 0.086

ASV 0.001 ASV 0.182
39

SV 0.001

39

SV 0.454

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: Values in different intervals are colored differently. Results are under AAPL and SPX
10-min data.
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Table 3.12: p-value of DM test on Variance Forecasts by SVIJ-MHP Model against

Others (AAPL,SPX 30-min)

After Positive Return Jumps

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.191 0.189 0.146 0.130 0.082 SVIJ 0.0109 0.4123 0.1182 0.3637 0.4136

SVJ 0.077 0.029 0.017 0.006 0.001 SVJ 0.0133 0.0931 0.4192 0.6061 0.2350

ASV 0.054 0.051 0.022 0.002 0.000 ASV 0.0027 0.0138 0.0569 0.1051 0.1528
1

SV 0.079 0.043 0.026 0.003 0.001

1

SV 0.0093 0.0629 0.0757 0.0762 0.4093

SVIJ 0.572 0.844 0.400 0.683 SVIJ 0.1229 0.1653 0.2042 0.2193

SVJ 0.061 0.016 0.004 0.004 SVJ 0.2025 0.6089 0.4786 0.0905

ASV 0.096 0.053 0.019 0.002 ASV 0.1365 0.2130 0.1958 0.1497
2

SV 0.137 0.063 0.016 0.001

2

SV 0.5966 0.9127 0.8047 0.2922

SVIJ 0.125 0.109 SVIJ 0.1308 0.0699

SVJ 0.140 0.100 SVJ 0.0349 0.1263

ASV 0.101 0.098 ASV 0.2532 0.1034
6

SV 0.099 0.111

6

SV 0.1290 0.0739

SVIJ 0.119 SVIJ 0.2147

SVJ 0.111 SVJ 0.0855

ASV 0.111 ASV 0.0736
13

SV 0.115

13

SV 0.0878

After Negative Return Jumps

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.070 0.064 0.034 0.139 0.034 SVIJ 0.032 0.107 0.117 0.121 0.082

SVJ 0.075 0.059 0.013 0.011 0.009 SVJ 0.086 0.129 0.132 0.140 0.069

ASV 0.036 0.034 0.010 0.010 0.005 ASV 0.061 0.095 0.097 0.122 0.054
1

SV 0.052 0.048 0.013 0.026 0.017

1

SV 0.054 0.131 0.131 0.142 0.093

SVIJ 0.041 0.146 0.176 0.076 SVIJ 0.103 0.072 0.112 0.207

SVJ 0.028 0.043 0.034 0.003 SVJ 0.124 0.094 0.134 0.106

ASV 0.029 0.055 0.088 0.004 ASV 0.119 0.099 0.129 0.139
2

SV 0.003 0.075 0.052 0.004

2

SV 0.135 0.101 0.126 0.130

SVIJ 0.108 0.011 SVIJ 0.105 0.106

SVJ 0.030 0.030 SVJ 0.120 0.113

ASV 0.006 0.003 ASV 0.239 0.203
6

SV 0.042 0.050

6

SV 0.219 0.105

SVIJ 0.587 SVIJ 0.048

SVJ 0.018 SVJ 0.056

ASV 0.029 ASV 0.053
13

SV 0.054

13

SV 0.069

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: Values in different intervals are colored differently. Results are under AAPL and SPX
30-min data.
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Table 3.13: p-value of DM test on Variance Forecasts by SVIJ-MHP Model against

Others (after variance jumps)

10-minutes Data

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.091 0.051 0.057 0.037 0.019 SVIJ 0.0874 0.0705 0.0415 0.0684 0.0211

SVJ 0.080 0.048 0.052 0.034 0.012 SVJ 0.0826 0.0992 0.0889 0.0922 0.0117

ASV 0.095 0.054 0.057 0.035 0.018 ASV 0.0465 0.0571 0.0415 0.0614 0.0102
1

SV 0.091 0.056 0.063 0.039 0.024

1

SV 0.0481 0.0501 0.0605 0.0744 0.0080

SVIJ 0.089 0.080 0.081 0.093 0.096 SVIJ 0.1449 0.1453 0.1473 0.1382 0.1367

SVJ 0.090 0.081 0.077 0.064 0.040 SVJ 0.1442 0.1446 0.1478 0.1375 0.1357

ASV 0.086 0.057 0.052 0.042 0.017 ASV 0.1458 0.1460 0.1462 0.1384 0.1385
6

SV 0.091 0.067 0.066 0.068 0.053

6

SV 0.1448 0.1449 0.1448 0.1372 0.1296

SVIJ 0.125 0.134 0.128 SVIJ 0.8143 0.7631 0.5032

SVJ 0.114 0.101 0.075 SVJ 0.1324 0.1442 0.0411

ASV 0.116 0.110 0.090 ASV 0.1020 0.0761 0.0190
12

SV 0.122 0.109 0.090

12

SV 0.6783 0.5579 0.1547

SVIJ 0.473 SVIJ 0.8153

SVJ 0.060 SVJ 0.1107

ASV 0.063 ASV 0.4610
39

SV 0.029

39

SV 0.5353

30-minutes Data

AAPL SPX

τ Models h = 1 h = 2 h = 3 h = 6 h = 13 τ Models h = 1 h = 2 h = 3 h = 6 h = 13

SVIJ 0.562 0.420 0.359 0.317 0.516 SVIJ 0.172 0.084 0.100 0.122 0.222

SVJ 0.090 0.045 0.070 0.040 0.005 SVJ 0.477 0.221 0.245 0.366 0.235

ASV 0.069 0.001 0.073 0.096 0.023 ASV 0.196 0.116 0.131 0.191 0.117
1

SV 0.066 0.031 0.131 0.121 0.036

1

SV 0.195 0.208 0.789 0.415 0.755

SVIJ 0.066 0.031 0.023 0.041 SVIJ 0.396 0.785 0.822 0.836

SVJ 0.076 0.094 0.040 0.100 SVJ 0.618 0.773 0.817 0.517

ASV 0.084 0.021 0.025 0.005 ASV 0.140 0.771 0.944 0.390
2

SV 0.109 0.078 0.061 0.133

2

SV 0.517 0.786 0.794 0.923

SVIJ 0.123 0.207 SVIJ 0.134 0.125

SVJ 0.175 0.166 SVJ 0.140 0.130

ASV 0.104 0.077 ASV 0.139 0.192
6

SV 0.150 0.124

6

SV 0.142 0.237

SVIJ 0.294 SVIJ 0.136

SVJ 0.277 SVJ 0.140

ASV 0.241 ASV 0.135
13

SV 0.276

13

SV 0.139

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: Values in different intervals are colored differently. Results are testing on variance
forecasts after variance jumps.
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Table 3.14: Daily Realised Volatility Forecasting Performance

AAPL SPX

Model R2 MSE BIAS DM p-value R2 MSE BIAS DM p-value

SVIJ-MHP 57.9% 0.94 -0.010 N/A 70.7% 0.97 -0.011 N/A

SVIJ 50.9% 1.00 -0.013 0.012 69.6% 1.00 -0.011 0.006

SVJ 50.9% 1.00 -0.016 0.009 69.6% 1.00 -0.009 0.007

ASV 50.6% 1.00 -0.016 0.009 69.6% 1.00 -0.009 0.011

SV 50.9% 1.00 -0.016 0.012 69.6% 1.00 -0.009 0.006

SVIJ-MHP (b.e.c.) 54.3% 1.43 -0.067 0.000 66.3% 2.86 -0.031 0.000

SVIJ (b.e.c.) 48.0% 1.65 -0.073 0.000 62.5% 2.90 -0.033 0.000

SVJ (b.e.c.) 48.2% 1.70 -0.086 0.000 62.6% 2.93 -0.043 0.000

ASV (b.e.c.) 48.0% 1.71 -0.086 0.000 62.6% 2.93 -0.043 0.000

SV (b.e.c.) 48.1% 1.71 -0.086 0.000 62.8% 2.94 -0.043 0.000

HAR-RV 46.0% 1.08 -0.030 0.005 65.3% 1.14 -0.032 0.056

HAR-RV-CJ 46.3% 1.07 -0.032 0.005 65.3% 1.14 -0.031 0.066

HAR-RV-SJ 45.9% 1.08 -0.030 0.003 67.0% 1.08 -0.032 0.045

Realized-GARCH 45.4% 1.24 0.090 0.002 63.8% 1.40 0.083 0.001

Realized-GARCH-log 46.3% 1.18 0.086 0.003 65.6% 1.21 0.083 0.000

Realized-EGARCH 39.4% 1.33 0.088 0.022 69.0% 1.10 0.083 0.071

No-change Forecast 42.5% 1.29 0.000 0.009 63.5% 1.33 0.001 0.005

<0.01 [0.01,0.05) [0.05, 0.1) >0.1

Notes: The fifth column ’DM p-value’ reports p-values of DM test on forecasts by SVIJ-MHP
model against those by other models. ’b.e.c.’ stands for models before error correction by the KF.
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Table 3.15: Auxiliary Regression of Realised Volatility Forecast Errors

AAPL SPX

Model b0 b1 b0 b1

SVIJ 0.01 (0.83) -0.01 (-0.35) 0.00 (0.78) 0.00 (-0.17)

SVJ 0.01 (0.84) -0.01 (-0.35) 0.00 (0.78) 0.00 (-0.17)

ASV 0.01 (0.88) -0.01 (-0.31) 0.00 (0.78) 0.00 (-0.18)

SV 0.01 (0.85) -0.01 (-0.35) 0.00 (0.78) 0.00 (-0.17)

SVIJ-MHP (b.e.c.) 0.00 (0.05) 0.03 (0.72) 0.07 (0.94) -0.01 (-0.26)

SVIJ (b.e.c.) 0.00 (0.02) 0.03 (0.67) 0.01 (0.98) -0.01 (-0.23)

SVJ (b.e.c.) 0.00 (0.06) 0.03 (0.71) 0.01 (0.99) -0.01 (-0.24)

ASV (b.e.c.) 0.00 (0.04) 0.03 (0.69) 0.01 (0.96) -0.01 (-0.21)

SV (b.e.c.) 0.00 (0.05) 0.03 (0.71) 0.01 (0.99) -0.01 (-0.25)

HAR-RV 0.01 (0.89) 0.01 (0.16) 0.00 (1.29) -0.01 (-0.49)

HAR-RV-CJ 0.01 (0.79) 0.01 (0.26) 0.00 (1.27) -0.01 (-0.47)

HAR-RV-SJ 0.01 (0.82) 0.01 (0.24) 0.00 (0.48) 0.01 (0.46)

Realized-GARCH 0.01 (0.87) -0.01 (-0.13) 0.00 (1.03) -0.02 (-0.43)

Realized-GARCH-log 0.01 (0.92) 0.00 (-0.04) 0.00 (1.25) -0.02 (-0.54)

Realized-EGARCH 0.01 (0.72) 0.01 (0.29) 0.00 (0.23) 0.02 (0.6)

No-change Forecast 0.01 (2.23) 0.00 (0.01) 0.00 (1.72) -0.01 (-1.12)

Notes: Every two columns report OLS estimates and corresponding test-statistics (test on
whether coefficient estimates equal to 0, ’b.e.c.’ stands for models before error correction by the
KF.)
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Table 3.16: Expected Loss of VaR and ES and Correspond p-value of DM Tests (AAPL

5-min)

Expected Loss DM test

τ α SVIJ-MHP SVIJ SVJ ASV SV SVIJ SVJ ASV SV

1.0% 0.900 0.979 0.990 0.990 1.000 0.000 0.000 0.000 0.000

2.5% 0.924 0.986 1.001 1.000 1.000 0.000 0.000 0.000 0.000

5.0% 0.935 0.990 1.004 1.003 1.000 0.000 0.000 0.000 0.000
1

10.0% 0.941 0.990 1.005 1.004 1.000 0.000 0.000 0.000 0.000

1.0% 0.917 0.976 0.987 0.990 1.000 0.007 0.012 0.015 0.003

2.5% 0.939 0.983 0.995 0.997 1.000 0.002 0.005 0.005 0.001

5.0% 0.949 0.987 1.000 1.001 1.000 0.001 0.001 0.001 0.000
6

10.0% 0.958 0.989 1.002 1.002 1.000 0.000 0.000 0.000 0.000

1.0% 0.885 0.962 0.978 0.974 1.000 0.044 0.019 0.038 0.010

2.5% 0.922 0.977 0.991 0.992 1.000 0.023 0.011 0.015 0.003

5.0% 0.938 0.983 0.996 0.996 1.000 0.010 0.004 0.006 0.001
12

10.0% 0.947 0.986 1.000 0.999 1.000 0.003 0.001 0.001 0.000

1.0% 0.908 0.954 0.979 0.986 1.000 0.013 0.007 0.007 0.009

2.5% 0.938 0.967 0.985 0.988 1.000 0.004 0.003 0.002 0.002

5.0% 0.955 0.973 0.986 0.991 1.000 0.002 0.001 0.001 0.000
24

10.0% 0.973 0.983 0.995 0.998 1.000 0.001 0.000 0.000 0.000

1.0% 0.878 0.956 0.956 0.969 1.000 0.009 0.013 0.005 0.003

2.5% 0.922 0.972 0.975 0.980 1.000 0.004 0.003 0.002 0.001

5.0% 0.946 0.986 0.983 0.986 1.000 0.001 0.001 0.001 0.000
36

10.0% 0.967 0.995 0.992 0.994 1.000 0.000 0.000 0.000 0.000

1.0% 0.843 0.920 0.920 0.933 1.000 0.051 0.043 0.064 0.013

2.5% 0.882 0.948 0.950 0.961 1.000 0.014 0.008 0.015 0.003

5.0% 0.916 0.970 0.972 0.976 1.000 0.004 0.001 0.004 0.001
78

10.0% 0.943 0.983 0.983 0.984 1.000 0.001 0.000 0.001 0.000

Notes: the left section of this table presents the joint expected losses of VaR and ES calculated
by a loss function proposed by Fissler & Ziegel (2016). The right hand side reports the p-value of
DM tests (Diebold & Mariano 1995) of the SVIJ-MHP model against other models. The data
used is AAPL 5-minutes data.
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Table 3.17: Coverage Ratio, DQ and DES Tests (AAPL 5-min)

τ αve SVIJ-MHP SVIJ SVJ ASV SV

1.0% 0.8% 0.000 0.000 1.1% 0.000 0.000 1.1% 0.000 0.000 1.1% 0.000 0.000 1.2% 0.000 0.000

2.5% 1.8% 0.000 0.000 2.1% 0.000 0.000 2.1% 0.000 0.000 2.1% 0.000 0.000 2.4% 0.000 0.000

5.0% 3.8% 0.000 0.000 4.1% 0.000 0.000 4.1% 0.000 0.000 4.1% 0.000 0.000 4.7% 0.000 0.000
1

10.0% 8.7% 0.000 0.000 8.8% 0.000 0.000 8.8% 0.000 0.000 8.9% 0.000 0.000 9.6% 0.000 0.000

1.0% 1.0% 0.003 0.002 1.2% 0.008 0.001 1.3% 0.001 0.000 1.2% 0.000 0.000 1.6% 0.000 0.000

2.5% 2.2% 0.000 0.000 2.5% 0.000 0.000 2.4% 0.000 0.000 2.6% 0.000 0.000 3.1% 0.000 0.000

5.0% 4.0% 0.000 0.000 4.4% 0.000 0.000 4.6% 0.000 0.000 4.6% 0.000 0.000 5.4% 0.000 0.000
6

10.0% 7.9% 0.000 0.000 8.5% 0.000 0.000 8.5% 0.000 0.000 8.7% 0.000 0.000 9.9% 0.000 0.000

1.0% 1.2% 0.360 0.191 1.3% 0.061 0.032 1.3% 0.086 0.036 1.4% 0.053 0.016 1.9% 0.000 0.000

2.5% 2.2% 0.003 0.026 2.5% 0.052 0.093 2.6% 0.028 0.059 2.6% 0.023 0.059 3.5% 0.000 0.000

5.0% 4.1% 0.000 0.001 4.5% 0.000 0.014 4.6% 0.000 0.015 4.7% 0.000 0.016 5.6% 0.006 0.001
12

10.0% 8.2% 0.000 0.000 8.8% 0.000 0.000 8.9% 0.000 0.000 9.2% 0.000 0.001 10.7% 0.007 0.001

1.0% 1.3% 0.000 0.000 1.4% 0.053 0.024 1.3% 0.170 0.047 1.6% 0.000 0.000 2.2% 0.000 0.000

2.5% 2.4% 0.205 0.074 2.5% 0.014 0.013 2.8% 0.019 0.007 2.8% 0.009 0.003 3.8% 0.000 0.000

5.0% 4.9% 0.433 0.181 5.1% 0.026 0.007 5.4% 0.022 0.004 5.6% 0.016 0.001 7.0% 0.000 0.000
24

10.0% 8.5% 0.025 0.395 9.1% 0.002 0.009 9.4% 0.008 0.013 9.6% 0.018 0.002 12.2% 0.002 0.000

1.0% 1.3% 0.000 0.000 1.5% 0.000 0.000 1.8% 0.000 0.000 1.7% 0.000 0.000 2.4% 0.000 0.000

2.5% 2.5% 0.615 0.461 3.0% 0.193 0.080 3.1% 0.150 0.057 3.1% 0.041 0.021 4.4% 0.001 0.000

5.0% 5.0% 0.712 0.519 5.6% 0.232 0.062 5.9% 0.055 0.019 5.9% 0.058 0.010 7.8% 0.000 0.000
36

10.0% 9.2% 0.555 0.741 9.6% 0.192 0.130 9.6% 0.401 0.178 10.1% 0.309 0.084 12.1% 0.014 0.000

1.0% 1.6% 0.029 0.023 1.8% 0.007 0.009 2.5% 0.001 0.001 2.5% 0.000 0.000 3.7% 0.000 0.000

2.5% 3.0% 0.024 0.019 3.2% 0.003 0.003 3.5% 0.004 0.001 4.0% 0.007 0.001 4.7% 0.000 0.000

5.0% 5.3% 0.204 0.081 5.7% 0.013 0.004 6.1% 0.003 0.001 6.1% 0.003 0.001 9.1% 0.000 0.000
78

10.0% 10.0% 0.598 0.268 11.3% 0.000 0.000 11.4% 0.005 0.001 11.8% 0.001 0.000 14.2% 0.000 0.000

Notes:αve denotes significant levels of VaR and ES. Three columns of each model forecast results
reports coverage ratio (left), p-value of DQ test (middle) and p-value of DES test respectively.
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Table 3.18: Expected Loss of VaR and ES and Correspond p-value of DM Tests (SPX

5-min)

Expected Loss DM test

τ α SVIJ-MHP SVIJ SVJ ASV SV SVIJ SVJ ASV SV

1.0% 0.926 1.082 1.082 1.083 1.000 0.002 0.015 0.001 0.001

2.5% 0.851 1.010 1.010 1.001 1.000 0.000 0.001 0.000 0.000

5.0% 0.832 0.948 0.936 0.843 1.000 0.000 0.000 0.000 0.000
1

10.0% 0.857 0.982 0.987 0.994 1.000 0.000 0.000 0.000 0.000

1.0% 0.933 1.009 1.005 1.019 1.000 0.030 0.011 0.033 0.010

2.5% 0.948 1.026 1.020 1.023 1.000 0.013 0.005 0.023 0.002

5.0% 0.958 1.032 1.027 1.028 1.000 0.008 0.002 0.010 0.000
6

10.0% 0.962 1.036 1.030 1.029 1.000 0.003 0.000 0.003 0.000

1.0% 0.907 0.990 0.985 0.996 1.000 0.004 0.002 0.000 0.000

2.5% 0.921 0.994 0.990 0.997 1.000 0.001 0.001 0.000 0.000

5.0% 0.932 1.004 1.000 1.004 1.000 0.000 0.000 0.000 0.000
12

10.0% 0.939 1.008 1.004 1.007 1.000 0.000 0.000 0.000 0.000

1.0% 0.861 0.917 0.907 0.908 1.000 0.028 0.026 0.035 0.003

2.5% 0.900 0.939 0.936 0.933 1.000 0.013 0.024 0.019 0.001

5.0% 0.929 0.960 0.958 0.957 1.000 0.007 0.010 0.006 0.000
24

10.0% 0.951 0.975 0.974 0.973 1.000 0.003 0.003 0.002 0.000

1.0% 0.815 0.867 0.871 0.868 1.000 0.008 0.018 0.007 0.001

2.5% 0.876 0.901 0.909 0.911 1.000 0.012 0.005 0.003 0.000

5.0% 0.916 0.938 0.941 0.940 1.000 0.011 0.004 0.002 0.000
36

10.0% 0.943 0.962 0.963 0.962 1.000 0.005 0.002 0.001 0.000

1.0% 0.707 0.788 0.778 0.790 1.000 0.025 0.010 0.023 0.005

2.5% 0.785 0.842 0.848 0.846 1.000 0.014 0.003 0.012 0.001

5.0% 0.844 0.888 0.892 0.893 1.000 0.007 0.002 0.006 0.001
78

10.0% 0.886 0.921 0.922 0.925 1.000 0.004 0.001 0.003 0.000

Notes: the left section of this table presents the joint expected losses of VaR and ES calculated
by a loss function proposed by Fissler & Ziegel (2016). The right hand side reports the p-value of
DM tests (Diebold & Mariano 1995) of the SVIJ-MHP model against other models. The data
used is SPX 5-minutes data.
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Table 3.19: Coverage Ratio, DQ and DES Tests (SPX 5-min)

τ αve SVIJ-MHP SVIJ SVJ ASV SV

1.0% 0.3% 0.000 0.000 0.4% 0.000 0.000 0.4% 0.000 0.000 0.4% 0.000 0.000 0.5% 0.000 0.000

2.5% 0.8% 0.000 0.000 0.9% 0.000 0.000 1.0% 0.000 0.000 0.9% 0.000 0.000 1.2% 0.000 0.000

5.0% 2.1% 0.000 0.000 2.1% 0.000 0.000 2.2% 0.000 0.000 2.2% 0.000 0.000 2.6% 0.000 0.000
1

10.0% 6.0% 0.000 0.000 6.1% 0.000 0.000 6.1% 0.000 0.000 6.2% 0.000 0.000 7.1% 0.000 0.000

1.0% 0.6% 0.000 0.000 0.7% 0.000 0.000 0.7% 0.000 0.000 0.7% 0.000 0.000 1.1% 0.000 0.000

2.5% 1.6% 0.000 0.000 1.8% 0.000 0.000 1.8% 0.000 0.000 1.8% 0.000 0.000 2.5% 0.000 0.000

5.0% 3.5% 0.000 0.000 3.7% 0.000 0.000 3.8% 0.000 0.000 3.8% 0.000 0.000 5.1% 0.000 0.000
6

10.0% 7.8% 0.000 0.000 8.2% 0.000 0.000 8.2% 0.000 0.000 8.3% 0.000 0.000 10.2% 0.000 0.000

1.0% 1.0% 0.017 0.012 1.1% 0.000 0.000 1.1% 0.000 0.000 1.2% 0.000 0.000 1.6% 0.000 0.000

2.5% 2.3% 0.003 0.001 2.5% 0.000 0.000 2.6% 0.000 0.000 2.6% 0.000 0.000 3.8% 0.000 0.000

5.0% 4.5% 0.002 0.000 4.7% 0.000 0.000 4.8% 0.000 0.000 4.9% 0.000 0.000 6.3% 0.000 0.000
12

10.0% 8.5% 0.000 0.000 8.8% 0.000 0.000 8.9% 0.000 0.000 9.2% 0.000 0.000 11.5% 0.000 0.000

1.0% 1.4% 0.114 0.097 1.6% 0.000 0.000 1.6% 0.000 0.000 1.6% 0.000 0.000 2.7% 0.000 0.000

2.5% 2.8% 0.081 0.068 3.1% 0.000 0.000 3.4% 0.000 0.000 3.1% 0.000 0.000 4.6% 0.000 0.000

5.0% 5.3% 0.020 0.025 5.4% 0.000 0.000 5.7% 0.000 0.000 5.8% 0.000 0.000 7.9% 0.000 0.000
24

10.0% 9.5% 0.003 0.006 9.7% 0.000 0.000 9.6% 0.000 0.000 9.8% 0.000 0.000 13.2% 0.000 0.000

1.0% 1.7% 0.008 0.004 1.7% 0.001 0.000 1.8% 0.000 0.000 1.9% 0.000 0.000 3.5% 0.000 0.000

2.5% 3.4% 0.006 0.002 3.7% 0.000 0.000 3.5% 0.000 0.000 4.1% 0.000 0.000 5.3% 0.000 0.000

5.0% 6.0% 0.012 0.002 6.3% 0.000 0.000 6.3% 0.000 0.000 6.3% 0.000 0.000 8.6% 0.000 0.000
36

10.0% 9.1% 0.010 0.006 9.5% 0.000 0.000 9.6% 0.001 0.000 9.9% 0.002 0.000 13.2% 0.000 0.000

1.0% 2.3% 0.000 0.000 2.6% 0.000 0.000 2.6% 0.000 0.000 2.7% 0.000 0.000 4.7% 0.000 0.000

2.5% 4.0% 0.000 0.000 4.0% 0.000 0.000 4.1% 0.000 0.000 4.1% 0.000 0.000 6.3% 0.000 0.000

5.0% 6.9% 0.004 0.000 7.2% 0.004 0.000 7.2% 0.004 0.000 7.5% 0.005 0.000 10.7% 0.000 0.000
78

10.0% 9.9% 0.083 0.004 10.6% 0.052 0.002 10.7% 0.070 0.002 10.9% 0.089 0.003 14.5% 0.004 0.000

Notes: αve denotes significant levels of VaR and ES. Three columns of each model forecast results
reports coverage ratio (left), p-value of DQ test (middle) and p-value of DES test respectively.
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Table 3.20: Priors Specification

Parameters Prior Distribution

µ N(0, 1)

κ N(0, 1)1κ>0

θ N(0, 1)1θ>0

σV IG(2.5, 0.1)

ρ U(−1, 1)

ξY+ N(0, 50)1ξY +>0

ξY− N(0, 50)1ξY −<0

ξV N(0, 10)1ξV >0

ϑ N(0, 0.1)1ϑ>0

λY+
0 N(0, 0.001)1λY +

0 >0

λY−
0 N(0, 0.001)1λY −

0 >0

λv
0 N(0, 0.001)1λv

0>0

β N(0, 0.3)1β>0

α̃ N(0, 0.2)1α̃>0

β̃ N(0, 10)1β̃>0

Notes: This table presents priors settings in MCMC algorithm of parameter estimations



Chapter 4

Forecasting Bitcoin

4.1 Introduction

As a new financial asset, Bitcoin has attracted many studies in recent years. There

have been a number of studies showing that the Bitcoin market is not fully efficient

(Urquhart 2016, Nadarajah & Chu 2017, Wei 2018), is strongly affected by media

and investors’ sentiment (Urquhart 2018, Sapkota 2022), is often associated with

high volatility (Klein et al. 2018, Shen et al. 2020), has been subject to market

manipulations (Gandal et al. 2018) and has been used for illegal activities (Foley

et al. 2019). The literature also shows the hedging benefits of the Bitcoin (Corbet

et al. 2019, Guesmi et al. 2019, Anyfantaki et al. 2021), how blockchains manage

transactions (Jiang et al. 2022, Zhang et al. 2022), and has used machine learning

techniques to forecast prices and place limit orders (Atsalakis et al. 2019, Schnaubelt

2022).

In addition to these features of the Bitcoin market, another notable characteristic

of Bitcoin is the large number of jumps (significant discontinuities) in Bitcoin prices.

Gronwald (2019) discusses the similarity of Bitcoin to commodities and shows the

presence of price jumps is more extreme in the Bitcoin market than in other markets.

Shen et al. (2020) show the importance of jumps in forecasting realised volatility,

while Chaim & Laurini (2018) use a stochastic volatility model and show the linkage
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between prices jumps and formative events in the Bitcoin market, such as hacks.

In this chapter, we consider whether the jumps in Bitcoin can be used to predict

Bitcoin returns.

Earlier studies that allow jumps in continuous-time asset pricing models often

assumed a relatively simple structure for the jump components, namely, that they

are serially independent. They often model jumps by compound Poisson processes

or Lévy processes (see e.g., Merton 1976, Bates 1996, Duffie et al. 2000, Eraker

2004). In the recent decade, a new dependence structure become popular. The de-

pendence structure proposed by Hawkes (1971a,b) allows jump components in one

dimension1 to raise the probability of future jumps in both its own dimension and

other dimensions. This is often referred to as ’self-excitation’ and ’cross-excitation’,

respectively. Aı̈t-Sahalia et al. (2015) incorporate this structure into a continuous-

time semi-martingale model and relax the assumption of independent jump incre-

ments. Aı̈t-Sahalia et al. (2015) consider the propagation of jumps in stock markets

worldwide, while Fulop et al. (2015) also find evidence of self-exciting jumps, es-

pecially during financial crises. Other papers with finance applications using this

dependence structure include Liu et al. (2021), Ketelbuters & Hainaut (2022).

There is a large literature documenting jump predictions. Lee (2012) links jumps

in stock markets to macroeconomic variables and firm-specific news releases. It pro-

poses a jump predictor based on these variables plus a dummy variable for the

existence of past jumps. Lee & Wang (2019) define 3 different jump betas of indi-

vidual foreign exchange rates against the market. They find that currencies with

higher negative jump betas can earn higher carry trade returns. Additionally, Lee

& Wang (2020) propose a jump intensity regression model that includes information

releases, time-of-day effects and a dummy variable for jump clustering effects. They

assess the ability of their model to predict future jumps by looking at its carry trade

1In this chapter, we specify two dimensions of jumps the model - positive return jumps and

negative return jumps. See details in the model specification section.
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performance. Further, Novotnỳ et al. (2015) present evidence of high-frequency

price jumps clustering in foreign exchange markets. They detect price jumps non-

parametrically and propose a trading strategy to enter the position immediately

after spotting a jump. They show the profitability of the strategy.

In short, there is evidence that jump increments are not necessarily serially

independent, and jumps in asset prices may exhibit clustering. Given the large

number of jumps in the Bitcoin market, we ask whether jumps cluster, and are

predictable. If so, to what extent can we predict jumps? Are we able tp predict

the direction of jumps, in addition to their arrival? Finally, to what extent does

predicting jumps help predict Bitcoin returns? These are the main questions we

aim to answer in this chapter.

In this chapter, we embed a mutually-exciting point process in a stochastic

volatility model with jumps, where we separate out the positive and negative re-

turn jumps and model their underlying intensity differently. We estimate the model

using a Bayesian Markov chain Monte Carlo framework. In the out-of-sample anal-

ysis, we fix static parameters at posterior means and use a particle filter to estimate

latent variables at each state. Then, we calculate one-step-ahead forecasts of the

underlying intensities (probabilities) of jumps. We assess our forecasts by the contin-

uous ranked probability score (CRPS), where we consider two different approaches

to determine whether jumps have occurred. To the best of our knowledge, we are

the first to conduct probabilistic forecasting on jumps in asset returns in this way,

which is our novel methodological contribution.

In addition, we develop a statistic which is the difference between the predicted

intensities of positive and negative jumps. Values in the tails of this statistic indicate

the probability of a positive or negative jumps is ‘high’, where high is relative to the

distribution of the statistic. We consider whether the tail values are able to predict

returns, as a complementary way of evaluating the forecasts of the probabilities of

jumps (relative to CRPS), and of the value of predicting jumps for return prediction

more generally. We find some explanatory power, which varies at different data
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frequencies.

In our empirical analysis, we apply 5-minute Bitcoin data and a range of other

frequencies up to 120 minutes and in the in-sample estimation, we find self/cross

excitation behaviours diminish with the increase of data frequency. We also observe

that positive and negative jumps impact one another in an asymmetric manner. In

the out-of-sample analysis, we find that distributions of intensity differences2 be-

tween positive and negative jumps have evident tails. Positive and negative tails

indicate periods when probabilities of positive and negative jumps are higher and

we show that on the right (left) tails, there exists more large positive (positive) re-

turns than negative (positive) returns. Additionally we find returns are statistically

significantly positive (negative) when the probabilities of positive (negative) jumps

are higher and that this significance reduces with the decrease of data frequencies.

Another novel contribution of our study is the proposal of a trading strategy -

to long the positive tails and short the negative tails of the intensity difference. Our

trading strategy yields a Sharpe ratio of 4.36 inclusive of transaction costs, while

the buy and hold (BaH) portfolio is around 1.4. However, our trading strategy

shows little difference from the BaH portfolio when the data frequency is lower

than 45 minutes. We also show that the average simple return of our strategy is

not significantly higher than that of the BaH portfolio; however, our maximum

drawdown (MDD) is much lower. This can indicate the ability of our strategy to

mitigate tail risks. Our jump prediction approach also provides potential for risk

management, especially during a financial crisis when the assumption of independent

jumps is no longer robust. We also conduct a further robustness check on our

trading strategy. We consider a range of trading costs, trading gaps and performance

evaluation ratios. We also examine whether our strategy performs better during:

high/low volatility periods; during periods of price increases/decreases; and during

periods of high/low uncertainty for the cryptocurrency market.

2Note that intensities here are predicted intensities in the out-of-sample.
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Past literature forecasts jumps in asset returns primarily based on information

releases (see e.g. Lee & Wang 2019, 2020)3. In this chapter, we focus more on

probabilistic forecasting of return jumps based on the jump clustering effects. This

marks out our approach from the literature. We set up a parametric model to

quantify the probability of jump occurrences, and conduct probabilistic forecasting

on future return jumps. The advantage of our approach is the ability to quantify

and predict the probability of future jumps without relying on extraneous variables

such as information releases.

The rest of this chapter is organised as follows. Section 2 introduces our model.

Section 3 presents in-sample estimation and out-of-sample prediction approaches.

Section 4 presents our empirical results. Section 5 introduces a trading strategy.

Section 6 concludes the chapter. Some technical results are confined to the appendix.

4.2 Model Specifications

In this section, we introduce specifications of return and variance process and jump

components with mutually-exciting intensities.

4.2.1 Return and Variance Process

We model Bitcoin returns (yt) as differences of natural logarithm of Bitcoin prices

(pt), yt = log(pt)− log(pt−1). We let Bitcoin returns and corresponding variance (vt)

evolve via:

yt = µ∆+
√

vt−1∆ϵyt + ξ+t J
+
t + ξ−t J

−
t , (4.1)

vt = vt−1 + κ(θ − vt−1)∆ + σv

√
vt−1∆ϵvt , (4.2)

3For example, Lee & Wang (2020) estimate a logit model for the jump intensity, the probability

of a jump, λt = 1/
(
1 + exp(−θ0 −

∑7
j=1 θjXj,t −

∑22
h=0 δhTh,t − γCLt)

)
, where Xj,t denotes a set

of dummy variables that equal 1 when there are information releases. δhTh,t is a time indicator of

different trading hours. CLt is another dummy variable and equals 1 when there are jumps in the

past 30 minutes.
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where ∆ is the time unit, and we take ∆ = { 1
288

, 1
96
, 1
48
, 1
32
, 1
24
, 1
12
} corresponding to

the data frequency δ = {5, 15, 30, 45, 60, 120} minutes. µ is a drift term. κ and θ are

the mean reversion rate, and the long-run variance mean. σv denotes the volatility

of volatility. ϵyt and ϵyt are two correlated normal random variable (N (0, 1)) with

corr(dW p
t , dW

v
t ) = ρ. ξ+t J

+
t and ξ−t J

−
t presents the upward and downward return

jump components with underlying intensities P (J+
t = 1) = λ+

t and P (J−
t = 1) = λ−

t

respectively. We let jump sizes jointly follow a normal distribution with a mean µj

and standard deviation σj

(
ξ+t , ξ

−
t ∼ N (µj, σj)

)
. The specifications, at this level,

resemble the stochastic volatility with jump (SVJ) model proposed by Bates (1996).

4

4.2.2 Mutually-Exciting Jump Process

We specify a 2-dimensional mutually-exciting jump process on the underlying inten-

sity λ+
t , λ

−
t :

λ+
t = λ+

0 +
∑

0<t̃+<t−1

α+
+e

−β+
+(t−t̃+) +

∑
0<t̃−<t−1

α+
−e

−β+
−(t−t̃−) (4.3)

λ−
t = λ−

0 +
∑

0<t̃+<t−1

α−
+e

−β−
+ (t−t̃+) +

∑
0<t̃−<t−1

α−
−e

−β−
−(t−t̃−) (4.4)

where {λ+
0 , λ

−
0 } are baseline intensities, which are constant. t̃+ and t̃− denotes

time indices when there are positive and negative jumps respectively (J+
t = 1 and

J−
t = 1). α denotes the additional intensity produced by past jumps, β governs

the decaying speed of the additional intensity α. For example, the intensity of

positive jumps remains λ+
0 during peaceful times. When positive jumps occur, they

will immediately raise the intensity of positive jumps by α+
+, but this intensity will

4We intentionally ignore the variance jump component in the model. We acknowledge the

importance of variance jumps, however, there are evidence showing variance jumps have little

impact on intensities of future return jumps (see e.g. Maneesoonthorn et al. 2017, Chen et al.

2021), on which we focus more in the chapter. Therefore, we remain the model parsimonious,

which can also reduce the computational burden.
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decay over time by a speed governed by β+
+ . Similarly, occurrences of negative jumps

will raise the probability of positive jumps by α+
−. Therefore, the intensity of jumps

equals a baseline intensity plus the impact of all past jumps, including self-excitation

and cross-excitation.

4.3 In-Sample Estimation and Out-of-Sample Fil-

tering

In this section, we introduce our in-sample parameter estimation techniques and

out-of-sample particle filtering method.

4.3.1 Bayesian Inference on Parameters

Like most literature studying stochastic volatility models, we estimate the model

by a Bayesian Markov chain Monte Carlo (MCMC) framework. We denote the

static parameter vector as Θ = {µ, κ, θ, σv, ρ, µj, σj,λ0,α,β}, where λ0 = {λ+
0 , λ

−
0 }

α = {α+
+, α

+
−, α

−
+, α

−
−} and β = {β+

+ , β
+
− , β

−
+ , β

−
−}. We further the latent variable

vector as Zt = {vt, ξ+t , ξ−t , J+
t , J

−
t }. We conduct a Bayesian inference on static

parameters and latent variables. The joint posterior distribution is as follows:

P (Θ,Zt|yt) ∝ P (yt|Θ,Zt)P (Zt|Θ)P (Θ) (4.5)

We adopt a Markov Chain Monte Carlo (MCMC) method to sequentially sample

from the posterior distribution. Details of the algorithm and specifications of priors

can be found in Appendix C.1. We follow Lazar & Qi (2022) to construct our

posterior distributions, which are provided in their online appendix.

4.3.2 Particle Filtering and Out-of-Sample Predictions

In the out-of-sample, we firstly fix the static parameters Θ at its posterior mean,

Θ̂. We define latent variables of interests in the out-of-sample period as Z∗
t =
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{vt, J+
t , J

−
t }. Then, for every time t in the out-of-sample period, we adopt a particle

filter proposed by Pitt & Shephard (1999) to sample from p
(
Z∗

t |yt, Θ̂
)
and filter

Ẑ∗
t . Then, we conduct a one-step ahead forecast on Jt+1. Specifically, for every

time t, we start with N random particles of variance v
(i)
t , i = 1, ..., N , and evaluate

these particles with an importance weight w
(i)
t . Then, we generate p

(
Jt|yt, v(i)t , Θ̂

)
,

from which we initiate another N random samples to approximate the predictive

distribution p
(
λt+1|yt,Z∗(i)

t , Θ̂
)
5. Full details of the particle filter sampling and

re-sampling scheme are provided in Appendix C.2.

We evaluate our predictive distribution by a continuous ranked probability score

(CRPS), which takes the following form:

CRPS =
1

T

T∑
t=1

1

N

N∑
i=1

(λ̂
(i),(+/−)
t+1 − J

(+/−)
t+1 )2 (4.6)

this is also equivalent to the integral of the Brier scores for the binary probability

forecasts (Brier et al. 1950, Matheson & Winkler 1976, Hersbach 2000). Also see

discussions on CRPS by Gneiting et al. (2007) and Gneiting & Raftery (2007). The

J
(+/−)
t+1 in the equation denotes the actual values of positive and negative jumps,

on which we forecast separately. We take two measures of them in the empirical

works. We firstly estimate the whole sample by Bayesian MCMC and retrieve Jt. In

addition, we also use a non-parametric jump filtering method (NP filtering) as an

alternative jump estimation. The procedure of the filtering method can be seen in

Appendix C.3. Also see a comprehensive review on high-frequency non-parametric

jump tests by Maneesoonthorn et al. (2020).

5The Jt here denotes {J+
t , J−

t }, and λt+1 denotes {λ+
t+1, λ

−
t+1}.
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4.3.3 Intensity Differences

From the predictive distribution p
(
λt+1|yt,Z∗(i)

t , Θ̂
)
, point forecasts of the under-

lying intensities λ̂+
t+1 and λ̂−

t+1 are calculated by taking means of those N samples:

λ̂+
t+1 =

N∑
i=1

λ
(i)+
t+1 , λ̂−

t+1 =
N∑
i=1

λ
(i)−
t+1 , (4.7)

which are also the one-step ahead predicted probabilities of jumps at t + 1. Note

λ̂+
t+1 and λ̂−

t+1 equal λ̂
+
0 and λ̂−

0 during peaceful times, and rise to higher levels given

occurrences of different jumps. However, a higher λ̂+
t+1/λ̂

−
t+1 does not necessarily

indicate a higher probability of positive/negative return jumps since λ̂+
t+1 and λ̂−

t+1

can both rise simultaneously to a very higher level. However, there can be only one

direction of jump at each time point. For example, when the predicted intensities

both equal ϕ% (λ̂+
t+1 = λ̂−

t+1 = ϕ%), these two forecasts become less informative for

market practitioners in predicting the direction of jumps. Surely, one could argue

that we can at least know the overall probability of jumps at t+1 is rising; however,

it is less informative without knowing the direction of jumps at t+ 1.

To address this issue, we develop a new statistic, which takes the difference

between these two predicted intensities:

λd
t+1 = λ̂+

t+1 − λ̂−
t+1 (4.8)

The essential idea of considering this statistic is to focus on those when predicted

probabilities of either positive or negative jumps are higher - instead of both of

them being higher. Therefore, λd
t+1 equals (λ̂+

0 - λ̂−
0 ) most of the time. It becomes

more extreme when the probability of either positive or negative jumps is relatively

higher. They are captured by two tails of distributions of λd
t+1.

Then, it is also of our interest to study the Bitcoin returns on the tails of λd
t+1

distributions - whether returns lying on these tails have more extreme variations

and whether jump predictions translate to return predictions in Bitcoin. We further
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define:

St =


1, if λd

t > λ+
0 − λ−

0 + C−1
N (1− k%) · σ(λd

1:t−1) > 0

−1, if λd
t < λ+

0 − λ−
0 + C−1

N (k%) · σ(λd
1:t−1) < 0

0, elsewise

(4.9)

where C−1
N (·) denotes an inverse cumulative normal distribution. σ(λd

1:t−1) represents

the standard deviation of the statistic λd up to time t− 1. In the empirical studies,

we set k = {2.5, 5, 10, 15}.

For the convenience of further studies, we further define S+
t := 1{St=1}, S

−
t :=

1{St=−1}. Therefore, St = S+
t − S−

t . The basic idea is taking tails of λd
t , which

stands for when the probability of positive jumps is significantly higher (S+
t ), and

when that of negative jumps is higher (S−
t ). It is of our interest to investigate the

return distributions when S+
t = 1 and S−

t = 1. Note again that these two indicators

{S+
t , S

−
t } at time t are estimated using the information up to t − 1. Therefore, we

are examining how are returns distributed when the probability of positive/negative

jumps are expected to be higher.

This evaluation can also be regarded as an alternative assessment of probabilistic

forecasts on return jumps in addition to the CRPS. Specifically, if our forecasting

approach is valid, there should be more upward return variations when S+
t = 1,

and downward return variations when S−
t = 1. Thus, returns when S+

t = 1 will be

significantly higher and returns when S−
t = 1 will be significantly lower. On the

contrary, if the forecasting does not work, {S+
t , S

−
t } will not provide any indications

on the probability of jumps and return distributions. Thus, returns when S+
t = 1

and S−
t = 1 will not make significant differences to others.

Following this logic, we further analyse two tails of λd
t by a regression. We regress

Bitcoin simple returns with S+
t and S−

t :

yt = a+ b1S
+
t + b2S

−
t + ut (4.10)

We also remark that this regression is valid since S+
t and S−

t are predicted using

information up to time t − 1. We are interested in the significance of coefficients
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{b1, b2}. In addition, due to the potential auto-correlation of the error term ut in

the model, we adopt a Newey–West heteroscedasticity and autocorrelation consistent

estimator.

Later in the empirical section, we will propose a trading strategy, which long

the Bitcoin when S+
t = 1 and short the Bitcoin when S−

t = 1. Therefore, St act

as trading signals. Regressing Bitcoin returns with trading signals can also assess

the validity of the model and the strategy6. We note that the significance of the

regression is a necessary but not sufficient condition for the model (or the strategy)

being ’valuable’, since returns of a strategy may be subject to certain constraints,

for example, trading costs.

4.4 Empirical Application

This section introduces our empirical studies, including in-sample estimation results

and out-of-sample predictions.

4.4.1 Data

We collect the Bitcoin data (BTC/USD) traded on the Bitstamp exchange from an

open platform bitcoincharts.com. We select this exchange because it is one of

the first and most liquid Bitcoin exchanges (Brandvold et al. 2015). We collect data

from 1st January 2014 to 31st December 2021. Then, we re-sample the tick data by

taking the last price of every 5 minutes, which is the frequency we would consider in

the empirical work. We also consider a range of other frequencies for comparisons

and validations. Thus, we take δ = {5, 15, 30, 45, 60, 120} minutes. We separate the

data to an in-sample and out-of-sample period on 31st December 2018. This will

make 5 years in the in-sample and 3 years in the out-of-sample period. Therefore,

6Moskowitz et al. (2012) conduct a similar regression analysis to assess a momentum trading

strategy

bitcoincharts.com
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the first 5-year data is used to estimate the static parameter vector Θ̂, which is fixed

in the 3-year out-of-sample period.

4.4.2 In-Sample Estimations

We estimate the model and plot return, return extracts jumps and volatility in Fig.

4.1. Note, return and volatility in Fig. 4.1 are all re-scaled to a daily level (e.g.

5-minutes returns are multiplied by 288, 60-minutes returns are multiplied by 24).

[INSERT FIGURE 4.1 ABOUT HERE]

Table 4.1 presents the posterior mean and standard deviation of estimated pa-

rameters in the return and variance processes. We find that the same data sampled

at different frequencies reports different parameters, but they do have some patterns.

For example, the drift of returns µ is close to 0 with 5-minutes data and increases

with lower frequency. While the mean-reversion speed of variances κ is the highest

with 5-minutes data. Additionally, the results of σj indicate a higher variation of

jump sizes with data in higher frequencies.

[INSERT TABLE 4.1 ABOUT HERE]

Posteriors of parameters in the mutually-exciting jump intensity process are

presented in Table 4.2. The results are re-scaled to a daily level. The baseline in-

tensities, {λ+
0 , λ

−
0 }, are approximately 2.5% suggesting the baseline probability of

return jumps is around 2.5%. This probability does not significantly vary from data

frequencies. Regarding the probability of positive return jumps raised by others

({α+
+, α

+
−}), the intensity raised by past negative jumps α+

− is slightly higher than

that raised by positive jumps α+
+ under 5-minutes data. This pattern is especially

evident under 60,120-minutes data. The same pattern can be found in the probabil-

ity of negative jumps, which shows the strong impact of negative jumps. However,

results of {β+
+ , β

+
− , β

+
− , β

−
−} show a higher decay speed of probability raised by neg-

ative jumps. More importantly, we find {α+
+, α

+
−, α

+
−, α

−
−} remain the highest under
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5-minutes data, indicating more evident jump clustering features when data fre-

quency is higher.

[INSERT TABLE 4.2 ABOUT HERE]

Overall, in-sample estimation results show that positive and negative jumps im-

pact one another asymmetrically. The results also imply that jump clustering is

more likely to be observed in higher frequency data and diminish in longer horizons.

This naturally provides us an opportunity to examine the forecasting performance

of data with different extent of jump clustering.

4.4.3 Out-of-Sample Filtering Results

As is introduced in Section 4.3.2, we fix static parameters at their posterior means

Θ̂, and filter the latent states at each time point. Then we forecast on λt and then

take its tails St. Figure 4.2 presents the histogram of λd
t across different frequen-

cies. There are evident tails of the empirical λd
t distributions, especially when the

frequency exceeds 30 minutes. Table 4.3 reports the number of observations, Jt and

St, under different data frequency δ(min) and tails parameters k%. The number of

jumps filtered out in the out-of-sample takes 3-5% of total observations.

[INSERT FIGURE 4.2 ABOUT HERE]

[INSERT TABLE 4.3 ABOUT HERE]

We forecast the underlying intensities λ̂+
t+1 and λ̂−

t+1, and corresponding CRPS

is reported in Table 4.4. The top panel use Jt estimated by the Bayesian method

as the actual value, and the bottom panel use Jt estimated by the NP filtering as

the actual value. The M1 denotes λ̂t+1 predicted by our model. We benchmark two

forecasts. The M2 takes λ̂t+1 =
∑

(Jt)/T . where T denotes number of observations.

This setting assumes Jt arrives under a Poisson process, whose arrivals are serially

independent with a constant intensity. M3 takes λ̂t+1 = 0, which simply assumes
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there are no jumps. We also report results of a Diebold-Mariano (DM) test (Diebold

& Mariano 2002) in Table 4.4. Values in brackets are p-value of the DM test that

tests forecasts by M1 against other models. Note that in this test, we calculate the

probability score as follow:

Scoret =
1

N

N∑
i=1

(λ̂
(i),(+/−)
t+1 − J

(+/−)
t+1 )2 (4.11)

such that it becomes a time-series score to be applied in the test7.

[INSERT TABLE 4.4 ABOUT HERE]

CRPS measures the extent to which our forecasts calibrate to the arrivals of

jumps. A lower value of CRPS indicates a better calibration of the forecasts. As is

shown in Table 4.4, with 5-minutes data, forecasts from our model (M1) reports the

lowest CRPS. Results of the DM test suggest that our model consistently outperform

others when the data frequency is higher than 30 minutes, while they are indifferent

to forecasts from other benchmark models under lower frequency data.

These results are in line with in-sample estimations - self-exciting jumps are ob-

served more evident under higher frequency data with higher value of {α+
+, α

+
−, α

+
−, α

−
−},

which translates to better performance in return jump predictions. The CRPS re-

sults also show the importance of considering jump self-excitation in the model since

modelling and predicting return jumps by the mutually-exciting process is clearly

superior to processes assuming independent or no jumps.

4.4.4 Returns on Tails of λd
t Distribution

We identify left and right tails of λd
t distribution (S+

t and S−
t ) according to meth-

ods we discussed in Section 4.3.3. We also highlight that S+
t and S−

t can also be

7For a specific example, we have two time-series score (s1t and s2t ) from M1 and M2. We

calculate Diebold-Mariano statistic as DM = s̄/

(√
(γ0 + 2

∑h−1
k=1 γk)/n

)
, where s̄ = E(s1t − s2t )

and γk denotes the autocovariance of s1t − s2t at lag k. n denotes number of forecasts and we take

h = n
1
3 + 1.
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treated as trading signals. We firstly evaluate returns identified by these trading

signals ( lying on tails of λd
t distributions). The essential idea is to look at how is

return distributed when the probability of positive/negative jumps is significantly

higher. In Table 4.5 and 4.6, we summarise the percentage of return sizes that

are greater than {0, σ(yt), 1.5σ(yt), 2σ(yt)}, and return sizes that are smaller than

{0,−σ(yt),−1.5σ(yt),−2σ(yt)}. The σ(yt) denotes the standard deviation of returns

of the whole sample8.

The results show that the tails of λd
t have strong indications of extreme returns.

For example, on the right tails of λd
t under 5-minutes data (δ = 5, k = 10) (Table 4.5,

second row), 21.8% of returns of the right tail is greater than 1 standard deviation

of returns, and 8.9% of that are greater than 2 standard deviations of returns. By

contrast, only 6.7% of returns on the right tail are smaller than negative 1 standard

deviation of returns, and 2.7% of that is smaller than negative 2 standard deviations

of returns. Vice versa, we can find similar patterns on the left tail, which is reported

in Table 4.6. However, looking at results under other frequency data, this pattern

diminishes with the decrease of data frequencies. Under 120-minutes data, the

percentage of returns lying on the right tail is not significantly distinct from that on

the left tail.

[INSERT TABLE 4.5 ABOUT HERE]

[INSERT TABLE 4.6 ABOUT HERE]

These results strongly indicate the predictability of λd
t ’s tails on future returns.

If our approach is invalid, the return distributions on those tails should resemble

those under 120-minutes data, where the distribution of extreme returns tends to

be symmetric regardless of predicted probabilities of jumps.

Regression results of (4.10) are presented in Table 4.7. We re-scale the Bitcoin

return data to the daily level as the regression input. The regression results confirm

8We tried using the standard deviation of returns in the in-sample period, and returns up to

t− 1. Results do not vary too much.
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that returns on the λd
t ’s right tail (S

+
t ) are significantly higher, and those on the left

tail are significantly lower. This suggests the predictability of St on Bitcoin returns.

However, with the decrease in data frequencies, the coefficient estimates reduce from

±0.06 to ±0.001 approximately. The corresponding test statistics also reduce from

±12 to ±0.5 approximately.

[INSERT TABLE 4.7 ABOUT HERE]

4.5 Trading on Jump Clustering

Based on these results, we form a portfolio that goes long on the right tail and short

the left tail of λd
t distribution. Specifically, we long the BTC/USD when S+

t = 1

and short the BTC/USD when S+
t = 1 by a market order. The strategy is valid

since St are generated based on information up to time t − 1. We also consider a

long-only strategy due to the short-selling constraint of the Bitcoin. This section

will introduce trading costs considered in our strategy and performance evaluations.

4.5.1 Trading Costs

We assume a transaction cost of 0.15% for each transaction9 (buy/sell). We also add

an additional 0.05% as a liquidity cost. This number is roughly estimated by limit

order book data. Since the full limit order book data of Bitcoin is not available,

we collect real-time limit order book data by using the API provided by Bitstamp

Exchange. We collect data every hour from 15/03/2022 to 15/04/2022. We find that

executing a market order worth $20,00010 maximally reduces the return by 0.05%.

This is calculated by the percentage difference between the weighted average of

9Bitstamp Exchange has a range of transaction fee schedules. The fee varies according to

account trading volume in the past 30 days. We take 0.15% when the account trading volume is

around $600,000.
10We use total trading volume in dollar divided by number of transactions in 2021 and get the

average trading volume ($) per transaction equals to approximately $20000.
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market order price (assume the order is filled), and the spot market price. Since

we intend to implement a high-frequency trading strategy, 30 ($600,000/$20,000)

trades will be sufficient to fulfil the monthly $600,000 trading volume requirements.

Thus, it is safe to assume a 0.15%+0.05% transaction cost structure in assessing

our trading strategy. Brauneis et al. (2021) construct high-frequency measures of

transaction costs and liquidity costs. Their studies also support our trading cost

assumptions of 0.2% being reasonable.

We also give a 15 seconds gap to execute the order. Therefore, when a return

comes in each δ, we estimate vt and Jt by particle filtering, then forecast on λd
t+1

and St+1. Then, we trade the BTC/USD based on St+1 on the 15th second of the

next minute. Running a particle filter and forecasting takes less than 2 seconds.

Executing a market order takes less than 5 seconds. Therefore, a 15-seconds gap

should be enough for the algorithmic trading.

4.5.2 Performance Evaluation

In Fig. 4.3, we plot cumulative simple return of the trading strategy. Since short

selling in the Bitcoin market was not available throughout our sample and is costly,

we also consider a long-only trading strategy. Fig. 4.4 plots the cumulative simple

return of the strategy. In these two figures, the green line presents the cumulative

return of the BaH strategy, while the other four lines plot that of our strategy with

different k%. These figures show that the cumulative return tends to be less volatile

than the BaH return. Furthermore, our strategy tends to be less effective when

the data frequency is lower than 45 minutes, which is in line with the in-sample

estimation results in Section 4.4.2 that α become smaller with lower frequency data.

Also, the tails of λd
t distribution are less evident with lower frequency data (see Fig.

4.2).

[INSERT FIGURE 4.3 ABOUT HERE]

[INSERT FIGURE 4.4 ABOUT HERE]
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In addition, we report annualised mean return (AMR), Sharpe ratio (SR), the

standard deviation of returns and maximum drawdown (MDD) in Table 4.8, 4.9

and 4.10, respectively. Note all of these values are annualised. Sharpe ratio and the

maximum drawdown are calculated as follows:

SR =
ypt − rt
σ(ypt )

MDD = max

(
pt −max(p1:t−1)

max(p1:t−1)

)
(4.12)

where rt denotes the risk-free rate at time t, and ypt − rt presents the strategy excess

return at time t. Therefore, SR measures the average excess return bearing one

standard deviation unit. pt denotes the Bitcoin spot price, and MDD measures the

maximum drop from peak to trough of an Bitcoin price.

To examine whether the Sharpe ratios of our trading strategies are significantly

better than those of a simple buy-and-hold trading strategy, we use Ledoit & Wolf

(2008)’s studentised circular block bootstrap. We set the block length as 5 and the

bootstrap iterations as 1000. We perform a one-sided test with a null hypothesis

that the Sharpe ratio of a trading strategy i is greater than that of a buy-and-hold

strategy (H0 : ŜRi − ŜRBaH > 0). The results are also reported in Table 4.9.

[INSERT TABLE 4.8 ABOUT HERE]

[INSERT TABLE 4.9 ABOUT HERE]

[INSERT TABLE 4.10 ABOUT HERE]

We find the AMR of the strategy is strongly affected by transaction costs under

5-minutes data. After-cost AMR of the strategy is not higher than BaH portfolio.

However, our strategy reports outstanding performance in terms of the Sharpe ratio.

Sharpe ratio of the long-only portfolio reaches 4.36 with transaction costs. However,

SR of the strategy is less different from BaH SR when the frequency is lower than 45

minutes. We find that it is the low volatility of returns that lead to the high SR. As

shown in Table 4.10, our strategy reports a significantly lower standard deviation

and MDD. This indicates the superiority of our approach in mitigating tail risks

caused by jump propagation.
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4.5.3 Robustness of Trading Strategies

We conduct several robustness checks on our trading strategies. First, we calculate

Calmar ratio (CR), Sortino ratio (SR), and Omega ratio (OR), which are specified

as follow:

CR =
AMR

MDD
, SR =

ypt − rt
σ(ypt 1ypt <0)

, OR =

∑
ypt 1ypt >0∑
ypt 1ypt <0

(4.13)

CR and SR measure portfolio returns compensated by downside risks (MDD and

downside standard deviations). OR measures positive cumulative returns against

negative ones. The results of these ratios are reported in Table 4.11. Compared to

a BaH portfolio, our trading strategy performs better with higher data frequencies,

which is in line with previous results.

[INSERT TABLE 4.11 ABOUT HERE]

Second, we examine the strategy performance with a range of trading costs from

0.2% to 0.4%. For simplicity, we set k = 10% and only consider data frequencies

higher than 45 minutes. We plot the cumulative simple return of a long-short

strategy and that of a long-only strategy in Figure 4.5. We also calculate AMR

and SR of portfolio returns across different trading costs and report the results in

Table 4.12. We find higher frequency data are more sensitive to increasing trading

costs, and the long-short trading strategy is more likely affected by higher trading

costs. We also highlight that the 0.2% trading cost is already a very conservative

estimates, as mentioned in Section 4.5.1. However, looking at Sharpe ratios, the

strategy still works after adding an additional 0.1% on top of the 0.2%.

[INSERT FIGURE 4.5 ABOUT HERE]

[INSERT TABLE 4.12 ABOUT HERE]

Third, we examine the strategy with different trading gaps from 15 seconds to

60 seconds. Figure 4.6 plots the strategy cumulative returns with these trading
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gaps. We find higher frequency data are more likely affected by longer trading gaps,

especially under 5-minutes data. The impact of longer trading gaps is much smaller

under 15-minutes data, and negligible under lower frequency data.

[INSERT FIGURE 4.6 ABOUT HERE]

Fourth, we conduct a further regression analysis to examine whether our strategy

returns are significantly higher/lower when Bitcoin volatility is higher/lower and

when Bitcoin price increases/decreases. Our regression models take the following

forms:

ypt = c0 + c1Q1 + c1Q2 + c1Q3 + ut, (4.14)

ypt = d0 + d1Dt + vt, (4.15)

where Q1 is a dummy variable, which equals 1 when the volatility (vt) lies in its

first quartile. Similarly, Q2 and Q3 capture the second and the third quartile of

the volatility, respectively. We take quartiles of volatility, which is estimated by

Bayesian MCMC, as the regressors. Additionally, Dt equals 1 when Bitcoin return

(yt) is positive. Table 4.13 presents the regression estimates and their corresponding

t-statistics. The results show that strategy returns are less likely related to volatility

(see Panel A). Regression with return signs (Panel B) presents an interesting pattern.

The coefficient d1 are overall significantly positive, especially with lower frequency

data. This indicates that our strategy works better when Bitcoin price increases.

However, this pattern becomes less significant with higher frequency data.

[INSERT TABLE 4.13 ABOUT HERE]

Fifth, we regress our strategy returns with a cryptocurrency policy uncertainty

index (CPIPolicy) and a cryptocurrency price uncertainty index (CPIPrice) pro-

posed by Lucey et al. (2022). Our regression models read:

ypt = e0 + e1CPIPolicy + wt, (4.16)

ypt = f0 + f1CPIPrice+ zt, (4.17)
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These two indices11 capture uncertainties caused by policy and regulatory debates

and media’s attention. We aggregate our strategy returns to weekly returns since

indices are weekly-based. The regression results are reported in Table 4.14. Panel

C and D report the regression with CPIPolicy and CPIPrice, respectively. These

two regressions report similar results, in which most coefficient estimates (e1 and

f1) are insignificant, suggesting our strategy returns are less likely relevant to the

uncertainty of the cryptocurrency market.

[INSERT TABLE 4.14 ABOUT HERE]

4.6 Conclusion

In this chapter, we study on the predictability of Bitcoin returns and whether pre-

dicting jumps helps forecast returns. We propose an approach to predict jumps

under mutually-exciting jump processes. We use a stochastic volatility model with

self/cross exciting jump components, estimate the model using a Bayesian MCMC

in the in-sample period, and iteratively estimate the latent states by a particle fil-

ter in the out-of-sample period. Then we forecast the one-step-ahead underlying

intensities (probabilities) of return jumps.

We assess the forecast performance by CRSP. In its calculation, we consider

jumps estimated by the Bayesian method and also estimated non-parametrically, as

the actual values. Our model reports better performance against our two bench-

marks. We also develop a statistic which takes the difference between positive jumps

and negative jumps probabilities (λd
t ). The intuition of considering this statistic is

that its tail should be associated with significantly positive/negative returns if our

prediction approach is valid. Therefore, we regress asset returns on the tails of

the probability difference to investigate if Bitcoin jump predictions contribute to

11Indices are available on the website https://sites.google.com/view/

cryptocurrency-indices/home?authuser=0

https://sites.google.com/view/cryptocurrency-indices/home?authuser=0
https://sites.google.com/view/cryptocurrency-indices/home?authuser=0
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forecasting its return.

In the empirical analysis, we use Bitcoin data with a range of frequencies. We

find patterns across data frequencies, for example, higher frequency data shows a

stronger mutually-exciting (jump clustering) feature and better forecast performance

in terms of the CRPS. Through the regression analysis, we also show that the tails

of λd
t are strong indicators of returns. Specifically, returns on the positive tail are

more likely positive, and vice versa.

We propose a trading strategy based on this structure. We consider transaction

costs and liquidity costs in the strategy. Our trading strategy yields a Sharpe

ratio of 4.36 with these costs. We find the exceptional performance stems from

lower standard deviation and maximum drawdown than a buy and hold strategy.

Additionally, our trading strategy becomes less effective when data frequency is lower

than 45 minutes. On top of this, we conduct a robustness check of the strategy. We

find that the strategy applied in higher frequency data is more sensitive to trading

costs and trading gaps. Although 5-minutes data reports the best performance, it

tends to deteriorate with increasing trading costs and trading gaps. We also find

our strategy is less likely related to high/low volatility periods, but it significantly

performs better during periods increasing price.

Our research provides financial practitioners, especially Bitcoin traders, with

an approach to predict and trade on Bitcoin based on the its jump clustering be-

haviours. The standard deviation and maximum drawdown of our trading portfolio

show that our approach is especially effective in mitigating downside risks. We also

highlight that our forecasting framework has the potential to be applied to other

assets exhibiting jump clustering.



C Appendices for Chapter 4 141

C Appendices for Chapter 4

C.1 Bayesian MCMC Algorithm and Specification of Priors

We adopt a Bayesian MCMC algorithm to obtain the joint posterior distribution

in Equation 4.5. We randomly draw samples from conditional posterior distribu-

tions. Our sampling algorithm is as follows:

Algorithm 4 Bayesian MCMC Algorithm
For i = 1 : 100, 000:

1: Sample k static parameters:

Draw Θ
(i)
1 from p

(
Θ

(i)
1 |yt,Θ(i−1)

2 ,Θ
(i−1)
3 , ...,Θ

(i−1)
k , ξ

+(i−1)
t , ξ

−(i−1)
t

)
,

...

Draw Θ
(i)
k from p

(
Θ

(i)
k |yt,Θ(i−1)

1 ,Θ
(i−1)
2 , ...,Θ

(i−1)
k−1 , ξ+(i−1), ξ−(i−1)

)
2: Sample jump sizes

for t = 1, 2, ..., T :

Draw ξ
+(i)
t from p

(
ξ
+(i)
t |yt,Θ(i), ξ

−(i−1)
t

)
,

Draw ξ
−(i)
t from p

(
ξ
−(i)
t |yt,Θ(i), ξ

+(i)
t

)
,

3: Sample variance:

for t = 1,2, ... , T:

Draw Vt from p
(
V

(i)
t |yt,Θ(i), ξ+(i), ξ−(i)

)
,

We ran our MCMC algorithm for 100,000 iterations, and the first 50,000 is

regarded as a burn-in period. We sample the posterior distribution by a hybrid of

Gibbs sampling and Metropolis-Hastings. Gibbs sampling methods are used when

conjugate priors of conditional posteriors are available. For others whose posteriors

are not available in closed form, we adopt the Metropolis-Hastings sampling method.

Details of posterior distributions are provided by Stroud & Johannes (2014), Lazar

& Qi (2022) and Rasmussen (2013). Our specification of priors are as follow:

[INSERT TABLE 4.15 ABOUT HERE]



C Appendices for Chapter 4 142

C.2 Particle Filter

We follow Stroud & Johannes (2014), who adopt a particle filter to sample latent

variables in the out-of-sample period. The particle filtering method is given by Pitt

& Shephard (1999). Creal (2012) also gives a review on this technique. Our ultimate

goal is to sample from p
(
Z∗

t |yt, Θ̂
)
to obtain estimates of latent variables at each

time t, where Z∗
t = {vt, J+

t , J
−
t }. We remark that we ignore sampling jump sizes

{ξ+t , ξ−t } since they are less relevant to forward simulating jump intensities {λ+
t , λ

−
t }.

We adopt a sequential importance sampling with a re-sampling scheme:

Algorithm 5 Sequential Importance Sampling with Re-sampling

At t = 0, for i = 1, ..., N

Draw Z∗
0 (i) ∼ g0(Z∗

0 ), set ω
(i)
0 =

p(Z∗
0 (i))

g0(Z∗
0 (i))

For t = 1, ..., T :

1: For i = 1, ..., N , draw Z∗
t (i) ∼ gt

(
Z∗

t |Z∗
t−1, yt, Θ̂

)
.

2: Compute importance weights ω
(i)
t ∝ ω

(i)
t−1

p(yt|Z∗
t (i),Θ̂)p(Z∗

t (i)|Z∗
t−1(i),Θ̂)

gt(Z∗
t (i)|Z∗

t−1(i),yt,Θ̂)
.

3: Normalise importance weights ω̂
(i)
t =

ω
(i)
t∑N

j=1 ω
(j)
t

.

4: Re-sample N particles by {ω̂(i)
t }Ni=1 and reset ω

(i)
t = 1

N
.

See more details of particle filtering in Creal (2012).

C.3 Non-Parametric Jump Filtering

Our jump filtering method is mainly based on Mancini et al. (2015) and Figueroa-

López & Mancini (2019). We identify a jump at time t, Jt = 1, when the squared

return is greater than a threshold, y2t > v̂2t ·2∆log 1
∆
. v̂2t is a non-parametric estimator

of spot variance based on pre-truncated returns:

v̂2t =
n∑

t̃=1

fh(t− t̃)y2t · 1{y2t≤9∆0.99}

where fh(·) is weight function, fh(t) = 1
h
· e−|t/h|

2
with a bandwidth h = 200∆ for

simplicity. The idea of this filtering is to extract those standardised squared returns
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(yt∆/v̂2t ) which is not generated by a Brownian motion, whose absolute value is

greater than the threshold
√

2log(1/∆).
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Figure 4.1: Return and Volatility across Different Frequencies

Notes: In this figure, we plot return (red), return minus jumps (blue) and volatility (green) of Bitcoin across different frequency. Note, they
are all re-scaled to a daily level (e.g. 5-minutes returns are multiplied by 288, 60-minutes returns are multiplied by 24). The data period is from
1/1/2014 to 31/12/2018.
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Figure 4.2: Histogram of λd
t with k% = 10%

Notes: The data used in calculating λd
t is Bitcoin data from 1/1/2014 to 31/12/2018.
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Figure 4.3: Cumulative Simple Return of Long and Short Strategy
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Figure 4.4: Cumulative Simple Return of Long Only Strategy
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Figure 4.5: Cumulative Simple Return with Different Trading Costs
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Figure 4.6: Cumulative Simple Return with Different Trading Gaps
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Table 4.1: Estimated Static Parameters in Return and Variance Processes

δ (min) µ (∗10−2) κ θ σV ρ µJ σJ

5
Posterior Mean -0.02 0.116 0.119 0.182 -0.13 -0.010 2.836

Posterior Std Dev. 0.05 0.003 0.015 0.013 0.01 0.028 0.565

15
Posterior Mean 0.06 0.092 0.160 0.067 -0.14 -0.037 1.862

Posterior Std Dev. 0.03 0.003 0.027 0.000 0.01 0.023 0.053

30
Posterior Mean 0.07 0.014 0.165 0.032 -0.13 -0.010 1.349

Posterior Std Dev. 0.03 0.002 0.025 0.002 0.01 0.033 0.119

45
Posterior Mean 0.11 0.011 0.145 0.043 -0.12 -0.011 1.211

Posterior Std Dev. 0.07 0.001 0.008 0.001 0.02 0.036 0.101

60
Posterior Mean 0.16 0.019 0.192 0.057 -0.12 -0.019 0.969

Posterior Std Dev. 0.03 0.009 0.016 0.003 0.01 0.020 0.275

120
Posterior Mean 0.24 0.011 0.169 0.032 -0.11 -0.023 0.403

Posterior Std Dev. 0.07 0.003 0.018 0.004 0.03 0.041 0.107

Notes: these parameters are estimated with data re-scaled to daily levels. For example,
30-minutes data are multiplied by 48.

Table 4.2: Estimated Parameters in the Mutually-Exciting Jump Processes

δ (min) λ+
0 α+

+ α+
− β+

+ β+
− λ−

0 α−
+ α−

− β−
+ β−

−

5
Posterior Mean 0.023 0.067 0.075 0.109 0.124 0.026 0.075 0.082 0.126 0.143

Posterior Std Dev. 0.005 0.018 0.013 0.070 0.013 0.006 0.012 0.010 0.020 0.030

15
Posterior Mean 0.024 0.054 0.067 0.084 0.136 0.019 0.059 0.067 0.142 0.111

Posterior Std Dev. 0.005 0.017 0.016 0.051 0.012 0.005 0.010 0.008 0.021 0.023

30
Posterior Mean 0.029 0.041 0.042 0.090 0.112 0.026 0.032 0.057 0.150 0.094

Posterior Std Dev. 0.006 0.012 0.014 0.036 0.012 0.003 0.012 0.015 0.023 0.018

45
Posterior Mean 0.020 0.037 0.034 0.096 0.145 0.017 0.035 0.036 0.055 0.173

Posterior Std Dev. 0.005 0.014 0.013 0.018 0.013 0.005 0.016 0.014 0.011 0.038

60
Posterior Mean 0.024 0.014 0.024 0.106 0.129 0.020 0.016 0.027 0.078 0.173

Posterior Std Dev. 0.006 0.009 0.015 0.051 0.027 0.006 0.009 0.018 0.012 0.053

120
Posterior Mean 0.025 0.018 0.026 0.126 0.490 0.023 0.011 0.019 0.082 0.387

Posterior Std Dev. 0.006 0.013 0.017 0.043 0.157 0.007 0.008 0.014 0.026 0.154

Notes: this table presents posterior means and standard deviations of parameters of the
mutually exciting kernel estimated using Bitcoin data across a range of data frequencies.
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Table 4.3: Number of Jt and St Summary

k% δ (min) S+
t S−

t δ (min) S+
t S−

t

15
5

(315360)

(2.14%, 2.11%)

3.95% 4.00%
45

(35040)

(1.55%, 1.51%)

3.72% 3.41%

10 3.38% 3.36% 2.81% 2.64%

5 2.87% 2.79% 1.95% 1.81%

2.5 2.54% 2.36% 1.33% 1.36%

15
15

(105120)

(1.61%, 1.51%)

3.31% 2.94%
60

(26280)

(1.63%, 1.47%)

7.64% 0.94%

10 2.75% 2.39% 5.82% 0.43%

5 2.12% 1.85% 3.68% 0.16%

2.5 1.67% 1.42% 2.39% 0.02%

15
30

(52560)

(2.33%, 2.11%)

4.81% 2.87%
120

(13140)

(1.92%, 1.92%)

7.83% 1.39%

10 3.27% 1.95% 7.44% 0.57%

5 2.27% 1.11% 6.35% 0.23%

2.5 1.51% 0.70% 4.63% 0.02%

Notes: the second and fifth column reports data frequency (δ), number of observations in the
out-of-sample period and the percentages of jumps (positive and negative), respectively. The
table also reports the percentage of tail indicators (S+

t and S−
t ) of intensity differences λd

t across
different values of k(%).
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Table 4.4: Continuous Ranked Probability Score (CRPS) of Jump Predictions and p-

value of Associated DM test

Bayesian Estimated Jumps as True

Model 5 15 30 45 60 120

J+
t

M1 0.0180 0.0143 0.0216 0.0150 0.0155 0.0185

M2
0.021**

(0.015)

0.0159**

(0.022)

0.0227**

(0.045)

0.0153

(0.116)

0.0157

(0.418)

0.0188

(0.294)

M3
0.0214***

(0.009)

0.0161**

(0.013)

0.0233**

(0.032)

0.0155*

(0.094)

0.016

(0.348)

0.0192

(0.112)

J−
t

M1 0.0175 0.0134 0.0197 0.0144 0.0145 0.0187

M2
0.0206**

(0.011)

0.0148**

(0.031)

0.0206*

(0.067)

0.0148

(0.217)

0.0145

(0.695)

0.0188

(0.711)

M3
0.0211**

(0.003)

0.0151**

(0.015)

0.0211**

(0.048)

0.015*

(0.085)

0.0147

(0.436)

0.0192

(0.169)

Non-Parametrically Estiamted Jumps as True

Model 5 15 30 45 60 120

J+
t

M1 0.0168 0.0119 0.0164 0.0123 0.0107 0.0201

M2
0.0187**

(0.027)

0.0131*

(0.075)

0.0169

(0.191)

0.0124

(0.425)

0.0104

(0.548)

0.0202

(0.496)

M3
0.0191**

(0.013)

0.0132*

(0.069)

0.0172

(0.159)

0.0125

(0.319)

0.0105

(0.674)

0.0206

(0.113)

J−
t

M1 0.0138 0.0113 0.0154 0.0114 0.0143 0.0156

M2
0.0159**

(0.011)

0.0124*

(0.077)

0.0162

(0.132)

0.0114

(0.888)

0.0143

(0.367)

0.0154

(0.421)

M3
0.0161**

(0.010)

0.0125*

(0.077)

0.0165*

(0.088)

0.0115

(0.741)

0.0145

(0.189)

0.0156

(0.726)

Notes: This table presents CRPS of different models with different proxies of true value of
jumps. Values in brackets reports p-value of the DM test that tests forecasts by M1 against
other models. See the calculation of test statistics in footnote 6.
***,**,* denote the result of a DM test being significant at 1%, 5%, 10%, respectively.
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Table 4.5: S+
t Evaluations

δ (min) k(%) yt>0 yt>σ(yt) yt>1.5σ(yt) yt>2σ(yt) yt<-σ(yt) yt<-1.5σ(yt) yt<-2σ(yt)

5

15 63.3% 20.5% 11.9% 8.5% 6.2% 3.2% 2.5%

10 64.0% 21.8% 12.6% 8.9% 6.7% 3.4% 2.7%

5 63.9% 22.8% 12.9% 9.2% 6.6% 3.6% 3.2%

2.5 63.9% 22.9% 12.8% 8.7% 6.2% 3.1% 2.8%

15

15 58.9% 18.6% 8.9% 6.8% 6.6% 2.6% 1.5%

10 59.9% 19.8% 9.7% 7.5% 6.6% 2.6% 1.4%

5 61.2% 20.5% 10.3% 8.3% 5.8% 2.5% 1.3%

2.5 64.5% 22.3% 11.4% 9.3% 5.5% 2.5% 1.6%

30

15 58.2% 15.7% 7.0% 5.1% 7.0% 4.2% 2.6%

10 58.5% 18.5% 8.7% 6.6% 6.6% 3.8% 2.8%

5 60.6% 21.1% 9.5% 7.0% 7.0% 4.0% 2.8%

2.5 62.3% 25.7% 11.7% 9.4% 7.2% 4.5% 3.4%

45

15 57.0% 13.0% 5.5% 4.4% 9.4% 4.1% 3.2%

10 56.0% 12.8% 5.9% 4.7% 9.5% 4.0% 3.0%

5 58.3% 13.0% 5.6% 4.8% 9.3% 3.7% 2.8%

2.5 60.8% 12.8% 5.5% 4.4% 9.0% 4.1% 2.9%

60

15 52.3% 11.2% 3.9% 2.5% 8.2% 3.4% 2.2%

10 52.9% 10.4% 3.9% 2.4% 7.1% 2.7% 1.8%

5 53.7% 9.3% 4.3% 2.5% 7.1% 1.9% 1.2%

2.5 54.1% 9.6% 2.9% 1.9% 8.1% 1.4% 1.4%

120

15 54.0% 10.6% 4.7% 3.0% 10.4% 4.7% 3.2%

10 53.6% 10.5% 4.6% 3.1% 10.0% 4.6% 3.4%

5 55.9% 11.1% 5.2% 3.5% 8.7% 4.5% 3.1%

2.5 55.9% 10.8% 4.9% 2.9% 11.3% 5.4% 3.4%

Notes: This table presents how is return distributed on the right tail of the statistic λd
t ,

specifically, the percentage of return (on the right tail) that is greater than 0, 1, 1.5, 2 standard
deviations of all returns, and also that is smaller than 0, -1, -1.5, -2 standard deviations of all
returns.
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Table 4.6: S−
t Evaluations

δ (min) k(%) yt<0 yt>σ(yt) yt>1.5σ(yt) yt>2σ(yt) yt<-σ(yt) yt<-1.5σ(yt) yt<-2σ(yt)

5

15 60.2% 5.0% 2.3% 1.4% 17.8% 10.6% 7.8%

10 62.7% 5.1% 2.5% 1.6% 19.3% 11.5% 8.7%

5 62.9% 4.9% 2.5% 1.5% 18.7% 11.1% 8.2%

2.5 63.5% 5.1% 2.7% 1.8% 19.6% 11.5% 8.5%

15

15 59.9% 6.9% 2.8% 2.1% 17.3% 8.4% 6.2%

10 59.9% 6.2% 2.5% 1.8% 17.7% 8.6% 6.4%

5 62.3% 6.6% 2.7% 1.6% 19.8% 10.1% 7.4%

2.5 63.3% 5.4% 2.1% 1.1% 21.2% 10.5% 7.2%

30

15 57.8% 8.8% 4.4% 3.6% 14.7% 7.6% 5.4%

10 59.2% 7.9% 4.4% 3.8% 16.1% 8.8% 6.2%

5 62.1% 7.2% 3.6% 2.6% 19.0% 11.3% 7.7%

2.5 59.0% 9.0% 3.3% 3.3% 19.7% 14.8% 9.8%

45

15 59.1% 5.9% 2.7% 1.6% 9.7% 5.4% 4.8%

10 56.0% 6.0% 4.8% 2.4% 9.5% 4.8% 3.6%

5 58.1% 3.2% 3.2% 3.2% 6.5% 0.0% 0.0%

2.5 61.1% 8.8% 4.3% 2.5% 12.5% 5.8% 3.9%

60

15 52.1% 8.4% 3.7% 2.2% 10.8% 4.3% 2.6%

10 52.8% 6.8% 2.6% 1.7% 10.1% 4.4% 1.9%

5 53.4% 8.1% 2.0% 1.2% 8.9% 4.3% 2.5%

2.5 53.8% 9.0% 1.6% 1.7% 9.7% 3.0% 1.8%

120

15 53.5% 9.9% 4.7% 2.8% 10.2% 4.6% 3.2%

10 53.9% 9.6% 4.7% 3.3% 10.9% 4.7% 3.5%

5 56.0% 8.5% 4.1% 3.7% 11.4% 5.0% 3.5%

2.5 55.4% 10.3% 5.7% 3.3% 10.4% 4.8% 2.9%

Notes: This table presents how is return distributed on the left tail of the statistic λd
t , specifically,

the percentage of return (on the left tail) that is greater than 0, 1, 1.5, 2 standard deviations of
all returns, and also that is smaller than 0, -1, -1.5, -2 standard deviations of all returns.
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Table 4.7: Regression Results

δ (min) 5 15 30 45 60 120

k(%) Coefficients Estimates tStat Estimates tStat Estimates tStat Estimates tStat Estimates tStat Estimates tStat

15

a 0.004 (2.54) 0.003 (1.67) 0.002 (1.07) 0.003 (1.85) 0.003 (1.93) 0.003 (1.92)

b1 0.059 (10.08) 0.039 (6.97) 0.019 (4.79) 0.006 (1.97) 0.001 (0.44) 0.001 (0.23)

b2 -0.060 (-10.5) -0.035 (-7.2) -0.016 (-3.53) -0.013 (-2.33) -0.001 (-0.25) -0.007 (-1.09)

10

a 0.005 (2.73) 0.003 (1.55) 0.002 (1.2) 0.002 (1.61) 0.003 (1.86) 0.003 (1.98)

b1 0.063 (9.76) 0.044 (6.98) 0.025 (5.31) 0.006 (1.96) 0.003 (1.15) 0.001 (0.28)

b2 -0.068 (-10.49) -0.037 (-6.79) -0.021 (-3.65) -0.008 (-0.99) -0.004 (-0.55) -0.007 (-1.07)

5

a 0.004 (2.18) 0.003 (1.85) 0.002 (1.39) 0.002 (1.57) 0.003 (2.05) 0.002 (1.5)

b1 0.066 (8.9) 0.049 (6.74) 0.031 (5.46) 0.009 (2.45) 0.004 (1.15) 0.004 (1.42)

b2 -0.067 (-9.48) -0.044 (-6.6) -0.028 (-3.71) -0.001 (-0.17) -0.001 (-0.13) -0.007 (-1.03)

2.5

a 0.004 (2.06) 0.003 (1.82) 0.002 (1.41) 0.002 (1.77) 0.003 (2.4) 0.003 (2.15)

b1 0.066 (8.54) 0.057 (6.71) 0.040 (5.62) 0.009 (2.51) 0.002 (0.62) 0.001 (0.53)

b2 -0.069 (-9.02) -0.051 (-6.71) -0.030 (-3) -0.005 (-1.1) 0.066 (3.5) -0.007 (-1.28)

Notes: Est. and tStat denote regression coefficient estimates and test statistics. These regression results are based on Newey–West
heteroscedasticity and autocorrelation consistent estimator.
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Table 4.8: Annualised Mean Return

δ (min) k% LS LS p.c. LO LO p.c. δ (min) k% LS LS p.c. LO LO p.c.

5

(144.4%)

15 191.3% 371.6% 141.8% 237.9%

45

(120.8%)

15 109.6% 109.6% 90.5% 90.5%

10 185.5% 371.7% 139.6% 243.6% 10 99.6% 99.6% 89.3% 89.3%

5 163.5% 325.9% 127.4% 222.7% 5 79.2% 79.2% 77.2% 77.2%

2.5 162.4% 338.3% 126.5% 229.4% 2.5 58.1% 58.1% 58.7% 58.7%

15

(139.3%)

15 166.5% 230.4% 119.8% 151.3%

60

(117.6%)

15 67.9% 67.9% 65.9% 65.9%

10 157.6% 225.4% 120.1% 154.8% 10 51.4% 51.4% 56.9% 56.9%

5 148.8% 219.9% 115.5% 153.9% 5 57.4% 57.4% 61.0% 61.0%

2.5 153.1% 230.0% 112.6% 154.9% 2.5 36.6% 36.6% 39.1% 39.1%

30

(127.8%)

15 128.8% 128.8% 95.5% 95.5%

120

(116.0%)

15 56.6% 56.6% 56.6% 56.6%

10 111.5% 111.5% 85.4% 85.4% 10 56.8% 56.8% 56.8% 56.8%

5 87.7% 87.7% 71.7% 71.7% 5 68.0% 68.0% 68.0% 68.0%

2.5 73.0% 73.0% 59.2% 59.2% 2.5 47.6% 47.6% 47.6% 47.6%

Notes: This table present annualised mean returns of long-and-short (LS) and long-only (LO)
strategy across different k%. p.c. denotes the pre-costs strategy. The value in the bracket denotes
buy-and-hold returns as a benchmark.
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Table 4.9: Sharpe Ratio

δ (min) k% LS LS p.c. LO LO p.c. δ (min) k% LS LS p.c. LO LO p.c.

5

(1.31)

15 3.96** 6.58** 4.36** 6.09**

45

(1.42)

15 1.68 1.98† 1.58 1.77

10 3.73** 6.39** 4.14** 5.75** 10 1.82† 2.09* 1.76† 1.98†

5 3.81** 6.14** 3.9** 5.31** 5 1.69 1.98† 1.71 1.98†

2.5 3.49** 5.77** 3.66** 5.07** 2.5 1.43 1.74 1.47 1.76

15

(1.32)

15 3.66** 5.51** 4.16** 5.32**

60

(1.45)

15 1.42 1.52 1.5 1.57

10 3.31** 5.23** 3.95** 5.13** 10 1.27 1.36 1.49 1.56

5 3.01** 4.97** 3.57** 4.77** 5 1.48 1.53 1.6 1.64†

2.5 2.92** 4.76** 3.2** 4.36** 2.5 1.27 1.31 1.38 1.42

30

(1.38)

15 1.76† 2.39* 2.47** 3**

120

(1.49)

15 0.95 1.02 0.95 1.02

10 1.82* 2.45** 2.55** 3.1** 10 1.01 1.09 1.01 1.09

5 1.74† 2.35** 2.49** 3.04** 5 1.36 1.45 1.36 1.45

2.5 1.7 2.19* 2.29* 2.76** 2.5 1.1 1.21 1.1 1.21

Notes: This table presents Sharpe ratios of long-and-short (LS) and long-only (LO) strategy across
different k%. p.c. denotes the pre-costs strategy. The value in the bracket denotes the Sharpe ratio
of a buy-and-hold strategy as a benchmark. Ledoit & Wolf (2008)’s test results are also provided
with a null hypothesis that the Sharpe ratio of a trading strategy i is greater than that of a
buy-and-hold strategy (H0 : ŜRi − ŜRBaH > 0).
** indicates a rejection of the null under 1% significance level,
* indicates a rejection of the null under 5% significance level,
† indicates a rejection of the null under 10% significance level.
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Table 4.10: Standard Deviation of Returns and Maximum Drawdown

σ(yt) MDD

k% δ (min) LS LO δ (min) LS LO δ (min) LS LO δ (min) LS LO

15

5

(1.10)

0.27 0.22

45

(0.84)

0.55 0.50

5

(-43.9%)

-8.3% -5.0%

45

(-38.7%)

-32.1% -33.2%

10 0.27 0.22 0.47 0.44 -7.7% -5.1% -24.8% -25.3%

5 0.25 0.22 0.39 0.38 -7.2% -5.1% -18.8% -19.2%

2.5 0.26 0.23 0.33 0.33 -7.6% -5.5% -20.8% -20.6%

15

15

(1.04)

0.29 0.21

60

(0.80)

0.44 0.41

15

(-39.0%)

-6.3% -6.4%

60

(-38.6%)

-26.8% -18.7%

10 0.29 0.22 0.37 0.36 -8.8% -6.0% -31.5% -22.7%

5 0.28 0.22 0.37 0.37 -9.4% -5.9% -30.4% -30.9%

2.5 0.30 0.24 0.27 0.27 -11.2% -6.2% -30.0% -30.0%

15

30

(0.92)

0.53 0.31

120

(0.77)

0.55 0.55

30

(-38.8%)

-14.7% -13.6%

120

(-38.3%)

-28.1% -28.1%

10 0.45 0.27 0.51 0.51 -15.4% -9.3% -22.5% -22.5%

5 0.36 0.23 0.46 0.46 -15.2% -7.1% -20.3% -20.3%

2.5 0.33 0.21 0.38 0.38 -15.9% -5.9% -34.1% -34.1%

Notes: This table presents standard deviations and maximum drawdowns of long-and-short (LS)
and long-only (LO) strategy returns across different k%. p.c. denotes the pre-costs strategy. The
value in the bracket denotes the standard deviation and maximum drawdown of a buy-and-hold
strategy as a benchmark.
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Table 4.11: Calmar Ratio, Omega Ratio and Sortino Ratio

Calmar Ratio Omega Ratio Sortino Ratio

δ (min) k% LS LN BaH LS LN BaH LS LN BaH

5

15 12.59 19.68

2.92

1.57 2.19

1.05

6.25 5.77

1.61
10 12.79 17.92 1.59 2.19 5.87 5.33

5 12.71 16.66 1.74 2.38 6.84 5.93

2.5 11.44 15.06 1.75 2.44 6.47 5.72

15

15 16.36 13.57

2.82

1.65 2.30

1.06

4.24 3.68

1.67
10 10.36 14.28 1.66 2.42 3.95 3.93

5 8.61 13.42 1.71 2.61 3.58 3.86

2.5 7.42 11.91 1.88 2.71 3.91 3.52

30

15 5.91 5.32

2.62

1.28 1.60

1.08

1.37 1.53

1.76
10 4.92 7.13 1.39 1.83 1.18 1.36

5 3.91 7.90 1.50 2.11 0.89 1.22

2.5 3.26 7.93 1.66 2.34 0.73 0.96

45

15 2.40 1.99

2.47

1.30 1.32

1.11

1.18 0.97

1.79
10 3.03 2.70 1.40 1.42 1.20 1.07

5 3.22 3.13 1.45 1.49 1.09 1.08

2.5 2.05 2.11 1.46 1.48 0.80 0.81

60

15 2.04 3.04

2.39

1.26 1.30

1.13

1.17 1.16

1.80
10 1.27 2.11 1.28 1.36 0.89 1.02

5 1.53 1.61 1.46 1.52 0.97 1.03

2.5 0.99 1.06 1.50 1.56 0.61 0.67

120

15 1.61 1.61

2.01

1.19 1.19

1.20

0.90 0.90

1.92
10 2.07 2.07 1.23 1.23 0.92 0.92

5 2.82 2.82 1.41 1.41 1.18 1.18

2.5 1.03 1.03 1.37 1.37 0.78 0.78

Notes: This table shows Calmar ratio (CR), Sortino ratio (SR), and Omega ratio (OR) of long-
short and long-only strategy compared to a buy-and-hold strategy. Ratios are calculated as CR =
AMR
MDD , SR =

yp
t −rt

σ(yp
t 1y

p
t <0)

, OR =

∑
yp
t 1y

p
t >0∑

yp
t 1y

p
t <0
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Table 4.12: Annuliased Mean Return and Sharpe Ratio of Trading Strategies with Dif-

ferent Trading Costs

δ (min) TCs(%) LS LO δ (min) LS LO

5

144.4%(1.31)

2 102.3%(3.73) 93.9%(4.14)

45

120.8%(1.42)

86.4%(1.82) 78.9%(1.76)

2.5 82.3%(3.04) 82.9%(3.71) 83.1%(1.75) 76.3%(1.7)

3 62.5%(2.33) 72.1%(3.28) 79.8%(1.68) 73.7%(1.64)

3.5 43%(1.61) 61.5%(2.83) 76.5%(1.61) 71.1%(1.59)

4 23.8%(0.89) 51%(2.38) 73.2%(1.54) 68.5%(1.53)

15

139.3%(1.32)

2 95.5%(3.31) 88%(3.95)

60

117.6%(1.45)

48%(1.27) 54.3%(1.49)

2.5 80.5%(2.81) 80.2%(3.64) 47.1%(1.25) 53.7%(1.48)

3 65.7%(2.31) 72.5%(3.32) 46.2%(1.22) 53%(1.46)

3.5 51.1%(1.8) 64.9%(3) 45.4%(1.2) 52.4%(1.44)

4 36.6%(1.29) 57.4%(2.68) 44.5%(1.18) 51.7%(1.42)

30

127.8%(1.38)

2 82%(1.82) 69.3%(2.55)

120

116.0%(1.49)

52.8%(1.01) 52.8%(1.01)

2.5 74.7%(1.66) 65.2%(2.4) 51.8%(0.99) 51.8%(0.99)

3 67.3%(1.49) 61.2%(2.26) 50.8%(0.98) 50.8%(0.98)

3.5 60%(1.33) 57.1%(2.12) 49.8%(0.96) 49.8%(0.96)

4 52.7%(1.17) 53.1%(1.97) 48.8%(0.94) 48.8%(0.94)

Notes: Sharpe ratios are put in the bracket. Values below δ are for but-and-hold strategies.
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Table 4.13: Regression Analysis with Volatility and Return Signs Dummy Variables

Panel A Panel B

δ (min) k% c0 c1 c2 c3 d0 d1

5

15 0.12 (0.39) 1.05 (1.38) 0.66 (1.47) 0.21 (0.48) 0.91 (4.04) 0.36 (1.14)

10 0.18 (0.58) 0.77 (0.87) 0.55 (1.25) 0.11 (0.24) 0.92 (4.1) 0.21 (0.67)

5 0.00 (0.01) 0.99 (1.24) 0.58 (1.45) 0.26 (0.66) 0.63 (3.12) 0.62 (2.18)

2.5 -0.04 (-0.14) 0.94 (1.11) 0.65 (1.55) 0.25 (0.59) 0.58 (2.73) 0.65 (2.17)

15

15 0.55 (1.64) -0.04 (-0.06) 0.70 (1.49) -0.35 (-0.75) 0.68 (2.82) 0.75 (2.26)

10 0.35 (1.07) 0.00 (0.01) 0.72 (1.54) -0.09 (-0.2) 0.52 (2.18) 0.85 (2.56)

5 0.17 (0.52) 0.48 (0.7) 0.67 (1.47) -0.17 (-0.36) 0.61 (2.6) 0.48 (1.48)

2.5 0.15 (0.44) 0.70 (0.97) 0.58 (1.2) -0.12 (-0.25) 0.57 (2.32) 0.59 (1.72)

30

15 0.29 (0.47) 0.53 (0.62) 1.06 (1.22) 0.75 (0.87) 0.08 (0.19) 1.67 (2.72)

10 0.07 (0.14) 1.15 (1.58) 1.05 (1.45) 0.52 (0.71) 0.37 (1) 0.88 (1.7)

5 0.22 (0.53) 1.01 (1.37) 0.20 (0.33) 0.02 (0.04) 0.15 (0.49) 0.96 (2.29)

2.5 0.09 (0.25) 0.94 (1.2) 0.30 (0.56) 0.08 (0.16) 0.20 (0.75) 0.70 (1.87)

45

15 0.76 (1.21) -0.26 (-0.29) 1.07 (1.2) -0.42 (-0.47) -1.43 (-3.16) 4.56 (7.26)

10 0.46 (0.85) 0.47 (0.61) 1.20 (1.56) -0.35 (-0.46) -1.27 (-3.28) 4.13 (7.67)

5 0.36 (0.8) 0.64 (1.01) 0.85 (1.32) -0.47 (-0.73) -1.36 (-4.22) 3.94 (8.77)

2.5 0.14 (0.36) 0.53 (0.99) 0.82 (1.54) -0.19 (-0.35) -1.10 (-4.09) 3.05 (8.17)

60

15 0.35 (0.69) -0.16 (-0.22) 1.16 (1.61) -0.15 (-0.21) -2.12 (-5.87) 5.23 (10.51)

10 0.14 (0.32) 0.50 (0.83) 0.87 (1.43) -0.21 (-0.35) -1.60 (-5.27) 3.96 (9.44)

5 0.07 (0.16) 1.06 (1.77) 0.68 (1.14) 0.03 (0.05) -1.24 (-4.06) 3.40 (8.11)

2.5 0.43 (1.39) -0.20 (-0.44) 0.12 (0.28) -0.28 (-0.62) -0.76 (-3.37) 2.11 (6.82)

120

15 0.76 (1.2) -0.64 (-0.71) 0.16 (0.18) -0.49 (-0.55) -2.76 (-6.25) 6.18 (10.21)

10 0.60 (1.01) -0.10 (-0.12) 0.27 (0.32) -0.51 (-0.62) -2.31 (-5.55) 5.32 (9.35)

5 0.49 (0.91) 0.43 (0.56) 0.54 (0.71) -0.48 (-0.64) -1.62 (-4.26) 4.24 (8.15)

2.5 0.10 (0.22) 0.36 (0.57) 0.71 (1.14) 0.08 (0.13) -1.36 (-4.31) 3.37 (7.78)

Notes: Panel A presents the regression results of ypt = c0 + c1Q1 + c1Q2 + c1Q3 + ut, where Q1

is a dummy variable, which equals 1 when the volatility (vt) lies in its first quartile. Similarly, Q2

and Q3 capture the second and the third quartile of the volatility, respectively. We take quartiles
of volatility, which is estimated by Bayesian MCMC, as the regressors. Panel B presents the
regression results of ypt = d0 + d1Dt + vt, where Dt equals 1 when Bitcoin return (yt) is positive.
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Table 4.14: Regression Analysis with Cryptocurrency Uncertainty Index

Panel C Panel D

δ (min) k% e0 e1 f0 f1

5

15 4.76 (0.33) -0.04 (-0.25) 5.77 (0.41) -0.05 (-0.33)

10 5.63 (0.41) -0.04 (-0.33) 6.49 (0.49) -0.05 (-0.41)

5 -1.03 (-0.08) 0.02 (0.16) -0.07 (-0.01) 0.01 (0.09)

2.5 1.50 (0.11) -0.01 (-0.04) 2.73 (0.22) -0.02 (-0.14)

15

15 -1.59 (-1.39) 0.17 (1.49) -1.55 (-1.41) 0.16 (1.51)

10 -1.78 (-1.56) 0.19 (1.65) -1.74 (-1.6) 0.18 (1.69)

5 -2.23 (-2.1) 0.23 (2.19) -2.20 (-2.17) 0.23 (2.25)

2.5 -2.39 (-1.93) 0.24 (2.01) -2.53 (-2.14) 0.26 (2.22)

30

15 1.88 (0.1) -0.01 (-0.05) 3.70 (0.2) -0.03 (-0.15)

10 -1.53 (-0.1) 0.02 (0.15) -1.77 (-0.12) 0.03 (0.17)

5 -5.61 (-0.45) 0.06 (0.5) -4.69 (-0.39) 0.05 (0.44)

2.5 -1.16 (-1.04) 0.12 (1.1) -1.04 (-0.98) 0.11 (1.04)

45

15 -5.28 (-0.26) 0.06 (0.31) -3.12 (-0.16) 0.04 (0.21)

10 -1.29 (-0.83) 0.14 (0.89) -1.10 (-0.74) 0.12 (0.8)

5 -1.29 (-0.98) 0.13 (1.03) -1.35 (-1.07) 0.14 (1.12)

2.5 -1.21 (-1.09) 0.12 (1.13) -1.22 (-1.15) 0.13 (1.19)

60

15 -2.73 (-0.17) 0.03 (0.21) -1.70 (-0.11) 0.02 (0.15)

10 -1.22 (-0.94) 0.13 (0.98) -1.28 (-1.03) 0.13 (1.07)

5 -2.27 (-1.63) 0.23 (1.68) -2.54 (-1.91) 0.26 (1.96)

2.5 4.40 (0.4) -0.04 (-0.36) 3.34 (0.32) -0.03 (-0.28)

120

15 2.27 (1.25) -0.22 (-1.22) 2.23 (1.29) -0.21 (-1.25)

10 1.57 (0.94) -0.15 (-0.91) 1.72 (1.08) -0.16 (-1.05)

5 7.11 (0.45) -0.06 (-0.41) 10.39 (0.68) -0.10 (-0.64)

2.5 -1.25 (-0.11) 0.02 (0.15) 4.23 (0.39) -0.04 (-0.35)

Notes: This table presents the regression results of the model ypt = e0 + e1CPIPolicy + wt and
ypt = f0 + f1CPIPrice + zt, where CPIPolicy denotes a cryptocurrency policy uncertainty index
and CPIPrice denotes a cryptocurrency price uncertainty index. They are proposed by Lucey
et al. (2022). These two indices are available on the website https://sites.google.com/view/

cryptocurrency-indices/home?authuser=0 capture uncertainties caused by policy and regula-
tory debates and media’s attention.

https://sites.google.com/view/cryptocurrency-indices/home?authuser=0
https://sites.google.com/view/cryptocurrency-indices/home?authuser=0
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Table 4.15: Priors Specification

Parameters Prior Distribution

µ N(0, 0.1)

κ N(0, 0.1)1κ>0

θ N(0, 0.1)1θ>0

σv IG(2.5, 0.1)

ρ U(−1, 1)

ξ+, ξ− N(0, 5)1ξ+>0

λ0 N(0, 0.03)1λ0>0

α N(0, 0.3)1α>0

β N(0, 0.3)1β>0

Notes: This table presents priors settings in MCMC algorithm of parameter estimations



Chapter 5

Conclusion and Future Research

5.1 Summary and Conclusions

This thesis studies stochastic volatility with jump clustering models and their

financial applications. In Chapter 2, we propose a stochastic volatility model embed-

ded with a marked Hawkes process to capture dependency among jumps in different

dimensions and the impact from jump sizes. We estimate the model by a Bayesian

Markov chain Monte Carlo algorithm. We find jump clustering behaviours in both

high-frequency (5-minutes) individual stock and index data. The three dimensions

of jumps, namely positive price jumps, negative price jumps and variance jumps

impact one another asymmetrically. We also show the importance of intraday peri-

odicity in modelling the dynamics of jump arrivals. In assessing model fitness, we

benchmark the model to a range of other models without jump clustering features.

We report the deviance information criterion and the Bayes factor, which support

the modelling price and variance with jump clustering features. Furthermore, we

define clusters of jumps and study their properties. We find a cluster of jumps can

cover 2.5 to 6 hours on average. We further conduct a simulation study to investi-

gate the ability of the range of models to reproduce two characteristics in the real

data, namely the mean number of jumps in a cluster and the standard deviation of

the number of jumps in a cluster. We find the model with jump clustering features
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outperforms others in reproducing these characteristics in general.

In Chapter 3, we focus on forecasting using the same model in Chapter 2. In the

in-sample period, we estimate the model with 5-minutes individual stock and index

data as we do in Chapter 2. In the out-of-sample period, we first fix the static param-

eters at their posterior mean and use a particle filter to recursively estimate latent

variables at each time t, then conduct forward simulations to approximate predictive

distributions of variance and return. From these return and variance distributions,

we retrieve point forecasts for high-frequency variance, daily realised volatility and

two risk measures, namely value-at-risk and expected shortfall. Further, we apply a

Kalman filter to correct accumulated forecast errors caused by microstructure noise.

Through a simulation study, we show how microstructure noise in high-frequency

data can affect parameter estimations and forecasting. We also show the effective-

ness of the Kalman filter. We assess our forecasts against a range of benchmark

models in many ways, including mean square error, forecast bias, Mincer-Zarnowitz

regression, Diebold-Mariano test and conditional performance after different types

of jumps. In addition, we also look at 10 and 30 minutes data for comparisons. We

have several findings on the forecasting results. Firstly, forecasting results by our

model outperform those by other models in general, especially when the forecast-

ing horizon is less than 2 hours. Additionally, forecast performance after negative

return jumps is comparatively better than that after other jumps. Including jump

clustering effects in forecasting becomes less effective using lower frequency data (10,

30 minutes). Also, our forecasting approach performs better in an individual stock

data (Apple Inc.), which is estimated to contain more jumps. Lastly, we backtest

forecasts of those two risk measures with two widely used tests. The results also

favour our model.

In Chapter 4, we forecast Bitcoin return and its jumps with the same model in

the previous two chapters, but a more parsimonious one - a model without intraday

periodicity and variance jumps. Because we find that variance jumps exhibit little

self/cross-excitation behaviours compared to return jumps. Another reason is to re-
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lease a part of computational burden. The forecasting framework is the same as the

one in Chapter 2, except that we focus on one-step-ahead prediction on underlying

intensities of positive and negative return jumps. We collect Bitcoin tick data and

re-sample it with a range of frequencies from 5 minutes to 120 minutes. We evaluate

our probabilistic forecasts by a continuous rank probability score. The results favour

our model against two other benchmark models. We develop a statistic taking the

difference between the predicted probability of positive jumps and that of negative

jumps. Tails of this statistic is shown to have strong indications on Bitcoin return’s

variation. Furthermore, we propose a trading strategy based on the tails of this

statistic. We impose restrictions on the strategy in terms of trading costs, trading

gaps and liquidity costs. The strategy annualized Sharpe ratio can reach as high as

4.36 including transaction costs. This performance mainly stems from the low stan-

dard deviation of strategy returns. The performance of maximum drawdown also

confirms the ability of our forecasting framework to mitigate downside risks. We

conduct a battery of robustness check, including different trading costs, trading gaps

and a range of performance evaluation ratios. We also test whether strategy returns

are higher/lower during 1) high/low volatility periods, 2) price increase/decrease

periods, and 3) high/low uncertain periods. We find that our strategy works bet-

ter during the Bitcoin price increases, but it is less relevant to its volatility and

uncertainties in the market.

This thesis contributes to current literature in many ways and has several im-

plications for financial practitioners. Firstly, to our knowledge, we are the first to

model intraday jump dependency with high-frequency data, and the first to apply

the modelling in forecasting on various variables, in which market practitioners are

interested. Our research provides financial market participants a guide on the like-

lihood of further jumps when they observe a jump happening. We also provide

frameworks to incorporate this jump dependency in forecasting risks, return and

return jumps. It is also valuable for the field of risk management.
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5.2 Future Research

In this section, we discuss questions left in this thesis and some opportunities

for further research.

Option Pricing In Chapter 2, we propose a continuous-time asset pricing model.

We assess the fitness that stock and index data lend to the model in many aspects.

One aspect we did not consider is its calibration to option data. This is a typical

application of continuous-time stochastic volatility models in the literature (see e.g.

Heston 1993, Bates 1996, Duffie et al. 2000, Eraker 2004). However, calibrating

the model proposed in Chapter 2 to option data may also be subject to several

difficulties, which are also reasons for us not considering option pricing at the current

stage. Specifically, the model we propose is for high-frequency data, while the

availability of high-frequency data is an obstacle of this practice. Additionally, it is

also important to consider the computational burden in practice. We use a hybrid

of parametric and non-parametric estimation methods in Chapter 2 to reduce the

burden caused by high-frequency data. Additionally, the estimation is under a

physical measure. Whether they are appropriate in a risk-neutral measure awaits

further validation. Alternatively, we may need a new model estimation technique to

guarantee the consistency of estimated parameters within acceptable computational

times. However, the high-frequency option pricing subject remains blank in the

literature. The intraday dynamics of options can be valuable to the financial market.

Jump Predictions in Various Markets In Chapter 4, we forecast Bitcoin

return and its jumps. The intuition we study on Bitcoin is that the Bitcoin market is

highly inefficient, contains a large number of jumps and, hence, has a high potential

to exhibit jump self/cross-excitation. In this sense, the model can be applied to

any assets that have the potential to exhibit jump self/cross-excitation. A number

of studies show the self-excitation exhibited in foreign exchange markets (see e.g.

Lee 2012, Lee & Wang 2020). However, their prediction approach mainly relies on
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macro-information releases, which greatly differs from the forecasting framework in

Chapter 3. In addition to the foreign exchange markets, the commodity market is

also worth an investigation. Diewald et al. (2015), Nguyen & Prokopczuk (2019)’s

studies give an overview of jumps in the commodity market. They show a strong

inter-correlation in the commodity, to which our model can perfectly apply.

Asset Pricing In Chapter 2, we only apply the jump clustering model to 5

individual stocks and an index data. We show the different extent of jump clustering

among these assets. A following natural question would be what is the implication of

different extent of jump clustering in different assets. More importantly, is the extent

of jump clustering an important factor and is it priced in the cross-sectional stock

data? In Chapter 2, we provide an explanation for jump clustering, which is also our

intuition for conducting this research. Investors in the market are not homogeneous

regarding how they are informed. After the releases of a company’s information,

the most informed investor will trade according to the information, which creates a

jump in stock prices, which follows other jumps created by less-informed investors.

In other words, if investors of a company are equally well-informed, there less-likely

exists jump clustering in the company’s stock prices. Therefore, the extent of jump

clustering of an asset’s prices may have implications on how the asset’s investors are

informed and the efficiency of the asset.
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