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ABSTRACT 
 

Weather prediction hinges on mathematical models implemented into 
software to predict the future state of the atmosphere. Despite remarkable 
progress, computational constraints and user demands are choking this 
progress. In this PhD thesis, new machine learning (ML) methods are 
presented to improve the parametrization of two common schemes used 
within numerical weather prediction (NWP): radiation and urban land surface. 
First, a fast and accurate ML emulator for simulating three-dimensional cloud 
effects as a correction term to a fast parametrization scheme is developed 
rather than replacing the entire radiation scheme. Second, as ML emulators' 
training data can be scarce or expensive, a cheap method based on statistical 
copulas is implemented to generate data like the original across variables and 
dimensions. Third, the urban land surface model Town Energy Balance (TEB) 
is coupled to the Weather Research and Forecasting (WRF) model through a 
modular implementation, verified by an integration test, to evaluate a newly 
devised urban neural network (UNN) emulator. By training the UNN on the 
mean output from several urban land surface schemes, the UNN is more 
accurate, cheaper to run, and simpler to set up than TEB. Furthermore, when 
coupled to WRF, the UNN is numerically stable with lower errors than the 
reference WRF-TEB implementation. 
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CHAPTER 1 

Introduction 
 

 

I begin the first chapter outlining background information on numerical weather 
prediction, research motivations, aim and objectives, and thesis structure.  
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1.1 Background and Motivation 

Weather1 and climate2 matter. In 2021, global economic losses from weather-

related disasters were estimated at about USD 258 billion—up 29 % from the 

twenty-first-century average (Aon, 2021). This year, the World Economic Forum 

has again ranked climate action failure and extreme weather as the top two long-

term risks to our economy and society (World Economic Forum, 2022). Hinging 

on the use of numerical weather prediction (NWP) models 3 , weather 

predictions and climate projections are essential in mitigating the effects of 

weather and climate on our economy and society (Katz & Murphy, 1997; 

Maunder, 2019). 

 

Although advances in modelling weather and climate phenomena have 

allowed us to represent more processes, in more detail (Alley et al., 2019; 

Bauer et al., 2015; Benjamin et al., 2016; Knutti & Sedláček, 2013), the slowing 

pace of progress in transistor technology combined with the heightened 

demand for higher resolution over a greater number of scenarios (e.g., Bauer, 

Stevens, et al., 2021) underlines the need to overhaul our current modelling 

approaches (Bauer, Dueben, et al., 2021; Lawrence et al., 2018). Today, most 

traditional NWP models consist of several hundred thousand to millions of 

lines of hand-tuned architecture-specific code (Fuhrer et al., 2014; Gettelman 

& Rood, 2016) that makes adaptation to new hardware architectures and 

accelerators challenging (Mozdzynski et al., 2015; Thaler et al., 2019). As such, 

several research groups are exploring alternative approaches such as domain-

specific software frameworks and machine learning (ML)—whereas domain-

 
1 Short-term changes (minutes to days) in the atmosphere (American Meteorological Society, 
2021b). 
2 Slow-varying (month or more) aspects of the atmosphere–hydrosphere–land-surface system 
(American Meteorological Society, 2021a). 
3 The term NWP is used to refer to weather prediction. For climate projections, models are 
referred to as general circulation models (GCMs) or as Earth system model when GCMs are 
fully coupled to atmosphere, cryosphere, land, and ocean components (Benjamin et al., 2019; 
Randall et al., 2019; Watson-Parris, 2021). See Chapter 2.2 for more details. 
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specific software frameworks require hardware-specific code to be rewritten, 

ML approaches have come to the fore in recent years as they can offer a 

speedup for a trade-off in accuracy with little to no code rewrite (Bauer, 

Dueben, et al., 2021). ML approaches (Figure 1.1b) have already shown 

benefits over traditional (Figure 1.1a) approaches in several areas of weather 

and climate modelling (e.g., in nowcasting and observation processing, data 

assimilation, emulation of parametrization schemes and parameter tuning, 

and post-processing of model outputs) leading some (e.g., Schultz et al., 2021) 

to question if ML models may, one day, replace the entire weather prediction 

modelling workflow (Figure 1.1c). 

 

 
Figure 1.1 | Idealized present and future numerical weather prediction modelling 
workflow. (a) ‘traditional’ workflow (i.e., as used today), (b) next-generation weather prediction 
with individual components substituted or augmented by ML and (c) purely data driven (i.e., ML) 
weather forecasting system. The red box shows where the contributions of this PhD research fit 
in. Modified after Figure 1 in Schultz et al. (2021). 

 

Central to NWP models are two main components: a numerical core 

(dynamics; Figure 1.1) for solving the fluid motion in the atmosphere and a set 

of parametrization schemes (physics; Figure 1.1) used for processes that are 

too complex or too computationally expensive to be explicitly resolved (e.g., 
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sub-grid scale turbulence, atmospheric radiative transfer, cloud microphysics, 

and land-surface processes; Ehrendorfer, 2011; Stensrud, 2007; Warner, 

2010). Although the dynamical core is one of the single slowest components in 

NWP models, together, parametrization schemes make up for a large fraction 

of the total runtime (e.g., approximately 25 % of the ECMWF operational 

forecast; Dueben et al. 2020). As such, this PhD thesis focuses on emulating 

two parametrization schemes that are fundamental to weather and climate: 

radiation and urban land surface. Radiation is explored as it is the fundamental 

driver of atmospheric circulation and, typically, the largest energy source in the 

surface energy balance (Randall et al., 2019; Stensrud, 2007); urban land 

surface is explored as—with 54 % of the world’s population currently living in 

cities, projected to rise to 85 % by 2100 (United Nations, 2019)—it is the most 

relevant to most people (Oke et al., 2017). 

1.2 Aim and Objectives 

The research presented in this PhD thesis aims to improve NWP models by 

cheaply representing 3D cloud radiative effects and urban land surface 

processes. Specific objectives are: 

 

1. To develop and evaluate an offline machine learning (ML) emulator of 

atmospheric radiation. 

 

2. To investigate synthetically generated data to improve the emulation of 

atmospheric longwave radiation.  

 

3. To develop and evaluate an offline ML emulator for urban land surface 

processes coupled to an NWP model. 
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These are addressed as follows: 

 

1. A neural network emulator is developed and assessed for 3D cloud 

radiative effects (Chapter 3). 

 

2. A fast method to augment the training inputs of a neural network 

emulator is developed using a toy model of downwelling longwave 

radiation (Chapter 4). 

 

3. A method to couple an offline urban land surface model to an NWP 

model is developed and assessed (Chapter 5) before being used as a 

baseline to assess a newly developed neural network emulator of urban 

land surface processes (Chapter 6). 

1.3 Thesis Structure 

A brief background (Chapter 2) outlines weather forecasting, parametrization 

scheme, and neural network terms central to this PhD research. The research 

(Chapters 3-6) follows an idealized processing workflow to create surrogate ML 

models (Figure 1.2). The overall conclusions, contributions, and lessons learnt 

are given in chapter 7. 

 

 
Figure 1.2 | Idealised processing workflow to create surrogate ML models as implemented 
in this work. The general workflow for creating a surrogate ML model begins with (a) an offline 
parametrization scheme. From this (b) the corresponding ML emulator (i.e., the surrogate 
scheme) is generated. If the input samples are scarce (c) the ML emulator may be improved with 
more samples before being (d) coupled to the NWP model.  
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CHAPTER 2 

Background4 
 

 

In the second introductory chapter, I give a high-level overview of the main topics 
covered in this thesis, namely parametrization schemes and machine learning. 
First, I give a brief history of weather forecasting, followed by an overview of 
numerical models and associated terms in weather and climate modelling, while 
outlining the main differences between the two. Second, I give a background of 
parametrization schemes and machine learning.  

 
4 This chapter is based on the background section in the PhD thesis by Rasp (2019) and 
Larraondo (2019). 
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2.1 A Brief History of Weather 
Forecasting5 

Attempts to forecast the weather have been made since antiquity: the 

Babylonians and Chaldeans attempted to link the weather to the motion of 

heavenly bodies, and the Egyptians had a sky religion (Frisinger, 1971). 

However, it was not until mathematicians and natural philosophers of Ancient 

Greece that a more reason-based approach was taken. Thales of Miletus 

(c. 624 – c. 548 BC) tried to understand the weather using reasoning, 

Anaximander (c. 611 – c. 547 BC) had astute observations leading him to define 

the wind as the flow of air, and Anaxagoras’s (c. 499 – c. 427 BC) surprisingly 

modern beliefs that hail was caused by clouds being forced into the upper 

atmosphere and frozen (Frisinger, 1971). These ideas eventually culminated in 

what is today regarded as the oldest comprehensive treatise in Meteorology—

Meterologica (Aristotle, 1952). This book, probably by Aristotle (384–322 BC; 

see Furley, 1954), became the unquestioned authority in western 

meteorological theory (Frisinger, 1972) until the end of the seventeenth 

century (Hellmann, 1908). Indeed, the work of Classical Greeks scholars such 

as Aristotle showed that their work was that of natural philosophers but not 

that of natural scientists in that their developed theories and philosophical 

thinking often outweighed experimental evidence, which had to wait until the 

seventeenth century Renaissance to change thanks to the development of 

experimental science and precise instruments (Frisinger, 1972). 

 

 
5 As the number of contributions in meteorology is immense—spanning fields of science and 
engineering—a great deal is omitted here. For a more comprehensive history of weather 
forecasting, readers are encouraged to refer to Burton (1986) for an early history of the 
Meteorological office in the UK, Randall et al. (2019) for a general overview of Earth system 
model developments, Thompson (1983) for a historical view of numerical weather prediction 
models in the US, Lorenz (2006) for reflection on the birth and development of numerical 
weather prediction, and Lynch (2014) for a discussion on the fundamental of numerical 
weather prediction and its history. 
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The years between the seventeenth and eighteenth centuries saw the 

development of physical and mathematical theories, such as calculus and fluid 

mechanics, and improvements in observational instruments. However, it was 

not until the second half of the nineteenth century that the humble electric 

telegraph made weather forecasting6 a practical possibility (Craft, 1999, 2001). 

By the end of the 1840s, telegraphic daily weather reports were published daily 

(Craft, 2001; Monmonier, 1999). By the beginning of the 1850s, one E. E. 

Merriam published daily weather forecasts for New York partially based on his 

observations in Brooklyn but mostly on telegraphic reports published in local 

papers (Abbe, 1909). By the beginning of the 1860s, storm forecasts began 

being issued in Europe (Craft, 2001). All these forecasts were mainly based on 

empirical evidence and little skill—that is, they were far from the mathematical 

rigour used in today’s weather forecasting but were nevertheless predictions 

of a future state of the atmosphere, something that had not been possible 

before the establishment of the electric telegraph. 

 

By the beginning of the twentieth century, modern meteorology was born: 

physicists began applying physical laws developed in previous centuries to 

forecast the weather. These steps were first documented by Cleveland Abbe 

(1901) and Vilhelm Bjorkens (1904, 2009), formalised by Lewis Fry Richardson 

(1922), and implemented by a group led by Charney, Fjörtoft, and von 

Neumann (1950) at the Institute for Advanced Study of Princeton University 

using the Electronic Numerical Integrator and Computer (ENIAC) at the Moore 

School of Electrical Engineering at the University of Pennsylvania (Figure 2.1). 

After Charney, Fjörtoft von Neumann (1950)'s first-ever successful numerical 

weather simulation of the continental US, operational but limited-area 

numerical weather prediction followed shortly after in Sweden, the US, and 

Japan. However, it was not until the 1970s that global numerical weather 

 
6 Accurate records of meteorological data had been kept since much earlier (see Lamb, 1995; 
Pfister et al., 1999), but it was only after the invention of the electric telegraph that the weather 
could be timely inferred from observations made windward.  
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prediction models began to be used operationally in the US and Europe (Lynch, 

2014; Randall et al., 2019). Today, public and private entities run more 

sophisticated operational numerical weather prediction models several times 

a day to produce daily weather forecasts. 

 

 
Figure 2.1 | The Electronic Numerical Integrator and Computer (ENIAC) main control 
panel at the Moore School of Electrical Engineering at the University of Pennsylvania. 
Mathematicians Betty Jennings (left) and Frances Bilas (right) run the ENIAC's main control panel 
at the Moore School of Electrical Engineering (Northwest Missouri State University, 2022; United 
States Army Research Laboratory, 2022). Credit: United States Army Research Laboratory. 

2.2 Numerical Weather Prediction 
Models and Parametrization 
Schemes7 

As noted in the introduction, modern weather forecasting—"the prediction of 

the weather through application of the principles of physics, supplemented by 

a variety of statistical and empirical techniques" (Cahir, 2019)—hinges on the 

use of computer software programs based on the mathematical equations of 

 
7 The main source in this section is from Stensrud (2007). 



 

10 
 

motion describing the flow of fluids. Given the current atmospheric state, 

these software models predict the atmospheric state at a future moment in 

time. In the literature, the term NWP refers to weather prediction. For climate 

projections, models are referred to as general circulation models (GCMs) or as 

Earth system models (ESMs) when fully coupled to atmosphere, cryosphere, 

land, and ocean components. Indeed, all share two main components 8: a 

dynamical core to account for the transport of heat and momentum (Figure 

2.2a) and one or more parametrization schemes to account for processes that 

are too complex or (currently) too computationally expensive to be explicitly 

resolved (e.g., sub-grid turbulence, radiative transfer, cloud microphysics, and 

land-surface; Figure 2.2b).  

 

Although weather and climate models may share common code and 

framework, they differ in their purpose, applications, and degree of 

parametrization. Weather models are applied to forecasting shorter temporal 

and spatial scales (e.g., maximum of two weeks into the future at an 

operational horizontal resolution of order 1-10 kilometres). On the other hand, 

climate models run from sub-seasonal to multi-year periods with horizontal 

resolution at their finest of order 10 km and for more extended periods at a 

resolution of order 100 km. Indeed, while weather models focus on predicting 

slight changes in the current state of the atmosphere, climate models focus on 

the effects of external changes to the earth systems, such as how increasing 

levels of carbon dioxide in the atmosphere change the long-term variation of 

temperatures across the globe. Here, the focus of the research is on weather. 

 

 
8 Here, I assume physically based NWPs. Statistical/ML emulators may not have a dynamical 
core. 
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Figure 2.2 | Idealised global NWP model and its parametrization schemes. (a) example of 
a weather or climate model by the American Geosciences Institute © Copyright 2019 is licensed 
under Creative Commons Attribution 4.0 International, and (b) Idealized vertical column of a 
model grid cell, with vertical layers showing atmospheric and soil layers is modified after 
Stensrud (2007). Areas where specific parametrizations are important for radiation, convection, 
microphysics, planetary boundary layer (PBL), turbulence, orographic drag (ODrag), and 
vegetation (and bare soil and water) are highlighted. 

 

As previously mentioned, the representation of sub-grid processes is critical to 

atmospheric models—as such, NWP models need to be supplemented with 

parametrization schemes for solar and infrared radiation, cloud, soil, 

vegetation, and terrain effects. A parametrization represents the effect of a 

sub-grid process on the grid scale—it takes the resolved model state as input 

and returns the grid-scale tendency as output. A technical but essential aspect 

of most parametrization schemes is that, given the anisotropy of the grid cells 

in weather models, horizontal interactions can be neglected, allowing physical 

parametrizations to be treated as independent columns (Clement et al., 2018). 

Thus, most parametrization schemes today are developed and tested 

standalone, as separate components (offline mode), before being coupled to 

NWP models (online mode). Although NWP models have parametrizations for 

several processes not discussed here—such as orographic gravity wave drag 

or chemistry—in the following paragraph, I shall only focus on the 

parametrization of radiation and urban land surface as they are central to this 

PhD thesis. 
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Solar radiation is the primary driver for atmospheric weather systems via its 

role in establishing the equator-to-pole temperature gradient. In contrast, the 

interaction of thermal infrared radiation with greenhouse gases is the critical 

driver for anthropogenic climate change. In addition, the transfer of radiation 

through the atmosphere strongly influences surface temperatures. For clear 

skies, the primary problem is for gases varying by several orders of magnitude 

in tiny spectral regions. At the same time, when clouds are present, their 

properties change much more rapidly in time and space but overall over only 

three or four orders of magnitude (Randall et al., 2019). As such, the detailed 

representation of these processes in radiation schemes is vital for weather and 

climate models (Stensrud, 2007; Stephens, 1984). Radiation transfer methods 

currently used in NWP models can be traced back to the early twentieth 

century (Randall et al., 2019; Schuster, 1905). They predict the upwelling and 

downwelling flux profile through the atmosphere in NWP models and, 

therefore, the surface and atmosphere’s heating (or cooling). Radiation 

schemes need to be able to accurately and efficiently represent the flow of 

radiation through the atmosphere (i.e., heating or cooling rates) as well as the 

fluxes emitted or absorbed at the surface in the case of weather-related 

applications but focus on the net energy input at the top of the atmosphere 

for climate-related applications (Randall et al., 2019). Thus, a radiation 

parametrization aims to compute the change in surface fluxes and that of 

heating (or cooling) of the atmosphere by solar and infrared radiation. 

Mathematically, the rate of heating (or cooling) of the atmosphere by radiation 

is represented by the heating (or cooling) rate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and expressed as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
= 1
𝜌𝜌𝑐𝑐𝑝𝑝

𝑑𝑑
𝑑𝑑𝑑𝑑
(𝐹𝐹↓ −  𝐹𝐹↑), (2.1) 

with 𝐹𝐹↓  and 𝐹𝐹↑  the downwelling and upwelling flux, respectively, 𝜌𝜌  the air 

density, and 𝑐𝑐𝑝𝑝 the specific heat capacity of dry air. 

Differently from radiation, the parametrization of urban land surface came 

much later, when it was realised in the 1980s that land surface processes play 

a crucial role in atmospheric processes at all scales (Stensrud, 2007). At the 
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core of any land surface model is the surface energy balance (SEB), a general 

statement of energy conservation with applications to surfaces and volumes 

of all temporal scales (Oke et al., 2017). SEB defines the energy balance at the 

infinitesimally thin Earth–atmosphere boundary, and it is composed of four 

main terms: net all-wave radiation 𝑄𝑄∗ , consisting of the net (downwelling 

minus upwelling) solar and infrared radiation flux, sensible heat flux 𝑄𝑄𝐻𝐻, latent 

heat flux 𝑄𝑄𝐸𝐸 , and ground heat flux 𝑄𝑄𝐺𝐺: 

𝑄𝑄∗ = 𝑄𝑄𝐻𝐻 + 𝑄𝑄𝐸𝐸 + 𝑄𝑄𝐺𝐺. (2.2) 

In urban areas, similar models are used. However, they focus on processes 

more common to urban areas, such as buildings and their interaction with 

people and vegetation (Oke et al., 2017). 

2.3 Machine Learning and Neural 
Networks9 

Machine learning (ML), a subset of artificial intelligence (AI)10, is defined as “the 

study of computer algorithms that can improve automatically through experience 

and by the use of data” (Mitchell, 1997).  ML can be split into supervised (e.g. 

finding matching dogs; the focus of this thesis) and unsupervised (e.g. 

clustering data into groups). In other words, the goal of supervised ML 

algorithms is to find a function 𝑓𝑓  that maps an input 𝑥𝑥 to the corresponding 

output 𝑦𝑦 , that is, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). This is done by maximising or minimising a loss 

function 𝐿𝐿, such as the mean square error between the predicted 𝑦𝑦′ and the 

target 𝑦𝑦 variable. For example, for the mean square error loss function 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 

this is done as 1/𝑁𝑁 ∑�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖
′�2 with 𝑁𝑁 the number of samples and the subscript 

𝑖𝑖 the 𝑖𝑖th sample. Although one of the simplest supervised ML algorithms in ML 

is linear regression (LR), in choosing the type of ML algorithm, I looked at 

 
9 The main sources in this section are Bishop (2006) and Goodfellow et al. (2016). 
10 There is an ongoing debate about whether ML is a subset of artificial intelligence (AI) or 
whether it is separate or intersects with that of AI. In this PhD thesis, I treat ML as a subfield of 
AI (IBM, 2021) but this this is not critical to this work. 
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several ML techniques with the simplest algorithm for the problem at hand. LR 

is the simplest ML technique, but as it cannot model nonlinearities typical of 

the problems described in this thesis, it was rejected (i.e., radiation, 

convection; note that a first assessment using LR was conducted in chapter 3 

but showed poor results). Gaussian processes (GPs) are an excellent choice for 

modelling uncertainties. However, they suffer from cubic complexity to the 

dataset's number of samples, limiting their applicability. Finally, although tree-

based algorithms such as random forest algorithms have shown promising 

results in the past with the added benefit of being more interpretable than 

Neural Networks (NNs), NNs had already been used and found to be a suitable 

algorithm to model radiative transfer problems (Chapters 3 and 4). Therefore, 

in this thesis, I shall focus on using the multilayer perceptron (MLP), one of the 

simplest types of artificial neural networks (ANN) widely used in ML and 

atmospheric sciences, capable of capturing nonlinearities between input and 

outputs. 

 

An MLP-based NN is composed of a sequence of layers connected and with 

each layer forming a collection of neurons. Inputs move through a series of 

one or more hidden layers to the output layer. A single neuron can be 

represented mathematically as y = 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥) with 𝑓𝑓  the activation function and 𝑤𝑤 

the weight (including the bias). Activation functions introduce nonlinearity 

beyond just linear functions. Several non-linear activation functions exist, but 

one of the most common activation functions used for regression problems is 

the rectified linear unit (ReLU), defined as max (0, 𝑥𝑥). Although linear regression 

can be solved analytically using the normal equation, more complex models 

such as MLPs, need to be solved iteratively using numerical algorithms such as 

stochastic gradient descent (SGD) which takes small batches of data to make 

the training with large datasets computationally feasible. In this research,  I 

use the Adam algorithm (Kingma & Ba, 2015)—an adaptive learning rate 

algorithm based on SGD. 
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Training MLPs require data to be split into train, evaluation (usually referred to 

as validation), and test parts with data reshaped to two-dimensional matrices 

with each sample (observation) as row and flattened quantities (e.g. air 

temperature, humidity) as column (i.e. feature). While train data are used as 

input to the optimisation algorithm, evaluation data are used to verify the 

performance of different network configurations (e.g., number of layers or 

neurons) and their impact on the results. Test data are used to ensure that the 

network is learning beyond the training data; that is, they do not overfit and 

are general enough to be used with future, unseen data. This is generally 

achieved using one or more regularizers that act to penalise the model and 

stop it from over-fitting. The most common types are L1 and L2: the former 

adds the absolute value of the weight to the loss function while the latter adds 

the squared weight. 

 

As noted in chapter 2.2, although weather forecasting and climate projection 

are based on similar models, they answer fundamentally different questions. 

As noted in Watson-Parris (2021) the key uncertainties in weather prediction 

are to do with the internal variability due to the chaotic nature of the 

atmosphere over different time scales. In contrast, in climate projection, the 

critical uncertainties are to do with the incomplete representation of 

processes, the uncertainty of input parameters and assumptions, and 

incomplete knowledge of the emissions pathways of greenhouse gases, 

aerosol, and other short-lived climate forcers are critical in climate projections. 

(Hawkins & Sutton, 2009; Watson-Parris, 2021; Wilcox et al., 2020). As such, the 

development and testing of emulators need to be distinct. Here, however, the 

focus is on emulating parametrizations for weather applications, as are the 

evaluations.  
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CHAPTER 3  

A Faster, More Accurate Radiation 
Scheme11 
 

 

In the first research chapter, I begin with the application of ML to radiation. 
Specifically, I look at a way to improve a radiation scheme used operationally by 
including three-dimensional cloud effects.  

 
11 This chapter is based on Meyer, D., Hogan, R. J., Dueben, P. D., & Mason, S. L. (2022). 
Machine Learning Emulation of 3D Cloud Radiative Effects. Journal of Advances in Modeling 
Earth Systems, 14(3). https://doi.org/10.1029/2021MS002550 
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3.1 Introduction 

Solar (hereafter, shortwave) and thermal-infrared (hereafter, longwave) 

radiation are the primary drivers of atmospheric weather systems via their role 

in creating the equator-to-pole temperature gradient, while their interaction 

with greenhouse gases drives anthropogenic climate change. As such, their 

detailed representation in radiation schemes is essential for both weather and 

climate (e.g., Stephens 1984). 

 

Historically viewed as one of the slowest components of atmospheric models, 

radiation schemes have been among the prime candidates for acceleration via 

machine learning (ML). Cheruy et al. (1996) are one of the first to develop a 

neural network (NN) emulator of longwave radiation, reporting accurate 

results for speedups of 3 and 3 000 times the reference broadband and 

narrowband models, respectively. Chevallier et al. (1998, 2000) extend Cheruy 

et al. (1996)’s work to the European Centre for Medium-Range Weather 

Forecasts’ (ECMWF) 50-level longwave and shortwave radiation scheme, 

reporting promising results for a sixfold reduction in computational costs. 

Krasnopolsky et al. (2005) develop a longwave NN emulator in the NCAR's 

(National Center for Atmospheric Research) Community Atmosphere Model, 

reporting predicted heating rate root-mean-square errors between 0.26 and 

0.33 K d-1, for a runtime reduction between 35 and 80 times the original 

schemes, while Krasnopolsky et al. (2008)’s emulation of shortwave radiation 

report successful multi-decadal simulations with offline scheme speedups of 

150 and 20 times the original scheme, and errors of 0.34 and 0.19 K d-1 for 

longwave and shortwave heating rates, respectively. More recently, Pal et al. 

(2019)’s emulation of shortwave and longwave radiation in the Super-

Parameterized Energy Exascale Earth System Model report a speedup of about 

one order of magnitude while retaining between 90 % and 95 % of the original 

scheme's accuracy. 
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Although these findings are encouraging, an assessment of Chevallier et al. 

(1998, 2000)’s emulators by Morcrette et al. (2008) report degraded accuracy 

and performance when the number of levels increases above the original 50 

levels. Ukkonen et al. (2020) note that differences in radiative fluxes may 

sometimes be larger than the internal variability of the original scheme or with 

regional errors in annual-mean surface net fluxes of 20 W m-2. Furthermore, 

although Roh and Song (2020) report average root-mean-square errors of 1.0 

and 0.49 K d-1 for the longwave and shortwave heating rates, respectively, and 

1.6 and 14 W m-2 for the longwave and shortwave fluxes, respectively, large 

deviations of about 20 W m-2 occur. Indeed, comparing these results is 

challenging as studies report their results using specific datasets and 

summarize them with different statistical metrics. 

 

An important point to note when seeking applications of ML in radiative 

transfer is that radiation schemes are no longer a particularly slow component 

of atmospheric models, for example, in the ECMWF Integrated Forecast 

System (IFS), Hogan et al. (2017) report that the fractional time in the highest 

operational resolution model dropped from 19 % in 2007 to 5 % in 2017. On 

the other hand, several simplifications are still made such as: 

 

1. operational radiation schemes cannot afford to represent the O(105) 

spectral lines explicitly and typically approximate the spectral variation of 

gas absorption by O(102) quasi-monochromatic radiative transfer 

calculations (Hogan and Matricardi 2020); 

2. the accuracy of radiative forcing calculations due to changes in greenhouse 

gases in many schemes is questionable, with Soden et al. (2018) reporting 

that the spread of radiative forcing estimates due to increased CO2 is about 

35 % of the mean; 

3. the ways in which radiation interacts with cloud structure in radiation 

schemes is generally quite crude. Specifically, all radiation schemes used 

routinely in weather and climate models are ”1D”; that is, they neglect the 
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full 3D interaction of radiation with clouds and therefore ignore the 

interception of direct sunlight by cloud sides, the trapping of sunlight 

beneath clouds, and the emission of thermal radiation from the sides of 

clouds  (e.g., Hogan & Shonk, 2013; Varnai & Davies, 1999). 

 

For cumulus clouds, the missing processes in reported in point 3 above—here 

defined as 3D cloud effects—can change the magnitude of instantaneous 

cloud radiative effects (i.e., the difference between fluxes in the presence of 

clouds and in the equivalent clear-sky conditions) by 30 % in the longwave (e.g., 

Heidinger and Cox 1996) and by up to 60 % in the shortwave, depending on 

sun angle (e.g., Pincus et al. 2005). 

 

Although the method of Jakub and Mayer (2015) may be more appropriate for 

(sub)kilometer-resolution where radiative exchanges between atmospheric 

columns become important, to date, the fastest method we are aware of to 

represent 3D interactions of radiation with clouds within a model column 

suitable for large-scale models with horizontal resolution no finer than 5–10 

km is the Speedy Algorithm for Radiative Transfer through Cloud Sides 

(SPARTACUS; Hogan et al., 2016). Despite this, SPARTACUS is approximately 

five times slower than the radiation scheme currently used at the ECMWF 

(Hogan & Bozzo, 2018)—far too slow to be considered for operational use. 

 

As an alternative method to the emulation of an entire radiation scheme, 

Ukkonen et al. (2020) and Veerman et al. (2021) show a different approach 

whereby specific parts of a scheme, such as the gas optics in the RTE-RRTMGP 

(Radiative Transfer for Energetics and Rapid and accurate Radiative Transfer 

Model for General circulation models applications – Parallel; Pincus et al., 

2019) framework, are emulated, retaining the original radiative transfer solver. 

Similar to the results by Veerman et al. (2021), Ukkonen et al. (2020) report 

heating rates and top-of-atmosphere longwave and shortwave radiative 

forcing root-mean-square errors relative to benchmark line-by-line radiation 
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calculations typically below 0.1 K d−1 and 0.5 W m−2, respectively, relative to 

benchmark line-by-line radiation calculations (with smaller errors relative to 

RTE-RRTMGP), and speedups for clear-sky longwave and shortwave fluxes of 

3.5 and 1.8 times the original scheme, respectively. 

 

In the same spirit, here we investigate how to improve the representation of 

3D cloud effects with a hybrid physical-ML method. Rather than replacing the 

entire radiation scheme, we run the existing 1D radiation scheme in parallel 

with an emulator trained on the difference between SPARTACUS and the 1D 

scheme. As the computational cost of the emulator is expected to be a fraction 

of that of SPARTACUS, we hope to achieve a similar accuracy for a fraction of 

the cost. Moreover, as heating rates are susceptible to vertical changes in 

fluxes, by only correcting profiles within the troposphere, we expect this 

approach to be more tolerant to errors in heating rates for higher parts of the 

atmosphere where low values of atmospheric pressure exacerbate 

comparatively small errors in predicted fluxes. 

 

The following sections describe the general method, with specific details about 

reference models and data (Section 3.2.1) used to develop and train the ML 

emulators (Section 3.2.2). We follow with a qualitative (Section 3.3.1) and 

quantitative (Section 3.3.2) evaluation of the results, as well as a runtime 

performance analysis of the emulators (Section 3.3.3), before concluding with 

a summary and prospects for future work (Section 3.4). 
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3.2 Methods 

3.2.1 Reference Model and Data 
Reference simulations use the open-source atmospheric radiative transfer 

software ecRad (Hogan & Bozzo, 2018) version 1.3.0 (ECMWF, 2020). ecRad 

computes profiles of up- and downwelling, long- and shortwave radiative 

fluxes (with downwelling shortwave having both total and direct components) 

from zero- or one-dimensional (i.e., profiles) inputs of meteorological variables 

such as dry-bulb air temperature, cloud fraction, mixing ratios of water vapor, 

liquid water, ice cloud, snow, and trace gases. 3D cloud effects are computed 

as the difference between ecRad’s 3D solver SPARTACUS and ecRad’s 1D solver 

Tripleclouds (Shonk & Hogan, 2008). Although deterministic forecasts in the 

ECMWF Integrated Forecast System (IFS) use ecRad's 1D solver McICA (Monte 

Carlo Independent Column Approximation; Pincus et al. 2003). Tripleclouds is 

used here as (a) its flux predictions are noise-free—that is it does not introduce 

conditional random errors shown by McICA (Hill et al., 2011)—and (b) its 

underlying assumptions in cloud structure and overlap are the same as in 

SPARTACUS.  

 

EcRad is forced with inputs from the EUMETSAT Numerical Weather Prediction 

Satellite Application Facility (NWP-SAF) data set (Eresmaa & McNally, 2014). 

This data set contains 25 000 atmospheric profiles representative of yearly, 

global, present-day atmospheric conditions on 137 atmospheric levels (surface 

to 0.01 hPa) from ECMWF operational forecasts between 2013 and 2014. 

Profiles of aerosol mixing ratio and greenhouse gas concentration are from 

the climatology of Bozzo et al. (2020) as a function of longitude, latitude, and 

month for the former, and latitude and month, for the latter. The prescribed 

horizontal cloud scale in SPARTACUS uses the parametrization of Fielding et al. 

(2020). 
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3.2.2 Neural Network Emulator 
Two separate NNs to emulate short- and longwave 3D cloud effects are 

developed using the multilayer perceptron (MLP) architecture—a standard 

form of NN with inputs traveling via one or more hidden layers towards the 

outputs (Bishop, 2006)—following poor results from a preliminary 

investigation using linear regression (not reported). Both NNs are 

implemented in Python with TensorFlow (Abadi et al., 2015) version 2.4.1. 

 

To capture the interaction of radiation with clouds, we compute the cloud 

optical depth 𝜏𝜏𝑐𝑐 in the large particle limit where geometric optics is applicable, 

albeit ignoring small spectral dependences, as  3
2
Δ𝑝𝑝
𝑔𝑔
� 𝑞𝑞𝑙𝑙
𝜌𝜌𝑙𝑙𝑟𝑟𝑙𝑙
+ 𝑞𝑞𝑖𝑖
𝜌𝜌𝑖𝑖𝑟𝑟𝑖𝑖
�,  with Δ𝑝𝑝  the 

difference in atmospheric pressure between two atmospheric layers, 𝑔𝑔  the 

gravitational acceleration constant (9.81 m s-2), 𝑞𝑞𝑙𝑙  and 𝑞𝑞𝑖𝑖  the liquid and ice 

mass mixing ratios, 𝜌𝜌𝑙𝑙 and 𝜌𝜌𝑖𝑖 the densities of liquid water and ice, and 𝑟𝑟𝑙𝑙 and 𝑟𝑟𝑖𝑖 

the liquid and ice effective radii. Gas and aerosol properties, known to affect 

3D effects minimally, are ignored. Heating rates 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 are computed from the 

net (downwelling minus upwelling) flux for an atmospheric layer 𝑖𝑖  as 

− 𝑔𝑔
𝑐𝑐𝑝𝑝

𝐹𝐹𝑖𝑖+1/2
𝑛𝑛 −𝐹𝐹𝑖𝑖−1/2

𝑛𝑛

𝑝𝑝𝑖𝑖−1/2−𝑝𝑝𝑖𝑖+1/2
,  with 𝑝𝑝𝑖𝑖±1/2  and 𝐹𝐹𝑖𝑖±1/2

𝑛𝑛  the atmospheric pressure and net flux, 

respectively, at the layer interface 𝑖𝑖 + 1/2 and 𝑖𝑖 − 1/2 (counting down from the 

top of the atmosphere), and 𝑐𝑐𝑝𝑝 the specific heat of dry air (1004 J kg-1 K-1). 

 

As heating rates are proportional to the vertical derivative of the net flux, noise 

in predicted fluxes can amplify the errors in computed heating rates. Although 

training the NNs using fluxes and heating rates can partially mitigate this issue, 

predictions can no longer conserve energy. To avoid this issue, here we instead 

predict the 3D scalar (downwelling plus upwelling) flux and corresponding 

heating rates, as well as the direct downwelling shortwave flux, and 

postprocess the outputs in a separate step (Appendix A) to obtain energy-

consistent downwelling and upwelling fluxes and heating rates. As we aim to 
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predict the 3D cloud effects, only levels between the surface and 50 hPa (i.e., 

assuming no clouds above the troposphere) are used. The full profiles, 

spanning 137 levels, are recovered by setting values between 50 and 0 hPa to 

zero for the downwelling component, and extending the last predicted value 

at 50 hPa to all levels between 50 and 0 hPa for the upwelling component. 

 

Train, validation, and test datasets contain a random 60 % (13 702), 20 % (4 

568), 20 % (4 568) selection of NWP-SAF profiles as inputs, and corresponding 

ecRad computed 3D cloud effect profiles (SPARTACUS minus Tripleclouds; 

Section 3.2.1) as outputs. Before being fed to the NNs, profiles are reshaped 

to two-dimensional matrices with each profile as row (sample) and flattened 

level and quantity as column (feature). 

 

To determine the sensitivity to different choices of hyperparameters and input 

quantities, a grid search is conducted. In it, NNs are trained with NWP-SAF 

profiles of dry-bulb air temperature 𝑇𝑇 , cloud fraction 𝑓𝑓𝑐𝑐, surface temperature 

𝑇𝑇𝑠𝑠 , surface albedo 𝛼𝛼, cloud optical depth 𝜏𝜏𝑐𝑐 , cosine of solar zenith angle 𝜇𝜇0, 

specific humidity 𝑞𝑞, and vertical layer thickness Δ𝑧𝑧 as inputs (Table 3.1a), and 

corresponding ecRad-computed 3D cloud effect profiles of scalar fluxes, 

heating rates, and direct downwelling shortwave as outputs (Table 3.1b). All 

configurations use the Exponential Linear Unit activation function, Adam 

optimiser with mean squared error on all outputs, and 1 000 epoch-limit with 

early stopping patience set to 50 epochs. The surface emissivity 𝜀𝜀 is not used 

as it is constant across profiles. Iterations are repeated 10 times to account for 

the stochasticity of the training algorithm. Hyperparameter choices are (a) 

{{ 𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇 }, { 𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇, 𝑞𝑞 }, or { 𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇, 𝑞𝑞, Δ𝑧𝑧 }} for input 

quantities; (b) {1, 2, 3, 4, 5} for number of hidden layers; (c) {0.5, 1, 2} for hidden 

(neuron) size multipliers; and (d) {10-6, 10-5, 10-4} for L1 and L2 regularization 

factors. The number of neurons in hidden layers is computed by multiplying 

the number of inputs (182 for shortwave and 271 for longwave) by the hidden 

size multiplier. 
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Results are visually inspected (Figure 1) and the simplest NN configuration 

(e.g., fewer neurons and input quantities) with the lowest mean absolute is 

chosen. For both longwave and shortwave components, this ‘optimal’ 

configuration is found to have three hidden layers, each with 217 and 182 

neurons per hidden layer for longwave and shortwave, respectively, and L1 

and L2 regularization factors set to 10-5 (Figure 3.1). The most sensitive input 

quantities are: 𝑓𝑓𝑐𝑐, 𝑇𝑇 , 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜏𝜏𝑐𝑐, and 𝜇𝜇0 (Table 3.1a). 𝑞𝑞 and Δ𝑧𝑧 are not used as they 

do not improve predictions (Figure 3.1). This is reasonable as (a) the cloud layer 

optical depth, which is proportional to layer thickness (for same cloud water 

mixing ratio), is already an input variable to the NNs, and (b) any dependence 

on humidity is likely captured by the dry-bulb air temperature for cloudy parts 

of the atmosphere. An increase in either the network size or the number of 

layers does not improve the overall accuracy (Figure 3.1). Convergence is 

achieved after approximately 100 epochs. 

 

To improve the results further, the two NNs with the above-determined 

configuration are trained with more data. For this, we use Synthia (Meyer & 

Nagler, 2021) version 0.3.0 (Meyer & Nagler, 2020) as outlined in Meyer, Nagler, 

et al. (2021) but only for independent inputs. Thus, we (a) generate nine 

synthetic copies of the surface albedo 𝛼𝛼 and cosine of the solar zenith angle 

𝜇𝜇0 , (b) randomly re-assign them to plain copies of NWP-SAF train-fraction 

profiles, and (c) collate them together to the original data set to form a total of 

137 020 profiles for training (i.e., the original 13 702 profiles and 123 318 

modified profiles). These augmented profiles are then used in ecRad to 

generate corresponding training outputs, and both augmented inputs and 

outputs to train the NNs. To account for the variability in the results given by 

the NN’s training algorithm, training (and inference) is run 20 times (10 times 

with and 10 times without data augmentation), varying random seeds between 

repeats. From this, the short- and longwave emulator with median mean 

absolute error are chosen. With this simple augmentation, the shortwave error 

is found to improve by about 18 %. 
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Table 3.1 | Inputs and outputs used in the two NN emulators. Vector quantities are either 
at the interface between two model layers (half level; HL), or at the model layer (full level; FL). 
The superscript “L” or “S” denotes if the input is used in the longwave or shortwave NN. The scalar 
flux is defined as downwelling plus upwelling flux. 

Symbol Name Unit Dimension 
(a) Inputs 
𝑓𝑓𝑐𝑐 L,SCloud fraction 1 FL 
𝜏𝜏𝑐𝑐 L,SCloud optical depth 1 FL 
𝑇𝑇 LDry-bulb air temperature K FL 
𝑇𝑇𝑠𝑠 LSurface temperature K Scalar 
𝛼𝛼 SSurface (shortwave) albedo 1 Scalar 
𝜇𝜇0 SCosine of solar zenith angle 1 Scalar 
(b) Outputs 
𝐿𝐿𝑠𝑠 3D effect on scalar longwave radiative 

flux density 
W m-2 HL 

𝑆𝑆𝑠𝑠 3D effect on scalar shortwave radiative 
flux density 

W m-2 HL 

𝑆𝑆⇓ 3D effect on downwelling direct 
shortwave radiative flux density 

W m-2 HL 

𝐿𝐿𝐻𝐻 3D effect on longwave heating rate K s-1 FL 
𝑆𝑆𝐻𝐻 3D effect on shortwave heating rate K s-1 FL 

 

 
Figure 3.1 | Mean absolute errors resulting from different hyperparameters 
configurations. These are for the (a) longwave and (b) shortwave neural network. Each line 
represents a realization from a different hyperparameter configuration. Lines are shown slightly 
offset in the vertical axis for clarity. The search is conducted for configurations of (i) input 
quantities: {{𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇}, {𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇, 𝑞𝑞}, {𝑓𝑓𝑐𝑐, 𝜏𝜏𝑐𝑐, 𝑇𝑇, 𝑇𝑇𝑠𝑠, 𝛼𝛼, 𝜇𝜇, 𝑞𝑞, Δ𝑧𝑧}} shown as 6, 7, and 8, 
respectively; (ii) hidden layer size: {1, 2, 3, 4, 5}; (iii) hidden (neuron) size multipliers: {0.5,1,2}; 
and (iv) L1 and L2 regularization factors: {10-6, 10-5, 10-4}. Hidden size multipliers are multiplied 
by the number of inputs (182 for shortwave and 271 for longwave) to obtain the number of 
neurons in each hidden layer. 
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3.3 Results and Discussion 

3.3.1 Qualitative Evaluation 
First, a separate visual inspection is conducted using an atmospheric slice of 

ERA5 reanalysis data (Hersbach et al., 2020), extending from north to south 

poles at a longitude of 5 °E at 12:00 UTC (Coordinated Universal Time) on 11 

July 2019. This includes the response of radiation to Saharan dust, marine 

stratocumulus, deep convection, and Arctic stratus. The surface albedo, cosine 

of the solar zenith angle, and cloud fraction are shown in Figure 3.2. Figure 3.3 

shows the outputs from SPARTACUS (left), reference 3D cloud effects (3D 

signal; SPARTACUS minus Tripleclouds; middle), and NN predictions (right), 

respectively. 

 

The longwave effect of clouds (Figures 3.3a and 3.3d) is to warm the Earth 

system by reducing the upwelling radiation to space and increasing it towards 

the surface. When the 3D effects are simulated, clouds can not only interact 

with radiation through their base and top, but also through their sides. Thus, 

they further reduce the upwelling longwave radiation to space and further 

increase it towards the surface (Figures 3.3b and 3.3e). 

 

Figure 3.3n shows that the longwave heating rate signal of clouds is also 

amplified, increasing the magnitudes of cooling at cloud tops, and of warming 

at cloud bases (see Schafer et al., 2016 for further discussion). In the 

shortwave, the sign of the impact is dependent on solar zenith angle 

(Figure 3.3k): when the Sun is near its zenith, at the tropics, the 3D cloud effect 

acts to reduce the upwelling radiation reflected into space from cloud tops, 

but to increase it when near the horizon, over the Southern Ocean. These 

behaviors can be explained by the mechanisms of entrapment and side-

illumination, respectively (Hogan et al., 2019). Although the vertical structure 

of heating rate is smoothed somewhat vertically in both the longwave 
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(Figure 3.3o) and shortwave (Figure 3.3r), the sign and size predicted by the NN 

is captured for high and low clouds and for high and low sun angles. 

 

Figure 3.4 compares the 3D effects at top-of-atmosphere (TOA) upwelling 

fluxes and surface downwelling fluxes between the reference ecRad 

calculations and NN-predicted 3D cloud effects with generally good agreement 

across the range of latitudes. 

 

 
Figure 3.2 | Typical zero- and one-dimensional SPARTACUS and Tripleclouds inputs. Here 
shown the (a) surface albedo (𝛼𝛼; blue line), and cosine of the solar zenith angle cos(𝜃𝜃0); black 
line; scalar quantities), and (b) cloud fraction (vector quantity) at 5°E on 11 July 2019 12:00 UTC 
from ERA5 reanalysis data (Hersbach et al., 2020). Vector quantities consist of 137 vertical levels, 
here shown using atmospheric pressure as coordinate. The hatched area shows the 
topography. Temperature contours are shown using dashed and dotted lines 
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Figure 3.4 | Comparison of 3D signal (SPARTACUS minus Tripleclouds; magenta) and 3D 
prediction (NN; cyan). This is done for (a-b) top-of-atmosphere (TOA) upwelling flux and (c-d) 
surface downwelling flux using pole-to-pole slice at 5°E on 11 July 2019 12:00 UTC from ERA5 
reanalysis data (Hersbach et al., 2020). 

 

3.3.2 Quantitative Evaluation 
Second, a quantitative evaluation is made by comparing NN-predicted 3D 

cloud effects to reference ecRad calculations (3D signal; SPARTACUS minus 

Tripleclouds) using the test fraction (Section 3.2.1). Evaluation metrics are 

computed using profiles of either 3D signal, 3D predictions, or error (i.e., 

prediction minus signal) separately for each level, or with no distinction in 

vertical levels (hereafter referred to as bulk), for a vector 𝒚𝒚 of 1…𝑁𝑁 samples for 

the mean (1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ) or mean absolute (1

𝑁𝑁
∑ �𝑦𝑦𝑖𝑖�
𝑁𝑁
𝑖𝑖=1 ). Per-level statistics are shown 

in Figure 3.5 for fluxes, and in Figure 3.6 for heating rates. Bulk error statistics 

are summarized in Table 3.2. 

 

The first column in Figure 3.5 shows per-level means, and 50 % and 90 % 

quantiles of 3D signal and NN predictions. On average, the 3D signal is 

approximately 1 W m-2 for the longwave (Figures 3.5a and 3.5d) and about 3 W 

m-2 at the surface for the shortwave (Figure 3.5j). To put these numbers into 

context, the radiative forcing from doubling carbon dioxide concentrations 

from preindustrial levels is around 3.7 W m-2 (Forster et al. 2007). Visually, NN 

predictions are close to the mean reference 3D signal (Figures 3.5a, 3.5d, 3.5g, 

3.5j, and 3.5m). The 3D error for the mean (solid) and mean absolute (dashed) 
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is shown in the second column of Figure 3.5. This reaches about 0.2 W m−2 for 

the longwave (Figures 3.5b and 3.5e) and about 0.6 W m−2 for the shortwave 

(Figures 3.5h, 3.5k, and 3.5n). Similarly to the qualitative assessment in 

Figure 3.4, scatterplots of top-of-atmosphere upwelling, and surface 

downwelling (Figures 3.5c, 3.5f, 3.5i, 3.5l, and 3.5o) flux predictions are close to 

reference calculations across the range of values. 

 

The third column in Figure 3.6 shows larger errors in the vertical structure of 

the 3D effects on heating rates (Figures 3.6c and 3.6f). The size of 3D effects 

on heating rates (Figures 3.6b and 3.6e) is, however, about two orders of 

magnitude smaller than the absolute heating rates from SPARTACUS 

(Figures 3.6a and 3.6d). 

 

Table 3.2 summarizes bulk error statistics for fluxes and heating rates. NN 

errors are generally small. The mean percentage error is below 20 %, except 

for the upwelling shortwave where it is −96 %. This latter result is not 

particularly interesting, however, as the mean 3D cloud effect for the entire 

upwelling component is about −0.16 W m−2—much smaller than that at the top 

of the atmosphere of −1.3 W m−2. The mean absolute percentage error of 

fluxes is about 20 % and 30 %; in other words, NN predictions capture about 

70 % and 80 % of the 3D effects predicted by SPARTACUS. For heating rates, 

the mean and mean absolute percentage errors are 15 % and 66 % for the 

longwave, and −6.1 % and 62 % for the shortwave. This latter result is not 

particularly important as 3D effects on heating rates are small, about 0.01 K 

d−1 for the shortwave. Indeed, the primary means by which shortwave 3D 

effects influence the Earth system is via a change in surface fluxes, and from 

there the surface temperature.  
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Figure 3.5 | Per-level statistics of fluxes. Mean (a,d,g,j,m), 3D signal (SPARTACUS minus 
Tripleclouds) and 3D prediction (NN), (b,e,h,k,n) mean (continuous) and mean absolute (dashed) 
error (3D prediction minus 3D signal), and (c,f,i,l,o) scatterplots of 3D top-of-atmosphere (TOA) 
and bottom-of-atmosphere (BOA) fluxes, computed using the test fraction. 50 % (lighter) and 90 
% (darker) quantiles are shown for right and middle panels. 
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Figure 3.6 | Per-level statistics of heating rates. (a,d) mean absolute heating rates from 
SPARTACUS, (b,e) mean 3D signal and prediction, and (c,f,) mean (continuous) and mean 
absolute (dashed) error (3D prediction minus 3D signal), computed using the test fraction. 50 % 
(lighter) and 90 % (darker) quantiles are shown for all panels. 

 

Table 3.2 | Bulk error statistics. Bulk mean and mean absolute 3D signal (SPARTACUS minus 
Tripleclouds), 3D error (prediction minus signal), and percentage error (3D error divided by 3D 
signal, multiplied by 100) for (a) longwave (𝐿𝐿) and shortwave (𝑆𝑆) fluxes, and (b) corresponding 
heating rates (𝐿𝐿𝐻𝐻, 𝑆𝑆𝐻𝐻). Flux components are shown for the total upwelling (↑), downwelling (↓), 
and direct downwelling (⇓ ), and separately for top-of-atmosphere (TOA), and bottom-of-
atmosphere (BOA). 

 Mean Mean Absolute  
 3D signal 3D error Percentage error 3D signal 3D error Percentage error 
(a) Fluxes 
 W m-2 W m-2 % W m-2 W m-2 % 
L↓ 0.55 0.00048 0.087 0.56 0.14 25 
LBOA
↓  1.0 -0.029 -2.8 1.1 0.2 19 

L↑ -0.72 -0.025 3.4 0.73 0.17 23 
LTOA
↑  -1.1 -0.071 6.7 1.1 0.2 19 

S↓ 0.73 -0.032 -4.4 1.1 0.38 33 
SBOA
↓  0.53 -0.092 -17 1.4 0.48 35 

S⇓ -1.5 0.037 -2.5 1.5 0.45 30 
SBOA
⇓  -3.2 -0.15 4.5 3.2 0.72 22 

S↑ -0.16 0.15 -96 1.6 0.52 32 
STOA
↑  -1.3 0.22 -17 1.9 0.51 27 

(b) Heating Rates 
 K d-1 K d-1 % K d-1 K d-1 % 

L𝐻𝐻 0.0069 0.001 15 0.037 0.024 66 
S𝐻𝐻 0.0066 -0.0004 -6.1 0.0099 0.0062 62 
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3.3.3 Runtime Performance 
The emulators' runtime performance is assessed using a normalized runtime 

performance metric defined as total model runtime divided by total number 

of profiles. The total model runtime includes measurements of data 

normalization, inference with TensorFlow in Python, data denormalization, 

and postprocessing (Appendix A). To reduce input, output, and runtime 

overheads during measurements, the input data is replicated 10 times and the 

batch size of TensorFlow set to 50 000. Both ecRad and the NN are run fully 

single-threaded in Singularity (Kurtzer et al., 2017) with Ubuntu 18.04, GNU 

Fortran 7.5.0 compiler, Anaconda Python 3.8 and TensorFlow 2.4.1 on a shared 

AMD EPYC 7742 node with 32 CPUs and 124 GiB of system memory on a 

shared cluster.  

 

SPARTACUS is about 4.58 times slower than Tripleclouds with an average of 

11.6 ± 0.0196 ms per profile, compared to 2.53 ± 0.00854 ms for Tripleclouds. 

In comparison, the two NNs predicting 3D effects take 0.0257 ± 0.0000372 ms 

per profile. Thus, the combined time for running both Tripleclouds and the two 

NNs is 2.56 ± 0.00856 ms per profile, an increase of about 1.19 % of 

Tripleclouds' runtime. A key reason for the NNs being so fast is that they 

predict broadband quantities directly, rather than integrating over many 

spectral intervals (140 in the longwave and 112 in the shortwave) as done in 

Tripleclouds and SPARTACUS. 

 

While these absolute runtimes are expected to change when run on different 

hardware, or coupled to the IFS, relative differences are indicative of the order 

of speedup. With graphics processing units (GPUs) likely playing a significant 

role in future high-performance computing systems (Bauer, Dueben, et al., 

2021), switching to GPUs is generally a trivial task with ML libraries such as 

TensorFlow. 
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3.4 Conclusion 

In this paper we propose a hybrid physical machine learning approach to 

correct a fast but less accurate 1D radiative transfer scheme with two neural 

network emulators of shortwave and longwave 3D cloud effects. The 

emulators are trained on the difference between a 3D (SPARTACUS) and a 1D 

(Tripleclouds) solver. 

 

Results show that the 3D effects on fluxes are captured with bulk mean 

absolute errors between 20 % and 30 % of the 3D signal (Figures 3.3–3.5; 

Table 3.2). To put these results into perspective, Hogan et al. (2019) report the 

same error range, albeit with biases of about 0.3 W m−2, for comparing the 

shortwave component of SPARTACUS to Monte Carlo simulations of 65 3D 

cloud scenes. Although profiles of heating rates show large mean absolute 

errors of up to 66 % (Table 3.2), the impact of 3D cloud effects on heating rates 

is up to two orders of magnitude smaller than that of the absolute heating 

rates (cf. Figures 3.6a–3.6d vs. Figures 3.6c–3.6f). As the 3D effects for top-of-

atmosphere upwelling fluxes and surface downwelling fluxes are constantly 

improved, this hybrid physical machine learning approach may be valuable in 

operational settings, where the computational performance of a 

parametrization scheme is often a limiting factor for its uptake. Here, clear-sky 

fluxes are efficiently and accurately computed using Tripleclouds, and cloudy 

profiles are corrected with neural network emulators that have a negligible 

impact on Tripleclouds' runtime performance (∼1 %; Section 3.3.3). 

 

Although further improvements in emulating radiative transfer processes may 

be achieved with other types of network architectures (e.g., Ukkonen, 2021), 

the use of large domain-specific datasets such as those recently published as 

part of the MAchinE Learning for Scalable meTeoROlogy and climate project 

(see A3 in Dueben et al., 2021), or of data augmentation strategies (e.g., as 

implemented by Meyer, Nagler, et al., 2021) may help to further improve the 
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accuracy and generalization of current emulators. As the number of vertical 

levels in the current emulator is fixed, retraining may be necessary if levels in 

the atmospheric model increase. However, we expect this to be a minor 

limitation as changes in operational components are often on a much longer 

time scale (i.e., a few years) than those needed to retrain and retest emulators. 

While we show that the emulation of 3D cloud effects is a promising area of 

research, it is only the first step toward operationalization. As new model 

capabilities may only be used operationally at the ECMWF if found to improve 

forecast skills, online evaluations within the ECMWF Integrated Forecast 

System, need to assess our findings in the broader context on skill scores and 

numerical stability: compensating errors in cloud-radiation interactions mean 

that changes in their representation may degrade forecast scores unless 

accompanied by other modifications (Haiden et al., 2018; Martin et al., 2010) 

and further influence a model's stability.  

 

Current research highlights challenges with NN emulators coupled to Earth 

system models, reporting degraded performance and unstable simulations 

under some circumstances (Brenowitz & Bretherton, 2019; Rasp et al., 2018). 

While our recent experience in emulating gravity wave drag (Chantry et al., 

2021) and urban land surface (Meyer, Grimmond, et al., 2022) schemes was 

positive, long coupled evaluations are required to better assess these type of 

models for operational use. 

 

Although in this chapter basic uncorrelated synthetic data are generated using the 
Synthia tool to augment atmospheric profiles of shortwave radiation, in chapter 4 
a new, more complex method to improve the accuracy of ML emulators is 
investigated. This involves generating dependent data for zero- and one-
dimensional cases, typical of current parametrization schemes used within NWP 
models.  
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CHAPTER 4 

Boost Data, Boost Predictions12 
 
 
Chapter 3 discusses the benefits of enriching the input dataset for an ML emulator 
of shortwave radiation by generating profiles with a greater variety of surface 
albedo and cosine of the solar zenith angle. In chapter 4, I develop a general 
approach for generating complex, statistically dependent data and demonstrate it 
using a toy longwave radiation model. 
  

 
12 This chapter is based on Meyer, D., Nagler, T., & Hogan, R. J. (2021). Copula-based synthetic 
data augmentation for machine-learning emulators. Geoscientific Model Development, 14(8), 
5205–5215. https://doi.org/10.5194/gmd-14-5205-2021 
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4.1 Introduction 

The use of machine learning (ML) in weather and climate is becoming 

increasingly popular (Huntingford et al., 2019; Reichstein et al., 2019). ML 

approaches are being applied to an increasingly diverse range of problems for 

improving the modelling of radiation (e.g., Cheruy et al., 1996; Chevallier et al., 

1998, 2000; Krasnopolsky et al., 2005; Meyer et al., 2021; Ukkonen et al., 2020; 

Veerman et al., 2021), ocean (e.g., Bolton and Zanna, 2019; Krasnopolsky et al., 

2005), chemistry (e.g., Nowack et al., 2018), and convection (e.g., Krasnopolsky 

et al., 2013), as well as the representation of sub-grid processes (e.g., 

Brenowitz and Bretherton, 2018; Gentine et al., 2018; O’Gorman and Dwyer, 

2018; Rasp et al., 2018), and the post-processing of model outputs (e.g., 

Krasnopolsky and Lin, 2012; Rasp and Lerch, 2018). 

 

When it comes to training ML models for weather and climate applications two 

main strategies may be identified: one in which input and output pairs are 

directly provided (e.g., both come from observations) and a second in which 

inputs are provided but corresponding outputs are generated through a 

physical model (e.g., parametrization schemes or even a whole weather and 

climate model). Although the former may be considered the most common 

training strategy in use today, when the underlying physical processes are well 

understood (e.g., radiative transfer) and numerical codes are available, the 

latter may be of particular interest for developing one-to-one emulators (i.e., 

statistical surrogates of their physical counterparts), which can be used to 

improve computational performance for a trade-off in accuracy (e.g., 

Chevallier et al., 1998; Meyer et al., 2021; Ukkonen et al., 2020; Veerman et al., 

2021). Here, for clarity, we will only be focusing on the latter case and refer to 

them as emulators. 

 

In ML, the best way to make a model more generalizable is to train it on more 

data (Goodfellow et al., 2016). However, depending on the specific field and 
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application, input data may be scarce, representative of only a subset of 

situations and domains, or, in the case of synthetically generated data, require 

large computational resources, bespoke infrastructures, and specific domain 

knowledge. For example, generating atmospheric profiles using a general 

circulation model (GCM) may require in-depth knowledge of the GCM and large 

computational resources (e.g., data used in Meyer, Hogan, et al., 2022). 

 

A possible solution to these issues may be found by augmenting the available 

input dataset with more samples. Although this may be a straightforward task 

for classification problems (e.g., by translating or adding noise to an image), 

this may not be the case for parametrizations of physical processes used in 

weather and climate models. In this context, it is common to work with high-

dimensional and strongly dependent data (e.g., between physical quantities 

such as air temperature, humidity, and pressure across grid points). Although 

this dependence may be well approximated by simple physical laws (e.g., the 

ideal gas law for conditions found in the Earth’s atmosphere), the generation 

of representative data across multiple dimensions for most weather and 

climate applications is challenging (e.g., the nonlinear relationship between 

cloud properties, humidity, and temperature). 

 

To serve a similar purpose as real data, synthetically generated data thus need 

to preserve the statistical properties of real data with respect to (1) the 

individual behaviour of variables (e.g., the dry-bulb air temperature at a 

specific level) and (2) the dependence across variables and dimensions (e.g., 

the dry-bulb air temperature across two levels). Copulas are statistical models 

that allow these two aims to be disentangled (Trivedi & Zimmer, 2006; Joe, 

2014) and to generate new samples that are statistically similar to the original 

data in terms of their individual behaviour and dependence. 

 

Aside from copulas models (e.g., Patki et al., 2016), other methods may be 

suitable for generating synthetic data such as variational autoencoders (e.g., 
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Wan et al., 2017), and, more recently, generative adversarial networks (GANs; 

e.g., Xu and Veeramachaneni, 2018). Although the use of GANs for data 

generation is becoming increasingly popular among the core ML community, 

they require multiple models to be trained, leading to difficulties and 

computational burden (Tagasovska et al., 2019). Variational approaches, on 

the other hand, make strong distributional assumptions that are potentially 

detrimental to generative models (Tagasovska et al., 2019). Compared to black-

box deep-learning models, the training of (vine) copulas is relatively easy and 

robust, while taking away a lot of guesswork in specifying hyperparameters 

and network architecture. Furthermore, copula models give a direct 

representation of statistical distributions, making them easier to interpret and 

tweak after training. As such, copula-based models have been shown to be 

effective for generating synthetic data comparable to real data in the context 

of privacy protection (Patki et al., 2016). 

 

The goal of this paper is to improve ML emulators by augmenting the physical 

model’s inputs using copulas. We give a brief overview of methods in Section 

4.2.1 with specific implementation details in Section 4.2.2–4.2.5. Results are 

shown in Section 4.3, with a focus on evaluating synthetically generated data 

in Section 4.3.1 and ML predictions in Section 4.3.2. We conclude with a 

discussion and prospects for future research in Section 4.4. 

4.2 Materials and Methods 

4.2.1 Overview 
The general method for training an ML emulator for a set of 𝑁𝑁 samples involves 

the use of paired inputs 𝒙𝒙 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁} and outputs 𝒚𝒚 = �𝑦𝑦1, … , 𝑦𝑦𝑁𝑁� to find the best 

function approximation for a specific architecture and configuration. For 

inference, the trained ML emulator is then used to predict new outputs 𝒚𝒚∗ from 

inputs 𝒙𝒙∗. Outputs 𝒚𝒚 are generated through a physical model from 𝒙𝒙 and fed 
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to the ML emulator for training (Figure 4.1a). In this paper we introduce an 

additional step: augmentation through copula-based synthetic data 

generation (Figure 4.1b). The method is demonstrated with a toy model of 

downwelling radiation as the physical model (Section 4.2.4) and a simple feed-

forward neural network (FNN) as the ML emulator (Section 4.2.5). To evaluate 

the impact of copula-generated synthetic data on predictions we focus on 

predicting vertical profiles of longwave radiation from those of dry-bulb air  

 
Figure 4.1 | General strategies for training ML emulators. (a) Inputs 𝒙𝒙 are fed to the physical 
model to generate corresponding outputs 𝒚𝒚; 𝒙𝒙 and 𝒚𝒚 are used to train the ML emulator. (b) A 
data generation model (here copula) is fitted to inputs 𝒙𝒙 to generate synthetic inputs 𝒙𝒙′; inputs 
𝒙𝒙 and 𝒙𝒙′ are fed to the physical model to generate corresponding outputs 𝒚𝒚 and 𝒚𝒚′; both 𝒙𝒙, 𝒙𝒙′ 
and 𝒚𝒚, 𝒚𝒚′ are used to train the ML emulator. After training, the model (m; e.g., architecture and 
weights) is saved and used for inference on new data. 

 

temperature, atmospheric pressure, and cloud optical depth (other 

parameters affecting longwave radiative transfer, such as gas optical depth, 

are treated as constant in the simple model described in Section 4.2.4). This 

task is chosen at it allows us to (1) evaluate copula-based models for 

generating correlated multidimensional data (e.g., with dependence across 

several quantities and grid points), some of which (e.g., cloud optical depth) 

are highly non-Gaussian; (2) develop a simple and fast toy physical model that 
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may be representative of other physical parametrizations such as radiation, 

(urban) land surface, cloud, or convection schemes; and (3) develop a fast and 

simple ML emulator used to compute representative statistics. Here we define 

case (a) as the baseline and generate six different subcases for case (b) using 

(1) three levels of data augmentation factors (i.e., either 1x, 5x, or 10x the 

number of profiles in the real dataset) (2) generated from three different 

copula types. In the following Sections we give background information and 

specific implementation details about the general method used for setting up 

the source data (Section 4.2.2), data generation (Section 4.2.3), target 

generation (Section 4.2.4), and estimator training (Section 4.2.5) as shown in 

Figure 4.1b. 

4.2.2 Source Data 
Inputs are derived from the EUMETSAT Numerical Weather Prediction Satellite 

Application Facility (NWP-SAF; Eresmaa and McNally, 2014) dataset. This 

contains a representative collection of 25 000 atmospheric profiles previously 

used to evaluate the performance of radiation models (e.g., Hocking et al., 

2021; Hogan and Matricardi, 2020). Profiles were derived from 137 vertical-

level global operational short-range ECMWF forecasts correlated in more than 

one dimension (between quantities and spatially across levels) and extending 

from the top of the atmosphere (TOA; 0.01 hPa; level 1) to the surface (bottom 

of the atmosphere; BOA; level 137). Inputs consist of profiles of dry-bulb air 

temperature (𝑇𝑇  in K; Figure 4.2a), atmospheric pressure (𝑝𝑝 in hPa; Figure 4.2b), 

and cloud layer optical depth ( 𝜏𝜏𝑐𝑐 ; Figure 4.2c). 𝜏𝜏𝑐𝑐  is derived from other 

quantities to simplify the development of models as described in Section 4.2.4. 

Dry-bulb air temperature, atmospheric pressure, and cloud layer optical depth 

are then used as inputs to the physical model (Section 4.2.4) to compute 

outputs containing profiles of downwelling longwave radiation (𝐿𝐿↓ in W m-2; 

Figure 4.2d). As both copula models and ML emulator work on two-

dimensional data, data are reshaped to input 𝐗𝐗 and output 𝐘𝐘 matrices with 

each profile as row (sample) and flattened level and quantity as column 
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(feature) and reconstructed to their original shape where required. Prior to 

being used, source data are shuffled at random and split into three batches of 

10 000 profiles (40 %) for training (𝐗𝐗train, 𝐘𝐘train), 5 000 (20 %) for validation (𝐗𝐗val, 

𝐘𝐘val), and 10 000 (40 %) for testing (𝐗𝐗test, 𝐘𝐘test). 

 

 
Figure 4.2 | Atmospheric profiles used in this study. (a) dry-bulb air temperature, (b) 
atmospheric pressure, and (c) cloud layer optical depth from the NWP-SAF dataset (25 000 
profiles; Eresmaa and McNally, 2014) as well as (d) corresponding profiles of longwave radiation 
computed using the toy physical model described in Section 4.2.4. Profiles are ordered using 
band depth statistics (López-Pintado and Romo, 2009), shown for their most central (median) 
profile, and grouped for the central 0 %–25 %, 25 %–50 %, and 50 %–100 %. 

 

Table 4.1 | Profiles of input and output quantities used in this study. Input quantities are 
dry-bulb air temperature 𝑇𝑇 , atmospheric temperature 𝑝𝑝, and cloud layer optical depth 𝜏𝜏𝑐𝑐. 𝑇𝑇  and 
𝑝𝑝 are taken directly from the NWP-SAF dataset (Eresmaa and McNally, 2014), and 𝜏𝜏𝑐𝑐 is derived 
from other quantities as described in Section 4.2.4. The output quantity downwelling longwave 
radiation 𝐿𝐿↓  is computed using the physical model described in Section 4.2.4. Atmospheric 
model levels are 137 for full levels (FLs) and 138 for half-levels (HLs). 

Symbol Name Unit Dimension 
Inputs 
𝑇𝑇 Dry-bulb air temperature K FL 
𝑝𝑝 Atmospheric pressure Pa FL 
𝜏𝜏𝑐𝑐 Cloud optical depth 1 FL 
Output 
𝐿𝐿↓ Downwelling longwave radiation W m-2 HL 
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4.2.3 Data Generation 
Data generation is used to generate additional input samples (here 

atmospheric profiles) to be fed to the physical model (Section 4.2.4) and ML 

(Section 4.2.5) emulator. As mentioned in the Introduction (Section 4.1) copula-

generated synthetic data should thus resemble the original data as closely as 

possible with respect to the individual behaviour of variables and dependence 

across variables and dimensions. 

4.2.3.1 Background on Copula Models 

Suppose we want to generate synthetic data from a probabilistic model for 𝑛𝑛 

variables 𝑍𝑍1, … , 𝑍𝑍𝑛𝑛 . To achieve the first aim, we need to find appropriate 

marginal cumulative distributions 𝐹𝐹, … , 𝐹𝐹𝑛𝑛. A simple approach is to approximate 

them by the corresponding empirical distribution functions. To achieve the 

second aim, however, we need to build a model for the joint distribution 

function 𝐹𝐹(𝑧𝑧1, … , 𝑧𝑧𝑛𝑛). The key result, Sklar’s theorem (Sklar, 1959), states that any 

joint distribution function can be written as 

𝐹𝐹�𝑧𝑧1, … , 𝑧𝑧𝑛𝑛� = 𝐶𝐶�𝐹𝐹1�𝑧𝑧1�, … , 𝐹𝐹𝑛𝑛�𝑧𝑧𝑛𝑛��. (4.1) 

The function 𝐶𝐶  is called the copula and encodes the dependence between 

variables.  

 

Copulas are distribution functions themselves. More precisely, if all variables 

are continuous, 𝐶𝐶  is the joint distribution of the variables 𝑈𝑈1 = 𝐹𝐹1(𝑍𝑍1), … , 𝑈𝑈𝑛𝑛 =

𝐹𝐹𝑛𝑛(𝑍𝑍𝑛𝑛). This helps the estimation and simulation from the model. To estimate 

the copula function 𝐶𝐶, we: 

1. estimate marginal distributions 𝐹̂𝐹1 , … , 𝐹̂𝐹𝑛𝑛, 

2. construct pseudo-observations 𝑈̂𝑈1 = 𝐹̂𝐹1 (𝑍𝑍1), … , 𝑈̂𝑈𝑛𝑛 = 𝐹̂𝐹𝑛𝑛 (𝑍𝑍𝑛𝑛), and  

3. estimate 𝐶𝐶 from the pseudo-observations.  
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Then, given estimated models 𝐶̂𝐶  and 𝐹̂𝐹1 , … , 𝐹̂𝐹𝑛𝑛  for the copula and marginal 

distributions, we can generate synthetic data as follows. 

1. Simulate random variables 𝑈𝑈1,… , 𝑈𝑈𝑛𝑛 from the estimated copula  𝐶̂𝐶. 

2. Define 𝑍𝑍1 = 𝐹̂𝐹1
−1 (𝑋𝑋1), … , 𝑍𝑍𝑛𝑛 = 𝐹̂𝐹𝑛𝑛

−1 (𝑋𝑋𝑛𝑛). 

4.2.3.2 Parametric Copula Families 

In practice, it is common to only consider sub-families of copulas that are 

conveniently parameterized.  There are a variety of such parametric copula 

families. Such families can be derived from existing models for multivariate 

distributions by inverting the equation of Sklar's theorem: 

𝐶𝐶�𝑢𝑢1, … , 𝑢𝑢𝑛𝑛� = 𝐹𝐹�𝐹𝐹1
−1�𝑢𝑢1�, … , 𝐹𝐹𝑛𝑛

−1�𝑢𝑢𝑛𝑛��. (4.2) 

For example, we can take 𝐹𝐹  as the joint distribution function of a multivariate 

Gaussian and 𝐹𝐹1, … , 𝐹𝐹𝑛𝑛  as the corresponding marginal distributions. Then 

Equation 4.2 yields a model for the copula called the Gaussian copula, which 

is parameterized by a correlation matrix. The Gaussian copula model includes 

all possible dependence structure in a multivariate Gaussian distribution. The 

benefit comes from the fact that we can combine a given copula with any type 

of marginal distribution, not just the ones the copula was derived from. That 

way, we can build flexible models with arbitrary marginal distributions and 

Gaussian-like dependence. The same principle applies to other multivariate 

distributions and many copula models have been derived, most prominently 

the Student’s t copula and Archimedean families. A comprehensive list can be 

found in Joe (2014). 

4.2.3.3 Vine Copula Models 

When there are more than two variables (𝑛𝑛 > 2 ) the type of dependence 

structure these models can generate is rather limited. Gaussian and Student 

copulas only allow for symmetric dependencies between variables. Quite 

often, dependence is asymmetric, however. For example, dependence 

between 𝑍𝑍1  and 𝑍𝑍2  may be stronger when both variables take large values. 
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Many Archimedean families allow for such asymmetries but require all pairs 

of variables to have the same type and strength of dependence. 

 

Vine copula models (Aas et al., 2009; Czado, 2019) are a popular solution to 

this issue. The idea is to build a large dependence model from only two-

dimensional building blocks. We can explain this with a simple example with 

just three variables: 𝑍𝑍1, 𝑍𝑍2, and 𝑍𝑍3. We can model the dependence between 𝑍𝑍1 

and 𝑍𝑍2 by a two-dimensional copula 𝐶𝐶1,2 and the dependence between 𝑍𝑍2 and 

𝑍𝑍3  by another, possibly different, copula 𝐶𝐶2,3 . These two copulas already 

contain some information about the dependence between 𝑍𝑍1 and 𝑍𝑍3, the part 

of the dependence that is induced by 𝑍𝑍2. The missing piece is the dependence 

between 𝑍𝑍1  and 𝑍𝑍3  after the effect of 𝑍𝑍2  has been removed. Mathematically, 

this is the conditional dependence between 𝑍𝑍1  and 𝑍𝑍3  given 𝑍𝑍2  and can be 

modelled by yet another two-dimensional copula 𝐶𝐶1,3|2. The principle is easily 

extended to an arbitrary number of variables 𝑍𝑍1, … , 𝑍𝑍𝑛𝑛 . Algorithms for 

simulation and selection of the right conditioning order and parametric 

families for each (conditional) pair are given in Dißman et al. (2013). 

 

Because all two-dimensional copulas can be specified independently, such 

models are extremely flexible and allow for highly heterogenous dependence 

structures. Using parametric models for pairwise dependencies remains a 

limiting factor, however. If necessary, it is also possible to use nonparametric 

models for the two-dimensional building blocks. Here, the joint distribution of 

pseudo-observations ( 𝑈̂𝑈1 , 𝑈̂𝑈2 ) is estimated by a suitable kernel density 

estimator (see Nagler et al., 2017). 
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4.2.3.4 Implementation 

Here we use Synthia (Meyer & Nagler, 2021) version 0.3.0 (Meyer & Nagler, 

2020) with pyvinecopulib (Nagler & Vatter, 2020) to fit three different copula 

types: Gaussian, vine-parametric, and vine-nonparametric. Vine-parametric 

fits a parametric model for each pair in the model from the catalogue of 

Gaussian, Student, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8 copula 

families and their rotations (see Joe, 2014, for details on these families) using 

the Akaike information criterion (AIC). Vine-nonparametric uses 

transformation local quadratic likelihood fitting as explained in Nagler et al. 

(2017). Copulas are fitted to 𝐗𝐗train  to generate synthetic training sets 𝐗𝐗′train 

using three augmentation factors (i.e., each containing either 1x, 5x, or 10x the 

number of profiles in 𝐗𝐗train ). 𝐗𝐗train  plus 𝐗𝐗′train  form augmented training sets 

containing 20 000 profiles (or double the amount of training data) for 1x 

augmentation factor and 60 000 and 110 000 profiles for 5x and 10x 

augmentation factors, respectively. As the generation of new profiles with 

copula models is random, the generation is also repeated 10 times for each 

case to allow meaningful statistics to be computed. 

4.2.4 Target Generation 
Target generation is used to generate outputs from corresponding inputs 

using a physical model. Here, outputs are computed using a simple toy model 

based on Schwarzschild’s equation (e.g., Petty, 2006) to estimate the 

downwelling longwave radiation under the assumption that atmospheric 

absorption does not vary with wavelength as 

𝑑𝑑𝐿𝐿↓
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑧𝑧)�𝐵𝐵(𝑧𝑧 ) − 𝐿𝐿↓�, (4.3) 

where 𝑧𝑧  is the geometric height, 𝐵𝐵  is the Planck function at level 𝑧𝑧 (i.e., 𝐵𝐵 =

𝜎𝜎SB𝑇𝑇
4 , where 𝜎𝜎SB  is the Stefan-Boltzmann constant; giving the flux in W m-2 

emitted from a horizontal black body surface), and 𝑎𝑎  is the rate at which 

radiation is intercepted and/or emitted. A common approximation is to treat 

longwave radiation travelling at all angles as if it were all travelling with a zenith 
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angle of 53° (Elsasser, 1942): in this case 𝑎𝑎 = 𝐷𝐷𝛽𝛽𝑒𝑒 , where 𝛽𝛽𝑒𝑒 is the extinction 

coefficient of the medium, and 𝐷𝐷 = 1/cos(53) = 1.66 is the diffusivity factor, 

which accounts for the fact that the effective path length of radiation passing 

through a layer of thickness ∆𝑧𝑧  is on average 1.66∆𝑧𝑧   due to the multiple 

different angles of propagation. In the context of ML, 𝑎𝑎(𝑧𝑧) and 𝐵𝐵(𝑧𝑧) are known 

and 𝐹𝐹(𝑧𝑧) is to be predicted. Here we use the difference in two atmospheric 

pressures expressed in sigma coordinates (Δ𝜎𝜎, where 𝜎𝜎 is the pressure 𝑝𝑝 at a 

particular height divided by the surface pressure 𝑝𝑝0) instead of 𝑧𝑧. The layer 

optical depth 𝜏𝜏 =  𝛽𝛽𝑒𝑒Δ𝑧𝑧 is calculated from the total-column gas optical depth 𝜏𝜏𝑔𝑔 

and cloud layer optical depth 𝜏𝜏𝑐𝑐  as 𝜏𝜏 = 𝜏𝜏𝑐𝑐 +  𝜏𝜏𝑔𝑔 Δ𝜎𝜎𝑖𝑖  , since Δ𝜎𝜎 is the fraction of 

mass of the full atmospheric column in layer 𝑖𝑖. Then, as the downwelling flux 

at the top of the atmosphere is 0, the equation is discretized as follows 

assuming 𝐵𝐵 and 𝑎𝑎 are constant within a layer: 

𝐿𝐿↓𝑖𝑖−1/2 =  𝐿𝐿
↓
𝑖𝑖+1/2 �1 − 𝜖𝜖𝑖𝑖� +  𝐵𝐵𝑖𝑖𝜖𝜖𝑖𝑖, (4.4) 

where 𝐵𝐵𝑖𝑖 is the Planck function of layer 𝑖𝑖, 𝜖𝜖𝑖𝑖 = 1 − 𝑒𝑒
−𝑎𝑎𝑖𝑖Δ𝑧𝑧 = 1 − 𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 is the emissivity 

of layer 𝑖𝑖, 𝐿𝐿↓𝑖𝑖+1/2 is the downwelling flux at the top of layer 𝑖𝑖, and 𝐿𝐿↓𝑖𝑖−1/2 is the 

downwelling flux at the bottom of layer 𝑖𝑖. We compute 𝐿𝐿↓ from 𝑇𝑇 , 𝑝𝑝, and 𝜏𝜏𝑐𝑐 

using the real NWP-SAF (𝐗𝐗train) or augmented (𝐗𝐗train plus 𝐗𝐗′train) data. To reduce, 

and thus simplify, the number of quantities used in the physical model and ML 

emulator (Section 4.2.5), 𝜏𝜏𝑐𝑐  is pre-computed and used instead of vertical 

profiles of liquid and ice mixing ratios (𝑞𝑞𝑙𝑙 and 𝑞𝑞𝑙𝑙) and effective radius (𝑟𝑟𝑙𝑙 and 𝑟𝑟𝑙𝑙 

in m) as 3
2
Δ𝑝𝑝
𝑔𝑔
� 𝑞𝑞𝑙𝑙
𝜌𝜌𝑙𝑙𝑟𝑟𝑙𝑙
+ 𝑞𝑞𝑖𝑖
𝜌𝜌𝑖𝑖𝑟𝑟𝑖𝑖
�, where 𝜌𝜌𝑙𝑙 is the density of liquid water (1 000 kg m-3), 𝜌𝜌𝑖𝑖 is 

the density of ice (917 kg m-3), 𝑔𝑔 is the standard gravitational acceleration (9.81 

m s-2). For 𝜏𝜏𝑔𝑔  we use a constant value of 1.7 determined by minimizing the 

absolute error between profiles computed with this simple model and the 

comprehensive atmospheric radiation scheme ecRad (Hogan & Bozzo, 2018). 

4.2.5 Estimator Training 
As the goal of this paper is to determine whether the use of synthetic data 

improves the prediction of ML emulators, here we implement a simple feed-
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forward neural network (FNN). FNNs are one of the simplest and most 

common neural networks used in ML (Goodfellow et al., 2016) and have been 

previously used in similar weather and climate applications (e.g., Chevallier et 

al., 1998; Krasnopolsky et al., 2002). FNNs are composed of artificial neurons 

(conceptually derived from biological neurons) connected with each other; 

information moves forward from the input nodes through hidden nodes. The 

multilayer perceptron (MLP) is a type of FNN composed of at least three layers 

of nodes: an input layer, a hidden layer, and an output layer, with all but the 

input nodes using a nonlinear activation function. 

 

Here we implement a simple MLP consisting of three hidden layers with 512 

neurons each. This is implemented in TensorFlow (Abadi et al., 2016), and 

configured with the Exponential Linear Unit activation function, Adam 

optimiser, Huber loss, 1 000-epoch limit, and early stopping with patience of 

25 epochs. The MLP is trained with profiles of dry-bulb air temperature (Figure 

4.2a), atmospheric pressure (Figure 4.2b), and layer cloud optical depth (Figure 

4.2c) as inputs and profiles of downwelling longwave radiation (Figure 4.2d) as 

outputs. Inputs are normalized and both inputs and outputs are flattened into 

two-dimensional matrices as described in Section 4.2.2. The baseline case 

(Figure 4.1a) uses 10 000 input profiles without data augmentation for training, 

and copula-based cases (Figure 4.1b) use either 20 000, 60 000, or 110 000 

profiles. The validation dataset 𝐘𝐘val of 5 000 profiles is used as input for the 

early stopping mechanism, while the test dataset 𝐘𝐘test of 10 000 profiles is used 

to compute statistics (Section 4.3.2). Because of the stochastic nature of MLPs, 

training (and inference) is repeated 10 times for each case to allow meaningful 

statistics to be computed. Given that the generation of random profiles in the 

case of augmented datasets is also repeated 10 times (see Section 4.2.3.4), any 

case using data generation includes 100 iterations in total (i.e., for each data 

generation run, the estimator is trained 10 times). 
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4.3 Results 

4.3.1 Copula 
The quality of synthetic data is assessed in terms of summary statistics (e.g., 

Seitola et al., 2014) between the training 𝐗𝐗train  and copula-simulated 𝐗𝐗′train 

datasets. For each copula type we compute a vector of summary statistics 𝒔𝒔𝑖𝑖 =

𝑓𝑓(𝒑𝒑𝑖𝑖) where 𝑓𝑓  is the statistic function and 𝒑𝒑𝑖𝑖 = 𝐃𝐃𝒘𝒘, with 𝐃𝐃 a matrix of flattened 

source or simulated data and 𝒘𝒘  a vector of random numbers for the 𝑖𝑖 th 

iteration. 

 

 
Figure 4.3 | Statistical evaluation of synthetically generated data. Summary statistics 𝒔𝒔𝒊𝒊 
from 100 iterations for (a) mean, (b) variance, (c) standard deviation, and (d) 10 %, (e) 50 %, and 
(f) 90 % quantiles. Each point corresponds to a statistic for a single iteration in arbitrary units. 
The x-axis represents the projection of real NWP-SAF 𝐗𝐗train, while the y-axis represents that of 
the copula-generated data 𝐗𝐗′train. Results are reported for Gaussian, vine-parametric, and vine-
nonparametric copulas (see legend for keys). 

 

Summary statistics are computed for mean, variance, and quantiles, iterating 

100 times to allow meaningful statistics to be computed. As we consider 

random linear combinations of variables in source and copula-generated data, 
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we expect these summaries to coincide only if both marginal distributions and 

dependence between variables are captured. Figure 4.3 shows scatterplots of 

summary statistics 𝒔𝒔𝑖𝑖 for (a) mean, (b) variance, (c) standard deviation, and (d) 

10 %, (e) 50 %, and (f) 90 % quantiles. Real NWP-SAF data are shown on the x-

axis and copula generated data on the y-axis, with each point corresponding 

to a random projection as described earlier (100 points in total total). For a 

perfect copula model, we expect all points to fall on the main diagonal, where 

𝑥𝑥 = 𝑦𝑦. Figure 4.3 shows that for all copula models, synthetically generated data 

are close to the real data, with larger errors in variance and standard deviation. 

Qualitatively, we can evaluate copula-generated profiles in terms of their 

overall shape and smoothness across multiple levels, as well as range and  

 
Figure 4.4 | Qualitative evaluation of synthetically generated data. Profiles of (a, c, e) real 
NWP-SAF and (b, d, f) Gaussian-copula-generated data for (a–b) dry-bulb air temperature, (c–d) 
atmospheric pressure, and (e–f) cloud optical depth. The median profile is shown in black, with 
a random selection of 90 profiles grouped in batches of 3 (i.e., each having 30 profiles) for the 
central 0 %–25 %, outer 25 %–50 %, and 50 %–100 % calculated with band depth statistics (López-
Pintado and Romo, 2009). 
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density at each level. To this end we plot a side-by-side comparison of source 

(Figure 4.4, left panel) and Gaussian-copula-generated (Figure 4.4, right panel) 

profiles showing the median profile and random selection of 90 profiles 

grouped in batches of 3 (i.e., each having 30 profiles) for the central 0 %–25 %, 

outer 25 %–50 %, and 50 %–100 % quantiles calculated with band depth 

statistics (López-Pintado & Romo, 2009). Simulated profiles of dry-bulb air 

temperature (Figure 4.4b) appear less smooth than the real ones across levels 

(Figure 4.4a); however, both density and range are simulated well at each level. 

Simulated profiles of atmospheric pressure (Figure 4.4d) are simulated well: 

they are smooth across all levels with similar range and density (Figure 4.4c). 

The highly non-Gaussian and spiky profiles of cloud optical depth (Figure 4.4e) 

make qualitative comparisons difficult; however, simulated profiles (Figure 

4.4f) have a similar range and density, with high density for low values, and 

most range between levels 80 and 120. 

4.3.2 Machine Learning 
To evaluate whether ML emulators trained on augmented datasets have lower 

prediction errors compared to the baseline, here we use the test dataset 

𝐗𝐗test of 10 000 profiles defined in Section 4.2.2. Statistics are computed based 

on a vector of differences 𝒅𝒅  between the physically predicted baseline 

𝐘𝐘test  and ML-emulated 𝐘𝐘′test (i.e., 𝒅𝒅 =  𝐘𝐘test  −  𝐘𝐘′test ). From this, the mean bias 

(MB = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ) and mean absolute error (MAE = 1

𝑁𝑁
∑ �𝑑𝑑𝑖𝑖�
𝑁𝑁
𝑖𝑖=1 ) for the set of 𝑁𝑁 

profiles are computed. Box plots of MB and MAE are shown in Figure 4.5. 

Summary MB and MAE for the ML emulator with the lowest MAE using an 

augmentation factor of 10x are reported in Table 4.2. A qualitative side-by-side 

comparison of baseline and ML-predicted profiles using Gaussian-copula-

generated profiles with an augmentation factor of 10x is shown in Figure 4.6. 

 

MBs (Figure 4.5a) across all copula types and augmentation factors are 

generally improved, with median MBs and respective spreads decreasing with 

larger augmentation factors. Overall, the Gaussian copula model performs  
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Figure 4.5 | Errors for baseline and copula cases. These are grouped by different copula types 
(Gaussian: blue, vine-parametric: yellow, vine-nonparametric: red) and augmentation factors 
(1x, 5x, 10x) for the mean bias (MB; a) and mean absolute error (MAE; b). The median for the 
baseline case is shown in black, and the range is shaded in grey. 

 

better than vine-parametric and vine-nonparametric models. MAEs (Figure 

4.5b) show a net improvement from the baseline across all copula models and 

augmentation factors. When using an augmentation factor of 1x (i.e., with 

double the amount of training data), the median MAE is reduced to 

approximately 1.1 W m-2 from a baseline of approximately 1.4 W m-2 and 

further reduced with increasing augmentation factors. In the best case, 

corresponding to an augmentation factor of 10x (i.e., with an additional 100 

000 synthetic profiles), the copula and ML emulator combinations with the 

lowest MAE (Table 4.2) show that MBs are reduced from a baseline of 0.08 W 

m-2 to -0.02 and -0.05 W m-2 for Gaussian and vine-nonparametric, respectively, 

but increased to 0.10 W m-2 for vine-parametric. MAEs are reduced from a 

baseline of 1.17 W m-2 to 0.45, 0.56, and 0.44 W m-2 for Gaussian, vine-

parametric, and vine-nonparametric copula types, respectively. 

 

Table 4.2 | Errors for baseline and copula cases. Mean bias (MB) and mean absolute error 
(MAE) for baseline and copula cases. Statistics shown for the ML emulator combination with the 
lowest MAE. Baseline trained using 10 000 real NWP-SAF profiles. Copula cases were trained 
using 110 000 profiles (10 000 real and 100 000 synthetic), i.e., with an augmentation factor of 
10x. Bold indicates the lowest error 

Case MB (W m-2) MAE (W m-2) 
Baseline  0.08 1.17 
Gaussian -0.02 0.45 
Vine-parametric  0.10 0.56 
Vine-nonparametric -0.05 0.44 
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The ML training configuration with the lowest overall MB and MAE 

combination during inference corresponds to a Gaussian copula and 

augmentation factor of 10x (Table 4.2). Errors between the physically predicted 

𝐘𝐘test  and ML-predicted 𝐘𝐘′test  are shown for the baseline (Figure 4.6a) and 

Gaussian copula case (Figure 4.6b). These are shown grouped by their central 

0 %–25 %, outer 25 %–50 %, and 50 %–100 %. Qualitatively, most ML-generated 

profiles show improvements. The most central 25 % profiles are within ±20 W 

m-2 for the Gaussian copula case and about ±40 W m-2 for the baseline case. 

Near-surface errors (levels 130-BOA) are reduced to approximately ±5 W m-2 

from approximately ±10 W m-2. 

 

 
Figure 4.6 | Qualitative evaluation of emulated profiles for baseline and copula cases. 
Prediction errors for (a) baseline and (b) data-augmented emulator using 110 000 profiles (10x 
augmentation factor; Gaussian copula). The median (most central) profile is shown in black, and 
the most central 25 %, outer 25 %–50 %, and 50 %–100 % profiles are computed using band 
depth statistics and shown in shades of blue. 

 

4.4 Discussion and Conclusion 

Results from a qualitative comparison of synthetically generated profiles 

(Figure 4,4) show that synthetic profiles tend to be less smooth and noisier 

than the real NWP-SAF. Nevertheless, a machine-learning evaluation shows 

that errors for emulators trained with augmented datasets are cut by up to 75 
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% for the mean bias (from 0.08 to -0.02 W m-2; Table 4.2) and by up to 62 % for 

the mean absolute error (from 1.17 to 0.44 W m-2; Table 4.2). 

 

In this study, we show how copula-based models may be used to improve the 

prediction of ML emulators by generating augmented datasets that have 

statistically similar profiles in terms of their individual behaviour and 

dependence across variables (e.g., dry-bulb air temperature at a specific level 

and across several levels). Although the focus of this paper is to evaluate 

copula-based data generation models to improve predictions of ML emulators, 

we speculate that the same or similar methods of data generation have the 

potential to be used in several other ML-related applications, such as to (1) test 

architectures (e.g., instead of cross-validation, one may generate synthetic 

datasets of different size to test the effect of sample size on different ML 

architectures), (2) generate data for un-encountered conditions (e.g., for 

climate change scenarios by extending data ranges or relaxing marginal 

distributions), and (3) compress data (e.g., by storing reduced parameterized 

versions of the data if the number of samples is much larger than the number 

of features).  

 

Although so far, we have only highlighted the main benefits of copula-based 

models, several limiting factors should also be considered. A key factor for very 

high-dimensional data is that both Gaussian and vine copula models scale 

quadratically in the number of features—in terms of both memory and 

computational complexity. This can be alleviated by imposing structural 

constraints on the model, for example using structured covariance matrix or 

truncating the vine after a fixed number of trees. However, this limits their 

flexibility and adds some arbitrariness to the modelling process. A second 

drawback compared to GANs is that the model architecture cannot be tailored 

to a specific problem, like images. For such cases, a preliminary data 

compression step as in Tagasovska et al. (2019) may be necessary. 
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As highlighted here, data augmentation for ML emulators may be of particular 

interest to scientists and practitioners looking to achieve a better 

generalization of their ML emulators (i.e., synthetic data may act as a 

regularizer to reduce overfitting; Shorten & Khoshgoftaar, 2019). Although a 

comprehensive analysis of prediction errors using different ML architectures 

is out of scope, our work is a first step towards further research in this area. 

Moreover, although we did not explore the generation of data for un-

encountered conditions (e.g., by extending the range of air temperature 

profiles while keeping a meaningful dependency across other quantities and 

levels), the use of copula-based synthetic data generation may prove useful to 

make emulators more resistant to outliers (e.g., in climate change scenario 

settings) and should be investigated in future research. 

 

 

In the following two chapters, we will look at the applications of ML emulators in 
urban land surface schemes. In the next chapter, I will show a method to couple a 
physically based urban land surface model to a weather model, used to compare 
the ML emulator developed in chapter 6.  
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CHAPTER 5 

A Reference Urban Land Surface 
Model13 
 

 

In chapter 2, we have seen that the surface energy balance used in urban land 
surface models includes different physical processes such as radiation, conduction, 
and convection. Thus, urban land surface models can be regarded as simple 
candidates for evaluating the emulation of all these three processes relevant to 
atmospheric modelling. Before moving to the emulation of urban land surface 
processes, however, in this chapter, I will first couple a mature urban energy 
balance to a mature weather research model so that it can be used as a baseline 
in chapter 6. 
  

 
13 This chapter is based on Meyer, D., Schoetter, R., Riechert, M., Verrelle, A., Tewari, M., 
Dudhia, J., Masson, V., van Reeuwijk, M., & Grimmond, S. (2020). WRF‐TEB: Implementation and 
Evaluation of the Coupled Weather Research and Forecasting (WRF) and Town Energy Balance 
(TEB) Model. Journal of Advances in Modeling Earth Systems, 12(8). 
https://doi.org/10.1029/2019MS001961. 



 

57 
 

5.1 Introduction 

With increasing urbanization (United Nations, 2019) and climate change 

(Collins et al., 2013), the study of urban atmospheric phenomena such as the 

spatial variation of temperature (Arnfield, 2003), or the impact of the urban 

environment on moisture (Unger, 1999), precipitation (Liu & Niyogi, 2019; 

Shepherd, 2005), wind fields (Martilli, 2002; Moonen et al., 2012), boundary 

layer (Y. Chen et al., 2009; Lin et al., 2008; Masson, 2006), air conditioning 

(Salamanca et al., 2013, 2014; Takane et al., 2017), and heating energy demand 

(Santamouris et al., 2001), are increasingly relevant. 

 

Coupled numerical weather prediction (NWP) and urban land surface models 

allow a diverse range of urban climate phenomena to be studied (e.g., Best, 

2005; F. Chen et al., 2011; Hamdi et al., 2012). While NWP models simulate the 

prevailing meteorological conditions at kilometre resolution, land surface 

models (LSM) parameterize sub grid surface processes that are too small‐

scale, or (currently) too complex, to be explicitly modelled. Urban land surface 

models (ULSM) or urban canopy models (UCM), aim to capture the urban form 

(and sometimes function) created by buildings, roads, and vegetation. 

 

UCMs, applicable to horizontal scales of the order 1–10 km, provide surface 

radiative and turbulent fluxes to NWPs. Parameters for the different 

aerodynamic (e.g., roughness length, drag force), radiative (e.g., albedo, 

emissivity), and thermal (e.g., heat capacity, conductivity) processes are 

required to capture radiative shading and trapping, large storage heat fluxes, 

and strongly varying turbulent heat fluxes. The energy balance may be solved 

for individual facets (e.g., roof, walls, roads) with different levels of complexity 

(Grimmond et al., 2010, 2011). 

 

A coupled NWP‐UCM may treat the surface as a single vertical layer (single 

layer UCM), where the entire urban canopy layer is collapsed into a single 
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point, or as multiple layers (multilayer UCM), where the UCM is “immersed” in 

the NWP to account for the interaction between bluff‐bodies (e.g., buildings) 

and the atmosphere (F. Chen et al., 2011). The assumptions and simplifications 

can also vary from treating buildings as being arranged to create infinitely long 

street canyons (e.g., Kondo et al., 2005; Kusaka et al., 2001; Martilli et al., 2002; 

Masson, 2000), or as cuboids (e.g., Mills, 1997). 

 

Complex models may not perform systematically better than simpler ones 

(Grimmond et al., 2010, 2011). However, simpler models tend to lack features, 

thus limiting the study of specific urban climate processes (e.g., estimation of 

building energy consumption or details of it such as air conditioners energy 

demand, energy production from solar photovoltaic panels), which may be of 

interest to the broad urban climate community. 

 

Previous NWP‐UCM coupling work implemented and evaluated the linkage 

between the single layer Town Energy Balance (TEB; Masson, 2000 and 

subsequent papers) and NWPs (e.g., Freitas et al., 2007; Hamdi et al., 2012; 

Lemonsu et al., 2009; Lemonsu & Masson, 2002; Rozoff et al., 2003) or the 

Weather Research and Forecasting (WRF; Skamarock et al., 2019) model and 

UCMs (e.g., Kikegawa et al., 2014; Martilli et al., 2002). However, to our 

knowledge, none have employed tests to verify the effects of coupling alone. 

 

Here we both outline a technical approach to couple and verify model 

components and link TEB with WRF to add to other UCM options already 

available in WRF (UCAR, 2020). To date, these are: bulk urban parametrization 

within the Noah‐LSM (F. Chen & Dudhia, 2001; Ek et al., 2003), single layer 

Urban Canopy Model (SLUCM; F. Chen et al., 2011), and the multi‐layer Building 

Effect Parameterization (BEP; Martilli et al., 2002) with optional Building Energy 

Model (BEP-BEM; Salamanca et al., 2010). Given the conclusions in Grimmond 

et al. (2010, 2011)'s model comparison study, we do not expect WRF‐TEB to 

perform systematically better than other models currently available in WRF 
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but we have undertaken this work to (a) offer researchers and practitioners a 

greater number of features currently unavailable in other models (Section 

5.2.2), (b) simplify the evaluation of offline and online TEB in future research 

and comparison projects (Section 5.4.1), and (c) simplify the integration with 

future TEB developments (Section 5.4.1). 

 

We describe the coupling between WRF and TEB (Section 5.2) both 

conceptually (Section 5.3) and technically (Section 5.4) in a way that may be 

generalizable beyond the scope of WRF (or WRF‐TEB). We release the complete 

source code, data, and tools to make our results reproducible (Section 5.5) and 

evaluate the model (Section 5.6) with a technical integration test (Section 5.6.3) 

and meteorological observations (Section 5.6.4). 

5.2 Models and Software 

5.2.1 Weather Research and Forecasting 
WRF is a popular atmospheric model used in research and NWP applications 

(Powers et al., 2017). It has been developed under two variants: the Advanced 

Research WRF (ARW; Skamarock et al., 2008, 2019), and the Nonhydrostatic 

Mesoscale Model (NMM; Janjic, 2003; Janjic et al., 2001). The support for the 

latter recently ended (see Developmental Testbed Center, 2018). Here, we 

exclusively refer to the WRF‐ARW variant (as WRF). 

 

WRF‐TEB is developed using WRF‐CMake version 4.1.5 (Riechert & Meyer, 

2019b, 2020; Table 5.1) as it adds CMake (Kitware Inc., 2019a) support to the 

latest versions of WRF to simplify the configuration and build process of WRF 

and WPS (WRF Preprocessing System). Although, WRF‐CMake version 4.1.5 

does not include support for WRF‐Chem (Grell et al., 2005), WRF‐DA (Huang et 

al., 2009), WRFPLUS (Guerrette & Henze, 2015), or WRF‐Hydro (Gochis et al., 

2018), its benefits may outweigh these limitations to model developers, code  
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Table 5.1 | Models and software used in the coupling. “Model” refers to the science (i.e., as 
outlined in the literature), “Software” refers to the actual software and “Version” the exact 
software‐version used in running a simulation. 

 
 

maintainers, and end‐users wishing to build WRF, as it includes: robust 

incremental rebuilds, dependency analysis of Fortran code, flexible library 

dependency discovery, integrated support for shared (Open Multi‐Processing; 

OpenMP) and distributed (Message Passing Interface; MPI) memory, support 

for automated testing using continuous integration (CI), and availability of 

experimental prebuilt binary releases for Linux, macOS, and Windows from 

the project's GitHub page or through the integration with GIS4WRF (Meyer & 

Riechert, 2019a), a QGIS (QGIS Development Team, 2019) toolkit for pre- and 

post-processing, visualizing, and running simulations in WRF. Here we refer to 

both the physical model and the software (i.e., WRF‐CMake) as WRF, unless 

highlighting specific software features. 

5.2.2 Town Energy Balance 
The physically based single‐layer UCM TEB (Masson, 2000) characterizes cities 

by their surface area of building roofs, walls, roads, and integrated vegetation 

using a simplified infinite street canyon geometry. The energy balance of 

impervious and pervious (vegetation) surfaces are calculated independently 

before being aggregated. To characterize the urban area, TEB requires a 

surface fraction of vegetation/garden, building, and road area, building height 

and vertical to horizontal surface ratio. For the calculation of shadowing effects 

and radiative trapping, the street orientation is assumed isotropic. 

 

The outer surface of each facet is assumed to be sufficiently thin that the layer‐

averaged temperature can be used to determine the radiative and turbulent 

surface flux densities (i.e., the impervious skin temperature equals that of first 

layer‐averaged temperatures). Thermal diffusion into materials is calculated 

Model Reference Software Reference Version Reference 
WRF Skamarock et al. (2019) WRF‐CMake Riechert & Meyer (2019) 4.1.5 Riechert & Meyer (2020) 
TEB Masson (2000) TEB Meyer et al. (2020) 4.0.1 Masson et al. (2020) 
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using the thermal properties and thickness of the specified layers. The 

momentum flux is calculated for the whole canopy using a representative 

roughness length of the city (at model grid point scale), whereas thermal and 

hydrological fluxes for impervious areas are computed using an aerodynamic 

resistances network that considers local energy exchange within and above 

the canyon. Turbulent exchanges inside the urban canyon, and those between 

the canyon and the atmosphere above, depend on an aerodynamic 

resistances network with exchange coefficients that depend on wind speed 

and stability conditions (see Figure 1 in Lemonsu et al., 2004). Other TEB 

original features include the following: a water reservoir on roofs and road, 

and a snow mantel on roofs and roads (Masson, 2000), but more recent TEB 

developments now also include the following: 

1. Building Energy Model (BEM; Bueno et al., 2012): internal building 

energy balance (indoor air, floor, and internal mass), windows, heat‐

ventilation‐air‐conditioning (HVAC), infiltration, shading devices, and 

natural ventilation (opening of windows). 

2. Road orientation (Lemonsu et al., 2012): specified road orientation, and 

separate energy balance for adjacent walls. 

3. Gardens (Lemonsu et al., 2012): vegetation inside canyons. 

4. Green roofs (de Munck et al., 2013). 

5. Human behaviour related to building energy consumption (Schoetter 

et al., 2017). 

6. Calculation of urban carbon dioxide fluxes (Goret et al., 2019). 

7. Irrigation (de Munck et al., 2013): irrigation of green roofs, gardens, and 

watering of roads. 

8. Solar panels (Masson et al., 2014) for hot water and/or photovoltaic 

(PV). 

 

To implement WRF‐TEB, TEB (Meyer, Schoetter, Masson, et al., 2020) version 

4.0.1 (Masson et al., 2020; Table 5.1) is used as it includes MinimalDX (Meyer & 

Raustad, 2020) to improve the modelling of air conditioners (AC), and 
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Psychrolib (Meyer & Thevenard, 2019) to calculate psychrometric functions. 

Furthermore, support for Linux, macOS, and Windows with CMake allows 

direct integration in WRF‐CMake. In TEB 4.0.1, Features 3 and 4 use a simplified 

vegetation scheme with a fixed albedo and Bowen ratio, whereas Lemonsu et 

al. (2012) treats the vegetation by coupling to ISBA (Interaction Soil Biosphere 

Atmosphere; Noilhan & Planton, 1989; see simplifications in Section 5.3). 

Furthermore, features 5 and 6 are not available in TEB 4.0.1. 

5.3 Coupling Approach 

TEB is coupled to WRF following the generalized coupling methodology 

described in Best et al. (2004), where atmospheric quantities from the NWP's 

lowest model level are passed to the LSM to improve the calculation of surface 

fluxes (Best et al., 2004). The current implementation of WRF‐TEB is designed 

to work in both WRF  (UCAR, 2020) and WRF‐CMake  (Riechert & Meyer, 2019b) 

alongside the Yonsei University (YSU) planetary boundary layer (PBL) scheme 

(Hong et al., 2006; Noh et al., 2003), the revised MM5 Monin‐Obukhov surface 

layer scheme (Jiménez et al., 2012), and the Noah‐LSM as they have been 

shown to perform reasonably in recent comparison studies for several types 

of environments (Greve et al., 2013; Hari Prasad et al., 2016; Hu et al., 2010, 

2013; Shin & Dudhia, 2016; Xie et al., 2012). 

 

The general workflow used in WRF‐TEB is as follows: (1) for each grid cell 

defined as urban, and each time step, WRF provides TEB with atmospheric and 

model‐specific quantities from the lowest model level (Table 5.2a), and site‐

specific characteristics such as grid cell spatial coordinates and surface 

parameters (e.g., building height and roof albedo) from a lookup table in WRF 

(URBPARM.TBL). (2) From these, TEB computes area‐averaged surface 

quantities (Table 5.2b) and passes them to WRF (Figure 5.1). (3) Surface 
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diagnostics (Table 5.2c) are calculated in TEB and passed directly to WRF as 

outputs without affecting calculations in the WRF dynamical core. 

 

As with other TEB features (Section 5.2.2), anthropogenic heat flux options in 

WRF‐TEB are specified in the URBPARM file and modelled as follows: (a) traffic 

and industrial heat fluxes are user specified, (b) heating and air conditioning 

from buildings are a function of meteorological conditions, physical 

characteristics of the building envelope, internal heat release from electrical 

appliances, and heating/air conditioning set points. All options available in TEB 

(and therefore WRF‐TEB) are given in the TEB section of the Surfex scientific 

documentation (Le Moigne et al., 2018). 

 

Given the different nature of the two models, with atmospheric equations 

solved explicitly (WRF) and processes parameterized (TEB), several 

assumptions and simplifications are made: 

 

In TEB, the urban canopy layer (UCL) is represented as a point. This results in 

a mismatch in elevation between TEB and WRF (i.e., ℎ0,TEB and ℎ0,WRF; Figure 

5.1). As with other single‐layer UCMs, ℎ0,WRF is located at the mean building 

height (given in URBPARM.TBL). This means that the urban canopy layer is 

located below the surface of the NWP model. This is an important assumption 

of any single‐layer UCM and rarely explicitly stated. This assumption may be 

acceptable if buildings are low to midrise (e.g., < 20 m) and of uniform height, 

such as typical of extensive suburban areas. However, areas with tall and/or 

variable height roughness elements (e.g., skyscrapers), as in central business 

districts in many cities worldwide, may not suit the use of a single‐layer UCM. 

Depending on the user's needs and model configuration, outputs from WRF‐

TEB may require postprocessing to account for this assumption. 
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Figure 5.1 | Coupling approach. For each urban grid cells, and at each time step ( 𝑡𝑡𝑛𝑛 ), 
atmospheric quantities from the first model level such as dry‐bulb air temperature ( 𝑇𝑇 ), 
atmospheric pressure (𝑝𝑝), mass mixing ratio of water vapor (𝑟𝑟), and horizontal wind components 
(𝑢𝑢, 𝑣𝑣; Table 5.2a) are passed to TEB. In turn, TEB computes area‐averaged surface quantities 
such as net all‐wave radiation flux density (𝑄𝑄∗ ), and turbulent sensible and latent heat flux 
density (𝑄𝑄𝐻𝐻 and 𝑄𝑄𝐸𝐸 ; Table 5.2b) and passes them to WRF at the surface (𝑡𝑡𝑛𝑛+1). Under the single‐
layer UCM assumption, the vertical extent of the atmospheric model extend from ℎ0,WRF to the 
top of the atmosphere (TOA) whereas the UCM is assumed below the ground. This therefore 
creates a mismatch between the real ground level ℎ0,TEB and the ground level as seen by the 
atmospheric model ℎ0,WRF. 

 

Surface diagnostics in WRF are given at standard World Meteorological 

Organization weather station heights (i.e., 10 m for wind, and 2 m for air 

temperature and humidity), thus representing quantities below the mean 

building height in the case of single layer UCMs. In WRF‐TEB, we do not 

calculate these explicitly but simply rely on TEB's surface diagnostics (i.e., 

representative at half building height; see Masson, 2000). Given the single‐

layer assumption, WRF‐TEB's surface diagnostics are, in effect, representative 

at half the building height below the first model level. 
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Table 5.2 | Variables used in the coupling. Their Outputs (O), Inputs (I) and their respective 
units are shown separately. The full list of parameters are reported in URBAPARM.TBL. aWRF 
atmospheric surface pressure is assumed to be the same as the atmospheric pressure at the 
roof level in TEB due to the coupling assumption (see ℎ0,TEB  and ℎ0,WRF; Figure 5.1). WRF‐TEB 
assumes the atmospheric pressure to be the uniform throughout the canyon. b𝑄𝑄∗ =  𝑆𝑆↓  − 𝑆𝑆↑  +
𝐿𝐿↓  − 𝐿𝐿↑ , where 𝑆𝑆↓ is the (total) downwelling shortwave radiation flux density calculated as 𝑆𝑆↓↓ +
𝑆𝑆⇓↓, and 𝑆𝑆↑ and 𝐿𝐿↑ is the upwelling shortwave and longwave radiation flux density. 

 

The treatment of vegetation in WRF‐TEB can be done in three ways. Users have 

the option to define the fraction of vegetation as (a) integrated (i.e., vegetation 

inside canyons Lemonsu et al., 2012 or as part of green roofs de Munck et al., 

2013), (b) non-integrated, or (c) both (i.e., integrated, and non-integrated). In 

(a), WRF‐TEB uses a simple urban vegetation scheme with time‐constant 

Bowen ratio (default 0.25) and albedo (default 0.15). These values can be 

modified (e.g., higher for drought conditions), but are constant during a model 

simulation. The temporal evolution of soil temperature, surface water storage 

or vegetation is not represented. The approach of Lemonsu et al. (2012) to 

Symbol Name Unit WRF TEB 
(a) WRF outputs, TEB inputs 
𝑇𝑇 Dry‐bulb air temperature K O I 
𝑝𝑝0 Atmospheric pressure at the surfacea Pa O I 
𝑝𝑝 Atmospheric pressure at forcing level Pa O I 
𝑟𝑟 Mass mixing ratio of water vapor kg kg−1 O I 
𝑢𝑢 Zonal component of wind velocity m s−1 O I 
𝑣𝑣 Meridional component of wind velocity m s−1 O I 
𝑆𝑆↓↓ Downwelling direct shortwave radiation flux density W m-2 O I 
𝑆𝑆↓⇓ Downwelling diffuse shortwave radiation flux density W m-2 O I 
𝐿𝐿↓ Downwelling longwave radiation flux density W m-2 O I 
RR Rainfall rate kg m−2 s−1 O I 
SR Snowfall rate kg m−2 s−1 O I 
𝑍𝑍 Solar zenith angle rad O I 
Δ𝑡𝑡 Time step s O I 
𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Current (local) time s O I 
(b) WRF inputs, TEB outputs 
𝑄𝑄𝐻𝐻 Turbulent sensible heat flux density W m-2 I O 
𝑄𝑄𝐸𝐸 Turbulent latent heat flux density W m-2 I O 
𝐸𝐸 Evaporation mass flux density kg m−2 s−1 I O 
𝑄𝑄𝐺𝐺 Ground heat flux density W m-2 I O 
𝛼𝛼 Surface albedo 1 I O 
𝜀𝜀 Surface emissivity 1 I O 
𝑇𝑇𝑠𝑠 Surface (skin) temperature K I O 
𝑤𝑤𝑠𝑠 Mass mixing ratio of water vapor kg kg−1 I O 
𝑢𝑢∗ Shear (friction) velocity m s-1 I O 
(c) Diagnostic outputs 
𝑄𝑄∗ Net all‐wave radiation flux densityb W m-2 O O 
𝑇𝑇canyon Dry‐bulb air temperature at half building height K O O 
𝑟𝑟canyon Mass mixing ratio of water vapor at half building height kg kg−1 O O 
𝑢𝑢canyon Zonal component of wind velocity at half building height m s−1 O O 
𝑣𝑣canyon Meridional component of wind velocity at half building height m s−1 O O 
𝑄𝑄cooling Buildings' power demand for cooling W m-2 O O 
𝑄𝑄heating Buildings' power demand for heating W m-2 O O 
𝑄𝑄thermal Thermal power production of solar panels on roofs W m-2 O O 
𝑄𝑄electric Electric power production of solar panels on roofs W m-2 O O 
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simulate in‐canyon vegetation with the ISBA model is expected to be more 

universally applicable than the approach implemented in the current WRF‐ 

TEB. The default option in WRF‐TEB (b) is to calculate the surface energy 

balance separately for urban and vegetated areas and to aggregate the fluxes. 

For the vegetated areas, the Noah‐LSM cropland (MODIS class 12 in 

VEGPARM.TBL) class is assumed, whereas for built areas, TEB is used assuming 

no vegetation. In (c), users define the fraction of vegetation to model as 

integrated and non-integrated, respectively. 

5.4 Software Implementation 

The implementation of model to software and its testing are critical aspects of 

any model development. In WRF‐TEB (Figure 5.2), the data flow and sequence 

of Fortran subroutine invocations is similar to existing couplings (e.g., SLUCM, 

BEM) and can be coupled serially as parallelization will be inherited from WRF 

over the number of grid cells in the domain(s). The main differences are in its 

code structure, implementation, and location. Although a generalizable 

framework (Common Community Physics Package; CCPP) is currently being 

developed (see Developmental Testbed Center, 2019), WRF does not yet 

provide a clear extension or plugin mechanism for integrating external 

models. Here we summarize the main techniques and issues encountered 

during its development that may aid other future meteorological model 

developments: 

 

1. Modularity: As existing coupled models are tightly interwoven into WRF 

and partly modified, deviations from the original code can be hard to 

detect. By treating models as libraries we increase modularity. 
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Figure 5.2 | Software coupling. When TEB is enabled (sf_urban_physics = 4 in 
namelist.input), the Noah Surface Driver calls the TEB subroutine in the TEB Surface Module. 
This calls the TEB_DRIVER subroutine in the Driver Module in the TEB library. The TEB driver is 
invoked for each urban grid cell at every time step. TEB parameters and initial conditions (IC; 
e.g., initial wall temperature) are read from a lookup table (URBPARM.TBL) and state variables 
are initialized with those IC at the start of the simulation. Conversions between units and 
dimensions are done in TEB Surface Module. 

 

2. Clarity: As different couplings are typically in one large Fortran file or 

subroutine, understanding existing coupling is difficult. This is 

complicated further by reuse of some variables and parameters. By 

separating the coupling code, using consistent naming conventions, 

and introducing a small amount of duplication, we aim to increase 

clarity and reduce the time to undertake the coupling. 

 

3. Reliability: WRF allows simulations to run even when required inputs 

are omitted, resulting in uninitialized values that may change results. 

By using a stricter input validation, we increase reliability of model 

output. 

5.4.1 Modularity 
Copying the coupled model's source code (e.g., TEB) directly into the WRF 

codebase is likely to cause code fragmentation, ultimately hindering model 

development, collaboration, and (possibly) the formation of a strong coherent 

community around that model. 
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Often, coupled models are not readily available in both offline and online 

versions (e.g., SLUCM, BEP, BEP-BEM, PBL), or are modified from their original 

(i.e., offline) version (e.g., Noah‐LSM). For this reason it can be challenging to 

evaluate both versions. 

 

To prevent this, we (a) keep TEB in its original repository on GitHub (Meyer, 

Schoetter, Masson, et al., 2020), (b) include TEB as a library dependency in WRF 

(similar to what is done with other external libraries such as libnetcdf 

(Unidata, 2019) or libjasper (Adams & Ward, 2004)), and (c) link the TEB 

library to WRF through a thin coupling interface (module_sf_teb.F; Figure 

5.2). Then, to minimize complexity and overheads involved in publishing the 

TEB library in package managers (e.g., Ubuntu package repositories; 

(Canonical Ltd., 2019)), TEB is downloaded and compiled from source during 

the general WRF build process by relying on CMake's ExternalProject 

module (Kitware Inc., 2019b). 

 

Once coupled in this way, any improvements, bug fixes, or other changes to 

the ULSM are inherited from the model source code repository (e.g., on 

GitHub) and included in WRF with a new commit (or version) identifier that is 

downloaded during the build process. This provides a central location for 

“issues,” maintains the community around the model, and facilitates the 

creation of offline tests (e.g., on units or individual components, or end‐to‐end 

integration tests of the whole model). 

 

From this, a natural step is to make use of freely available Continuous 

Integration (CI) services to automate the execution of such tests on new 

commits on different operating systems and using multiple compiler versions 

and options, thus providing a stronger sense of reproducibility and trust. 

Where an appropriate testing methodology exists, CI can also enable model 

developers to accept code contributions from the community with more 

confidence. 
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5.4.2 Clarity 
WRF/urban models (e.g., SLUCM, BEM/BEP) often reuse a subset of variables, 

parameters, and parts of the coupling “glue” code. Problems can arise as WRF 

allows each model to declare which state variables should be allocated in 

memory (via “schemes” in its registry). As the glue code for all models of one 

type is typically in a single large Fortran file (e.g., module_sf_noahdrv.F) with 

many conditional branches (e.g., IF(SF_URBAN_PHYSICS == 1) THEN …) 

that is run irrespective of which model is activated, a model code contributor 

must understand most of the glue code to not introduce unintended memory 

issues. In the best case, using a variable that is not allocated leads to program 

crashes. In the worst case, it may lead to reading from, or writing to, other 

variables that are nearby in memory. In such case, the program may not fail 

but simply change results, possibly without the user being aware. 

 

Here, we separate the configuration and coupling of TEB as much as possible 

from other models to improve clarity and reduce the time needed to 

understand the coupling. The prefix "TEB_" is added to state variables, array 

dimension names, and parameters used by TEB, while as much glue code as 

possible is moved into the TEB coupling module (module_sf_teb.F; Figure 

5.2). Without shared variables and parameters both the coupling and model 

can be understood in isolation and evolve independently from other models, 

hopefully encouraging community contributions. Despite duplicating state 

variables and parameters between urban models, we believe the benefits 

outweigh the disadvantages. 

5.4.3 Reliability 
WRF checks the validity of some, but not all, user inputs. Unfortunately, when 

an urban parameter is unspecified, unexpected simulation results can occur 

as uninitialized memory values are used instead of an error being raised. 

These errors may be hard to trace or can go undetected. 
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To solve this we separate parameter reading (in module_sf_urban.F) into 

three phases: (a) initialize all parameters with a known out‐of‐bounds value, 

(b) read the user‐supplied parameters (from URBPARM.TBL), and (c) check that 

parameter values are not equal to the out‐of‐bounds value. Missing 

parameters cause an error message with the parameter name provided and 

stop WRF, thus saving time by early detection. Additional improvements could 

include checking value ranges for each parameter. 

5.5 Scientific Reproducibility 

Several issues with the lack of scientific reproducibility have been noted by 

several authors in various disciplines (Atmanspacher & Maasen, 2016; X. Chen 

et al., 2019; Cohen-Boulakia et al., 2017; Grüning et al., 2018; Redish et al., 

2018; Sochat et al., 2017; Van Bavel et al., 2016). Although scientific 

reproducibility may be interpreted solely as the ability to reproduce a method 

and/or algorithm to reproduce the findings of the work, it can also be intended 

as the ability to re-run code on different platforms to obtain comparable 

results to those outlined in the research. Thus, to achieve the latter level of 

scientific reproducibility, several aspects must be considered. In the current 

context we identify: CPU (micro) architecture, operating system (OS), compiler 

vendor, compiler version, compiler options, external library versions, source 

and version of data sets, pre-processing and postprocessing steps of data, 

model version and configuration, and plotting routines. 

 

One way to achieve a reasonable level of scientific reproducibility is to 

automate the generation of results included in this article by using a 

combination of Shell and Python scripts run through a Singularity container 

(Kurtzer et al., 2017). This approach remains architecture dependent but 

provides full control over OS (i.e., Ubuntu 18.04 in our case), compiler vendor 

(i.e., GNU in our case), source of data sets, processing steps for data, model 
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version and configuration, and plotting routines. Although this level of 

reproducibility may be deemed sufficient, the container would still rely on the 

Ubuntu package repository to install the compiler and external libraries  

 
Figure 5.3 | The scientific reproducibility approach taken in this paper. The data archive 
(Meyer, 2020) contains all data and code used to evaluate the models. Users wishing to 
reproduce our results can download the data archive and run Singularity on their local or 
remote systems. As small differences in outputs may be possible because of the different 
hardware used, model outputs are also provided as reference. 

 

without defining exact versions, or to download the “latest” (un‐versioned) 

WPS high‐resolution geographical data set (from the UCAR website). This can 

therefore lead to downloading newer compiler, library, or data set versions 

when re‐building the Singularity image and ultimately alter results included in 

this paper. 

 

Here, we achieve a reasonable level of scientific reproducibility by archiving all 

tools, data (including our results for reference, as equal results can only be 

guaranteed on the same hardware), and software together with a Singularity 

image containing OS and external libraries to Zenodo (Meyer, 2020; Figure 5.3). 

By doing this we remove the need for duplicating configuration settings in 

tables or appendices, thus reducing accidental errors and allowing 

reproducibility on local or high‐performance computing (HPC) systems. Users 

wishing to reproduce the results described in this paper can download the 

data archive (Meyer, 2020) and run Singularity on their local or remote systems 

(Figure 5.3). 
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5.6 Model Evaluation 

A fundamental aspect of any software development is testing. Although 

neither WRF nor TEB have been developed with testing in mind, in this section 

we outline tests for: the coupling (integration test, Section 5.6.3) and 

meteorological evaluation (Section 5.6.4). The former assesses the coupling 

technically, while the latter is used to explore the scientific benefit of the 

coupling. Both tests use similar model configurations (Section 5.6.2) with 

meteorological and geographical data for Toulouse, France (Section 5.6.1). 

 

5.6.1 Site and Observational Data 
Toulouse (Local Climate Zone 2; Hidalgo et al., 2019), the fourth largest city in 

France (475 438 inhabitants; INSEE, 2016), is located on a plain, 80 km north of 

the Pyrenees mountains (Figure 5.4). It has mild wet winters and dry hot 

summers (Joly et al., 2010). Central Toulouse (1°26′4′′E, 43°36′15′′N Monoprix; 

Figure 5.5) has homogeneous dense midrise buildings (see Figure 2 in Pigeon 

et al., 2007). Buildings (average height 15m) cover 55 % of the plan area, 

whereas vegetation covers 10 % (see Table 2 in Pigeon et al., 2007). 

 

During the CAPITOUL (Canopy and Aerosol Particles Interactions in TOulouse 

Urban Layer; Masson et al., 2008) campaign, a Gill HS 50 sonic anemometer 

for eddy covariance (EC), and other meteorological sensors, were mounted on 

a tower at 48 m to 27 m a.g.l. (above ground level; depending on local wind 

conditions). EC sensors should be above the roughness sublayer to observe 

local‐scale rather than microscale (e.g., individual urban obstacles) fluxes 

(Grimmond et al., 2004; Roth, 2000). The  Goret et al. (2019) analysis of 

observed momentum fluxes confirms that they are located in the inertial 

sublayer (constant flux layer). 
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EC measurements (sampled at 50 Hz) postprocessing includes double‐rotation 

(azimuth and pitch correction), recursive filtering according to McMillen (1988) 

with filter parameter set to 200 s, prior to 30 min covariance flux calculation 

(Pigeon et al., 2007). The EC flux footprint, calculated using the Kljun et al. 

(2015) model for each 30 min interval, identifies that the probable mean 80 % 

fetch extends to around 500 m in all wind directions, except for southerlies  

 
Figure 5.4 | The four WRF nested domains (d1–d4) used in online simulations. These are 
shown on a base map from Natural Earth (2019). The innermost domain (d4, 1 km horizontal 
grid spacing) uses WPS MODIS 30 arc‐sec land cover/use (UCAR, 2019). Grid cells for the Garonne 
river are replaced with urban land use and 1 km interpolated MApUCE urban fraction (Bocher 
et al., 2018; see Section 6.2). Higher urban fraction shown with darker shades of red. Manually 
assigned urban fraction (0.15) shown in yellow. See namelists in configs/wrf/capitoul in 
Meyer (2020) for the complete list of options used. 

 

where it extends to 1 km (Goret et al., 2019). Given the homogeneous 

characteristics within 500 m radius of the tower and areas further south, we 

assume that the observed turbulent fluxes are comparable to the modelled 

turbulent fluxes (horizontal grid spacing 1km; Figure 5.4, d4). 

 

Radiation fluxes observed with a Kipp and Zonen CNR1 radiometer (sample 

rate 0.1 Hz) mounted at the tower top are averaged to 1 min (used to force the 
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offline TEB) and to 30 min (used in the meteorological evaluation). Air 

temperature and relative humidity measured with a Vaisala HMP233 Thermo‐

hygrometer (sample rate 0.1 Hz) at 43.3, 34.2, and 25 m a.g.l. when the mast 

was in the high, medium, and lowest position (respectively) are used as 1- and 

30-min averages. The atmospheric pressure measured with a Vaisala PTB220 

class A barometer (sample rate 0.1 Hz) at 20 m a.g.l., is used as 1 min average.  

 
Figure 5.5 | View of Toulouse downtown roofs from the terrace of the central site. Credit: 
V. Masson. 

 

Missing data are gap‐filled every 1 min using observations from the routine 

observation station at Toulouse‐Blagnac airport (7 km northwest of the tower) 

or a station operating at the site of Météo‐France (flat grassland 6.5 km west 

southwest of the tower). The temperature and relative humidity values 

measured at these stations (2 m a.g.l.) are corrected by the average daily cycle 

of the differences between the values measured at the mast and at these sites. 

Wind speed measured at these stations (10 m a.g.l.) is corrected to the height 

of the mast assuming a logarithmic wind profile and neutral stratification. The 

values of aerodynamical roughness length and displacement height are 1.5 
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and 10.5 m, respectively. The evaluation is undertaken between 2 and 5 July 

2004 when the tower was at 48 m a.g.l. (28 m above roof height). A strong 

urban canopy layer heat island was present before sunrise on 4 July 2004 

(Hidalgo et al., 2008). An offline TEB simulation is forced with the required 

meteorological data and the surface morphological parameters averaged for 

the area within in a 500 m radius from the tower (see Figure 1 in Goret et al., 

2019 and data in Meyer, 2020). 

5.6.2 Model Setup 
Four nested domains (Figure 5.4) are set up using GIS4WRF version 0.14.2 

(Meyer & Riechert, 2019a, 2019b) with the innermost domain (Figure 5.4, d4) 

centred on the EC tower. The grid spacing is set to 1km for the horizontal and 

to 66 m (increasing with height and in pressure (𝜂𝜂) level equivalent) for the 

vertical, thus allowing equal comparison with observations (i.e., under single 

layer UCM assumptions (Section 5.3). The 48 m a.g.l. EC tower is represented 

at 33 m a.g.l., because the vertical extent of the buildings (mean building height 

15 m) is not represented in WRF (see single‐layer UCM assumptions in Section 

5.3). The WPS MODIS land use (UCAR, 2019) and WRF urban fraction for the 

innermost domain are modified using GIS4WRF: (a) lake (MODIS class 21) used 

to indicate the River Garonne within central Toulouse is reassigned to cropland 

(MODIS class 12) as the river would otherwise be over represented in the 1 km 

grid (the river is ≈ 200 m wide), and (b) the urban fraction (i.e., constant for the 

whole grid for pixels defined urban; MODIS class 13, i.e., built) is replaced with 

that from the MApUCE (100 m resolution) data (Bocher et al., 2018) linearly 

interpolated to 1 km to provide spatial variability within the domain. Grid cells 

classified as urban in the MODIS 30 arcsec data set but not present in MApUCE 

(Figure 5.4, d4 yellow) are given a default fraction of 0.15 to be representative 

of the area. For the initial and boundary conditions we used ECMWF Cycle 28r2 

analysis (ECMWF, 2004) with native horizontal grid spacing TL511 (≈ 40km), 

gridded to 0.36 arc‐degree. 
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Table 5.3 | General WPS/WRF configuration settings used in integration test and 
meteorological evaluation. Integration test values deviating from the common shared 
configuration are enclosed in parenthesis. The model time step is indicated for each domain 
(d1–d4). Time Standard (TS), Coordinated Universal Time (UTC), Lambert Conformal Conic (LCC). 
European Centre for Medium‐Range Weather Forecasts (ECMWF). †Vertical grid spacing 
increasing with height ( ℎ ) and first level (L1) set to 66 m a.g.l. See namelists in 
configs/wrf/capitoul in Meyer (2020) for the complete list of options used 

Option Value TS/Unit Reference 
a) General 
Start Time 1 July 2004 00:00 UTC - 
End Time 5 July 2004 08:18 UTC - 
Spin‐up (0)1 day - 
Timestep length (180)108, (60)36, 

12, 4 
s - 

b) Grid 
Map Projection LCC - - 
Horizontal 
Spacing 

27, 9, 3, 1 km - 

Vertical Spacing 𝑓𝑓(ℎ) with L1 = 66† m - 
Vertical Levels 61 - - 
Nests and Grid 
Ratio 

(2)4 and 1:3 - - 

Nesting 
Approach 

1‐way - - 

Urban Classes 1 - - 
c) Initial and Boundary Conditions 
Data Set Name ECMWF Cycle 

28r2 analysis 
- ECMWF (2004) 

Horizontal 
Spacing 

TL511 (≈ 40 km) - - 

Vertical Levels 61 - - 
Time Interval 6 h - 
d) Physical Parametrization 
Shortwave 
Radiation 

Dudhia - Dudhia (1989) 

Longwave 
Radiation 

RRTM - Mlawer et al. (1997) 

Microphysics Single‐moment 3‐
class 

- Hong et al. (2004) 

PBL YSU - Hong et al. (2006) 
Surface layer Revised MM5 - Jiménez et al. (2012) 
LSM Noah‐LSM - Chen & Dudhia (2001) 
ULSM TEB version 4.0.1 - Meyer et al. (2020) and 

Masson et al. (2020) 
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Table 5.4 | TEB configuration differences between the integration test and the 
meteorological evaluation. Bowen ratio (B), Noah‐LSM (N). See namelists in configs/teb in 
Meyer (2020) for the complete list of options used. 

Option Integration test Meteorological evaluation 
Vegetation Model B B/N 
Air Conditioning On Off 
Heating On Off 
Green Roofs On Off 
Solar Panels On Off 

 

Domains are generated using WPS‐CMake version 4.1.0 (Riechert & Meyer, 

2019c). WPS/WRF are configured with parameters from Table 5.3 (see 

namelists in configs/wrf/capitoul in Meyer (2020) for the complete 

configuration). TEB (offline and online) surface characteristics are derived and 

adapted from Lemonsu et al. (2004) and Schoetter et al. (2017). To reduce the 

computational and storage cost during the integration test, we only run the 

outermost two domains with a longer simulation timestep (Table 5.3). Other 

differences in configuration settings between integration test and 

meteorological evaluation are reported in Table 5.4. 

 

5.6.3 Integration Test 
The model coupling is validated using an integration (i.e., end‐to‐end) test. 

Although neither WRF nor TEB carry out unit tests on their components, we 

assume that each on their own is working correctly. In this test, variables 

passed in the coupling (Table 5.2a) and TEB specific output variables (Tables 

5.2b and 5.2c) are compared between offline (i.e., TEB) and online (i.e., WRF‐

TEB) models (Figure 5.6). As the inputs required to force TEB are not provided 

as standard WRF outputs, we introduce new variables in WRF's registry. To 

avoid permanently allocating memory for the additional 11 variables (Table 

5.2) a new registry package (teb_test) is enabled through the namelist 

configuration option teb_integration_test=1. Thus, only the necessary 

variables are allocated without performance overheads when tests are not 

conducted, and further testing can be performed when new software releases 
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are available. Any difference larger than machine precision is attributed to 

coupling implementation errors. Results are evaluated graphically and 

statistically (Appendix B).  

 

The implemented test detects errors that cause incorrect 

1. loading of parameters from the urban parameter table file; 

2. passing of parameters to TEB; 

3. conversion of date/time from WRF to TEB conventions; 

4. passing of geographical and date/time coordinates to TEB; 

5. passing of TEB‐internal state variables; 

6. storing of TEB‐specific output diagnostics; 

7. updating of WRF state variables from TEB outputs; 

8. grid cell looping; and 

9. activation of TEB based on grid cell vegetation type and global scheme 

selector. 

These errors can lead to software crashes or nonidentical results between TEB 

offline and WRF‐TEB. With offline TEB forced with data from the WRF dynamical 

core quantities converted prior to use in TEB are not assessed. For example, 

as WRF uses mixing ratio whereas TEB uses specific humidity, it must be 

converted for TEB. Conversion errors would propagate in TEB and be evident 

in this comparison. Meteorological evaluation is undertaken separately 

(Section 5.6.4). 

 

The regular WRF output are directly comparable to offline TEB outputs, as the 

relevant WRF quantities are not modified further. Modifications are prevented 

by setting the test grid urban fraction to 100 %. As this may be inappropriate 

for other submodels, the same method as used to obtain TEB forcing could be 

used. However, it may not be easy to test if the output quantities are correctly 

passed without using other techniques. 
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Figure 5.6 | Integration test workflow. (1) The integration test tool runs the integration test 
case in WRF, (2) the TEB library is called from WRF, and (3) WRF writes outputs (including TEB 
inputs) to NetCDF files. At the end of the WRF simulation, (4) TEB inputs are read and (5) TEB 
inputs are generated (6) for offline execution. (7) TEB reads the inputs, (8) simulates the same 
case, and stores outputs as text files. (9) Outputs are read and (10) compared to the WRF outputs 
using statistics and graphs. Asterisk (*) indicates that WRF is run with 
teb_integration_test=1 (see Section 5.6.3). 

 

This testing approach (Figure 5.6) requires a common calling method of the 

offline model (TEB). As TEB can be compiled both as a library for online use 

and as an executable for offline use (Figure 5.6), the integration test tool 

(Figure 5.6) can run both TEB and WRF‐TEB with the same source code. Thus, 

there is a strict testing of the coupling. The CCPP effort (Developmental 

Testbed Center, 2019) aims to organize models (/schemes) in a central location 

independent of a target framework. This may solve similar issues in the future. 

Unfortunately, it is not (yet) ready for use within WRF, or as an offline model 

and coupling testing tool. 

 

Although a single configuration cannot represent all the degrees of freedom 

defined by the different model options and input parameters, we activate as 

many TEB options as possible (Table 5.4). Results show no visible differences 

between TEB and WRF‐TEB (Figure 5.7). Similarly, no errors are detected using 

statistical metrics (NRMSE = 0 %, Figure 5.7). 
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Figure 5.7 | Results from the integration test used to verify the coupling. Line graph and 
normalized root‐mean‐square error (NRMSE) calculated from offline TEB and coupled WRF‐TEB 
outputs for (a) dry‐bulb air temperature, (b) mass mixing ratio of water vapor, and (c) zonal and 
(d) meridional component of wind velocity at half building height (a-d), buildings' power demand 
for (e) cooling and (f) heating, (g) thermal and (h) electric power production of solar panels on 
roofs, (i) net all‐wave radiation, (j) turbulent sensible, and latent (k) flux density, (l) evaporation 
mass and (m) ground heat flux density, (n) mass mixing ratio of water vapor, and surface (o) 
shear (friction) velocity, (p) albedo, (q) emissivity, and (r) skin temperature 

(a) (b)
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5.6.4 Meteorological Evaluation 
With the coupling code verified (Section 5.6.3), a meteorological evaluation 

allows the scientific benefit of the coupling to be explored. Given the wide 

range of WRF options (Powers et al., 2017) the individual choices (e.g., 

radiation, microphysics, and boundary layer) may have a larger impact than 

the UCM selected. Here, the evaluation is focused on TEB. 

 

For the evaluation period (2–5 July 2004) the net all‐wave radiation flux density 

(𝑄𝑄∗) is simulated well by TEB but only moderately well by WRF‐TEB (Figure 5.8a; 

Table 5.5). Unsurprisingly, TEB forced with observations has a lower mean 

absolute error (MAE) for 𝑄𝑄∗ (MAE ≈ 7.7W m−2; Figure 5.8a) than when forced 

with quantities simulated by WRF (MAE ≈ 63W m−2; Figure 5.8a; Table 5.5). This 

difference is most likely caused by the cloud microphysics scheme, which 

simulates too much cloud overnight (2 and 3 July) and the next morning (3 July). 

This leads to an overestimation of 𝑄𝑄∗ during the night and an underestimation 

during the morning by WRF‐TEB (Figure 5.8a). Turbulent sensible and latent 

heat flux densities (𝑄𝑄𝐻𝐻 and 𝑄𝑄𝐸𝐸) are captured reasonably well by both TEB and 

WRF‐TEB (MAE ≈ 34 and 27 W m−2 for 𝑄𝑄𝐻𝐻 and MAE ≈ 13 and 11 W m−2 for 𝑄𝑄𝐸𝐸  

respectively; Figures 5.8b and 5.8c; Table 5.5). 

 

Table 5.5 | Meteorological evaluation of half‐hourly values for 2–5 July 2004. WRF‐TEB with 
Noah‐LSM (WT‐N), WRF‐TEB with Bowen ratio (WT‐B), offline TEB (TEB), and arithmetic mean (𝑥𝑥)̅ 
of observation (OBS) values. Appendix B defines statistics. N = 145 

  MAE MBE 𝑥𝑥 ̅
Quantity Unit WT-N WT-B TEB WT-N WT-B TEB OBS 
𝑄𝑄∗ W m−2 62.6 62.5 7.7 7.9 11.6 1.0 154.5 
𝑄𝑄𝐻𝐻 W m−2 34.9 34.1 27.7 −2.7 7.9 −4.9 120.0 
𝑄𝑄𝐸𝐸 W m−2 13.4 13.1 11.3 5.7 −1.1 −4.6 18.0 
𝑇𝑇 K 1.5 1.6 — −1.2 −0.7 — 294.7 
𝑝𝑝 hPa 0.5 0.5 — −0.2 −0.3 — 1000.9 
𝑟𝑟 g kg−1 1.5 1.4 — 1.4 1.2 — 7.5 
𝑢𝑢 m s−1 1.3 1.4 — −1.0 −0.9 — 1.3 
𝑣𝑣 m s−1 1.4 1.5 — −0.2 −0.4 — −0.5 
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Figure 5.8 | Observations (Obs) and simulations results from the different models. The 
results are shown separately for WRF‐TEB with Noah‐LSM (WT‐N), WRF‐TEB with Bowen ratio 
(WT‐B), offline TEB (TEB) for (a) net all‐wave radiation flux density, (b) turbulent sensible heat 
flux density, and (c) turbulent latent heat flux density. Results between WT‐N, WT‐B, and Obs 
are (d) dry‐bulb air temperature, (e) atmospheric pressure, (f) mass mixing ratio of water vapor, 
(g) zonal component of wind velocity, and (h) meridional component of wind velocity. 
Observations from the Monoprix tower measured at (a–c, g, and h) 48 m a.g.l., (d, f) 43.3 m a.g.l., 
and (e) 20 m a.g.l. Atmospheric pressure corrected for height by linearly interpolating the 
pressure between the surface and the first model level to the measurement height at roof level 
because of the main assumption used in single‐layer UCMs (see Section 5.3). All other quantities 
are uncorrected as changes would be minimal. 

 

Dry‐bulb air temperature (𝑇𝑇 ) at 48m a.g.l. (28m above roof level) is generally 

underestimated by WRF‐TEB (mean bias error (MBE) ≈ −1.2 K; Figure 5.8d; 

Table 5.5) for the whole period and during the day, but slightly overestimated 

at night. Such underestimation requires further investigation but may be 

caused by other WRF processes (e.g., too low advected temperature). Mass 

mixing ratio of water vapor (𝑟𝑟) is overestimated (MBE ≈ 1.4g kg−1; Figure 5.8f). 

Pressure (𝑝𝑝) and wind components (𝑢𝑢, 𝑣𝑣) are simulated reasonably well (MAE ≈ 

0.5 hPa and 1.4m s−1, respectively; Figures 5.8e, 5.8g, and 5.8h; Table 5.5), 

indicating that WRF has captured the general atmospheric dynamics. 
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Overall, the choice of vegetation scheme used (i.e., WRF‐TEB with Noah‐LSM 

(WT‐N) or with Bowen ratio (WT‐B)) results in similar simulation performance 

(Table 5.5, Figure 5.8). 

5.7 Concluding Remarks 

The coupled WRF‐TEB model enables a wide range of urban climate processes 

to be analysed. In this paper, we describe techniques to help with the coupling 

approach, implementation, verification, and scientific reproducibility. 

 

In implementing the coupling interface, we do not alter the current WRF 

framework but, instead, implement techniques to help with software 

modularity, clarity, and reliability, for example, treating TEB as an external 

library. We assess the software linkage with an integration test to ensure that 

the coupling is technically correct. The results of the integration test show no 

detectable differences with the offline TEB. The meteorological evaluation is 

used to confirm that the results are physically reasonable; these generally 

show reasonable agreement with net all‐wave radiation and turbulent heat 

flux densities and other near‐surface observations. Although improvements of 

surface fluxes and near‐surface meteorological quantities may possibly be 

gained from using alternative parameters or parametrization schemes (e.g., 

microphysics, radiation) when configuring WRF, the interplay of these make 

attribution difficult. Furthermore, errors may arise from differences between 

observational source area (e.g., eddy covariance) and model grid length; 

parameter specification and uncertainties (e.g., from lack of availability, 

difficulty of “measurement” and theoretical understanding). This highlights the 

importance of undertaking both integration tests and meteorological 

evaluations. 
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Scientific reproducibility is addressed by providing model source code, 

configurations, data, and scripts with a Singularity image deposited on 

Zenodo. The coupled WRF‐TEB model has been integrated into WRF and WRF‐

CMake and released as a free, open‐source software on GitHub at 

https://github.com/teb-model/wrf-teb. 

 

We encourage future versions of WRF to include the implementation of a 

flexible number (i.e., beyond three) of urban classes to allow for a greater 

heterogeneity of urban form and function to be represented. 

 

 

In the next chapter, I will use TEB and WRF-TEB to evaluate a machine learning 
emulator of urban land surface processes. 
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CHAPTER 6 

A Faster, More Accurate Urban 
Land Surface Model14 
 

 

Continuing from chapter 5, I conclude the research chapters by applying ML to 
offline and online urban land surface emulation. This investigation allows us to 
explore the emulation of radiation, as investigated in chapter 3, but with two other 
physical processes typical of parametrization schemes: conduction and convection. 

  

 
14 This chapter is based on Meyer, D., Grimmond, S., Dueben, P., Hogan, R., & van Reeuwijk, M. 
(2022). Machine Learning Emulation of Urban Land Surface Processes. Journal of Advances in 
Modeling Earth Systems, 14(3). https://doi.org/10.1029/2021MS002744 
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6.1 Introduction 

Land surface models (LSM) parameterize the energy exchange between the 

surface and the atmosphere, providing the lower boundary conditions (e.g., 

radiative and turbulent heat fluxes) to atmospheric models (Stensrud, 2007). 

For urban areas, ULSMs (urban LSMs) are currently employed in some 

operational numerical weather prediction (e.g., Bengtsson et al., 2017; Seity et 

al., 2011) and global climate models (e.g., Hertwig et al., 2021; Oleson et al., 

2011) at the higher spatial resolution end but there is a growing need for 

broader adoption as they are fundamental to the delivery of integrated urban 

services (Baklanov et al., 2018; Grimmond et al., 2020). The complexity of 

ULSMs varies from simple assumptions (e.g., characterizing an impervious 

slab) to models that consider the 3D geometry of buildings with varying 

heights and material characteristics (Grimmond et al., 2009, 2010). This higher 

complexity, however, often comes at the cost of a greater number of site-

specific input parameters and increased computational cost, which does not 

necessarily translate into improved results (Grimmond et al., 2011). 

 

In recent years, machine learning (ML) techniques have shown potential in 

several areas of meteorology (e.g., Bolton & Zanna, 2019; Krasnopolsky et al., 

2013; Nowack et al., 2018; Rasp et al., 2018; Rasp & Lerch, 2018). A key 

limitation of these techniques, however, is the need for large amounts of 

training data which, in urban meteorology, are often scarce. 

 

One alternative to this is the creation of ML emulators (i.e., statistical 

surrogates of their physical counterparts) to improve the computational 

performance for a trade-off in accuracy (Meyer et al., 2021). Although 

emulators seek to improve the computational performance of current physical 

parametrizations, they offer no improvement in accuracy as surrogate models 

are, at best, as good as the data they are trained on. In urban land surface 

modelling, speed is, however, not such a limitation; unlike processes such as 
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radiative transfer where the fundamental processes are well understood but 

computational cost is the primary limiting factor (Meyer, Hogan, et al., 2022), 

most current ULSMs are reasonably fast but require several input parameters. 

Furthermore, previous comparisons (Grimmond et al., 2010, 2011) found that 

no individual ULSM is best at predicting all the main surface fluxes such as 

short- and longwave radiation, and turbulent sensible and latent heat fluxes. 

Although an obvious solution to this issue may be mitigated by running an 

ensemble of ULSMs coupled to a weather (or climate) model and use it to 

improve predictions, this is technically challenging to implement and hard to 

defend given the multi-fold increase in the computational cost resulting from 

running multiple ULSMs at once. Moreover, given the complexity of ULSMs, 

their availability, and the number of specific parameters needed to make 

realistic simulations, ULSMs often need a specialized team of people while an 

ML emulator may learn the behaviour of an ensemble mean and be a cheaper 

and easier alternative to run. 

 

Here, we seek to develop an emulator of urban land surface processes and 

evaluate whether the strengths of multiple ULSMs can be combined to 

improve both accuracy and computational performance. The specific goals of 

this paper are: 

1. To develop an ML emulator of urban land surface processes trained on the 

outputs of several ULSMs 

2. To evaluate the emulator's accuracy and computational performance 

3. To couple the developed ML emulator to a numerical weather model and 

to evaluate its accuracy and stability 

 

To our knowledge, this is the first attempt to emulate a ULSM. In the following 

sections, we introduce the general problem of urban land surface modelling 

with details about data and methods used to develop the emulator 

(Section 6.2) and analyse the results (Section 6.3) before concluding with a 

summary and ideas for further work (Section 6.4). 
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6.2 Methods 

6.2.1 General Problem 
At the core of ULSMs is the concept of surface energy balance (SEB), a general 

statement of energy conservation with applications to surfaces and volumes 

of all temporal scales (Oke et al., 2017). Physically, it describes the heating (or 

cooling) of a surface (Figure 6.1). Mathematically, it can be stated as: 

𝑑𝑑𝑄𝑄𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑄𝑄⋆ − 𝑄𝑄𝐻𝐻 − 𝑄𝑄𝐸𝐸, (6.1) 

where 𝑑𝑑𝑄𝑄𝑆𝑆/𝑑𝑑𝑑𝑑  is rate of change in thermal energy stored in a surface by 

conduction with 𝑄𝑄𝑆𝑆  the heat storage; 𝑄𝑄⋆ = (𝑆𝑆↓ − 𝑆𝑆↑) + (𝐿𝐿↓ − 𝐿𝐿↑)  is the surface 

net all-wave radiation flux density from downwelling (↓) and upwelling (↑) 

shortwave (𝑆𝑆) and longwave (𝐿𝐿) radiation; the convective heat flux densities are 

𝑄𝑄𝐻𝐻  the turbulent sensible and 𝑄𝑄𝐸𝐸  the turbulent latent (or evaporative). 

Anthropogenic heat fluxes, the additional energy fluxes associated with 

human activities, if not simulated or prescribed, may be assumed to be zero 

or minimal in ULSMs (e.g., in low-density residential areas). The horizontal 

advection of heat and moisture is generally ignored or parameterized by 

ULSMs but implicitly included when 

coupled to weather models. ULSMs 

generally solve a prognostic equation 

in the form of Equation 1 to predict the 

evolution of upwelling short- and 

longwave radiation flux density, 

sensible and latent heat flux density, 

forced by downwelling short- and 

longwave radiation flux density, air 

temperature and humidity, 

atmospheric pressure, wind speed 

and direction and liquid (or solid) 

precipitation. 

 
Figure 6.1 | Conceptual sketch of surface 
energy balance exchanges (ignoring 
advection, vegetation, and anthropogenic 
heat flux) for a clear-sky day. The arrows 
show the direction of fluxes relative to the 
surface. The shortwave flux is zero at night as 
the Sun's rays are below the horizon. The heat 
transfer processes are (left to right) radiative 
and convective. Other terms are defined in the 
text and Table 6.1. 

𝑀𝑀↓

𝑀𝑀↑
𝐿𝐿↓ 𝐿𝐿

↑
𝑄𝑄𝐸𝐸

𝑄𝑄𝐻𝐻

𝑄𝑄⋆ = 𝑀𝑀↓ − 𝑀𝑀↑ + 𝐿𝐿↓ − 𝐿𝐿↑

𝑄𝑄𝑀𝑀
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6.2.2 Urban Neural Network 
The urban neural network (UNN) developed here is based on the multilayer 

perceptron (MLP; Bishop, 2006; Goodfellow et al., 2016), one of the simplest 

types of neural networks (NNs). The MLP-based UNN (Figure 6.2) is set up to 

predict upwelling short- and longwave radiation flux density and turbulent 

sensible and latent heat flux density (Table 6.1b) at time 𝑡𝑡 + 1 from inputs at 

time 𝑡𝑡 of common meteorological variables such as dry-bulb air temperature 

and humidity, as well as the cosine of solar zenith angle 𝜇𝜇0 and model timestep 

length Δ𝑡𝑡 (Table 6.1a). Both 𝜇𝜇0 and Δ𝑡𝑡 are used to allow the UNN to run over 

different grid points at different spatial and temporal resolution when coupled 

to the weather model (Section 6.2.4). Specifically, 𝜇𝜇0 is used instead of latitude, 

longitude, and local time to reduce the number of features required by the 

UNN, and Δ𝑡𝑡 to dynamically vary the timestep length, matching that used by 

the weather model. The surface temperature 𝑇𝑇𝑠𝑠  is used rather than the 

upwelling longwave radiation 𝐿𝐿↑ to mimic a physical system whereby 𝑇𝑇𝑠𝑠 is used 

as a state between different timesteps and thus provide the initial condition at 

each new inference timestep (Figure 6.2). The UNN is implemented in 

TensorFlow (Abadi et al., 2015) version 2.6.2 (TensorFlow Developers, 2021c) 

and configured with two hidden layers, each having 256 neurons, rectified 

linear unit (ReLU) activation 

function, and Adam optimiser 

(Kingma & Ba, 2015) with 

mean squared error as its 

optimisation function. This 

configuration is deemed 

optimal after conducting a 

hyperparameter optimisation 

of several configurations 

(Table S.1) and visually 

inspecting the results. 

 
Figure 6.2 | Conceptual sketch of the urban neural 
network (UNN). The trained UNN is used to predict 
outputs y (Table 6.1b) at time 𝑡𝑡 + 1 from inputs x (Table 
6.1a) at time 𝑡𝑡  using trained weights w. The surface 
temperature 𝑇𝑇𝑠𝑠  from a previous timestep provides the 
initial condition at each new inference. 
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Table 6.1 | Inputs and outputs from data sets and models used to conduct the 
simulations. Multi-model Ensemble Mean (MEM). Depending on the model or data set used, 
data may be unavailable/not-applicable (-), available/outputted (✓), derived (D), constant (C), 
unmodified (U), state (S). †Additional inputs are given in namelists. aTEB requires direct and 
diffuse; these are computed using pvlib (Holmgren et al., 2018) version 0.9.0 (Holmgren et al., 
2021) but given directly as-is in WRF. bWind speed and direction are used instead of, and derived 
from the zonal and meridional components of wind velocity using MetPy version 1.1.0 (May et 
al., 2021). For computations between upwelling longwave radiation flux density 𝐿𝐿↑and surface 
temeprature 𝑇𝑇𝑠𝑠 a constant emissivity (𝜀𝜀) of 0.97 as reported in Coutts et al. (2007b) is used. The 
latent heat of vaporization ℒ𝑣𝑣 is assumed to be constant with a value of 2.464 MJ kg-1 which is 
applicable to 15 °C (Oke et al., 2017). 

 

6.2.3 Town Energy Balance 
To compare the UNN to a baseline, here we use the Town Energy Balance (TEB; 

Masson, 2000) model, a single‐layer ULSM characterizing city areas based on 

building roofs, walls, roads, and vegetation, and assuming buildings create an 

infinite street canyon (Masson, 2000). TEB is chosen as it is a mature, widely 

used ULSM, extensively evaluated (e.g., Lemonsu et al., 2004; Masson et al., 

2002; Pigeon et al., 2008), and available both offline (Meyer, Schoetter, Masson, 

et al., 2020) and online (i.e., coupled to weather models; e.g., Hamdi et al., 

2012; Lemonsu & Masson, 2002; Meyer, Schoetter, Riechert, et al., 2020). Here 

we use the TEB software (Meyer, Schoetter, Masson, et al., 2020) version 4.1.2 

(Masson et al., 2021) and refer to it as TEB. Similar to the UNN, TEB inputs 

Symbol Name Unit MEM TEB† WRF-TEB† UNN WRF-UNN Derived as 
(a) Inputs 
𝑇𝑇 Dry-bulb air temperature K ✓ ✓ ✓ ✓ ✓ - 
𝑞𝑞 Specific humidity kg kg-1 ✓ ✓ ✓ ✓ ✓ - 
𝑝𝑝 Atmospheric surface pressure Pa ✓ ✓ ✓ ✓ ✓ - 
𝑆𝑆↓ Downwelling shortwave radiation flux density W m-2 ✓ ✓a ✓a ✓ ✓ - 
𝐿𝐿↓ Downwelling longwave radiation flux density W m-2 ✓ ✓ ✓ ✓ ✓ - 
𝑢𝑢 Zonal component of wind velocity m s-1 ✓b ✓ b ✓ ✓ ✓ - 
𝑣𝑣 Meridional component of wind velocity m s-1 ✓ b ✓ b ✓ ✓ ✓ - 
RR Rainfall rate kg m-2 s-1 ✓ ✓ ✓ ✓ ✓ - 
𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Local time s ✓ ✓ ✓ - - - 
𝜑𝜑  Latitude deg ✓ ✓ ✓ - - - 
𝜆𝜆 Longitude deg ✓ ✓ ✓ - - - 
𝜇𝜇0 Cosine of solar zenith angle rad - - - ✓a ✓ - 
Δ𝑡𝑡 Timestep length s ✓ ✓ ✓ ✓ ✓ - 
(b) Outputs 
𝑆𝑆↑ Upwelling shortwave radiation flux density W m-2 ✓ ✓ - ✓ ✓ - 
𝐿𝐿↑ Upwelling longwave radiation flux density W m-2 ✓ ✓ - - D 𝜀𝜀𝜀𝜀𝑇𝑇𝑠𝑠

4 
𝑇𝑇𝑠𝑠 Surface (skin) temperature K - ✓ ✓ S S [𝐿𝐿↑ / (𝜀𝜀𝜀𝜀)]1/4 
𝑄𝑄𝐻𝐻 Turbulent sensible heat flux density W m-2 ✓ ✓ ✓ ✓ ✓ - 
𝑄𝑄𝐸𝐸 Turbulent latent heat flux density W m-2 ✓ ✓ ✓ ✓ ✓ - 
𝐸𝐸 Evaporation mass flux density kg m−2 s−1 - ✓ ✓ - D 𝑄𝑄𝐸𝐸 / ℒ𝑣𝑣  
𝑄𝑄𝑆𝑆 Heat Storage J m−2 - ✓ ✓ - D Equation 6.1 
𝛼𝛼 Surface albedo 1 C C C - D 𝑆𝑆↑/𝑆𝑆↓ 
𝜀𝜀  Surface emissivity 1 C C C - - - 
𝑤𝑤𝑠𝑠 Mass mixing ratio of water vapor kg kg−1 - ✓ ✓ - U - 
𝑢𝑢∗ Shear (friction) velocity m s−1 - ✓ ✓ - U - 
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include typical meteorological variables at time 𝑡𝑡 such as dry-bulb air 

temperature and humidity (Table 6.1a) to predict common surface energy 

balance variables at time 𝑡𝑡 + 1 (Table 6.1b). 

6.2.4 Weather Research and Forecasting 
(WRF) Coupling 
Both TEB and the UNN are coupled to the weather model WRF (Weather 

Research and Forecasting; Skamarock et al., 2019) in WRF-CMake (Riechert & 

Meyer, 2019b) version 4.2.2 (Riechert & Meyer, 2021) as it simplifies WRF-

related development, configuration, and build-processes. Implementation 

details of WRF-TEB are provided in Meyer, Schoetter, Riechert, et al. (2020). 

Variables used in the WRF-UNN and WRF-TEB coupling are similar; however, as 

friction velocity 𝑢𝑢∗ data are not provided in either observations or most ULSMs 

(Figure S.1), it is not part of the UNN (Section 6.2.2) and thus ignored in WRF-

UNN. Porting the UNN to WRF is made seamless by relying on the available C 

application programming interface (API) provided with TensorFlow 

(TensorFlow Developers, 2021a). We choose the lightweight version of 

TensorFlow, TensorFlow Lite (TensorFlow Developers, 2021b) as: (a) it has 

CMake support, which makes the integration in WRF-CMake straightforward 

and allows sharing of project build options in WRF-CMake, and (b) it has a very 

succinct and accessible API (compared to TensorFlow library C API), that makes 

the Fortran binding used in the coupling easy to write. To perform the actual 

coupling, the UNN is exported to a TensorFlow Lite file from Python. To enable 

the UNN in WRF, the TFLite Fortran binding (tflite.f90; Figure 6.3a) and the 

UNN surface module (module_sf_unn.F; Figure 6.3) are written. The former 

is used to interface with the TFLite C API and the latter to initialize inputs 

(Table 6.1a) and run the UNN to generate outputs (Table 6.1b) which are 

passed to WRF for the next timestep. 
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Figure 6.3 | Call to Tensorflow Lite (TFLite) C API from WRF as implemented for this study. 
(a) TFLite integration: the Fortran interface module tflite.f90 is used in WRF to bind to the 
TFLite C API, which is used by the UNN surface module module_sf_unn.F to initialize and run 
the neural network. (b) Example of TFLite Fortran binding (simplified from UNN surface module) 
use: first, a one-time initialization to load the TFLite model, configure its settings, and allocate 
input and output tensors is performed. Before each inference, input quantities (e.g., 
downwelling shortwave radiation) are stored in the input tensor in the expected order. Similarly, 
inference outputs are returned as output tensors from which individual quantities are accessed. 
Other pre- and post-processing steps such as normalization and error handling are omitted. See 
models/wrf-unn/phys/module_sf_unn.F & models/wrf-unn/phys/module_sf_unn.F 
in Meyer (2021) for the actual code. 

6.2.5 Data and Model Setup 
Grimmond et al. (2011)'s urban comparison study evaluated the accuracy of 

32 ULSMs (or different configurations) from a wide range of international 

modelling groups (Table S.2) using directly observed fluxes in Preston, a 

suburban area of Melbourne (Australia). The 32 ULSMs vary in complexity and 

approach to characterising urban areas. These (Grimmond et al., 2010, 2011) 

include treating the surface as a single and homogenous surface slab (e.g. 

Noah land surface model; Chen et al., 2004), to resolving the surface energy 

balances for roofs, walls and ground between buildings assuming an infinite 

street canyon using in a single layer (TEB; Masson, 2000) or with multiple layers 

(Building effect parameterization—BEP; Martilli et al., 2002) or even resolving 

interactions in three dimensions (e.g. temperatures of urban facets—TUF—3D; 

ba

WRF

TensorFlow Lite

TFLite library

TFLite library C API

TFLite Fortran binding
(tflite.f90)

UNN surface module
(module_sf_unn.F)
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Krayenhoff & Voogt, 2007). Site information to configure the ULSMs were 

released in four Stages each giving more details (Table S.3): Stage 1—forcing 

data and minimal site information; Stage 2—basic surface cover fractions; 

Stage 3—urban morphology; and Stage 4—of urban materials characteristics. 

The main data sets, with local time stamps (UTC+10, i.e., 10-h ahead of 

Coordinated Universal Time), are: 

 

1. Morphological parameters (MP): provided in the four Stages, characterizing 

the surface around the observation site (Grimmond et al., 2011 Table 2, 

and our Table S.3). 

 

2. Meteorological Forcing (MF; Grimmond et al., 2021): continuous gap-filled 

30-min averages with a period ending timestamp (i.e., 10:30 is 10:01–10:30) 

of meteorological variables at 40 m a.g.l. between 12 August 2003 13:30 

and 28 November 2004 23:00 (Figure 6.4; Table 6.1a). 

 

3. Multi-model output (MO; Grimmond et al., 2013): continuous outputs, from 

32 models or model-configurations between 13 August 2003 00:00 and 27 

November 2004 23:30 reported in four separate Stages for upwelling short- 

and longwave radiation flux density, and turbulent sensible and latent heat 

flux density (Table 6.1b). 

 

4. Observations (OBS; Grimmond et al., 2021): 30-min average fluxes with 

period ending timestamp measured at 40 m a.g.l. between 13 August 2003 

00:00 and 27 November 2004 23:30. Methods to obtain observed fluxes 

are given in in Coutts et al. (2007a, 2007b). This data set has the same fluxes 

as the MO data set but with observational gaps (∼39 % of MO; purple 

Figure 6.4a). 
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Here, a visual inspection of the MO data set for all Stages (Figure S.2) is used 

to remove ULSMs not simulating the turbulent latent heat flux density (8 

ULSMs) or showing outliers (2 ULSMs), leaving 22 ULSMs (Figure S.3). The MO 

data set is used to compute the ensemble mean; hereafter referred to as the 

multi-model ensemble mean (MEM). To make evaluations consistent between 

MEM, UNN, and TEB, these are conducted for periods spanning 13 August 2003 

00:00 and 27 November 2004 23:30 as defined in MEM totalling 22 704 30-min 

samples. For any given data set, the test fraction is the periods with OBS 

available (i.e., 39 % of MEM; number of samples N = 8 866; purple, Figure 6.4a) 

and the training fraction (used by the UNN; see point 2 below) for the 

remaining periods (i.e., 61 % of MEM; N = 13 838; black, Figure 6.4a). Evaluation 

metrics (Section 6.2.6) are calculated for the test fraction, with results 

(Section 6.3) using all samples except for the upwelling shortwave radiation 

flux density as this is zero at night-time (i.e., daytime: OBS > 2 W m−2, N = 4 

272). 

 

Model-specific setups are as follows: 

 

1. TEB uses morphological parameters from MP for the four Stages (Table S.3) 

forced with MF. TEB is run with 5-min (300-s) timesteps (from 13 August 

2003 00:00 to 27 November 2004 23:30) after linear interpolation of the 30-

min MF data set (e.g., 00:00, 00:05, …) to predict the next 5-min (e.g., 00:05, 

00:10, …). The last 5-min sample of each 30-min period (e.g., 00:30) is used 

in analyses (Section 6.3). From the evaluation of TEB outputs at all Stages, 

Stage 4 is selected as it has the smallest errors (Appendix C). 

 

2. The UNN is trained with MF as inputs and MEM from Stage 2 as outputs 

(Table 6.1) using the training fraction. Stage 2 is selected as it offers the 

'best' trade-off between complexity (i.e., number of parameters used to 

configure the 22 ULSMs; Table S.3) and accuracy (Appendix C). Prior to 

training, the surface temperature 𝑇𝑇𝑠𝑠  is derived from the MEM upwelling 
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longwave radiation flux density 𝐿𝐿↑ assuming a constant emissivity (Table 

6.1b). To allow the UNN to be used with different timestep lengths, nine 

linearly interpolated copies of both inputs and outputs are made (with 1, 

2, 5, 10, 20, 60, 120, 300, and 600-s timesteps), each derived from the 30-

min data, and concatenated together with the original. A random subset 

corresponding to the same number of samples included with the 30-min 

data (N = 13 838) is selected in each copy to keep the number of training 

samples across the linearly interpolated copies equal. Thus, the total 

number of samples used for training the UNN is 138 380 (i.e., ten times the 

original 30-min data). Of this, 25 % are randomly reserved for the early 

stopping mechanism. For inference, the UNN is forced with 5-min MF (12 

August 2003 23:30 and 27 November 2004 23:30) derived by linearly 

interpolating the 30-min intervals to be consistent with TEB. As UNN 

outputs (Table 6.1b) include 𝑇𝑇𝑠𝑠  rather than 𝐿𝐿↑  used in evaluations, UNN 

outputs are postprocessed to derive 𝐿𝐿↑  from 𝑇𝑇𝑠𝑠  assuming a constant 

emissivity (Table 6.1b). The stochastic nature of the multilayer perceptrons 

is assessed by repeating the training (and inference) 100 times, each with 

a different random seed. At each iteration (a) for each UNN output variable 

(𝑆𝑆↑ , 𝐿𝐿↑ , 𝑄𝑄𝐻𝐻 , 𝑄𝑄𝐸𝐸 ; Table 6.1b), the normalized mean absolute error (nMAE; 

Section 6.2.6) is computed using the ‘true’ MEM and UNN-predicted 

samples for the whole period (i.e., both train and test fractions) and (b) the 

mean nMAE  ( nMAE̅ ) is computed as 0.25 �nMAE𝑆𝑆↑ + nMAE𝐿𝐿↑ + nMAE𝑄𝑄𝐻𝐻 +

nMAE𝑄𝑄𝐸𝐸�. The UNN with the median nMAE̅  from the 100 iterations (Figure 

S.4) is taken as the representative UNN and used in analyses (Section 6.3). 

Thus, all UNN-relevant metrics (Section 6.2.6) are computed using results 

from the UNN with the median nMAE̅ . 
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Figure 6.4 | Meteorological data. Observed meteorological forcing (MF) data (30-min, sources 
Section 6.2.5): (a) downwelling shortwave radiation flux density with period with evaluation 
observed fluxes (i.e., test fraction) shown (purple), (b) downwelling longwave radiation flux 
density, (c) atmospheric surface pressure, (d) dry-bulb air temperature, (e) relative humidity, (f) 
wind speed and (g) wind direction, and (h) rainfall rate. Wind speed and direction computed with 
MetPy version 1.1.0 (May et al., 2021) from the zonal and meridional components of wind 
velocity. Relative humidity computed with PsychroLib (Meyer & Thevenard, 2019) version 2.5.0 
(Meyer & Thevenard, 2020) from dry-bulb air temperature, specific humidity, and atmospheric 
surface pressure. Local time is 10-h ahead of Coordinated Universal Time (UTC+10). 

 

3. The coupled WRF-TEB and WRF-UNN simulations are set up with four 

nested domains (Figure 6.5), generated with GIS4WRF (Meyer & Riechert, 

2019a) version 0.14.4 (Meyer & Riechert, 2020) and processed using WPS-

CMake (WRF Preprocessing System) version 4.1.0 (Riechert & Meyer, 

2019a). Both TEB and the UNN are run for the innermost domain 

(Figure 6.5b) with a 5-s timestep cantered on the Preston measurement 

tower. The innermost domain with 1 km horizontal grid spacing has a 66 m 

vertical grid spacing close to the surface, increasing with height. As model 

buildings are assumed to be within the ground (Meyer, Schoetter, Riechert, 

et al., 2020) the flux tower sensors at 40 m a.g.l. is 33.6 m above the model 

surface (as mean building height = 6.4 m, Table S.3). WPS MODIS land use 

data (UCAR, 2019) are used as one urban class with the same urban and 
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vegetation fractions (i.e., all grid cells) for consistency between TEB and 

UNN simulations. Stage 4 parameters (Table S.3) are used in both WRF-TEB, 

and TEB-offline runs. The European Centre for Medium-Range Weather 

Forecasts (ECMWF) Cycle 28r2 analysis (ECMWF, 2004) are used to provide 

the initial and boundary conditions. Other parameters used to configure 

WRF and WPS are given in Table S.4. Simulations are run for summer (23 

December 2003 10:00–27 December 2003 10:00) and winter (25 June 2004 

10:00–31 June 2004 04:00) periods, with evaluations using 65 hr in summer 

(24 December 2003 14:30–27 December 2003 07:30) and 98.5 hr in winter 

(26 June 2004 21:00–30 June 2004 23:30) to allow some model spin-up; 

giving the longest continuous observation evaluation periods in the two 

seasons. Instantaneous WRF fluxes at each 5-min interval (e.g., 00:00, 

00:05, …) are averaged to 30-min time ending values for comparison with 

OBS. 

 
Figure 6.5 | Study location and domains. The study area (a) within Australia and the four 
nested domains (d1-d3 and innermost, red) used in online simulations, and (b) innermost 
domain (1 km horizontal grid spacing) with WPS MODIS 30 arc‐sec land cover/use (UCAR, 2019). 
The UNN and TEB are run for ‘urban’ (red) grid cells in WRF assuming land cover fractions of 
0.445 building, 0.38 vegetation, and remainder non-building impervious. Sources: map features 
by Natural Earth Vector (Kelso & Patterson, 2009) are in the public domain. Map tiles by Stamen 
Design (2021), under Creative Commons Attribution 3.0 license (CC BY 3.0). Data from 
OpenStreetMap (OpenStreetMap contributors, 2017), under Open Data Commons Open 
Database License (ODbL). 
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6.2.6 Evaluation Metrics 
To assess the simulations, statistics are computed between ‘true’ 𝑦𝑦𝑡𝑡  and 

predicted 𝑦̂𝑦𝑡𝑡 samples at time 𝑡𝑡 for 𝑁𝑁 timesteps. The metrics used are: mean bias 

(MB = 1
𝑁𝑁
∑ 𝑦̂𝑦𝑡𝑡 −  𝑦𝑦𝑡𝑡𝑁𝑁
𝑡𝑡=1 ),  mean absolute error (MAE = 1

𝑁𝑁
∑ |𝑦̂𝑦𝑡𝑡 −  𝑦𝑦𝑡𝑡|𝑁𝑁
𝑡𝑡=1 ), mean absolute 

error normalized by mean absolute ‘true’ flux |𝑦𝑦|̅  (hereafter referred to as the 

normalized mean absolute error, nMAE = 100 % [MAE / |𝑦𝑦|̅ ] ) and standard 

deviation of the error ( SDE = �1𝑁𝑁 ∑ �(𝑦̂𝑦𝑡𝑡 −  𝑦𝑦𝑡𝑡) − (𝑦̂𝑦 − 𝑦𝑦)̅ �2𝑁𝑁
𝑡𝑡=1 ). Depending on the 

evaluation type, ‘true’ samples 𝑦𝑦𝑡𝑡 are from either OBS or MEM and predicted 

samples 𝑦̂𝑦𝑡𝑡 are from either MEM, UNN or TEB outputs (Section 6.2.5). 

6.3 Results and Discussion 

6.3.1 Multi-model Ensemble Mean 
First, we assess the trained urban neutral network (UNN) using the test fraction 

(Section 6.2.5) of the multi-model ensemble mean (MEM) data set to 

determine if the UNN captures the main processes in predicting the surface 

energy balance. A perfect emulator would have all points on the line 𝑥𝑥 =  𝑦𝑦 

(Figure 6.6). The UNN has the highest skill for the daytime upwelling shortwave 

radiation flux density (Figure 6.6a): mean bias (MB) is 3.0 W m−2, standard 

deviation of the error (SDE) 4.4 W m−2, mean absolute error (MAE) 4.2 W m−2, 

and normalized mean absolute error (nMAE) 7.0 %. The UNN-predicted 

longwave flux (Figure 6.6b) is slightly poorer (MB\SDE\MAE are −4.5\6.6\6.4 W 

m−2) but with a lower nMAE (1.6 %) because of the larger absolute fluxes. The 

turbulent latent (Figure 6.6d) heat flux density is more accurately predicted 

(MB\SDE\MAE are 5.9\13.7\8.6 W m−2 and nMAE is 32.7 %) than the sensible 

(MB\SDE\MAE are −6.2\21.4\16.1 W m−2 and nMAE is 34.2 %; Figure 6.6c) but 

with larger outliers. This relative ranking is consistent with the extensive ULSM 

evaluation literature. 
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Figure 6.6 | Comparison of UNN to MEM. 1:1 line (red), data density (color) and evaluation 
statistics (Section 6.2.6) shown, for 30-min flux densities of (a) daytime upwelling shortwave 
radiation (𝑆𝑆↑) and (b) 24 h upwelling longwave radiation (𝐿𝐿↑), turbulent (c) sensible (𝑄𝑄𝐻𝐻), and (d) 
latent (𝑄𝑄𝐸𝐸) heat. Units are W m-2 except for the nMAE percentage (%). Note that axes scales differ 
between plots. 

 

6.3.2 Offline Simulations 
Second, we compare the UNN to observed fluxes (OBS) and a version of the 

widely used ULSM TEB (Section 6.2.3). Two evaluations are undertaken with 

each using different meteorological forcing data: (a) observed MF (offline) and 

(b) coupled to WRF (online). The offline results are analysed for both the test 

fraction and the short summer and winter periods (Section 6.2.5; Table 6.2). 

Online simulations (Section 6.3.3) are only evaluated for the latter two periods. 
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Table 6.2 | Results summary. Observed flux densities (upwelling shortwave 𝑆𝑆↑ and longwave 
𝐿𝐿↑ radiation, and turbulent sensible 𝑄𝑄𝐻𝐻 and latent 𝑄𝑄𝐸𝐸 heat) and modeled (UNN, MEM, and TEB) 
evaluation metrics (Section 6.2.6) for N 30-min periods with the lowest nMAE (bold) per flux 
indicated per data cohort 

 

Relative to OBS, MEM has the lowest biases and errors for all but the upwelling 

shortwave radiation flux density, where it is outperformed by TEB (Figure 6.7; 

Table 6.2). Similarly, as the UNN captures the main surface processes 

modelled by the MEM (Section 6.3.1), its predictions outperform TEB's for all 

but the upwelling shortwave radiation. The MAE for the upwelling shortwave 

radiation (Figure 6.7a; Table 6.2) for all (MEM\UNN\TEB) is < 6 W m-2 

(Figures 6.7e–6.7g; Table 6.2). The MAE for the longwave (Figure 6.7b) is larger 

than for the shortwave, with TEB (20 W m−2) having the largest between both 

MEM and UNN (MEM 4 W m−2; UNN 7.8 W m−2). Similarly, the MAE for the 

turbulent sensible (Figures 6.7c and 6.7f) and latent (Figures 6.7d and 6.7f) 

heat flux densities are larger for TEB (30 and 25 W m−2, respectively) compared 

to MEM and UNN (≤ 21 W m−2, Table 6.2). The nMAE for the latent is larger than 

sensible because of its smaller mean (Table 6.2; Figure 6.7g).  

 

 𝑆𝑆↑ 𝐿𝐿↑ 𝑄𝑄𝐻𝐻 𝑄𝑄𝐸𝐸 𝑆𝑆↑ 𝐿𝐿↑ 𝑄𝑄𝐻𝐻 𝑄𝑄𝐸𝐸 𝑆𝑆↑ 𝐿𝐿↑ 𝑄𝑄𝐻𝐻 𝑄𝑄𝐸𝐸 
Observed Mean (W m-2)         
16 months 58 390 40 34 - - - - - - - - 
65.5 hours in summer 87 420 100 46 - - - - - - - - 
82 hours in winter 41 350 -3.9 22 - - - - - - - - 
Simulated MB (W m-2) MAE (W m-2) nMAE (%) 
16 months (13 Aug. 2003 00:00 – 27 Nov. 2004 23:30; N = 8 866, except 𝑆𝑆↑ N = 4 272) 
MEM -4.7 -0.39 -0.67 1.3 5.3 4.0 20 19 9.2 1.0 33 51 
UNN -1.7 -4.9 -6.9 7.1 5.5 7.8 21 20 9.4 2.0 36 54 
TEB 3.0 -19 -18 -3.8 5.1 20 30 25 8.7 5.2 51 68 
65.5 hours in summer (24 Dec. 2003 14:30 – 27 Dec. 2003 07:30; N = 131, except 𝑆𝑆↑ N = 73) 
Offline: MEM -6.6 0.4 -18 0.53 7.8 4.6 29 24 9.0 1.1 27 46 
               UNN -3.2 0.65 -9.8 9.3 6.3 5 24 25 7.2 1.2 23 47 
               TEB 2.1 -28 -22 -11 6 31 38 30 6.9 7.3 35 57 
             

Online:  WRF-UNN -5.8 14 15 -4.7 9.5 18 38 26 11 4.2 35 49 
               WRF-TEB -2.1 -11 -41 -12 8.3 35 53 34 9.6 8.2 49 64 
82 hours in winter (26 June 2004 21:00 – 30 June 2004 23:30; N = 164, except 𝑆𝑆↑ N = 56) 
Offline: MEM -2.4 -4.3 7.9 6.8 4.2 4.3 13 9.7 10 1.2 27 43 
               UNN -0.43 -7.9 -0.24 9.4 4.7 8.0 15 12 11 2.3 33 54 
               TEB 6.7 -15 -19 10 7.3 15 21 14 17 4.2 45 60 
             

Online:  WRF-UNN -3.3 -1.3 0.53 5.9 8.8 9.3 18 13 21 2.6 38 56 
               WRF-TEB 3.0 -3.5 -21 8.8 11 16 27 18 28 4.4 59 81 

 



 

101 
 

 
Figure 6.7 | Offline (16-months. N = 8 865) simulated (MEM, UNN, TEB, see text) and 
observed (OBS) 30-min flux densities (lines) with interquartile range (shading). (a) 
upwelling short- (𝑆𝑆↑) (daytime) and (b) long-wave (𝐿𝐿↑) radiation, turbulent (c) sensible (𝑄𝑄𝐻𝐻) and 
(d) latent (𝑄𝑄𝐸𝐸) heat, with (e-g) their respective evaluation metrics (Table 6.2). Note that y-axes 
differ between plots. 

 

The short summer and winter focal periods are consistent with the 16-month 

results (Table 6.2, Figure 6.8), with generally higher biases and errors for TEB 

than for either MEM or UNN. However, both MEM and UNN outperform TEB 

in the winter, notably with better accuracy for upwelling shortwave radiation 

(Figures 6.8b and 6.8i–6.8n; Table 6.2). 
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Figure 6.8 | Offline simulated (MEM, UNN and TEB) and observed (OBS) 30-min flux 
densities. These are shown for (a,c,e,g, i-k) a summer and (b,d,f,h, l-n) winter period for (a-b) 
upwelling short- (𝑆𝑆↑) and (c-d) long-wave (𝐿𝐿↑) radiation, turbulent (e-f) sensible (𝑄𝑄𝐻𝐻) and (g-h) 
latent (𝑄𝑄𝐸𝐸) heat, with (i-n) evaluation metrics (Table 2). Note that y-axes differ between plots. 

 

6.3.3 Online Simulations 
The online coupled WRF-UNN and WRF-TEB simulation results for the grid cell 

cantered on the measurement site are shown in Figure 6.9. The numerical 

stability of WRF-UNN (trained using MEM for Stage 2; Section 6.2.5) is 

demonstrated by executing thousands of iterations for hundreds of grid cells 

without numerical failure (i.e., 2-week, hundreds of domain grid points). The 
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WRF-UNN post-spin-up periods for both winter and summer (Figure 6.9) 

capture the general trends of observations. Despite being derived using data 

from simulations driven with Stage 2 parameters (Table S.3), WRF-UNN has 

better predictive skills than WRF-TEB (using Stage 4 parameters) for both 

summer and winter periods (Figure 6.9). WRF-UNN errors are generally lower 

than those of WRF-TEB in both seasons for all but the winter upwelling 

shortwave radiation flux density (Figure 6.9; Table 6.2) and generally 

consistent with the errors shown for offline simulations (Section 6.3.2).  

 

 
Figure 6.9 | As Figure 6.8, but for online simulations. 
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As online simulations are run for the entire domain, an additional, albeit 

qualitative, comparison can be made across the spatial domain. The inner 

domain surface cover is assigned the same land cover fractions (building 

0.445, paved/road 0.175, vegetated 0.380) for all ‘urban’ grid cells (d4 red, 

Figure 6.5) in both WRF-TEB and WRF-UNN. Given the temporal difference 

between the two simulations is greatest around midday on 25 December 2003 

(Figure 6.9c), we select this time for the spatial comparisons (Figure 6.10). 

Although the simulated upwelling shortwave radiation flux density 

(Figures 6.10a and 6.10b) has a similar pattern across the domain, the 

longwave (Figures 6.10c and 6.10d) in WRF-UNN has a smaller magnitude and 

spatial range across all the urban grid cells. As a result, the WRF-TEB upwelling 

longwave radiation flux density is overpredicted by about 100 W m−2 

(Figure 6.9e). The warmer WRF-UNN surface temperature can explain the 

larger turbulent sensible heat flux density at the observational site 

(Figure 6.9e) and across the domain (Figures 6.10e and 6.10f). 

 

 
Figure 6.10 | Spatial comparison of online simulations. The inner domain (d4, Figure 6.5) 
with observation tower (red) for the 30-min average period between 12:00 and 12:30 on 25 
December 2003 with flux densities simulated using (a,c,e,g) WRF-UNN and (b,d,f,h) WRF-TEB for 
(a-b) upwelling shortwave (c-d) and longwave radiation, and turbulent (e-f) sensible and (g-h) 
latent heat. 
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6.3.4 Computational Performance 
The runtime between offline UNN and TEB simulations is compared based on 

100 repeats each for the 16-month period. UNN runs include data 

normalization and inference using TensorFlow in Python. All runs are 

conducted on a shared AMD EPYC 7742 CPU node with 32 cores and 124 GiB 

of system memory on a shared cluster. Both TEB and the UNN are configured 

to run fully single-threaded in a Singularity container running Ubuntu 20.04, 

GNU Fortran 9.3 compiler, and Anaconda Python 3.9. UNN (0.50 ± 0.0053 s) 

runs are over one order of magnitude faster than TEB runs (6.0 ± 0.042 s). 

6.4 Conclusion 

In this work, we successfully develop a neural network emulator of urban land 

surface processes (UNN) for offline and online applications. The UNN is trained 

on the multi-model ensemble mean (MEM) of 22 urban land surface models 

(ULSMs) for an area of Melbourne, Australia. The accuracy is assessed using 

flux observations and compared to a well-known ULSM (Town Energy Balance 

TEB) model. The MEM data are derived from a study with four Stages of 

increasing complexity (1–4; Appendix C). The UNN is trained using Stage 2 

MEM, but compared to the Stage 4 TEB simulations, the latter using more site-

specific information. 

 

Compared to MEM, the UNN captures the general variability of surface energy 

balance fluxes. Relative to the observations, the UNN is more accurate than 

TEB—or than WRF-TEB when coupled to the Weather Research and 

Forecasting (WRF) model—while having reduced both computational demands 

(by over an order of magnitude) and model parameter requirements (i.e., 

trained using fewer site-specific parameters). Technically, the coupling to WRF 

is straightforward thanks to WRF-CMake and TensorFlow Lite C bindings. 
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As the first study to show the development and application of a machine 

learning (ML) emulator for urban land surface fluxes, we demonstrate its 

potential to improve the modelling of key surface energy balance fluxes: we 

combine the strengths of several ULSMs into one and show that such models 

can be successfully integrated into complex weather models, such as WRF. The 

development of (coupled) emulators such as WRF-UNN have other advantages 

compared to ‘more-traditional’ ULSMs such as code optimisation at the 

deployment stage, and integration into different codebases and hardware 

architectures through common high-level APIs. 

 

Although the current evaluation did not assess, or assume, surface energy 

balance closure, which is essential for climate applications (Grimmond et al., 

2010), further research is needed to assess this before UNNs are used in 

climate studies. Furthermore, with no variations in urban areas (e.g., land 

cover fractions, surface parameters, and climate) assessed because of the 

current lack of multi-site data sets, the natural progression to assess our 

findings more globally requires data sets currently being developed (Lipson et 

al., 2020) with or without data augmentation strategies as outlined by Meyer 

et al. (2021). 

 

Indeed, if MEMs are found to be more accurate than any individual ULSM on a 

global scale, an ML emulator as described here could help improve both the 

speed and accuracy of current ULSMs. Aside from the apparent speed-up 

improvement typical of ML emulators and that of improved accuracy outlined 

here, ML approaches may also prove helpful in operational NWP models as 

the fewer site-specific parameters contained in MEM are easily retrievable and 

updatable globally using remote sensing techniques. 

 

In the next and concluding chapter, I will summarize the main conclusions, focusing 
on the general applicability of machine learning emulation in the context of 
weather modelling.  
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CHAPTER 7 

Conclusions 
 

 

In this final and concluding chapter, I summarise the main research findings, 
outline the lessons learnt, and briefly discuss what I think we will see in the next few 
years in the context of (operational) numerical weather prediction.   



 

108 
 

7.1 Conclusions and Contributions 

Skilful weather predictions and climate projections are needed to mitigate the 

effects of weather and climate (Bauer, Dueben, et al., 2021). The need for 

digital twins of the Earth system to investigate future policy scenarios poses a 

new challenge to developing weather and climate models and algorithms that 

run more efficiently on new hardware architectures (Bauer, Stevens, et al., 

2021). Machine Learning (ML) techniques have been shown to be helpful in 

this transition by improving the performance of current algorithms with a 

trade-off in accuracy (emulation) that can be adapted to a vast range of 

architectures (e.g., Central Processing Units, or CPUs; Graphical Processing 

Units, or GPUs; and Tensor Processing Units, or TPUs). This PhD thesis finds 

that two widely used radiative transfer and urban land surface schemes can 

be sped up using ML emulators by about five and ten times, respectively, while 

keeping or improving their overall accuracy. The computational performance 

is evaluated by comparing the ML models' CPU runtime to that of traditional 

models. Moreover, because ML frameworks allow portability to different 

hardware architectures, an even greater speedup could be achieved when 

switching to GPUs or TPUs. 

 

With higher resolution requirements, a more detailed representation of 

radiative transfer and land surface becomes critical in weather predictions and 

climate projections. In particular, the absence of 3D cloud radiative effects 

representation can lead to the underestimation of up to 30 % in the longwave 

(Heidinger and Cox 1996) and changes in instantaneous shortwave fluxes up 

to 40 W m-2 (Hogan et al. 2019). Similarly, a more detailed representation of 

urban processes in land surface schemes can provide more accurate lower 

boundary conditions (e.g., radiative and turbulent heat fluxes) to atmospheric 

models for urban areas (Grimmond et al., 2009, 2010). Here, the focus is on 

keeping or improving the accuracy of parametrizations when developing ML 

emulators. As such, two novel methods are developed: 
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1. Radiation schemes. Simulate the 3D effects as a correction term to a fast 1D 

radiation calculation rather than simulating the entire radiation problem in 

one go, as earlier studies have done, but at the cost of large errors. The 

correction term (the difference between ecRad’s fast Tripleclouds solver 

that neglects 3D effects) is “learnt” between Tripleclouds and SPARTACUS. 

As clear-sky radiation is efficiently and accurately computed using the 

existing 1D radiation scheme (Tripleclouds), only tropospheric fluxes in 

cloudy conditions need to be changed, allowing this hybrid physical-ML 

approach to be more tolerant to errors and outliers. Although hybrid 

physical ML models have been used previously, they have been for slow 

components of a single complex scheme (Ukkonen et al., 2020; Veerman et 

al., 2021). Here the emulator is constructed from the difference between 

two physical schemes, which may not always be available. 

 

2. Urban land surface schemes. Given that previous studies have found that 

no single model is 'best' at modelling all surface heat fluxes of cities 

(Grimmond et al., 2010),  the proposed approach takes two steps: (a) to 

develop an ensemble approach that is demonstrated to be able to 

outperform a mature reference model; and (b) to emulate the ensemble 

which is shown to outperform the baseline reference model. 

 

In addition to these novel contributions, the augmentation of datasets with 

synthetic samples to improve the accuracy of ML emulators is explored. 

Although larger datasets for training ML models are considered the 'best' way 

to make an ML model more generalizable (Goodfellow et al. 2016), the input 

data used in parametrization schemes can be challenging to source when it 

needs to be extracted from NWP models. For example, the knowledge and 

experience needed to set up NWP models or their high computational costs 

may be limiting factors. As such, improving ML models using data generation 

has already been outlined in previous studies for simple cases where no 

statistical dependence was present (e.g., Ukkonen et al., 2020). However, this 
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may be neither straightforward nor computationally cheap in the case of 

complex dependencies between variables. The method developed in this PhD 

thesis is applied to a simple toy model of downwelling radiation to show that 

the emulator's accuracy is improved by over 50 %. 

 

With the current trend toward separating scientific code from hardware-

dependent software layers by rewriting NWP models using domain-specific 

software frameworks, the goal is performance portability, whereby scientific 

code is run efficiently on different hardware, such as GPUs or FPGAs, without 

the need for adaptation. However, it has been recognised that specific 

components such as parametrization schemes and data assimilation are 

difficult to port, partly due to the reduced precision available in hardware such 

as GPUs. ML models, on the other hand, are a natural fit for hardware with low 

numerical precision while providing portability through the ecosystem of 

existing ML frameworks (Bauer, Dueben, et al., 2021). The emulators 

developed in chapters 3 and 6 for radiative transfer and urban land surface 

processes contribute to the growing set of problems that ML can successfully 

and efficiently solve. 

7.2 Lessons Learnt 

By applying ML emulators to two fundamental atmospheric processes, I show 

how two parametrization schemes can be made more flexible and accurate 

while improving or keeping their computational costs at bay. As a result, they 

may be considered attractive for operational use. 

 

From this research, the following lessons to develop reliable ML emulators for 

NWP applications are identified: 
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• Implement the simplest ML algorithms as described in the literature. If 

new ML algorithms are developed, compare the findings with previous 

results considering trade-offs between complexity, accuracy and the 

developed emulator’s computational performance. 

• Quantify and identify errors associated with an emulator offline before 

coupling it to an NWP model. 

• Enforce standard coupling methods and protocols when coupling and 

evaluating parametrization schemes for online applications. 

• Use easily understandable statistical metrics such as the absolute and 

relative errors wherever possible over more complex statistical metrics 

if the overall findings do not change. 

• Use open-source software and data to allow the scientific community 

to reproduce and further develop the work.  

• Avoid reinventing the wheel by writing custom code or software 

frameworks. Instead, reuse and contribute to existing general time-

tested software frameworks and libraries developed by core 

communities. For example, this is shown in chapter 6 with TensorFlow 

Lite C bindings for coupling the urban neural network to the Weather 

Research and Forecasting model. 

• Publish software and data. Although there may be cases where it is not 

practical for third parties to rerun experiments (e.g., large dataset or 

compute resources needed), researchers should nevertheless ensure 

that their results are reproducible. By doing so, both software creators 

and their users will benefit—with time, data and software may become 

unavailable, misplaced, or corrupted, and specific methods used in the 

research forgotten. Poorly or undocumented data dumps are unhelpful 

as they do not guarantee reproducibility of research experiments. 
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7.3 Outlook 

Some scholars have discussed how ML could one day replace today’s NWP 

models in their entirety (Figure 1.1c; Schultz et al., 2021). Although such 

monolithic models could prove helpful for gaining more predictive skills while 

reducing computational costs, I argue that this is unlikely to happen in the next 

decade within the research or operational context where the study and 

understanding of phenomena are paramount. Indeed, such a scenario may 

become a reality with the development of artificial general intelligence15, but 

the current consensus puts it another 30 years in the future (Grace et al., 2018; 

Müller & Bostrom, 2016). What I see likely to happen in the next ten years, 

however, is the development and use of highly sophisticated end-to-end ML 

models for commercial operational weather forecasting (e.g., The Weather 

Channel) where the main goal is to provide accurate short-to-medium term 

weather forecast products to their end-users without necessarily having to 

understand fundamental key patterns and behaviours.  In all cases, in the most 

immediate future, the need to improve the computational speed and accuracy 

of any NWP models is likely to see a combination of traditional and ML 

approaches here referred to as hybrid approaches (Figure 1.1b). This will 

involve replacing parts or whole models for which ML may show a net 

advantage over more traditional approaches in use today, were it for speed, 

accuracy, or a mix of both. The private sector's efforts will be essential to 

develop or use current technologies operationally with fewer cost constraints 

than its public counterpart. For example, IBM GRAF is currently the first 

operational global NWP model to run at 3 km spatial resolution on GPUs (IBM, 

2019), putting it several years ahead in terms of spatial resolution than leading 

international EU and US institutes.  

 
15 “the hypothetical ability of an intelligent agent to understand or learn any intellectual task that 
a human being can” (Hodson, 2019). 
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APPENDICES 
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A: Postprocessing Methods 

As introduced in Section 3.2.2, it can be challenging to use NNs to predict flux 

and heating rate profiles that are both, physically consistent with each other, 

and with heating rate profiles free from excessive noise. Here we describe a 

method to obtain consistent profiles by postprocessing NN outputs. Rather 

than using NNs to predict the profiles of 3D effects on upward and downward 

fluxes, we use them to predict the profiles of 3D effects on scalar fluxes (equal 

to the downwelling plus upwelling) and 3D effects on heating rates. As the 

latter are proportional to the divergence of the 3D effect on the net flux 

(downwelling minus upwelling), the information content is the same, but it is 

expressed in variables that are closer to what we need, and it is easier for the 

NNs to predict. For the rest of this appendix we omit the term “3D effects on” 

prefix for describing fluxes and heating rates. As the postprocessing method 

is common across longwave and shortwave components, we explain the main 

method via the longwave and highlight differences in assumptions and 

processing separately at the end of the section. 

 

The starting point is the output from the neural network: the scalar flux profile 

at half levels 𝐿𝐿𝑠𝑠 = 𝐿𝐿↓ + 𝐿𝐿↑ (where 𝐿𝐿↓ and 𝐿𝐿↑ are the downwelling and upwelling 

fluxes) and the heating rate profile at full levels 𝐻𝐻 = −
𝑐𝑐𝑝𝑝
𝑔𝑔
Δ𝐿𝐿𝑛𝑛

Δ𝑝𝑝
, where 𝐿𝐿𝑛𝑛 = 𝐿𝐿↓ − 𝐿𝐿↑ is 

the net flux, Δ denotes the difference between the base and top of a layer so 

Δ𝑝𝑝 is the pressure difference across a layer, and 𝑐𝑐𝑝𝑝 and 𝑔𝑔 are the specific heat 

of dry air and the gravitational acceleration. The postprocessing consists of the 

following steps: 

1. Compute the total atmospheric flux divergence (i.e., total emission minus 

absorption, in W m−2) from a heating rate profile. Fundamentally the 

divergence is the difference in net flux between the bottom-of-atmosphere 

(BOA) and top-of-atmosphere (TOA), i.e., 𝐷𝐷 = 𝐿𝐿BOA
𝑛𝑛 − 𝐿𝐿TOA

𝑛𝑛 . To obtain this from 

the heating rate, we sum the profile of divergences of individual layers, that 



 

115 
 

is, 𝐷𝐷𝐻𝐻 = ∑Δ𝐿𝐿𝑛𝑛 , where the Δ𝐿𝐿𝑛𝑛  profile is obtained from the heating rate by 

inverting the expression for 𝐻𝐻 above.  

2. Compute the total atmospheric flux divergence from the scalar fluxes. At 

TOA, the downwelling longwave flux is zero so 𝐿𝐿TOA
𝑛𝑛 = −𝐿𝐿↑ = −𝐿𝐿TOA

𝑠𝑠  (in the 

shortwave the same formula can be applied because, even though the 

downwelling shortwave flux is not zero at TOA, the 3D effect on this part 

is). At BOA, the upwelling longwave flux is dominated by surface emission 

rather than reflection, so we can assume that the 3D effect is zero, leading 

to 𝐿𝐿BOA
𝑛𝑛 = 𝐿𝐿↓ = 𝐿𝐿BOA

𝑠𝑠 . Therefore, the atmospheric divergence estimated from 

the scalar fluxes is 𝐷𝐷𝑠𝑠 = 𝐿𝐿BOA
𝑠𝑠 + 𝐿𝐿TOA

𝑠𝑠 . 

3. Rescale the heating rate profile so that its divergence equals that from the 

scalar flux. This is done by multiplying the heating rates by a scaling factor 

equal to 𝐷𝐷𝑠𝑠/𝐷𝐷𝐻𝐻, and, if necessary, capping the scaling factor to lie in the 

range 0.5 to 2. If capping, the scalar fluxes are also scaled to ensure that 

they have the same divergence. 

4. Use the rescaled heating rate (and hence Δ𝐿𝐿𝑛𝑛) and scalar flux profiles to 

compute the profiles of upwelling and downwelling flux. First the 𝐿𝐿𝑛𝑛 profile 

is computed by integrating Δ𝐿𝐿𝑛𝑛 down from TOA from a start value of 𝐿𝐿TOA
𝑛𝑛 =

−𝐿𝐿TOA
𝑠𝑠 . Then the upwelling and downwelling components are computed 

from 𝐿𝐿↑ = 𝐿𝐿𝑠𝑠− 𝐿𝐿𝑛𝑛 
2

 and 𝐿𝐿↓ = 𝐿𝐿𝑠𝑠+ 𝐿𝐿𝑛𝑛 
2

. 

 

The calculation of shortwave components follows that of the longwave above, 

except for computing the BOA net flux from the scalar flux in step 2. The net 

shortwave flux is given by 𝑆𝑆𝑛𝑛 = 𝑆𝑆↓ − 𝑆𝑆↑, the scalar shortwave flux by 𝑆𝑆𝑠𝑠 = 𝑆𝑆↓ + 𝑆𝑆↑, 

and the albedo by 𝛼𝛼 = 𝑆𝑆BOA
↑ /𝑆𝑆BOA

↓ , thus 𝑆𝑆BOA
𝑛𝑛 = 𝑆𝑆BOA

𝑠𝑠 [(1 − 𝛼𝛼)/(1 + 𝛼𝛼)]. As the total 

atmospheric flux divergence is the BOA net flux minus the TOA net flux, the 

total atmospheric flux divergence is computed from the shortwave scalar 

fluxes as 𝐷𝐷𝑠𝑠 = 𝑆𝑆BOA
𝑠𝑠 [(1 − 𝛼𝛼)/(1 + 𝛼𝛼)] + 𝑆𝑆TOA

𝑠𝑠 . Other steps are identical to those for 

the longwave. 
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B: Statistical Metrics 

The vector of differences 𝒅𝒅 =  (𝑑𝑑1, … , 𝑑𝑑𝑖𝑖)  between two vectors 𝒙𝒙𝑎𝑎  and 𝒙𝒙𝑏𝑏  of 

paired quantities 𝑥𝑥𝑎𝑎,𝑖𝑖  and 𝑥𝑥𝑏𝑏,𝑖𝑖  is defined as 𝒅𝒅 = 𝒙𝒙𝑎𝑎 − 𝒙𝒙𝑏𝑏 . The mean bias error 

(MBE), mean‐absolute error (MAE), and normalized root‐mean‐square error 

(NRMSE) for a time series of times 1,… , 𝑁𝑁 are defined as MBE = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , MAE =

1
𝑁𝑁
∑ �𝑑𝑑𝑖𝑖�
𝑁𝑁
𝑖𝑖=1 , NRMSE = 100 %  𝑅𝑅

𝑥𝑥̅
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑥𝑥𝑎̅𝑎
 (where 𝑥𝑥𝑎̅𝑎 is the arithmetic mean of 𝒙𝒙𝑎𝑎), and the 

RMSE is defined as �
∑ 𝑑𝑑𝑖𝑖

2𝑁𝑁
𝑖𝑖=1
𝑁𝑁

. 
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C: Stage Selection 

Stage 2 data (Table S.3) are selected for training the urban neural network 

(UNN; Section 6.2.2) and Stage 4 for the TEB to offer the best trade-off between 

complexity and accuracy and better model metrics (Figure C.1). Overall, TEB's 

mean bias and mean absolute error improve the more information is 

provided, notably when the site albedo is given in Stage 3 and 4 (Table S.3). 

MEM generally has the lowest overall mean bias and mean absolute error for 

Stage 2. 

 
Figure C.1 | Model metrics used in the stage selection. Distribution (boxplot with median 
(labels) interquartile range (IQR) and whiskers: 1.5 IQR) of the 30-min biases and absolute errors 
(Section 6.2.6) relative to observations (OBS) for four Stages (Table S.3) of multi-model ensemble 
mean (MEM) and Town Energy Balance (TEB) calculated for the test fraction (Section 6.2.5) of 30-
min fluxes of upwelling (a-b) short- and (c-d) long-wave radiation, and turbulent (e-f) sensible 
and (g-h) latent heat.  
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SUPPLEMENTARY INFORMATION 

 
Figure S.1 | Momentum flux density for the (a) original and (b) reduced number of models 
outputs data set. As the original data set does not include the observations and only for six 
model, sit is not used in this study. 

 
Figure S.2 | Fluxes modelled by 32 urban land surface models or configurations for all four 
Stages (Grimmond et al. 2011) for four fluxes. Upwelling (a) short- and (b) long-wave 
radiation, turbulent (c) sensible and (d) latent heat. 

 
Figure S.3 | As Figure S.2, but for the selected 22 urban land surface models. Poor 
performers (17 and 44), or models/configurations not including latent heat flux (11, 12, 14, 20, 
28, 35, 38, 42) are removed. 
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Figure S.4 | Boxplot of 100 mean nMAE UNN iterations (Section 6.2.5). 

 

Table S.1 | Configuration used for the grid search. This uses KerasTuner (O’Malley et al., 2019) 
version 1.0.4 using Hyperband (Li et al., 2018). The Adam algorithm (Kingma & Ba, 2015) with 
mean squared error as its optimisation function is used. The epoch limit is set to 200 and the 
early stopping patience to 20 epochs using 25 % of the training fraction as defined in Section 
6.2.5. 

Hyperparameter Values 
Number of hidden layers [1, 2, 3] 
Number of Neurons [16—512, every 32] 
Activation function [relu, tanh, sigmoid] 
L2 Regularization [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2] 
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Table S.2 | Model participants in the Grimmond et al. (2011) study. 

Model Reference 

Building effect parameterization (BEP) Martilli et al. (2002) 

BEP coupled with building energy model Martilli et al. (2002); Salamanca et al. (2009, 2010); 

Salamanca & Martilli (2010) 

Community land model – urban (CLM-

urban) 

Oleson, Bonan, Feddema, & Vertenstein (2008); Oleson, 

Bonan, Feddema, Vertenstein, et al. (2008) 

Institute of Industrial Science urban canopy 

model 

Kawamoto & Ooka (2006, 2009a, 2009b) 

Joint UK land environment simulator (JULES) Best (2005); Best et al. (2006, 2011); Essery et al. (2003) 

Local-scale urban meteorological 

parameterization scheme (LUMPS) 

Grimmond & Oke (2002); Loridan et al.(2011); Offerle et 

al. (2003) 

Met Office Reading urban surface exchange 

scheme (MORUSES) 

Harman, Barlow, et al. (2004); Harman, Best, et al. (2004); 

Porson et al. (2010) 

Multi-layer urban canopy model Kondo et al. (2005); Kondo & Liu (1998) 

Nanjing University urban canopy model-

single layer 

Kusaka et al. (2001); Masson (2000) 

National and Kapodistrian University of 

Athens model 

Dandou (2005) 

Noah land surface model/single-layer urban 

canopy model 

Chen et al. (2004); Kusaka et al. (2001); Loridan et al. 

(2010) 

Seoul National University urban canopy 

model 

Ryu et al. (2011) 

Simple urban energy balance model for 

mesoscale simulation 

Kanda, Kawai, Kanega, et al. (2005); Kanda, Kawai, & 

Nakagawa (2005); Kawai et al. (2007, 2009) 

Single column Reading urban model tile 

version 

Harman & Belcher (2006) 

Slab urban energy balance model Fortuniak (2003); Fortuniak et al. (2005) 

Soil model for sub-meso scales (urbanised) Dupont et al. (2006); Dupont & Mestayer (2006) 

Temperatures of urban facets (TUF) 2D Krayenhoff & Voogt (2007) 

Temperatures of urban facets (TUF) 3D Krayenhoff & Voogt (2007) 

Town energy balance (TEB) Lemonsu et al. (2004); Masson (2000); Masson et al. 

(2002); Pigeon et al. (2008) 

Town energy balance (TEB) with multi-layer 

option 

Hamdi & Masson (2008) 

Vegetated urban canopy model Lee & Park (2007) 

 

  



 

121 
 

Table S.3 | Morphological parameters provided for the four different Stages (1-4) in 
Grimmond et al. (2011). These parameters are used to configure TEB and WRF-TEB. For WRF-
TEB the same parameters are used for all grid points classified as urban. Material characteristics 
provided in Stage 4 have information for four layers per facet (roof, wall, and road): 
composition/material, width (𝑑𝑑 , mm), volumetric heat capacity (𝑐𝑐 , MJ m−3 K−1), and thermal 
conductivity (𝜆𝜆, W m−1 K−1). Parameters not provided, but required to run TEB/WRF-TEB, are set 
to their default. aTEB/WRF-TEB: not used; bTEB/WRF-TEB: aggregated to a single vegetation 
value; cTEB/WRF-TEB: same value used for all wall/roof/road facets. *In Grimmond et al. (2011) 
modelers were not given the exact latitude and longitude to keep the site anonymous; here 
these are given for TEB and WRF-TEB simulations. 

 
Table S.4 | Main WPS/WRF configuration settings used with the model timestep for each 
domain (d1–d4). Lambert Conformal Conic (LCC). †Vertical grid spacing increasing with height 
(ℎ) and first level (L1) set to 66 m a.g.l. 

Option Value TS/Unit Reference 
a) Time 
Timestep length 135, 45, 15, 5 s - 
b) Grid 
Map Projection LCC - - 
Horizontal Spacing 27, 9, 3, 1 km - 
Vertical Spacing 𝑓𝑓(ℎ) with L1 = 66† m - 
Vertical Levels 61 - - 
Nests and Grid Ratio (2)4 and 1:3 - - 
Nesting Approach 1‐way - - 
Urban Classes 1 - - 
c) Initial and Boundary Conditions 
Data Set Name ECMWF Cycle 28r2 analysis - ECMWF (2004) 
Horizontal Spacing TL511 (≈ 40 km) - - 
Vertical Levels 61 - - 
Time Interval 6 h - 
d) Physical Parametrization 
Shortwave Radiation RRTMG - Iacono et al. (2008) 
Longwave Radiation RRTMG - Iacono et al. (2008) 
Microphysics Single‐moment 3‐class - Hong & Lim (2006) 
Cumulus New Tiedtke Scheme  Zhang & Wang (2017) 
PBL YSU - Hong et al. (2006) 
Surface layer Revised MM5 - Jiménez et al. (2012) 
LSM Noah‐LSM - Chen & Dudhia (2001) 
ULSM TEB/UNN   - Meyer, Schoetter, Riechert, et al., (2020) 

  

Stage Category Data provided 

1 Forcing See Table 6.2a 

 Site *Lat. =-37.7306 °N, *Long. = 145.0145 °E; Measurement height = 30 m 

2 Area 
fraction 

Pervious = 0.38; Impervious = 0.62 

3 Heights Instrument height = 40 m; Roughness length for momentum = 0.4 m; aMax height of roughness elements = 12 m; Mean 
building height = 6.4 m; Height to width ratio = 0.42; aMean wall to plan area ratio = 0.4 

 Area 
fraction 

Building = 0.445; Concrete = 0.045; Road = 0.130; bVegetation (not Grass) = 0.225; bGrass = 0.150; bOther (bare or pools) = 0.005 

 Other Urban climate zone = 5; Population density = 415.78 inhabitants km-2 

4 Buildings  Wall Roof Road 

  Layer 𝑑𝑑 𝑐𝑐 𝑘𝑘 𝑑𝑑 𝑐𝑐 𝑘𝑘 𝑑𝑑 𝑐𝑐 𝑘𝑘 

  1 40.40 1.25 0.61 11.6 2.07 6.530 28.75 1.14 1.17 

  2 54.00 1.40 0.430 50.00 0.0071 0.025 158.30 1.05 0.30 

  3 42.00 0.0013 0.024 40.00 1.50 0.230 112.50 1.29 0.42 

  4 12.50 0.67 0.160 12.50 0.67 0.160 650.45 1.43 3.72 

 Surface cSurface albedo = 0.15; cSurface emissivity = 0.97 
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CODE AND DATA AVAILABILITY 

 
All software and tools for the research chapters (Chapters 3-6) are archived 

separately with a Singularity (Kurtzer et al., 2017) image deposited on Zenodo 

as described in section 5.5. Users wishing to download (and reproduce) the 

results described in those chapters can download the respective data archives 

shown in Table D.1 and optionally run Singularity on their local or remote 

systems. 

 

Table D.1 | Links and references of permanent data archives used in this PhD thesis. 
*Because of licensing restrictions, meteorological forcing (MF), observational (OBS), and multi-
model output (MO) data sets cannot be bundled with the Meyer (2021b) data archive and need 
to be requested separately at https://doi.org/10.5281/zenodo.4679279 (Grimmond et al., 2021) 
and https://doi.org/10.5281/zenodo.4678387 (Grimmond et al., 2013), respectively. 

Chapter Digital Object Identifier Reference 
3 10.5281/zenodo.5113055 Meyer (2021c) 
4 10.5281/zenodo.5150327 Meyer (2021a) 
5 10.5281/zenodo.3554517 Meyer (2020) 
6 10.5281/zenodo.5142960 *Meyer (2021b) 

  

https://doi.org/10.5281/zenodo.4679279
https://doi.org/10.5281/zenodo.4678387
https://doi.org/10.5281/zenodo.5113055
https://doi.org/10.5281/zenodo.5150327
https://doi.org/10.5281/zenodo.3554517
https://doi.org/10.5281/zenodo.5142960
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