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Abstract

Understanding space-weather phenomena is a growing requisite given our day-to-
day reliance upon space-based infrastructure. This entails identifying the causal
factors of space-weather phenomena, quantifying the magnitude of response of
space-weather events, and jointly using this information for forecasting. Machine
learning (ML), as a set of mathematical and statistical tools, has been successfully
used across many fields of research, demonstrating vast potential to improve our
understanding of space-weather phenomena.

We apply unsupervised ML (dimension-reduction and clustering) to derive robust
solar wind classifications – providing further insight into space-weather driving.
Our unsupervised techniques are applied to a theoretically-motivated set of ex-
tant composition variables - which are non-evolving with solar wind propagation.
We demonstrate that solar-wind-speed-based classifications lose latent informa-
tion regarding solar source regions. Our dimension-reduction suggests a more
informative latent-space to represent streamer-belt-origin solar wind.

Subsequently, we investigate the outer boundary of the outer radiation belt
(OBORB). Modelling of the energetic-electrons in the outer radiation belt is cru-
cial to the effective operation of many Earth-orbiting satellites, and the outer
boundary conditions for such models are critical to accurate simulation. We ap-
plied simple ML models to a dataset of electron distribution functions, testing a
range of potential boundary locations – yielding an empirical identification of the
quiet-time boundary location. Next, we employed Bayesian neural networks to
construct parameterised, probabilistic models providing synthetic nowcasts of
the electron fluxes at the boundary. These models bridge the gap between the
empirically identified OBORB location and the information required by modellers
to construct the outer boundary conditions.

This work showcases how a broad spectrum of ML techniques can be applied to
a variety of space-weather related problems. We present novel scientific results
with significant implications for future studies into the solar wind and radiation
belts, and ultimately, space-weather forecasting.
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Chapter 1

Introduction

This thesis explores how machine learning can be applied in the heliospheric do-
main to better understand and characterise phenomena related to Space Weather.

This chapter serves to set the scene for the thesis, covering the background
physics underpinning the research that has been undertaken. We explore the
dynamics of charged particles and space-plasmas, and then move to the wider
context for how these physics fit into the Sun-Earth system. Chapter 2 will
provide an overview of machine learning as well as expounding the specific areas
which are most pertinent to the work subsequently presented. Chapters 4 - 6
present the scientific analyses undertaken for this thesis. Chapters 4 and 5 are
published works, and Chapter 6 is a submitted manuscript (verbatim) completed
over the course of this PhD. Finally, in Chapter 7 we will summarise, conclude
and discuss the future directions that work based on this thesis might take.

1.1 Basic Plasma Physics
Plasma - ionised gas - is one of the four fundamental states of matter [Lang-
muir, 1928]. It is the most abundant type of discovered matter in the universe
[versus dark matter and energy, Chu and Lu, 2013]. Plasma is not commonly en-
countered in day-to-day life on Earth, since it typically requires extremely high
temperatures or intense radiation to ionise enough of a gas for it to be classed
as a plasma - though phenomena such as lightning can generate it in small, short-
lived quantities.

An ideal plasma is typically described by three criteria:

• Quasi-neutrality: the typical length scales, L, of the plasma (as a whole)
must be large enough, that any local deviations in charge density can be
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1.1. BASIC PLASMA PHYSICS

effectively shielded from the rest of the plasma. This is codified with a
useful, local plasma length scale λD, known as the Debye length, given by:

λD =

√
ϵ0kBTe

neq2
(1.1)

where ϵ0 is the permittivity of free space, kB is the Boltzmann constant, and
Te, ne and q are the temperature, density and elemental charge of electrons.
Hence, quasi-neutrality is maintained while L � λD.

• Collective behaviour: quasi-neutrality is theoretically maintained when L �

λD, though it may not be practically maintained if there are not enough
charged particles to effectively shield a local variation. Thus, to ensure
that collective shielding occurs, the number of charged particles in a sphere
of radius λD must be much larger than 1.

• Collisionless: despite a plasma being able to co-exist with neutral atoms or
molecules, the neutral particles are required to be sparse enough that their
collisions with charged particles do not affect the bulk ability of the plasma
to collectively shield. In general an ideal plasma contains only charged
particles and is collisionless.

Given that plasma comprises charged particles (ions and electrons), the dynamics
of and within a plasma are primarily controlled by electric and magnetic fields - E
and B, respectively. The properties and interactions of these fields are described
through Maxwell’s equations:

∇ · E =
ρq
ϵ0

(1.2)

∇ · B = 0 (1.3)

∇× E = −∂B
∂t

(1.4)

∇× B = µ0

(j+ ϵ0
∂E
∂t

)
(1.5)

where ρq is the charge density, µ0 is the permeability of free space, j is the
current density and t is time. Equation 1.2 is known as Gauss’s law, and is in-
terpreted as specifying that the net flux of an electric field passing through a
closed surface is proportional to the total charge within the surface. Similarly,

2



CHAPTER 1. INTRODUCTION

Equation 1.3 (Gauss’s law for magnetism) specifies that there is no net mag-
netic flux through a closed surface (and equivalently that there are no magnetic
monopoles). Equation 1.4, the Maxwell-Faraday equation, expresses the gener-
ation of an electric field due to a time-varying magnetic field. Finally, Equation
1.5, Ampère’s circuital law, describes the ways in which a magnetic field can be
generated - either by simple electric current (µ0j) or time-varying electric field
(µ0ϵ0

∂E
∂t ).

1.2 Particle Motion
In general, the force, F, exerted on a charged particle by electric and magnetic
fields is described by the Lorentz equation:

F = q(E+ v× B) (1.6)

where v is the velocity of the charged particle (in the reference frame of the
magnetic field). From this equation, we can determine the direction of the force
originating from the electric and magnetic components. The force due to the
electric field is a scalar multiple of the electric field, E, itself. Hence, the force is
directed parallel to the electric field. In contrast, the force due to the magnetic
field is the cross-product between the particle velocity and the magnetic field,
and so the force acts perpendicularly to both v and B.

1.2.1 Gyro-motion
In a uniform magnetic field in the Z-direction (B = (0, 0, Bz) = const.) absent of an
electric field, one may simplify Equation 1.6 into the Lorentz force:

F = q(v× B) (1.7)

The three components of the Lorentz force (substituting F = mdv
dt , where m is

mass) obtained by taking the cross product of the velocity with a magnetic field
are:

3



1.2. PARTICLE MOTION

m
dvx
dt

= qvyBz; m
dvy
dt

= −qvxBz; m
dvz
dt

= 0,

Thus, the resulting force due to the magnetic field acts perpendicularly to both
the velocity and the magnetic field. If we differentiate both non-zero forces with
respect to time, we get:

d2vx
dt2

=

(
qBz

m

)
dvy
dt

;
d2vy
dt2

= −
(
qBz

m

)
dvx
dt

We can then substitute the single time derivatives to get:

d2vx
dt2

= −
(
qBz

m

)2

vx;
d2vy
dt2

= −
(
qBz

m

)2

vy

Which are typical equations of motion for a simple harmonic oscillator. Knowing
this, we can infer without further derivation that the angular frequency of the
oscillation is:

ωc =
qB

m
(1.8)

Solving these equations:

x =
v⊥
ωc
sin(ωct) + x0; y =

v⊥
ωc
cos(ωct) + y0

we see that the gyration of charged particles in a uniform magnetic field is
circular. Additionally, since vz remains unchanged, the complete motion of the
particle when vz 6= 0 is a helix. Note that depending on the charge of a particle,
the circular motion will be in different directions - electrons travelling parallel to
the field gyrate right-handedly, whilst ions gyrate left-handedly (such particle
motion is foundational to the radiation belts, for example).

It is useful to consider the particle velocity by its parallel and perpendicular
components (v∥ and v⊥, respectively), and define the concept of pitch-angle, α:

α = arctan
(
v⊥
v∥

)
(1.9)

which gives the angle between the velocity of a particle and the magnetic field,
as shown in Figure 1.1. A pitch-angle of 90◦ corresponds to particle motion entirely
perpendicular to the magnetic field, and 0◦ or 180◦ represents field-aligned motion.

It can be shown that the kinetic energy is conserved, despite the centripetal
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CHAPTER 1. INTRODUCTION

Figure 1.1: A schematic diagram of an electron gyrating about a magnetic field line. Di-
rections are signified with arrows. The electron’s velocity is presented and decomposed
into parallel and perpendicular components. The pitch angle is indicated.

acceleration, by taking the dot product of the velocity with-respect-to both sides
of Equation 1.7 (substituting F = mdv

dt ), giving:

mv · dv
dt

= qv · (v× B) (1.10)

This in turn can be simplified with the knowledge that v · (v× B) = 0 (since a dot
product between orthogonal vectors is 0 and we know that v × B is orthogonal
to v, because of the cross product) to:

mv · dv
dt

=
d

dt

(
1

2
mv2

)
= 0 (1.11)

hence, there is no change in the kinetic energy. This highlights that magnetic
fields do not do work on charged particles, despite forces acting between them.

Due to the circular motion traced out by particles and the conservation of kinetic
energy, we deduce that the centripetal motion is produced by the Lorentz force:

mv2⊥
r

= |q|v⊥B (1.12)

5



1.2. PARTICLE MOTION

where v⊥ and B are now the magnitudes of the velocity and magnetic field
strength. This allows us to define another characteristic length scale for a par-
ticle’s motion - the gyro-radius:

rgyro =
mv⊥
|q|B

(1.13)

where we take the absolute value of the charge to ensure that the radius is
physical. Unsurprisingly, the radius is directly proportional the perpendicular
speed. Though, we additionally see that the stronger the field is, the smaller
the gyro-radius is.

We can also derive from Equation 1.13 an associated gyro-period:

Tgyro = 2π
m

|q|B
(1.14)

which is independent of the energy, instead only depending on the magnetic field
strength and particle charge. Though, once energies become relativistic, and the
mass exceeds the rest mass, the gyro-period becomes energy-dependent.

1.2.2 Bounce Motion
If the magnetic field experienced by a particle is approximately static (i.e., the
field does not change on length- or time-scales comparable to the gyro-radius
or gyro-frequency, respectively) it implies - through Faraday’s law - that the
magnetic flux, Φ, through the surface, S, traced by a particle’s gyro-orbit is
constant:

Φ =

∫∫
S

B · ds = Bπr2gyro = constant (1.15)

On top of this, the magnetic moment, µ:

µ =
mv2⊥
2B

(1.16)

must also be conserved. µ is also referred to as the first adiabatic invariant.

When there are spatial gradients in the magnetic field, such that the field con-
verges along the parallel direction, magnetic mirroring occurs. As a particle
‘slowly’ experiences the convergence of the magnetic field, the perpendicular

6



CHAPTER 1. INTRODUCTION

velocity must increase to conserve µ (its gyro-radius must also become smaller
to conserve Φ). However, as we have shown in Equation 1.11, the total kinetic
energy of the particle is constant. Therefore, we deduce that the energy must
be converted from the parallel kinetic energy (as the magnetic field does no
work). This means that the parallel velocity must decrease - eventually reaching
zero at the mirror point, and then reversing to travel anti-parallel along the field.

Figure 1.2: A schematic diagram of magnetic mirroring. The dashed line represents the
motion towards the stronger field, and the solid line represents the motion subsequent
to being mirrored. Original image taken from lecture notes for Space Plasma and Mag-
netospheric Physics, UCL, I. J. Rae and C. J. Owen, 2017.

The magnetic field strength at the mirror point, BM , is given by:

BM =
B0

sin2
(α)

(1.17)

where B0 is the initial field strength and α is the pitch-angle. The minimum pitch-
angle for which mirroring can occur (in ideal conditions) is given by:

αmin = arcsin
(√

B0

Bmax

)
(1.18)

Where Equation 1.17 has been rearranged for α, and BM has been substituted for
the maximum field strength (giving us the lower bound).

In addition to the first adiabatic invariant associated with gyro-motion, there is
an adiabatic invariant associated with the bounce-motion:

J
bounce

= m

∮
v∥dl (1.19)

which can be interpreted as the total parallel momentum over the full bounce
motion being conserved (provided that the field does not vary on time-scales
smaller than the bounce period). More comprehensive treatment of the adiabatic
invariants is provided by Roederer and Zhang [2014] and Ukhorskiy and Sitnov
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[2013], and relativistically in Öztürk [2012].

1.2.3 Drift-motion
In general, when a force acts upon a charged particle in a magnetic field, the
resultant velocity due to that force is given by:

Vdrift =
F× B
qB2

(1.20)

which signifies a resultant perpendicular motion. Evidently, it is only the perpen-
dicular (to B) components of the force which yield a drift. Figure 1.3 represents
some of the drifts we will discuss below.

Figure 1.3: A schematic diagram of the direction of charged particle motion with respect
to a simple uniform magnetic field directed outwards of the page (panel a) and: an
electric field directed downwards (panel b); a general force acting downwards (panel c),
and a gradient in the magnetic field present in the upwards direction (panel d). Original
image taken from Wikipedia, originally produced by user Stannerd, and improved by user
Maschen. Used under Creative Commons Attribution 2.5 Generic license.
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Gradient drift occurs when there is a gradient in the magnetic field perpendicular
to the direction of the magnetic field. In this case the drift velocity is given by:

Vdrift = −µ∇B× B
qB2

(1.21)

where the force due to the gradient is given by F = −µ∇B. This drift can be under-
stood through the equation of the gyro-radius (Equation 1.13), which describes
how the gyro radius must decrease when the field increases. The process is
shown visually in the bottom panel of Figure 1.3. We also note, that given the
dependence on q, positively and negatively charged particles will drift in oppos-
ing directions, creating an electric field. This process is negligible on gyro-period
time-scales, and is only evident when a particle experiences the magnetic gradi-
ent over many gyrations - thus µ is conserved.

In the presence of an electric field, particles are acted upon by a force F = qE,
and so experience a drift given by:

Vdrift =
E× B
B2

(1.22)

This drift (the E × B drift) originates due to the electric field perpendicularly
(to B) accelerating and decelerating the particle over many drift periods. As the
gyro-radius (Equation 1.13) is dependent on the perpendicular velocity, it becomes
smaller when v⊥ is minimised (similarly to ∇B× B drift).
In more complex magnetic field geometries, field lines may be curved. Particles
undergoing bounce-motion along a curved field experience a centrifugal force,
Fc =

mv2
∥

R2
c
Rc, acting perpendicularly to B along the direction of the the radius of

curvature, Rc. Substituting Fc into Equation 1.20, we get the curvature drift:
Vdrift =

mv2∥Rc × B
qR2

cB
2

(1.23)

where we see again that the drift velocity is different depending on the charge
of the particle (meaning there is a net electric field). As the curvature drift
depends on v∥, it is effectively dependent on the energy and pitch-angle of the
particle (it also acts more strongly on more massive particles).

In a system comprising all of these forces, the total drift velocity is the sum of
each of these individual drifts (gradient drift, E× B drift and curvature drift).
Earth’s magnetosphere is often approximated to be dipolar. In a dipole field
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for a 90◦ pitch-angle particle, there is no bounce motion (v∥ = 0) and so there is
no curvature drift. But, due to the radial gradient in a dipole field, a particle
still experience gradient drift in the azimuthal direction. If the pitch-angle is
not 90◦, then due to bounce motion, a particle will experience a curvature force
(maximally at the equator where the pitch-angle is furthest from 90◦, and 0

at the mirror point). In concert, both of these effects cause particles to drift
azimuthally about the dipole magnet. As with gyro-motion and bounce-motion,
there is an invariant quantity associated with the drift-motion:

J
drift

=

∮
(p+ qA) · dl (1.24)

where p is the momentum, and A is the magnetic vector potential:

B = ∇×A (1.25)

Using Stokes theorem (∮ (∇ × Ψ) · ds =
∮
Ψ · dl, for some vector field Ψ), we can

substitute A in Equation 1.24, and if we also neglect p due to the drift momentum
being negligibly small we end up with:

J
drift

= q

∮
(B) · ds = qΦ (1.26)

where we have substituted the integral for the magnetic flux, as per Equation
1.15. This invariant is semantically and mathematically similar to the first in-
variant - the amount of flux contained within a drift-path is constant (provided
temporal and spatial changes to the field are small). This means that we consider
the third invariant in a bounce-averaged sense. The drift path is mapped along
field lines to the surface of a sphere about the magnet and the flux through the
enclosed surface is calculated. This is equivalent to calculating the flux outside
of the drift path [see, e.g., Roederer and Zhang, 2014].

1.3 Magneto-hydrodynamics
To better describe the collective behaviour of a plasma Alfvén [1942] introduced
a hydro-dynamic formalism, which is now referred to as magneto-hydrodynamics
(or MHD). An ideal hydro-magnetic fluid conserves mass, momentum and energy
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- allowing for the following general equation of motion:

ρm
dV
dt

= ρmg+ j× B−∇ · P+ ρqE ≈ j× B−∇ · P (1.27)

where ρm is the mass density, V is the bulk-velocity of the fluid, P is the pressure,
and g is the gravitational acceleration. In a space plasma, the gravitational and
electric field terms are generally neglected (since g is weak and quasi-neutrality
prevents E). j× B is regarded as the magnetic force, and can be rewritten as:

j× B =
1

µ0
(∇× B)× B =

(B · ∇)B
µ0

− ∇(B · B)
2µ0

(1.28)

by substituting j using Ampère’s law (Equation 1.5) with no electric field. The
penultimate term relates to the restoring force of a curved magnetic field line
(commonly, the magnetic tension force) and the ultimate term is the magnetic
pressure gradient force, for a magnetic pressure PB = B2

2µ0
. Note that the vector

calculus identity used to expand (∇× B)× B (which is not a triple product) is the
following:

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a)
rather than the typically used expansion of the triple product.

It is also possible to derive a generalised form of Ohms law [Somov, 2006]:

j = σ(E+V× B) (1.29)

which can be combined with Equations 1.4 and 1.5 to derive the induction equation:

∂B
dt

= ∇× (V× B) + 1

µ0σ
∇2B (1.30)

which describes the time evolution of the magnetic field. The fist term on the
right-hand side is known as the convective term, while the second is known as
the diffusive term. By calculating the ratio of these terms, one can determine
which is dominating the field evolution. This ratio is know, short-handedly as the
Reynolds number, Rm:

Rm =
|∇ × (V× B)|

| 1
µ0σ

∇2B| (1.31)

Practically, Rm is large when the conductivity (σ) or length-scales are large (i.e.,
the distances over which the derivatives, ∇, are taken). This implies that con-
vective term dominates, and so the field and plasma are coupled (frozen-in). In
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contrast, if the plasma is weakly conductive (say, because there are many neu-
trals and collisions) or spatial gradients occur over small length scales, then the
plasma and field are not coupled together (not frozen-in).

To determine, in general, whether plasma is frozen into the field or vice versa
one calculates the plasma beta, β:

β = nkBT

(
B2

2µ0

)−1

(1.32)

which designates the ratio between the thermal pressure and the magnetic pres-
sure (where pressure and energy density are interchangeable). If β � 1 then the
thermal pressure dominates the motion of the plasma, and hence the field must
be frozen into the plasma. Conceptually, a high plasma beta describes the situa-
tion when the pressure gradient force in the plasma dominates the j×B force in the
equation of motion (Equation 1.27), and so the dynamics of the hydro-magnetic
fluid are dominated by the plasma, not the field.

1.4 The Sun-Earth System
Space is uniquely well-suited for the production of plasma due to the extreme
heat (i.e., collisional ionisation) and/or radiation (photo-ionisation) provided by
stars, and the low chance of recombination (ions and electrons rejoining to form
un-charged atoms or molecules) due to the sparsity of interstellar matter. Stars
naturally provide an extreme environment which satisfies the requirements, and
the interstellar and interplanetary mediums are so diffuse that the recombina-
tion rate is effectively zero. As such, once the atoms or molecules in space
are ionised, they remain ionised effectively indefinitely - until they encounter a
different environment such as a planetary atmosphere.

This section will serve to describe the various domains investigated in this thesis,
and link them in to the descriptions and formalisms of plasma physics from
sections 1.1 and 1.2. We’ll begin with the solar wind, as this corresponds to the
work in Chapter 4, then move onto Earth’s magnetosphere which we investigate
in the second and third research chapters, and finally we’ll briefly explore the
ways in which the two systems are coupled (as this also links into the third
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research chapter).

1.4.1 The Solar Wind
Solar wind originates in the solar corona [see Figure 1.4, Parker, 1958], and per-
meates the entire heliosphere - the interstellar region within which the Sun’s
magnetic field dominates [Parker, 1961; Dialynas et al., 2017; Burlaga et al., 2019;
Rankin et al., 2019]. The first documented conjecture of a stream of ions from
the Sun was published by Eddington [1910] in his investigation of the envelope
of comet Morehouse. This was further developed by Biermann [1951], estimat-
ing solar wind speeds between 500 − 1500kms−1 and number densities between
500 − 105 cm−3. However these ideas weren’t well-understood until Parker [1958]
demonstrated that, due to its temperature, the solar corona could not be in hy-
drostatic equilibrium - and so a radial pressure-gradient force acts on the coronal
plasma, overcoming the gravitational force and causing a continuous stream of
plasma to leave the Sun.

Figure 1.4: A schematic diagram of the Sun’s internal and external structure. Original
image taken from Wikipedia, originally produced by user Kelvin13. Used under Creative
Commons Attribution-Share Alike 3.0 Unported license.

Describing Parker’s model with MHD, the equation of motion simplifies to:

ρmV · ∇V = ρmg−∇ · P (1.33)

by assuming an isotropic pressure and negligible electromagnetic effects (i.e., no
electric field, or j × B). We have reintroduced the V · ∇V term (which is often
neglected in ideal MHD) and removed the dV

dt term, due to searching for a static

13
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solution (i.e., no temporal variations). Additionally, a radially symmetric solution
is assumed, and the pressure at infinity must be zero.

These conditions produce a radial solar wind flow, wherein the solar wind con-
tinues to accelerate due to the finite pressure gradient, while density, tempera-
ture and magnetic field strength all decrease. One of the key predictions from
Parker’s model is that the solar wind becomes supersonic - since the local sound-
speed is density dependent, and the density drops off radially. The flow begins
travelling below the sound-speed in the low corona, but exceeds it at a height
known as the critical point. Eventually the solar wind also exceeds the Alfvén
speed [Alfvén, 1942; Barnes and Hollweg, 1974], given by:

va =
B

√
µ0ρm

(1.34)

The Alfvén speed is conceptually similar to the sound-speed in that it is the
maximum speed of information transfer, but different in that the information
is transmitted via electromagnetic rather than kinetic interactions. The Alfvén
critical point is the radial distance where the solar wind flow becomes super-
Alfvénic, typically lying at around 15−50 solar radii [where 1 solar radius is 6.95700×

108 metres, Weber and Davis, 1967].

At low radial distances from the Sun (less than 50 solar radii), the plasma
co-rotates because it is ‘frozen-in’ to the solar magnetic field as the magnetic
field pressure greatly exceeds the thermal and dynamic flow pressures [Alfvén,
1942; Roberts, 2007]. In contrast, at large radial distances the plasma flows
approximately radially, and the field is frozen-in to the plasma (with the thermal
flow pressure dominating). Recent work using Parker Solar Probe data [Kasper
et al., 2019] has show that even at distances as great as 35R⊙ there can be
significant azimuthal components to the solar wind velocity1.

Due to the Sun’s rotation, the field being frozen into the plasma, and the radial
flow direction of the solar wind, it can be shown that the interplanetary magnetic
field forms a spiral - the Parker spiral [Parker, 1958], see Figure 1.5.

1Though, these results may be due to a calibration issue, rather than being a feature in-and-of
themselves [see Appendix B in Finley et al., 2020].
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Figure 1.5: A schematic diagram of the heliospheric current sheet in a Parker solar wind
model. The black arrow designates the axis of rotation (rotating as per the purple
arrow), and the red arrow designates the magnetic dipole direction. The Parker spiral
structure is clearly visible. Original image taken from Orcinha et al. [2019].

1.4.1.1 Solar Wind Structures and Transients
From the earliest in situ observations, it was clear that the solar wind could be
broadly classified into two types: fast and slow [Neugebauer and Snyder, 1966;
Stakhiv et al., 2015], see Figure 1.6. This duality was found to extend beyond
the local solar wind speed, but is present in the elemental composition and ion
charge states of the solar wind, indicating distinct coronal source properties of
fast and slow wind [von Steiger et al., 2000; Geiss et al., 1995]. Fast wind is found
to originate from coronal holes [Sheeley et al., 1976]. These are magnetically
open regions of the corona where the plasma can freely escape, meaning that
coronal holes appear dark in EUV emission (since there is less plasma and less
time for it to be heated). The formation and release of the slow wind is a current
area of research, but it originates from the vicinity of closed coronal magnetic
structures such as the streamer belt [Antiochos et al., 2011; Ko et al., 2006; Xu
and Borovsky, 2015; Brooks et al., 2015]. Arguments have been made that the
slow solar wind may be due to small-scale reconnection [as per Sheeley et al.,
1997], and thus CMEs (coronal mass ejections, see below) and the slow wind may
exist on a spectrum. At solar minimum, coronal holes cover the polar regions,
with the streamer belt confined close to the solar equator. At solar maximum,
the coronal field is far less ordered. The resulting variation of solar wind speed
can be seen in Figure 1 of McComas et al. [2013]. Despite the breakdown of the
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latitudinal dependence at solar maximum, there is still a good separation between
streams of different speeds. This suggests that despite the activity, the source
regions remain isolated from one another, and there is not significant mixing of
the streams.

Figure 1.6: Polar plots of solar wind speed measured by the Ulysses spacecraft as a
function of heliospheric latitude. Panels (a) and (c) represent solar minimum, panel (b)
represents solar maximum, and panel (d) shows the sunspot number (left axis, proxy for
the solar cycle) and the current sheet tilt angle. The blue/red colours in panels (a-c)
represent the directions of the Sun’s magnetic field. The fast/slow solar wind duality
is clearly present, especially at solar minimum when the Sun’s magnetic field is more
ordered. Original image taken from McComas et al. [2008].

Having solar wind streams with different velocities leads to additional helio-
spheric structures. When faster (supersonic) solar wind catches up with slower
(subsonic) wind, a shock region forms. These the shocks are typically embedded
within regions of compressed solar wind known as co-rotating interaction regions
(CIRs) [Wilcox and Ness, 1965; Neugebauer and Snyder, 1966; Smith and Wolfe,
1976; Gosling, 1996; Richardson, 2018], because they recur on the time-scale of
solar rotation (≈ 27 days). Figure 1.7 shows a schematic diagram of a CIR. If coro-
nal holes exist for less than one solar rotation - which most do [Hewins et al.,
2020] - then the CIR will not be a recurrent feature, but given that low-latitude
coronal holes may exist for up to three years [Hewins et al., 2020], recurrence is
frequently observed.

Through a super-posed epoch analysis of 25 CIRs, Gosling [1996] showed what a
typical CIR might look like - as measured in situ (see Figure 1.8 below):

• There is a moderate positive gradient in solar wind speed between the pre-
ceding slow wind and anteceding fast wind.

• There is a very sharp gradient in the proton thermal pressure - PT = nkBTp

[Burlaga and Ogilvie, 1970].
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• The proton density spikes at the interface between the two streams.

• The flow is deflected. The preceding slow wind is deflected in the positive
azimuthal direction (i.e., in the sense of solar rotation), while the anteceding
fast wind is deflected in the negative azimuthal direction.

Figure 1.7: A schematic diagram of the corotating interaction region formed when fast
solar wind catches up with slower solar wind. Diagram taken from Pizzo [1978].

Figure 1.8: Super-posed epoch analysis of 25 CIRs as presented in Gosling [1996]. The
panels present the solar wind velocity, thermal pressure, density and flow directions,
centred on the time of maximum density. Each panel also includes error-bars corre-
sponding to the standard deviation at each point.

In relation to solar wind classification, it is the first point which makes solar
wind speed a bad descriptor for solar wind type. We know observationally and
theoretically that the solar wind speed changes as CIRs develop. This effect
also increases as the solar wind propagates through the heliosphere. So even if
one considers the effect at 1 AU (AU - astronomical unit - is the distance between
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the Sun and the Earth) negligible, it means that the same classification scheme
cannot be used on in situ data from more distant locations [Gosling and Pizzo,
1999; Hanlon et al., 2004].

CIRs exist, almost exclusively, in the low-latitude regions of the heliosphere
(i.e., the ecliptic plane). The primary reason for this is that the slower solar
wind originates from these regions. Secondarily, coronal holes typically exist
at higher latitudes - where lower latitude coronal holes are often equator-ward
distensions of the polar coronal holes. Because the solar magnetic axis is offset
from its rotational axis, over the course of a solar rotation, faster solar wind is
granted access to lower heliospheric latitudes, meaning it might catch up with
slower wind.

In contrast to these broad structures, the solar wind also has transient structures.
Coronal mass ejections (CMEs) are the most notable source of transient solar wind
events. CMEs can release 1011− 1013 kg of plasma into the interplanetary medium
[Kahler, 1992; Chen, 2011]. Once the CME plasmoid (the magnetically enclosed
plasma ejected from the Sun) enters interplanetary space, it is referred to as an
ICME (interplanetary coronal mass ejection). Figure 1.9 presents a schematic of
a CME.

Figure 1.9: A schematic diagram of a CME occurring on the Sun. The inflow velocity
relates to the speed of plasma streaming into the reconnection region, with the fast
shock being due to the plasma being ejected from the reconnection region. The HXR
and SXR refer to the regions from which hard and soft x-rays are emitted. The plasmoid
is the closed loop of magnetic field lines which are no longer topologically connected
to the the Sun. Original figure presented in Shibata [1996].
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I/CMEs and their structure can be identified using telescopes to observe for ac-
tivity on the Sun or Thomson scattering within the solar wind - e.g., much CME
work uses the two-spacecraft STEREO mission [Solar TErrestrial RElations Ob-
servatory, Kaiser, 2005] to understand their 3D structure and evolution [Eyles
et al., 2009; Scott et al., 2019; Jones et al., 2020]. ICMEs can also be identified
by in situ measurements [see the super-posed epoch analysis below, Cane and
Richardson, 2003].

As with CIRs, we can understand what a ‘typical’ ICME structure is via a super-
posed epoch analysis of observed ICMEs. Masiás-Meza et al. [2016] present such
a study, and we surmise the following properties:

1. The velocity of ICMEs is much faster than solar wind within which they are
embedded - giving rise to a shock front.

2. The magnetic field is two (or more) times greater than the interplanetary
magnetic field.

3. The number density spikes - though this occurs in relation to the shock front,
with the plasma inside of the ICME remaining similar to that of the solar wind
due to the isothermal expansion of the ICME.

4. As with the number density, the proton temperature also increases within
the shock region, but is typically lower than the solar wind inside of the
ICME.

1.4.1.2 The Solar Cycle
The Sun exhibits large-scale reconfiguration of its magnetic field on 11 (22) year
time-scales - this is known as the Schwabe (Hales) solar cycle. Over the course of
this cycle, the Sun’s magnetic field reverses polarity (twice for the Hales cycle).
Morphologically, the polarity of the Sun’s magnetic field has very little effect on
the processes discussed in context of the solar cycle. Instead the solar cycle
is split into four main categories, related to the number of sunspots or sunspot
groups visible in the corona. Sunspot maximum, minimum, the declining phase,
and the enhancement phase.
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The first evidence of the ‘10 year’ solar cycle was presented by Schwabe [1843],
who identified a periodic enhancement in the number of sunspot groups on the
Sun. Subsequently, most characterisations have relied on sunspot (group) num-
bers to quantify solar cycles - though more recent work uses the 10.7 cm radio
flux as a proxy [Tapping and Charrois, 1994].

A prototypical solar cycle is as follows (shown in Figure 1.10):

1. Solar minimum: coronal holes are limited to the polar region, with a well-
defined low-latitude streamer belt (Figure 1.10a).

2. The internal magnetic field becomes increasingly toroidal due to the differ-
ential rotation of the Sun, amplifying the mid-to-low-latitude magnetic field
[Figure 1.10b, Babcock, 1961].

3. Due to the increased field strength sunspot groups begin to appear in the
mid-latitude regions, around 20 − 50◦ [Figure 1.10c-e, Takalo, 2020]. The
sunspot themselves come in pairs of opposing polarity. With the leading
sunspot having the same polarity to the polarity of the respective hemi-
spheric pole (Figure 1.10f). This is known as the Hale-Nicholson law of
sunspot polarity [Hale, 1924]. Joy’s law explains that the leading sunspot
tends to lie closer to the equator (Figure 1.10f), and the angle between them
increases with latitude [Hale et al., 1919].

4. During the cycle, sunspot groups begin to appear at lower and lower lati-
tudes. This effect is known as Spörer’s law [Maunder, 1903].

5. As the sunspots form closer and closer to the equator, the leading and
opposite polarity sunspots from each hemisphere neutralise their respective
magnetic fields.

6. Due to meridional flows, the remaining sunspots are preferentially trans-
ported towards the poles. This results in a build-up of sunspots with polarity
opposing the hemispheric polarity (Figure 1.10g).

7. Once enough opposite polarity sunspots exist in a given hemisphere, their
magnetic flux dominates the polarity of the hemisphere and the solar mag-
netic polarity is effectively reversed (Figure 1.10h-i).

8. This cycle then recurs (with opposite polarity) over the next 11 years, com-
pleting the 22 year cycle.
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Figure 1.10: A schematic diagram of the Schwabe solar cycle, as present by Dikpati and
Gilman [2007]. Panel (a) shows the Sun’s poloidal field at the ‘beginning’ of the cycle.
Panel (b) shows the result of the Sun’s transition to a toroidal field. Panel (c) shows
the emergence of sunspots, and panels (d-f) provide greater detail, with (f) specifically
visualises both Hales-Nicholson’s and Joy’s law (see text). Panel (g) shows the meridional
flows which transport the remaining flux pole-wards. Panel (h) serves to show that the
flux is transported downwards into the Sun, resulting in the polarity inversion which can
be seen in panel (i).

The solar cycle is important, from a solar wind point-of-view, because it has a
profound effect on how well-ordered the streamer belt and coronal hole mag-
netic fields are. During solar maximum, where the dipole components of the
field are weaker compared to the multi-polar components, large-scale solar wind
structures are much less frequent, as well-defined coronal hole and streamer
belt regions are not present, but CMEs are approximately ten times more com-
mon [Lamy et al., 2019]. In contrast, during the declining phase of the solar cycle,
when the system is well-ordered, there are more CIRs [Legrand, 1985; Mursula
and Zieger, 1996; Mursula et al., 2015] and flares2 [Wagner, 1988].

2Though, other works suggest that the frequency of flares may not have a one-to-one correlation

21



1.4. THE SUN-EARTH SYSTEM

1.4.2 Earth’s Magnetosphere
Earth has an internally generated magnetic field [Gillbert, 1600; Larmor, 1919a,b;
Bullard, 1949]. In the absence of any external forces, this magnetic field (to a
first-order approximation) would present itself as a dipole. Earth’s field points
south to north, with the ‘northern’ magnetic pole located in the southern hemi-
sphere and vice versa. The dipole axis is not perfectly aligned with the spin
axis3, instead being offset by roughly 11.5◦ [Chapman and Bartels, 1941]. Ad-
ditionally, the longitude of the poles varies between the hemispheres with the
northern and southern poles longitude being approximately 73◦ west and 107◦

east, respectively.

As a consequence of Alfvén’s frozen-in theorem, the magnetic field and plasma
contained within the solar wind cannot - under the conditions of ideal MHD - mix
with those of the Earth. This yields a heliospheric cavity within which Earth’s
magnetic field dominates - ‘The Magnetosphere’. The plasma within the magne-
tosphere is frozen into the field with β � 1.

In reality, due to the interactions between the solar wind and Earth’s magne-
tosphere, the magnetospheric field is compressed on the Sun-facing side (the
day-side), and elongated into a tail-like structure on the anti-Sunward side (the
night-side). When the super-sonic solar wind reaches the effectively (radially)
stationary magnetosphere, it transitions to sub-sonic speeds causing the forma-
tion of a standing bow shock up-stream of the planet. The sub-sonic wind contin-
ues towards the magnetosphere, compressing it until pressure balance (Equation
1.35, below) between the solar wind and the magnetosphere is established.

As the solar wind cannot go through the magnetosphere, it must flow around.
In general, this flow is equivalent to a a typical fluid flowing around an obsta-
cle. However, because we’re dealing with plasma and magnetic fields there is an
additional feature - a current is formed in the region between the two different
plasmas. In the context of MHD, we have a current set up due to the spatial
gradients in the magnetic field (from Equation 1.5, assuming no electric field).
One may, alternatively, use kinetic plasma physics to explain the phenomena:
as ions and electrons encounter the magnetosphere, they perform half a gyra-
to the solar cycle [Temmer, 2010].

3Meaning that Cowling’s anti-dynamo theorem does not pose a problem Cowling [1933]. Though
others contest that the offset may be an artefact the of spherical harmonic representation [Akasofu,
2002].
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tion about the geomagnetic field lines, and are subsequently expelled from the
magnetosphere [Chapman and Ferraro, 1931; Ganushkina et al., 2018]. Since elec-
trons and ions are oppositely charged, they gyrate in opposing directions, and so
a current is formed (electrons preferentially travelling eastwards and ions pref-
erentially travelling westwards) - this is the Chapman-Ferraro Current [Chapman
and Ferraro, 1931]. The current system can be seen in Figure 1.11. Whilst the
currents are westwards on the dayside of the magnetosphere, as the solar wind
flow continues past the Earth and encounters the night-side field lines, the sense
of current flow is reversed, allowing the currents to close eastwards across the
surface of the magnetosphere.

Figure 1.11: A schematic diagram of the Chapman-Ferraro currents in the northern hemi-
sphere. The blue circle in the middle represents Earth, with the Sun in the positive
x-directions. The solar wind direction is in the negative x-direction, as shown by the
purple arrow. The purple arrows further demonstrates the particle kinetics of the elec-
trons and ions as they encounter the magnetosphere (whose shape is outlined by the
blue curves). The directions of the Chapman-Ferraro currents are shown by the red
curves - exemplifying the westwards direction in the equatorial plane, and eastwards
direction above the magnetotail. This figure is taken from the Encyclopædia Britannica.

The region within which the Chapman-Ferraro current flows is known as the
magnetopause. The magnetopause is co-incident with where pressure balance
is reached between the solar wind and the magnetosphere. In this case the
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balance is given by:

PSW +
BSW

2µ0
+ nSW kBTSW =

BMS

2µ0
+ nMSkBTMS (1.35)

where PSW is the ram pressure (ρv2), and the subscripts ‘SW’ and ‘MS’ refer to the
solar wind and magnetosphere, respectively. Since the solar wind is a high-beta
plasma, and the magnetosphere is a low-beta plasma, we can remove the solar
wind magnetic pressure term and the magnetospheric thermal pressure term.
The solar wind thermal pressure is very low compared to the ram pressure, so
we neglect that too [Kivelson and Russell, 1995]. This leaves us with:

PSW =
BMS

2µ0
(1.36)

If we assume a dipole field, the field strength at a particular radial distance, r, is
given by:

B(r) = BE

(
RE

r

)3

(1.37)

where BE is the magnetic field strength at the equator of the Earth’s surface,
and RE is the radius of the Earth. At the magnetopause there is an additional
contribution from the Chapman-Ferraro currents and general compression state
of the magnetosphere on the day-side. Hence, we more accurately employ B(r) ≈

2BE

(
RE

r

)3 [Ganushkina et al., 2018; Kivelson and Russell, 1995]. With this we can
re-write Equation 1.36 in terms of the radial distance, r, giving a simplified and
idealised model of the magnetopause location:

r = RE

(
2B2

E

µ0ρSW v2SW

)1/6

(1.38)

In practice, a model of the magnetopause location - e.g., the Shue model [Shue
et al., 1998] - is often used instead, as such models provide less idealised and
more representative values of the magnetopause location.

1.4.2.1 Magnetospheric Reconnection
Magnetic reconnection is one of the primary drivers of magnetospheric dynamics
[Eastwood et al., 2015]. For magnetic reconnection to happen, the topology of the
magnetic field has to change. This occurs when magnetic fields have exceedingly
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Figure 1.12: A schematic diagram of reconnection between anti-parallel magnetic field
lines (red and blue). Panel a is pre-reconnection, as pressures force the field lines
together - enhancing the current sheet. In panel c reconnection has occurred and the
previously-anti-parallel field has begun to dipolarise - with the magnetic tension acting
on the field such that it rapidly advects in the directions of Vout. This figure is taken
from Genestreti et al. [2012].

strong spatial or temporal gradients. In such magnetic topography the electrons
and ions may decouple from the field, at which point their motion is no longer
governed as described in Section 1.2. This is mirrored in the MHD description
as the magnetic Reynolds number, Rm, becomes small (⪅ 1) due to sharp spatial
gradients in the magnetic field.

Specifically in the case of spatial gradients in the field, if the changes are smaller
than the characteristic length-scales of the plasma, then a phenomenon known
as magnetic reconnection may occur (see Figure 1.12). Aside from the gyro-radius
as one of these length-scales, there is also the inertial length λ !P for a species !P

given by:
λ !P =

c

ωp !P

(1.39)

where c is the speed of light, and ωp !P is the species plasma frequency. The plasma
frequency corresponds to the frequency of oscillation of a species of particle in
the plasma, and is given by:

ωp !P =

(
4πn !PZ

2
!P e

2

m!P

)
(1.40)

where n !P, Z !P and m!P are the species number density, charge state (e.g., 1 for
protons and electrons) and mass, respectively. Reconnection occurs when the
spatial gradients of the field are small enough to cause the electrons to decouple
from the field.
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The cycle of reconnective behaviour at Earth (locations shown in Figure 1.13) is
known as the Dungey cycle [Dungey, 1961; Milan et al., 2007]. The Dungey cycle
describes the process by which energy is transferred between the solar wind and
the magnetosphere. The Dungey cycle is as follows:

1. Magnetic reconnection occurs around the nose (the point facing the Sun) of
the magnetopause, leading to coupling between the magnetic fields of the
solar wind and magnetosphere.

2. Due to the interplanetary magnetic field being frozen into the plasma, it
continues streaming past the Earth. Since the fields are now coupled, field
lines connected to the Earth are pulled along with the solar wind, forming
an extended magnetotail.

3. The solar wind pressure and build-up of magnetic flux in the magnetotail
lead to conditions favourable for reconnection. The reconnection allows for
the interplanetary magnetic field to decouple from the magnetosphere and
continue along with the solar wind.

4. Once the magnetospheric field lines are reconnected, the magnetic tension
causes the field lines to travel back towards the planet, where they sub-
sequently convect back to the day-side, setting up for continuation of the
cycle.

Dungey [1961] initially proposed equivalent rates for the reconnection at the nose
and in the tail, however, this steady-state condition is not a valid approximation
for the behaviour observed [Milan et al., 2007].

Day-side reconnection provides the primary source of plasma flow into the mag-
netosphere. When the field between the solar wind and the Earth is coupled, it
allows for solar wind plasma to flow along the field lines into the magnetosphere.
Additionally, the convection of the field (both after day-side reconnection and
after night-side reconnection) transfers momentum from the solar wind to the
magnetosphere [Nakamura et al., 2017; Borovsky and Valdivia, 2018].
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Figure 1.13: A schematic diagram of the main reconnection site in Earth’s magnetosphere
- denoted by black crosses, with arrows representing the direction of plasma flows.
The blue lines represent the interplanetary magnetic field; the orange lines are open
magnetic field lines, where Earth’s magnetic field has reconnected to the interplanetary
magnetic field; and the red lines represent Earth’s closed magnetic field lines (those
whose foot-points are both connected to the Earth). The black dashed line is the
magnetopause and the black dotted line is the bow shock. This figure is originally
produced in Eastwood et al. [2017b].

1.4.2.2 The Plasma Sheet and Ring Current
There are many different magnetospheric regions, current systems and struc-
tures. We will discuss some in this section, and cover others - such as the
radiation belts - in subsequent sections.

In the night-side magnetosphere there is a dense region of relatively hot plasma
known as the plasma sheet [with temperatures greater than 1 keV, Bame et al.,
1967]. It can exist as close to the Earth as 7RE [Stawarz et al., 2017] and beyond
60RE [Meng and Mihalov, 1972]. within the plasma sheet is an embedded current
sheet. The current is driven by the spatial gradients in the magnetotail fields.
During tail reconnection plasma sheet electrons are transported to the inner
magnetosphere due to the convection of the field lines, where they form the
source population for the relativistic radiation belt (see the following section)
population [Thorne et al., 2013; Jaynes et al., 2015].

Closer to the planet there is a ring current, shown in Figure 1.14. Though, it
is more easily discussed as three separate ring currents. The ring currents are
predominantly driven by a pressure gradient force acting on the plasma. The
pressure peaks at roughly 3RE [Lui et al., 1987; Lui, 2003], and hence drives the
first, eastwards ring current beyond 3RE, and the second, westwards ring current
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within. The drift velocity is given by:

Vdrift = −∇P× B
ρqB2

(1.41)

which can be re-arranged to give the current, j (where, in general, j = ρqv):
j = −∇P× B

B2
(1.42)

The third ring current arises due to Earth’s day-side magnetosphere having two
magnetic field minima (due to solar wind compression), one above, the other
below the magnetic equator [Antonova and Ganushkina, 2000; Ganushkina et al.,
2018]. The bifurcation of the magnetic minima contour on the day-side leads to a
bifurcation in the outer ranges of the ring current, leading to the cut-ring current.

Eastwards
Ring Current

Westwards
Ring Current

Cut-Ring Current

Figure 1.14: A schematic diagram of Earth’s symmetric ring current, taken from Ganushk-
ina et al. [2018]. The diagram has Earth in the middle with the night-side mostly hidden
behind the representation of the planet. In cyan and brown are the westwards and east-
wards currents, respectively, as well as the bifurcating cut-ring current in yellow. In
this diagram, the density gradient is implicitly maximised in the region between the
cyan and brown ring currents, leading to their generation and opposite directions.

The westwards ring current is enhanced subsequent to magnetic reconnection
in the tail. As previously mentioned, the convection of newly reconnected field
lines brings plasma from the plasma sheet into the inner magnetosphere. This
plasma is comprised of ions and electrons each having a range of pitch-angles.
This plasma experiences a magnetic gradient force due to interacting with the
stronger field closer to the planet. If these particles have a non−90◦ pitch-angle,
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then they also experience a curvature force. In concert, these forces both act to
drive a westwards flow of ions and eastwards flow of electrons. Thus a current
is produced, adding to the effect of the ring current.

The ring current produces a measurable magnetic disturbance [Ganushkina et al.,
2018] on the surface of the Earth (right hand grip rule). If the westwards current
dominates, then the generated magnetic field opposes that of the Earth, and so
measurements at the surface are depressed and vice versa [Ganushkina et al.,
2018]. Equivalently, at positions beyond the ring currents, there is a measurable
effect on the magnetic field which acts to enhance and depress the field depend-
ing on which flow direction dominates (enhancement occurs when the westwards
flow dominates).

The ring current itself can be enhanced by various mechanisms - most signifi-
cantly solar wind driving, ionospheric outflow and plasma-sheet dynamics [e.g.,
storms and substorms, see Section 1.4.2.4, Daglis, 2007; Sandhu et al., 2018].

1.4.2.3 The Radiation Belts
Earth’s radiation belts typically manifest in the magnetosphere as two toroidal
regions of magnetically confined, energetic plasma. They were discovered in
1958 when Explorer 1 [Van Allen et al., 1958] data was understood to be showing
the results of a saturated Geiger counter. As the name suggests, the radiation
belts are a radioactive environment. Despite Explorer 1 measuring only the low-
altitude inner belt, it was quickly realised that there were in fact two radiation
belts [Van Allen and Frank, 1959; Lyons and Thorne, 1973] - one closer to the
Earth, on further away - with a slot region, typically devoid of higher energy par-
ticles, in between (see Figure 1.15). Both radiation belts contain trapped ions and
electrons, though they are typically discussed as the proton (inner) and electron
(outer) radiation belts due to these species dominating the respective dynamics
[Li and Hudson, 2019]. The relativistic electrons commonly observed in the outer
radiation belt pose a threat to spacecraft via surface charging and electrostatic
discharges between internal components [Frederickson et al., 1991; Baker, 2001;
Eastwood et al., 2017a]. Many spacecraft orbits overlap with the outer radiation
belt (ORB), meaning that a large portion of space-based infrastructure exists in
the radiation belts. Hence, there is significant interest in being able to accurately
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model and forecast its electron properties - thus motivating the work presented
in Chapters 5 and 6.

Figure 1.15: A schematic diagram of Earth’s radiation belts. The colours represent the
relative intensity of radiation at a given location, with red being the highest intensity.
The diagram shows that the inner belt is typically much smaller and more confined.
Superimposed are some spacecraft and orbits for reference (e.g., the International Space
Station orbiting within the inner belt, the Solar Dynamics Observatory orbiting at the
outer boundary of the outer radiation belt, and the Van Allen Probes cutting through
the radiation belts). Image credit: NASA.

The inner belt, approximately located at 2RE, is generated by a combination of
CRAND [Cosmic Ray Albedo Neutron Decay, Singer, 1958] and SEP events [solar
energetic protons, Blake et al., 1992; Selesnick et al., 2007].

The ORB (outer radiation belt) comprises a highly dynamic electron population,
where fluxes can change by orders of magnitudes on minute timescales [Blake
et al., 1992]. It has a peak (2MeV) flux at approximately 4RE and frequently
extends beyond geosynchronous orbit - roughly 6.6RE [Li et al., 2013]. Typically,
the ORB is considered as the relativistic4 tail of the electron energy distribution,
as these particles have very weak interactions with the electric fields in the
magnetosphere. Though, the 10s to 100s of keV source and seed electrons are
also often considered as they ultimately become radiation belt electrons [Jaynes
et al., 2015].

The motion of the higher energy electrons are governed by the particle motion
described in Section 1.2 - gyro-motion about field lines, bounce-motion along
field lines, and drift-motion about the Earth. With these motions, and knowledge

4Relativistic effects (loosely) become important when the particle energy approaches the rest
mass of the particle. For electrons this is 511 keV.
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of the geography, geometry and topology of the system, we can consider the
boundaries of the ORB.

The inner boundary is two-fold. Firstly, there is the loss cone - this is the range of
pitch-angles for which the mirror point (bounce-motion - Section 1.2.2) is within
the atmosphere. If an electron enters the atmosphere, it is considered lost
from the system due to the large increase in collisional frequency. Particles are
scattered, in pitch-angle, into the loss cone by wave-particle interactions [WPIs,
Thorne and Kennel, 1971; Gamble et al., 2008; Miyoshi et al., 2008; Ukhorskiy
et al., 2010; Rodger et al., 2015]. Secondly, there is the ‘impenetrable barrier’
- a region close to the Earth which relativistic electrons cannot breach. Early
work [Lyons and Thorne, 1973] suggested that this boundary was governed by
Coulomb scattering and wave-driven pitch-angle scattering. More recently, it has
been suggested that singularly wave-driven radial diffusion can explain the phe-
nomenon [Ozeke et al., 2018], or, alternatively, it may be due to the suppression
of chorus wave growth due to Earth-based electro-magnetic transmitter signals
[Foster et al., 2020].

The outer, spatial boundary occurs at the boundary between trapped and un-
trapped electrons. This is commonly referred to as the last closed drift-shell
for an electron which conserves all three of the adiabatic invariants (Section 1.2),
where a closed drift-shell is the surface traced out by the combination of electron
bounce-motion and drift-motion (both gradient and curvature). Practically, it is
easier to think only of the third invariant [Xiang et al., 2017; Albert et al., 2018;
Olifer et al., 2018], since the drift motion has the lowest frequency and largest
spatial extent and so the first two invariants are conserved by definition5 [though
some works do consider the first invariant explicitly, e.g., Sivadas et al., 2019].

The outer boundary is dependent on energy and pitch-angle due to the gradient
drift being related to v⊥ through µ (and the gradient itself being dependent on
the gyro-radius6), and the curvature drift being related to v∥. Technically, electric
fields also act, but due to the energy dependence of the aforementioned drifts
the E× B drift is comparatively negligible [Buck, 1987; Öztürk, 2012].
The outer boundary is further dependent on the the solar wind. If the solar wind
compresses the magnetosphere, then it is possible that the electron drift paths

5Recall that an adiabatic invariant is conserved if the field varies on spatial scales smaller than
the associated motion, or timescales shorter that the periodic motion.

6A larger gyro-orbit would sample a greater extent of magnetic field dropping off with 1
r3
, and

the computed average gradient increases as a larger spatial extent of the field is considered.
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will encounter the magnetopause and so be lost from the magnetosphere - this
process is known as magnetopause shadowing, and is one of the dominant loss
processes in the outer radiation belt [Turner et al., 2012b; Xiang et al., 2018;
Staples et al., 2020].

Other significant processes for electron acceleration and transport are typically
related to resonant WPIs. WPIs between seed population electrons and very low
frequency (VLF) whistler mode waves, act to energise radiation belt electrons
to relativistic energies [Baker et al., 1998a; Horne et al., 1998; Summers et al.,
1998; Meredith, 2002; Horne et al., 2005]. Ultra-low frequency (ULF) waves trans-
port electrons through radial diffusion [Fälthammar, 1965; Jaynes et al., 2015;
Thompson et al., 2020] and can play a role in electron acceleration through WPIs
[Elkington et al., 1999; Mann et al., 2013]. Radial electron transport via ULF wave
activity results in betatron acceleration of electrons as electrons are transported
radially inward (and vice versa). A transport and acceleration method, not linked
with WPIs, occurs when the ring current is enhanced, causing electrons to be adi-
abatically transported outwards and thus decelerate [Dessler and Karplus, 1961;
McIlwain, 1966].

1.4.2.4 Storms and Substorms
Geomagnetic storms are periods of intense solar-wind-magnetosphere coupling,
during which large-scale reconfiguration of the magnetospheric geometry oc-
curs, driving significant intensification of the ring current [Chapman and Bartels,
1941; Kamide et al., 1998]. Storms are characterised by horizontal reductions in
the geomagnetic field, measured by equatorial magnetometer stations, and rep-
resented via geomagnetic indices such as Dst [Gonzalez et al., 1994] or SYM-H
[Iyemori, 1990; Wanliss and Showalter, 2006]. Moderate storms are characterised
by a ring-current-induced reduction in the surface geomagnetic field of 50nT [c.f.,
Earth’s typical surface field strength of 25 − 65µT Finlay et al., 2010], which oc-
curs ≈ 8 % of the time [Gonzalez et al., 1994]. Primarily, geomagnetic storms
are associated with transient structures in the solar wind such as CMEs or CIRs
[Hutchinson et al., 2011].

A prototypical storm consists of three phases, an initial, main and recovery
phase. During the initial phase the SYM-H/Dst index increases, due to CME/CIR
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driven magnetospheric compression increasing the geomagnetic field strength.
Subsequently, the main phase is characterised by a large reduction in the geo-
magnetic field due to enhancement of the ring current [through processes cur-
rently unknown, Hutchinson et al., 2011]; this is controlled by a strong southwards
interplanetary magnetic field causing increased day-side reconnection, and de-
positing large amount of solar wind energy into the magnetosphere. The start
of the recovery phase is typically linked to the solar wind driving conditions
returning to quiescent conditions (reduced solar wind speed and ram pressure,
less southwards interplanetary magnetic field etc.) and occurs on timescales
of hours to days [Gonzalez et al., 1994; Hutchinson et al., 2011]. The recovery
phase is associated with a decay in ring current intensity [Yermolaev et al., 2012;
Daglis et al., 1999], possibly via resonant WPIs between bouncing particles and
ULF waves [Hutchinson et al., 2011].

Storms are an important aspect of Space Weather research due to the effects
they have on the geo-space environment. Whilst many storm-related effects
are well understood, the ways they affect radiation belt electron fluxes are not.
Reeves et al. [2003] conducted a statistical study of storms, finding that ≈ 50%
of storms caused an enhancement of relativistic electrons at geosynchronous
orbit, ≈ 20% caused a depletion, and ≈ 30% caused no significant change (within a
factor of 2). Anderson et al. [2015] conducted a similar study, but instead exam-
ined less geo-effective storms (i.e., a smaller Dst response). Compared to large
storms, these smaller storms were found to be 10% less likely to result in a flux
enhancement and 10% more likely to result in a flux depletion at geosynchronous
orbit. In a similar fashion to Reeves et al. [2003], Turner et al. [2015], Moya et al.
[2017] and Turner et al. [2019] used data from NASA’s Van Allen Probes mission
to investigate the radiation belt electron flux response to storms. Turner et al.
[2015] and Turner et al. [2019] found that lower energy electrons (100s of keV)
closer to the Earth (3 − 4RE) were enhanced in almost all (> 90%) of the storms
studied. Though both Turner et al. [2015] and Moya et al. [2017] found similar
results to Reeves et al. [2003] for the MeV-energy electrons.

In contrast to these results, Murphy et al. [2018] and Murphy et al. [2020] use
a proxy for the number of electrons in the outer radiation belt over ranges of
different energies and find that the storm main-phase is accompanied by a con-
sistent decrease in electrons, followed by an increase over the recovery phase.

Reeves et al. [2016] generalise the morphological response of radiation belt elec-
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trons to storms, later validated by Turner et al. [2019]: in the main phase, the
slot region is filled with a new population of source and seed electrons [Jaynes
et al., 2015], while the higher energy electrons are lost throughout most if not
all of the outer radiation belt; during the recovery phase, the source and seed
electrons at lower L-shells are lost, reforming the slot region, whilst typically,
the relativistic electrons become enhanced within the outer radiation belt.

Associated with storms are substorms. During a storm there are always sub-
storms, though substorms may also occur outside of storm-times [Gonzalez
et al., 1994]. Substorms are a primary, if indirect, source of the energetic elec-
trons comprising the outer radiation belt. Through magnetotail reconnection,
substorms inject the low-energy source and seed electron populations into the
inner magnetosphere [Akasofu, 1968; Reeves et al., 1990; Borovsky et al., 1993;
Forsyth et al., 2016]. The injected seed population is not isotropic and so sup-
ports the generation of whistler mode chorus waves [Li et al., 2010b]. The seed
population is subsequently locally accelerated through wave-particle interactions
with these whistler mode chorus waves up to relativistic energies [Horne et al.,
1998; Summers et al., 1998; Horne et al., 2005; Jaynes et al., 2015].

Much like the Reeves et al. [2003] work, investigations into the radiation belt
electron response to substorms provide somewhat inconclusive results. Forsyth
et al. [2016] found that the chances of an increase or decrease in the content
of the radiation belts in response to substorms was 50/50. This tells us that,
despite the current paradigm being to discuss Space Weather in terms of storms
and substorms, these are unfortunately not the relevant phenomena for the
radiation belts. Discovering the next paradigm is clearly necessary, but appears
to be remaining elusively out of reach for the time being.

1.5 Space Weather
Space Weather is the umbrella term used to describe the dynamic behaviour in
the geo-spatial environment. According to COST (European Cooperation in Sci-
ence and Technology) Action 724, Space Weather is defined as: ”the physical
and phenomenological state of natural space environments. The associated
discipline aims, through observation, monitoring, analysis and modelling, at un-
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derstanding and predicting the state of the Sun, the interplanetary and plane-
tary environments, and the solar and non-solar driven perturbations that affect
them, and also at forecasting and nowcasting the potential impacts on biolog-
ical and technological systems”. As with terrestrial weather, Space Weather
is always occurring, though the focus of Space Weather research typically falls
on the more extreme behaviour which can have negative impacts on human life
[Pulkkinen, 2007].

Space Weather events can lead to the loss of satellite service [Garrett, 1981;
Baker et al., 1987; Frederickson et al., 1991; Baker et al., 1998b; Baker, 2001;
Sreeja, 2016], increased radiation danger to astronauts [Cucinotta et al., 2010],
plane diversions from polar routes [Eastwood et al., 2017a] and power outages
[Pirjola, 2007; Piccinelli and Krausmann, 2014], among others.

Mitigating for these effects requires comprehensive understanding of causal fac-
tors, quantitative characterisation of the various levels of effects that may be
induced, and ideally, the ability to forecast the effects.

Many impactful Space Weather events are directly linked to the solar wind,
specifically, CMEs, flares, solar energetic proton (SEP) events and solar wind
stream interactions. Predicting when the Sun might produces flares [Leka et al.,
2019], CMEs and SEPs [Klein and Dalla, 2017] is difficult and a current area of re-
search. However, the fact the solar eruptions that produce these phenomena can
be observed on the Sun allows forecasting work to focus on the specific arrival
times [e.g., for CMEs Riley et al., 2018; Owens et al., 2020; Riley and Ben-Nun,
2021] - an arguably more straightforward task. The maximum lead times for pre-
dicting effects due to these processes differs due to the different characteristic
speeds they have. The effects of flares are due to the x-rays they produce -
these travel at the speed of light and reach Earth in a matter of minutes. SEPs
are particles that typically travel at relativistic speeds - these can reach Earth
in an hour. CMEs are, by comparison, much slower, travelling at speeds more
similar to the solar wind - CMEs typically reach Earth a few days a few days.

However, since the impacts of these events are present within the magneto-
sphere, it is necessary to be able to map from solar wind conditions to the
magnetospheric response. Given the many spacecraft which exist in the radia-
tion belts, it is crucial to understand the plasma environment within which they
exist, as such understanding helps to prolong operational lifetimes. Much work
has been done to model the radiation belt response to the solar wind [Rigler
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et al., 2005; Hudson et al., 2008; Turner et al., 2012a; Li et al., 2015; Lugaz et al.,
2016; Baker et al., 2019; Kalliokoski et al., 2020; Smirnov et al., 2020; Xiang et al.,
2021]. Equivalently, work has also been done to model the auroral oval size [Mi-
lan, 2009; Xiong et al., 2014; Xiong and Lühr, 2014; Hu et al., 2017; Han et al.,
2020] and ground-induced currents or their related local magnetic perturbations
[Wintoft, 2005; Pulkkinen et al., 2013; Camporeale et al., 2020; Keesee et al.,
2020] with-respect-to the solar wind.

The work presented in Chapter 4 aims to aid Space Weather research by provid-
ing objective, data-driven classifications of solar wind type, providing additional
information for future statistical studies in analysing the Space Weather impacts
that different solar wind types have.

In Chapter 5 we explore whether we can extract an empirical location for the
outer radiation belt boundary. This boundary is crucial in radiation belt modelling,
and so an improved identification may lead to improvements in the characterisa-
tion of the radiation belt environment.

In Chapter 6, we take similar ideas to those used in solar wind parameterisations
of the radiation belts to construct our own parameterisation of the electron
flux at the boundary. Whilst the work presented in Chapter 5 is useful in-and-
of itself, radiation belt modellers use the boundary electron flux specifically in
their boundary condition. Therefore, this chapter serves to demonstrate how a
synthetic spacecraft dataset of the electron fluxes can be created using machine
learning. Results from this work should make it much easier for radiation belt
modellers to include information regarding the new boundary location into their
models.

1.6 Summary
This Chapter set out to introducing the relevant background physics required to
understand the research projects presented in Chapters 4, 5 and 6.

In Section 1.1, the fundamentals of plasma physics were laid out - from what
a plasma is to the equations governing the electromagnetic interactions which
dominate the motion. Subsequently, in Section 1.2, the motion of charged par-
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ticles in electric and magnetic fields was expounded. This motion is crucial to
understanding the dynamics of radiation belt particles (e.g., in Chapters 5 and
6). Moving on from a particle description of plasma motions, the fluid theory
of magneto-hydrodynamics was explored in Section 1.3. MHD provides a natural
framework for exploring the bulk motions of charged fluids (especially useful
when considering the solar wind and interactions between the solar wind and a
planetary magnetosphere).

Section 1.4 saw a shift from more broad physics concepts to the specific phe-
nomena and morphologies present within the heliospheric and magnetospheric
systems. We initially described the solar wind (Section 1.4.1), its generation, ba-
sic properties, large scale structures and the solar cycle. Many of these concepts
are foundational to the topic presented in Chapter 4, but additionally, there are
profound links between the solar wind and Earth’s magnetosphere - essentially
manifesting the field of Space Weather research. After the solar wind, the narra-
tive became more Earth focused (Section 1.4.2). Initially, the pathway for energy
transfer between the solar wind and the magnetosphere was described (Section
1.4.2.1), followed by some broad geography of the relevant (to Chapters 5 and 6,
at least) structures in Sections 1.4.2.2 and 1.4.2.3. We finished-off Section 1.4.2
with broad descriptions of the paradigm phenomena of Space Weather - geomag-
netic storms and substorms (Section 1.4.2.4), with a focus on their effect on the
outer radiation belt electron population (the focus of Chapters 5 and 6).
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Chapter 2

Machine Learning

In the context of this thesis, machine learning (ML) is the umbrella term used to
describe computational methods of (semi-)automated pattern recognition.

Throughout this chapter we will give a broad overview of supervised and unsu-
pervised machine learning1 - with further details regarding the algorithms and
methods specific to the work presented in Chapters 4, 5 and 6.

2.1 Terminology
Before beginning the more detailed discussion of the algorithms, it is useful to
set out the terminology that will be used.

Inputs, input feature, and X all refer to the data from the parameter space that
you want to map from. In our specific uses, each individual input is a 1D vector
of all of the pertinent data from the input parameter space. Each individual
parameter in the input vector, denoted Xi, represents one of measured bits of
data.

Outputs, target feature, targets and y all refer to the data from the parameter
space that you want to map to. Typically, in space-physics and our use-cases,
this is a single value or, as seen in Chapter 6, it may also be a vector - these
values may be an integer for classification problems or a continuous variable for
regression problems.

An ML model represents a trained version of an ML algorithm, which is ready to
1Note that whilst supervised and unsupervised ML are, in my experience, the most frequently

discussed, there are other branches of ML too: semi-supervised and reinforcement learning. The
latter is what is used to teach a robot to walk, or train a computer to play a video-game etc. The
former is a half-way between supervised and unsupervised, wherein the training dataset has a small
number of labelled cases and a large number of unlabelled cases - learning may focus on labelling
the whole dataset, or using the unlabelled data to bolster the learning of the mapping from inputs
to outputs.
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be used as an input-output mapping tool.

Model architecture refers to the specific overall structure of a given ML model.
In the case of decision trees and random forests, this is the depth of the tree and
the rules for creating leaf nodes. In neural networks, it is the specific number of
layers, nodes in each layer and method by which information is passed through
the network.

Neural network or NN serves as a shorthand for artificial neural network (since
we aren’t literally training other brains to do this work...). It further serves as
a shorthand for feed-forward artificial neural networks, as this is the specific
architecture we use in Chapter 6.

Hyper-parameters are the parameters which govern the inner workings and ar-
chitecture of a machine-learning model. These might be the maximum depth of
a decision tree, or the number of nodes in a neural network layer. They also
include the loss function, optimisation algorithm and learning rates used to train
a model.

2.2 Supervised Machine Learning
Supervised learning refers to the type of ML where a chosen algorithm is pro-
vided with input-output pairs of data [Russell and Norvig, 2009]. Essentially, su-
pervised ML algorithms are function approximators, trying to optimise the ability
to correctly map from the inputs to the outputs. The inputs are samples of the
parameter space from which one seeks to model the outputs. For example, as
an input to a model you might include the weather (temperature, humidity etc.)
and time-of-day, with the aim of predicting the number of ice-creams that will
be sold (the output).

There exist too many supervised algorithms to feasibly discuss here, so we will
focus this section on decision trees (and their ensemble counterparts) and neural
networks, as these are the specific techniques used in Chapters 5 and 6.
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2.2.1 Decision Trees
A basic decision tree is a relatively simple algorithm [Hastie et al., 2008]. This
class of algorithm is so-named due to the dendrograms used to represent the
architecture appearing vaguely similar to a tree2.

Practically, a decision tree is just a set of nested if/else conditions. These con-
ditions create linear partitions in input parameter space that best separate the
data. Typically simple decision trees are no longer used, with researchers favour-
ing more sophisticated methods, however, they have been used applied to iden-
tifying noise types in Hubble Space Telescope data [Salzberg et al., 1995]. Note
that, despite the linear partitioning, the recursive nature of the algorithm al-
lows decision trees to approximate non-linear functions. The algorithm can be
considered in the following way:

1. The model finds the optimum partition value (over all of the input features)
to make a single split in the data. The partition is selected to optimise
for some criterion3 in the post-partition regions - frequently, this is related
to a loss function such as mean-squared error in regression tasks or the
entropy/information gain (related to the distributions of the class labels) in
classification problems.

2. After a partition, the data are split between two child nodes (children of the
root node). The representative target value for each node is given as either
the average (typical in regression) or the majority (in classification) of the
target value of all of the data it contains.

3. This process is repeated until either the number of decision ‘layers’ (i.e., the
depth of the tree) has reached the specified maximum and/or every node
has the minimum allowed number of data samples (1 is the fundamental
limit). When a node can no longer be split due to either condition being met,
it is considered a ‘leaf’ node; further promoting the tree analogy.

Due to the linear partitions, when decision trees are used for regression, the
2Though, somewhat amusingly, the dendrograms are almost always shown with the root node - the

initial part of the tree - at the top, with the dendrogram spreading downwards.
3There are various algorithms for this optimisation, though the most commonly used one is likely

CART [classification and regression tree, Breiman et al., 1984], as this is the default in the Scikit-learn
python package. Others, such as ID3 [Iterative Dichotomiser 3, Quinlan, 1986] or C4.5 [Quinlan, 1993]
are also widely used (though mostly the latter, as it is an update to the former).
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regression surface is not smooth and continuous, it is step-like, with discrete
changes in the regression values.

In decision-tree learning, the depth and the number of samples per leaf are the
most important hyper-parameters. They effectively control whether a model
will over- or under-fit the data. Taking some extreme examples of these we
find:

• If the tree depth is fixed at 1, so there is a single split in the data, then the
model can only generalise a very simple binary classification, otherwise it
will heavily under-fit the data. On its own, a decision tree stump model is
rarely useful or informative4.

• If, in contrast, the tree is allowed to grow such that each leaf node contains a
single data-sample, then the model will typically be over-fitting (see Section
2.2.4), as it won’t have learnt to generalise the data well.

These issues are typically overcome by optimising for these hyper-parameters,
allowing for the optimum balance between over- and under-fitting to be deter-
mined by empirical testing of different values.

2.2.2 Ensemble Decision Trees
Trees are very fast to train due to the algorithms used to make the splits, and
typically easy to explain and understand. However, individual trees do not per-
form machine-learning tasks as well as other algorithms, and they aren’t robust
to changes in training data [James et al., 2013]. To this end, there has been a
lot of work on ensemble tree methods. These make good use of the speed of
decision-tree training, to create large, robust ensembles which have significantly
better performance than single trees and other machine-learning algorithms [En-
gelhardt et al., 2014; Gredell et al., 2019; Uddin et al., 2019]. Note, we do not
comment on over-fitting here, as we will make arguments in Section 2.2.4 for it
not being an algorithm problem, but instead being a failing of the scientist.

The most straightforward ensemble method is known as ‘bagging,’ which we will
4Though, when used as part of more complex ensemble methods, they can be put to good use

[e.g., these examples from other fields: Kawaguchi and Nishii, 2007; Chen et al., 2019].
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describe first, before covering random forests5 and boosting. These topics are
covered in detail in the following textbooks, from which we draw much of the
material: James et al. [2013]; Hastie et al. [2008]

‘Bagging’ is a portmanteau of bootstrap aggregating, and is a term used when
training an ensemble using subsets of the training dataset rather than the full
training dataset in one big chunk. The motivation for bagging originates from
calculating sample statistics: given a set of n independent observations of some
population statistic, y, which have variance σ2, the variance associated with the
mean value, ȳ is given by σ2/n. This means that by averaging our observations,
we can reduce the variance. Equivalently, if n independent decision trees are av-
eraged, the variance in the predicted value is reduced. The immediate problem
with this is that decision trees are typically not stochastic, and so the trees will
not be independent of one another. Hence the use of bagging6 - by training many
trees with subsets of the training data - each tree is effectively de-correlated
from the others and can be considered independent. In the context of classifi-
cation, one would take a majority classification from the ensemble and use that
as the predicted class for a given data-sample.

Random forests build from the concept of bagging, making a small adjustment
to the algorithm to further de-correlate the trees: for each node, the algorithm
determining the optimum partition is given a random sub-sample of the input
features. By making this small change, the propensity of trees to focus on the
same input features (i.e., the most informative ones) is removed, forcing more
variability in the decision trees. Random forests have been used to optimise the
multi-dimensional partitioning of solar wind data to better predict the power of
certain magnetospheric waves [Bentley et al., 2020].

Unlike bagging and random forests, boosting does not use subsets of the data
for training ensemble members. Instead, each tree is ‘grown’ sequentially and
applied additively, focusing on reducing the errors from the previous trees [Fried-
man, 2001, 2002; James et al., 2013]. As an additive model, the ensemble is not
averaged like in bagging or random forests. The general algorithm, MART [Multi-
ple Additive Regression Trees, Friedman, 2001, 2002], proceeds as follows:

1. An initial prediction, y′, of 0 is given for all training samples, X: y′0 = f0(X) = 0.
5Very committed to the tree analogy now.
6Ideally one would use n independent training datasets, one for each tree. But alas, we very rarely

have enough data to construct our models this way. It’s likely that bagging the full dataset would
still be more effective anyway, since there would be more training data.
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And, a model weighting, λ, is specified (typically 0.01-0.00001).

2. The residuals, r, between the true values, y, minus the predictions are cal-
culated: r = y − y′.

3. A decision tree model, fDT
n (X), is fit to predict the residuals: rn ≈ fDT

n (X).

4. The initial predictions are added with the weighted output of the decision
tree to give a new y′: y′n+1 = y′0 + λfDT

n (X)

5. The residuals are then recalculated: rn+1 = y − y′n+1.

6. Steps 3 - 5 are repeated until the specified number of trees have been
trained, or the model performs sufficiently well. The final boosted model,
fB, is then given by: fB(X) =

∑n=N
n=0 λfDT

n (X) ≈ f(X). Where N is the total
number of trees to be trained, and f(X) is the underlying mapping that the
model is being taught to approximate.

In this way, an ensemble grown through gradient boosting is specialised to reduce
the residuals between predictions - providing a model with good performance,
even with very small trees [James et al., 2013]. The downside is that when the
ensemble becomes very large, the trees added later in the process don’t have an
impact beyond the residuals relating to a few data-samples [Freund, 2001; Rashmi
and Gilad-Bachrach, 2015].

To address this downside, alterations can be made to the general algorithm.
Specifically, DART [Dropouts meet MART, Rashmi and Gilad-Bachrach, 2015] has
been proposed and shown to significantly improve performance. The primary
difference is that DART calculates the updated residual based on a probabilistic
subset of the previous trees. Then, to compensate for training trees using a
subset residual, the new tree is normalised, and the dropped trees are scaled
such the the overall effect of the dropped and new trees is the same as the
dropped trees’ initial effect. This method is implemented in Chapter 5 and Bloch
et al. [2021].

As explained in Rashmi and Gilad-Bachrach [2015], DART is effectively a balance
between random forests (all trees being dropped at each iteration) and MART (no
tree being dropped). This allows, with an appropriately selected dropout prob-
ability, each tree to have optimum significance in the final model - allowing the
final model to perform significantly better than either MART or random forests.
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2.2.3 Neural Networks
Here we will give a high level introduction to feed-forward neural networks
(FFNNs), though we recommend Gurney [1997] for a comprehensive introduction
to the subject. We won’t discuss other network architectures, such as convolu-
tional (CNN) or recurrent (RNN) neural networks, as they do not contribute to the
work presented in Chapter 6.

Simple neural networks are trained to approximate a single function. To do so,
a network architecture is chosen, which can be represented as a computational
graph. Where a computation graph is constructed out of two types of building
blocks: nodes and edges (edges connect nodes). Nodes can be considered in two
ways: those that represent input values, and those that represent a function
for combining input values. The input values can either be a vector of raw data
passed to the model, or the values from previous nodes in the network being
propagated through the network along edges (with associated weightings). Figure
2.1 presents a schematic of a neural network. The nodes typically perform the
following to map between its input to its output (show visually in the blown up
node in Figure 2.1):

1. The inputs (previous node outputs which have been weighted) and bias term
(typically equal to 1) are summed together.

2. The summed inputs are passed to a non-linear activation function (e.g., a
sigmoid or hyperbolic tangent function).

3. The output from the activation function is provided as the node output.

For linearly separable problems, only a single node is required to map from the
inputs to the outputs. That is to say, if the function being approximated is
composed of a linear superposition of the inputs, then the network only needs
learn the weightings (no activation function is required) such that the summation
of weighted inputs gives the output.

However, as problems become more complicated, a single node becomes insuf-
ficient to separate the data. To address this, more nodes can be added to the
computational graph, allowing the model to approximate non-linear functions
more accurately. When additional nodes are added between the input and output
layers, they are referred to as ‘hidden layers’. Theoretically, a network with a
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Figure 2.1: A schematic diagram of a simple neural network, with an expanded look at
processing through a network node.

single hidden layer is all that is required to approximate any non-linear func-
tion [Cybenko, 1989; Hornik, 1991] - begging the question “why does anyone use
deep learning?”, where ‘deep-learning’ refers to networks with multiple hidden
layers. Whilst, theoretically, a single layer is enough, in practice this layer may
require up-to an infinite number of nodes to approximate the function. Deep
learning has developed as a computationally efficient method of approximating
functions that may be intractable with only a single hidden layer. So, the reason
that deep-learning is so widely used is that, in many situations, it can better ap-
proximate functions which are computationally intractable to approximate with
a single hidden layer.

So far, our description covers only the graph representation of a network and
how data are propagated across. This gives us the framework to explain how
one trains a NN.

The first step is to choose a network architecture. In theory, this should be a
‘simple’ case of making assumptions about how complicated the mapping between
inputs and outputs is, the format of the inputs and outputs, and which non-linear
activation function to use. But in practice, it is most straightforward to consider
the architecture as a set of hyper-parameters to be optimised for.

One may make certain inferences about the architecture based on the type of
mapping being undertaken. Some examples of this include using CNNs for image-

46



CHAPTER 2. MACHINE LEARNING

type data, RNNs for time-series data, and FFNNs for mapping independent input-
output samples. Though, in many cases, CNN and RNN frameworks often also
include FFNNs, and 1D CNNs can also be used for time-series data.

As mentioned previously, there are weights associated with each of the edges
in the network graph. In a NN model, these weights are free parameters for the
model to optimise during training. The weights are initialised randomly; typically
sampled from the uniform distribution with a standard deviation of √1/Ninput
[Montavon et al., 2012] or bounds [Glorot and Bengio, 2010] given by ±

√
1/Ninput ,

where Ninput is the number of inputs to the layer. The weight distribution can also
be optimised, though this is less common.

Training is typically performed in epochs, where one epoch represents a single
pass of the whole training dataset through the network. After each epoch,
the model performance is quantified by a loss function (commonly the mean-
square error in regression tasks). Then an optimisation algorithm is implemented
to minimise the loss with-respect-to each edge weight in the network. This
process is repeated, updating the weights until the loss has been reduced to
the requisite amount or until a sufficient number of training epochs have been
performed (‘sufficient’ is commonly taken to be the number of epochs required
for the loss to asymptote).

2.2.3.1 Optimisation Algorithms
Optimisation algorithms utilise gradient descent to tweak the network weights
and biases. Gradient descent is a method used to find the minima of a dif-
ferentiable function [Cauchy, 1847; Nelder and Mead, 1965; Lemaréchal, 2012].
Simplistically, gradient descent can be described as follows for the 1D case:

1. Start with a function to minimise. The function should continuously and
differentiably map from some input space, X to the output space, y.

2. Choose an initial random point, Xn, in the input space.

3. Randomly select two points in the input space with some distance λ between
them and Xn: Xa = Xn + λ and Xb = Xn − λ.
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4. Calculate the gradient between the two points to approximate the gradient
at Xn: ∇f(Xn) =

f(Xb)−f(Xa)
Xb−Xa

.

5. Choose a new point Xn+1 in the space some distance from Xn in the direction
of most-decreasing gradient: Xn+1 = Xn + η∇f(Xn), where η is the step size.

6. Repeat steps 3-5 until the (local) minimum is reached, to some tolerance
level.

This process can be extended to higher dimensions by creating a local hyper-
surface about Xn, and calculating the direction of most-decreasing gradient.

A downside to this approach is that by using an inappropriate step size the algo-
rithm may not converge or may be inefficient. If the step size is too small, then
convergence will take too many iterations. If it is too large, then the algorithm
may diverge from or oscillate about the true minimum. Early ideas suggested
that a solution to this would be to choose a sub-optimal direction (i.e., add some
perturbation angle, θ) and allow for better convergence over a larger number of
iterations [Wolfe, 1969].

More recently, stochastic gradient descent has come to the forefront of machine
learning as a more efficient approach to gradient descent [Bottou, 1991; Bach
and Moulines, 2011]. This stochastic approximation method [Robbins and Monro,
1951], is effectively the same as gradient descent, but uses singular random
samples of the data each iteration to calculate the losses and gradients. In this
way, optimisation requires more iterations to converge, but each iteration is both
significantly faster, and also feasible for very large datasets which can’t be held
in memory. Between the extremes of using all of the data and a single sample is
mini-batch gradient descent. This utilises random subsets of the data to calculate
the loss and gradients. By using mini-batches of the data, the variance of the
estimated gradient is reduced, leading to smoother convergence to the optimal
solution [Khirirat et al., 2017].

There are many further adaptions to these algorithms, as well as other imple-
mentations [Nwankpa, 2020]. In the following we will briefly summarise those
used in Chapter 6. ASDG [averaged stochastic gradient descent, Polyak and Ju-
ditsky, 1992] updates the weights using the average of the weights over previous
iterations of the algorithm, making the optimisation smoother. Adam [adaptive
moment estimation, Kingma and Ba, 2014] is an update to RMSprop. Where the
RMSprop [Graves, 2013] performs stochastic gradient descent, but weights the
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learning rate based on the running average of the gradients from previous iter-
ations - meaning the weights are changed less when the gradients are strong.
Adam builds on this by also weighting the learning rate by the running variance
of the gradients. AdamW [Adam with weight decay, Loshchilov and Hutter, 2017]
builds yet further, changing the algorithm so that the updates to the weights
become smaller over iterations.

Neural networks are likely the most abundantly used supervised ML technique
in Space Physics, hence there are simply too many papers to reference them
all, though non-exhaustive lists can be found within: Camporeale et al. [2018];
Camporeale [2019]; Smirnov et al. [2020]; Azari et al. [2020].

2.2.4 Over-fitting
Over-fitting is a common issue researchers face when creating machine-learning
models and it is frequently discussed as a model failing.

What is over-fitting? In general terms, over-fitting describes the situation when
a model is fit too closely to some data such that it loses generalisability. In
practical terms, over-fitting arises when either the training set is poorly chosen,
or when there is too much noise in the data. In either case, fitting too closely
to poor data naturally leads to a poor model - i.e., ‘rubbish in, rubbish out’ [The
Hammond Indiana Times, 1957].

Perhaps pedantically, it should be clarified that in many cases, over-fitting is
precisely what algorithms are designed to do. The problem arises instead, when
researchers try to balance accurate fitting of the model to data with fitting a
model that can generalise well to out-of-sample data.

For example, a decision tree can be trained such that every training sample
terminates in its own unique leaf node. Such a model is exceptionally well-fit
to the data. In practice, many of the subsequent uses of such a decision tree
revolve around applying it to other data. When the perfectly fit tree is applied
to unseen data it will typically perform poorly, with high variance. So despite
the tree perfectly performing what it was programmatically designed for, its
subsequent application results in a ‘failure’.

To counter the fact that the algorithm, by definition, frequently performs its
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intended purpose ‘too well’, new adaptions to the model must be included. In
the case of trees, these adaptions are primarily limits to the maximum depth of
the tree and the minimum number of samples a node can partition. This raises
questions about how to choose such parameters.

These choices are made through hyper-parameter optimisation - the process in
which many possible hyper-parameter combinations are trialed. By tracking the
performance of the model on an independent validation dataset, the approxi-
mately7 optimum parameters can be selected to be used in the final model.

In neural networks, which are iteratively trained (unlike e.g., decision trees), an-
other compounding factor is that the number of training epochs must be limited
to prevent over-fitting. To account for this, a concept known as ‘early stopping’
was introduced. This boils down to tracking the model performance on the train-
ing dataset and an independent validation dataset for each training epoch. When
the loss functions begin to diverge, as shown in Figure 2.2, it is indicative of the
model is beginning to over-fit and lose generalisability.

Figure 2.2: An example of the training and validation loss curves showing the optimum
training epoch to halt neural network training, so as to avoid over-fitting the model.

In general, there are many techniques to check for and reduce over-fitting. As
such, when over-fitting becomes problematic in a machine learning experiment,
it is invariably due to poor experiment design.

7It’s often intractable to try every combination of hyper-parameters. It isn’t uncommon to be
optimising for tens of parameters, each with five or more possible values, meaning that to fully
sample the hyper-parameter space 510 (ten million) models would have to be trained
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2.3 Unsupervised Machine learning
In contrast to supervised learning, which requires labelled datasets to learn a
functional mapping, unsupervised learning does not require labelled data, instead
being designed to learn latent spaces and their structure. Broadly, unsupervised
learning falls into two categories: clustering and dimension reduction.

Dimension reduction seeks to take a set of extant input parameters and map
them to a space comprised of fewer, latent variables which can be used to ade-
quately represent the original data.

Clustering refers to the techniques which can be used to identify groupings of
data in either an extant or latent space. In this way, clustering algorithms can
identify similarities between groups of data-samples, and label the data according
to the groupings.

2.3.1 Dimension Reduction
Dimension reduction has a diverse set of uses:

• In research, it is often useful to identify which subset of measured or de-
rived variables are most important to use in an empirical model. Often,
these variables may be selected using theoretical deduction or a scientist
making a (black-box) decision. But neither of these methods necessarily
provide the optimal set of descriptive parameters. Instead, using dimension
reduction techniques such as PCA (principle component analysis) the subset
of parameters that best describe the data can be identified.

• When dealing with very high dimensional datasets, dimension reduction can
be used to reduce the dataset down to a more manageable size - both in
terms of physical storage size of the data, and for human interpretation
(e.g., for visualisation).

• The multi-faceted ‘curse of dimensionality’ also becomes a problem in high
dimensional spaces [Aggarwal et al., 2001; Domingos, 2012]. Some of the
issues include: for a fixed dataset size, the parameter space is increasingly
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sparsely sampled as the dimensions increase, making empirical learning dif-
ficult; the relative difference in euclidean distance between closest and fur-
thest points tends towards 1 as the dimensionality increases; too many noisy
features can swamp the signal from a few good features. Given these issues,
the possible benefits of dimension reduction become self-evident.

Dimension reduction algorithms typically work in one of a few ways: by mak-
ing assumptions about what a reduced dimensional space should ‘look’ like (e.g.,
PCA, Figure 2.3); by trying to maximise the distances between known clusters of
data (e.g., linear discriminant analysis, LDA, Figure 2.4); retaining distance-based
structures in the data (e.g., t-distributed stochastic neighbour embedding, t-SNE);
or by making assumptions about the high-dimensional manifold (e.g., UMAP).

2.3.1.1 Principle Component Analysis
PCA (principle component analysis) is one of the most widely-used methods of
dimension reduction. In a magnetospheric context, PCA has been used to study
the ionospheric current systems [Milan et al., 2015; Alken et al., 2017]. Techni-
cally, PCA is actually a transformation algorithm. It maps from m-dimensional
input space to an orthogonal m-dimensional output space with uncorrelated di-
mensions. PCA sequentially calculates the new dimensions’ directions by finding
the directions of maximum variance (see Figure 2.3). The final output of PCA is
then a set of mappings from the input space ordered such that each subsequent
mapping maps to a direction which contains less variance than those previous.

Note that if a direction contains more variance, then it means that there is the
most co-variation in the original input parameters in that direction. This is useful,
because it allows many correlated parameters to be broadly captured in a single
new parameter (i.e., the PCA directions).

PCA becomes dimension reduction when only a subset of the directions (with most
variance) are selected, rather than the full decomposition. This can either by an
a priori choice of a fixed number of the most important directions, or a posteriori
by calculating the variance in each direction and selecting some threshold of
acceptable captured variance.
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Figure 2.3: An example of applying PCA to a multivariate Gaussian distribution. Initially
the data are distributed in x and y, but the direction of largest variance is the long
black arrow, followed by the smaller black arrow. PCA learns these directions and the
linear transform required to map between the two coordinate systems. Image credit:
Wikipedia user Nicoguaro.

2.3.1.2 Linear Discriminant Analysis
An example of applying LDA to two clusters of data are presented in Figure 2.4.
Initially the data are distributed in x and y (axes not shown here), but the direction
LD1 allows for the maximum separation of the two Gaussian distributions (one
for each cluster). LD2 is an example of another direction LDA might test, but
ultimately discard in favour of LD1. For cluster analysis, the original 2D dataset
can be represented singularly by distances along LD1, thus reducing the dimen-
sions required to characterise the clusters. LDA is less widely used than PCA in
Space Physics research, but it has been implemented to better understand the
dynamic location of dayside reconnection [Hoshi et al., 2018].

2.3.1.3 UMAP and t-SNE
A comparative example of t-SNE [van der Maaten and Hinton, 2008] and UMAP
[McInnes et al., 2018] as applied to the MNIST dataset is presented in Figure 2.5.
On the left-hand side of Figure 2.5 is an example of the dataset. The MNIST
dataset is comprised of 28× 28 pixel images of hand-written digits, which can be

53

https://en.wikipedia.org/wiki/File:GaussianScatterPCA.svg


2.3. UNSUPERVISED MACHINE LEARNING

Figure 2.4: A diagram depicting the axis (LD1) LDA finds to best separate the two classes
(red dots, and blue crosses), as well as a secondary example direction the algorithm may
consider (LD2). The Gaussian distributions are shown as the separation is maximised
based on an assumed Gaussian distribution of data. Image credit: George Ho.

decomposed as a 784 dimensional vector. To the right of the example dataset
are two representations of the MNIST dataset in 2D - one by UMAP and the other
by t-SNE. As can be seen in the figure, both UMAP and t-SNE can reduce this
784 dimensional vector down to 2 dimensions whilst still capturing the discrete
digits. UMAP performs a comparatively better reduction, as inferred from the
more discrete clusters (the clusters are more well-separated from each other).
UMAP also retains more of the structure within each of the clusters than t-SNE
does [as discussed in McInnes et al., 2018]. UMAP is described in more detail in
Chapter 4.

Figure 2.5: An example of applying t-SNE and UMAP to the MNIST dataset of hand written
digits. MNIST image credit: Josef Steppan. T-SNE image credit: Van Der Maaten [2015].
UMAP image credit: Leland McInnes.
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2.3.2 Clustering
Clustering, as the name suggests, is primarily used to identify groupings in data.
The main tenet of clustering is that within a cluster the samples of data should
be more similar to each other, than to samples from other clusters.

Clustering is typically applied to the following scenarios:

• When groupings want to be found in high-dimensional space, which can’t
easily be visualised by a researcher.

• When groupings want to be found mathematically or free of researcher bi-
ases8.

• When groupings in the data need to be identified automatically - e.g., in image
segmentation, where manual processing is intractable.

The nature of clusters and clustering algorithms is diverse, and thus difficult to
categorise [Estivill-Castro, 2002]. For the sake of discussion, we will focus on
three types of clustering: distribution models; density models; and hierarchical
models.

2.3.2.1 Distribution Models
Distribution models assume that a particular type of distribution can be used to
generalise each of the clusters in the data. Gaussian mixture models are one
of the foremost of this model type. Gaussian mixtures are typically fit using
expectation maximisation, shown in Figure 2.6 and proceeding algorithmically as
follows, for some dataset X [Bishop, 2006]:

1. K Gaussians are initialised, with random mean positions, µ(k) within the space,
and unitary covariance and weights - σ(k) = 1 = w(k). Note, k refers to one of
the Gaussians in the mixture - k ∈ {0, ...,K}.

8Not that it isn’t possible to still cherry-pick the data and the algorithm.
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2. The posterior probability of each point having been generated by each Gaus-
sian is calculated: p

(k)
i,j = p(xj |µ(k)

i , σ
(k)
i , w

(k)
i ) = w

(k)
i N (xj |µ(k)

i , σ
(k)
i ), where N rep-

resents a normal distribution, subscript i refers to the distribution iteration
number, and subscript j refers to the jth sample of data.

3. The normalised probability of each point belonging to each Gaussian is cal-
culated: ρ(k)i,j =

p
(k)
i,j∑K

k=0 p
(k)
i,j

.

4. Each mean position is updated as the probability-weighted mean of the
dataset: µ

(k)
i+1 = 1

N
(k)
i

∑N
j=0 ρ
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i,j · xj . Where N is the number of samples in X

and N
(k)
i is the effective number of samples associated with the kth Gaus-

sian, given by: N (k)
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i,j .

5. Each covariance is updated as the probability-weighted covariance of the
dataset: σ(k)

i+1 = 1

N
(k)
i

∑N
j=0 ρ

(k)
i,j · (xj − µ
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6. Each weight is updated as the relative contribution of each Gaussian to the
mixture: w(k)

i+1 =
N

(k)
i

N .

7. Steps 2-6 are repeated until some convergence criteria is reached - e.g., the
mean position changes by less than ϵ etc.

8. Classifications are then either given probabilistically (one probability for each
Gaussian) or deterministically to the Gaussian with the largest probability
of generating the point.

This process is somewhat similar to the k-means clustering algorithm [though
slower, Bishop, 2006]. K-means is just a special case of a Gaussian mixture
model, but with a different objective function - as explained in Chapter 4.5.

Mixture models are useful when the underlying distributions can be assumed a
priori. They provide a statistical description of the data, meaning that higher-
order moments can be calculated etc. If one is searching for an efficient way to
summarise a large dataset, then a Gaussian mixture model is very effective as
it can represent a large dataset with only 3×K variables (one mean, covariance
and weighting for each component), allowing an arbitrarily large dataset to be
stored with fixed size.

The down-side to mixture models is that often the distribution cannot just be
assumed, meaning that the mixture may inherently be flawed from the outset.
The process of fitting a mixture can be more costly than other methods (compare
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Figure 2.6: An example of fitting a Gaussian mixture to some data. Panel (a) presents the
setup, the dataset is represented by green data-points, and two component Gaussians
are represented by the red and blue circles (the circles are the unitary covariance). In
panel (b) steps 2 and 3 have been performed - the colour represents the normalised
probability of each point belonging to each Gaussian. In panel (c) steps 4, 5 and 6
have been performed, yielding new mean positions, covariances and weights (though
the latter is not a visible change). Then in panels (d)-(f) the iterative process has been
repeated L times, showing how the mixture ends up fitting the data. Image credit:
Bishop [2006].

k-means to a Gaussian mixture, for example). For many distributions (e.g., Gaus-
sian) the mixture can inherently only find convex (circular or elliptical) clusters,
which causes issues when clusters have more exotic shapes. These methods also
require the user to specify the number of clusters to find a priori, which in many
cases precludes a completely data-driven clustering approach.

If the number of clusters is not known, one method is to fit a Gaussian mixture
with significantly more components than the expected number of clusters. Then,
evaluate the weightings of each Gaussian and drop those below some threshold,
leaving only the most significant components, and thus, clusters.
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2.3.2.2 Density Models
Density-based models work with the assumption that clusters in the parameter
space can be represented by contiguous regions of high density, where density
refers to the number of data-samples in some defined region.

The benefit to a density-based model is that it isn’t limited to convex clusters,
instead being able to form complex cluster shapes (even clusters within clus-
ters if hyper-parameters are appropriately tuned). Additionally, the number of
clusters does not have to be specified.

DBSCAN [Density-based spatial clustering of applications with noise, Ester et al.,
1996] is an award winning algorithm, receiving the test of time award (an award
given to algorithms which have received substantial attention in theory and prac-
tice) at the data mining conference, ACM SIGKDD. Additional benefits of this algo-
rithm are: it only has two primary hyper-parameters (meaning that a parameter
search is tractable), and it can identify outlier points, rather than incorporating
them into cluster descriptions. There are draw-backs too: the algorithm is not
deterministic [though there are variations that are, Campello et al., 2013; McInnes
and Healy, 2017]; due to relying on distance metrics, it can suffer from the ‘curse
of dimensionality’; and, variable density clusters often fail to be appropriately
captured due to fixed region sizes.

DBSCAN (Figure 2.7) works as follows:

1. Choose a neighbourhood size, ϵ, and the minimum number of points, m.

2. Pick a random point, xi.

3. Count the number of other points, N , within a distance of ϵ from xi.

4. If the the number of points is greater than the minimum number of points,
N ≥ m, label the point a ‘core’ point.

5. Repeat steps 2 and 3 for the remaining unconnected points.

6. After all the core points are identified, all of the ‘reachable’ points are iden-
tified (this can happen during step 5 if a core point is being examined). Where
reachable points are those whose ϵ neighbourhood has a non-zero population
less than the minimum, m > N > 0, but still contain another core point.

7. If any point is not reachable from a core point, label the point as noise.
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8. Clusters are identified by reachable sets of core points and reachable points
(there can be a size threshold).

Figure 2.7: An example of applying DBSCAN to some data (the coloured dots). The
neighbourhood size, ϵ, is represented by the circles, and the minimum size, m, in this
example is 3. The red points each have at least 3 other points within their respective
circles, making them all core points. All of the core points are reachable from each
other, as represented by the double-headed arrows. The yellow points (B) and (C) are
only reachable from the set of core points, but do not have enough neighbouring points
to be labelled as core points. The blue point (N) has no neighbouring points (reachable
or core) and so is labelled as noise. Image credit: Wikipedia user Chire.

The reason that DBSCAN performs less well when clusters have different den-
sities is due to the fixed neighbourhood size. To be able to accurately capture
small, dense clusters, a small neighbourhood is required - otherwise the cluster
may include points which should be classified as noise. However, if there is a
sparse cluster, then too small a neighbourhood will yield an incomplete cluster,
or the cluster will be labelled as noise. These requirements are naturally at odds
when a dataset has variable density clusters.

2.3.2.3 Hierarchical Models
Hierarchical models aren’t so different to density models, though they typically
focus on distance metrics rather than density metrics. There are two approaches
to building hierarchical models: bottom up (agglomerative), and top down (divi-
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sive). In agglomerative models, each data-sample starts in its own cluster, sub-
sequently being merged up the hierarchy until all the data are in a single cluster.
Contrastingly, divisive models begin with all the data in a single cluster, subse-
quently being split down the hierarchy until all the data-samples are in their own
cluster.

Figure 2.8 presents an example dataset, distributed in 2 dimensions, that one
may want to cluster.

Figure 2.8: An example distribution of data in a 2-dimensional space. Image credit:
Wikipedia user Snubcube.

Applying agglomerative clustering9 to the data in Figure 2.8 would proceed as
follows:

1. Assign each sample (ellipse with a letter) to its own cluster.

2. Calculate the distances between the points (we will assume Euclidean dis-
tance as our metric for this example).

3. Join pairs of samples which are closest. In this case b and c are equally
close to each other as d and e are - so at this stage both these pairs are
merged. By only combining the closest samples each iteration, the hierarchy
is stratified by the cluster distances.

4. Re-define our points to reflect the clusters - e.g., our example data would
now be {a, bc, de, f}.

5. Calculate the distances between the new points. Now, however, there is an
added complication - ‘what distance should one use for the already-clustered
data?’. This gives rise to different linkage criteria (which we will expand upon
below). For this example, we will consider single-linkage, which takes the

9Divisive clustering is performed in an inverse way.
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minimum inter-cluster distance, and uses that to determine what should be
combined.

6. Repeat steps 3-5 until all the data are in a single cluster or some other
specified lower limit on the number of clusters, or until the clusters are a
sufficient distance apart,

Following this procedure would yield the dendrogram presented in Figure 2.9.

Figure 2.9: An example of a dendrogram created by applying agglomerative clustering
to the data presented in Figure 2.8. Image credit: Wikipedia user Mhbrugman.

Because the constructed tree is stratified by the minimum distances at each level,
it allows the user to examine the result of different minimum cluster distances on
the overall clustering. That is to say, one can take a horizontal slice though one
of the levels of the tree shown in Figure 2.9, and examine the clusters present
directly above. Say for example, we took a slice about the level of the def
cluster. We would find for that particular distance that the clusters a, bc and
def were pertinent.

Being able to take slices of the dendrogram and view the clusters present at
that level allows for clusters of various scale sizes to be identified (so long as
the inter-cluster distances are great enough.

As mentioned above, there are various possible linkage criteria:

• Single linkage: the minimum inter-cluster distance (between all of the points
in each cluster) is used as the distance between the clusters.

• Complete linkage: the maximum inter-cluster distance (between all of the
points in each cluster) is used as the distance between the clusters.
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• Average linkage: the mean inter-cluster distance (between all of the points
in each cluster) is used as the distance between the clusters.

• Ward’s method [Ward, 1963]: the increase in variance from merging two
clusters is used as the distance between the clusters.

One can think of single linkage as the least conservative way of clustering; as
long as two points (one from each cluster) are close together, the two clusters
will be merged - regardless of the rest of the shapes of the two clusters. Com-
plete linkage is then much more conservative in requiring that all points be closer
than some maximum distance. Average linkage gives some balance between the
two. Ward’s method is a bit of a step in a different direction. It requires a priori
knowledge of the distributions of the clusters being sought to determine if it
may be the most appropriate method to use. In cases where the clusters are
normally distributed (or even just convex), it is likely applicable to use Ward’s
method. But, in situations with more complex cluster shapes, it’s likely that the
variance would yield incorrect clusters.

Possibly the most useful application of hierarchical clustering algorithms is to
combine them with density-based models - as has been done with the OPTICS
[Kriegel et al., 2011] and HDBSCAN [Campello et al., 2013; McInnes and Healy,
2017] algorithms. These algorithms don’t use a fixed neighbourhood distance
(ϵ), instead forming the hierarchy over varying neighbourhood sizes. This signifi-
cantly improves the ability of these algorithms to handle clusters with different
densities. However, OPTICS only allows for a horizontal slice through the den-
drogram, making the resultant clusters less robust if there are differences in the
densities [Campello et al., 2013]. In contrast, HDBSCAN allows for variable level
slicing, based on the robustness of the present clusters. It is this robustness in
variable-density clustering which motivated its use in Chapter 4.

2.4 Summary
This section set out to introduce the relevant background machine learning re-
quired to understand the research projects presented in Chapters 4, 5 and 6.

In Section 2.2, we described supervised machine learning, and how it is used to
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approximate the latent mapping between examples of input-output pairs of data.
We subsequently focused on the specific methods pertinent to Chapters 5 and
6 - namely, decision trees (and their ensemble methods) and neural networks.
As well as a short discussion on over-fitting as a researcher issue rather than an
algorithmic issue.

In Section 2.3 we covered unsupervised machine learning - the set of techniques
used to identify latent structure in complex datasets. We briefly covered the
more esoteric field of dimension reduction, which covers a range of techniques
used to reduce high-dimensional data into a more efficient form (efficient in terms
of utility and information density). We followed this by exploring clustering, and
the relevant methods that are employed in Chapter 4.
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Chapter 3

Datasets and Instrumentation

Throughout the work presented in Chapters 4, 5 and 6, a variety of different
datasets are used: Chapter 4 makes use of data from the Ulysses and ACE
missions; Chapter 5 makes use of data from the THEMIS mission; and Chapter 6
makes use of data from the OMNI dataset, the THEMIS mission and GOES data.
This chapter will serve to provide a brief description of the source of each
dataset.

3.1 Ulysses
The Ulysses mission [Wenzel et al., 1992] was a joint ESA-NASA mission to study
the solar wind outside of the ecliptic plane. One of its primary science objectives
was “to study the origin of the solar wind by measuring the composition of solar
wind plasma at different latitudes”, which is why we use this mission’s data in
Chapter 4’s solar wind classification work.

The mission lasted approximately 19.5 years, running from 1990 to 2009. Its
solar-polar orbit had a perihelion and aphelion at ≈ 1.3AU and ≈ 5.4AU, respec-
tively. The inclination and ellipticity of the ≈ 6−year orbit allowed for the space-
craft to quickly (≈ 1 year) sample the full range of heliospheric latitudes during
the ‘fast latitude-scan’ at perihelion.

Due to the 6-year length of the orbit, there are significant solar cycle variations
over an orbit. This adds an extra layer of complication when trying to analyse
the solar wind over a given orbit. In contrast, the quick perihelion passes are
fast enough that the latitude sampling can effectively be considered static with
respect to the solar cycle.

Ulysses data has been extensively used to classify the solar wind based on
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speed [e.g., McComas et al., 2008; Ebert et al., 2009; McComas et al., 2013] and
composition [e.g., Geiss et al., 1995; Gloeckler et al., 2003; Zurbuchen, 2007;
Stakhiv et al., 2015].

The SWOOPS [Solar Wind Observations Over the Poles of the Sun, Bame et al.,
1992] instrument measures the abundance of electrons and ions (H+ to Fe16+)
using electrostatic analysers. Due to only measuring the mass-charge ratio,
there is ambiguity in the species identification - hence the inclusion of the SWICS
instrument (see below). In general, SWOOPS’ electrostatic analyser works as
follows:

• Electrons/ions enter an instrument aperture.

• Once inside the instrument, particles are subject to a potential difference
between plates. The potential difference causes particles to deflect based
on their mass and charge-state.

• Different voltages are applied to deflect different energy and charge-state
particles to the detector, where the number of particles is recorded.

• The energy-charge-state data can then be compared with the solar wind
kinetic temperature, providing information about the species and charge
states.

Whilst it’s possible for SWOOPS to measure ions, it can only resolve them reliably
when the solar wind kinetic temperature is low enough that the species mass
contributes significantly to the kinetic energy.

The SWICS [Solar Wind Ion Composition, Gloeckler et al., 1992] instrument also
uses an electrostatic analyser. However, by also employing a time-of-flight cal-
culation and recording the energy specifically, the mass can be deduced. In this
way, the detector can reliably measure the requisite parameters to resolve the
different species regardless of the solar wind kinetic temperature.

The magnetometer [Balogh et al., 1992] instrument on Ulysses uses a combination
of two different magnetometers - a vector Helium magnetometer (VHM) and
a flux-gate magnetometer (FGM). Both magnetometers are comprised of three
orthogonal detectors, which can be used to identify the magnetic field in 3D with-
respect-to the detectors. Where Ulysses magnetometer data has been used, it
is only the from the FGM, not the VHM.
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The VHM leverages the fact that a Helium gas responds to incident radiation
differently depending on the magnitude and direction of a permeating magnetic
field. To maintain a constant infrared output from the Helium gas, the instrument
generates its own magnetic field to counter the external, permeating magnetic
field. This generated magnetic field is thus known, and the external field can be
deduced.

The FGM on the other hand works by leveraging the saturation of highly mag-
netically permeable materials. An FGM is comprised (in each orthogonal direc-
tion) of a magnetically permeable ring-shaped core which is toroidally wrapped
in a wire coil (the drive-winding), and wrapped again by another wire coil (the
sense-winding). When an AC current is passed through the drive-winding coil,
it magnetically saturates the core in alternating directions. In the absence of
an external magnetic field, the core is saturated, de-saturated and re-saturated
evenly. However, in the presence of an external magnetic field, the saturation
becomes asymmetric due to the external magnetic field adding to the current-
driven magnetic field. The sector of the coil with an induced field in the direction
of the external field remains saturated for longer than the opposite sector. This
sector would also saturate faster when the induced field alternates back. This
asymmetry yields a measurable voltage, from which the external field strength
can be inferred.

3.2 ACE
The ACE (Advanced Composition Explorer) mission [Stone et al., 1998] is a NASA
mission to study and monitor the composition of the heliospheric medium. One
of its primary science objectives was to study the acceleration of the solar wind
and to “study plasma conditions at the source of solar wind and solar ener-
getic particles by measuring and comparing the charge states of these two
populations.”, which is why we use this mission’s data in Chapter 4’s solar wind
classification work.

The mission has been running since 1998 (23 years), though due to degradation
of one of the instruments, composition data post-2012 is less reliable (and hence,
not used in the presented work). The ACE spacecraft orbits the first lagrange
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point (L1) between the Sun and the Earth, ≈ 240RE from the Earth. The positioning
of the spacecraft upstream of Earth (with-respect-to the solar wind), makes it
exceptionally useful for Space Weather forecasting. ACE (and other spacecraft
also orbiting L1) can provide information about the solar wind with a lead time
of between ≈ 8− 90 minutes depending on the velocity of the solar wind.

ACE data has been extensively used to classify the solar wind [e.g., Zhao et al.,
2009; Xu and Borovsky, 2015; Camporeale et al., 2017; Zhao et al., 2017; Heidrich-
Meisner and Wimmer-Schweingruber, 2018; Amaya et al., 2020; Li et al., 2020]

The SWICS [Solar Wind Ion Composition Spectrometer, Gloeckler et al., 1998]
instrument on ACE is almost identical to that used for the Ulysses mission - it is
the Ulysses flight spare.

The SWEPAM [Solar Wind Electron Proton Alpha Monitor, McComas et al., 1998]
instrument on ACE is also almost identical to the SWOOPS instrument on Ulysses
- using the refurbished flight spare as well.

The magnetometer [Smith et al., 1998] instrument comprises two fluxgate mag-
netometers (as described previously) each mounted on its own boom.

3.3 OMNI
The OMNI dataset is a multi-mission dataset available through OMNIweb. For the
time-periods examined in Chapter 6 (post-2006), the spacecraft making up OMNI’s
solar wind measurements were ACE and Wind. In addition to these data, OMNI
also contains geomagnetic indices, derived by the university of Kyoto’s World
Data Center for Geomagnetism.

OMNI’s solar wind data is automatically selected from the most appropriate
spacecraft at L1 providing better coverage and measured data. This data is
subsequently propagated to the nose of the magnetosphere. These factors
make the OMNI dataset extremely usable for Space Weather related research -
especially removing the need for the complex propagation.

The solar wind propagation is carried out in two ways, the first uses minimum
variance analysis to identify the inclination of solar wind fronts, and is extensively
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discussed in the back-and-forth papers Weimer [2003, 2004]; Bargatze [2005];
Haaland et al. [2006] and Bargatze et al. [2006]. The second uses a cross-product
method [Knetter, 2004], which specifically aims to address shortfalls in using
minimum variance analysis. Once the inclination of the fronts is determined,
they are ballistically propagated to the nose of the magnetosphere.

The geomagnetic index data are calculated using ground magnetometers. Be-
cause the magnetometers measure the current state of the magnetosphere (as
opposed to the solar wind data which corresponds to the driving), the derived
indices are effectively state variables used to summarise the current response of
the magnetosphere to previous solar wind driving. In Chapter 6 we use the AL,
AU, AE, SYM-H, SYM-D, ASY-H and ASY-D indices. The A-indices represent auroral
behaviour, with AL and AU giving the upper and lower bound of the geomagnetic
variations measured by the contributing stations in the auroral region, and AE
gives the difference between AL and AU. The SYM-indices represent the distur-
bance field acting on the geomagnetic field (H for the magnetic North direction
and D for the East-West direction). The ASY-indices are the range between the
maximum and minimum deviations of the SYM-indices subtracted from the distur-
bance field. The SYM and ASY indices are derived from equatorial magnetometer
stations. During quiet times, the SYM-H index reflects ring current activity.

The OMNI dataset has been used in numerous studies of radiation belt phenom-
ena [e.g., Morley et al., 2010a; Turner et al., 2012b; Borovsky and Denton, 2016;
Antonova et al., 2018; Wing and Johnson, 2019; Turner et al., 2019; Smirnov et al.,
2020; Pires de Lima et al., 2020; Borovsky, 2020].

3.4 THEMIS
The THEMIS (Time History of Events and Macroscale Interactions during Sub-
storms1) mission [Angelopoulos, 2008] was a NASA mission to primarily study
the cause and evolution of substorm processes. The secondary mission goal was
to understand the “production of storm-time MeV electrons”. Both the goals
required a comprehensive set of electron measuring instruments, which is why
we use this mission’s data in Chapters 5 and 6.

1The must have had to work for a while to get a backronym that worked for this...
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The THEMIS mission comprised 5 individual spacecraft2 - A, B, C, D and E. Mag-
netospheric data is available from THEMIS probes A, D and E between 2007 till
the present (a 14 year mission duration so far), whilst data from probes B and
C is available up till 2010, at which point these probes were moved to a lunar
orbit [Russell and Angelopoulos, 2014] as part of the ARTEMIS mission. The five
spacecraft were in elliptical orbits - see Figure 3.1. Initially, B had an apogee of
≈ 30RE, C had an apogee of ≈ 19RE, D and E had apogees of ≈ 12RE and A had an
apogee of ≈ 10RE.

Figure 3.1: A schematic diagram of the orbits of the 5 THEMIS spacecraft. This diagram
highlights the elliptical nature of the orbits, allowing the spacecraft to sample a wide
range of radial distances. The orbits precess around the Earth on approximately year-
long timescales. Original image credit: University College Berkley [Kramer, 2021], with
minor edits to reflect the spacecraft apogee distances in Earth radii, and to give the
alphabetic designation of the spacecraft.

THEMIS data has been widely used in radiation belt research [e.g., Ni et al., 2011;
Turner et al., 2012a,b; Baker et al., 2013; Shin and Lee, 2013; Turner et al., 2013;
Shin et al., 2014; Maget et al., 2015; Turner et al., 2015; Boyd et al., 2018; Liu
et al., 2018; Turner et al., 2019].

The THEMIS ESA [electrostatic analyser, McFadden et al., 2008] works the same
way as the Ulysses and ACE electrostatic analysers, though the THEMIS ESA
instrument comprises two (‘top-hat’) detectors, giving it a full 4π steradian field
of view, rather than the more limited aperture on the aforementioned detectors.

The THEMIS SST (Solid State Telescope) does not have an instrument paper (very
helpfully). Fortunately, the instrument is based upon the similar instrument flown
on the WIND spacecraft, for which there is an instrument paper [Lin et al., 1995].
The SST instrument comprises a set of two double-sided detectors. On one side
of each detector, a thin foil is added to prevent proton entry, and on the other

2The THEMIS mission was the first NASA mission to include an extra spacecraft for redundancy -
nominally probe A.
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side, strong magnets deflect incoming electrons. This effectively allows one
direction to act as a proton detector, and the other as an electron detector. The
SST works the same was as a semiconductor detector. Incident ions or electrons
hit the silicon detectors and induce ionisation currents which can be measured.
These currents correspond to the intensity of the incident particle beam, allowing
the energy spectra to be deduced based on which detectors the currents are
measured in. This means that the instrument measures the differential number
flux (allowing the kinetic energy flux to be determined too3).

Later in the THEMIS mission, it was realised that cross-species contamination of
the electron flux by protons was present in the SST data. This is briefly men-
tioned by Turner et al. [2012a, 2013], though the precise amount of contamination
or exactly where it occurs seems to remain elusive to published work. In a private
communication D. Turner explained that the contamination is most prevalent in-
side of geosynchronous orbit altitudes, and practically negligible outside of 8RE.
We speculate that the contamination may increase electron fluxes measured in
the SSTs lower energy channel.

3.5 GOES
The GOES (geostationary operational environmental satellites) are a series of
spacecraft operated by NOAA (National Oceanic and Atmospheric Administration),
designed to provide data for operational weather and Space Weather monitoring
and forecasting. In Chapter 6 we use data from GOES 13-15 (N-P) [Kramer, 2021,
and references therein].

GOES data is currently used in the construction of the outer boundary condition
for the BAS-RBM [British Antarctic survey’s radiation belt model Glauert et al.,
2018], which is why we incorporate it into our outer boundary electron flux pa-
rameterisations in Chapter 6.

The various GOES are placed into two geostationary orbits (meaning that they
are located above a fixed latitude and longitude), east and west. The eastern
orbit is located at longitude 75◦ west and a latitude of ≈ 11◦ north of the magnetic

3Relativistic energies, though present in the radiation belts, are not accounted for in the instrument
design or subsequent data processing.
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equator, and the western orbit is located at 135◦ west and a latitude of ≈ 4◦ north
of the magnetic equator [Meredith et al., 2015].

These data were obtained from CDAWeb, and are specifically the background,
contamination and dead time corrected data from the Energetic Proton, Electron
and Alpha Detector (EPEAD) [Onsager et al., 1996]. The detectors are dome
detectors, but work in much same was as the solid state telescope described
for THEMIS. One difference is that GOES measures integral fluxes rather than
differential fluxes. It measures these in 3 bands > 0.6MeV, > 2MeV and > 4MeV4,
by placing modulating plates of different thicknesses in front of each detector
(effectively preventing lower energy electrons from entering through the thicker
plates).

Due to the different latitudes, the eastern and western orbits sample different
magnetic field lines, with the eastern orbit typically sampling magnetic field lines
which map further outwards in the equatorial plane - thus the eastern spacecraft
often measures lower electron fluxes [Meredith et al., 2015].

4CDAweb does not provide the > 4MeV electron fluxes for GOES 13-15.
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Chapter 4

Data-Driven Classification of Coronal
Hole and Streamer Belt Solar Wind

Abstract
We present two new solar wind origin classification schemes developed indepen-
dently using unsupervised machine learning. The first scheme aims to classify
solar wind into three types: coronal hole wind, streamer belt wind, and ‘un-
classified’ which does not fit into either of the previous two categories. The
second scheme independently derives three clusters from the data; the coronal
hole and streamer belt winds, and a differing unclassified cluster. The clas-
sification schemes are created using non-evolving solar wind parameters, such
as ion charge states and composition, measured during the three Ulysses fast
latitude-scans. The schemes are subsequently applied to the Ulysses and the
Advanced Composition Explorer (ACE) datasets. The first scheme is based on
oxygen charge state ratio and proton specific entropy. The second uses these
data, as well as the carbon charge state ratio, the alpha-to-proton ratio, the
iron-to-oxygen ratio, and the mean iron charge state. Thus, the classification
schemes are grounded in the properties of the solar source regions. Further-
more, the techniques used are selected specifically to reduce the introduction of
subjective biases into the schemes. We demonstrate significant best case dis-
parities (minimum ≈8%, maximum ≈22%) with the traditional fast and slow solar
wind determined using speed thresholds. By comparing the results between the
in- (ACE) and out-of-ecliptic (Ulysses) data, we find morphological differences in
the structure of coronal hole wind. Our results show how a data-driven approach
to the classification of solar wind origins can yield results which differ from those
obtained using other methods. As such, the results form an important part of the
information required to validate how well current understanding of solar origins
and the solar wind match with the data we have.
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4.1 Introduction
The solar wind comprises streams of ionised particles which travel nearly radially
from the Sun through the heliosphere. From the earliest in situ observations, it
was clear that the solar wind could be broadly classified into two types, fast and
slow [Neugebauer and Snyder, 1966; Stakhiv et al., 2015]. This duality was found
to extend beyond the local solar wind speed, but is present in the elemental
composition and ion charge states of the solar wind, indicating very different
coronal source properties of fast and slow wind [von Steiger et al., 2000; Geiss
et al., 1995]. Fast wind is found to originate from coronal holes [Sheeley et al.,
1976]. These are magnetically open regions of the corona where the plasma can
freely escape, meaning that coronal holes appear dark in EUV emission. The
formation and release of the slow wind is a current area of research, but it
originates from the vicinity of closed coronal magnetic structures such as the
streamer belt [Antiochos et al., 2011; Ko et al., 2006; Xu and Borovsky, 2015;
Brooks et al., 2015]. At solar minimum, coronal holes cover the polar regions,
with the streamer belt confined close to the solar equator. At solar maximum,
the coronal field is far less ordered. The resulting variation of solar wind speed
can be seen in Figure 1 of McComas et al. [2013]. Despite the breakdown of the
latitudinal dependence at solar maximum, there is still a good separation between
streams of different speeds. This suggests that despite the activity, the source
regions remain isolated from one another, and there is not significant mixing of
the streams.

While appealing, the traditional two-type solar wind paradigm is not unique, with
a number of different observationally-determined solar wind types proposed. A
two-type scheme has been proposed by Zhao et al. [2009], a three-type scheme
has been proposed by Stakhiv et al. [2015], a four-type scheme has been pro-
posed by Xu and Borovsky [2015] and been built upon using machine learning
by Camporeale et al. [2017], and even a six-type scheme has been proposed by
Zhao et al. [2017]. Furthermore, Heidrich-Meisner and Wimmer-Schweingruber
[2018] have proposed a two-type classification scheme, and a two–seven type
scheme (depending on interpretation) using the k-means clustering algorithm
[MacQueen, 1967] implemented using the C++ library, Shark [Igel et al., 2008]. In
each of these categorisation schemes the properties of each solar wind type are
quantitatively different from one another, an essential factor when performing
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statistical studies of heliospheric phenomena driven by the solar wind.

The Zhao et al. [2009] scheme sought to classify the solar wind into coronal hole
wind or non-coronal hole wind. Stakhiv et al. [2015] classified the solar wind
into coronal hole wind, wind due to magnetic reconnection at the boundary of
large scale streamers, and a boundary wind which originates from the edges of
coronal holes. Xu and Borovsky [2015] described a scheme which encompasses
coronal hole wind, sector reversal region wind emitted from the top of helmet
streamers, and streamer belt wind. The streamer belt wind is comprised of
two types: pseudostreamers and helmet streamers. These occur when two loop
arcades separate a pair of like-signed coronal holes, and when a single loop
arcade separates two coronal holes of opposite polarity, respectively [Panasenco
and Velli, 2013; Owens et al., 2014]. Zhao et al. [2017] split the solar wind into
six types: coronal hole, active region, quiet Sun, active-region boundary, coronal-
hole boundary and helmet streamer. The regions in this case are not determined
by coronal signatures in the solar wind, but instead by direct mapping to the
Sun. A ballistic method is used to map to the solar source-surface, and then an
extrapolation is made using the potential-field source-surface model [Altschuler
and Newkirk, 1969; Schatten et al., 1969] to map to the photosphere.

As part of the Machine Learning Techniques for Space Weather book [Campo-
reale et al., 2018], Heidrich-Meisner and Wimmer-Schweingruber [2018] present
a systematic analysis of applying a simple unsupervised machine learning algo-
rithm, k-means, to the classification of solar wind types. A variety of parameter
spaces are investigated (13 different sets are used), as is the choice of the num-
ber of clusters for which the algorithm should search. The first k-means scheme
proposed is a coronal hole versus slow wind scheme, whilst the second uses
k-means to find seven clusters (where the number of clusters to find was a data-
driven choice). The latter scheme provides results which are significantly more
open to interpretations. The authors state that they find: two coronal hole wind
classes, though one may comprise interplanetary coronal mass ejection (ICME)
plasma; one primary slow solar wind class; and four potential sub-classes of
slow solar wind, where two are compressional/rarefaction regions surrounding a
stream interaction, another is very slow, dense and cool wind, and the final is
even more dense, has high charge states and is cool (though again, this may
represent undetected ICMEs).

Aside from the growing evidence that the simplistic solar wind speed categori-
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sation scheme is not adequate for distinguishing solar source regions, there is
a more direct reason that such a scheme is not appropriate for many of the
datasets that exist: co-rotating interaction regions (CIRs). CIRs are the compres-
sion regions that form when high-speed solar wind streams catch up to low-speed
streams as they travel through the heliosphere. Since coronal hole wind (CHW)
and streamer belt wind (SBW) typically show latitudinal dependence, CIRs do not
tend to form everywhere. Instead, there is a tendency towards the ecliptic plane
due to the inclination of the solar rotation axis [Crooker et al., 1999; Borovsky
and Denton, 2016]. The result is that much of the solar wind in the ecliptic plane
undergoes interaction of high- and low-speed streams. Such mixing causes high-
speed streams to slow down and slow-speed streams to speed up. Thus, speed
is not the most reliable means to distinguish different coronal sources.

The scientific motivation behind the current work is to provide two new solar
wind classification schemes. They will be developed using unsupervised machine
learning techniques so as to reduce scientific subjectivity. By using novel tech-
niques which have their own unique biases, this work will provide new information
towards validation or benchmarking of existing solar wind classification models.
As with any scientific work, the total removal of any subjective influence is near
impossible. Our methods hope to address the scientific subjectivity in the de-
termination of classification boundaries, and number of solar wind types. The
Bayesian Gaussian Mixture (BGM) scheme addresses the former point, whilst the
Uniform Manifold and Projection (UMAP) scheme addresses both.

4.2 Data
For this analysis, data from the Ulysses spacecraft’s [Wenzel et al., 1992] So-
lar Wind Observations Over the Poles of the Sun [SWOOPS, Bame et al., 1992],
Solar Wind Ion Composition [SWICS, Gloeckler et al., 1992] and magnetome-
ter [Balogh et al., 1992] instruments have been primarily used. The motivation
for this usage is that, unlike in-ecliptic spacecraft such as the Advanced Com-
position Explorer (ACE), Ulysses has a polar solar orbit and enables sampling
of the pure CHW during the high-latitude phase of the mission at solar mini-
mum. The Ulysses mission contains three ‘fast latitude-scans’, which are periods
at perihelion when the spacecraft covers almost the full solar latitude range
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in a relatively short amount of time (approximate dates: 15/08/94–20/08/95;
01/11/2000–01/11/2000, and 01/02/07–01/02/08.). Particularly for the two so-
lar minimum fast latitude-scans, solar wind types can be well separated by their
latitudinal dependence. The latitude-scans comprise ≈3 years worth of total
data, whilst the whole dataset is ≈19.5 years (1990–2009). The data are mean-
resampled into three-hourly steps to match the cadence of the compositional
data. In practice, this yields 8227 (8139) latitude-scan data points, 46893 (45463)
total Ulysses data points and 38108 (23665) ACE data points for the BGM (UMAP)
scheme. The UMAP scheme has fewer points due to a larger parameter space;
the whole data point must be discarded if any one parameter is bad.

Solar Wind Ion Composition Spectrometer [SWICS, Gloeckler et al., 1998], Solar
Wind Electron Proton Alpha Monitor [SWEPAM, McComas et al., 1998] and mag-
netometer [Smith et al., 1998] data from ACE [Stone et al., 1998] are also used.
As ACE is confined to the ecliptic plane (at the first Lagrange point, L1, just
upstream of Earth), it rarely samples the CHW without it first interacting with
SBW.

The classification scheme developed from the Ulysses data will be applied to
≈13 years of ACE data (1998-2011). This will allow more statistical insight into
the link between solar wind source-regions and Space Weather events. All the
Ulysses and ACE data are mean-resampled into three-hourly data.

Since solar wind speed is a poor parameter choice for classification, other param-
eters must be used. In order to relate properties to the coronal source conditions,
parameters should ideally remain constant as the solar wind flows from the Sun.
For this task, ion charge state ratios are the obvious choice, since they are well
known to be non-evolving parameters after a few solar radii [Pagel, 2004; Geiss
et al., 1995]. The reason for this is that the electron mean free path becomes so
large that interactions are negligible [Owocki et al., 1983]. Between the Ulysses
and ACE spacecraft, the common charge state and composition measurements
are: O7+/O6+, C6+/C5+, Fe/O, < qFe >, and He2+/H1+ (where fractions signify the
relative density ratio). Further to these, Burlaga et al. [1990] describe how the
proton specific entropy, Sp, is a good stream signature since it only diverges 10%
between 1–5 AU (Sp =

Tp√
np
).
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4.3 An Intuitive Classification Scheme
Many studies of the classification of the solar wind often rely on scientists’ intu-
ition. Xu and Borovsky [2015] [and by proxy Camporeale et al., 2017] state that
their method of determining classification boundaries is that they are “chosen by
eye”. Zhao et al. [2009] base their identification of ICMEs [Cane and Richardson,
2003] on the work of Richardson [2004], who state their choice of parameter
boundaries are “somewhat arbitrary”. Such expert intuition is undoubtedly valu-
able, but extending this intuition from the abstract to the mathematical is a
necessary progression.

In order to enable comparison with the machine learning approaches introduced
below, we essentially reproduce the threshold approach in two-parameter space.
The chosen parameters are O7+/O6+ and Sp. These parameters are chosen based
on the work of Zhao et al. [2009] and Xu and Borovsky [2015], respectively. The
methodology is as follows. Firstly, we take the log of our data and then plot the
occurrence density. By visually inspecting the result, we see groupings within
the data. These groupings are subsequently separated by placing a line (linear
in log-space) to divide them. This dividing line forms the classification boundary
between the two groupings. Not only does such a model allow for investigating
the physical premise of the classification schemes introduced subsequently, but
it will also be used as a benchmark to show that further results are not wholly
unique to more complicated methods.

Figures 4.1a and 4.1b present two identical occurrence density plots of the whole
Ulysses dataset, wherein two populations are clearly visible (the colourbar is log
scaled). The panels include a different choice of threshold line which plausibly
separates the populations in the data. Thresholding has been performed twice
to highlight the fact that the result is not specific to a given threshold. Figures
4.1c and 4.1d show the results of the classification in linear space. Despite being
a simplistic classification scheme, there are benefits to its use; it is transparent
and based on parameters which are known indicators of solar source regions, thus
reducing the impact of solar wind stream interaction. From panels a, b, c and d it
is inferred that the data found to the left (right) of the classification thresholds
are CHW (SBW) due to their lower (higher) charge state ratios and higher (lower)
proton specific entropy.
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We make a simple comparison to demonstrate how the classical speed-threshold
scheme does not well-capture the origins of the solar wind, as compared to the
intuitive scheme. The Ulysses data are divided into fast- and slow-stream wind
according to various speed thresholds. We calculate the proportion of points in
each case where the results of the speed-threshold scheme do not agree with the
results of the intuitive scheme. The total number of discrepant points is divided
by the total number of points in the data used, giving a fraction describing the
relative difference between the speed-threshold and intuitive schemes. This is
shown in Figures 4.1e and 4.1f.

Whilst differences can be seen due to individual thresholds used in the two in-
tuitive schemes, it is their similarity which is of most import. Specifically, both
show comparative inaccuracies of the speed-threshold scheme greater than 10%
for all speed thresholds. Already, this simple scheme highlights the potential
shortfalls of the speed-threshold scheme.
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Figure 4.1: The intuitive classification scheme with comparison to classical speed-
threshold methods. Panels a and b show occurrence density plots of ≈19.5 years of
Ulysses data as a function of O7+/O6+ and Sp. Note the logarithmic colourbar scale.
Each plot shows a different threshold chosen to separate the two main solar wind pop-
ulations, assumed to represent coronal hole and streamer belt winds. Panels c and d
present this classification in linear space. The coronal hole wind is represented by low
O7+/O6+ and high Sp, and vice versa for the streamer belt wind. Finally, panels e and f
present the resulting mis-classification of solar wind using the speed-threshold method,
in terms of the absolute error.

4.4 Machine Learning Schemes
Whilst the intuitive scheme is undoubtedly useful, it still contains subjective
decisions about which parameters to use, the number of solar wind types to
identify, and the decision boundaries. Here, more objective (data-driven) and
mathematical methods are presented. Unsupervised machine learning will be
used to create two new classification schemes; with reduced subjectivity and
more algorithmic reproducibility. The latter point specifically contrasting the
selection of decision boundaries ‘by eye’.

Machine learning (ML, see Chapter 2) can be split into two main categories; super-
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vised and unsupervised. Supervised ML describes the techniques which produce
and optimise a function to map from an input (data) to an output (class label),
given a set of example (training) input-output pairs [Russell and Norvig, 2009]. By
contrast, unsupervised ML describes the subset of techniques which are used to
determine effective ways of mathematically separating data with no predeter-
mined class labels. Instead of a boundary function being optimised by a predictive
performance metric, the optimisation is often focused on improving the separa-
tion of data clusters. In this way, unsupervised ML can be applied to data with
less bias, allowing for groupings in the data to be found mathematically rather
than being influenced by what one may expect to find a priori. Unsupervised ML
is a data-driven approach to classification. Its purpose is to determine an un-
derlying structure in the data and find quantitative separations between discrete
regions. As such, the algorithms find that which is already present in the data
(subject to algorithm specific limitations).

The first new scheme will allow for the determination of a third solar wind cat-
egory. This category represents data which is difficult to assign to either CHW
or SBW, and hence be referred to as unclassified data. The second proposed
scheme will independently determine the number of solar wind categories.

To cluster the whole Ulysses dataset is a bad idea for several reasons: as pre-
viously mentioned, there is limited pristine data; clustering is computationally
expensive; and, it is inefficient for classifying new data (since the clustering would
have to be re-performed). To address these issues, the clustering is performed
on the three latitude-scans. This allows the clustering to be performed only on
the more pristine data, with higher latitudinal dependence; provides a more man-
ageable dataset for clustering, reducing computational complexity; and ensures
the ability to classify any new data efficiently.

Subsequently, the results of the clustering are applied to classify ≈19.5 years
of Ulysses data and ≈13 years of L1 ACE data. The independence of the clas-
sifications from solar wind speed allow them to be applied to the ACE dataset
despite significant solar wind stream interactions.
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4.5 The Bayesian Gaussian Mixture Scheme
Some of the literature regarding solar wind classification is built upon classifi-
cation boundaries which are chosen subjectively (e.g. “arbitrarily” or “by eye”).
We present a Bayesian Gaussian Mixture (BGM) classification scheme which uses
unsupervised machine learning to mathematically determine the optimum data-
driven decision boundary between solar wind types (subject to the suitability of
the Gaussian assumption).

The BGM algorithm iteratively fits a Gaussian mixture [McLachlan and Peel, 2000]
to the data. During each iteration, variational inference is implemented to do
two things: firstly, find the probability of each point being generated by the
mixture; and secondly, refit the mixture to the points using information from the
prior distributions [Attias, 2000; Bishop, 2006] (for further information regarding
variational inference, see the Appendix A). Once convergence has been reached,
the algorithm outputs the cluster label for each point (i.e. the label of the
Gaussian in the mixture to which it belongs), and the information describing the
distributions (e.g. mean and variance). The latter information is extremely useful,
as it allows for the Gaussian mixture to be stored, removing the need to run the
algorithm every time. With the Gaussian mixture stored, application to data
classification is straight-forward: firstly, each new data point is mapped into
the pre-established normalised space; then, the posterior probability of each
component Gaussian given the data point is calculated [further detail given in
Appendix A, or see e.g. Gelman et al., 2013]; and finally the point is assigned to
the component with the highest probability of generating it [as per Camporeale
et al., 2017]. The BGM is here applied using the algorithm from the scikit-learn
package available for python [Pedregosa et al., 2011].

We do not use k-means as Heidrich-Meisner and Wimmer-Schweingruber [2018]
have done. From the standpoint of the objective functions being optimised by
k-means and the BGM (as opposed to the algorithms used to attempt the optimi-
sation), k-means is strictly a special case of a Gaussian mixture model. That is,
if you choose a Gaussian mixture with K components and fix the Gaussians to be
spherical (scalar multiple of the identity for covariance) then the means of the
maximum-likelihood estimate for the mixture are the centroids that minimise the
distance from the data to the centroids. Algorithmically, k-means and the BGM
method use different optimisation techniques, but philosophically k-means is a
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subset of a Gaussian mixture model. Using a BGM rather than k-means allows
for non-circular clusters to be appropriately described using ellipses, by relaxing
the restriction that the Gaussians must be spherical.

To test the validity of the above arguments against using k-means, we have
investigated how the results differ from the BGM scheme. Overall, the results
from k-means are qualitatively the same as those from the BGM (i.e. the major-
ity of data are assigned the same class in both schemes), but with drawbacks.
Such drawbacks include an apparent increase in the mis-classification of Ulysses
CHW data, and incongruent speed distributions for the unclassified data between
Ulysses and ACE. These differences are due to the comparatively poor way of
determining classification boundaries, and the changes in the objective functions
being optimised. These differences both highlight that k-means is less suited to
classification in the way we have applied the BGM.

The BGM approach allows probabilistic classifications, antithetical to the intuitive
scheme. Whilst fitting Gaussians to data is a common practice, there is the
inherent shortfall of the approximation becoming less valid as a dataset diverges
from being normally distributed. As such, whilst we may be more objective in the
fitting procedure and gain information (e.g. probabilities), the results must always
be considered carefully in terms of the validity of the Gaussian assumption.

Despite the BGM producing probabilistic results, this study will use hard decision
boundaries. Points will be assigned to the Gaussian which most likely generated
it. Such an approach is entirely adequate for comparing between different solar
wind classification schemes (since most others use hard boundaries). In theory,
problems may arise if there were many data points yielding comparable (60%:40%
say) probabilities of belonging to multiple classes, but in our case fewer than 1-
in-10 data points have probabilities below 90%. Hence, minimal data are affected
by our use of hard boundaries.

Each parameter in the dataset is normalised to a zero mean and unit standard
deviation to reduce any bias that the heteroscedasticity of the variables could
introduce to the algorithm. The method of normalisation is through the standard
score:

x′ =
x− µ

σ
. (4.1)

Where x′ is the normalised value, x is the initial value, µ is the mean of the
population, and σ is the standard deviation of the population.
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The BGM algorithm does require user-specified parameters. 1) The number of
components in the mixture. Since this study focuses on classifying the solar
wind into coronal hole and streamer belt wind whilst accounting for data which is
difficult to classify, the algorithm is set to fit a three-component Gaussian mix-
ture to the data. 2) The precision prior on the mean distribution. The motivation
of this research is to avoid incorporating bias where possible. Therefore, the prior
was set to be flat, allowing all possible mean positions to be equally weighted. 3)
The number of initialisations. The algorithm was set to perform clustering with
30 random initialisations of the means to ensure that the convergence was not on
a local maximum/minimum. The result with the largest value of the lower bound
of the likelihood is kept. Convergence is reached when the change in likelihood
is less than 10−5 between iterations. Higher values of the likelihood correspond
to higher degrees of confidence that the model could produce the data (see e.g.
Gelman et al. [2013] for a detailed description of likelihood). As such, by choos-
ing the model with the highest lower bound, the baseline degree of confidence is
highest.

The Gaussian Mixture best describing the data can be described by the three
component means µ1−3(O

7+/O6+, Sp), covariances cov1−3(O
7+/O6+, Sp) and their re-

spective weightings. In the normalised space the means and covariances are as
follows:

µ1 = (−0.3779, 0.6252), cov1 =
(

0.0019 −0.0012
−0.0012 0.1833

)
µ2 = (0.4235,−1.1145), cov2 =

(
0.3759 −0.1009
−0.1009 0.1067

)
µ3 = (3.2836,−0.0057), cov3 =

(
15.9839 −3.0918
−3.0918 6.3546

)
and the weights are 0.6238, 0.3497, and 0.0265, respectively.

Figure 4.2a presents the results of applying the BGM clustering algorithm to the
latitude-scan data, and 4.2b shows how the clusters map to the solar wind speed
and proton temperature. The combination of the two parameters used allow the
clustering to map the solar wind well to either coronal holes or the streamer
belt. Cluster one, with low average O7+/O6+ and high average Sp, represents CHW.
Cluster two, with higher average O7+/O6+ and lower average Sp, represents SBW.
Cluster three is thus the unclassified data. The projection of the clustering into
the solar wind proton speed and temperature shows clearly that the clustering
is capturing distinct populations. The interaction of CHW and SBW can be seen
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by the overlapping of the two groups along the speed axis.

Figure 4.2: Classification with the BGM scheme. Panel a presents the results of Bayesian
Gaussian Mixture algorithm clustering on the normalised O7+/O6+ and Sp data. The plot
has been trimmed in both x and y to better display clusters one and two, as such a small
number of data points from clusters two and three are not shown. Panel b presents the
projection of the clustered data into into solar wind proton speed and temperature.

To investigate the stability of the clustering, the procedure was performed a fur-
ther 300 times using random sub-samples of 90% of the data. Upon completion of
each iteration, the mean value of each component Gaussian was recorded. Once
completed, the standard deviations and inter-quartile ranges of the distributions
of means are calculated. If the clustering had found a local maximum/minimum
in the data, we would expect there to be significant differences between the
results of a single run compared with the statistical results of many runs. The
results of the analysis are presented in Table 4.1. The BGM algorithm does not
systematically label the Gaussians and so eight of the recorded mean values
were incorporated into the incorrect group, and thus removed.

The proportionally small standard deviations and inter-quartile ranges signify
that the clustering is stable, and that the individual runs do not deviate greatly
from the average values. The means of the component Gaussians used to classify
the data in the normalised space are [-0.3779, 0.6252], [0.4235, -1.115], and [3.284,
-0.0057] for clusters one, two, and three respectively. Comparing these values
to those presented in Table 4.1, we see that they are very much in-line with the
standard behaviour.

4.5.1 BGM Scheme: Application
The clustering described above has been used to develop a solar wind classifi-
cation scheme, based on the fast latitude-scan subset of the Ulysses data. Here
we will apply the classification scheme to the whole Ulysses and ACE datasets.
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Sub-sampled BGM Model Component
One (296) Two (296) Three (300)

O7+/O6+ µ -0.3778 0.4235 3.281
σ 0.0002 (0.0003) 0.0052 (0.0064) 0.128 (0.165)

Sp
µ 0.6251 -1.115 -0.0093
σ 0.0022 (0.0028) 0.003 (0.005) 0.0704 (0.0984)

Table 4.1: The results of three-hundred 90% sub-sample runs of the Bayesian
Gaussian Mixture algorithm on the fast latitude-scan Ulysses data. The values in
brackets after the component number indicate the number of data points being
included (some are excluded due inconsistent labelling). µ is the mean of the
individual component means. σ is the standard deviation of the means, the value
in brackets represents the inter-quartile range. All values of the mean, standard
deviation, and inter-quartile range are given in the normalised space.

4.5.1.1 Ulysses

Figure 4.3 presents the results of the classification of the whole Ulysses dataset.
In Figure 4.3a one can see how the SBW (cluster two) appears to deviate from
a Gaussian. On the contrary (though less obvious from the plot) is that the
CHW (cluster one) is well approximated by a Gaussian, especially in comparison
to the SBW. However, a significant portion of the data that we might consider
to be difficult-to-classify has been captured as such by the algorithm. When
compared with taking simple speed thresholds, Figure 4.3b, there is a minimum of
≈22% disparity in the results. Again, this is highly suggestive that the traditional
method falls short of adequate for many applications. Also shown in Figure 4.3b
is the disparity when the unclassified data are ignored. This has been included
to allow a more like-for-like comparison (since both schemes can be considered
two-type schemes). In this way the disparity is reduced to ≈6%, suggesting
that the speed threshold captures the cores of the clusters. Nonetheless, the
speed-threshold scheme oversimplifies the classification of solar wind data, and
importantly gives too much confidence to the classification of borderline data.

4.5.1.2 ACE

Figure 4.4 presents the results of the BGM classification of the whole ACE dataset.
In Figure 4.4a there are considerable difference as compared with the Ulysses
data; as expected due to Earth’s orbital position, there is significantly less CHW
(cluster one) and more SBW (cluster two). When compared with simple speed-
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Figure 4.3: Panel a presents the results of applying the BGM fast-latitude scan classifi-
cation to the whole Ulysses dataset, shown in the O7+/O6+ and Sp space. Cluster one,
two, and three represent CHW, SBW, and unclassified data, respectively. Panel b shows
the mis-classification of the data using a simple speed threshold, both including and
excluding unclassified data (as determined by the BGM technique).

threshold classification, Figure 4.4b shows that there is a minimum ≈18% disparity
in the results. Again, ignoring the unclassified data, the disparity is reduced;
though, the same issues persist.

Figure 4.4: The results of applying the BGM scheme to the whole ACE dataset, and the
subsequent comparison to taking speed thresholds. Panels a and b are presented in
the same format to Figure 4.3. Cluster one, two, and three represent CHW, SBW, and
unclassified data, respectively.

4.5.2 BGM Scheme: Analysis
To view the way in which the classification of the Ulysses data maps to velocity
and solar latitude, a McComas et al. [2013] style visualisation is presented in
Figure 4.5a. Both the latitudinal and speed dependent nature are clearly present.
These dependent variables have not been used in the classification scheme, but
the correlation is expected. Capturing the predicted behaviour shows that the
initial choice of parameters is well-informed.

Figure 4.5b shows that the unclassified data is skewed towards the aphelion of the
orbit. It is worth noting that, due to the slower motion of the spacecraft, there is
considerably more data per latitudinal increment at aphelion than other portions
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Figure 4.5: The BGM classification of the whole Ulysses dataset. Panel a presents the
projection of the BGM classification scheme onto radial plots of solar wind speed and
Ulysses’ heliospheric latitude. Panel b presents the fraction of each classification type
in each of the octet segments of the plot. Each plot represents an orbit of Ulysses
around the Sun, with the ecliptic plane in the east-west direction. In both panels, time
increments clockwise, starting from aphelion at 8.6 degrees below east. The first and
third plots of panels a and b are the orbits where perihelion occurred at solar minimum,
whilst in the middle plots, perihelion occurred at solar maximum.

of the orbit. After accounting for the expected increase in unclassified data,
there remains a significant disparity in the distribution of unclassified data. The
aphelion regions of the orbit present more unclassified data than the perihelion
regions.

Figure 4.6a presents the speed distributions of the three BGM classifications from
Ulysses data. Note that these speeds were not used in the classification in
any way. The SBW shows no significant bi-modality, and appears to follow a
Maxwellian distribution. Both the CHW and the unclassified data show some
suggestion of being bi-modal, each with their secondary peak aligning close to the
primary peak of the other (whilst subtle, the secondary peaks are present, viz.
≈ 775 kms−1 for the unclassified, and ≈ 500 kms−1 for the CHW). This suggests that
the classification scheme may be having trouble differentiating between the two
types (see discussion of Figure 4.7). Figure 4.6b presents the same distributions,
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but obtained from the classification of the ACE dataset. We see the significant
drop in CHW, but observe that the distributions of both CHW and SBW are not
double-peaked. The unclassified data in the ACE classification is considerably
flattened, suggesting that the difficulty in classification may be ubiquitous in the
ecliptic plane.

Figure 4.6: Distributions of solar wind speeds within each cluster found by applying the
BGM classification scheme. Panels a and b present the comparisons for the distributions
in the Ulysses and ACE datasets respectively. Panels c, d and e present the comparisons
of like-clusters between the datasets. The latter panels also include the mean and
inter-quartile range of each distribution.

Figures 4.6c, 4.6d and 4.6e show direct comparisons of the distributions of solar
wind classifications in the ACE and Ulysses datasets. There is good qualitative
agreement in the distributions of the SBW and unclassified data, suggesting that
the scheme well-captures streamer-belt solar wind structures, as well as con-
sistently identifying the unclassified data. However, the CHW distributions for
ACE and Ulysses are very different. Given the general trend of coronal holes
towards higher latitudes, observing significantly less CHW in the ecliptic plane
is not unexpected. Furthermore, seeing that the CHW in the ecliptic plane is
generally slower is in line with the idea that the fast wind is slowed down due to
stream-stream interactions in the solar wind. The difference in the unclassified
data is almost exclusively related to the amplitude of the peak. The means and
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inter-quartile ranges show good agreement.

To better understand the double peak in the Ulysses CHW speed distribution,
the data are further split by spacecraft location. We use a threshold of 600
kms−1 to separate the two CHW peaks. Figure 4.7 shows the occurrence of the
two CHW distributions as a function of radial distance from the Sun. Given the
long orbital duration of Ulysses and its associated latitudinal variation, the data
the spacecraft obtains is convolved with the solar cycle and latitude. Thus, the
average latitude and sunspot number (and the respective standard deviations)
are calculated for each histogram bin. The sunspot number shows very little
structure, and no overall trends matching the distributions of radial distance
shown. In contrast, there is a clear trend between the absolute heliospheric
latitude and the radial distances contained within the secondary peak (lower
speed) of the CHW speed distribution. The trend suggests that the majority of
the secondary peak data is obtained both far from the Sun and closer to the
ecliptic plane.
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Figure 4.7: Occurrence of high- and low-speed CHW (using a 600 kms−1 threshold) as a
function of radial distance. This speed threshold is chosen to isolate the two peaks
observed in the distribution of speed in the CHW classification of Ulysses data. The top
two panels present the average absolute heliospheric latitude of the Ulysses spacecraft,
and the average sunspot number within each bin of the histogram. The error-bars are
the standard deviation of the data contained in each bin.
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4.6 The UMAP Scheme
The BGM scheme presents a step forward in creating a classification scheme
which is more objective and physically motivated. However, there remain some
drawbacks: only a subset of the possible parameters are used; there is an inher-
ent assumption that the data are normally distributed; the number of component
Gaussians must be specified in advance (reducing the objectivity of the scheme);
moving to higher dimensions reduces the interpretability of the results (what
does a six-dimensional (6D) Gaussian look like or mean?); and, simply having three
Gaussians does not provide much information about the substructure within each
cluster. These issues are addressed by creating a further classification scheme
using dimensional reduction and clustering. This scheme will specifically address
the subjectivity introduced when designating decision boundaries by-eye. Further,
it will remove the subjectivity in determining the number of types of solar wind
by deriving the number of clusters from the latent structures in the data itself.
We will apply the UMAP algorithm for dimension reduction, and the Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm
to subsequently cluster the low-dimensional representation of the data.

Datasets are often expressed in terms of a large number of measurements or
features. This means that each sample in the dataset is expressed as a vector,
or point, in a high dimensional space. It is often the case that the underlying
structure of the dataset as a whole can be described in terms of a much smaller
number of latent features, which dimensional reduction seeks to determine. More
formally, while the ambient space in which a dataset lives may be high dimen-
sional there often exists a much lower dimensional manifold from which the data
samples are (noisily) drawn. The UMAP algorithm [McInnes et al., 2018] seeks to
learn the topological structure of this manifold, and then find a low dimensional
representation of the data that has an equivalent topological structure. In this
way UMAP can transform highly complex datasets into much simpler represen-
tations that still capture meaningful structural features of the original dataset.
Due to the algorithm using stochastic gradient descent [Kusher and Yin, 2003],
there are minor variations in results produced by UMAP each time it is performed.
For further technical information, see Appendix B.

The HDBSCAN algorithm [Campello et al., 2013] seeks to find dense regions (clus-
ters) of a dataset that are otherwise separated from the rest of the data by
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regions where data are sparse. In particular it seeks to do this even when the
dataset contains background noise. To achieve this, HDBSCAN makes use of a
density threshold (expressed as a minimum number of data samples required be-
fore a region can be considered “dense”) and constructs a hierarchical tree of
contiguous regions of density. Given a minimum size for a cluster, this tree can
then be simplified resulting in a nested hierarchy of clusters. By selecting out
the most persistent such clusters (over ranges of distance scales) a single flat
clustering may be extracted. This results in an output of cluster labels where
each point is either labelled with a cluster identity, or as noise. For further
technical information, see the Appendix C.

It is worth noting that the nature of the way UMAP works is almost guaranteed to
result in non-convex clusters, and hence a clustering technique that is robust to
this is required. By necessity this essentially means either a hierarchical method
such as single linkage [Florek et al., 1951] or average linkage [Sokal and Michener,
1958], or a density based technique such as Density-based spatial clustering of
applications with noise (DBSCAN) [Ester et al., 1996] or Mean Shift [Fukunaga
and Hostetler, 1975] is required. That one should therefore consider the hybrid
hierarchical density based approach of HDBSCAN, over more simplistic methods
such as k-means, is entirely natural.

UMAP does not limit the number of parameters that can be used. We apply UMAP
to all of the non-evolving parameters (O7+/O6+, C6+/C5+, Fe/O, < qFe >, He2+/H1+

and Sp). This 6D data-structure is projected into 2D, allowing subsequent cluster-
ing to be independent of any potential user-biases, since there is not a physical
interpretation of the reduced dimension axes [McInnes et al., 2018]. Whilst the
axes are some non-linear function of the input dimensions, it is not possible to
derive this function from the mapping. HDBSCAN clustering does not require
any user specified number of clusters, instead finding groupings by the intrinsic
density structures present in the data.

As with the BGM scheme, the UMAP classifications are determined using the
Ulysses fast latitude-scan data. The data is normalised using the MinMaxScaler
function available in scikit-learn, as shown in the documentation for UMAP. This
method individually normalises all of the parameters to be in the 0–1 range:

Xscaled =
Xi −min{X}

max{X} −min{X}
(4.2)

where Xscaled is the scaled value, Xi is the un-scaled data value, and min{X}
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and max{X} are the corresponding minimum and maximum values of that pa-
rameter. It is of no consequence that different normalisation schemes are used
between the UMAP and BGM schemes, since comparison is only made in real
space. Normalisation is simply a tool to facilitate unbiased dimension reduction
and classification on a per-scheme basis. The normalised dataset is then re-
duced and clustered. The function mapping from 6D to 2D is stored, as are the
classification parameters obtained by HDBSCAN.

Figure 4.8a presents the results of reducing and clustering the latitude scan data.
Figures 4.8b and 4.8c present the clustering projected into the O7+/O6+ and Sp,
and proton speed and temperature spaces, respectively.

To stress a point, the dimension reduction is simply one of the steps required
to build the classification scheme. The lack of physical interpretation of the 2D
space axes adds to the validity of the results, rather than facilitating the influ-
ence of current scientific ideas on the classification. The classification becomes
entirely based on the latent structure in the data and as such, independent of
biases or expectations we may hold.
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Figure 4.8: The results of performing the UMAP dimension reduction and HDBSCAN clus-
tering on the Ulysses fast latitude-scan data. Panel a presents the dimensional reduc-
tion and subsequent clustering of the non-time-evolving solar wind parameters. Panel
b presents the clustering of the reduced data projected onto the O7+/O6+ and Sp space
used in the previous two classification schemes. Panel c presents the clustering pro-
jected onto solar wind speed and proton temperature. From the latter panels it is
inferred that clusters one, two, and three represent CHW, SBW and unclassified data,
respectively. The contours are representative of the point-density of data. Given the
two different contours and that the data remains largely the same as in Figure 4.2,
colourbars are not included. The noisy, final contour line is at the one-point level.
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The data in Figure 4.8a shows distinct groupings in the data. This implies that
there are fundamental differences between the three groups in the 6D space. By
inspecting panels b and c it is apparent that the distinction is the type of solar
wind present. From panel b we infer that cluster one is CHW, cluster two is SBW,
and cluster three is the unclassified data. However, the unclassified data is more
complicated than with the BGM scheme. Here, there are four distinct regions.
Because the UMAP reduction preserves the latent structure of the higher dimen-
sional space, the isolation of the groupings provides information. The spatial
separation between the unclassified data associated with the CHW, SBW or mid-
dle cluster suggests that these are fundamentally different from one another.
However, within-cluster separation of the unclassified data does not necessarily
imply fundamental differences, since this could just be an artefact of imperfect
projection of the 6D structure onto the 2D plane.

The distribution of the unclassified data is different in each of panels b and c.
In panel b much of the unclassified data is grouped in the region where the CHW
and SBW signatures overlap. This is expected due to the region being where the
parameter values transition between the two types of solar origin, and as such
classification uncertainty should exist. The remaining unclassified data which is
spread throughout the CHW and SBW is due to the small pockets of unclassified
data connected to each of the clusters in panel a. In panel c the unclassified
data is more evenly spread around the core regions of each group. Had the
unclassified data been grouped where the faster and slower regions overlapped,
it would have suggested that the speed could be providing useful information
about the types of solar wind present. Since it was not, the stream speed of the
solar wind appears to be a less-informative parameter for classification schemes
such as this one.

Since the UMAP reduction aims to maintain the structures in the 6D space, one can
extract information based on the structures present in the data. The CHW group
shows more spread in its internal structure, despite being understood to be less
variable than SBW. This could suggest that there is some underlying variability
in the CHW’s parameter space, or that the manifold covering the CHW is a shape
that does not lend itself to 2D reduction (e.g. a spherical manifold is difficult to
project into 2D whilst retaining the topological structure).
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4.6.1 UMAP Scheme: Application
The BGM scheme allows a simple way of classifying new data (the probabilities
of each Gaussian giving the data). Using UMAP and HDBSCAN is not quite as
straightforward. Fortunately, both techniques (as well as the scikit-learn Min-
MaxScaler) allow for the created mappings to be stored and applied to new data.
In this way, reducing and clustering the whole Ulysses and ACE datasets is both
straightforward and consistent.

4.6.1.1 Ulysses

Figure 4.9a presents the results of projecting the entire Ulysses dataset to the
reduced-dimension space and the subsequent clustering. The data maintains the
structure found in the reduction of the fast latitude-scans. However, there are
larger pockets of unclassified data, as well as significant linkage between the
central unclassified data and clusters one and two. These features are likely to
be the cause of the increased amount of unclassified data dispersed throughout
the CHW in Figure 4.9b. There is proportionally more unclassified data present
than there was in the original fast latitude-scan result. However, as shown in
previous sections, the data being used is expected to be more variable and thus,
may exhibit more unclassified data. Again, this scheme yields large disparities
with the speed-threshold scheme; ≈20% (≈10% excluding the unclassified data).

4.6.1.2 ACE

The UMAP classification scheme is now applied to data from the ACE spacecraft;
Figure 4.10 shows the results. Whereas the classification of the Ulysses data re-
sulted in an almost even split between CHW and SBW with some unclassified data
interspersed throughout, the ACE results shown in Figure 4.10a are dominated by
SBW, with only a small fraction being CHW or unclassified data. Comparing with
the BGM scheme, the UMAP scheme identifies approximately half (proportionally)
as much CHW.
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Figure 4.9: The results of classifying the full Ulysses dataset using the determined
UMAP classification scheme. Panel a presents the whole Ulysses dataset reduced to 2D,
and the results of the subsequent mapping to the clustering model created using the
latitude-scan data. Panel b presents the clustering of the reduced data projected into
O7+/O6+ and Sp space. The contours are representative of the point density of data as in
Figure 4.8, showing similar data to Figure 4.3. Panel c presents the comparison between
the UMAP classification scheme and the traditional speed-threshold scheme. Clusters
one, two, and three represent CHW, SBW and unclassified data, respectively.

Comparing to the speed-threshold method, we see that the UMAP classification
of ACE data has a disparity of ≈8% (≈4% excluding unclassified data). This
suggests closer agreement of UMAP with the traditional method than any of the
other classifications. Such a low disparity is promising for the speed-threshold
method. However, taking a threshold for skewed data may not be a fair way to
split the data. Taking a speed threshold above any value found in the data gives
a prediction error rate of ≈9%, simply due to small ratio of CHW and unclassified
data to SBW.
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Figure 4.10: The results of classifying the ACE dataset using the determined UMAP
classification scheme. Panel a presents the whole ACE dataset reduced to 2D, and
the results of the subsequent mapping to the clustering model created using the fast
latitude-scan data. Panel b presents the clustering of the reduced data projected into
O7+/O6+ and Sp space. The contours are representative of the point density of data as in
Figure 4.8, showing similar data to Figure 4.4. Panel c presents the comparison between
the UMAP classification scheme and the traditional speed-threshold scheme. Clusters
one, two, and three represent CHW, SBW and unclassified data, respectively.

4.6.2 UMAP Scheme: Analysis
To further validate the UMAP scheme, radial plots are shown in Figure 4.11. As
before, the plots show that the classification scheme captures the overall speed
and latitudinal dependence in the data (despite neither being used in the classi-
fication scheme itself). Whilst there is good agreement between the UMAP and
BGM radial plots (Figures 4.11a and 4.5a, respectively), it is the differences which
are interesting. The UMAP scheme unclassified data is more uniformly distributed
and there is an increased amount of CHW at lower speeds as compared with the
BGM scheme results. The first point is further evidenced in Figure 4.11b where
the fraction of unclassified data is clearly more evenly spread throughout the
octet of bins. This implies that the UMAP scheme is more able to classify points
at the aphelion of the orbit in the ecliptic plane.

Figure 4.12 shows the distributions of the different solar wind classifications as a
function of solar wind speed. The CHW and SBW distributions of the Ulysses data
in panel a match well with the distributions found from the BGM classification,
including the secondary peak in the CHW. However, the unclassified data exhibits
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Figure 4.11: Plots showing how the UMAP classification of the whole Ulysses dataset
maps to solar wind speed and solar latitude across its three orbits, as well as how the
distribution of unclassified data changes over these orbits. Panels a and b are presented
identically to those for the BGM scheme in Figure 4.5.

a more significantly bi-modal distribution. The peaks of the bi-modality align with
the peak of the SBW and primary peak of the CHW. This may suggest that the
unclassified data is comprised of points which lie in the tails of the CHW and SBW
6D distributions. Furthermore, the ACE data distribution matches the equivalent
BGM result, despite displaying a heavy-tail distribution. The Unclassified data,
again, displays a bi-modal distribution, and the CHW is too sparse to make a fair
comparison of anything but the predicted occurrence rate.

The comparative plots in Figures 4.12c, 4.12d and 4.12e present the differences
between the distributions more clearly. In panel c the overall similarity is clear,
though the ACE distribution shows the heavy tail. In panel d the peaks of the
unclassified ACE data are shifted towards lower speeds. Finally, panel e shows
further expected behaviour; the CHW from ACE is slower and a relatively minor
contribution.

As with the BGM scheme, the double peak in CHW has been investigated, yielding
results which are qualitatively equivalent to the results presented in Figure 4.7.
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Figure 4.12: The distributions of solar wind speeds within each UMAP classification.
Panels a and b present the comparisons for the distributions in the Ulysses and ACE
datasets respectively. Panels c, d and e present the comparisons of like-clusters be-
tween datasets. The latter panels also include the mean and inter-quartile ranges of
each distribution.

4.7 Discussion
The intuitive classification scheme, wherein an arbitrary threshold is applied to
non-evolving solar wind parameters (such as ion charge states ratios and proton
entropy), is a bridge between simple solar wind speed-threshold classification and
the machine learning methods presented herein. It shows significant differences
to the speed-threshold method. The latter method is not without its merits, for
many applications the speed of the solar wind is the driving factor. However,
in situations where the solar source is important, simply splitting the solar wind
up using arbitrary speeds may be misleading. The disparity of ≈10% to ≈11%
between the intuitive scheme and the speed-threshold scheme highlights the po-
tential flaws in statistical analyses performed using solar wind data. The two
intuitive scheme classification boundaries in Figures 4.1a and 4.1b are quite dif-
ferent. One has twice the gradient of the other in linear space, yet they produce
similar results in terms of coronal hole and streamer belt winds, suggesting a

99



4.7. DISCUSSION

degree of robustness in the classifications. However, this approach is entirely
deterministic and there is no means to assess uncertain or difficult-to-classify
solar wind intervals.

The BGM scheme mathematically extends the intuitive scheme using the same
parameters, O7+/O6+ and Sp. Instead of using visual inspection, classification
boundaries are derived by optimising the fit of a Gaussian mixture to the Ulysses
fast latitude-scan data. This method also allows for the inclusion of a third
category: unclassified data. The stability of the classification is assessed through
repeated trials on sub-samples of the data, and found to be robust. Applying
the classification scheme to the whole of the ACE and Ulysses datasets shows,
again, significant disparities with the speed-threshold method: ≈18% and ≈22%,
respectively. As expected, much less CHW is found in the ACE dataset than the
full Ulysses dataset.

The unclassified Ulysses data was found to be skewed towards the aphelion of
the orbit. This could be indicative of the increased time that turbulence or solar
wind stream interactions have to develop before reaching Ulysses. It may be
that the assumption of no plasma mixing breaks down on these long timescales,
either as a result of differential streaming of ions [Marsch, 2006; Schwadron et al.,
2005] or magnetic reconnection [Gosling, 2012].

The similarity of the speed distributions, Figure 4.6, in the Ulysses and ACE SBW
suggests repeatable classification despite the different occurrence density in the
two datasets. The slightly higher mean speed for SBW at Ulysses compared to
ACE is consistent with the increased radial distance and hence continued acceler-
ation and/or interaction time with faster CHW. The CHW distributions, however,
show little similarity. This shows there are quantitative differences in the speed
of CHW streams in and out of the ecliptic plane. A low speed CHW population is
found primarily at the aphelion of the orbit and perihelion at low latitudes (the
aphelion data is also generally closer to the ecliptic plane). This could be a fur-
ther result of the factors causing the unclassified data to be skewed towards the
aphelion of the orbit (e.g. turbulence, stream interactions, differential streaming
and magnetic reconnection).

The UMAP scheme builds on the principles of the previous schemes: choosing
non-evolving parameters for classification, and using the fast latitude-scan data
to establish the classifications. Unlike the BGM scheme, there is no user-specified
number of categories to discover, nor is the distribution of data assumed to
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approximate a multivariate Gaussian. The UMAP algorithm takes six non-evolving
parameters (O7+/O6+, C6+/C5+, Fe/O, < qFe >, He2+/H1+, and Sp) and approximates
the latent structure of the space into a 2D representation. The reduced data
presented in Figure 4.8a shows that there are two primary groupings in the data,
as well as another small grouping. The clusters in the data are extracted using
HDBSCAN, a density based clustering algorithm. By mapping the clusters from the
arbitrary 2D space into O7+/O6+ and Sp, Figure 4.8b, it is clear that the groupings
in the data match well with the expected properties of CHW and SBW. Such
information is determined using accepted domain-specific knowledge about the
solar wind (e.g. CHW is generally cooler and has higher Sp). Furthermore, the
majority of the unclassified data is found in the boundary region between the
CHW and SBW, supporting the idea that it is difficult to definitively classify,
especially in a lower dimensional representation.

When applying the UMAP classification scheme to the whole Ulysses data, Figure
4.9a, the two primary clusters become saturated with data points. There is a
proportional increase in the amount of both CHW and unclassified data. As with
the BGM scheme, there is a large disparity in the comparison with taking speed
thresholds: ≈20%. The application of the UMAP scheme to the ACE dataset,
Figure 4.10a, shows a lack of CHW. Interestingly, in Figure 4.10c we see much
better agreement between the speed-threshold classification and the results of
the UMAP scheme on the ACE data: ≈8%. However, the results are not much
better than just classifying everything as SBW, as one may expect with such
skewed data. Despite the link between the CHW and unclassified data, the latter
shows very little dependence on the orbital position in Figure 4.11b.

Comparing the speed distributions of each class, we see qualitative similarities
with the results of the BGM scheme: the SBW speed distributions match well,
though the ACE distribution displays a heavy tail, and the CHW is bi-modal. Dif-
ferent however, are the unclassified data distributions, which are also bi-modal.
This highlights the different ways in which the unclassified data is characterised
in the two schemes. The UMAP results show double-peaks in speed close to the
peaks of the CHW and SBW. This suggests that the unclassified data may be data
which belongs to one or other of the distributions, whose parameters deviate
from their respective norm.

In Figure 4.12d, the peaks of the unclassified ACE data are shifted towards lower
speeds. This is contrary to the expectation of the slower stream to be sped up
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and the faster stream slowed down, due to stream interactions. As such, the
data may signify that the unclassified data comprises solar wind transients (all
slowed due to the increase in SBW in the ecliptic plane). Else, there may be a
process acting to generally slow the unclassified data found in the ecliptic plane.

The heavy-tail distribution of the ACE SBW (classified by UMAP) may suggest
that a more complex model is required to characterise all of the structure in
the data. Alternatively, it may highlight the presence of another process which
accelerates SBW in the ecliptic plane, such as interactions with faster CHW or
the inclusion of more solar wind transients (e.g. ICMEs). Investigating the slower
CHW peak in the Ulysses data produces the same results as for the BGM scheme.
The data within the peak is largely from the aphelion of the orbit.

Tables 4.2 and 4.3 show the distributions of the classification results from some
of the papers discussed in the introduction. This, again, draws attention to the
lack of consensus on how the solar wind should be classified. Note that these
comparisons relate only to proportions, since the results are not all obtained
from the same data. Direct comparison of classifications for the same data are
given in Table 4.4.

SW Type S15 BGM UMAP
CHW ≈38.8% ≈40.3%
SBW ≈44.7% ≈48.3%

Unclassified ≈16.5% ≈11.3%
Fast ≈20%
Slow ≈65%

Intermediate ≈15%

Table 4.2: The proportions of each solar wind type found when classifying
Ulysses data. S15 refers to the results of Stakhiv et al. [2015]. BGM and UMAP
refer to the results of the presented classification schemes.

Of the classification schemes mentioned, only Stakhiv et al. [2015] (S15) have
results for classifying Ulysses data. The results in Table 4.2 have been estimated
from their Figure 5. These results show less fast and more slow wind than we find
of our comparable CHW and SBW, respectively. However, these differences are
reduced if we account for the errors we predict for taking such speed thresholds.

Both of Zhao et al. [2009] and Zhao et al. [2017] (Z09 and Z17) have results from
classifying ACE data, though the latter paper is more difficult to compare given
its six-type classification scheme. The results in Table 4.3 are estimated from
Figure 1 of Z09 and Figure 6 in Z17. The Z09 results do not match well with the
CHW or SBW results of either the BGM or UMAP scheme. However, the ICME value
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SW Type Z09 Z17 X15 C17 BGM UMAP
CHW 58% 8.2% 25.2% 20.4% 8.4% 4.8%
SBW 41.7% 27.6% 78.9% 90.9%

Unclassified 12.7% 4.4%
Non-CHW 37%

ICME 5%
CH-boundary 10.2%
Quiet Sun 25.6%

AR 31.1%
AR boundary 10.8%

Helmet streamer 13%
Ejecta 12.9% 13.9%

SR region 20.2% 38.0%

Table 4.3: The approximate proportions of each solar wind type found when
classifying ACE or OMNI data. The column labels refer to Zhao et al. [2009], Zhao
et al. [2017], Xu and Borovsky [2015], and Camporeale et al. [2017], respectively.
BGM and UMAP refer to the results of the presented classification schemes. AR
refers to active-regions and SR refers to Sector Reversal Regions.

is not dissimilar to UMAP’s unclassified data, possibly supporting the idea that the
unclassified data (especially in the UMAP scheme) could be composed of ICMEs
and other transients. Z17’s pure CHW shows good agreement with our results
(especially from the BGM classification). If the CH-boundary class is taken as a
part of the CHW, then the agreement diminishes. The rest of the classifications
are not usefully comparable due to the differences to our scheme.

Both Xu and Borovsky [2015] (X15) and Camporeale et al. [2017] (C17) apply their
classifications to OMNI data [King and Papitashvili, 2005]. This incorporates ACE
data as well as other data from L1, allowing comparison. The results in Table
4.3 are taken from Table 3 in X15, and the results of the C17 classification (see
their acknowledgements for data location). The X15 results differ from those
found with our schemes. However, if we consider that the sector-reversal region
solar wind is a part of our SBW, then there is some agreement between these
results and those from the BGM classification (the UMAP classification still differs
significantly). The C17 results differ slightly from those of X15, and present more
agreement with our results.

To compare some of these results in a more rigorous way, Table 4.4 presents con-
fusion matrices (contingency tables) comparing the results of two of the schemes
on the same data. The Z09 and C17 results have been simplified by assuming the
non-CHW is equivalent to our SBW, and combining the SBW and sector-reversal
region wind, respectively.
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Most noteworthy of these results is the agreement between what the BGM and
UMAP schemes classify as CHW compared with the Z09 and C17 schemes. This
is exemplified by the horizontal rows of CHW from the BGM and UMAP. In these
rows the proportion of what our schemes classify as CHW and the other schemes
classify otherwise (reading along horizontally) is very low. However, reading ver-
tically along the CHW columns, we see there are many samples in other columns.
This suggests that our schemes (trained on the Ulysses data) provide accurate-
but-conservative classifications of CHW as compared to the other models.

Comparison between each of our (BGM and UMAP) SBW classifications to Z09’s
and C17’s schemes present less consistent results. The BGM:C17 and UMAP:C17
results are broadly in agreement, with the majority of our SBW also being classed
as SBW by the other schemes. In contrast, the Z09 scheme classifies the majority
of solar wind as CHW. Hence, the results of our classifications are in conflict (as
are the Z09 in conflict with all of the others in Table 4.3).

Given the disparate methods of determining the ejecta/unclassified wind, it is
unsurprising that there is little agreement between any of the schemes (save
some between the BGM and Z09 schemes). Using a broadened feature space for
the UMAP scheme and identifying an unclassified cluster not found in the BGM
scheme highlights the importance of applying domain-specific knowledge, even
in data-driven approaches.

The inter-comparison between the BGM and UMAP schemes quantifies the evident
differences and similarities between the two methods. As one may expect from
the comparisons of speed distributions, the SBW is in good agreement. However,
the CHW is more diverse. Given the larger feature-space, and less constraining
method of clustering, we would posit that the UMAP CHW is a more accurate
representation of the class. It is more difficult to comment on the accuracy of
the unclassified wind from UMAP given that there are contributions from other
areas of the feature space.

We acknowledge that there may be some systematic bias in the classifications of
ACE data. It is possible that by limiting the training set to the Ulysses latitude-
scans, we created classification boundaries which generalise less well to the ACE
data (despite our use of non-evolving parameters). One potential source of this
may be that our training data heavily samples very large polar-coronal holes.
As such, in the ecliptic plane where we see generally smaller coronal holes, and
are more likely to sample boundary regions (see the percentages of CHW and
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Table 4.4: Confusion matrices (contingency tables) inter-
comparing the classification results of various schemes on
ACE or OMNI data. The column labels refer to Zhao et al.
[2009] and Camporeale et al. [2017]. BGM and UMAP refer
to the presented classification schemes. C17’s results are
obtained by matching timestamps between the data pro-
vided in their paper with those in either the BGM or UMAP
scheme. Z09’s results are obtained by applying the clas-
sification criteria from their paper to the data used in the
BGM or UMAP scheme. The green highlighting serves to
draw attention to the diagonals, which represent the num-
ber of samples of agreed classifications between any two
schemes.

UMAP C17 Z09
CHW SBW Ej/Unc CHW SBW Ej/Unc CHW SBW Ej/Unc

CHW 587 892 392 CHW 2936 181 71 CHW 3194 0 0
SBW 71 17668 302 SBW 3585 22677 3496 SBW 15425 13620 1017BGM
Ej/Unc 527 3023 152 Ej/Unc 1856 1522 1421 Ej/Unc 626 514 3712

CHW SBW Ej/Unc CHW SBW Ej/Unc
CHW 1129 18 38 CHW 1092 17 15
SBW 4549 13774 3286 SBW 11725 8106 1678UMAP
Ej/Unc 560 162 124 Ej/Unc 772 220 40

CHW SBW Ej/Unc
CHW 6295 390 1692
SBW 11450 11507 1423C17
Ej/Unc 1396 2019 1573

CH-boundary wind in the Z17 column of Table 4.3), the algorithms may classify
such winds as SBW mistakenly.

Whilst our choice of training data may bias the classification, the benefits of
training on out-of-ecliptic data which samples almost the entire range of helio-
spheric latitudes are significant: a more complete range of solar wind is sampled,
and that wind is less likely to be interfered with by processes relating to stream
interaction. Furthermore, it should be noted that discovering results which dif-
fer from the norm when using novel techniques does not necessarily mean the
results are wrong. It could very well be the case that there is less CHW in the
ecliptic plane than current classifications recognise.

4.8 Conclusions
This work presents two novel, data-driven schemes to classify the solar origin
of solar wind streams using unsupervised machine learning. The schemes are
built using non-evolving parameters which retain information about the source
regions. Each classification model is created using the Ulysses fast latitude-
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scan data, before being applied to the whole Ulysses and ACE datasets. The
BGM scheme reduces the subjectivity in determining classification boundaries
between solar wind types. It was specified to fit three clusters in the solar wind
data. As expected, two of these are the coronal hole and streamer belt winds.
The third remains unclassified. The UMAP scheme addresses subjectivity in the
choices of decision boundaries and the number of clusters to find in the data;
it independently derives three clusters in the latent topological structure of the
solar wind data. These clusters correspond to coronal hole and streamer belt
winds as before, but find a different type of unclassified solar wind. Application
of the UMAP scheme to Ulysses and ACE shows morphological differences in the
coronal hole wind seen in and out of the ecliptic plane.

For both schemes, and both spacecraft datasets, the classification results are
compared with the traditional approach of taking speed thresholds. In each case,
there are significant best case disparities between the speed-threshold approach
relative to the machine learning classifications: The BGM scheme applied to
Ulysses, ≈22% and ACE, ≈18%; the UMAP scheme applied to Ulysses, ≈20%
and ACE, ≈8%.

Whilst our results differ from those of other works, our data-driven methods
are designed to increase objectivity and reduce the introduction of scientifically
subjective biases. Thus, the differences do not take away from the results pre-
sented. Instead, such differences should motivate further work investigating
objective methods of solar wind classification, and their differences to current
schemes.

4.9 Appendices

4.9.1 Bayesian Statistics and Variational Inference
Bayes’ theorem is the statistical description of the probability that an event
happens, given some prior knowledge of the conditions of the event. Bayes’
theorem is notated, for two events A and B, as:
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P (A | B) =
P (B | A)P (A)

P (B)
,

where P (A | B) (the posterior probability) is the conditional probability that event
A occurs given event B, P (B | A) (the likelihood) is the conditional probability that
event B occurs given event A, and P (A) (the prior probability) and P (B) (marginal
likelihood) are the probabilities of events A and B happening independently. In
Bayesian inference, the interpretation of the posterior probability is the degree
of belief in a hypothesis. This can be envisioned as a situation where you have
a number of Gaussians from which a point measurement may be sampled (e.g. a
solar wind measurement and Gaussian mixture for its classification). To determine
which Gaussian is most likely given the data point, you calculate the posterior
using Bayes’ theorem, taking each Gaussian, A, given the data point, B, and
compare the probabilities for each Gaussian.

Variational inference (used in the BGM) is an extension to Bayesian inference de-
veloped for ML and is a current area of research in statistics. A brief description
will be given here based on the works of Blei et al. [2017] and Gelman et al.
[2013]. Variational inference is a method used to approximate probability den-
sities through optimisation, rather than sampling techniques (e.g. Markov Chain
Monte Carlo, MCMC). MCMC is used to create an empirical estimate of the poste-
rior distribution based on collected samples, and is very effective on smaller or
more simple models. However, when models are complex or datasets are large a
different approach is needed for computational practicality. Variational inference
chooses a family of probability density functions (PDFs) as an approximation to
the true PDF. The member of the PDF family which minimises the Kullback-Leibler
(KL) divergence to the exact posterior is sought (explained further, below). The
member which minimises the KL divergence is then optimised and used as the
approximate distribution for the posterior distribution. Variational inference is
usually faster than MCMC methods and better suited to scaling for large datasets.
The drawback is that while MCMC is known to converge asymptotically to the
correct solution, variational inference is not. Despite this, Figure 3 and Table 1 in
Blei and Jordan [2006], show how variational inference can be much faster, while
also remaining competitive to MCMC methods.

The Kullback-Leibler divergence is a measure of how one probability distribution
diverges from another (for the derivation and further information, see Kullback
and Smith [1978]). For the probability distribution of a continuous random variable
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x the Kullback-Leibler divergence, DKL(P ||Q) of distribution Q(x) from a given
distribution P (x) is defined as:

DKL(P ||Q) =

∫ ∞

−∞
p(x)log

(
p(x)

q(x)

)
dx,

where p(x) and q(x) are the probability densities of P (x) and Q(x), respectively.

4.9.2 Uniform Manifold Approximation and Projection
Expanding on the description given in Section 6, the following will discuss the
methodology of the UMAP dimension reduction technique using the appropriate
mathematical terminology. This description is quite involved, but should provide
an interested reader with all of the vocabulary needed to further investigate the
algorithm. Naturally, the full mathematical description is given in McInnes et al.
[2018].

The field of topological data analysis [Carlsson, 2009] uses methods from topol-
ogy to better understand complex datasets. One such technique is the construc-
tion of the Čech complex [Ghrist, 2014] which provides a combinatorial represen-
tation of a topological space inferred from a given dataset. To construct the
Čech complex one forms a cover given by open balls of a fixed radius about each
of the datapoints. The Čech complex is then the simplicial complex [Ghrist, 2014]
given by the nerve of that open cover [see, e.g. Ghrist, 2014, for more detail)].
Informally the process proceeds essentially as follows: to each open ball one
assigns a point; whenever a pair of open balls have non-empty intersection one
joins the corresponding points with line segment; whenever three open balls share
a non-empty intersection one adds a filled triangle joining the points; and so on,
adding higher dimension pieces for more complex intersections. By the nerve
theorem [Borsuk, 1948], the resulting simplicial complex is homotopy equivalent
[Ghrist, 2014] to the manifold formed by the union of the open cover. Informally,
the topological space pieced together by points, lines, triangles, tetrahedrons,
etc., captures the same fundamental topological structure as the space being
covered by open balls. In this manner manifold structure latent in data can be
discovered.

Unfortunately this will only successfully capture the underlying manifold from
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which the data was drawn when the data samples are uniformly distributed on
the manifold. Since this is rarely the case for data under the ambient metric we
must instead use the existing data distribution to infer the Riemannian metric
on the manifold that would result in such a uniform distribution. This can be
done by examining local data distributions and approximating a locally constant
Riemannian metric at each point. While this recovers the uniform distribution
assumption it introduces a new difficulty in that the metric spaces local to each
point are mutually incompatible.

By translating the local metric spaces into fuzzy simplicial sets [see Spivak, 2012;
Goerss and Jardine, 2009] the incompatibility can be overcome by taking the union
of the entire family of fuzzy simplicial sets. The result is a single fuzzy simplicial
set that provides a coherent view of the topological structure of the underlying
manifold from which the data was sampled. UMAP then uses an optimisation
process to find a low dimensional representation of the data that has a fuzzy
simplicial set representation that matches the topological representation of the
source dataset as closely as possible.

4.9.3 Hierarchical Density Based Spatial Clustering for Applica-
tions with Noise

As with Appendix B, we present an extension to the description of HDBSCAN
given in Section 6. Again, it is quite involved, but should be of interest to those
familiar with ML or who wish to learn more.

A dataset of measurements can be assumed to have been (noisily) sampled from
some probability density function. ‘Noisily sampled’ in this case refers to sam-
pling a value when there is noise (e.g. the inherent uncertainty in spacecraft
measurements). Given a probability density function f , where f(x) is the like-
lihood of sampling a point x and ∫Rn f(x)dx = 1, one can consider the level sets
{x ∈ Rn | f(x) ≥ λ}. As λ ≥ 0 varies these level sets will nest in such a way as
to form an infinite tree, called the cluster tree. Each cluster is a branch of the
tree, extending over the range of λ values for which it is distinct. The goal of
hierarchical density based clustering algorithms is to approximate this cluster
tree given only a finite set of sampled data.
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Hierarchical clustering techniques such as single linkage clustering [Everitt et al.,
2011] provide a partial solution. Results by Hartigan [1981] demonstrate consis-
tency with the cluster tree for single linkage clustering in the case of 1D data.
In higher dimensions, however, single linkage clustering becomes too sensitive
to noise: it suffers from chaining effects where spurious points result in clusters
merging prematurely. To remedy this we need to introduce a notion of density.
Let X = {x1, x2, . . . , xN} ⊂ Rn be the dataset, and define the core-distance κ(xi) of
a point xi as the distance to the kth nearest neighbour of xi. The core-distance
can act as a proxy for density (since sparse areas of the sample space will
have larger core-distances). We can then define a new metric, called mutual-
reachability-distance, defined as

d(xi, xj) =

max{κ(xi), κ(xj), ‖xi − xj‖2} xi 6= xj

0 xi = xj

.

In effect the mutual-reachability distance between a pair of points is the small-
est distance scale at which both points will be dense and considered to be neigh-
bouring each other. Performing single linkage clustering under this new density-
sensitive metric yields a more robust clustering algorithm that can be shown to
converge to the cluster tree of the probability density function from which the
data was drawn Eldridge et al. [2015].

The resulting cluster hierarchy is often exceptionally complex. Much of the com-
plexity is the result of single, or small numbers of, points separating off into new
clusters. To simplify the resulting cluster hierarchy we can consider a minimum
allowable cluster size m. We can then re-process the hierarchy considering any
child cluster with fewer than m points to be spurious – we denote those points
as “falling out of the parent cluster”. The resulting simplified tree allows for
better cluster analysis. A further step can then be taken by selecting those
clusters within the tree that persist for the largest ranges of distance scales.
This can be posed as a simple optimisation problem using the notion of relative-
excess-of-mass from probability theory. This allows for the production of a flat
clustering where each data point is either assigned a cluster label or, if it fell
out of a cluster further up the hierarchy, is labelled as noise.
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Chapter 5

Constraining the Location of the
Outer Boundary of Earth’s Outer

Radiation Belt

Preface
In Chapter 4 we investigated whether in situ solar wind data encoded latent
information about its solar source region. We found that it is possible to identify
the coronal hole and streamer belt solar wind while minimising the impact of
subjective biases.

Such results are useful to the Space Weather community as this latent informa-
tion may also include proxies for other related quantities which are not measur-
able, but may help to improve modelling. Alternatively, such classifications may
serve as a tool to reduce the dimensionality of down-stream modelling tasks,
rather than being required to include parameters relating to the composition of
the solar wind.

While Chapter 4 sought to gain new insight into the the solar wind, as the main
driver of Space Weather, this chapter and Chapter 6 shift the focus more directly
onto Space Weather phenomena. Both of these chapters provide novel insight
into the the outer boundary of the outer radiation belt. As will be expanded
upon in each chapter, understanding the outer radiation belt is crucial to much
of humanity’s space-based infrastructure. This chapter specifically targets the
identification of the physical location of the outer boundary, while Chapter 6
builds on this results, creating a synthetic dataset of electron spectra at the
boundary location - a necessary ingredient to radiation belt models.
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Abstract
Characterising the location of the outer boundary of the outer radiation belt
is a key aspect of improving radiation belt models and helps to constrain our
understanding of the mechanisms by which the source and seed electron pop-
ulations are transported into the radiation belts. In this paper, we hypothesise
that there are statistical differences in the electron distribution function across
the radiation belt outer boundary, and thus analyse electron flux data from the
THEMIS (Time History of Events and Macroscale Interactions during Substorms)
satellites to identify this location. We validate our hypothesis by using mod-
elled electron L* values to approximately characterise the differences between
electron distribution functions inside and outside of the radiation belts. Initially,
we perform a simple statistical analysis by studying the radial evolution of the
electron distribution functions. This approach does not yield a clear disconti-
nuity, thus highlighting the need for more complex statistical treatment of the
data. Subsequently, we employ machine learning (with no dependence on ra-
dial position or L*) to test a range of candidate outer boundary locations. By
analysing the performance of the models at each candidate location, we identify
a statistical boundary at ≈ 8 RE, with results suggesting some variability. This
statistical boundary is typically further out than those used in current radiation
belt models.

Plain Language Summary
Earth’s magnetic field traps highly-energetic particles in a doughnut shaped re-
gion, referred to as ‘the radiation belts’. Our work focuses on the outer belt,
comprised of electrons. Many spacecraft orbit within this region, exposing them
to potential damage. To mitigate this, the radiation belts must be understood
and modelled. The outer boundary is crucial to modelling, driving changes in
radiation belt activity. The boundary is also important because its location helps
us to understand which processes form the radiation belts.

In this paper, we analyse electron data measured by satellites to identify the
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location of the radiation belt’s outer boundary by using simple statistical methods
and machine learning. Our results show that simple statistical methods cannot
be used to deduce an outer boundary. Using machine learning, we test many
candidate boundary locations and by quantifying the model performances at each
of these locations, we are able to identify a statistical boundary location. This
boundary is located at approximately 8 Earth radii away from the planet, which is
typically further out than the boundaries currently used by radiation belt models,
although our analysis suggests the boundary location may be variable.

5.1 Introduction
Earth’s radiation belts typically manifest as two toroidal regions of magnetically
confined, energetic plasma. The outer radiation belt (ORB) comprises a highly
dynamic electron population, where fluxes can change by orders of magnitudes
on minute timescales [Blake et al., 1992]. The relativistic electrons commonly
observed in the ORB pose a threat to spacecraft via surface charging and electro-
static discharges between internal components [Frederickson et al., 1991; Baker,
2001; Eastwood et al., 2017a]. As the well-used geostationary and medium earth
orbits overlap with the ORB, there is significant interest in being able to accu-
rately model and forecast its electron properties.

There exist a number of radiation belt models, including: Salammbô [Beutier and
Boscher, 1995; Boscher et al., 2000; Bourdarie et al., 2005]; VERB [Versatile Elec-
tron Radiation Belt, Subbotin and Shprits, 2009]; STEERB [Storm-Time Evolution
of Electron Radiation Belt Su et al., 2010b,a, 2011]; DREAM [Dynamic Radiation
Environment Assimilation Model Reeves et al., 2012], and the BAS-RBM [British
Antarctic Survey’s Radiation Belt Model, Glauert et al., 2014]. One of the crit-
ically important aspects of defining the boundary conditions for these models
is the outer boundary of the ORB (OBORB), since this boundary acts as a time
dependent source for the simulations.

There are two aspects of specifying this boundary condition. Firstly, the loca-
tion must be specified either in physical or adiabatic invariant coordinates, and
secondly the source distribution must be specified for the chosen boundary lo-
cation. Typically, a boundary location is chosen around geosynchronous orbit or
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an equivalent position in adiabatic invariant coordinates, and the source distribu-
tion is taken from either a model output [e.g., Vette, 1991] or observational data.
The model boundary locations used do not necessarily correspond to the physical
outer boundary, but instead are chosen to maximise the amount of data avail-
able to construct the source distribution (more recently this has been data from
geosynchronous orbit or the apogee of the Van Allen Probes mission). Impor-
tantly, there may be physical processes outside of the arbitrary, data-maximising
boundary location which cannot be included through these modelling approaches.
Until radiation belt models capture the entire physics of the radiation belts, they
will have difficulty in predicting future behaviour, since they will be limited to
using reanalysis of past behaviour rather than being able to fully model the
dynamics into the future.

Determining the extent of the outer radiation belt relative to the location of the
tail plasma sheet may help to identify mechanisms which may provide the crucial
trapped seed population [Jaynes et al., 2015]. Since Earth’s plasma sheet is known
to be an important source of electrons that ultimately form the radiation belt,
though the precise mechanism of transport is not well understood [e.g., Forsyth
et al., 2014, 2016; Sergeev et al., 2015].

Given the importance of the OBORB, and the lack of empirical investigation into
its location, we here attempt to identify a statistical boundary location. This in-
vestigation is built upon the following hypotheses about the ORB and its electron
content:

1. The distribution function of the trapped radiation belt electron population
differs from the distribution function of the untrapped electrons.

2. There exists statistically - or explicitly - a radial limit at which the distribu-
tion functions of trapped and untrapped electrons will diverge.

Here, trapped electrons refer to radiation belt electrons which exhibit closed
drifting and bouncing trajectories, as opposed to the untrapped electrons, whose
drift paths lead to them being lost to different magnetospheric regions. Distribu-
tions functions in this work are as a function of energy. A further point of note
is that different distribution functions for the untrapped electrons have been
observed between dawn and dusk, due to electrons injected in the midnight sec-
tor being lost to the magnetopause without reaching the dusk sector [Li et al.,
2010a; Sorathia et al., 2017]. Thus, comparing the differences in the distribution
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functions between dawn and dusk should allow us to identify the radial extent
of the bound electrons more easily.

In Section 5.2 the data and data processing will be discussed. In Section 5.3.1
the current definition of what constitutes the radiation belt (i.e., where a trajec-
tory has a defined L*) is used to set a benchmark for the type of differences
between the ORB and untrapped distribution functions. In Section 5.3.2 the sta-
tistical radial evolution of the distribution function is presented. In Section 5.3.3,
machine learning (ML) is employed as a hypothesis testing tool and a statistical
boundary location is found for both the dawn and dusk MLT sectors. Finally, we
will summarise and make concluding remarks in Sections 5.4 and 5.5.

5.2 Data
Given that this investigation requires data over a large range of radial distances,
we use data from the Time History of Events and Macroscale Interactions dur-
ing Substorms (THEMIS) spacecraft (publicly available through NASA’s CDAWeb
archive). The distribution functions are derived from electron flux data from the
electrostatic analyser (ESA) to give us the energy range 10 eV to 30 keV and
the solid state telescope (SST) to give us the energy range 30 keV to 719 keV
[Angelopoulos, 2008; McFadden et al., 2008]. Data is taken from THEMIS probes
A, D and E between 2007/09/27 and 2019/09/29, whilst data from probes B and
C is taken up till 2010, at which point they were moved to a lunar orbit [Russell
and Angelopoulos, 2014]. Note that for the L* analysis in Section 5.3.1, data is
only used up until 2017 due to the availability of OMNI data in the SpacePy L*
calculator [Morley et al., 2010b]. Qualitatively, this limitation is very unlikely to
affect the results.

This investigation will focus on identifying the equatorial boundary location, and
will use data from the dawn and dusk MLT sectors. We use the spacecraft’s
position in GSM co-ordinates to specify dawn and dusk data (6 and 18 ±3 MLT
hours), and we use geomagnetically-aligned (GEOMAG) co-ordinates to specify
data from the magnetic equatorial region (Z = 0± 0.5 RE). This latter step is done
to ensure that the region we are sampling corresponds to the magnetic equator
in the appropriate coordinate system.
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To construct the distribution functions for the electrons we convert the direction-
averaged differential electron (kinetic) energy flux (DEF, eV /cm2 · s · sr · eV ) into
phase-space density (PSD, s3/m6) as follows:

PSD =
DEF · 106 ·m2

e

2E2
(5.1)

where E is the measured energy of electrons (in Joules) and me is the rest mass
of an electron.

Figure 5.1 presents the equatorial plane (left) and radial (right) distribution of the
THEMIS data used. From this, we note that the data is not evenly distributed, but
instead has a radial bias with a maximum ≈ 11.5 RE. This distribution is expected
given the orbital parameters of the various spacecraft. Two spacecraft (probes
D and E) have their apogee at ≈ 11.5 RE, meaning that they are travelling most
slowly at this region and so the density of measurements is higher. Probes B
and C have apogee at ≈ 30 and 19 RE, and so their measurements of the inner
magnetosphere are more spatially sparse. Probe A has an orbit with apogee at
≈ 10 RE.

In the following analysis, it will be important to ensure that results are not biased
by the radial sampling. To address this, we construct ensembles of randomly sub-
sampled data. In each of dawn and dusk, we take n equally-spaced radial bins
between 5 − 13.5 RE (the amount of available data drops after this radial limit).
We find the bin with the fewest samples, m (where m ≈ 3000 if n = 20). We then
construct a new dataset by randomly sub-sampling m points from every bin 100
times (with replacement). This new dataset is now uniformly populated in radial
distance.

Such ensemble sampling addresses positional biases of the spacecraft measure-
ments. Furthermore, we maintain the underlying statistical properties of the PSD
distributions in each of the radial bins [Efron and Tibshirani, 1986]. There also
exist biases in the MLT distribution of the data. However, these biases are much
smaller than the radial biases (as can be seen in figure 1), and the distribution
functions are expected to show less of a trend with MLT than radius, so we do
not mitigate for them.
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Figure 5.1: The left plot presents the distribution of magnetically equatorial data sam-
ples in GSM co-ordinates, with a representation of Earth’s day- (white) and night-side
(black). The right plot presents the same data, but explicitly showing the radial distri-
bution.

5.3 Analysis
In this section we explore various methods which might be used to identify the
location of the OBORB. Each method involves comparing the electron distribution
function within various radial limits. We look at this through the lens of the
hypotheses in Section 5.1. Initially, we use a non-empirical method based upon the
evaluation of L* [Roederer, 1967] to investigate our hypotheses within the typical
adiabatic invariant coordinate framework. Following this, we use radial binning
to observe the radial evolution of the electron distribution function and look
for discontinuous behaviour signifying the OBORB. Lastly, we employ machine
learning methods as a tool for searching for the radial position of the OBORB
through a hypothesis testing approach (though not the same hypotheses as in
Section 5.1).

5.3.1 L* Analysis
Our study focuses on finding the radial extent of the ORB in real space (cf.
adiabatic invariant space) by analysing positional differences in the electron dis-
tribution function. This naturally leads to using L* to classify whether data is
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inside or outside of the radiation belts. L* is a modelled property of magnetically
trapped particles, which is used to define the extent of the radiation belts [Roed-
erer, 1967; Roederer and Zhang, 2014; Roederer and Lejosne, 2018]. In a dipole
field, the modelled L* corresponds to the radial distance of the point where the
drift path of an electron intersects the magnetic equator. Employing L* as a
definition of the radiation belts themselves allows us test our first hypothesis
- that the electron distribution functions within and without the ORB differ. We
stress that this is only an approximation for the radiation belts, since it relies
on empirical field models (L* is not a measured quantity), which have significant
disparities [see e.g., Thompson et al., 2020; Albert et al., 2018], and as such we
do not use L* to try to quantify the location of the OBORB.

To incorporate the information L* provides (whether or not the electrons are on
a closed drift-path), we employ seven magnetic field models to determine L* for
a given datapoint - calculated using the SpacePy’s wrapper of the IRBEM library
[Morley et al., 2010b; Roederer and Zhang, 2014; Albert et al., 2018; Thomp-
son et al., 2020] for 90◦ pitch-angle electrons (we comment on pitch angle in
the discussion section). These models are: T89 [Tsyganenko, 1989]; OPQuiet
[Olson and Pfitzer, 1974]; T96 [Tsyganenko, 1995]; OSTA [Ostapenko and Malt-
sev, 1997]; T01Quiet [Tsyganenko, 2002]; T01Storm [Tsyganenko et al., 2003],
and T05 [Tsyganenko, 2005]. These models range from being analytic (OPQUIET)
to quite heavily solar wind/geomagnetic index parameterised (T05). Given the
seven models used, we specify that so long as at least four models returns a fi-
nite L* value, the datapoint corresponds to a trapped drift trajectory for at least
some of the electrons measured, and is therefore within the radiation belts. This
choice was informed by Thompson et al. [2020], who choose three models but
suggest that using more models can reduce model-specific biases.

Figure 5.2 presents the results of the L* analysis. We have employed the sub-
sampling method described in Section 5.2, with n = 20, to ensure that there is no
sampling bias in the results. In panel a of Figure 5.2, the L* occurrence distribu-
tion and median L* values (based on the 4-model agreement criteria) are plotted
over the range of radial distances. Below 8 RE, > 90% of the data is located within
the radiation belts (in that it has a valid L* value in 4 of the 7 magnetic field
models). The occurrence fraction of L* values show a monotonically decreasing
relationship with increasing radial distance (except > 12 RE), in agreement with
theory. We speculate that the increasing occurrence above 12 RE and the de-
creasing median L* values above 11.5 RE are spurious and represent some of the
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issues in trying to solely use modelling to define the OBORB [further issues with
using current magnetic field models are highlighted in Albert et al., 2018].

Panels b-e in Figure 5.2 present comparisons between dawn and dusk, and inside
and outside of the ORB (on the basis of L* being defined or not). Comparing
vertically (i.e., panels b with d, and c with e) shows the difference between dawn
(top) and dusk (bottom). There is a clear enhancement of the ≈ 10 keV seed
population electrons [Jaynes et al., 2015] at dawn which is not present at dusk.
There is also a depletion of the ≈ 1 keV source population electrons [Jaynes
et al., 2015] which only appears outside of the radiation belts. The medians of the
THEMIS SST data (> 30 keV), follow a power-law-type distribution as other works
have found [e.g., Whittaker et al., 2013; Zhao et al., 2019]. Comparing between
inside and outside of the radiation belts, the main differences (aside from the
aforementioned depletion of source population electrons) are the typically more
variable PSDs at energies ≲ 100 keV outside the belt compared to inside. In
contrast, the PSDs above this energy are much less variable outside the belt
compared to inside. The distribution functions also have a shallower gradient
and more variability inside of the radiation belt, highlighting a considerably more
enhanced electron population.

5.3.2 Simple Radial Analysis
To investigate the OBORB, we calculate the median and interdecile (i.e., 10 to 90th
percentile) range of data in nine radial bins between 5 − 13.5 RE. These results
are presented in Figure 5.3. These distributions are calculated using the random
sub-sampling technique described in section 5.2, with n = 9, to ensure comparable
statistics between each of the bins.

We find significant radial evolution in both the dawn and dusk distribution func-
tions. Both display flattening over the mid-range energies, suggesting either
wave-particle interactions [Meredith et al., 2020], or the plasma sheet source
[Kurita et al., 2011]. The notable difference between dawn and dusk is the pro-
nounced bulge in the dawn distribution at ≈ 10 keV, mirrored in the interdecile
ranges of the dawn data. We observe that the dawn and dusk distributions di-
verge with increasing radial distance up to r ≈ 9.7 RE, after which they converge
to similar distributions. At low radial distances, the dawn and dusk data may
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Figure 5.2: Panel a presents the radial distribution of datapoints where L* is defined
(i.e., the electrons are on closed field lines) normalised per radial bin, as well as the
median L* value in each bin. The following box-plots present the per-energy-channel
distribution and median trend-line of PSD at dawn and dusk, for data with and without
a defined L*, respectively. These plots have a vertical line separating the ESA and SST
instrument measurements. The box-plots represent dawn (b and c) and dusk (d and e),
with the alternate line representing the median of the other for comparison.

be more consistent because most of the data is inside the radiation belts, and
equivalently at the higher radial distance most of the data is likely to be outside
of the radiation belts. We observe that the dawn data exhibits the elbow at
lower radial limits, and suggest that this may be the contribution of untrapped
electrons. This is supported by the dusk distribution converging to the enhance-
ment as the radial limit is increased beyond the expected limit of the OBORB and
trapped electrons.

The distribution function at 5.0 − 5.9 RE is very different in form from that at
12.6−13.5 RE, but the change in form occurs gradually, with no obvious discontinuity
as a function of radial distance. This may imply that either there is not a hard
boundary, or that the boundary location is highly variable. By not finding such
a marker, we infer that this simplistic approach isn’t best suited to locating the
OBORB.
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Figure 5.3: The median and interdecile range of PSD in dawn and dusk, binned by radial
distance. The black vertical line represents the break between data from the ESA and
SST instruments.

5.3.3 Machine Learning Analysis
With the previous method unable to find a clear radial distinction between elec-
tron populations, we now employ machine learning. We approach this much like
hypothesis testing - a variety of radial limits are proposed as potential OBORBs
(hypotheses) and empirically tested to determine which is most appropriate (the
validity of an OBORB radial location, and how we might determine it, are discussed
below). We constrain the data to the SST energy channels before applying ma-
chine learning, ensuring the results are not biased by lower energy particles,
strongly affected by the E ×B drift [Roederer and Zhang, 2014].

Our empirical analysis for a single set of proposed dawn and dusk radial limits is
as follows:

1. Make a hypothesis by selecting a candidate radial limit for the OBORB (e.g.,
7 RE in the dusk or dawn sector).

2. Label each datapoint with a 0 if the measurement was made inside of the
candidate radial limit, else label it with a 1. These class labels form the
targets that a machine learning model (explained later in the text) will try
to predict on the basis of the electron distributions.
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3. Combine the dawn and dusk labelled data into a single dataset.

4. Provide a machine learning model each of the electron distribution functions
as features (i.e., what the model will use to form a prediction). Each input
is a 1 dimensional array of the values of PSD at each energy.

5. Train the machine learning model for the given set of input features (electron
distribution functions) and targets (whether the data is inside or outside
the chosen radial limit). The training set corresponds to 80% of the data,
allowing for model performance to be quantified on an un-seen test set (the
remaining 20% of the data).

6. Quantify the model performance of estimating whether a datapoint is inside
or outside the chosen radial distance using un-seen electron distribution
functions from the testing set. Metrics quantify the differences between
the model-predicted class labels (0/1, inside/outside) with the class labels
prescribed by the boundary location choices.

Note that neither the radial boundary locations, nor the radial locations of the
measurements are provided to the machine learning model. Instead, the model
tries to improve classification accuracy by inferring differences in the input fea-
tures (PSD at each energy) between each set of class labels. By considering how
well the model performs, we are assessing how much information is present in
the electron distribution functions about the chosen radial distance. As electron
distribution functions are expected to show the greatest difference either side
of the OBORB, this in turn provides a measure for how good an approximation
the chosen radial distance is for the OBORB. By, ‘greatest difference’ we are re-
ferring back to our initial hypothesis that the electron distribution functions of
trapped electrons are different to those of untrapped electrons.

Each model used in the following analysis is a gradient-boosted [Friedman, 2001]
ensemble of decision trees [Belson, 1959] implemented using the LightGBM frame-
work for Python [Ke et al., 2017]. For each set of hypothetical boundary locations,
a new model is trained, but the model architecture remains the same. Each en-
semble is comprised of 256 decision trees [chosen to exceed suggestions from
Oshiro et al., 2012, since LightGBM is cheap to run], which each contain 32 leaf
nodes. Each model is gradient boosted using the dart algorithm [Rashmi and
Gilad-Bachrach, 2015], where gradient boosting is a method of constructing the
ensemble such that each subsequent decision tree in the ensemble is trained to
correct for mis-classified predictions from the previous decision trees.

122



CHAPTER 5. CONSTRAINING THE OUTER BOUNDARY

To test a large range of hypotheses we implement the above method in a train-
ing loop, stepping through each combination of dawn and dusk radial locations
between 6 to 12 RE (in increments of 0.2 RE). By investigating the model perfor-
mances over this range of plausible OBORB locations, we can assess the exis-
tence or otherwise of an OBORB, and whether the location can be constrained to
a certain radial distance range. The existence of an OBORB can be judged by the
magnitude of the quantified model performances; if models perform well, then
it suggests that an OBORB or OBORB region exists. Once validated, the location
of the OBORB can be constrained by comparing the relative skill of the different
models and seeing if a particular set of boundary locations leads to models which
perform better. Where we find radial limits with the best model performance, we
know that these locations correspond to a split which maximises the differences
in the distribution function data between the two classes (i.e., inside/outside,
0/1). In our context, this would represent the statistical OBORB.

Before detailing the results, we present the distribution of data obtained by our
various radial limits. Figure 5.4 presents the proportion of data labelled as ‘inside’
at each dawn and dusk limit. There is a noticeable increase in the fraction of
data within the radial limit at ≈ 11.5 RE. This is due to the radial bias in the
data distribution presented in 5.1. Generally the central regions of the plot have
balanced data distributions. This distribution will be important in evaluating the
performance metrics to ensure that they are not biased by having uneven class
distributions.
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Figure 5.4: A 2D histogram presenting the fraction of data classed as inside the radiation
belts, as determined by various radial limits. The radial limits are independently chosen
for dawn and dusk.

To quantify our model performances, we employ a variety of binary classification
metrics: Accuracy, Gilbert Skill Score (GSS), G-mean, F-measure and Critical Suc-
cess Index (CSI) [Gilbert, 1884; Kubat et al., 1998; Lewis and Gale, 1994]. These
metrics (aside from accuracy) have been chosen because they are designed to
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take into account class imbalances. Since different metrics focus on quantify-
ing different aspects of predictive performance (see how the different metrics
are constructed in 5.6.1), we present the results of multiple metrics to get a
more complete view of the model performances. We also consider the inverted
F-measure and CSI to account for the fact that they only consider one correct
classification label (namely, the true positive predictions, ignoring the true neg-
ative predictions), and finally an aggregated metric comprised of the geometric
mean of results from all metrics used. These metrics can all be derived from a
confusion matrix of the results of our binary classification. See 5.6.1 for further
details of the metrics and how they relate to confusion matrices.

Figure 5.5 presents the results of our machine learning analysis. Each panel
presents a 2D histogram of the performance of a metric at each combination of
dawn and dusk boundary conditions. Over-plotted are six contours evenly-spaced
between the 70− 100th percentiles of the data. By all the metrics used, there are
models which perform relatively high for at least a subset of the hypothesised
boundary locations. The GSS has the lowest numeric model performance, but still
has a constrained region of performance exceeding 0.7 (a score of 0 would rep-
resent no-skill and -1/3 is the lowest possible value). Aside from the GSS, each
metric is constrained to the range 0-1. If our approach were flawed, and machine
learning was not a suitable tool, we would expect to find that the models did
not perform especially well at any location. Seeing as there are high-performing
models (by each metric), we infer this as validation of our machine leaning ap-
proach. The contours of model performance presented allow us to constrain
the locations of best performance, which we attribute to the OBORB location.
However, before we analyse these contours we will discuss the issue of class
imbalance.

Of the traditional metrics used, it appears that the GSS and G-mean metrics
perform most robustly against the class imbalance, as can be seen by the lack
of bias towards the upper right, or lower left areas (where the class imbalance
is most pronounced). The average of the metrics also provides a class-balanced
representation of the results. One thing to note from these results is the simi-
larity between the accuracy, F-measure and CSI. This likely originates from the
algebraic similarity between the definitions of these metrics (see 5.6.1). By using
the inverted versions of these metrics we address the class imbalance when we
take our average of the results, and observe how sensitive the results are to
the class imbalance (the metric behaviour completely changes by focusing on a
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different true class prediction). Accuracy is inadequate as a metric when used on
imbalanced data, since it is easily biased. This bias can be demonstrated in the
following hypothetical case. If one has 100 data points, split into two classes (0
and 1), with 99 points falling in the 0 class. Then a model trained on this data
may obtain a predictive accuracy of 99% by predicting everything to be in the 0
class. If it is important to be able to correctly predict the other classification,
then this model will have no skill, despite the high accuracy.
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Figure 5.5: 2D histograms presenting the machine learning model performance, through
various metrics. The average of the metrics presented in panel h represents the ge-
ometric mean of the metrics presented in panels a-g. Over-plotted are six contours
between the 70− 100th percentiles of the data, used to draw attention to the regions of
best performance.

Whilst we present all of the metric results in Figure 5.5, for convenience we will
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focus the remaining discussion on the results of the average of the metrics, as
this encapsulates the trends between all of the metrics. We observe a bounded
region of best-performance between ≈ 6.9 − 9.1 RE in the dawn sector and ≈

7.0−9.3 RE in the dusk sector. The contours show sharp decrease in the quantiles
of performance outside of this area.

5.4 Discussion
For the sake of a clear methodology, we have generally made few comments on
the results we’ve found. Here, we will start by discussing the machine learning
aspect of this work, since it yields the most interesting results, and subsequently
compare with the features found in our simple radial analysis.

In the machine learning analysis, we employed a fairly simple hypothesis testing
approach to investigate various radial boundary locations for the OBORB. Our
results suggest that a boundary exists, though its location may be highly variable.
Variability in the boundary location may originate from myriad sources: pitch-
angle dependence; energy dependence, and solar wind/geomagnetic activity. The
pitch-angle of electrons is less likely to affect our results due to the focus on
the dawn and dusk regions rather than day or night. For these latter MLT sectors,
there is a strong pitch-angle dependence of the drift shell being observed at a
given radial location [see figures in Roederer and Lejosne, 2018], which act in
opposing directions between day and night. As such, this effect is much reduced
in our data, though certainly some of the variability in the results is due to this.
For electrons of different energies, there are magnetospheric processes that
act preferentially. Thus, for each energy level there may be a different radial
location corresponding to the last closed drift shell. By limiting our machine
learning experiment to only the higher energies, we reduce the energy dependent
effects. Though, as discussed below, we may still observe some of these effects
even in our more limited energy range. Solar wind and geomagnetic activity are
likely to have a significant effect on the OBORB, since such activity leads to
large-scale reconfiguration of the magnetospheric topology and geometry. As
this study represents (to our knowledge) the first empirical constraint on the
OBORB location using in situ data, we do not account for activity, leaving such
considerations for future work much in the same way as early research into the
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magnetopause location [Fairfield, 1971]. By doing so, our results likely represent
a quiet-time or modal OBORB location. One final consideration is cross-species
contamination of the electron flux by protons, which may increase the lower
energy channel’s PSDs and add additional variability to our results [Turner et al.,
2012a, 2013].

From our results we infer that the lack of parameterising by solar wind or ge-
omagnetic activity is the dominant factor for the variability in our boundary
location, as activity will move the boundary physically, rather than softening it
as the pitch-angle and energy dependence do. We infer this by the high skill
scores (relative to the maximum value) which are distributed over a large range
of potential radial limits. If instead, there was a softer boundary (i.e., a slow
transition between the two characteristic distribution functions), we might still
expect to see the smooth variation in the metric scores, but we would typically
expect the quantitative values to be lower (e.g., all less than 0.5), as the models
would find it more difficult to characterise the subtle differences in the slowly
changing distribution functions.

Looking specifically at the average (geometric mean) of the metrics in Figure
5.5h, the distribution is shifted slightly in favour of a larger radial limit at dusk
than dawn, but is otherwise quite a symmetric shape. The ovoid shape of the
contours suggest a tendency for the boundary to favour similar values at dawn
and dusk, though the implicit variability highlights that this may be only a weak
tendency (taking the contours as the extrema of the variability, the dawn radial
limit can be ±2 RE compared to dusk and vice versa the variability can be ±2.5 RE).

The dawn-dusk asymmetries observed might be explained by similar dawn-dusk
asymmetries in the magnetosphere [Walsh et al., 2014; Haaland et al., 2017;
Staples et al., 2020]. As we have excluded the lower energy particles from this
portion of analysis, we do not expect this asymmetry to be primarily due to
E × B drift, since the curvature and gradient drifts are energy dependent and
hence will dominate over the electric field drift [though some recent works have
shown that the electric field may still contribute: Sillanpää et al., 2017; Califf
et al., 2017]. Instead, we speculate that this effect is more likely to be due to
asymmetries in the (partial) ring current, whose effect is to increase the magnetic
field strength at larger radial distances. This causes the electrons to follow the
field and drift further out because of the gradient drift experienced. The sense
of the dawn-dusk asymmetry suggests it is not simply the result of the algorithm
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identifying the magnetopause rather than the OBORB - the magnetopause can
be compressed to below 8 RE, but this happens much more frequently at dawn
than dusk [Staples et al., 2020]. Whilst there may be some contamination of
the data due to sampling the magnetopause or solar wind, we infer that this is
negligible, since electron populations (and hence their distribution functions) are
very different. It is expected that the difference between electron distribution
functions inside of the magnetosphere and those in the magnetosheath or solar
wind is much bigger than the differences between distribution functions inside and
outside the radiation belt. A more easily identifiable dichotomy of distribution
functions would be picked out more significantly by the algorithm and so we
assert that the boundary identified by the algorithm is not the magnetopause,
but the OBORB.

Our identification of the OBORB at ≈ 8 RE is typically larger than the values
currently used in radiation belt modelling [e.g., Subbotin and Shprits, 2009; Shin
and Lee, 2013; Glauert et al., 2014, 2018; Ozeke et al., 2014, 2018], suggesting
that these modelling efforts are potentially missing radiation belt phenomena
from the outer regions. Other empirical evidence, such as that in Sivadas et al.
[2019], also support an OBORB location beyond the currently used limits (9−12 RE
in their case). The OBORB being located further out opens up the possibility
for smaller scale magnetotail behaviour (e.g., less severe substorms) to inject
particles into the radiation belts, since they would not have to penetrate to such
low L-shells. Such injections could lead to additional variability in the radiation
belts [Turner et al., 2017; Jaynes et al., 2015] and to enhanced chorus wave
activity in the outer regions [Meredith, 2002].

In Figure 5.3, we observed a flattening of the PSD at the mid-range energies
and speculate that this is due to wave-particle interactions (WPIs). Given the
energies of these electrons (10 − 30 keV) and their location (equatorial region,
large radial distance) it is likely that whistler-mode chorus waves are the cause
[Omura et al., 2008; Li et al., 2010a, 2011; Meredith et al., 2020]. The flattening
occurs asymmetrically between dawn and dusk, with dawn being affected at
lower radial distances. Meredith et al. [2020] present results showing that both
lower- and upper-band chorus have a large dawn-dusk asymmetry. These results
also show that specifically the lower-band chorus intensity is high at the large
radial distances where we continue to observe the flattening of the distribution.
Our presented results extend to larger radial distances than Meredith et al. [2020]
or Li et al. [2010a], into regions close to the magnetopause. Due to the sparseness
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of data and research into WPIs in this region, we cannot speculate on whether or
lower-band chorus remains the dominant wave affecting the electrons but these
results suggest that more investigation may be required.

5.5 Conclusions
This study provides the first in situ, empirically-constrained location for the
outer boundary of the outer radiation belt using THEMIS ESA and SST measure-
ments. Characterising this boundary location accurately is an important aspect
of radiation belt modelling, as it forms a time-varying source of electrons.

By applying simple statistical techniques, we observe significant radial evolu-
tion of the distribution functions, highlighting the intrinsic differences between
the trapped (radiation belt) and untrapped electron populations. However, this
approach did not yield a clear boundary location, instead showing a smooth tran-
sition between the two states. Such a transition signifies either a soft boundary,
or a boundary with significant variability.

We employ machine learning (specifically, ensemble decision tree classification)
in a hypothesis-testing framework, to assess whether there exists an identifiable
change in electron distribution functions and hence outer boundary to the outer
radiation belt, and where it may be located. The dataset was converted into 900
binary classification datasets, where data was labelled as either inside or outside
of specified dawn and dusk radial limits (our hypothesised boundary locations).
900 machine learning models were then trained to learn this classification. Where
the models perform better, we infer that our choices of boundary locations coin-
cide more closely with identifiable changes in the electron distribution functions
and hence the true statistical boundary location. By aggregating a series of met-
rics (many designed specifically for imbalanced datasets) we find a region of best
performance between ≈ 6.9 − 9.1 RE in the dawn sector and ≈ 7.0 − 9.3 RE in the
dusk sector.

This work presents a novel methodology for identifying the OBORB location, and
opens up future research directions in parameterising the boundary location by
solar wind and/or geomagnetic conditions. Our current results better constrain
the statistical location of the OBORB and can be incorporated into the construc-
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tion of radiation belt models, ensuring that they contain the physical processes
of the radiation belts, and allowing future analyses to more appropriately cap-
ture the dynamics of injection events and how they influence the behaviour of
the outer radiation belt.

5.6 Appendix

5.6.1 Metrics
All of the metrics used in this study can be derived from a confusion matrix. A
confusion matrix is made up of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN). How these correspond to model predic-
tions can be seen in Table 5.1.
Table 5.1: A symbolic representation of a confusion matrix, with acronyms TP,
TN, FP, FN referring to the different predictions True Positives, True Negatives,
False Positives, and False Negatives, respectively.

Model
Prediction
0 1

True
Value

0 TP FN
1 FP TN

These relate to the following three commonly used, intermediary metrics and to
HR, which is used as a correction factor in the Gilbert Skill Score to account for
the random chance of correctly categorising a sample.

precision =
TP

TP + FP
(5.2)

recall =
TP

TP + FN
(5.3)

specificity =
TN

TN + FP
(5.4)

HR =
(TP + FP )(TP + FN)

TP + TN + FP + FN
(5.5)

We now define the metrics, and also present simplifications of the expansion into
forms using only the four values from the confusion matrix.
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Accuracy =
TP + TN

TP + TN + FP + FN
(5.6)

G-mean =
√

recall · specificity =

√
TP · TN

(TP + FN)(TP + FP )
(5.7)

F-measure =
2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
(5.8)

GilbertSS =
TP − HR

TP + FN + FP − HR

=
TP · TN − FP · FN

(TN + FN + FP )(TP + FN + FP ) − FP · FN
(5.9)

CSI =
TP

TP + FN + FP
(5.10)

The F-measure is the harmonic mean of the precision and recall and the G-mean is
the geometric mean of the recall and specificity. On top of the proposed metrics,
we also consider their values when the class labels are inverted, allowing us to
investigate the robustness to the class imbalance (i.e., TP 7→ TN and FN 7→ FP
and vice versa). Of metrics defined in Equations 6-10, we note that only the
F-measure and CSI will be affected by this change, and so these are the only
additional metric scores calculated.
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Chapter 6

Deep-Ensemble Characterisation of
the Flux at the Radiation Belt’s Outer

Boundary

Preface
In Chapter 5 we investigated whether in situ electron data could be used to
empirically identify the outer boundary to the outer radiation belt. This outer
boundary is crucial to radiation belt modelling, due to acting as a source of en-
ergy/electrons during simulation. The results from Chapter 5 suggest that there
is a nominal quiet-time boundary located at ≈ 8.25 RE.

Such a result is useful from a theoretical standpoint as it can be used in future
work to further investigate the boundary location and its characteristics. Practi-
cally however, the electron distribution function at the boundary is a more useful
result for ingestion into radiation belt models. This chapter explores how a prob-
abilistic neural network can be employed the parameterise the outer boundary
electron distribution function, enabling real-time translation of solar wind driving
or geomagnetic indices into these distribution function.
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Abstract
With ever-increasing space-based infrastructure, and day-to-day reliance upon it,
it is more important than ever to be able to accurately model the environment
within which spacecraft orbit the Earth. Modelling of the energetic electrons
in the outer radiation belt is especially important, as these electrons interact
with and can damage the large number of spacecraft in geosynchronous and
medium-Earth orbits. Many different radiation belt models exist, sharing a com-
mon, critical dependence on accurate outer boundary conditions. We present two
probabilistic models which can be used to create synthetic electron energy flux
data in the region of the outer boundary. Both models are approximate Bayesian
neural networks, constructed using ensembles of probabilistic neural networks.
The synthetic data provided by the models can be used in the construction of
the outer boundary condition for subsequent use in radiation belt models. The
two models, nominally parameterised by either geomagnetic indices or the so-
lar wind, show equivalent performance, predicting within a factor of 4.5 for the
≈ 720 keV flux (and better for the lower energy electrons). Both models gener-
alise well with activity, showing relatively little variation in performance (errors
remain within a factor of 6) over the deciles of Bz and SYM-H present in our test
data.

Plain Language Summary
To ensure that the spacecraft orbiting the Earth (e.g., for GPS, or telecommunica-
tions etc.) don’t get damaged during times of extreme space weather, we need
to be able to simulate how the environment around the spacecraft will change
over time. There are many different models which aim to do this. Between all
of the models, one crucial aspect is to use an accurate outer boundary in the
simulation - this outer boundary helps direct how the simulation will change over
time.

We present two machine learning models which can be used to estimate the
measurement a spacecraft might have made if it were located at the boundary
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location. The estimates from our machine learning models can then be used by
radiation belt modellers to more appropriately specify the properties of their
outer boundary.

Both of our machine learning models, despite using different training data, per-
form as well as each other. Being able to estimate the spacecraft measurement
within 4.5 times the true value, which is a small factor given that the measure-
ments can increase by 100 times on minute timescales. We also find that our
models still perform well when space weather is more severe, ensuring they are
useful.

6.1 Introduction
Earth’s inner magnetosphere contains regions of magnetically confined, energetic
plasma. This plasma is often confined in two toroidal regions known as the
radiation belts. The outer radiation belt (ORB) is predominantly populated with
energetic electrons (in contrast to the inner belt which is predominantly protons)
which can reach relativistic energies. The electron energy fluxes in the ORB
are highly dynamic, changing by orders of magnitude on minute timescales [e.g.,
Blake et al., 1992]. Accurate modelling of the ORB is critically important to the
continued operation of spacecraft in geosynchronous and medium earth orbits,
as they are subject to hazardous surface charging and electrostatic discharges
between internal components due to interactions with the energetic electrons
present [Frederickson et al., 1991; Baker, 2001; Eastwood et al., 2017a].

A variety of radiation belt models have been developed to further our under-
standing of the ORB, including: Salammbô [Beutier and Boscher, 1995; Boscher
et al., 2000; Bourdarie et al., 2005]; VERB (Versatile Electron Radiation Belt)
[Subbotin and Shprits, 2009]; STEERB (Storm-Time Evolution of Electron Radia-
tion Belt) [Su et al., 2010b,a, 2011]; DREAM (Dynamic Radiation Environment As-
similation Model) [Reeves et al., 2012], and BAS-RBM (British Antarctic Survey’s
Radiation Belt Model) [Glauert et al., 2014]. One of the critically important as-
pects of using these models is characterising the outer boundary conditions; the
boundary acts as a time-dependent source during model runs.

The boundary condition is multifaceted. Initially, the location of the boundary
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must be specified, this is done in either physical or adiabatic invariant coordi-
nates. Subsequently, the electron distribution function (DF) at the chosen loca-
tion (and energy/pitch angle) must be determined. Often, the boundary location
is selected to be close to geosynchronous orbit (L ≈ 6.6 RE or an equivalent
position in adiabatic invariant space), and then the electron DF is reconstructed
using spacecraft data in the vicinity (e.g., CRRESS, Polar, Van Allen probes or
THEMIS), from model outputs [e.g., AE8 Vette, 1991], or even optimised for as a
free parameter [e.g., Reeves et al., 2012].

When specifying a boundary location at which to construct the electron DF, there
is currently a trade-off between the boundary being co-located with the true
boundary location (dependent as it is on energy and pitch angle) and being cho-
sen to maximise the available data. The latter choice reduces the processing
necessary to map the flux from its measured location to the boundary location,
and increases the volume of data that can be used. However, if the data is being
measured at a location that is not co-located with the true boundary location,
then it is plausible that modelling efforts may inadequately capture all of the
relevant phenomena. Without fully capturing the physics, radiation belt models
are essentially limited to reanalysis modelling or short-term forecasting, as fore-
casting errors will increase with lead-time due to inaccurate time-evolution of
the system.

Other works have sought to characterise the boundary DF at radial distances out-
side of geosynchronous orbit [e.g., Shin and Lee, 2013; Maget et al., 2015]. Whilst
these results are extremely useful, and present steps in the right direction to-
wards appropriately capturing the outer boundary of the ORB (the OBORB), their
application is limited. Neither Shin and Lee [2013] nor Maget et al. [2015] (hence
S13 and M15, respectively) account for spatial variations in the construction of
the boundary, being (essentially) drift-averaged or only focussing on a specific
MLT sector, respectively. Whilst S13 parameterise their outer boundary with so-
lar wind variables (Vsw and density), they do so deterministically, and so cannot
provide the probabilistic functionality that M15 have. In contrast, M15 only use
Kp to parameterise their results, and so likely miss lots of the time dynamics
present in the boundary condition.

Our approach allows researchers to side-step the trade-off between boundary
location choices - providing models (or a methodology) which can accurately
map electron fluxes between their measured location and a boundary location.
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Specifically, we create various models using, as inputs, GOES (Geostationary Op-
erational Environmental Satellites) data, solar wind data and geomagnetic index
data. Using these inputs, we employ a deep-ensemble of neural networks (NNs)
to probabilistically model electron fluxes measured by THEMIS (Time History of
Events and Macroscale Interactions during Substorms) spacecraft in the vicinity
of our chosen boundary location. Our models can be considered to be synthetic
spacecraft data in the vicinity of the the OBORB; allowing ingestion into radiation
belt models agnostic of their specific data processing requirements.

Rather than choosing a boundary location arbitrarily, we use the nominal boundary
location of L ≈ 8.25 RE provided by Bloch et al. [2021]. The work presented in Bloch
et al. [2021] represents one of the few empirically constrained boundary locations,
and (to our knowledge) the only one constrained using in situ data or machine
learning.

The deep-ensemble and data will be described further in Sections 6.2 and 6.3,
respectively. We will explore the model performances in Section 6.4 and investi-
gate how different modelling approaches affect the results in Section 6.5 before
summarising our results in Section 6.6.

6.2 Methodology
Machine learning (ML) has already been widely used in many diverse areas of
magnetospheric physics [non-exhaustive lists can be found within: Camporeale
et al., 2018; Camporeale, 2019; Smirnov et al., 2020; Azari et al., 2020]. The
subset of ML techniques which are relevant to this work are those known as
‘supervised’ techniques. Supervised learning refers to the type of ML where a
chosen algorithm is provided with input-output pairs of data. The inputs are
samples of the parameter space from which one seeks to model the outputs.
For example, in our case one set of inputs are GOES and solar wind data, and
the output is the flux at the OBORB. In this way, supervised ML algorithms are
essentially function approximators, trying to optimise the ability to correctly
map from the inputs to the outputs. There are a variety of different algorithms
that might be employed for this task, but neural networks are ideally suited to
complex non-linear mappings.
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6.2.1 Neural Networks
Here we give a high level introduction to neural networks. See Gurney [1997] for
a more comprehensive introduction to the subject.

Neural networks can be represented as computational graphs constructed out of
two types of building blocks: nodes and edges (edges connect nodes). Nodes
can be considered in two ways: those that represent input values, and those that
represent a function for combining input values. The input values can either be
a vector of raw data passed to the model, or the values from previous nodes
in the network being propagated through the network along an edge (with an
associated weighting). Figure 6.1 presents a schematic of a neural network. The
nodes typically perform the following to map between its input and its output
(shown visually in the blown up node in Figure 6.1):

1. The inputs (previous node outputs which have been weighted) and bias term
(typically 1) are summed together.

2. The summed inputs are passed to an activation function (e.g., a sigmoid or
hyperbolic tangent function).

3. The output from the activation function is provided as the node output.

Figure 6.1: A schematic diagram of a simple neural network, with an expanded look at
processing which occurs through a network node.
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During training, the NN weights are optimised. The weights are initialised ran-
domly; in our case they are sampled randomly from a uniform prior distribution
between ±

√
1/Ninput , where Ninput is the number of input features given to the

model. Training is typically performed in epochs, where one epoch represents
passing the whole training data set through the network, once. After each epoch,
the model performance is quantified by a loss function (e.g., mean-square error
in many regression tasks). Then an optimisation algorithm is applied to minimise
the loss with respect to the weightings of each edge in the network. This pro-
cess is repeated until the loss has been reduced to the requisite amount or until
a sufficient number of training epochs have been performed.

Abstracted from this description of training is the concept of hyper-parameter
optimisation. This relates to how choices of architecture, optimisation algorithm
and network features are made. Whilst there are more finessed options, the
most simple and frequently used way of making these choices is to train many
networks with different permutations of the hyper-parameters, and choose the
hyper-parameters which yield the best performance.

6.2.2 Probabilistic Neural Networks and Bayesian Deep Learning
It is common in much Space Weather-related empirical modelling to create and op-
timise a deterministic model - one that only predicts a single value, without any
associated uncertainty. Such approaches are indeed useful in many situations,
but recent work highlights the need for, and benefits of, probabilistic forecast-
ing/modelling [Bentley et al., 2018; Camporeale et al., 2019; Maget et al., 2015;
Thompson et al., 2020; Owens and Riley, 2017; Owens et al., 2017; Watt et al.,
2021]. Predicting a distribution provides more information than a single point,
and can significantly improve down-stream usage of the model outputs [e.g., in
data-assimilative models such as Maget et al., 2015]. Formally, this implies that
for a given a dataset with training inputs X and outputs Y , we model the distribu-
tion y ∼ p(x; θ), where x and y are individual samples from X and Y , and θ are the
parameters of p(· ; θ). We then use probabilistic neural networks to parameterise
such distributions. For example, for a Gaussian distribution, N , parameterised
by a neural network we would have y ∼ N (y; θ) = N (y;µω(x), σ

2
ω(x)), where µω(·) and

σ2
ω(·) are two neural networks with weights ω which, given an input x, output the
statistics (mean and variance, respectively) of a Gaussian distribution. Training
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such a model requires the minimisation of the negative log likelihood of the data
(equation 6.2). This is equivalent to maximum a posteriori (MAP) estimation of
the network weights ω [Jospin et al., 2020].

However, so far we are assuming a distribution over the outcomes y. If, addition-
ally, we assign a prior distribution p(ω) over the weights for each instantiation
of a neural network, then we can consider training as a process of updating
the weights of the network, Ω, after seeing the training dataset, D, or formally
p(Ω|D) = p(D|Ω)p(Ω)

p(D) . Such an update is called a ‘posterior update’ in Bayesian ter-
minology and it is the basis of Bayesian neural networks [Mackay, 1995; Neal,
1996]. However, learning the posterior distribution is infeasible. Hence, in prac-
tice, we estimate the approximate posterior distribution with methods such as
Monte Carlo Dropout [Gal, 2016] or Deep Ensembles [Lakshminarayanan et al.,
2017]. In this work we used Deep Ensembles due to their effectiveness and sim-
plicity to implement. Each ensemble member is trained on bootstrap samples
of the training data, with randomised initial weights and stochastic optimisation
- given us an ensemble where each member has different final weights (each a
sample from the posterior distribution).

Note here that we have two distributions in place. One posterior distribution
over the weights of the neural networks p(Ω|D) but also, for each sample from
that posterior distribution, ω ∼ p(Ω|D), we have a distribution over the outcome
y ∼ p(y|x, ω). In order to incorporate both distributions, we marginalise over the
distribution of the weights, resulting what is called the posterior predictive dis-
tribution p(y|x,D) =

∫
p(y|x, ω)p(ω|D)dω. By evaluating the variance of the posterior

predictive distribution, a quantity called predictive variance, we can evaluate the
total uncertainty of the fluxes our model predicts. This total uncertainty incor-
porates aleatoric (irreducible) uncertainty - the fundamental uncertainty due to
the experiment design (i.e, limitations in the modelling approach; not measur-
ing all the required state variables, and having imprecision in the measurements
themselves), and epistemic uncertainty - the uncertainty which arises due to
the lack of data. In practice, we expect the aleatoric uncertainty to be high in
noisy regions of parameter space, and we expect the epistemic uncertainty to be
high in areas of the parameter space which are sparsely sampled in the training
dataset. By combining these uncertainties, we create a model that which can
inform on its own confidence in the predicted flux. The total approximated un-
certainty associated with a given prediction, yi, is then given by the law of total
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variance:

V ar(yi|xi) = Eω∼p(Ω|D)[V ar(yi|xi;ω)] + V arω∼p(Ω|D)(E[yi|xi;ω]) (6.1)

Where xi is the model input associated with the predictions, yi is the mean flux
predicted by the ensemble, and ω are the weights sampled from the posterior
distribution of the weights. This equation can be interpreted as follows: the total
variance associated with a prediction is given by the sum of the mean predicted
variance of the ensemble and the variance of the ensemble flux predictions. We
can then convert this variance into a standard deviation and use this to quantify
the distribution associated with a particular prediction yi.

6.2.3 Training Procedure
To train our networks, we split our data into three sets: training, validation and
testing (see Section 6.2.3.1). During each training epoch, the full training dataset
is passed through the model and weights are iteratively tuned to improve the
model. The validation dataset is used during hyper-parameter optimisation and
training to ensure model generalisability. In the former case, optimum hyper-
parameters are chosen as those which minimise the validation loss. In the latter
case, model training is halted when the validation loss begins to diverge from
the training loss, as this signifies that the model has begun to over-fit to the
training data and is losing generalisability. Since the validation dataset is used
during the training procedure, it does not represent a dataset which can be used
to independently quantify the model performance. Hence, we retain the test set,
as our final unseen-by-the-model dataset, which is used to quantify the model
performance without bias.

During training we use the negative log-likelihood (NLL) as our loss function. For
a given pair of model outputs µi and σ2

i (the model architecture will be defined
subsequently), the NLL of the true flux, yi, is given by:

−log
(
L(yi|µi, σ

2
i )
)
=

1

2
log(2πσ2

i ) +
1

2σ2
i

(yi − µi)
2 (6.2)

The NLL is calculated for each model output over the full training dataset, and
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averaged (mean) to get a single value of the loss for the optimiser to back-
propagate through the network. This loss allows the model to condition the
predicted variances - learning the aleatoric uncertainty.

To select hyper-parameters, many different iterations of training are performed
with different hyper-parameters and the best model is selected for further anal-
ysis. In our case there are 4 hyper-parameters we optimise for:

1. The conjunction MLT: as will be described in Section 6.3, we optimise for the
MLT distance between spacecraft. We vary the conjunction MLT between 1
and 12 hours of MLT in integer steps.

2. The network architecture: as will be described in Section 6.2.4, the width
of our network is another aspect of our model that we optimise for. This
allows us to empirically choose a suitable network size that gives our model
good performance. We specify our network width’s multiplicative factor as
N ∈ {32, 64, 96, 128, 160, 192}.

3. The optimiser: different optimisers update weights in different ways, and
this can have a significant impact on model performance, we investigate
the following commonly-used optimisers - averaged stochastic gradient de-
scent [Polyak and Juditsky, 1992], Adam [Kingma and Ba, 2014] and AdamW
[Loshchilov and Hutter, 2017].

4. The learning rate: a part of the network optimisation process is charac-
terised by how much to vary the weights based on the gradient of the loss
function - this is controlled by the learning rate. Choosing a learning rate
that is too small can lead to slow training and the algorithm getting stuck
in a local minima, whereas too large a learning rate can lead to unstable
training and a lack of convergence on the global minima. Here, we vary the
learning rate between 0.01 and 0.00001.

For each of our input parameter sets we train approximately 250 models, with
random permutations of the above hyper-parameters, and select the best hyper-
parameters by the validation loss. Our hyper-parameter selection experiments
are tracked and managed with Weights and Biases [Biewald, 2020], specifically us-
ing the sweep functionality. Training each model takes approximately 8 minutes
on average, using a Telsa T4 GPU.
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6.2.3.1 Train-Validation-Test Splitting
Two common methods of splitting a dataset up into a training, validation and
testing dataset are: (1) to randomly split the data into the three sets ensuring
some specified fraction of the data is in each set; or (2) to split the dataset up
sequentially in time, such that the training dataset comprises the first fraction
of the data, then the validation set, then the test set.

The first method is not suitable for time-series where there are auto-correlations
of the parameters. If there is auto-correlation, then information from the larger
testing dataset can leak into the validation and testing datasets, making them no
longer independent of the training set, and giving unreliable performance metrics.

The second method is more commonly applied to time-series, as it reduces the
information leak between the datasets. However, it can also introduce unreli-
ability into the validation and test sets if there underlying drift in the dataset
(i.e., if some process acts to change the distribution of the parameters). In our
case, we expect that the solar cycle variation will impact the fluxes we aim to
model. If our dataset was large enough to ensure that a whole solar cycle was
represented in the training set, we might side-step this issue due to the model
adequately learning the cyclic behaviour.

To reduce any possible bias in the performance metrics we evaluate, we use the
following procedure to construct our training, testing and validation datasets:

1. Find the time range of the combined THEMIS-GOES-OMNI dataset.

2. Split the full time range into 50 bins.

3. If there are more than 100 samples of data in a bin, allocate the first 70%
of the data to the training set, the next 20% to the validation set, and the
final 10% to the testing set.

4. If there are fewer than 100 samples of data, then assign the whole bin to
the training dataset.

This method ensures that each dataset samples approximately evenly from the
solar cycle. But, by taking contiguous segments of data, reduces any biasing
effects that auto-correlations may have.
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6.2.4 Model Architecture
A schematic diagram of our general network architecture is presented in Figure
6.2. Our networks are multi-headed, meaning they predict multiple outputs for
each set of input parameters. Specifically, the models predict 11 flux values
(one corresponding to each THEMIS energy channel), and an associated variance.
Semantically, our modelling is split into two parts. The first part (hidden layers
1-4) is a fully connected NN, whose purpose is to capture the general mapping
between the inputs and the output fluxes. The second part passes the outputs
from the fourth hidden layer to 11 smaller NNs, one for each of the energy
channels. In this way, we hope to train each of the 11 smaller models to fine-
tune the mapping for each energy channel. We use rectified linear units (ReLU)
as our activation function between layers.

Figure 6.2: A schematic diagram of the network architecture used in this study. The
input size, i, represents the number of input features being passed to the network. N is
a multiplicative factor that corresponding to the number of nodes in each hidden layer.
µ and σ2 represented the predicted flux and variance for a given energy channel.

The specific architecture of our models is dictated by i and N . The input size,
i, is the number of input features being used, and the number of nodes per
hidden layer, N , is chosen through hyper-parameter optimisation. For the two
models we train (whose names will be explained in Section 6.3), we find that the
following hyper-parameters are optimal: for the index model we select ASGD
as the optimiser, 0.005486846978788688 as the learning rate, 8 hours as the
conjuction MLT and N = 32; for the solar wind model we again select ASGD as the
optimser, 0.0015834503436594227 as the learning rate, 9 hours as the conjuction
MLT and N = 160.
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Our network width expands before tapering down. We use this model structure to
ensure that an expansive set of combinations of the input parameters is captured,
hopefully allowing the model to capture more of the appropriate non-linearities
in the mapping.

6.3 Data
A variety of data is used in the construction of our models. To capture the driving
conditions, we use 1-minute cadence upstream solar wind data from NASA/GSFC’s
OMNI dataset [through HelioPy, Stansby et al., 2021]. Specifically, we use: mag-
netic field measurements in Geocentric Solar Magnetospheric (GSM) coordinates;
solar wind velocities in Geocentric Solar Ecliptic (GSE) coordinates; solar wind
proton number density; solar wind proton temperature, and the solar wind flow
pressure. All of these data have already been propagated to the nose of the
magnetosphere. To capture the current state of the magnetosphere (this can
be considered the integrated effect of past solar wind driving), we use the geo-
magnetic index data from the 1-minute cadence OMNI dataset, calculated using
ground magnetometers. We select the AL, AU, AE, SYM-H, SYM-D, ASY-H and
ASY-D indices. The A-indices represent auroral behaviour, with AL and AU giv-
ing the upper and lower bound of the geomagnetic variations measured by the
contributing stations, and AE gives the difference between AL and AU. The SYM-
indices represent the disturbance field acting on the geomagnetic field (H for the
magnetic North direction and D for the East-West direction). The ASY-indices
are the range between the maximum and minimum deviations of the SYM-indices
subtracted from the disturbance field.

The GOES spacecraft orbit the Earth in a geosynchronous orbit (L ≈ 6.6 RE),
providing measurements of the electron flux inside of the ORB. GOES data are
used for radiation belt modelling due to the abundance of data and/or real-time
availability [Glauert et al., 2018]. We use the 1-minute cadence > 800 keV and
> 2 MeV integral electron energy fluxes, the standard deviations of those fluxes,
the MLT (Magnetic Local Time) position of GOES and the respective spacecraft ID
(reflecting whether data is from GOES 13, 14 or 15). These data were obtained
from CDAWeb, and are specifically the background, contamination and dead time
corrected data from the Energetic Proton, Electron and Alpha Detector (EPEAD)
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[Onsager et al., 1996]. From GOES 13, 14 and 15, we use the flux measured by
the westwards detector [as per Glauert et al., 2018; Meredith et al., 2015]. The
GOES 13, 14 and 15 data between 2010/05/01 and 2017/12/14, 2012/10/01 and
2020/03/04, and 2010/03/26 and 2020/03/04 we used, respectively.

The choice to include the GOES spacecraft ID as an input parameter was made
during our investigation and found to improve performance. It is likely that the
performance improvement is due to the ID parameterising the different orbital
positions of the GOES spacecraft, which are known to influence the measured
fluxes [Meredith et al., 2015].

As our aim is to make a model that can map fluxes measured by the GOES space-
craft to an appropriate equatorial OBORB location, we use THEMIS data measured
±0.5RE from the nominal boundary [identified by Bloch et al., 2021] as our target
flux data (what our model will approximate). We take the flux measurements
from the SST (Solid State Telescope) instrument [Angelopoulos, 2008], providing
11 differential electron energy flux measurements - approximately log-spaced,
between 30− 720 keV - at each time-step. We also calculate the MLT position of
the THEMIS spacecraft. Data is taken from THEMIS probes A, D and E between
2007/09/27 and 2019/09/29, whilst data from probes B and C is taken up till
2010, at which point they were moved to a lunar orbit [Russell and Angelopoulos,
2014].

Our dataset is comprised of GOES measurements which are contemporaneous
with THEMIS crossing our equatorial boundary region. The THEMIS data are se-
lected ±0.5RE in X and z (in GSE coordinates). This greatly reduces the amount
of data from the THEMIS mission which is applicable to be used in this study. A
further reduction in the dataset size occurs as we constrain the relative positions
of the THEMIS and GOES spacecraft in MLT. Ideally, we would fix our dataset to
measurements where both spacecraft were located in the same MLT hour, as this
limits the measurements to areas of most similar physics - The model would
theoretically only have to learn the radial evolution, rather than both radial and
azimuthal evolution. Unfortunately, there is a trade-off between the proximity
(in MLT) of the spacecraft, and the amount of contemporaneous data we have.
Hence, we add the conjunction MLT to our list of hyper-parameters to optimise
(i.e., we empirically select the MLT proximity which maximises our model perfor-
mance).

To account for the MLT between our spacecraft being different, we provide the
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MLT of both spacecraft as model inputs (allowing the model to learn what effect
different MLT distances have on the flux mapping). Since MLT is cyclically con-
tinuous, we provide the model with the sine and cosine of the MLTs. To help our
models account for the cyclical temporal variations which occur on year-long (i.e.,
seasonal) and day-long (i.e., rotational) timescales we pass the sine and cosines
of both the time-of-day and time-of-year of a given data-sample to our model
as inputs. A complete list of our specific parameters is as follows:

• Inputs
– Flux measurements

◦ 800 keV flux, 2 MeV flux, standard deviation of 800 keV flux, standard
deviation of 2 MeV flux, and GOES spacecraft ID.

– Temporal information
◦ Sin(time-of-year), Cos(time-of-year), Sin(time-of-day) and Cos(time-
of-day).

– Spatial information
◦ Sin(GOES MLT) and Cos(GOES MLT)
◦ Sin(THEMIS MLT) and Cos(THEMIS MLT)

– Solar Wind variables
◦ Bx, By, Bz, Vx, Vy, Vz, Np, Tp and P.

– Geomagnetic indices
◦ AL, AU, AE, SYM-H, SYM-D, ASY-H and ASY-D.

• Outputs
– THEMIS fluxes for energy channels:

◦ 31 keV, 41 keV, 52 keV, 65.5 keV, 93 keV, 139 keV, 203.5 keV, 293 keV,
408 keV, 561.5 keV and 719.5 keV

To ensure that the heteroscedasticity (the differences in magnitudes of the vari-
ances) of the input parameters does not affect the training of our networks
we standardise each of the input features, Xi, by their mean, µi, and standard
deviations, σi:

X ′
i =

Xi − µi

σi
(6.3)

We additionally scale our output features, yi, by taking a log-10 transform and
then standardising them, as above.

Of our selected feature set, it is likely that a subset of the parameters are
performant, and hence can be used to more efficiently train adequate models.
However, undertaking a comprehensive performance analysis of each parameter
in beyond the scope of the present work. Instead, we take as base parameters all
of the inputs above, except for the solar wind and geomagnetic indices. We then
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produce two models by choosing include either the solar wind data or the index
data alongside the other base parameters. In this way we can determine whether
the instantaneous solar wind is more important than its processed effect through
the magnetosphere, and how much additional information is obtained using one
set over the other. The solar wind model has 24 resulting input parameters,
while the index model has 22 (this corresponds to i in Figure 6.2).

6.4 Model Performance
This section will serve to demonstrate the efficacy of the two ensemble models.
We make two ensembles so as to investigate whether there is more pertinent
information present in the solar wind or geomagnetic indices. The implications
of the results presented here will be discussed in Section 6.5.

As the ultimate driver of radiation belt phenomena, one might theoretically ex-
pect the solar wind to encode all of the relevant information to predict the flux
at the outer boundary. However, given that we only use instantaneous values
as inputs to our model (vs. time-history) and don’t account for atmospheric pro-
cesses (e.g., ion outflow), we don’t expect to be able to fully capture the effects
related to the preconditioning of the magnetosphere (e.g., solar wind processing
timescales, the geo-effectiveness of solar wind given the current state etc.).

By including indices - which act as state variables, summarising the integrated
effect of past solar wind - in the modelling process, we hope that the model
learns how the current state of the magnetosphere pertains to the mapping of
the fluxes. Given that we only use instantaneous values as inputs to our model
(vs. explicit time-history), one would reasonably expect the model to be unable
to capture shock-like behaviour in real-time, instead requiring some processing
time for the information to propagate through the magnetosphere.

Figure 6.3 presents a summary of the index model performance. The results
from the solar wind model are qualitatively equivalent, and so we do not present
them here. In Figure 6.3a-c, we observe how the model predictions vary with
the true flux. In general, the predictions fall within a factor of five (dotted
white lines) of the true value. With increasing energy (going from panel a to
c) the predictions become distributed increasingly far from the solid white line
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(representing perfect predictions) - highlighting less accurate predictions.
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Figure 6.3: Summary plots of the performance of the index model. Panels a-c present
2D histograms of the predicted values (x-axis) versus the true values (y-axis) for 3
representative energy channels (31, 139 and 720 keV). The colour corresponds to the
number of values falling in each histogram bin. The solid white line represents y=x,
where all the data would lie if the predictions were perfect. The dotted white lines
represent a factor of five error in the prediction. Panels d-f present histograms of the
residuals fluxes (true flux - predicted flux). The black dotted line represents a factor
of 5 difference. Boxplots are also superimposed to signify the median (yellow line),
interquartile range (the box itself), and the 5th and 95th quantiles of the distribution
(the whiskers). Panels g-i present the RMSE, MAPE and Spearman’s rank order correlation
coefficient calculated for each of the energy channels.

In Figure 6.3d-f we present the distributions of the residual fluxes (true flux -
predicted flux) for the same energy channels. We see in the three examples
that the interquartile range of the data is well within the factor of 5 error (dot-
ted black lines). Additionally, for the lower energy channels, the 5th and 95th
quantiles are within the a factor of 5 error as well. We see numerically the
increased spread that comes with increasing energy too, with the 11th energy
channel showing a significantly wider residual distribution. In each case, the tails
of the residual fluxes are skewed below zero. So, despite the median (average)
suggesting typically accurate predictions, when the model does over-predict ,
it does so by a larger amount than it under-predicts (this is seen by the larger
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negative values of the residuals).

In Figure 6.3g-i we present model performance with a range of metrics for each of
the 11 energy channels our model predicts for. We see that for energy channels
1-6 the RMSE (root-mean-square error) is equivalent to less than a factor of 2.5
(100.4), and energy channels 7-11 fall within a factor of 4.5 for the higher energies
(100.65). The MAPE (mean-absolute percentage error) shows a similar trend to the
RMSE, increasing with energy channel. In contrast, the correlation (Spearman’s
rank order correlation coefficient) shows improvement with increasing energy
channel - suggesting that even though the absolute values may be incorrect, the
model is still providing useful discrimination between times of high and low flux
in a relative sense.

In Figure 6.4 we can see how the true and predicted energy-flux distributions
evolve with the energy channels. The lower energy channels have less variabil-
ity than the higher energy channels. The predicted distributions do not capture
the extremes of the distributions - this is common in empirical modelling, as there
is often little training data for the extreme cases. The lower energy channels’
true flux distributions appear to be distributed more normally, contrasting the
multi-modal behaviour evident in the higher energy channels. This suggests two
distinct states for the higher energy electrons. The modelled flux distributions
do not seem to capture the multi-modal behaviour, instead predicting a distri-
bution that looks closer to an ‘average’ distribution encompassing both states.
The modelled fluxes have medians approximately in-line with the medians of the
true distribution (signified by the white dot in the box-plot in the centre of each
violin).

Comparing between the results of the two models in Figure 6.4, we see that
generally they display a lot of similarities (neither capturing the full extent of
the distribution or multi-modal behaviour). However, it appears that the solar
wind model does manage to capture the multi-modal behaviour better than the
index model.
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Figure 6.4: Violin plots presenting the comparison between the true (orange) distribution
of flux in the test set and the predicted (blue) distribution of the flux in the test set
for each energy channel.

6.5 Model Performance Analysis
Both of our models perform well and comparably to each other. Using the RMSE
(which is in flux units) we calculate our models typically predict within a factor
of 2.5 (100.4) for the lower energies and within a factor of 4.5 for the higher en-
ergies (100.65). This disparity is likely a result of the increased variability in the
fluxes as we go up in energy channels (as can be seen in Figure 6.4). Addition-
ally, we observe that the multi-modality is more prominent at higher energies.
This suggests, that while both models use different parameters to construct
the outer boundary flux, each set of parameters contains a significant portion
of the required information to make an empirical model. Though, since we find
variable performance over energy channels, it may be that neither model has
the requisite parameters to completely capture the dynamics of the high energy
electrons.

The index model has a smaller conjunction MLT limit (8 vs 9 for the solar wind
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model). Whilst we don’t expect that this introduces more complex spatial map-
ping, it does change how much training data there is. The solar wind model has
approximately 20% more training data (roughly 63000 vs 53000 samples). Given
this difference, it is somewhat surprising that the model performance is quan-
titatively so similar. It may be the case that, even if the solar wind model has
more data, the geomagnetic indices comprise better state variables to describe
the response of the outer boundary fluxes. As such, the index model can learn
the mapping more efficiently than the solar wind model can.

To explain why the correlation is better for the higher energy channels when
the other metrics show the opposite, we suggest that it is due to the higher
energy channels being more responsive to solar wind driving. If there are more
significant and consistent changes to the flux at the higher energies (w.r.t. the
solar wind/indices), then these features will be more straightforward for the
model to learn. In contrast, if, at the lower energies, the response is subtle and
more varied (due to the reduced relative contribution of the external driving),
then we would expect the model to struggle to capture the behaviour. However,
because the lower energy channels are less variable, they are easier to predict
over (in terms of absolute flux, rather than relative variation).

It is not entirely clear why the true flux distributions are multi-modal. One
contributing factor may be due to the fixed location of the outer boundary in
real space sampling different areas of the radiation belts in L* space. On the day
side, the fixed boundary may be sampling fluxes with an L* closer to the heart
of the radiation belts, rather than the lower fluxes expected at the boundary.
Depending on the temporal variability of the true boundary location relative to
the static boundary we investigate, it may also be the case that the multi-modal
behaviour is due to sampling a mixture of trapped and untrapped electron fluxes
over time.

In a Space Weather context, it is important to be able to make accurate predic-
tions during active times. Many metrics can be mis-representative of a model’s
ability to make good predictions during periods of enhanced geomagnetic activity
(as these extremes are less well represented in the dataset). We know already
from Figure 6.4 that both models struggle to capture the full variability of the
data. However, to probe this more usefully, we present Figure 6.5. This figure
presents the RMSE (colour) of each model’s outputs per energy channel (x-axes)
per decile of SYM-H and Bz (y-axes), respectively.
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Figure 6.5: The performance of both the index and solar wind model, split by energy
channel and decile of either Bz or SYM-H. The colour represents the RMSE in the given
bin.

In Figure 6.5, the model performance remains significantly lower than the factor
of 10 deemed acceptable for RB modelling [e.g., Glauert et al., 2014] for all
deciles of Bz and SYM-H (an RMSE of 0.75 corresponds to a factor of 6 error in
the prediction). We conclude from this that the model generalises well across
activity levels. The main area where performance drops is in the higher deciles
of SYM-H and the lower deciles of Bz. This likely corresponds to geomagnetic
storm onsets. It is expected that the index model would not be able to capture
such dynamic events, though as the solar wind model also fails to capture it
suggests that it may be due to the sparsity of storm sudden commencements in
the training data.

Finally, in Figure 6.6 we present an analysis of the probabilistic capability of each
model. Each panel shows a histogram of the quantile of the predicted distribution
into which each true values falls (for three representative energy channels). We
use such a histogram to assess the reliability of the predicted distributions. Sta-
tistically, if our model reliably predicted the uncertainty, we would expect that
the probability of each true value falling into a given quantile of the predicted
distribution to be equal (i.e. the overall histogram to be completely flat). Con-
ceptually, this is similar to ensemble verification using rank histograms [Hamill,
2001].
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We observe in Figure 6.6a-c) that in general, the probabilities fall close to the 5%
value which we would expect, though there is significant bias towards the first
quantile bin (percentiles less than 5). With increasing energy a bias towards the
20th quantile (percentiles greater than 95).

In Figure 6.6d-f), we see broadly the same behaviour as in the previous panels,
but the bias towards the first and last quantiles is more pronounced. In addition
to this, the bias towards the first quantile remains stronger across the energy
channels, in contrast to the levelling out at high energies observed for the index
model.
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Figure 6.6: The occurrence frequency of the true flux value lying in a given quantile of
a predicted distribution from the index and solar wind models, respectively. The black
lines represents the expected outcome from reliable predicted distributions.

To understand the results presented in Figure 6.6, we take advantage of their
similarity to rank histograms and use the discussion in Hamill [2001] (hence H01)
to guide us. Figure 1 in H01 presents a range of different rank histograms con-
structed using a variety of different distributions (means and standard devia-
tions). In general, we observe that if the standard deviation is under-estimated,
then there is a bias towards the extremes (as we see in Figure 6.6). We also see
that a bias towards the lower end is indicative of over-estimating the mean value.
We know from Figure 6.3 that our models have a tendency to over-predict the
flux. H01 suggest that the ‘U-shape’ distribution may be due conditional biases
in the model, we believe that it is likely our ensemble models under-estimate
the variances since each ensemble member we use (whilst only constituting one
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aspect of the variability) is fundamentally the same model with randomness in-
jected through the random weights, the optimiser and the bootstrapped training
data. This underestimation may originate from the ensemble only representing
modes of the posterior distribution of the weights, rather than the full distribu-
tion [Izmailov et al., 2021]. It is also the case that compared to some datasets,
ours is relatively small, and so the BNNs may not have sufficient information to
inform the variances being output.

We do note though, that despite potentially under-estimating the variances, the
model both performs well and is better than a simple deterministic model - even
if the uncertainty is not perfectly captured. The probabilistic outputs can be used
in data-assimilative radiation belt codes and hopefully allow for more accurate
modelling.

6.6 Concluding Remarks
Modelling the radiation belts is increasingly important with the proliferation of
space-based infrastructure. A crucial aspect of this modelling is the outer bound-
ary condition. We build from the empirically identified boundary location found
by Bloch et al. [2021], by here modelling the flux distribution at the boundary.

Our model outputs can be treated as synthetic, equatorial, omni-directional dif-
ferential energy flux measurements about the radiation belt outer boundary. As
such, any radiation belt model which uses 90◦ pitch-angle fluxes to construct their
outer boundary condition can use our model outputs in place of their current flux
data. For example, we understand that our model outputs could be used in
place of the GOES-15 data used in Glauert et al. [2018], or in place of the CRRES
(Combined Release and Radiation Effects Satellite) data used by Shprits et al.
[2006] and subsequent works that use the same methodology [e.g., Subbotin and
Shprits, 2009; Su et al., 2010a].

To provide both more informative and useful boundary fluxes (for e.g., data-
assimilative radiation belt codes), we model the boundary flux probabilistically.
To do so, we train deep-ensembles of neural networks (BNNs). Our BNNs capture
the aleatoric (or irreducible) uncertainty present in our experiment design (input
features and general architecture choice). We use our ensemble to estimate
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the epistemic (reducible) uncertainty by perturbing the training procedure (initial
weights, stochastic optimisation and bootstrapping the training data), allowing us
to sample the posterior distribution of the weights of the fully trained networks.
We then combine these uncertainties to estimate the total uncertainty associated
with each model prediction.

We find comparable deterministic performance between the two models (geo-
magnetic index and solar wind) - each predicting within a factor of 4.5 (and
down to 2.5 for the lower energy channels). The solar wind model appears
marginally better reconstructing the underlying distributions of the fluxes, and
shows slightly less variability with activity (characterised by Bz and/or SYM-H).
Analysing the probabilistic side of the models, we find evidence that both models
under-predict the variances associated with predictions, but find that this effect
is more pronounced for the solar wind model.

Most importantly, our methodology indicates how uncertainty may be captured
and quantified in the models we use to describe the Earth’s radiation belts.
Though, further work is needed to better characterise the location of the outer
boundary, so that methods such as ours can provide the most appropriate syn-
thetic dataset. It seems that a better understanding of the multi-modal distri-
butions we observe in the true flux would also be very useful, since it is appears
that our analysis lacks the pertinent parameters needed to express it in the
model outputs.
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Chapter 7

Conclusions and Future Directions

Space Weather describes the variability of the near-Earth space environment,
which can adversely affect the geo-spatial environment. Space Weather can
therefore have a severe human impact via loss of satellite services such as GPS
or telecommunications; by directly impact ground-based infrastructure such as
electrical grids and long pipelines; by inducing magnetic fields which interfere
with magnetic navigation systems; or even by increasing the radiation doses
airline staff are subjected to due to the changing shape and size of the auroral
oval.

Given our collective reliance on many of the systems which can be directly im-
pacted by Space Weather events, the need to understand Space Weather is self-
evident. Understanding comes in three main parts: being able to identify the
causal factors of different Space Weather phenomena; being able to quantify
the magnitude of Space Weather events based on their drivers; and, being able
to jointly use this information to forecast Space Weather.

Space Weather research has much foundational work originating well before the
spaceflight era, and has at least two dedicated journals - AGU’s Space Weather
and the Journal of Space Weather and Space Climate - as well as a significant
amount of work published in many other journals.

Comparatively, machine learning is a much larger field, even if it is newer. Ma-
chine learning has been successfully used across various fields, from being em-
ployed for medical image recognition, to semantic language translation, to Space
Weather forecasting models. In essence, machine learning is simply a set of tools
for pattern recognition and identification. As such, there are clear uses for ma-
chine learning in Space Weather research to address the previously mentioned
tenets of Space Weather understanding.

Complex machine learning models (e.g., neural networks) have been used in Space
Weather research since the 1990s [Newell et al., 1991], though are only now
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becoming wide-spread as computational power and volumes of data continue to
increase well-beyond the limits of less efficient (or manual) methods. More simple
machine learning methods, such as linear regression, have certainly been in use
for far longer.

This thesis is concerned with leveraging novel machine learning techniques to im-
prove our collective understanding of Space Weather phenomena. The research
chapters will subsequently be summarised in the context of space weather, fol-
lowed by an exploration of their implications and limitations, concluding with
thoughts and ideas on the directions that future work could take.

7.1 Solar Wind Classification

7.1.1 Summary of Results
In Chapter 4, we investigated the application of unsupervised machine learning
to the problem of solar wind classification. Through both of our unsupervised
approaches we found that there are two primary types of solar wind, originating
from coronal holes and the streamer belt, respectively. Both of our machine
learning classifications also identified a third category which we designated ‘un-
classified’. Speculation and subsequent work points to the unclassified data being
related to ICMEs (see the HelioML textbook on Machine Learning, Statistics, and
Data Mining for Heliophysics: https://helioml.org/10/notebook.html).

Our results show significant discrepancies between the two machine learning
classifications and the classical speed-thresholding classification scheme. We
conclude that using only the solar wind speed for the classification scheme is
typically inappropriate, and may reduce the fidelity of subsequent statistical
analyses based on such solar wind classifications. Our results in this regard can
also be used to identify an appropriate speed threshold that minimises the dis-
crepancy.

Our UMAP results indicate that the streamer belt wind may be more well-ordered
than the coronal hole wind after dimension reduction. This contrasts with the
typical view of the slow, streamer belt solar wind, which is typically considered
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to be less well-ordered. Such a result could represent the discovery of a more
appropriate latent space to investigate streamer-belt solar wind, rather than the
currently used methods which contain more variability.

The main limitation, which precluded the use of these classifications in Chapter
6, is the low temporal resolution of the compositional data. The multi-hour
integration time reduces the amount of information that can be drawn from the
classifications when they are being used with high-resolution (i.e., minutes) data
to model swiftly evolving radiation belt phenomena. Higher temporal-resolution
data can be obtained for the composition, but such data have larger uncertainties.
Additionally, the composition data obtained from ACE is unreliable after 2012 due
to instrument degradation, meaning the classifications can’t be applied to more
recent data (i.e., the data we use in Chapter 6).

7.1.2 Future Research Directions
Solar wind classification is an interesting problem, and there are myriad directions
for future work. From a Space Weather perspective, the most import factors
would be to create a classification scheme with higher temporal resolution, that
specifically focuses on data from L1 (i.e., OMNI data). From a more esoteric view
of solar wind classification, simply to better understand source regions and solar
wind propagation, research directions would focus more specifically on using data
from missions such as Parker Solar Probe and Solar Orbiter.

Ideally, a new solar wind mission with higher temporal resolution composition
measurements would be launched and its data could be used for a new study,
though that is an unlikely consequence of the work. Practically, future work
should focus on creating classification schemes using data which is readily avail-
able at the desired resolution. To this end, more simplistic plasma measurements
and magnetic field measurements are the best choice. Though, as most of these
parameters vary with distance from the Sun, the classification likely requires a
more nuanced approach. Fortunately, if the classification scheme is specifically
for Space Weather research, one can simply use the abundant data from L1 -
due to the effectively fixed distance from the Sun, the radial evolution is not
problematic.

It may be possible to create a classification scheme which can inherently capture
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the radial evolution, though abundant data across radial distances would be re-
quired. If such a classification scheme was built using magnetic field and plasma
measurements, then data from missions such as Helios, Ulysses, Parker Solar
Probe and Solar Orbiter could all be used to gain a comprehensive understanding
of the inner heliosphere.

Our classification schemes, in their current form, should be applicable to Solar
Orbiter composition measurements, once they are processed sufficiently by the
instrument teams. Doing so should allow for an interesting investigation into the
distribution of classification at different radial distance - possibly elucidating the
cause of the difference between the classification of Ulysses and ACE data that
were observed in Chapter 4.

7.2 Radiation Belt Outer Boundary Location

7.2.1 Summary of Results
In Chapter 5, we used in situ data to identify the physical equatorial location
of the outer boundary of the outer radiation belt (the OBORB). By using simple
machine learning models, we were able to test a large variety of possible OBORB
locations. We found that the typical boundary location was located at 8.25RE,
further out than geosynchronous orbit (6.6RE, where data is abundant) and many
of the currently used boundary locations. Due to the nature of the analysis only
being able to identify the statistical location, and because magnetospheric quiet
times are more prevalent than disturbed times, we conclude that this boundary
location corresponds to the nominal quiet-time OBORB.

Our empirical OBORB location serves as an important counter-point to the more
subjective methods which are currently used to specify the boundary. Whilst not
being fully representative of the likely-dynamic nature of the boundary, the quiet-
time boundary is still important for the radiation belts, as the pre-conditioning
of the system plays an important part in the subsequent dynamics.

The three main limitations of this result are that (1) it is a static, statistical
representation of the boundary location, (2) it may only represent the quiet time
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boundary location, and (3) due to being at a location far from an abundance of
data, it is more difficult to characterise the flux distribution at this location.
Points (1) and (2) mean that during the inwards motion associated with disturbed
periods of more significant Space Weather, our result no longer represents the
true boundary, instead incorporating other magnetospheric (or even solar wind)
plasma. It should be noted that the magnetopause does come inside of 6.6RE
too, so radiation belt modellers likely already have a process set-up to deal with
such situations. As for (3), this makes real-time nowcasting or forecasting of the
outer radiation belt difficult, as modellers are left with either having to use a
model of the electron fluxes or having to map data from geosynchronous orbit.
Both options increase the potential for errors in the subsequent modelling, as
there are uncertainties associated with each.

7.2.2 Future Research Directions
To address the static, quiet-time nature of the boundary location, using a sim-
ilar methodology to that already employed, a larger dataset is required. By
increasing the amount of data, it becomes easier (and more reliable/valid) to pa-
rameterise the data by either solar wind activity or some index of geomagnetic
activity. The current THEMIS dataset could be augmented with data from the
Cluster and MMS (magnetospheric multi-scale) missions.

Alternatively, if a method of empirically identifying boundary crossing from time-
series of the phase-space density profiles could be developed [as has been done
for other magnetospheric boundaries, e.g., Jelínek et al., 2012; Nguyen et al.,
2019; Olshevsky et al., 2019; Argall et al., 2020], it may serve as a more appro-
priate and data-efficient method of identifying the dynamic boundary location.
Such a method would require pre-labelled data if it employed supervised ma-
chine learning. Labels could be taken from (albeit non-empirical) works such as
Ganushkina et al. [2011], and used to parameterise different input data (i.e., elec-
tron data rather than ion data). It may also be possible to address the problem
in an unsupervised way, identifying time-series segments where the electron
distribution functions change from representing radiation belt measurements to
measurements of untrapped electrons - though, as is often the case with un-
supervised learning, results may be more elusive and require a very nuanced
approach to constructing a training dataset to work with (also, some method of

161



7.3. RADIATION BELT OUTER BOUNDARY FLUX

disentangling the radial dependencies would be required).

As for the final limitation - it being more difficult to reconstruct the boundary
fluxes - this is precisely what we demonstrate to be possible in Chapter 6.

7.3 Radiation Belt Outer Boundary Flux

7.3.1 Summary of Results
In Chapter 6, we created two Bayesian neural network models which can be used
to construct a synthetic dataset of the electron flux distribution at the OBORB
location. This work builds from the boundary location identified in Chapter 5,
bridging the gap between the identification of the OBORB location and its actual
use by radiation belt modellers. Aside from providing the OBORB fluxes at an
often-more-appropriate location, our use of Bayesian methods gives probabilistic
results which indicate the uncertainty in model predictions and thus provide more
information than alternative, deterministic methods.

We find comparable deterministic performance between the two models - geo-
magnetic index and solar wind parameterised. Both models predict the electron
fluxes within a factor of 4.5 of the measured fluxes (down to a factor of 2.5 for
the lower energy channels).

By creating models which can adequately nowcast the fluxes at a prescribed
OBORB location, we demonstrate the relative simplicity in reconstructing the
OBORB fluxes at locations beyond those with readily available data. Such models
have clear utility in radiation belt modelling, where the outer boundary conditions
are derived from the electron flux distributions.

The main limitation of models stems directly from the limitations of our OBORB
location - when the radiation belts are compressed inside of our boundary lo-
cation, the flux distribution the models nowcast is not useful to radiation belt
modellers. In the present manifestation there is not a direct solution, outside of
the aforementioned ideas to better identify the dynamic boundary location. One
alternative would be to create a model that captures the fluxes at all locations
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over the radiation belts. Some authors [e.g., Smirnov et al., 2020; Claudepierre
and O’Brien, 2020] have attempted this, though these typically don’t extend to
the radial distances which we determine the OBORB to be at - primarily due to
the choice of mission data (e.g., GPS satellites or the Van Allen Probes).

Aside from the baked-in limitation due to building from Chapter 5, the next most
important missing piece is magnetospheric context. By that, we mean some sort
of indication of the preconditioning of the magnetosphere. Geomagnetic indices
provide information towards the current state of the magnetosphere, but a more
holistic impression of the full state can be derived using time-histories of the
solar wind or geomagnetic indices.

We also note in Chapter 6 that the predicted uncertainty is likely underestimated
due to the relative homogeneity of the ensemble members’ architectures. This
means that the model produces over-confident predictions of the flux. This inap-
propriate uncertainty could lead to less reliable results in e.g., data-assimilative
radiation belt models.

7.3.2 Future Research Directions
In terms of aiming to improve model performances, the next step for this project
would be to include parameter time-histories as model inputs. However, this task
is non-trivial at best, and considerably more tricky given the small dataset size.
Initially, one might include instantaneous solar wind variables or geomagnetic
indices from a range of previous time-steps, whilst maintaining the same model
architecture. However, it is likely that significantly increasing the number of pa-
rameters would cause the model to under-fit, as it would not be complex enough
to appropriately capture the non-linear parameter interactions. Hence, a larger
model would be required to improve the modelling. But, a larger model typi-
cally requires more training data - something which is already in short-supply.
So, to make the most effective use of time-history, the whole experiment would
benefit from an augmented dataset - as with the OBORB location, data could be
included from the Cluster and MMS missions. More data would also help to better
condition the predicted uncertainties.

A more appropriate approach to including the time-history of the input variables
would be to include a recurrent neural network (RNN) to encode the temporal
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information into a reduced latent-space. The RNN would take the same inputs
as described above, but would effectively allow the most important temporal
information to be summarised into a manageable set of output features, which
could then be used to substitute the model inputs currently used and used with
a model architecture similar to the current one.

Through the investigation of different time-histories and model architectures, it
would also be possible to keep track of a more diverse range of performant model
architectures. These varied models could then be used in ensemble format to
produce better predictions and more robust uncertainties.

7.4 Final Remarks
This thesis has explored how machine learning can be applied in the helio-
spheric domain to better understand and characterise phenomena related to
Space Weather. In Chapter 4 we focused on extracting latent information about
the driver of Space Weather. This was followed in Chapters 5 and 6 by a closer
examination of Space Weather.

Over these research projects, a broad range of machine learning models have
been employed - some for the first time in the space-physics domain: from
unsupervised to supervised machine learning; from deterministic to probabilis-
tic models; from clustering to dimension reduction; and, from decision trees to
Bayesian neural networks. Most of these tools have been very straightforward to
implement - the art being in constructing an appropriate experiment and applying
domain knowledge to understand the results and limitations.

As demonstrated, machine learning as an empirical tool has the ability to im-
prove identification, theoretical understanding and the modelling of many Space
Weather systems. The vast amounts of data that we continue to gather are
ideally suited to being studied using the machine learning algorithms discussed
in this thesis.
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