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Abstract : CO 2-based infection risk monitoring is highly recommended under the current 9 

COVID-19 pandemic. However, the O 2 monitoring thresholds proposed in the literature are 10 

mainly for spaces with fixed occupants. Determining O 2 threshold is challenging in spaces 11 

with changing occupancy due to the co-existence of quanta and O 2  remaining from the 12 

previous occupants. Here, we propose a new calculation framework to derive safe excess O 2 13 

thresholds (above outdoor level), Ot, for various spaces with fixed/changing occupancy and 14 

analyze the uncertainty entailed. Common indoor spaces were categorized into three scenarios 15 

according to their occupancy condition, e.g., fixed or varying infection ratios 16 

(infectors/occupants). We proved that rebreathed fraction-based model can be directly applied 17 

for Ot derivation in the cases of a fixed infection ratio (Scenario 1 and Scenario 2). In the case 18 

of varying infector ratios (Scenario 3), Ot derivation has to follow the general calculation 19 

framework due to the existence of initial quanta/excess O 2. Otherwise, significant bias can be 20 
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 2 

caused for Ot (e.g., 260 ppm) when infection ratio varies remarkably. Ot significantly varies 21 

with specific space factors such as occupant number, activities, and community prevalence, 22 

e.g., 7 ppm for gym and 890 ppm for lecture hall, indicating Ot should be determined on a case-23 

by-case basis. An uncertainty of Ot up to 6 orders of magnitude was found for all cases due to 24 

uncertainty in emissions of quanta and O 2, thus emphasizing the role of accurate emissions 25 

data in obtaining Ot. 26 

 27 

Keywords: infection risk control, O 2 monitoring, initial quanta, uncertainty analysis 28 

 29 

Nomenclature 

B Breathing rate, m3/h 

𝐶𝐶𝑂2,𝑖 O 2 concentration for occupancy stage i, ppm 

𝐶Cin,i InitialCO 2 concentration for occupancy stage i, ppm 

𝐶𝑞,𝑖 Quanta concentration for occupancy stage i, quanta/m3 

𝐶𝑞𝑖𝑛,𝑖 Initial quanta concentration for occupancy stage i, quanta/m3 

Ot Safe excess O 2 threshold, ppm 

Ot50 Median safe excess O 2 threshold, ppm 

𝐸𝑐𝑜2 O 2 emission rate, mL/s 

𝐸𝑞 Quanta emission rate, quanta/h 

𝐼𝑖 Infector number for occupancy stageCi 

Nave Average occupant number 

𝑁𝑖 Occupant number for occupancy stage i 

𝑃𝑖 Infection risk for occupancy stage i 

Pt Predefined infection risk threshold 

PI Community prevalence 

𝑇𝑖 Exposure time for occupancy stage i, h 

V Space volume, m3 

𝜆𝑖 Air change rate for occupancy stage i, h-1 

 30 

1. Introduction 31 
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COVID-19, as a novel coronavirus disease, has caused a worldwide pandemic spreading 32 

since the end of 2019 (Chen et al., 2020). Indoor transmission control is the key to prevent the 33 

spread of the SARs-CoV-2 virus due to a higher transmission risk indoors than outdoors (Qian 34 

et al., 2020). The four main transmission routes in indoor environments are droplet-borne, 35 

fomite, short-range airborne, and long-range airborne (Li, 2021; Wei and Li, 2016). Although 36 

short-range airborne transmission route was inferred to be the dominant route in close contact 37 

(Chen et al., 2020), long-range airborne transmission was revealed to more likely induce 38 

outbreaks in poorly ventilated and confined indoor spaces (Peng et al., 2022). Thus, it is of 39 

primary importance to monitor and control long-range airborne transmission for indoor 40 

environment. 41 

The exhaled infectious aerosols contributing to long-range airborne transmission are difficult 42 

to detect, and can travel a long distance in indoor environment. Therefore, a detectable indicator 43 

for transmission risk is urgently needed to effectively monitor long-range airborne transmission. 44 

O 2 that can be easily monitored through low-cost sensors (Peng and Jimenez, 2021) has been 45 

recommended as risk indicator for long-range airborne transmission because it can both reflect 46 

the indoor ventilation condition and the quanta concentration (Persily et al, 2022). Accordingly, 47 

safe O 2 thresholds are defined as the maximum O 2 concentration level under which the 48 

indoor space is at an acceptable infection risk. Such information is useful to guide the design 49 

of infection-resilient buildings.  50 

Treating O 2 as an indicator for indoor ventilation performance, recent studies made use of 51 

O 2 thresholds for risk control based on prevailing ventilation standards with a target of 52 

acceptable indoor air quality (IAQ) but not infection risk (CIBSE, 2021; SAGE-EMG, 2021; 53 
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REHVA, 2021). ASHRAE does not recommend a specific value of threshold (Persily et al., 54 

2022), although other organizations have suggested specific thresholds of 800 ppm (SAGE-55 

EMG, 2020; CDC, 2021) or 800-1000 ppm (REHVA, 2021) to ensure a safe indoor 56 

environment. However, whether a fixed O 2 threshold could guarantee a low infection risk 57 

for all spaces is questionable considering factors such as occupancy level and respiratory 58 

activity can all affect the value of it (Peng and Jimenez, 2021). 59 

Moving beyond the assessment of O 2 as a mere indicator of indoor ventilation condition, 60 

O 2 can also be used to directly reflect quanta concentration as O 2 and virus-laden aerosols 61 

can be co-produced and co-inhaled by human. Therefore, O 2 thresholds can be calculated 62 

backward by pre-defining an acceptable infection risk level (Hou et al., 2021; Peng and 63 

Jimenez, 2021). Indoor airborne transmission risk can be maintained under the predefined risk 64 

level in as much indoor O 2 concentration can be maintained below the derived threshold. 65 

Occupancy level and respiratory activity for a particular indoor space can all be factored in this 66 

backward calculation process (Hou et al., 2021; Peng and Jimenez, 2021; Rudnick and Milton, 67 

2003). In the literature, the derived thresholds were found to be highly sensitive to factors such 68 

as activity level and community prevalence, making O 2 thresholds varying across different 69 

indoor spaces (Peng and Jimenez, 2021). For example, the reference excess O 2 threshold 70 

(above outdoor level) for classroom amounts to only about 150 ppm, while this figure is ten-71 

fold for supermarket (Peng and Jimenez, 2021). This indicates that the O 2 thresholds should 72 

be determined case by case, instead of setting a fixed value for all spaces. 73 

In addition, most proposed thresholds are for spaces with fixed occupancy level under the 74 

assumption of no initial quanta/excess O 2 (Hou et al., 2021; Peng and Jimenez, 2021; Rudnick 75 
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 5 

and Milton, 2003). For spaces with variable occupancy, some of quanta/O 2 released by the 76 

previous group of occupants can remain in the space and become initial quanta/O 2Cwhen the 77 

next group occupies the space, hence increasing the infection risk for the current occupants. 78 

The initial quanta is essential for defining O 2 threshold, but it is difficult to estimate as it 79 

requires information of ventilation condition and occupancy profile of previous occupancy 80 

stage. Hence, how to account for initial quanta/excess O 2 in spaces with changing occupancy 81 

in infection risk assessment remains an unsolved question (Mittal et al., 2020b; Wei and Li, 82 

2016).  83 

Finally, emissions of quanta and O 2 are two important parameters in determining the O 2C84 

threshold, but they have inter-individual variation and can also be affected by factors such as 85 

age and gender (Buonanno et al., 2020a; Persily and de Jonge, 2017; Good et al., 2021). For 86 

instance, the viral load of super-spreader can be 10 times higher than the mean level of normal 87 

infectious subjects (Lelieveld et al., 2020), which may indicate a higher quanta emission (Ke 88 

et al., 2021, 2022). Different values of quanta and O 2 emission were adopted by previous 89 

studies for O 2 threshold derivation, e.g., from 0.37 quanta/h to 100 quanta/h for classrooms 90 

(Buonanno et al., 2020a; Bazant et al., 2021; Hou et al., 2021; Peng and Jimenez, 2021). The 91 

effect on the uncertainty on the emissions of quanta and O 2 on defining a O 2 threshold 92 

should be further analyzed. The present study aims to provide a new calculation framework to 93 

derive safe excess O 2  thresholds (Ot) by considering initial quanta/excess O 2 and 94 

changing/fixed occupancy patterns for different indoor spaces, as well as propagating the 95 

uncertainty of these input variables.  96 

2. Methodology 97 
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 6 

2.1CGeneralCcalculationCframework 98 

Our model is based on four assumptions for indoor mass balance equations for O 2 and 99 

quanta (Hou et al., 2021): 1) both O 2 and quanta are well mixed and evenly distributed in 100 

the air; 2) indoor excess O 2  is released by human exhalation only, with no other indoor 101 

sources; 3) O 2  emission rate and quanta emission rate are both constant (i.e., not time 102 

dependent); 4) the loss of quanta is mainly due to ventilation, other elimination mechanisms 103 

such as deposition, filtration and inactivation are neglected. 104 

In deriving Ot for spaces with changing occupants, we consider a sequence of occupancy 105 

stages,CSi(Ii, Ni, Ti). Stage iCrepresents an indoor space (with the volume of V) being occupied 106 

by a number of occupants (Ni) with infectors (Ii) for a duration of time (Ti).Ci =1 represents the 107 

start of the occupancy: N1 occupants (with I1 infectors) stay in this indoor space for a period of 108 

T1, with no people inside prior to N1 occupants. The introduction of various occupancy stages 109 

aims to consider the virus released and still in the air from previous occupancy stages (the 110 

initial quanta). This is fundamentally different from previous studies which only considered 111 

one-off occupancy or fixed occupancy throughout the exposure period of interest.  112 

The general calculation process of Ot for one occupancy stage of a space is given as follows. 113 

Long-range transmission risk for occupancy stage i is modeled through a Wells-Riley model 114 

(Riley et al., 1978) amended by Gammitoni and Nucci (1997) to assess infection risk through 115 

unsteady-state quanta concentration:  116 

𝑃𝑖 = 1 − 𝑒−𝐵 ∫ 𝐶𝑞,𝑖(𝑡)𝑑𝑡
𝑇𝑖

0                        (1) 117 

Quanta concentration in Equation (1) is modeled through transient mass balance equation: 118 

𝑑𝐶𝑞,𝑖

𝑑𝑡
=  

𝐼𝑖𝐸𝑞

𝑉
− 𝜆𝑖𝐶𝑞,𝑖                          (2)  119 
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 7 

Equation (2) can be analytically solved as: 120 

 𝐶𝑞,𝑖(𝑡) =  (𝐶qin,i −
𝐼𝑖𝐸𝑞

𝜆𝑖𝑉
) 𝑒−𝜆𝑖𝑡 +

𝐼𝑖𝐸𝑞

𝜆𝑖𝑉
                     (3) 121 

To control transmission risk of stage i under an acceptable low level, a risk threshold of Pt 122 

needs to be initially determined. Based on Pt, a required ACH (air change rate, 𝜆𝑖 ) can be 123 

derived by substituting Equation (3) into Equation (1), 𝜆𝑖 should be no less than the derived 124 

value to keep transmission risk under Pt. 125 

Indoor excess O 2 concentration is also dominated by ACH, hence it reflects the ventilation 126 

condition of stage i.  127 

  Indoor excess O 2 concentration for stage i is determined by mass balance equation (4): 128 

𝑑𝐶𝐶𝑂2,𝑖

𝑑𝑡
=  

𝑁𝑖𝐸𝐶𝑂2

𝑉
− 𝜆𝑖𝐶𝐶𝑂2,𝑖                       (4) 129 

  Equation (4) is solved as: 130 

𝐶𝐶𝑂2,𝑖(𝑡) =  (𝐶𝐶𝑖𝑛,𝑖 −
𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
) 𝑒−𝜆𝑖𝑡 +

𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
                  (5) 131 

  Substituting the required ACH that is backward calculated from transmission risk threshold 132 

into Equation (5), the time-averaged indoor excess O 2 concentration (𝐶𝐶𝑂2,𝑖 ) during Ti is 133 

exactly Ot for stage i (Hou et al., 2021; Bazant et al., 2021): 134 

𝐶𝑡 =
1

𝑇𝑖
∫ 𝐶𝐶𝑂2,𝑖(𝑡)𝑑𝑡

𝑇𝑖

0
                          (6) 135 

When indoor excess O 2 concentration is below the reference threshold Ot, sufficient 136 

ventilation can be promised to keep long-range transmission risk for occupancy stage i under 137 

the risk level of Pt. 138 

Further, for different occupancy stages, Ot can be derived by following the steps mentioned 139 

above considering the existence of initial quanta/excess O 2, see Equation (3) and Equation 140 

(5). Starting from occupancy stage 1 without initial quanta/excess O 2, a required ACH (λ1) 141 
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can be easily obtained following the general calculation process. For occupancy stage 2, the 142 

initial quanta and initial excess O 2 can be estimated based on the ACH derived in occupancy 143 

stage 1 (λ1) under the assumption that excess O 2 during occupancy stage 1 has been controlled 144 

under the reference threshold, Ot for occupancy stage 2 can then be obtained according to the 145 

calculation framework. Repeating these steps, i.e. by taking the derived ACH of previous 146 

occupancy stage to estimate initial quanta/excess O 2 for present stage, Ot can be calculated 147 

iteratively for all the occupancy stages modeled.                       148 

2.1.1CInfectionCRiskCThresholdCPt 149 

The infection risk threshold Pt is of great importance as it dominates the safety levels of the 150 

indoor environment. It can be defined in two ways, either by using a constant value for all 151 

environment - such as 1%, 0.1% (Dai and Zhao, 2020) or even 0.01% (Peng and Jimenez -  152 

2021) or to determine Pt based on reproductive number (RA) where RA is the average number 153 

of secondary cases caused by one infector in a given susceptible population in indoor 154 

environment. In the latter, the value of Pt is dominated by the number of occupants and can be 155 

a large and inconvincible value when occupant number is small (Ma et al., 2018; Furuya et al., 156 

2009). In this study, we use a constant value of Pt = 0.01% as suggested in Peng and Jimenez 157 

(2021), which is reasonable for most occupancy stages when the number of occupants is less 158 

than 10,000. 159 

2.2CDesignedCScenariosC  160 

Three scenarios were identified to calculate Ot:  161 
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1) Regularly attended space with fixed occupancy level and the same group of people as 162 

occupants, so that N1=N2=… (e.g., a lecture room used by a certain group of students) 163 

(Burridge et al., 2021; Vouriot et al., 2021) ;  164 

2) Non-regularly attended space with constant infection ratio (I1/N1=I2/N2=…=Ii/Ni), 165 

different groups of people as occupants, and with high occupancy level (e.g., shopping center, 166 

train station);  167 

3) Non-regularly attended space with changing infection ratio (I1/N1≠I2/N2≠…≠Ii/Ni) and low 168 

occupancy level (e.g., gym, train coach).  169 

All these scenarios are widely experienced in real-life situations.  170 

2.2.1CScenarioC1:CRegularlyCattendedCspacesC  171 

We determined the number of infectors Ii for Scenario 1 according to both the indoor 172 

occupancy level (Ni) and local community prevalence (PI). The expected Ii is defined as max 173 

{1, PINi}. When with a low indoor occupancy level or a low community prevalence, the value 174 

of PINi can be less than 1, under such condition, Ii is assumed to be equal to 1, Otherwise, Ii is 175 

assumed to be PINi to reflect the real local infection condition. 176 

Derived from mass balance equations, quanta concentration and excess O 2 concentration 177 

were found to have a constant proportion during all the occupancy stages, only affected by 178 

infection ratio and emissions, see Equation (7) (Full derivation details can be found in 179 

Supplementary Information). As long as the infection ratio and emissions do not change during 180 

the occupancy stages, the proportion remains unchanged as well, hence: 181 
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𝐶𝑞,1(𝑡)

𝐶𝐶𝑂2,1(𝑡)
=

𝐶𝑞,2(𝑡)

𝐶𝐶𝑂2,2(𝑡)
= ⋯ =

𝐼𝑖

𝑁𝑖

𝐸𝑞

𝐸𝐶𝑂2
                      (7)            182 

Under these circumstances, infection risk for stage i Eq (1) can be revised as below 183 

 𝑃𝑖 = 1 − 𝑒
−𝐵

𝐼𝑖
𝑁𝑖

𝐸𝑞

𝐸𝐶𝑂2
∫ 𝐶𝐶𝑂2,𝑖(𝑡)𝑑𝑡

𝑇𝑖
0                      (8)             184 

 Equation (8) can be treated as the classical rebreathed fraction (RF) -based infection risk 185 

model derived by Rudnick and Milton (2003), with 𝐵𝐶𝐶𝑂2,𝑖(𝑡) 𝐸CO2⁄   representing the 186 

rebreathed fraction. This derivation proved that rebreathed fraction (RF) -based model can 187 

account for the impact of initial quanta/excess O 2 in risk assessments for spaces with fixed 188 

occupants.  189 

Based on Equation (8), the time averaged value Ot for occupancy stage i can then be derived 190 

as: 191 

𝐶𝑡 =
𝐸𝐶𝑂2𝑁𝑖

𝐸𝑞𝑇𝑖𝐵𝐼𝑖
𝑙𝑛 (

1

1−𝑃𝑡
)                          (9) 192 

2.2.2CScenarioC2:CNon-regularlyCattendedCspacesCwithCconstantCinfectionCratios 193 

In Scenario 2, we assumed that community prevalence (PI) can be directly used to represent 194 

indoor infection ratio due to the high occupancy level (I1/N1=I2/N2=…=PI). The proportion 195 

between 𝐶𝑞,𝑖 and excess 𝐶𝐶𝑂2,𝑖 also become constant due to the constant infection ratio among 196 

occupancy stages (Detailed derivation process can be found in Supplementary Information):  197 

𝐶𝑞,1(𝑡)

𝐶𝐶𝑂2,1(𝑡)
=

𝐶𝑞,2(𝑡)

𝐶𝐶𝑂2,2(𝑡)
= ⋯ = 𝑃𝐼

𝐸𝑞

𝐸𝐶𝑂2
                     (10) 198 

Similar as Scenario 1, the infection risk and excess O 2 threshold can then be derived as: 199 

𝑃𝑖 = 1 − 𝑒
−𝐵𝑃𝐼

𝐸𝑞

𝐸𝐶𝑂2
∫ 𝐶𝐶𝑂2(𝑡)𝑑𝑡

𝑇𝑖
0                     (11) 200 

𝐶𝑡 =
𝐸𝐶𝑂2

𝐸𝑞𝑇𝑖𝐵𝑃𝐼
𝑙𝑛 (

1

1−𝑃𝑡
)                       (12) 201 

Equation (11) can be treated as an extension of the classical RF-based infection risk model. 202 

The generality of the original model is extended from scenarios with fixed occupants (scenario 203 
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1) to scenarios with varying occupancy levels (scenario 2), with initial quanta/excess O 2 to 204 

be taken into account. It should be noted that Ti in Scenario 2 is usually hard to monitor as the 205 

occupancy level keeps changing. An alternative method is to predefine it according to the 206 

characteristics of different spaces. For example, Ti could be set as 35 min for check-in hall and 207 

100 min for departure hall according to the average dwelling times measured in an airport (Mihi 208 

et al., 2018). 209 

2.2.3CScenarioC3:CNon-regularlyCattendedCspacesCwithCchangingCinfectionCratios 210 

In Scenario 3, indoor infection ratio cannot be represented by PI due to the relatively low 211 

occupancy level. Ii is therefore recommended as the maximum value of {1, NiPI} to provide a 212 

safe indoor environment (as Scenario 1). In these circumstances, the infection ratio would 213 

change among the occupancy stages and quanta concentration, and it would not be represented 214 

by excess O 2 concentration: Ot derivation needs to follow the general calculation process (see 215 

Part 2.1).  216 

It should be noted that the general calculation process does not require the field measurement 217 

of ACH but relies on a known occupancy profile including the number of occupants and the 218 

duration of occupancy for all the occupancy stages. Thus, this method may be more suitable 219 

for spaces in Scenario 3 where the occupancy profile of Ni andCTi of each occupancy stage can 220 

be monitored simultaneously or obtained before the spaces being occupied such as the rail train 221 

or theatre. 222 

2.3CUncertaintyCanalysisCandCinputs 223 

Uncertainty analysis was carried out considering Eq and EO 2 have interindividual variation 224 
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 12 

and can vary with gender, age, leading uncertainty to Ot. The probability density functions 225 

(PDF) of Eq for three different activities are from recent research of Buonanno et al. (2020a), 226 

where they found the quanta emission follows a log10-normal distribution, see Table 1. EO 2 227 

was also assumed to be lognormally distributed with a standard deviation equal to 20% of its 228 

mean (Molina and Jones, 2021). The mean value for the distribution is calculated as the average 229 

value of EO 2 of female and male individuals aged 30 to 40 years (the most frequent age cohort) 230 

with a specific metabolic equivalent (Persily and de Jonge, 2017). The metabolic equivalent 231 

for EO 2 is specified by different activity levels, specifically, 1.5 met for sedentary activity, 3 232 

met for light activity, 9 met for heavy activity (Ainsworth et al., 2000). Latin Hypercube 233 

sampling (LHS) (Fang et al. 2005) was used to generate a total of 30,000 samples from 234 

emissions of quanta and O 2 due to its advantage in reflecting the true underlying distribution 235 

of inputs with a smaller sample size. Monte Carlo simulations (Sobol’, 1994) were used to 236 

propagate and quantify the uncertainty in predictions. 237 

Table 1. Inputs for Uncertainty Analysis. Distribution mean and standard deviation in brackets  238 

Activity 
Quanta emission PDF 

(quanta/h) 

CO2 emission PDF  

(mL/s) 

Sedentary - breathing LN10 (-0.429, 0.720) LN (5.05, 1.01) 

Light activity - speaking LN10 (0.698, 0.720) LN (10.10, 2.02) 

Heavy activity - breathing LN10 (0.399, 0.720) LN (34.20, 6.84) 

Typical indoor environments were selected for each scenario based on factors such as 239 

occupancy level, infection ratio etc. (Tables 2 and 3). Cases in Scenario 1 have a fixed but 240 

different number of occupants considering that this is a dominant parameter in deriving Ot in 241 

Scenario 1, see Equation (9). It should be noted that the case of lecture hall in Scenario 1 has 3 242 

infectors due to its high occupancy level, whereas other cases have only 1 infector due to the 243 
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 13 

relatively low occupancy level. In Scenario 2 a shopping center was taken as case study with 244 

variable levels of community prevalence, which were adopted from three different COVID-19 245 

periods in the UK for 2020 (Pouwels et al., 2021) to represent relatively small (0.06%), median 246 

(0.4%) and high (1%) community prevalence, among which the highest level of community 247 

prevalence was adopted for Scenario 1 and Scenario 3. Two cases with low and changing 248 

occupancy levels were selected for Scenario 3 (i.e., train coach and gym room). As regards 249 

occupancy stages, only one stage was included for cases in Scenario 1 and Scenario 2 whereas 250 

five occupancy stages were included for cases in Scenario 3 to take into account the variability 251 

in Ot due to the impact of initial quanta/excess O 2. Different categories of activities were 252 

considered in the cases of the different scenarios. Cases in Scenario 1 are assumed to have 253 

“sedentary activity - breathing” typical of people sitting or standing in office or classroom 254 

environments. Cases in Scenario 2 are assumed to have “light activity - speaking”, considering 255 

that people are usually walking in the shopping center and talking to each other. For scenario 256 

3, two activities are included to explore the effects of activity level on Ot derivation, specifically, 257 

“sedentary activity – breathing” for the train coach and “moderate activity – breathing” for 258 

gym. The breathing rates (B) corresponding to different physical activity level is adopted are 259 

from previous research (Adams, 1993).  260 

Table 2. Inputs of uncertainty analysis for Scenario 1 and Scenario 2. 261 

Case 
Volume 

(m3) 

Infector 

number 

Occupant 

number 

Exposure 

time (h) 

Community 

prevalence 

Breathing rate 

(m3/h) 

Scenario 1       

Classroom 231 1 30 1 1% 0.54 

Lecture classroom 270 1 65 1 1% 0.54 

Lecture hall 540 3 300 1 1% 0.54 

Open-plan office 594 1 20 1 1% 0.54 

Scenario 2       
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Shopping center 2040 - - 1 0.06%, 0.4%, 1%      1.38 

Table 3. Inputs of uncertainty analysis for Scenario 3 262 

Scenario 3 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Train coach (300 m3)      

Infector number 1 1 1 1 1 

Occupant number 20 40 80 40 20 

Exposure time (h) 1 1 1 1 1 

Community prevalence 1% 1% 1% 1% 1% 

Breathing rate (m3/h) 0.54 0.54 0.54 0.54 0.54 

Gym (600 m3)      

Infector number 1 1 1 1 1 

Occupant number 5 10 20 10 5 

Exposure time (h) 1 1 1 1 1 

Community prevalence 1% 1% 1% 1% 1% 

Breathing rate (m3/h) 3.30 3.30 3.30 3.30 3.30 

3. Results 263 

3.1CSafetyCexcessCO 2CthresholdCvariesCinCdifferentCscenarios 264 

For Scenario 1, the number of occupants (Ni) is the dominant factor governing Ot that scales 265 

with it (see Equation (9)). Ot for cases with different Ni in Scenario 1 (regularly attended spaces) 266 

have substantial differences, see Figure 1(a). The highest Ot50 (the median value of Ot) occurs 267 

in lecture hall (890 ppm), followed by lecture classroom (580 ppm), classroom (270 ppm), the 268 

lowest one is in office environment (180 ppm), although significant overlaps exist in the output 269 

distributions (Figure 1(a)).  270 

For Scenario 2, instead of Ni, Ot is dominated by community prevalence (PI), as Ot is 271 

inversely proportional to PI (see Equation (12)). Three different values of PI (i.e., 0.06%. 0.4% 272 

and 1%) are adopted to derive Ot and the results are showed in Figure 1(b). The highest Ot50 of 273 

870 ppm refers to the lowest PI of 0.06% and the lowest Ot50 of 50 ppm to the highest PI of 1%.  274 

For Scenario 3, the changing infection ratios lead to different values of Ot for different 275 
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occupancy stages. For train coach,COt50 are approx. 180 ppm, 320 ppm, 650 ppm, 410 ppm and 276 

200 ppm corresponding to infection ratios of 1/20, 1/40, 1/80, 1/40 and 1/20 for the five stages 277 

in sequence, while they are 7 ppm, 15 ppm, 30 ppm, 15 ppm and 7 ppm for gym environment 278 

corresponding to infection ratios of 1/5, 1/10, 1/20, 1/10 and 1/5. The changing infection ratios 279 

can lead to different Ot values in different stages mainly because the existence of initial 280 

quanta/excess O 2. For instance, for Stage 2 and Stage 4 of train coach with the same occupant 281 

number of 40, Ot50 should be same if initial quanta/excess O 2 is not considered, but in fact the 282 

difference of Ot50 between the two occupancy stages reaches approx. 80 ppm due to the impact 283 

of initial quanta/excess O 2. 284 

In addition, the general cases in Scenario 3 also proves that activity level is another major 285 

factor which can affect the derived thresholds, see Figure 1(c). Ot for gym with a high activity 286 

level is much lower than that for train coach with a sedentary activity level due to relative high 287 

activity level in gym environment (hence, high emission rate for quanta).This agrees with 288 

previous studies (Chen et al., 2022; Jia et al., 2022) that there should be much higher restriction 289 

in spaces with high activities such as gym to control airborne infection risk.  290 

Apart from the substantially different Ot among different cases, large uncertainty of Ot was 291 

also found in each case, spanning up to six orders of magnitude on a log scale (see Figure 1). 292 

Figure 1 shows that cases with a largeCmedian value contain more uncertainty due to a more 293 

right-shifted log-scaled distribution of Ot, indicating that Ot can be more affected by the 294 

uncertainty of emission settings considered in our study. Considering the large uncertainty of 295 

Ot and the non-normal distribution when transformed to a linear scale, the median safe excessC296 

O 2 threshold (Ot50) is an appropriate descriptive statistic for excess O 2 threshold due to its 297 
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high probability density (see the violin plot in Figure 1) (Jones et al., 2021).  298 

    299 

                       (a)                                         (b)             300 

  301 

(c) 302 

Figure 1. Safe excess O 2 thresholds for 3 scenarios: (a) Scenario 1(with fixed occupancy); 303 

(b) Scenario 2 (with changing occupancy but fixed infection ratios); (c) Scenario 3 (with 304 

changing occupancy and non-fixed infection ratios).  305 

3.2 Effect of infection risk threshold (Pt) 306 

As discussed before, the infection risk threshold (Pt) plays a role in deriving Ot. Different Pt 307 
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have been adopted in different research in the range of 0.01% to 1% (Buonanno et al., 2020b; 308 

Dai and Zhao, 2020; Peng and Jimenez, 2021; Zhang et al., 2021). Here we explore how Pt will 309 

affect Ot with results shown in Figure 2. The base case is the classroom in Scenario 1 (see Table 310 

2). Ot50 is found to be approximately linearly related to Pt with approx. 270 ppm for Pt = 0.01% 311 

to 27000 ppm for Pt = 1%, which reveals the high sensitivity of Ot50 to Pt.  312 

  313 

Figure 2. Excess O 2 thresholds for the classroom (see Table 2) under different infection risk 314 

thresholds.  315 

3.3CEffectCofCInitialCOonditionsC  316 

We have shown that initial condition of quanta and excess O 2 can affect the derived safe 317 

excess O 2 threshold when infection ratio varies among the occupancy stages. However, most 318 

previous studies overlook the initial condition of quanta and excess O 2 in Ot derivation (Hou 319 

et al., 2021; Peng and Jimenez, 2021; Rudnick and Milton, 2003). To further quantify the 320 
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impact of initial condition of quanta/excessCO 2 on Ot when infection ratio varies, we compare 321 

two cases: 1) considering the initial condition of quanta/excess O 2; 2) no initial quanta/excess 322 

O 2. We consider two cases with the same indoor volume of 300 m3, being occupied both with 323 

two stages. The occupants in the two cases are assumed to have “sedentary activity – breathing”, 324 

and only 1 infector is adopted.  325 

Case 1 assumes there are 20 occupants in Stage 1, and the occupant number in Stage 2 326 

changes to 5, 10, 20, 40, 80 respectively, which means the infection ratio will change from 1/20 327 

(Stage 1) to 1/5, 1/10, 1/20, 1/40, 1/80 (Stage 2) accordingly and initial quanta/excess O 2 can 328 

affect Ot in Stage 2 in varying degrees. Case 2 assumes there are no occupants in Stage 1 (hence 329 

no initial quanta/excess O 2), and 5 different occupancy levels are assumed for Stage 2 just 330 

like case 1. Here we aim to derive Ot for Stage 2 for both two cases with consideration of the 331 

impacts of initial quanta/excess O 2 from Stage 1 (case 1) and without (case 2). The differences 332 

of results between the two cases can be used to quantify the impact of initial quanta/excess O 2 333 

on Ot. It’s easy to derive Ot for case 2 as there are no initial quanta/excess O 2, while for case 334 

1, an estimation of initial quanta/excess O 2 released from stage 1 is needed. Considering the 335 

excess O 2 concentration is affected by different factors such as exposure time and ACH during 336 

Stage 1, here we assumed a constant value for initial excess O 2 concentration for Stage 2 in 337 

case 1, namely, 1000 ppm. Initial quanta can then be derived based on it and infection ratios of 338 

Stage 1 (see Eq. S4 in Supplementary). 339 

Figure 3 shows there are distinct differences of derived Ot between the cases with and 340 

without considering initial quanta/excess O 2 when infection ratio of Stage 2 differs from 341 

Stage 1 (1/20), suggesting the initial condition of quanta/excess O 2 shouldn’t be ignored in 342 
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Ot derivation. Overall, when infection ratio increases (larger than 1/20) from Stage 1, Ot 343 

considering initial condition is larger than that without considering initial quanta/excess O 2, 344 

and vice versa. The difference will be higher when the infection ratio deviates more from the 345 

base case of 1/20. When the infection ratio increases from 1/20 (Stage 1) to 1/5 (Stage 2), Ot50 346 

increases by 60 ppm than that without considering initial quanta/excess O 2 and when the 347 

Stage 2 infection ratio decreases from 1/20 to 1/80, Ot50 becomes 260 ppm lower.  348 

  349 

Figure 3. Excess O 2 threshold of the second occupancy stage of an indoor space (300 m3) 350 

under different infection ratios considering with and without initial quanta/CO2 351 

4. Discussion 352 

4.1.CNewCunderstandingCofCrebreathed-fractionCmodel 353 

RF-based Wells-Riley model proposed by Rudnick and Milton’s (2003) used O 2Cas a maker 354 
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for exhaled-breath exposure and avoided ACH estimation for airborne infection risk 355 

assessment. The model does not require any knowledge about ACH, hence it has been widely 356 

used in assessing airborne infection risk (Andrews et al., 2014; Hella et al., 2017; Richardson 357 

et al., 2014; Wood et al., 2014; Zürcher et al., 2020). However, However, we proved that RF-358 

based model should be only adopted for spaces with fixed occupancy otherwise initial quanta 359 

will cause bias of it (see Part 3.3), but this is largely overlooked by many other studies. For 360 

spaces with varying occupancy, the initial quanta/excess O 2 generated by previous occupants 361 

but remaining in the air can be very important determining the overall quanta/excess O 2 362 

concentration for next-stage occupancy. How will RF-based model deal with initial 363 

quanta/excess O 2 for spaces with changing occupancy has not been adequately discussed 364 

before. In this article, we made analytical derivation to explain the mechanism of RF-based 365 

method in dealing with initial quanta/excess O 2. We showed that initial quanta/excess O 2 366 

can be considered within the RF-based method in OtCderivation for Scenario 1 (with fixed 367 

occupancy) and Scenario 2 (with changing occupancy but fixed infection ratios). This further 368 

extends the generalization of RF-based model from spaces with fixed occupancy to spaces with 369 

changing occupancy. It should be noted that other recent studies (Burridge et al., 2021; Vouriot 370 

et al., 2021) resonate with our study in that they apply RF-based model to spaces with varying 371 

occupancy levels to assess infection risk. However, only two occupancy modes were 372 

considered in these studies, occupied and non-occupied, which are both included in our 373 

Scenario 1. In this contribution, we have proved that for spaces with both occupied and non-374 

occupied modes, the non-occupied period does not affect the proportion of quanta 375 

concentration to excess O 2 concentration in future occupied period if infection ratios remain 376 
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unchanged given only ventilation is considered here (see Supplementary Information).  377 

4.2.CImplicationsCforCOtCdetermination 378 

Great uncertainty in Ot can be caused by the uncertainty of emissions (Eq and EO 2) (see 379 

Figure 1). EO 2 and Eq contain uncertainty because they have interindividual variation and can 380 

be affected by factors such as age, gender (Buonanno et al., 2020a; Persily and de Jonge, 2017; 381 

Good et al., 2021). The value of Eq can vary by up to 3 orders of magnitude (e.g., 0.32-240 382 

quanta/h for speaking under light activity) (Buonanno et al., 2020a) while EO 2 varies within 383 

only one order of magnitude (e.g., 2.88-43.2 L/h) (Persily and de Jonge, 2017). Different 384 

studies adopted very different values of Eq and therefore could lead to very different Ot. For 385 

only the classroom settings with the same activity level, the median value of Eq in our study is 386 

0.37 quanta/h (Buonanno et al., 2020a), while it was in the range of 27.55 quanta/h to 100 387 

quanta/h in other studies (Bazant et al., 2021; Hou et al., 2021; Peng and Jimenez, 2021), 388 

resulting in several hundred times lower Ot than our results. 389 

The choice of PtCand IiChave also an impact Ot. Theoretically, lower Pt can promise safer 390 

indoor environment, but this would come at the cost of very low Ot practically impossible to 391 

achieve in real-world scenarios. E.g., a low level of Ot may require a very high ACH, unfeasible 392 

and prone to cause large energy cost due to the diminishing return phenomenon of ventilation 393 

(Li et al., 2021). Besides, how to determine the infector number Ii is also important as it is 394 

related to the total quanta emission. Our study defined Ii to be the maximum value of {1, PINi} 395 

as the worst-case scenario. On the contrary, Bazant et al. (2021) considered Ii to be the 396 

minimum value of {1, PINi}, which resulted in a dramatically large Ot (even larger than 10000 397 
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ppm) when PI is small.  398 

4.3.CImplicationsCforCinfectionCriskCmonitoringCandCcontrol 399 

Our model has practical significance for indoor transmission monitoring and control. For 400 

Scenario 1 and Scenario 2, safe excess O 2 threshold is related to variables such as occupancy 401 

level, duration and risk threshold through simple equations (see Equation (9) and Equation 402 

(12)), making it possible to apply our model for infection risk monitoring in Scenario 1 and 2 403 

for public individuals. For instance, when arriving at a space such as a shopping center (as our 404 

Scenario 2), people can easily measure the indoor excess O 2 level first through a portable 405 

low-cost O 2 sensor, then by replacing Ot in Equation (12) by the measured data, people can 406 

roughly obtain a safe exposure duration for that shopping center based on their acceptable risk 407 

threshold to guide how long they should stay in the shopping center. Furthermore, taking into 408 

account the impact of initial quanta/excess O 2 on risk estimation and Ot derivation, our model 409 

can be adopted to further develop different ventilation control strategies such as O 2-based 410 

demand-controlled ventilation (Li and Cai, 2022) or intermittent ventilation strategy (Melikov 411 

et al., 2020; Zhang et al., 2022) with an objective to reduce indoor transmission risk by treating 412 

indoor excess O 2 as a control variable.  413 

Further applying our calculation framework into real-world scenarios, some insights can be 414 

gained by comparing derived Ot with measurement data/standard limits. For Scenario 1, the 415 

occupant numbers can largely affect Ot level, thus, it’s warranted to concurrently consider O 2 416 

level and occupant level in transmission risk evaluation of an indoor environment. For example, 417 

for classrooms in Scenario 1, the measured excess O 2 level was found to be in the range of 418 
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300 - 2500 ppm (outdoor level of 420 ppm) dependent on the number of occupants (Bakó-Biró 419 

et al., 2012; Vouriot et al., 2021; Persily et al., 2022). According to our framework, 300 ppm 420 

can represent an unsafe environment if the occupant number is less than 33, and 2500 ppm can 421 

still be a safeClevel if occupants is larger than 278. Therefore, Ot threshold should be used in 422 

conjunction with occupant number. For scenario 2, community prevalence can dominate Ot and 423 

can be used as a reference for lockdown policy implementation. It was found that the one-hour 424 

average O 2 level of 40% shopping mall in Hong Kong exceeded 1000 ppm (Li et al., 2001). 425 

To keep infection risk no more than 0.01% for shopping malls, a community prevalence of less 426 

than 0.09% is needed according to our calculation framework, otherwise, such places should 427 

be locked down. For Scenario 3, taking a restaurant (~350 m3) for example, considering two 428 

occupancy stage (N1 = 20 for Stage 1 and N2 = 80 for Stage 2) (Shen et al., 2021), according to 429 

ASHRAE 62.1 (ASHRAE, 2019), the maximum excess O 2 limits (the steady-state excess 430 

O 2 concentration under the required ventilation rate) for the first two occupancy stages are 431 

540 ppm (Stage 1) and 790 ppm (Stage 2) respectively. But Ot calculated from our framework 432 

amounts to 180 ppm and 610 ppm, respectively. The difference indicates the target of infection 433 

risk control should be integrated into present ventilation standards to promise both a high level 434 

of IAQ and a low infection risk.  435 

4.4.CLimitationCofCtheCstudy 436 

 Our study is based on the assumption that outdoor ventilation is the only loss mechanism 437 

for quanta in Scenario 1 and Scenario 2, which results in a constant proportion between quanta 438 

concentration and excess O 2 concentration, hence making RF-based model suitable for 439 
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deriving Ot for Scenario 1 and 2. However, surface deposition, filtration and virus deactivation 440 

could significantly contribute to reduce quanta concentration (Blocken et al., 2021; Su et al., 441 

2021; van Doremalen et al., 2020). Neglecting these loss mechanisms may overestimate indoor 442 

quanta concentration and result in a lower estimate of Ot than needed. However, the reliability 443 

of the derived Ot for a safe indoor environment would not be affected.  444 

The thresholds we derived are based on the assumption of a well-mixed room air. Thus, the 445 

location of O 2 sensors needs to be carefully selected to adequately reflect indoor O 2 446 

conditions (Mahyuddin and Awbi, 2010; Mahyuddin et al., 2014). Additionally, our results only 447 

account for long-range airborne transmission neglecting the contribution of short-range 448 

transmission (Chen et al., 2021; Gao et al., 2021; Li, 2021). Limiting to monitoring infection 449 

risk based on Ot values may not be sufficient. Other intervention measures such as wearing 450 

masks and social distancing should be jointly considered to control indoor airborne 451 

transmission (Jarvis, 2020; Mittal et al., 2020a; Wagner et al., 2021). 452 

 Another limitation lies in the application of community prevalence (PI) in our study. For 453 

scenario 1 and scenario 3, PI is used to determine the indoor infector number, which would 454 

cause bias because 1) PI might be smaller than the real value due to the asymptomatic 455 

characteristic of SARS-CoV-2 (Lee et al., 2020; Pollock and Lancaster, 2020); and 2) positive 456 

individuals may not be present at public spaces due to mandatory quarantine policy which 457 

would lead to a lower indoor infection ratio than PI. For scenario 2, simply using PICto represent 458 

the indoor infection ratio can lead to underestimate the real indoor infection ratio when the 459 

number of occupants is small. Conducting field measurement to estimate the average 460 
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occupancy level (Nave) and selecting the maximum value of {1, NavePI} could be an alternative 461 

method for defining a convincible infection ratio for scenario 2. In addition, considering PI is 462 

changing during different time periods of pandemic, the indoor infection ratio would need to 463 

be updated accordingly. 464 

In addition, the uncertainty of Ot estimated by our study may be limited as we only 465 

considered the uncertainty in emission settings (i.e., quanta emission rate, O 2 emission rate) 466 

in Ot derivation. Community prevalence PI may contain uncertainty due to the reasons 467 

mentioned above. The uncertainty of it may increase the uncertainty of Ot for Scenario 2 where 468 

PI is a dominating input in Ot derivation, but it may not obviously affect Ot for Scenario 1 and 469 

3 because PI is adopted in Ot derivation only when PINi > 1 but the occupancy level (Ni) of 470 

most cases in Scenario 1 and 3 is usually low and hence PINi < 1. Similar as emission settings, 471 

breathing rate can also contain uncertainty due to interindividual differences and factors such 472 

as age and gender. In addition, quanta emission rate, O 2 emission rate and breathing rate may 473 

all be correlated to each other (Good et al., 2021). In our study, we simply adopted constant 474 

breathing rates for different physical activity levels following the study of Buonanno et al. 475 

(2020a) which estimated the quanta emission rate under different physical activity levels. 476 

Quanta emission rate and O 2 emission rate are also inter-related through physical activity 477 

level (See Table 1). In future, based on more accurate data, the uncertainty and correlation of 478 

those parameters may be further interpreted, and the uncertainty of Ot can be therefore further 479 

estimated. 480 

5. Conclusion  481 
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A new calculation framework was proposed in this study for deriving safe excess O 2 482 

threshold (Ot) for different spaces with consideration of initial quanta/excess O 2 and 483 

fixed/changing occupancy levels. From our derivation process we found that the proportion of 484 

indoor excess O 2 concentration to quanta concentration is constant for a constant infection 485 

ratio (infectors/occupants) of an indoor space. Based on this relationship, RF-based (rebreathed 486 

fraction-based) model can be directly applied for infection risk assessment and Ot derivation 487 

when infection ratio is constant, but not applicable for the cases with varying infection ratios.  488 

Affected by factors such as occupant number (Ni), community prevalence (PI) and activity 489 

level, the median value Ot50 derived by our framework varies significantly among the selected 490 

cases, with a minimum value of 7 ppm for gym to a maximum value of 890 ppm for lecture 491 

hall, with long-tailed distributions. Initial quanta/excess O 2 is found to largely affect Ot 492 

especially when the infection ratio varies significantly among the occupancy stages. A bias of 493 

several hundred ppm (e.g., 260 ppm for a space of 300 m3 and with sedentary activity level) 494 

could be made if the initial quanta in Ot derivation is not well considered. Our finding illustrates 495 

that different O 2 thresholds should be derived for different spaces and different occupancy 496 

stages, rather than being fixed at a constant value for all spaces.  497 

Large uncertainty was also found in derived thresholds for all cases, spanning approximately 498 

6 orders of magnitude,Cwhich are mainly influenced by quanta emission rate (Eq) and O 2 499 

emission rate (EO 2). For a better control of indoor infection risk through O 2 monitoring, more 500 

accurate input parameters would be needed. 501 
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Supplementary Information 724 

Derivation Process for Scenario 1 and Scenario 2 725 

Scenario 1 and Scenario 2 have constant infection ratios among different occupancy stages, specifically, 726 

I1/N1=CI2/N2=…=CIi/Ni. 727 

For S1 (the start occupancy stage) with no initial quanta and initial excess O 2, the solved quanta 728 

concentration (𝐶𝑞,1) and excess O 2 concentration (𝐶𝐶𝑂2,1) over time T1 through mass balance equations can 729 

be expressed as: 730 

𝐶𝑞,1(𝑡) =  −
𝐼1𝐸𝑞

𝜆1𝑉
𝑒−𝜆1𝑡 +

𝐼1𝐸𝑞

𝜆1𝑉
                                 (S1) 731 

𝐶𝐶𝑂2,1(𝑡) =  −
𝑁1𝐸𝐶𝑂2

𝜆1𝑉
𝑒−𝜆1𝑡 +

𝑁1𝐸𝐶𝑂2

𝜆1𝑉
                             (S2) 732 

A fixed proportion between quanta and excess O 2 during stage S1 can be derived: 733 

 
𝐶𝑞,1(𝑡)

𝐶𝐶𝑂2,1(𝑡)
=

𝐼1

𝑁1

𝐸𝑞

𝐸CO2
                                    (S3) 734 

Because initial quanta concentration ( 𝐶𝑞𝑖𝑛,2 ) and initial excess O 2 concentration ( 𝐶𝑐𝑖𝑛,2 ) for next 735 

occupancy stage S2 are exactly the concentrations at the end ofCS1, thus, they also have the fixed proportion 736 

relationship as: 737 

𝐶𝑞𝑖𝑛,2(𝑡)

𝐶𝐶𝑖𝑛,2(𝑡)
=

𝐼1

𝑁1

𝐸𝑞

𝐸CO2
                                    (S4) 738 

For S2 (second occupancy stage), replacing initial quanta concentration (𝐶𝑞𝑖𝑛,2 ) by initial excess O 2 739 

concentration (𝐶Cin,2) on basis of the fixed proportion above and a constant infection ratio of I1/N1C= I2/N2, 740 

quanta concentration and excess O 2 concentration over time (T2) can be expressed as: 741 

𝐶𝑞,2(𝑡) =
𝐼2

𝑁2

𝐸𝑞

𝐸CO2
((𝐶Cin,2 −

𝑁2𝐸𝐶𝑂2

𝜆2𝑉
)𝑒−𝜆2𝑡 +

𝑁2𝐸𝐶𝑂2

𝜆2𝑉
)                      (S5) 742 

𝐶𝐶𝑂2,2(𝑡) = ((𝐶Cin,2 −
𝑁2𝐸𝐶𝑂2

𝜆2𝑉
)𝑒−𝜆2𝑡 +

𝑁2𝐸𝐶𝑂2

𝜆2𝑉
                         (S6) 743 

A same proportion between quanta and excess O 2 concentration can be found during occupancy stage 744 

S2: 745 

 
𝐶𝑞,2(𝑡)

𝐶𝐶𝑂2,2(𝑡)
=

𝐼2

𝑁2

𝐸𝑞

𝐸CO2
                                      (S7) 746 

  If there exists a stage S0 following stage S2 that without occupancy (no occupants indoor during period 747 

T0), quanta and excess O 2 remained by stage S2 also experience a synchronously damping in fixed 748 

proportion as S2: 749 

𝐶𝑞,0(𝑡) =
𝐼2

𝑁2

𝐸𝑞

𝐸co2
(𝐶Cin,0𝑒−𝜆0𝑡)                                (S8) 750 

𝐶𝐶𝑂2,0(𝑡) = 𝐶Cin,0𝑒−𝜆0𝑡                                 (S9) 751 

 
𝐶𝑞,0(𝑡)

𝐶𝐶𝑂2,0(𝑡)
=

𝐼2

𝑁2

𝐸𝑞

𝐸CO2
                                    (S10) 752 

Based on constant infection ratios (I1/N1=CI2/N2=…=CIi/Ni), a general analytical expression for quanta 753 
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concentration and excess O 2 concentration for stage Si can be concluded from the derivation process above: 754 

𝐶𝑞,𝑖(𝑡) =
𝐼𝑖

𝑁𝑖

𝐸𝑞

𝐸CO2
((𝐶Cin,i −

𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
)𝑒−𝜆𝑖𝑡 +

𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
)                         (S11) 755 

𝐶𝐶𝑂2,𝑖(𝑡) = (𝐶Cin,i −
𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
)𝑒−𝜆𝑖𝑡 +

𝑁𝑖𝐸𝐶𝑂2

𝜆𝑖𝑉
                          (S12) 756 

For all occupancy stages in Scenario 1 and Scenario 2, quanta concentration and excess O 2 concentration 757 

possess a fixed proportion dominated by three parameters: (1) constant infection ratio; (2) constant quanta 758 

emission rate; (2) constant O 2 emission rate. 759 

𝐶𝑞,𝑖(𝑡)

𝐶𝐶𝑂2,𝑖(𝑡)
=

𝐼𝑖

𝑁𝑖

𝐸𝑞

𝐸CO2
                                     (S13) 760 

Replacing quanta concentration by excess O 2 concentration, airborne infection risk for stageCi can be 761 

quantified through Wells-Riley equation based on the excess O 2 concentration: 762 

 𝑃 = 1 − 𝑒
−𝐵

𝐼𝑖
𝑁𝑖

𝐸𝑞

𝐸CO2
∫ 𝐶𝐶𝑂2,𝑖(𝑡)𝑑𝑡

𝑇𝑖
0                            (S14) 763 

  Equation (S14) can be converted directly into the classical rebreathed fraction-based infection risk model 764 

(Rudnick and Milton, 2003) with 𝐵𝐶𝑐𝑜2(𝑡) 𝐸co2⁄   representing the rebreathed fraction. Safe excess O 2 765 

threshold for occupancy stage Si for Scenario 1 and Scenario 2 (Ii/Ni = PI) can then be derived on basis of 766 

Equation (S14) with a predefined risk threshold Pt: 767 

𝐶𝑡 =
𝐸𝐶𝑂2𝑁𝑖

𝐸𝑞𝑇𝑖𝐵𝐼𝑖
𝑙𝑛 (

1

1−𝑃𝑡
)                              (S15) 768 

 For each occupancy stage, the initial quanta released by previous stages has been considered in the 769 

derivation of safe excess O 2 threshold in Equation (S15). The application of the derived O 2 threshold can 770 

be extended to more general occupancy stages without limitation of no initial quanta in space. 771 

 772 
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Highlights 

 

⚫ Rebreathed fraction-based model can be applied for spaces with changing occupants but 

constant infection ratios. 

⚫ Initial quanta and excess CO2 lead to bias of determining excess CO2 threshold when 

infection ratio changes. 

⚫ Excess CO2 threshold contains large uncertainty and should be determined on a case-by-

case basis. 
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