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Time series momentum and reversal:
Intraday information from realized semivariance ?,??

Abstract

The presence of time series momentum has been widely documented in financial markets across

asset classes and countries. In this study, we find a predictable pattern of the realized semivariance

estimators for the returns of commodity futures, particularly during the reversals of time series

momentum. Based on this finding, we propose a rule-based time series momentum strategy that

has a statistically significant higher Sharpe ratio compared to the benchmark of the original time

series momentum strategy in the out-of-sample data. The results are robust to different subsamples,

lookback windows, volatility scaling, execution lag, and transaction cost.

Keywords: Commodity Futures Pricing, Time Series Momentum, Momentum Reversal, Realized
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1. Introduction

Since the seminal work of Moskowitz et al. (2012), the time series momentum effect has

been widely discussed in financial markets across various assets classes and countries (Baltas &

Kosowski, 2013; Hurst et al., 2013, 2017; Lempérière et al., 2014). As the analogue of cross-

sectional momentum (Jegadeesh & Titman, 1993), time series momentum directly corresponds to

prominent rational and behavioral asset pricing theories, which claim that past returns have direct

implications for time series predictability. However, the literature has often questioned its return

predictability due to its poor performance in the post-2008 financial crisis period, thereby leaving

a gap in the investigation into the impact of time series momentum reversals (Satchell & Grant,

2020; Huang et al., 2020).

Owing to a number of behavioral tendencies and market frictions, the life cycle of time series

momentum has been known as a stylized trend of market prices, from the initial under-reaction

to the delayed over-reaction toward an incoming shift in the fundamental value of a single asset

(Hurst et al., 2013). At the end of the cycle, momentum reverses as the market prices reverse

to fundamentals following the over-reaction. As a consequence, momentum reversals result in

investment losses owing to the time series momentum strategy. Garg et al. (2021) recognize such

a reversal in trends as “momentum turning points” and utilize the information embedded in slow

and fast speed strategies to detect the market turning points in the global equity markets. The

existing literature also investigates the relationship between the poor performance of the time series

momentum strategy and a selection of exogenous factors, such as market capacity constraint and

central bank policy (Baltas & Kosowski, 2013; Georgopoulou & Wang, 2016). In this paper, we

aim to identify predictor variables, which are endogenously driven by the historical price trajectory

of the underlying risky asset. We aim to identify these variables in order to provide a bridge

to characterize the dynamics of the time series momentum life cycle and to predict time series

momentum reversals in the context of Chinese commodity futures.

We focus on the Chinese commodity futures markets for several reasons. First, the retail–

dominance characteristics documented by Fan & Zhang (2020) provide us with a unique dataset
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for investigating the life cycle of time series momentum from under-reaction to over-reaction,

and eventually, to momentum reversal.1 As an unfavourable consequence of retail–dominance,

excessive speculation causes behavioral biases, such as herding and feedback trading, disposition

effect, overconfidence, and representativeness to be more significant in China’s markets than in

others (Wang et al., 2006; Chen et al., 2007; Fan & Zhang, 2020). Second, despite the Chinese

commodity futures markets being the largest in the world, this emerging market is still poorly

understood due to a series of reformations made by the China Securities Regulatory Commission

(CSRC). We consider one of these reformations, the implementation of the night-trading policy, as

a major event to test our findings over separated subsamples. Third, due to the tremendous efforts

made by the CSRC to eliminate “barriers-to-entry” mentioned in Fan & Zhang (2020) and Bianchi

et al. (2021), more internationalized Chinese commodity futures markets have attracted attentions

from both academics and practitioners. Providing an innovative understanding of the time series

momentum life cycle is not only crucial to academic concerns of time series return predictability,

but also to international institutions in the CTA (Commodity Trading Advisor) industry who have

established their Chinese divisions.2

Some research has dedicated its efforts to revealing the momentum anomaly of commodity fu-

tures pricing in China. While Kang & Kwon (2017) focus only on the cross-sectional momentum

effect, Yang et al. (2018) extend their study to investigate the cross-sectional momentum and rever-

sal effect. Ham et al. (2019) compare time series momentum with cross-sectional momentum based

on ten commodity futures. Liu et al. (2020) investigate the impact of tail risk measured by partial

moments to time series momentum reversal broadly over 31 commodity futures. Jin et al. (2020)

document the intraday time-series momentum pattern that exists in the copper, steel, soybean, and

1Unlike the U.S. market, which is dominated by institutional investors, more than 86% of open interest was held
by individual investors in China by the end of 2016 (Fan & Zhang, 2020). In terms of the trading volume, institutions
contributed only 9.8%.

2Commodity Trading Advisor (CTA), also known as managed futures, is one of the most crucial investment
classes in the asset management industry. They typically trade futures contracts in various asset classes (equity indices,
commodities, government bonds, and foreign exchange rates) and earn profit from asset price trends by implementing
the time series momentum strategy (Baltas & Kosowski, 2015).
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soybean meal futures contracts.3 Although both time series momentum reversal and intraday re-

turns have been involved in the study of China’s commodity futures, the linkage between them is

yet to be established.

Moreover, some studies follow conventions in exploring the developed markets to investigate

the anomalies of commodity futures pricing in China on a monthly basis (Ham et al., 2019; Bianchi

et al., 2021).4 Yang et al. (2018) also document evidence of cross-sectional momentum on both

a daily basis and even the intraday high-frequency basis for the Chinese commodity futures mar-

kets. To further explore these areas, we are interested in investigating time series momentum and

reversal in China on a daily basis. Our choice to use a daily frequency is also motivated by Huang

et al. (2020), who have questioned the time series predictability of monthly returns and suggest de-

veloping a new trading strategy with a different horizon. In addition, the retail–dominance makes

the Chinese markets behave more speculatively as they are driven by traders with shorter horizons

than the developed markets. This provides a unique market environment focusing on daily returns

to re-examine the return predictability of time series momentum.

Our study contributes to the literature in the following four ways. First, we are among the

first researchers to explore the linkage between the time series momentum life cycle and realized

semivariance. Literature on time series momentum has focused on its implementation by traders

(Hurst et al., 2013; Baltas & Kosowski, 2015), on its relationship with volatility states (Pettersson,

2014) and the volatility scaling approach (Kim et al., 2016), and on the impact of applying alter-

native trading rules (Dudler et al., 2015; Levine & Pedersen, 2016; Liu et al., 2020). Besides Garg

et al. (2021), few studies have further investigated the details of the reversal episodes of its life

cycle. Meanwhile, the realized variance is advocated as an unbiased model-free estimator for the

latent volatility of financial assets when the high-frequency (intra-daily) information is employed

3The intraday time-series momentum pattern here refers to the asset pricing anomaly that the first half-hour return
predicts the last half-hour return as documented by Gao et al. (2018).

4Bianchi et al. (2021) reveal significant investable premia of Momentum, Carry, and Basis-momentum strategies
and examine its risk exposures to a set of factors, including a three-factor model suggested by Bakshi et al. (2019), a
five-factor model discussed in Fan & Zhang (2020), and two political-policy-related risk factors.

4



(Andersen et al., 2001; Barndorff-Nielsen & Shephard, 2002; Andersen et al., 2003).5 More im-

portantly, Patton & Sheppard (2015) and Bollerslev (2021) propose that volatilities are not created

equal and that partial (co)variation measures are essential for volatility forecasting and asset pric-

ing. Therefore, we are interested in establishing the predictability that realized semivariance has

upon time series momentum reversals.

Second, we design a set of robust rules that tunes the original time series momentum signals

based on the asymmetric structure of positive and negative realized semivariance, with the aim of

empirically examining how the time series momentum life cycle is connected with realized semi-

variance. Decomposing the sign of past cumulative returns, we further identify the time series

momentum as a process between an upward momentum state (past cumulative return is positive)

and a downward momentum state (past cumulative return is negative). We then employ positive and

negative realized semivariance to capture the intraday behavior of herding and contrarian investors

when an upward momentum is experiencing an over-reaction. In general, rational informed in-

vestors stabilize prices by taking positions when prices deviate from their fundamentals (Avramov

et al., 2006). In this case, the herding investors can be recognized as non-informational, while the

contrarian investors are informational.6 As the number of informed contrarian investors increases,

their impact on price increases leads to a decrease in the deviation of a price from its fundamental

value, thus causing an upward momentum reversal. When a downward momentum is experiencing

an over-reaction, positive realized semivariance captures the behavior of the informed contrarian

investors to predict a downward momentum reversal. By monitoring the asymmetric structure of

positive and negative realized semivariance, we find a robust predictable pattern for time series

momentum reversals.

Third, we evidence that the predictable pattern of realized semivariance toward time series

5For more properties of realized volatility (RV) and related measures, such as bipower variation (BV) and truncated
variance (TV), we refer to Barndorff-Nielsen & Shephard (2006), Andersen et al. (2013), and Aı̈t-Sahalia & Jacod
(2014).

6As Avramov et al. (2006) highlight, the caveat in classifying trades on a given day as informed or uninformed is
that not all the trades on a given day are the same. We assume that informed or uninformed (herding or contrarian)
traders dominate on a given intraday sampling interval.
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momentum reversals has been consistent before and after the night-trading reformation in China.

CSRC has made remarkable efforts to smooth and stabilize price shocks from the international

markets. Following the example of the Gold and Silver contracts, an increasing number of con-

tracts were allowed to be traded, not only during the daytime, but also during the night since 2013.

Previous studies emphasized that the implementation of the night-trading policy has improved the

market quality and have suggested subsample testing for the markets (Fan & Todorova, 2021; Jiang

et al., 2020; Cai et al., 2020; Liu et al., 2020). Chordia et al. (2011) and Chordia et al. (2014) sug-

gested that the enhanced market liquidity should have stimulated greater anomaly-based arbitrage

and, thus, attenuated capital market anomalies. Our empirical results show that the predictability of

the asymmetric structure regarding positive and negative realized semivariance remains unchanged

in the subsamples 2008–2012 and 2013–2018.

Fourth, we explain the predictability of positive and negative semivariance by proposing a time

series momentum life cycle (TSMLC) hypothesis. We propose that the asymmetry of positive and

negative realized semivariance can characterize the life cycle of time series momentum, alternating

it between an upward and a downward momentum. Similar to the momentum life cycle (MLC)

hypothesis proposed by Lee & Swaminathan (2000), we link the TSMLC hypothesis to the dy-

namics of intra-daily realized semivariance estimators, which are endogenous variables defined by

the intraday high-frequency returns of individual assets.

The rest of this paper is organized as follows. In Section 2 we describe the dataset of the

Chinese commodity futures markets and provide definitions and explanations of the positive and

negative realized semivariance that we employed in the empirical studies. We further illustrate the

relationship between future commodity returns and realized semivariance under different episodes

of time series momentum in Section 3. Section 4 explains the rule-based function of tuning de-

cisions on the original time series momentum, and shows its robust out-of-sample performance

across different subsamples with the added consideration of the transaction cost. In addition, we

introduce the hypothesis of the time series momentum life cycle related to the realized semivari-

ance and explore the sources of risk premia of the original and tuning strategies in this section.
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Section 5 extends the robustness checks to volatility scaling, various lookback windows, and a

one–day execution lag. The conclusion of our research is presented in Section 6.

2. Data and preliminaries

2.1. Data

Our data sample contains both the daily returns and the 5-min high-frequency intraday returns7

for the main contract of 31 commodity futures in China.8 Following convention, all prices are

closing prices, and returns are calculated by taking the first-order difference of the logarithm of

closing prices.9 The main contract here refers to the contract which has the largest open interest

out of all the futures contracts of a certain commodity. When there is a roll-over, we update the

main contract according to the open interest at day t, and start to collect the return data of the

new main contract on day t + 1, and then concatenate it with the return data of the previous main

contract. More specifically, we undertake the following three steps: i) We download the open

interest of all active contracts of a given commodity at the end of trading. ii) We check whether

the open interest of the current main contract is surpassed by any contracts that follow along the

futures curve. If any do surpass it, we roll to the next contract with the largest open interest and this

becomes the new main contract. Otherwise, there is no roll-over. iii) We append the daily return

(rather than price) of the main contract to the return data series whenever a roll-over occurs.10

We choose to incorporate 31 commodity futures in our analysis because they have adequate

liquidity. Our sample period is from January 2007 to December 2018, and the start date of each

7We use the intraday returns at a 5-minute frequency to maintain the trade-off between utilizing informative intra-
daily signals and the effect of market microstructure noises (Barndorff-Nielsen & Shephard, 2002).

8We exclude the Chinese financial futures in this study, mainly due to the following three reasons: i) They are
not subjected to the influence of the night-trading policy. All financial futures contracts only have daytime trading
sessions. ii) They have a shorter sample period compared to the commodity futures. The first stock index futures
and the first treasury futures were listed on the China Financial Futures Exchange in 2010 and 2013, respectively. iii)
They were affected by various policy interventions, such as margins and commissions being raised significantly and
the pushing down of the limits of opening and closing positions in 2015. The study of such characteristics of financial
futures in China is left for future research.

9We rebalance the portfolio on a daily basis in this study. Thus, the returns calculated at daily closing prices,
rather than settlement prices, are used to evaluate portfolio performance.

10We calculate the daily return based on the closing prices of a given contract, which is never computed based on
the prices of different contracts.
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commodity futures contract is reported in Table 1. The 31 commodity futures are categorized into

four sectors: metals (MET), energy products (ENG), industrial materials (IND), and agriculture

products (AGI). More summary statistics, including the annualized mean, annualized volatility,

skewness, and kurtosis, are also shown in Table 1. We obtain the commodity data from the Wind11

database and the daily series of the risk-free rate is taken from the CSMAR database, which is

transformed from the fixed one-year savings interest rate.

Meanwhile, due to the night-trading policy introduced in 2013, we later implement our empir-

ical analysis by segmenting our whole sample into two subsamples: these being before and after

2013. The night-trading policy was among a series of reformations within the Chinese futures

markets, made by the China Securities Regulatory Commission (CSRC). This policy is considered

to have triggered fundamental changes in the behavior of market participants (Jin et al., 2018; Fan

& Todorova, 2021; Jiang et al., 2020; Cai et al., 2020). As stated by Jiang et al. (2020), the intro-

duction of the night trading session increased liquidity and trading activity measured by volume,

turnover, and open interest.

11Wind is a leading provider of financial information services in China. For more information about the data source,
please visit https://www.wind.com.cn/en/edb.html (October 1, 2022).
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Table 1: Summary statistics of the daily return series of each commodity futures contracts on the
Chinese commodity futures markets

Exchange Name Code Sector Data Sample Annualized Annualized Skewness Kurtosis
Start Date Mean(%) Volatility(%)

SHFE

Gold AU MET Jan-08 0.97 17.64 -0.36 7.81
Silver AG MET May-12 -11.25 21.00 -0.28 8.58
Copper CU MET Jan-07 -0.06 24.12 -0.20 5.34
Aluminium AL MET Jan-07 -5.69 15.79 -0.29 7.92
Nickel NI MET Mar-15 -5.86 24.96 -0.13 4.14
Zinc ZN MET Mar-07 -4.12 24.90 -0.30 4.73
Rebar RB ENG Mar-09 -2.13 22.21 -0.04 7.24
Hot Rolled Coil HC ENG Mar-14 8.88 26.36 -0.15 5.99
Bitumen BU IND Oct-13 -19.17 26.15 -0.46 5.33
Natural Rubber RU IND Jan-07 -12.78 30.27 -0.21 4.09

CZCE

Cotton CF AGI Jan-07 -1.69 17.50 -0.01 8.11
Sugar SR AGI Jan-07 -1.82 17.19 -0.04 5.94
Rapeseed Meal RM AGI Dec-12 5.97 20.81 -0.05 4.60
Rapeseed Oil OI AGI Mar-13 -10.42 14.69 -0.21 5.81
PTA TA IND Jan-07 -3.17 20.66 -0.13 5.47
Methyl Alcohol MA IND Jun-14 -1.72 24.55 0.01 4.28
Flat Glass FG IND Dec-12 6.80 20.51 0.08 5.09
Thermal Coal ZC IND May-15 16.39 22.47 -0.05 4.35

DCE

Polypropylene PP IND Feb-14 6.90 21.38 0.07 4.38
PVC V IND May-09 -3.12 17.44 -0.03 5.84
LLDPE L IND Jul-07 -0.77 22.51 -0.21 5.03
Coke J ENG Apr-11 1.07 28.21 -0.10 6.32
Coking Coal JM ENG Mar-13 3.51 30.03 -0.11 5.90
Iron Ore I ENG Oct-13 -1.19 32.95 -0.04 4.37
Corn C AGI Jan-07 -0.79 11.01 -0.08 9.05
Corn Starch CS AGI Dec-14 0.90 15.89 0.07 5.14
Soybean 1 A AGI Jan-07 0.71 17.69 -0.20 7.09
Soybean Meal M AGI Jan-07 7.87 20.90 -0.11 5.01
Soybean Oil Y AGI Jan-07 -4.39 19.85 -0.33 5.71
Palm Oil P AGI Oct-07 -9.61 21.97 -0.29 4.85
Egg JD AGI Nov-13 -1.28 19.14 -0.01 5.64

Notes: The raw data involved is from its start date shown in the fifth column to December 2018 for each commodity futures
contracts. The exchanges SHFE, DCE, and CZCE are short for the Shanghai Futures Exchange, the Dalian Commodity Exchange,
and the China Zhengzhou Commodity Exchange, respectively. The code of each futures contract is the one given by the exchange.
The sectors MET, ENG, IND and AGI stand for the market sector of metals, energy products, industrial materials, and agriculture
products, respectively.

2.2. Definitions of positive and negative realized semivariance

For simplicity, let {dt}
T
t=1 be the dates of trading days and {ri,dt}

T
t=1 be the daily return sequence of

individual asset i, ∆ be the sampling interval for high-frequency data and {ri,t,∆}
T/∆
t=1 be the ∆-period

intraday high-frequency return sequence of the individual asset i. Due to there being different

trading times across various commodity futures in China, the intraday sampling interval ∆ is not
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the same for all contracts. For example, as the length of the intraday trading time for the Gold

contract is 555 minutes in a day in total, then the sampling interval ∆ = 1/111 in this case, since

the 5-min high-frequency intraday data is involved.12 While in the case of the Egg contract, the

trading time is 225 minutes in total and the sampling interval ∆ = 1/45.13

For each day, we compute the weekly aggregation of realized variance RVi,t from 5-min intra-

day high-frequency returns within the latest five trading days. The aggregation of realized variance

of individual asset i in day dt over weekly horizons is then

RVi,t(∆) =

W∑
k=1

r2
i,t−(k−1)∆,∆, (1)

where W = 5/∆, and ri,t,∆ ≡ log
(
Pi(t)

)
− log

(
Pi(t − ∆)

)
, Pi(t) indicates the intraday price series.

Hence, the aggregations of positive realized semivariance RS+
i,t and negative realized semivariance

RS−i,t over weekly horizons are

RS+
i,t(∆) =

W∑
k=1

r2
i,t−(k−1)∆,∆I(ri,t−(k−1)∆,∆ > 0), (2)

and

RS−i,t(∆) =

W∑
k=1

r2
i,t−(k−1)∆,∆I(ri,t−(k−1)∆,∆ < 0), (3)

where I(·) is the indicator function. Naturally, RVi,t(∆) = RS+
i,t(∆) + RS−i,t(∆). In order to allow for

a direct comparison between the quantities defined over various time horizons, the multiperiod re-

alized volatilities are normalized sums of the one-period realized volatilities, i.e., a simple average

of the daily quantities (Corsi, 2009; Patton & Sheppard, 2015; Bollerslev et al., 2016). We note

that our empirical results do not change, irrespective of whether we are using the summation or the

average of daily quantities, because the summation is a linear transformation of the average.

12The futures contracts of Gold are listed on the Shanghai Futures Exchange (SHFE). Its intraday trading time
covers the day-trading and night-trading periods. The day-trading periods consist of 09:00 – 10:15, 10:30 – 11:30, and
13:30 – 15:00. And the night-trading period is 21:00 – 02:30 (T+1, i.e., the next day).

13The futures contracts of Egg are listed on the Dalian Commodity Exchange (DCE). Its intraday trading time only
contains the day-trading periods, which are 09:00 – 10:15, 10:30 – 11:30, and 13:30 – 15:00.
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We choose to use the weekly horizon due to the characteristics of investors in the Chinese

commodity futures markets. As Corsi (2009) points out, one can identify three primary volatility

components: the short-term traders with a daily or intra-daily trading frequency, the medium-term

investors who typically rebalance their positions weekly, and the long-term agents with a character-

istic trading frequency of one or more months. According to Fan & Zhang (2020), retail investors

are known to be the dominant market participants in the Chinese commodity futures markets. Typ-

ically, retail investors have perceptions relating to short-term and medium-term investing horizons.

Thus, we decide to consider the weekly aggregated realized semivariance in our study.14

2.3. Why use realized semivariance?

As a measure of downside risk, semivariance has a long history in financial applications. The

positive and negative realized semivariance relate the realized variance to positive and negative

high-frequency returns. They were named by Patton & Sheppard (2015) as “good volatility” and

“bad volatility”, since positive jumps lead to significantly lower future volatility and negative jumps

lead to significantly higher volatility. The time series momentum portfolio contains both long and

short positions. Thus, “good” and “bad” volatility does not strictly refer to positive and negative

realized semivariance, and they should be interpreted in our context as follows: positive realized

semivariance is “good” for the long positions, but “bad” for the short, and vice versa for the nega-

tive realized semivariance.

By using the intraday information, realized variance is a superior risk measurement when com-

pared to those based on daily returns (Andersen et al., 2001; Barndorff-Nielsen & Shephard, 2002;

Andersen et al., 2003). Furthermore, positive and negative realized semivariance can capture the

behavior of the market participants in a higher level of detail that cannot generally be captured by

the daily returns. Therefore, we use the positive (negative) realized semivariance as an indicator

of information flow to monitor the herding (contrarian) traders in a period of upward momentum.

14Corsi (2009), Patton & Sheppard (2015), and Bollerslev et al. (2016) also advocate making use of a monthly
aggregation of daily realized volatility. One can incorporate the monthly aggregation period when considering the
long-term market participants with an investing horizon of one or more months for the developed financial markets.
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Contrarily, the involved negative (positive) realized semivariance monitors the herding (contrarian)

traders in a period of downward momentum.

In Figure 1, we demonstrate the realized semivariance over five trading days under two different

market scenarios: a sideways market in Panel (a) and an uptrending market in Panel (b). The 5-

min high-frequency intraday returns of the Gold future contract is presented here as an example.

In Panel (a) we observe that, although the five-day cumulative return is almost zero (= 0.11%),

the upside risk measured by the positive realized semivariance and the downside risk measured by

the negative realized semivariance are not actually low (RS+ = 0.0313%, RS− = 0.0336%). As

shown in Panel (b), there is a strong upward one-sided market, of which the cumulative return is

3.18%. Nevertheless, both the upside risk (RS+) and the downside risk (RS−) turn out to be lower

than those in Panel (a). This shows the merit of the realized semivariance, considering that the

downside risk for the long position holder is indeed much lower in fact on the strong uptrending

market in Panel (b), than on the volatile sideways market in Panel (a).

Table 2 presents the descriptive statistics in relation to the realized variance RV defined in (1),

the positive realized semivariance RS+ defined in (2), and the negative realized semivariance RS−

defined in (3) for each of the 31 commodity futures contracts from January 2007 to December

2018. For a given commodity, the median of its RS+ and RS− are comparable. By comparing

different sectors, RS+ and RS− in the ENG and IND sectors are generally larger than the ones in

the MET and AGI sectors.
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Figure 1: Intraday price dynamics over five trading days of the Gold future contract. The intraday
price dynamics are plotted with the solid blue line, and different trading days are divided by the
dashed vertical black line. Panel (a) is for the period from March 7th, 2016 to March 11th, 2016,
which depicts severe fluctuation. Panel (b) is for the period from Feburary 1st, 2016 to Feburary
5th, 2016, which depicts a strong upward one-side market. CR is the cumulative return over the five
trading days interval. RS+ and RS− are the positive and negative realized semivariance calculated
over this interval using 5-min high-frequency intraday returns.
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(a) CR = 0.11%, RS+ = 0.0313%, RS− = 0.0336%
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(b) CR = 3.18%, RS+ = 0.0109%, RS− = 0.0067%
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Table 2: Descriptive statistics of the realized variance (RV), the positive realized semivariance
(RS+), and the negative realized semivariance (RS−) for each commodity futures contracts on the
Chinese commodity futures markets

Code RV (%) RS+ (%) RS− (%) Number

Min Median Max Min Median Max Min Median Max of Obs.

Panel A: MET sector

AU 0.0019 0.0315 1.4619 0.0007 0.0132 0.7854 0.0006 0.0138 1.0709 2660
AG 0.0069 0.0508 1.6144 0.0021 0.0225 0.6262 0.0027 0.0236 1.5368 1608
CU 0.0073 0.0576 1.2345 0.0008 0.0272 0.6874 0.0024 0.0270 1.0805 2902
AL 0.0017 0.0292 0.8916 0.0008 0.0138 0.4170 0.0008 0.0138 0.7598 2902
ZN 0.0040 0.0788 2.1254 0.0011 0.0364 0.5316 0.0010 0.0371 1.6645 2855
NI 0.0378 0.1018 0.9843 0.0133 0.0498 0.4065 0.0174 0.0513 0.6795 920

Panel B: ENG sector

RB 0.0056 0.0522 1.0996 0.0025 0.0248 0.6047 0.0022 0.0250 0.4949 2365
HC 0.0102 0.0877 1.1592 0.0036 0.0449 0.6730 0.0052 0.0457 0.6216 1157
J 0.0041 0.0994 1.4792 0.0022 0.0490 0.6045 0.0015 0.0494 0.8747 1867
JM 0.0156 0.1352 1.7904 0.0087 0.0666 0.7858 0.0062 0.0680 1.0047 1396
I 0.0135 0.1918 1.5721 0.0042 0.0946 0.9613 0.0091 0.0935 0.8642 1261

Panel C: IND sector

BU 0.0025 0.1379 2.1508 0.0000 0.0665 1.0445 0.0011 0.0669 1.3203 1260
RU 0.0142 0.1412 1.7451 0.0000 0.0658 0.7443 0.0072 0.0672 1.3730 2902
TA 0.0051 0.0583 1.8903 0.0022 0.0282 0.7830 0.0007 0.0282 1.1632 2902
MA 0.0122 0.1135 0.6077 0.0064 0.0546 0.3286 0.0034 0.0547 0.3719 1099
FG 0.0076 0.0812 0.8345 0.0037 0.0422 0.4186 0.0034 0.0395 0.4159 1467
ZC 0.0029 0.0868 1.0785 0.0013 0.0427 0.5521 0.0015 0.0414 0.5337 886
PP 0.0097 0.0821 0.5394 0.0015 0.0398 0.3504 0.0029 0.0386 0.2933 1172
V 0.0055 0.0526 0.8523 0.0023 0.0250 0.3952 0.0032 0.0247 0.4807 2326
L 0.0058 0.0730 1.4636 0.0022 0.0344 0.6736 0.0024 0.0345 0.9912 2769

Panel D: AGI sector

CF 0.0021 0.0304 1.5430 0.0008 0.0152 0.6335 0.0009 0.0146 1.2233 2902
SR 0.0048 0.0378 1.3024 0.0020 0.0183 0.4273 0.0020 0.0182 1.0640 2902
RM 0.0108 0.0664 0.7348 0.0040 0.0317 0.3438 0.0066 0.0317 0.4702 1448
OI 0.0006 0.0377 0.4297 0.0004 0.0182 0.2478 0.0002 0.0179 0.2919 1394
C 0.0007 0.0168 0.4284 0.0003 0.0086 0.1963 0.0004 0.0080 0.4053 2902
CS 0.0013 0.0410 0.3593 0.0006 0.0210 0.2077 0.0007 0.0202 0.2014 972
A 0.0035 0.0401 1.2796 0.0015 0.0191 0.6966 0.0016 0.0182 0.9661 2902
M 0.0082 0.0532 1.3848 0.0022 0.0249 0.6468 0.0026 0.0240 1.1074 2902
Y 0.0061 0.0456 1.4262 0.0028 0.0225 0.4982 0.0025 0.0205 1.1717 2902
P 0.0058 0.0655 1.4279 0.0030 0.0308 0.6424 0.0028 0.0299 1.1038 2710
JD 0.0064 0.0526 0.4558 0.0027 0.0256 0.1697 0.0037 0.0266 0.3279 1246

Notes: The sectors MET, ENG, IND and AGI stand for the market sector of metals, energy products, industrial materials, and
agriculture products, respectively. The RV, RS+, and RS− are calculated by the partial sum of the squared 5-min high-frequency
intraday returns over five trading days window from the start date in the data sample to December 2018 for each commodity
futures contracts.
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3. Realized semivariance and time series momentum

The heterogeneous market hypothesis (Müller et al., 1997) highlights that volatilities measured

with different time resolutions reflect the perceptions and actions of different market components.

Daniel & Moskowitz (2016) investigate the phenomenon of cross-sectional momentum crashes un-

der different market states by segmenting the bull market and bear market. These studies demon-

strate that capturing the implied dynamic features of both the realized semivariance and the price

trends simultaneously over different windows is helpful for investigating the life cycle of time se-

ries momentum. Garg et al. (2021) also use SLOW (the trailing 12-month return) and FAST (the

trailing 1-month return) momentum signals to define the four stock market cycles (or states): Bull,

Correction, Bear, and Rebound.

In this section, we use the model-free risk estimators RS+
i,t and RS−i,t over the latest five trading

days (weekly horizon) to characterize the scenarios of time series momentum losses. One key

aspect of using time series momentum is the potential to suffer losses during episodes of uptrend

slumps, downtrend rebounds, and a sideways market. As mentioned earlier, we differentiate be-

tween the positive realized semivariance and the negative realized semivariance in order to monitor

the “bad” side risk simultaneously for both the short and long positions in a time series momentum

portfolio.

3.1. Time series momentum formula

Following Moskowitz et al. (2012), we construct the one-period-holding time series momentum

portfolio based on recent J days cumulative return of each contract, where J is referred to as the

length of the lookback window.15 Since our empirical study is based on the Chinese markets,

15As stated in Moskowitz et al. (2012), the portfolio return of time series momentum strategy with 12-months
look-back period and 1-month holding period across S t securities from time t to t + 1 is given by:

rTSM
t,t+1 =

1
S t

S t∑
s=1

sign
(
rs

t−12,t

) 40%
σs

t
rs

t,t+1,

where S t is the number of securities available at time t, and the ex-ante volatility estimator σs
t is an exponentially

weighted moving standard deviation with 60 days span.

15



we consider a relatively short length of lookback window for the time series momentum strategy,

as opposed to concentrating on past months. Recall that the main proportion of investors on the

Chinese market are retail investors, and they maintain a relatively short investing horizon. Yang

et al. (2018) also document the evidence of cross-sectional momentum on both the daily basis and

even the intraday high-frequency basis for the Chinese commodity futures markets, which was

typically discussed on the monthly basis for the international markets. One can choose to use

the monthly lookback window when examining the corresponding empirical evidence for other

international markets. The overall return of a time series momentum portfolio that diversifies

across all the Nt contracts that are available at time t is

rtsm
p,dt+1

=
1
Nt

Nt∑
i=1

sign

 J−1∑
j=0

ri,dt− j

 σtarget

σi,dt

ri,dt+1 . (4)

We follow Moskowitz et al. (2012) to set the annualized target volatility σtarget as 40% to scale the

ex-ante volatility estimator σi,dt , which is an exponentially weighted moving standard deviation

with J-days span on ri,dt .
16

More specifically, since there are long positions and short positions in a time series momentum

portfolio, the portfolio return rtsm
p,dt+1

can be decomposed into two components:

rtsm
l,dt+1

=
1
Nt

Nt∑
i=1

σtarget

σi,dt

ri,dt+1 I


 J−1∑

j=0

ri,dt− j

 > 0

 ,
for the long positions, and

rtsm
s,dt+1

=
1
Nt

Nt∑
i=1

σtarget

σi,dt

ri,dt+1 I


 J−1∑

j=0

ri,dt− j

 < 0

 ,

16We note that the choice of a 40% annual target volatility follows the definition of Moskowitz et al. (2012), and
this quantity of target volatility only matters if one intends to amplify or shrink the whole sequence of time series
momentum portfolio returns using the same scale. Changing the value of this parameter does not change the crucial
results of this study.
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for the short positions, where I(·) is the indicator function. In this case, we naturally have

rtsm
p,dt+1

= rtsm
l,dt+1
− rtsm

s,dt+1
.

Considering the portfolio return formula in (4), we interpret its economic intuition through

three endogenous components: (i) momentum indicator, identifying the momentum signal for a

single risky asset by using the cumulative return over the lookback window; (ii) constant risk

parity, scaling the time-varying volatility of each risky asset using a consistent target volatility;

(iii) equally weighted portfolio, distributing an equal amount of funds to each risky asset within

the portfolio, which follows the “naive 1/N rule”. This decomposition allows us to identify the

properties of time series momentum portfolio construction that contribute to the distribution of time

series momentum portfolio returns. We consider the momentum indicator component as being the

most significant element in the construction of the time series momentum strategy when compared

to the two other components. The momentum indicator is defined by the sign of an individual

asset cumulative return over certain lookback windows. Indeed, this momentum indicator (+1/-

1) gives the right holding period signal (long/short) for the time series momentum strategy when

there exists a persistent (upward/downward) episode of momentum in the time series of single asset

returns. We argue that it provides an adverse holding period signal during the reversal episode of

momentum and the episode of ambiguous momentum signals in a volatile sideways market.

3.2. Realized semivariance under different episodes of momentum

In this subsection, we show that the returns of single contracts in the subsequent period are

highly correlated with the ex-ante intraday risk estimators over weekly horizons (i.e., the ex-ante

aggregation of positive realized semivariance RS+
i,t and negative realized semivariance RS−i,t) un-

der various price trends that are generated by time series momentum. Moreover, this lead-lag

effect is significantly stronger (larger absolute value of the estimated coefficient) during the rever-

sal episodes of time series momentum, than during periods of persistent upward momentum and

downward momentum.
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We then illustrate these issues with three sets of daily time series regressions on each contract of

the 31 commodity futures from January 2007 to December 2018, the results of which are presented

in Tables 3 and 4. In the tables, we categorize all contracts into four sectors, which are MET, ENG,

IND, and AGI. The dependent variable in all regressions is the individual contract return in day

dt+1, i.e., r̃i,dt+1 . The independent variables are combinations of

(i). RS+
i,t, the ex-ante weekly aggregated positive realized semivariance in day dt.

(ii). RS−i,t, the ex-ante weekly aggregated negative realized semivariance in day dt.

(iii). IU , an ex-ante upward momentum indicator that equals one if the cumulative return of the

latest 20 trading days in dt is positive (that is, a long signal is derived from time series

momentum for dt+1) and is zero otherwise.

(iv). ID, an ex-ante downward momentum indicator that equals one if the cumulative return of

the latest 20 trading days in dt is negative (that is, a short signal is derived from time series

momentum for dt+1) and is zero otherwise.

(v). ĨF , a contemporaneous, i.e., not ex-ante, falling day indicator variable that is one if the

individual contract return is less than zero (̃ri,dt+1 < 0), and is zero otherwise.

(vi). ĨR, a contemporaneous, i.e., not ex-ante, rising day indicator variable that is one if the indi-

vidual contract return is greater than zero (̃ri,dt+1 > 0), and is zero otherwise.

Our model specifications follow the study of Daniel & Moskowitz (2016) which assessed the

results of market timing regressions for the cross-sectional winner-minus-loser (WML) portfolio.

Such specifications allow us to assess the predictability of the pattern in terms of RS+
i,t and RS−i,t on

individual commodity futures returns, and how this pattern differs when considering the upward

momentum and the downward momentum simultaneously, with the indicators IU and ID as instru-

ments. In addition, using the falling and rising day indicators ĨF and ĨR, we exploit this further

under the reversals of momentum, i.e., subsequent falling days in the upward momentum episode
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and subsequent rising days in the downward momentum episode, with the interaction terms IU · ĨF

and ID · ĨR as instruments.

We start with the regression which focuses on the ex-ante realized semivariance estimators.

This regression fits the future daily return of individual commodity futures r̃i,dt+1 unconditionally

on the ex-ante positive realized semivariance RS+
i,t and the ex-ante negative realized semivariance

RS−i,t

r̃i,dt+1 = α1 + β+RS+
i,t + β−RS−i,t + ε̃i,dt+1 . (5)

The regression results of (5) are tabulated in column (1) of Table 3. Based on the t-statistics, we

find that the ex-ante realized semivariance estimators have no significant, direct explanatory power

on the next period’s returns of commodity futures.17 The estimated coefficients are not statistically

significant and the adjusted R-square is also low. These observations hold for all commodities.

To demonstrate the feature of commodity futures returns under different episodes of momen-

tum, we run the second regression which fits the future daily return of individual commodity futures

r̃i,dt+1 conditionally on the dummy variables:

r̃i,dt+1 = α2 + βU IU + βU,F

(
IU · ĨF

)
+ βDID + βD,R

(
ID · ĨR

)
+ ε̃i,dt+1 . (6)

The estimated coefficients of regression in (6) are tabulated in column (2) of Table 3. As expected,

the next period’s returns of commodity futures are well characterized by the momentum indicators

with high adjusted R2. We observe that each commodity futures has economically and statistically

significant negative expected returns in the reversal episodes of upward momentum. Additionally,

the absolute value of this negative expected return is larger than the positive expected return when

considering the upward momentum only. This means that the economic gains obtained in a period

17Considering potential heteroscedasticity and serial autocorrelation in the residuals, we use the Newey-West
heteroscedasticity-autocorrelation-consistent (HAC) standard errors to adjust the t-statistics of model coefficient esti-
mates for all time series regressions in this study (see more details in White, 1980; MacKinnon & White, 1985; West
& Newey, 1987).
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of persistent upward momentum can be offset by the losses that occur in the reversals of upward

momentum in the sense of the simple long-only (buy and hold) strategy. A similar pattern is also

observed for the returns of each commodity futures during episodes of downward momentum and

in the reversal periods of downward momentum. This evidence reveals the necessity of modelling

the relationship between the next period’s returns of individual commodity futures and the ex-ante

risk estimators under different episodes of time series momentum.

We then run the momentum timing regression that fits the next period’s daily returns of com-

modity futures r̃i,dt+1 with the ex-ante positive realized semivariance RS+
i,t and the ex-ante negative

realized semivariance RS−i,t conditional on different momentum indicators:

r̃i,dt+1 = γ0 +
[(
γ+

U IU + γ+
U,F IU · ĨF

)
+

(
γ+

DID + γ+
D,RID · ĨR

)]
RS+

i,t

+
[(
γ−U IU + γ−U,F IU · ĨF

)
+

(
γ−DID + γ−D,RID · ĨR

)]
RS−i,t + ε̃i,dt+1 .

(7)

The conditional model above in (7) can, in fact, be seen as a simultaneous version following two

regressions which consider the episode of upward momentum alone:

r̃i,dt+1 = γ0 +
(
γ+

U IU + γ+
U,F IU · ĨF

)
RS+

i,t

+
(
γ−U IU + γ−U,F IU · ĨF

)
RS−i,t + ε̃i,dt+1 ,

and consider the episode of downward momentum alone:

r̃i,dt+1 = γ0 +
(
γ+

DID + γ+
D,RID · ĨR

)
RS+

i,t

+
(
γ−DID + γ−D,RID · ĨR

)
RS−i,t + ε̃i,dt+1 .

Table 4 shows the regression results of the conditional model (7). The estimated coefficients, which

are conditional on the single indicator terms and the interaction terms, are statistically significant

for most commodity futures. Our results tabulate significant t-statistics in terms of coefficient

estimating and also report high adjusted R2 in terms of model fitting (ranging from 30% to 50%

approximately).
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Table 3: Results of regression on realized semivariance and momentum indicators separately from
January 2007 to December 2018.

Heteroskedasticity and Autocorrelation Consistent Estimator

(1) (2)

Variable Intercept RS+
i,t RS−i,t R2 Intercept IU IU · ĨF ID ID · ĨR R2

ad j

Coefficient α̂1 β̂+ β̂− α̂2 β̂U β̂U,F β̂D β̂D,R

Panel A: Met sector

AU 0.0001 -0.3708 0.1835 0.0003 -0.0026 0.0101 -0.0155 -0.0053 0.0154 0.4611
(0.30) (-0.58) (0.43) (-1.10) (4.29) (-24.48) (-2.23) (20.34)

AG -0.0004 0.7178 -0.6800 0.0027 -0.0004 0.0099 -0.0189 -0.0083 0.0165 0.4174
(-1.25) (1.48) (-2.12) (-0.12) (2.90) (-17.43) (-2.42) (18.33)

CU 0.0003 -0.0731 -0.3096 0.0005 -0.0006 0.0114 -0.0211 -0.0116 0.0224 0.4937
(0.76) (-0.14) (-0.53) (-0.29) (5.03) (-24.07) (-5.02) (22.36)

AL -0.0001 -1.3604 0.7251 0.0017 -0.0010 0.0085 -0.0152 -0.0058 0.0124 0.4502
(-0.54) (-1.29) (0.94) (-1.06) (8.63) (-21.62) (-6.02) (19.68)

NI -0.0006 -0.6977 1.1835 0.0014 0.0002 0.0123 -0.0252 -0.0128 0.0233 0.5597
(-0.70) (-0.48) (1.53) (0.05) (2.77) (-22.46) (-2.83) (21.72)

ZN -0.0001 -0.4015 0.1674 0.0002 0.0058 0.0051 -0.0223 -0.0190 0.0239 0.5171
(-0.16) (-0.59) (0.28) (1.85) (1.59) (-26.43) (-5.89) (24.66)

Panel B: ENG sector

RB 0.0000 -1.7723 1.6417 0.0018 -0.0009 0.0113 -0.0207 -0.0087 0.0182 0.4613
(-0.09) (-1.24) (1.00) (-0.44) (5.32) (-17.53) (-4.26) (25.62)

HC 0.0008 -1.9277 1.3967 0.0024 0.0002 0.0134 -0.0271 -0.0105 0.0207 0.4988
(1.05) (-0.96) (0.63) (0.12) (6.27) (-15.58) (-5.14) (16.87)

J -0.0006 1.6272 -0.7632 0.0019 0.0007 0.0149 -0.0293 -0.0125 0.0218 0.4809
(-1.28) (1.03) (-0.59) (0.30) (5.72) (-18.89) (-4.91) (20.96)

JM 0.0000 -1.5808 1.6233 0.0013 -0.0056 0.0217 -0.0314 -0.0069 0.0240 0.5096
(0.08) (-1.03) (1.33) (-5.40) (13.91) (-16.87) (-5.20) (19.44)

I -0.0001 -1.3333 1.3147 0.0018 -0.0056 0.0231 -0.0339 -0.0100 0.0290 0.5422
(-0.07) (-1.10) (0.95) (-1.55) (6.07) (-18.64) (-2.64) (21.20)

Panel C: IND sector

BU 0.0002 -2.3087 1.1440 0.0053 -0.0025 0.0140 -0.0234 -0.0111 0.0232 0.4734
(0.25) (-1.80) (1.32) (-2.59) (10.17) (-15.80) (-8.36) (18.61)

RU -0.0009 1.7650 -1.1566 0.0043 0.0064 0.0084 -0.0295 -0.0222 0.0284 0.5528
(-1.67) (2.45) (-1.82) (3.39) (4.30) (-35.32) (-11.13) (33.24)

TA 0.0002 -1.0824 0.3837 0.0013 -0.0022 0.0124 -0.0196 -0.0078 0.0182 0.5061
(0.49) (-1.03) (0.55) (-1.15) (6.31) (-26.69) (-3.96) (25.58)

MA -0.0004 1.5724 -1.0944 0.0010 0.0010 0.0120 -0.0237 -0.0140 0.0236 0.5558
(-0.47) (1.04) (-0.72) (0.46) (5.13) (-22.86) (-5.85) (18.66)

FG 0.0003 -0.2160 0.1409 0.0000 0.0000 0.0095 -0.0191 -0.0096 0.0188 0.5073
(0.63) (-0.14) (0.12) (0.01) (4.88) (-23.93) (-4.88) (25.99)

ZC 0.0007 -1.5488 1.5474 0.0009 0.0005 0.0109 -0.0230 -0.0093 0.0189 0.5302
(1.01) (-0.92) (0.85) (0.24) (5.12) (-17.92) (-4.46) (16.85)

PP 0.0003 -1.3306 1.2572 0.0009 0.0012 0.0098 -0.0200 -0.0119 0.0202 0.5300
(0.42) (-0.98) (1.01) (0.65) (4.95) (-21.52) (-6.05) (21.33)

V 0.0001 -1.9184 1.1842 0.0019 0.0000 0.0082 -0.0167 -0.0080 0.0150 0.4858
(0.37) (-1.68) (1.39) (-0.02) (3.63) (-22.61) (-3.57) (23.63)

L 0.0006 -0.3830 -0.8272 0.0040 -0.0006 0.0105 -0.0205 -0.0108 0.0215 0.5209
(1.42) (-0.35) (-0.82) (-0.30) (5.25) (-29.99) (-5.09) (21.19)

continued on the next page
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(Continued) Results of regression on realized semivariance and momentum indicators separately
from January 2007 to December 2018

Heteroskedasticity and Autocorrelation Consistent Estimator

(1) (2)

Variable Intercept RS+
i,t RS−i,t R2 Intercept IU IU · ĨF ID ID · ĨR R2

ad j

Coefficient α̂1 β̂+ β̂− α̂2 β̂U β̂U,F β̂D β̂D,R

Panel D: AGI sector

CF -0.0001 1.1136 -0.8300 0.0018 0.0000 0.0084 -0.0166 -0.0071 0.0135 0.4374
(-0.59) (1.38) (-1.14) (-0.01) (6.60) (-17.37) (-6.09) (22.85)

SR -0.0003 0.6406 0.0161 0.0005 0.0017 0.0067 -0.0162 -0.0098 0.0153 0.5046
(-1.04) (0.73) (0.04) (1.19) (4.51) (-24.25) (-6.75) (30.79)

RM 0.0000 -0.5979 1.3171 0.0013 0.0025 0.0082 -0.0205 -0.0126 0.0187 0.5309
(0.02) (-0.51) (1.17) (0.94) (3.01) (-21.39) (-4.62) (27.26)

OI -0.0006 -0.6516 1.6253 0.0015 -0.0004 0.0078 -0.0143 -0.0069 0.0133 0.5221
(-1.74) (-0.44) (1.56) (-0.31) (5.86) (-21.34) (-5.30) (26.08)

C 0.0002 -1.7168 0.1445 0.0017 0.0000 0.0045 -0.0090 -0.0056 0.0099 0.4435
(1.22) (-1.76) (0.20) (-0.01) (2.81) (-23.32) (-3.45) (24.77)

CS -0.0001 0.1514 0.2905 0.0001 -0.0012 0.0089 -0.0153 -0.0063 0.0139 0.5045
(-0.27) (0.07) (0.12) (-0.71) (4.99) (-16.38) (-3.57) (18.33)

A 0.0003 -0.4427 -0.3102 0.0009 0.0009 0.0069 -0.0157 -0.0092 0.0155 0.4684
(1.17) (-0.68) (-0.36) (0.58) (4.21) (-26.25) (-5.39) (19.85)

M 0.0004 0.0179 -0.1526 0.0001 0.0021 0.0082 -0.0197 -0.0123 0.0193 0.5244
(1.33) (0.03) (-0.19) (1.33) (5.13) (-30.58) (-7.50) (24.62)

Y 0.0003 -0.3125 -0.7159 0.0026 0.0009 0.0083 -0.0185 -0.0104 0.0178 0.5028
(0.83) (-0.38) (-1.29) (0.53) (4.87) (-26.43) (-5.98) (21.67)

P 0.0003 -0.7271 -0.5763 0.0034 0.0026 0.0081 -0.0211 -0.0138 0.0201 0.5304
(0.75) (-0.96) (-1.01) (1.28) (3.85) (-28.99) (-6.49) (23.49)

JD -0.0002 -1.4340 1.7953 0.0012 0.0020 0.0074 -0.0187 -0.0109 0.0162 0.4953
(-0.30) (-0.68) (1.04) (1.40) (4.78) (-24.37) (-7.02) (21.97)

Notes: The regression (1) fits the next period individual asset daily return r̃i,dt+1 with the ex-ante positive realized semivariance RS+
i,t and the ex-ante

negative realized semivariance RS+
i,t:

r̃i,dt+1 = α1 + β+RS+
i,t + β−RS−i,t + ε̃i,dt+1 .

The regression (2) fits the next period individual asset daily return r̃i,dt+1 with dummy variables of different momentum indicators:

r̃i,dt+1 = α2 + βU IU + βU,F

(
IU · ĨF

)
+ βDID + βD,R

(
ID · ĨR

)
+ ε̃i,dt+1 ,

where IU is the ex-ante upward momentum indicator, ID is the ex-ante downward momentum indicator, ĨF is the contemporaneous falling day
indicator, and ĨR is the contemporaneous rising day indicator. The coefficient estimates and adjusted R-square are reported. West & Newey (1987)
standard errors are employed, and the adjusted statistical significance is documented in terms of t-statistics in parentheses. The sectors MET, ENG,
IND and AGI stand for the market sectors of metals, energy products, industrial materials, and agriculture products, respectively.

Moreover, we summarize the model coefficients of (7) under different episodes of time series

momentum in Figure 2. Specifically, as illustrated in the graph, the red bars of the
∣∣∣γ̂+

U,F

∣∣∣ and
∣∣∣γ̂−U,F ∣∣∣

are greater than the blue bars of
∣∣∣γ̂+

U + γ̂+
U,F

∣∣∣ and
∣∣∣γ̂−U + γ̂−U,F

∣∣∣ for all contracts. This indicates that the

effect of RS+ and RS− in the subsequent falling days of the upward momentum episode (uptrending

market) turns out to be stronger than during periods of ordinary upward momentum. Consistently,
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this pattern is also confirmed for RS+ and RS− in the subsequent rising days of the downward

momentum episode (downward trending market) when compared with the ordinary downward

momentum. To illustrate our regression results in detail, we take the case of the copper contract

(CU) as an example (see Figure 2 and Panel A of Table 4). The estimated
∣∣∣γ̂+

U,F

∣∣∣ of 10.33 for RS+
i,t

and
∣∣∣γ̂−U,F ∣∣∣ of 16.30 for RS−i,t, are larger than the estimated

∣∣∣γ̂+
U + γ̂+

U,F

∣∣∣ = 5.38 and
∣∣∣γ̂−U + γ̂−U,F

∣∣∣ = 7.31,

respectively. Meanwhile, the estimated coefficients of the interaction term ID · ĨR (
∣∣∣γ̂+

D,R

∣∣∣ = 14.09,∣∣∣γ̂−D,R∣∣∣ = 8.30) show similar results to ID (
∣∣∣γ̂+

D + γ̂+
D,R

∣∣∣ = 8.96,
∣∣∣γ̂−D + γ̂−D,R

∣∣∣ = 3.25).

These results imply that a more significant increment in RS+ or RS− will potentially contribute

to more severe losses during the reversal episodes of time series momentum, i.e., future slumps

during periods of upward momentum and future rebounds during periods of downward momen-

tum. Volatility clustering is another reason why we monitor the “bad” side risk for the time series

momentum portfolio when the ex-ante risk estimators RS+
i,t and/or RS−i,t proceed to the tailed groups

of their empirical distribution, this being the right 20% percentiles (the top group of segmenting

the population into five groups). Such moments of risk estimators RS+ and RS− imply a high

probability of time series momentum losses.
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Figure 2: Least square estimates for the coefficients of the momentum timing regression in terms
of each commodity future contract from the start date of the data sample to December 2018. The
momentum timing regression fits the next period individual asset daily return r̃i,dt+1 with the ex-ante
positive realized semivariance RS+

i,t and the ex-ante negative realized semivariance RS+
i,t conditional

on different momentum indicators:

r̃i,dt+1 = γ0 +
[
(γ+

U IU + γ+
U,F IU · ĨF) + (γ+

DID + γ+
D,RID · ĨR)

]
RS+

i,t

+
[
(γ−U IU + γ−U,F IU · ĨF) + (γ−DID + γ−D,RID · ĨR)

]
RS−i,t + ε̃i,dt+1 ,

where IU is the ex-ante upward momentum indicator, ID is the ex-ante downward momentum
indicator, ĨF is the contemporaneous falling day indicator, and ĨR is the contemporaneous rising
day indicator. The red bars on the graph depict the absolute values of the coefficients in terms
of the subsequent falling days in the upward momentum IU · ĨF and the subsequent rising days in
the downward momentum ID · ĨR. The blue bars on the graph depict the absolute values of the
coefficients in terms of the regular upward momentum and the regular downward momentum.
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Table 4: Momentum timing regression results from January 2007 to December 2018

Heteroskedasticity and Autocorrelation Consistent Estimator

Variable Intercept IU · RS+
i,t IU · ĨF · RS+

i,t ID · RS+
i,t ID · ĨR · RS+

i,t IU · RS−i,t IU · ĨF · RS−i,t ID · RS−i,t ID · ĨR · RS−i,t R2
ad j

Coefficient γ̂0 γ̂+
U γ̂+

U,F γ̂+
D γ̂+

D,R γ̂−U γ̂−U,F γ̂−D γ̂−D,R

Panel A: MET sector

AU 0.0003 5.4056 -11.1490 -5.7878 10.1075 6.4920 -15.5424 -4.7114 7.9864 0.2898
(1.33) (5.13) (-5.53) (-1.70) (1.70) (3.29) (-4.00) (-3.58) (3.24)

AG -0.0006 3.1878 -5.2138 -8.7421 19.5513 12.9430 -25.4831 -2.1154 4.2590 0.2793
(-1.64) (1.38) (-1.65) (-4.13) (4.15) (4.54) (-6.57) (-3.09) (2.76)

CU -0.0004 4.9489 -10.3292 -5.1285 14.0878 9.1992 -16.3049 -5.0444 8.2993 0.4466
(-1.50) (4.82) (-6.46) (-4.10) (7.09) (6.63) (-7.52) (-6.96) (7.46)

AL 0.0000 9.6056 -22.6754 -8.8829 15.2334 2.4624 -2.7148 -5.7032 9.9928 0.3984
(-0.15) (4.23) (-5.61) (-2.84) (3.66) (1.35) (-0.95) (-4.37) (9.17)

NI -0.0007 11.1052 -17.7788 -20.1969 36.4163 2.8140 -7.1512 3.1643 -3.2697 0.4347
(-0.88) (3.67) (-3.36) (-4.76) (7.93) (1.16) (-1.39) (1.20) (-0.80)

ZN 0.0002 5.5900 -13.1504 -8.8169 20.0366 6.8997 -13.3954 -3.7850 4.0472 0.4303
(0.76) (3.79) (-6.96) (-5.44) (7.84) (4.02) (-5.86) (-2.74) (1.76)

Panel B: ENG sector

RB -0.0008 9.8008 -16.5363 -10.2310 16.5980 4.2627 -7.5621 -4.1543 13.6717 0.4328
(-2.36) (3.24) (-4.09) (-4.11) (3.99) (1.41) (-2.07) (-1.89) (3.38)

HC -0.0007 11.1866 -15.6434 -10.3508 19.2163 2.4798 -8.6825 -1.6727 6.9628 0.4657
(-1.19) (2.90) (-3.08) (-4.39) (3.95) (0.72) (-1.89) (-1.10) (1.61)

J -0.0005 11.8462 -23.1186 -4.7776 14.7338 -0.7227 2.1025 -6.5668 7.5007 0.4653
(-1.12) (4.56) (-5.40) (-1.93) (3.72) (-0.31) (0.50) (-3.05) (2.24)

JM -0.0006 11.9382 -23.0731 -12.2046 17.9503 -1.1021 3.4356 2.1747 0.8394 0.5041
(-1.14) (4.93) (-5.84) (-3.26) (4.05) (-0.61) (0.84) (0.73) (0.22)

I -0.0013 -0.6947 -3.4963 -10.8717 21.1796 11.6183 -16.2055 0.0247 1.1572 0.5141
(-1.59) (-0.20) (-0.73) (-6.70) (8.29) (3.48) (-3.58) (0.02) (0.56)

Panel C: IND sector

BU -0.0013 14.2810 -22.2394 -2.1771 8.4033 -2.0561 0.3850 -3.4565 4.1549 0.3574
(-2.31) (3.74) (-3.98) (-0.99) (2.34) (-0.50) (0.06) (-1.32) (0.93)

RU -0.0006 6.3338 -11.3032 -6.7677 13.3056 6.7457 -14.0874 -3.8217 6.5529 0.4453
(-1.13) (5.03) (-5.72) (-3.66) (5.87) (5.16) (-6.19) (-5.37) (4.05)

TA -0.0006 11.9440 -19.6687 -10.1940 14.3207 2.4096 -2.5145 -1.6600 5.6113 0.3650
(-1.85) (6.59) (-6.66) (-4.60) (4.37) (1.30) (-0.70) (-0.74) (2.26)

MA -0.0006 3.3061 -8.8531 -3.3291 8.4846 12.0776 -18.4309 -9.3447 17.8708 0.4882
(-0.78) (1.48) (-2.30) (-1.03) (2.01) (5.10) (-4.31) (-2.53) (4.77)

FG -0.0007 7.3356 -15.9817 -19.5203 37.0582 5.1566 -7.5597 4.4409 -3.7400 0.4282
(-1.40) (3.23) (-4.21) (-3.80) (4.82) (1.81) (-1.34) (1.03) (-0.54)

ZC -0.0013 17.1625 -19.2474 -5.1753 12.4171 -3.3876 -2.7911 -2.4287 8.2973 0.3675
(-1.96) (5.01) (-2.62) (-2.08) (2.02) (-0.89) (-0.54) (-0.64) (1.05)

PP -0.0010 5.5840 -12.3387 -6.8146 19.8063 15.0910 -19.4793 -8.0193 14.1737 0.4645
(-1.83) (1.46) (-2.05) (-1.91) (3.54) (3.73) (-3.17) (-2.47) (2.95)

V 0.0000 10.2983 -22.0233 -10.8155 21.4728 0.9797 -2.8971 -5.7496 10.4080 0.4269
(-0.04) (5.64) (-7.96) (-4.18) (4.59) (0.50) (-1.08) (-2.99) (3.10)

L -0.0002 8.2133 -17.5013 -7.1958 16.3222 3.6872 -6.8633 -3.2938 6.5458 0.4622
(-0.59) (5.90) (-8.06) (-7.46) (7.20) (2.67) (-2.60) (-3.33) (3.74)

continued on the next page
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(Continued) Momentum timing regression results from January 2007 to December 2018

Heteroskedasticity and Autocorrelation Consistent Estimator

Variable Intercept IU · RS+
i,t IU · IF · RS+

i,t ID · RS+
i,t ID · ĨR · RS+

i,t IU · RS−i,t IU · IF · RS−i,t ID · RS−i,t ID · ĨR · RS−i,t R2
ad j

Coefficient γ̂0 γ̂+
U γ̂+

U,F γ̂+
D γ̂+

D,R γ̂−U γ̂−U,F γ̂−D γ̂−D,R

Panel D: AGI sector

CF -0.0002 10.1511 -17.1159 -8.0771 16.2995 0.6714 -3.6470 -7.1423 12.6977 0.3940
(-0.74) (5.67) (-5.03) (-4.10) (4.63) (0.56) (-1.39) (-3.14) (3.64)

SR -0.0004 11.6201 -19.9240 -11.5443 28.2082 4.6160 -10.2116 -3.1824 3.5761 0.3840
(-1.67) (4.29) (-4.63) (-4.70) (6.10) (1.64) (-2.44) (-1.33) (1.00)

RM 0.0016 6.2222 -17.4406 -22.9164 34.0781 4.2350 -8.4469 -3.0105 5.7493 0.4419
(3.32) (3.75) (-4.73) (-7.34) (7.89) (1.93) (-1.60) (-1.38) (1.87)

OI -0.0009 5.9666 -12.3301 -17.8237 32.0220 20.4580 -26.3767 -0.2753 3.9745 0.3650
(-2.02) (1.51) (-1.98) (-4.21) (4.51) (3.70) (-3.74) (-0.07) (0.69)

C -0.0002 9.0696 -20.2376 -21.4440 40.7009 15.4279 -21.0269 -4.9390 8.0799 0.3630
(-0.99) (1.60) (-2.24) (-6.09) (7.25) (2.03) (-1.91) (-3.82) (3.58)

CS -0.0001 10.8363 -20.0391 -15.1835 33.6607 6.2276 -12.2294 -10.8804 16.6440 0.4409
(-0.37) (2.34) (-2.99) (-2.79) (3.52) (1.14) (-1.40) (-2.43) (2.07)

A -0.0001 7.8777 -13.1790 -1.0299 10.6241 6.8222 -17.1441 -8.8573 11.6643 0.3855
(-0.32) (4.83) (-4.85) (-0.45) (2.89) (4.35) (-7.54) (-7.56) (5.46)

M 0.0003 8.4069 -14.6621 -6.0803 11.8123 6.0703 -15.0248 -5.1195 9.6782 0.4004
(1.03) (6.54) (-7.00) (-2.48) (2.91) (4.35) (-5.07) (-4.35) (4.31)

Y -0.0001 9.0121 -19.2313 -7.1916 15.7939 7.8908 -13.4288 -5.0536 7.9728 0.4547
(-0.40) (6.74) (-9.87) (-4.55) (5.64) (4.91) (-5.49) (-5.56) (5.59)

P -0.0002 8.5221 -17.0720 -6.2062 15.8268 4.5614 -9.3409 -5.1980 7.4245 0.4518
(-0.80) (4.97) (-7.13) (-3.10) (4.10) (1.80) (-2.56) (-4.82) (3.90)

JD -0.0003 17.1934 -29.3317 -12.8346 21.7451 1.9948 -5.2828 -10.6997 21.3241 0.4108
(-0.62) (4.88) (-5.34) (-3.30) (3.63) (0.57) (-0.89) (-3.41) (4.18)

Notes: The momentum timing regression fits the next period individual asset daily return r̃i,dt+1 with the ex-ante positive realized semivariance RS+
i,t and the ex-ante negative

realized semivariance RS−i,t conditional on different momentum indicators:

r̃i,dt+1 = γ0 +
[
(γ+

U IU + γ+
U,F IU · ĨF) + (γ+

DID + γ+
D,RID · ĨR)

]
RS+

i,t

+
[
(γ−U IU + γ−U,F IU · ĨF) + (γ−DID + γ−D,RID · ĨR)

]
RS−i,t + ε̃i,dt+1 ,

where IU is the ex-ante upward momentum indicator, ID is the ex-ante downward momentum indicator, ĨF is the contemporaneous falling day indicator, and ĨR is the
contemporaneous rising day indicator. The coefficient estimates and adjusted R-square are reported. West & Newey (1987) standard errors are employed, and the adjusted
statistical significance is documented in terms of t-statistics in parentheses. The sectors MET, ENG, IND and AGI stand for the market sectors of metals, energy products,
industrial materials, and agriculture products, respectively.

4. Tuned time series momentum

Although the return formula in (4) shows a well-defined, weight-generating function built upon

the idea of volatility scaling and risk parity, the long/short signals derived from the signs of past

cumulative returns of single risky assets are less effective, particularly during the reversals of mo-

mentum and in sideways markets. In Section 3, we show a significant lead-lag effect between com-

modity futures returns and the realized semivariance estimators, even during the reversal episodes

of time series momentum. In this section, we explore how we can use the intraday information

implied in the positive and negative realized semivariance when timing the life cycle of time series

momentum.
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We design a set of rules that adjust the trading signals of the original time series momentum

in different regions of the joint distribution of RS+ and RS−. The empirical results on the Chi-

nese commodity futures markets demonstrate that the tuning signals of the original time series

momentum can be used to mitigate strategy losses.

4.1. Portfolio construction

Our rule-based tuning approach has been developed following the analysis of different scenar-

ios in which time series momentum suffers losses. Figure 3 shows four regions on the surface of

the joint distribution of the positive and negative realized semivariance. These four regions are

divided by their quantile-related reference points, which are recursively generated from the joint

(80%, 80%) percentiles of the historical distribution of (RS+
i,t, RS−i,t), with a 250 trading days fixed-

length rolling window.18 Figure 3 demonstrates the reference points in the coordinate plane, and

also lists the associated strategies that are considered during the holding period for each of these

four regions. These four regions enable us to filter the moments when the upside risk measurement

(RS+) and/or the downside risk measurement (RS−) distribute into their right tails.

Then, the portfolio return formula of our tuned time series momentum (TTSM) is given by

rttsm
p,dt+1

=
1
Nt

Nt∑
i=1

signttsm
i,dt

σtarget

σi,dt

ri,dt+1 ,

where the long/short decision of the tuned portfolio is the outcome of a nonlinear function B(·).

This decision function B(·) is built upon the past returns, the positive realized semivariance, and

the negative realized semivariance of the underlying individual commodity futures

signttsm
i,dt

= B

sign

 J−1∑
j=0

ri,dt− j

 ,RS+
i,t (∆) ,RS−i,t (∆)

 .
We explain, in further detail, the outcome gained by the nonlinear decision functionB(·) in Table 5.

18The choice of 250 days is arbitrary but matches a 12-month-long experimental window, which is considered to
cover 250 observations and to derive a stable empirical distribution along time. We note that this window could be
modified as long as the (80%, 80%) percentile value is stable.
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Figure 3: Choices of the tuned time series momentum in different regions on the surface of the
joint distribution of the positive realized semivariance (RS+) and the negative realized semivariance
(RS−). The surface of the joint distribution is divided into four regions by the reference point that
generated from the joint (80%, 80%) percentiles of their historical distribution.

RS

Region 1Region 2

Region 3 Region 4

Reference Point (RS  , RS  )

Action 2.1: Turn Long to Short
                & Keep Short Signal

Action 2.2: Turn Long to Short 
                & Close Short Signal

Action 1: Close Out

Action 3: Original Time 
         Series Momentum

Action 4.1: Turn Short to Long 
                 & Keep Long Signal

Action 4.2: Turn Short to Long 
                 & Close Long Signal

+

RS -

+ -

Table 5 reports the different actions and holding period portfolio returns of the tuning choices

under each of the four regions presented in Figure 3, and we refer to them as TTSM-S1 and

TTSM-S2. As documented in Section 2, the realized semivariance can provide more accurate

risk estimates in the reversal episodes of momentum. More specifically, the risk measurements of

positive and negative realized semivariance are relatively high when there is a severe fluctuation

in the sideways market, which can still lead to losses for both long and short signals. Meanwhile,

both are relatively low when there is a less volatile upward momentum, which can lead to positive

results for the long signal. Consistently, one can find a similar pattern in the less volatile downward

momentum. In this case, we choose to close out all long and short positions in Region 1, and retain
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the original time series momentum signals in Region 3.19

Table 5: Methodologies and results of the tuned time series momentum strategy construction using
the nonlinear decision function B(·)

Strategy
Region 1 Region 2 Region 3 Region 4

Action Return Action Return Action Return Action Return

TTSM-S1 1 0 2.1 −rtsm
l,dt
− rtsm

s,dt
3 rtsm

l,dt
− rtsm

s,dt
4.1 rtsm

l,dt
+ rtsm

s,dt

TTSM-S2 1 0 2.2 −rtsm
l,dt

3 rtsm
l,dt
− rtsm

s,dt
4.2 rtsm

s,dt

Notes: Time series momentum portfolio return rtsm
p,dt+1

across Nt securities at the day dt+1 can be decomposed into two
components:

rtsm
p,dt+1

= rtsm
l,dt+1
− rtsm

s,dt+1
,

where rtsm
l,dt+1

is for the long positions:

rtsm
l,dt+1

=
1
Nt

Nt∑
i=1

σtarget

σi,dt

ri,dt+1 I


 J−1∑

j=0

ri,dt− j

 > 0

 ,
and rtsm

s,dt+1
is for the short positions:

rtsm
s,dt+1

=
1
Nt

Nt∑
i=1

σtarget

σi,dt

ri,dt+1 I


 J−1∑

j=0

ri,dt− j

 < 0

 ,
the annualized target volatility σtarget is set to be 40% to scale the ex-ante volatility estimator σi,dt , which is an expo-
nentially weighted moving standard deviation with J-days span on the daily asset returns ri,dt . The decision function
B(·) of the tuned time series momentum (TTSM) is built upon the past returns, the positive realized semivariance, and
the negative realized semivariance of underlying individual asset

signttsm
i,dt

= B

sign

 J−1∑
j=0

ri,dt− j

 ,RS+
i,t (∆) ,RS−i,t (∆)

 ,
and the corresponding portfolio return formula is given by

rttsm
p,dt+1

=
1
Nt

Nt∑
i=1

signttsm
i,dt

σtarget

σi,dt

ri,dt+1 .

Action 1: close out; Action 2.1: turn long to short and keep short signal; Action 2.2: turn long to short and close short
signal; Action 3: original time series momentum; Action 4.1: turn short to long and keep long signal; Action 4.2: turn
short to long and close long signal.

The tuning choices under Region 2 and Region 4 are complicated due to the fact that the

corresponding asymmetric structures of positive and negative realized semivariance have wholly

19The term “close out” means that we treated those days as zero returns.
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different meanings for the long signal in periods of upward momentum and the short signal during

periods of downward momentum. Considering the predictable pattern of the “bad” side risk to the

reversals of momentum, we design to reverse the signals of the original time series momentum

when the “bad” side risk is relatively high in the construction of the TTSM-S1 strategy. Namely,

turning the long signal into a short signal in Region 2, and turning the short signal into a long

signal in Region 4.

The existing time series momentum market anomaly has been regarded as the market reaction

process from an initial under-reaction to a delayed over-reaction toward the incoming new informa-

tion (Hurst et al., 2013). Owing to the imperfect market and irrational trading, the delayed market

overreaction is accompanied by the herding behavior of market participants. We then interpret it as

the period in which an asset price increases (decreases) rapidly along with the upward (downward)

momentum. Considering the TTSM-S2 strategy to be an enhanced version of the TTSM-S1, we

further explore the predictable pattern of “good” side risk to market overreaction. Namely, closing

out the short position in Region 2, and closing out the long position in Region 4, to avoid market

uncertainties following the irrational trading behavior.

Figure 4: The rolling windows used in generating the trading signals of TSM and TTSM strategies.

t t+1 day

5 days 

TTSM 

20 days 

TSM 

250 days 

TTSM 

t-4t-19t-249 t-3 t-2 t-1

We later examine the out-of-sample strategy performance of the tuned time series momentum

(TTSM) empirically based on the Chinese commodity futures markets. The out-of-sample portfo-

lio is rebalanced daily with a rolling window procedure, which is the same size as the lookback
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window. The results allow us to evaluate how the intraday information implied in the realized

semivariance can predict the life cycle of time series momentum. To clarify various windows in

our analysis, we streamline the rolling-window set-up for construction procedure for the TTSM

in Figure 4. For a given day dt, the constructing procedure of TTSM trading signal contains the

following four steps:

Step (i). We obtain the original time series momentum signal for each individual commodity

futures using cumulative returns over the past 20 days (i.e., the lookback window from

dt−19 to dt). If the cumulative return is positive, it indicates an upward momentum and

a long position. Otherwise, it indicates a downward momentum and a short position.

Step (ii). We calculate the positive realized semivariance RS+
i,t and negative realized semivariance

RS−i,t using intraday 5-min returns over the past five days (i.e., from dt−4 to dt). We in-

clude the intraday returns in day dt in the calculation to ensure all available information

is used.

Step (iii). As explained in Step (ii) we calculate RS+
i,t and RS−i,t on every trading day dt giving us

time series observations for both estimators. We derive the (80%, 80%) percentiles,

denoted as the reference point (x+, x−), of the joint distribution of positive realized

semivariance (RS+) and negative realized semivariance (RS−) using historical sample

observations from dt−249 to dt.20

Step (iv). We compare RS+
i,t and RS−i,t obtained in Step (ii) with the reference point (x+, x−) ob-

tained in Step (iii) to identify where current estimators sit in relation to the historical

distribution. Following the rules illustrated in Figure 3, we then generate TTSM trad-

ing signals for the next trading day dt+1 by adjusting the original long or short positions

obtained in Step (i).

20Denote the joint empirical CDF (cumulative distribution function) of RS+ and RS− as FRS+,RS− (rs+, rs−), the
reference point of (80%, 80%) percentiles means the marginal CDFs satisfy FRS+,RS− (x+,∞) = FRS+ (x+) = P(RS+ ≤

x+) = 80% and FRS+,RS− (∞, x−) = FRS− (x−) = P(RS− ≤ x−) = 80%.
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4.2. Strategy performance

As an example, the performance of the TTSM approach is examined on the basis of an original

time series momentum (TSM) strategy with a 20-trading-days (nearly one month in the calendar)

lookback window. Our following robustness check also produces consistent results when using

different lookback windows. Recall that, owing to the night-trading policy implemented in 2013,

the out-of-sample performance should be examined over different subsamples. As a result, per-

formance evaluation measures, including the annual return, annualized Sharpe ratio, maximum

drawdown, t-statistics of one-sided t-test, and others, are tabulated according to different subsam-

ples.

In Table 6, we report the empirical results corresponding to a 20 trading days lookback window

in Panel A for the first subsample from January 2008 to December 2012, in Panel B for the second

subsample from January 2013 to December 2018, and in Panel C for the whole sample period. The

TTSM strategies perform better than the original TSM strategy over the first subsample, as well as

the second subsample, with a higher Sharpe ratio, a higher Sortino ratio, a higher Calmar ratio, and

a lower maximum drawdown. Using the bootstrap approach proposed by Ledoit & Wolf (2008),

we test the null hypothesis of no difference in the Sharpe ratios of the TTSM strategies compared

to the original TSM strategy. We have used B = 1, 000 bootstrap resamples and a block size of

b = 5 to generate the resulting bootstrap p-values.

In the first subsample from 2008 to 2012, the TTSM-S2 enhances the original TSM strategy

with a statistically significant increase of 21% (1.55 to 1.87) in the Sharpe ratio and a drop of 43%

(26.02% to 14.77%) in the maximum drawdown. Consistently, it shows a significant improvement

by 45% in the Sharpe ratio of 1.77, compared to the original TSM strategy of 1.22 during the

second subsample from 2013 to 2018. The maximum drawdown decreases from 14.25% to 8.92%

by a proportion of 37% at the same time. This evidence proves that the TTSM approach effectively

mitigates the TSM strategy losses by systematically reducing risk exposure during scenarios of

time series momentum reversals. Furthermore, we argue that the proposed tuning decisions have

reshaped the distribution of time series momentum portfolio returns with higher positive skewness
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and higher kurtosis. It has also improved the percentage of winning trades when using the time

series momentum strategy.

Interestingly, TTSM-S2 documents a greater performance enhancement than TTSM-S1 over

the first subsample, as well as over the second subsample. Therefore, in terms of measuring the

positive and negative realized semivariance, the “bad” side risk estimator predicts future time series

momentum reversals, and the “good” side risk estimator captures the moments of market overre-

action in time series momentum. Recall that different tuning actions are designed for TTSM-S1

and TTSM-S2 under different regions (see Table 5). This provides an explicit and rational inter-

pretation of the life cycle of time series momentum, details of which we discuss in the following

section.

We also provide the performances of TSM and TTSM strategies with the added consideration of

transaction cost. Due to the lack of comprehensive research unveiling the real transaction costs in

Chinese futures markets (see also in Bianchi et al., 2021), it would be inaccurate to employ a fixed

rate for evaluating the strategy performance using costs.21 Nevertheless, we applied an aggressive

transaction cost of one basis-point (i.e., 1%%) to all commodities to test the outperformance of

the TTSM strategies with cost included. Taking the actual portfolio turnover into account, we

presented the Sharpe ratio with cost of the TSM and TTSM strategies in Table 6. Both TTSM-S1

and TTSM-S2 strategies document consistent outperformances over the TSM strategy, showing

higher Sharpe ratios even when the transaction cost is taken into consideration.

21The three commodity futures exchanges in China have changed the official rate of the commission fee multiple
times in the past. One can find the historical notices of commission fee adjustment on the three exchanges’ official
websites: http://www.shfe.com.cn/ (SHFE), http://www.dce.com.cn/ (DCE), and http://www.czce.com.

cn/ (CZCE).
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Moreover, we compute the portfolio turnover and the break-even transaction cost to show more

details. Following Bianchi et al. (2021), we calculate the actual portfolio turnover (TO)

TO =
1

T − J

T∑
t=J+1

Nt∑
i=1

(∣∣∣ωi,dt − ω
+
i,dt−1

∣∣∣) , (8)

where ωi,dt is the portfolio weight of commodity i in day dt, ω+
i,dt−1

= ωi,dt−1 × ertsm
i,dt−1 is the actual

portfolio weight of commodity i immediately prior to the rebalancing at the end of day dt−1, and

rtsm
i,dt+1

= sign
(∑J−1

j=0 ri,dt− j

)
σtarget

σi,dt
ri,dt+1 is the TSM return of commodity i in day dt+1. The break-even

transaction cost (BTC) is defined by r̃p,dt satisfying

r̃p,dt = rp,dt − BTC
Nt∑
i=1

∣∣∣ωi,dt − ω
+
i,dt−1

∣∣∣ = 0, (9)

where rp,dt is the portfolio return in day dt. This provides the transaction cost required to eliminate

the premia of the TSM and TTSM strategies. Table 6 reports the portfolio turnover and the break-

even transaction cost of TSM, TTSM-S1, and TTSM-S2 in the first and the second subsamples.

It appears that both TTSM-S1 and TTSM-S2 exhibit a comparable portfolio turnover (0.67 and

0.71 in Panel A, 0.80 and 0.84 in Panel B) which can be noted to be significantly higher than that

of TSM (0.58 in Panel A and 0.67 in Panel B). In terms of the break-even transaction cost, an

average of 1.15%, 0.80%, and 0.82% were required for TSM, TTSM-S1, and TTSM-S2 in the first

subsample, respectively. In the second subsample, they were 0.21%, 0.13%, and 0.14%, which is

lower than in the first subsample due to lower portfolio premia. Overall, the merits of the TTSM

strategies compared to the TSM strategy can not be overturned by considering the transaction cost.

In Table 7, we present further subsample performances of the TTSM strategies. In particular,

we compare the Sharpe ratios of the TTSM strategies with the TSM strategy for each year in the

first subsample from 2008 to 2012 and in the second subsample from 2013 to 2018. We also

tabulate the p-values in the parentheses to test the null hypothesis of no difference in the Sharpe

ratios of the TTSM strategies and the TSM strategy in each year. From the statistics shown, we
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find consistent and significant results of higher Sharpe ratios for both TTSM-S1 and TTSM-S2

strategies in all eleven years from 2008 to 2018. In addition, the TTSM-S2 strategy reports higher

Sharpe ratios than the TTSM-S1 strategy in ten out of eleven years, except for 2008.

Table 7: Annual Sharpe ratio of the TSM and TTSM strategies

Panel A: In the first subsample (January 2008–December 2012)

Strategy 2008 2009 2010 2011 2012

BAH -2.19 2.29 0.59 -1.49 -0.23
(0.09) (0.03) (0.06) (0.06) (0.06)

TSM 2.84 2.03 1.38 -0.16 1.67
(1.00) (1.00) (1.00) (1.00) (1.00)

TTSM-S1 4.14 2.04 1.64 -0.26 2.01
(0.04) (0.03) (0.07) (0.03) (0.03)

TTSM-S2 4.09 2.27 1.85 0.04 2.06
(0.04) (0.02) (0.05) (0.03) (0.04)

Panel B: In the second subsample (January 2013–December 2018)

Strategy 2013 2014 2015 2016 2017 2018

BAH -1.83 -2.24 -1.65 2.07 0.17 -0.80
(0.04) (0.03) (0.04) (0.03) (0.03) (0.04)

TSM 0.97 2.35 2.00 1.25 0.31 0.12
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

TTSM-S1 1.42 3.18 2.10 1.36 0.84 0.15
(0.02) (0.03) (0.05) (0.02) (0.10) (0.03)

TTSM-S2 1.63 3.53 2.89 1.41 1.09 0.20
(0.04) (0.04) (0.03) (0.02) (0.12) (0.04)

Notes: BAH stands for the buy-and-hold strategy. TSM stands for the original time series mo-
mentum strategy. TTSM-S1 and TTSM-S2 stand for two different tuning strategies on the original
time series momentum according to the asymmetrically tail-distributed positive and negative re-
alized semivariance. The values in parentheses denote the p-values of testing the null hypothesis
that there is no difference in the Sharpe ratios between the original time series momentum strategy
and the reconstructed strategies. Following Ledoit & Wolf (2008), we choose bootstrap samples
of B = 1, 000 and block size b = 5.

4.3. An explanation of time series momentum life cycle hypothesis

An intriguing explanation for the improved performance of the TTSM strategies, compared to

the original TSM strategy, is depicted in Figure 5. This figure presents a simple conceptual diagram
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that helps to integrate the empirical evidence presented in this paper. We refer to this diagram as

the time series momentum life cycle (TSMLC) hypothesis, in a similar way to the momentum

life cycle (MLC) hypothesis, first proposed by Lee & Swaminathan (2000). However, we here

associate it with the endogenous variables of risk estimators from asset returns here, rather than an

exogenous variable, such as trading volume.

Figure 5: The time series momentum life cycle (TSMLC) hypothesis. Panel (a) describes the
underlying time series momentum life cycle corresponding to the tuned time series momentum
strategy TTSM-S1; the dynamic cyclical pattern shows asymmetric lean on RS− when transform-
ing from an upward momentum to a downward momentum, and asymmetric lean on RS+ when
transforming from a downward momentum to an upward momentum. Panel (b) describes the
underlying time series momentum life cycle corresponding to the tuned time series momentum
strategy TTSM-S2; the dynamic cyclical pattern shows an alternation pattern between asymmetric
lean on RS+ and RS− when transforming from an upward momentum to a downward momentum,
and vise versa.

Downtrend

Uptrend

Asymmetry on RS  

Asymmetry on RS 

-

+

(a) TTSM-S1

Downtrend

Uptrend

Asymmetry on RS 

Asymmetry on RS Asymmetry on RS 

Asymmetry on RS + +

--

(b) TTSM-S2

As shown in Panel (a) of Figure 5, we depict the logic of the tuned trading signals in the

TTSM-S1 strategy as a relatively simple dynamic structure, which combines the life cycle of time

series momentum with the asymmetrically distributed pattern of RS+ and RS−. After the joint

distribution exhibits the asymmetric lean on RS− during slumps in the upward momentum, the

time series momentum transfers from an episode of upward momentum to an episode of downward

momentum. Meanwhile, the TTSM-S1 strategy adjusts the long trading signal to a short signal in

a timely manner to mitigate TSM strategy losses, and vice versa for the process from a period
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of downward momentum to that of an upward momentum. Therefore, we describe time series

momentum as a dynamic cyclical process shown in the Panel (a) of Figure 5, in terms of the

TTSM-S1 strategy.

Moreover, as shown in Panel (b) of Figure 5, following the TTSM-S2 strategy, the dynamic cy-

cle shows an alternating pattern between an asymmetric lean on RS+ and RS− before transforming

from an upward momentum to a downward momentum, and vice versa. When we take the upward

momentum as an example, time series momentum continues with a mild uptrending market at the

beginning. Until the trend is excessively self-accelerated with positive feedback, the asymmetric

structure leans to RS+ because of rapid increases in the upward momentum. As we mentioned in

the previous section, this asymmetric pattern captures the moments of market overreaction in the

upward momentum. Following the overreaction, a subsequent asymmetric lean to RS− is exhib-

ited and predicts future slumps in the upward momentum. Consequently, the upward momentum

becomes unsustainable and transfers to the downward momentum, and vice versa for the process

changing from a downward momentum to an upward momentum.

4.4. Risk exposures

Next, we explore the sources of risk premia of the TSM, TTSM-S1 and TTSM-S2 strategies.

We investigate connections between such premia and a set of risk factors documented by Bakshi

et al. (2019) and Bianchi et al. (2021). Bakshi et al. (2019) proposed a three-factor model for

understanding the cross section of commodity returns. The three risk factors are: i) AVG is the

equally weighted portfolio return, ii) CARRY is constructed by buying and selling five commodi-

ties in the most backwardation and contango, and iii) MOM is a long–short portfolio that buys and

sells past winner and loser commodities. Bianchi et al. (2021) documented excess risk premia of

the Basis-Momentum (BMOM) strategy by regressing out the three factors. Based on these works,

we run a set of contemporaneous regressions with the four risk factors: AVG, CARRY, MOM,

and BMOM, and an additional AR(1) factor that accounts for the Adaptive Market Hypothesis

advocated by Lo (2019). Lo (2019) argued that the financial market is adaptive when reacting to

changes in the market environment, which implies autocorrelation in asset returns. Therefore, in
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this paper, we incorporate the first-order lagged return as the adaptive factor in assessing the risk

exposures of the TSM and TTSM portfolios (Lo, 2004). Additionally, in order to accommodate

the unique characteristics of Chinese commodity futures markets, we follow Fan & Zhang (2020)

and Bianchi et al. (2021) to construct the CARRY, MOM, and BMOM signals based on the third-

nearest futures contract, rather than the nearest one. For MOM and BMOM signals, we employ

the same lookback window J as the TTSM signal.

Table 8 reports the risk exposures of the TSM, TTSM-S1, and TTSM-S2 strategies across the

whole sample from January 2008 to December 2018. The TSM and TTSM portfolios are con-

structed with a lookback window of 20 trading days, which is consistent with our previous setting.

From the adjusted R2 tabulated, an increasing number of elements relating to the TSM, TTSM-S1,

and TTSM-S2 premia can be explained as more risk factors are considered in the regression. In

all panels, both TTSM-S1 and TTSM-S2 have a lower adjusted R2 than TSM, which indicates that

they were less exposed to these risk factors than TSM.

Moreover, the estimates in Panel D show that the TSM, TTSM-S1, and TTSM-S2 premia

cannot be fully explained by the five–factor model in China. The estimated intercepts were eco-

nomically and statistically significant. Owing to the robustness of the trend-following strategy in

both bull and bear markets, all three strategies do not report a significant coefficient on AVG, which

is to be expected. Interestingly, while they loaded negatively on the CARRY and BMOM factors,

MOM showed up as a positive driving force. The TSM premia has nearly twice as much of the

MOM factor. However, TTSM-S2 reduced its factor exposure to MOM significantly down to 0.95.

In addition, all showed evidence of significant exposure to the adaptive factor AR(1). This proves

that the TSM, TTSM-S1, and TTSM-S2 premia were in a negative feedback loop of the adaptive

ecosystem.
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Table 8: Risk exposures of the TSM and TTSM strategies

Constant AVG CARRY MOM BMOM AR(1) R2
ad j

Panel A: Single risk factor

TSM 0.0012 -0.0396 0.0004
(4.77) (-1.45)

TTSM-S1 0.0012 -0.0245 0.0001
(5.62) (-1.08)

TTSM-S2 0.0011 0.0229 0.0002
(6.21) (1.19)

Panel B: Three risk factors

TSM 0.0009 -0.0342 -0.1378 1.8146 0.2985
(4.55) (-1.46) (-2.85) (33.70)

TTSM-S1 0.0010 -0.0191 -0.1118 1.2835 0.2150
(5.45) (-0.92) (-2.63) (27.05)

TTSM-S2 0.0010 0.0249 -0.0635 0.9373 0.1593
(5.85) (1.37) (-1.70) (22.53)

Panel C: Four risk factors

TSM 0.0009 -0.0366 -0.1330 1.8369 -0.1930 0.3002
(4.22) (-1.56) (-2.75) (33.77) (-2.73)

TTSM-S1 0.0010 -0.0212 -0.1076 1.3028 -0.1675 0.2169
(5.13) (-1.03) (-2.53) (27.18) (-2.69)

TTSM-S2 0.0009 0.0231 -0.0599 0.9537 -0.1422 0.1611
(5.53) (1.27) (-1.61) (22.69) (-2.61)

Panel D: Five risk factors

TSM 0.0010 -0.0357 -0.1365 1.8429 -0.1879 -0.0627 0.3039
(4.58) (-1.53) (-2.84) (33.96) (-2.67) (-3.89)

TTSM-S1 0.0010 -0.0220 -0.1065 1.3044 -0.1642 -0.0405 0.2182
(5.35) (-1.07) (-2.51) (27.23) (-2.64) (-2.37)

TTSM-S2 0.0010 0.0223 -0.0577 0.9544 -0.1384 -0.0428 0.1626
(5.77) (1.23) (-1.55) (22.73) (-2.54) (-2.41)

Notes: TSM stands for the original time series momentum strategy. TTSM-S1 and TTSM-S2 stand for
two different tuning strategies on the original time series momentum according to the asymmetrically
tail-distributed positive and negative realized semivariance. AVG is the equally weighted portfolio
return. CARRY is constructed by buying and selling five commodities in the most backwardation and
contango. MOM is a 2-1 portfolio that buys and sells past winner and loser commodities. BMOM is a
2-1 portfolio that takes long and short positions of commodities according the ex-ante basis-momentum
signal. AR(1) is the first–order lagged return of the underlying strategy. Numbers in the parentheses
are t-statistics.

5. Robustness check

To complement the outperformance of the TTSM strategies, we conducted robustness tests

including volatility scaling, using different lookback windows, and an execution lag as detailed in

this section.
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5.1. Volatility scaling

As we explained in Section 3.1, there is a component of volatility scaling, σtarget/σi,dt , in the

time series momentum formula of (4) to maintain the constant risk parity across commodities

within the portfolio. As a result, it is essential to check if the volatility–scaling component affects

the TTSM superiority over TSM. In Table 9, we show the performance of the TSM and TTSM

strategies without volatility scaling. In other words, the target portfolio is equally weighted based

only on the trading signal of each commodity in this case.

We denote TSM-NVS, TTSM-S1-NVS, and TTSM-S2-NVS as the non–volatility–scaling ver-

sions of the TSM, TTSM-S1, and TTSM-S2 strategies, respectively. As shown in Table 9, TTSM-

S1-NVS and TTSM-S2-NVS are still outperforming TSM-NVS in both the first and the second

subsamples. The Sharpe ratios were 1.44 (TTSM-S1-NVS) and 1.52 (TTSM-S2-NVS) v.s. 1.15

(TSM-NVS) from January 2008 to December 2012, and were 0.98 (TTSM-S1-NVS) and 1.25

(TTSM-S2-NVS) v.s. 0.75 (TSM-NVS) from January 2013 to December 2018. Importantly, fo-

cusing on the last column of Table 9, TTSM-S1-NVS and TTSM-S2-NVS consistently report a

higher Sharpe ratio than TSM-NVS, after taking into account transaction cost. Our results suggest

that the superiority of TTSM over TSM is robust, even when the volatility–scaling approach is not

taken into consideration.

5.2. Different lookback windows

The TTSM strategies with lookback window J = 20 trading days has been shown to outperform

the TSM strategy in the previous subsection. The effectiveness of the TTSM approach should

be proved non-coincidental using a variety of lookback windows if the TTSM strategy is to be

considered a robust rule-based choice for time series momentum tuning. We further report the

results for various lookback windows during the first subsample from January 2008 to December

2012 in Table 10, and during the second subsample from January 2013 to December 2018 in Table

11. The length of the lookback window expands from 20 trading days (one month in calendar

days) to 250 trading days (one year in calendar days). Likewise, we include the p-values in the

parentheses to exhibit the statistical significance in the difference between the Sharpe ratios.
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We find that the out-of-sample performance of the TTSM strategies, in which the lookback

window increases from 30 to 250 trading days, shows statistically significant results which are

consistent with the previous results of the lookback window of 20 trading days. These consistent

and significant results are shown in terms of the annual return, Sharpe ratio, Sortino ratio, Calmar

ratio, and the maximum drawdown. Moreover, the consistency of the performance enhancement

holds in the first subsample from 2008 to 2012, as well as in the second subsample from 2013 to

2018. The TTSM approach reports an improvement in the Sharpe ratio by almost 30% on average

across different lookback windows during the second subsample period (see Table 11).

5.3. Execution lag

In the literature, there are concerns around executing a daily rebalanced strategy in practice due

to market friction. It is possible that the proposed predictable pattern of time series momentum

reversal is driven by noises in daily commodity futures returns. Therefore, we implemented an

execution lag by assuming that the predictability is still effective after one day. In this case, the

trading signal is constructed using the information available at the end of day dt, and the position

is established at the end of day dt+1 and holds for one day in day dt+2.

We tabulate the strategy performance with the execution delay in Table 12 for the first subsam-

ple from January 2008 to December 2012 and in Table 13 for the second subsample from January

2013 to December 2018. Our results demonstrate that the TTSM strategies were not subject to a

one–day execution delay. TTSM-S1 and TTSM-S2 continued to significantly outperform the TSM

strategy with a higher Sharpe ratio. This pattern holds, not only when the lookback window is 20

trading days, but also in relation to some longer lookback horizons.
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Table 10: Performance of the TSM and TTSM strategies with various lookback windows over the
first subsample from January 2008 to December 2012

Lookback Window (days)

20 30 40 60 90 120 250

TSM

Annual Return (%) 37.28 26.29 29.99 15.60 14.93 12.36 5.56
Sharpe Ratio 1.55 1.10 1.26 0.69 0.69 0.57 0.27

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Maximum D.D. (%) 26.02 28.71 21.76 29.07 28.85 28.32 41.28
Sortino Ratio 2.40 1.65 1.87 1.02 1.05 0.84 0.38
Calmar Ratio 1.43 0.92 1.38 0.54 0.52 0.44 0.13
% of Win 52.91 53.16 54.31 52.34 51.93 52.42 53.31
Ave. P. /Ave. L. 1.20 1.09 1.07 1.05 1.06 1.02 0.93
Skewness 0.46 0.32 0.37 0.43 0.30 0.05 0.12
Kurtosis 6.38 6.15 6.57 7.19 6.36 5.64 5.98

TTSM-S1

Annual Return (%) 36.80 27.12 30.34 17.27 14.36 13.53 6.70
Sharpe Ratio 1.78 1.38 1.57 0.98 0.84 0.79 0.41

(0.04) (0.06) (0.06) (0.06) (0.07) (0.05) (0.04)
Maximum D.D. (%) 16.70 18.56 16.93 22.78 28.69 19.96 31.63
Sortino Ratio 2.78 2.06 2.40 1.53 1.32 1.21 0.61
Calmar Ratio 2.20 1.46 1.79 0.76 0.50 0.68 0.21
% of Win 54.14 54.14 55.37 53.57 52.75 52.34 52.71
Ave. P. /Ave. L. 1.20 1.11 1.10 1.06 1.06 1.07 0.98
Skewness 0.54 0.42 0.51 0.61 0.50 0.45 0.19
Kurtosis 6.83 7.06 6.80 6.84 5.85 6.30 5.43

TTSM-S2

Annual Return (%) 32.53 22.87 25.56 12.91 9.11 8.03 2.77
Sharpe Ratio 1.87 1.39 1.61 0.90 0.66 0.57 0.20

(0.04) (0.05) (0.06) (0.08) (0.07) (0.06) (0.05)
Maximum D.D. (%) 14.77 15.67 15.47 21.09 24.43 17.55 29.13
Sortino Ratio 2.83 2.03 2.40 1.37 1.02 0.83 0.28
Calmar Ratio 2.20 1.46 1.65 0.61 0.37 0.46 0.10
% of Win 54.63 53.40 55.13 53.49 52.34 52.67 53.37
Ave. P. /Ave. L. 1.22 1.17 1.13 1.05 1.05 1.02 0.93
Skewness 0.56 0.45 0.48 0.47 0.43 0.28 0.02
Kurtosis 8.55 9.16 7.90 7.34 5.99 6.73 5.40

Notes: TSM stands for the original time series momentum strategy. TTSM-S1 and TTSM-S2 stand for two different
tuning strategies on the original time series momentum according to the asymmetrically tail-distributed positive and
negative realized semivariance. The values in parentheses denote the p-values of testing the null hypothesis that there is
no difference in the Sharpe ratios between the original time series momentum strategy and the reconstructed strategies.
Following Ledoit & Wolf (2008), we choose bootstrap samples of B = 1, 000 and block size b = 5. Abbreviations:
Maximum D.D., maximum drawdown; Ave. P. /Ave. L., the ratio of the average profit divided by the average loss.
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Table 11: Performance of the TSM and TTSM strategies with various lookback windows over the
second subsample from January 2013 to December 2018

Lookback Window (days)

20 30 40 60 90 120 250

TSM

Annual Return (%) 19.50 18.08 17.12 13.68 12.80 14.77 16.43
Sharpe Ratio 1.22 1.14 1.06 0.85 0.81 0.91 1.01

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Maximum D.D. (%) 14.25 18.73 27.24 16.83 18.70 18.29 28.92
Sortino Ratio 2.01 1.84 1.74 1.33 1.22 1.36 1.49
Calmar Ratio 1.37 0.97 0.63 0.81 0.68 0.81 0.57
% of Win 52.81 51.51 51.10 51.99 50.55 53.22 52.95
Ave. P. /Ave. L. 1.13 1.17 1.17 1.09 1.15 1.05 1.08
Skewness 0.65 0.56 0.74 0.23 0.05 0.19 0.22
Kurtosis 8.76 7.79 10.41 6.56 6.47 5.83 8.56

TTSM-S1

Annual Return (%) 18.95 15.26 13.77 11.60 10.31 11.98 14.05
Sharpe Ratio 1.52 1.25 1.15 0.97 0.91 1.04 1.21

(0.03) (0.02) (0.04) (0.02) (0.03) (0.04) (0.03)
Maximum D.D. (%) 9.29 12.19 19.78 11.44 15.23 13.78 20.10
Sortino Ratio 2.58 2.05 1.91 1.63 1.50 1.62 1.88
Calmar Ratio 2.04 1.25 0.70 1.01 0.68 0.87 0.70
% of Win 52.40 53.09 52.67 53.02 51.58 52.95 52.88
Ave. P. /Ave. L. 1.21 1.13 1.12 1.07 1.13 1.09 1.13
Skewness 0.62 0.69 0.73 0.82 0.59 0.49 0.47
Kurtosis 5.87 7.64 7.94 8.23 6.38 7.33 7.40

TTSM-S2

Annual Return (%) 19.11 14.51 12.93 10.73 9.91 11.74 13.93
Sharpe Ratio 1.77 1.38 1.25 1.05 1.02 1.17 1.37

(0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
Maximum D.D. (%) 8.92 11.00 18.91 10.28 13.48 13.40 14.84
Sortino Ratio 3.07 2.32 2.05 1.74 1.70 1.84 2.17
Calmar Ratio 2.14 1.32 0.68 1.04 0.74 0.88 0.94
% of Win 53.91 53.22 52.95 53.43 52.26 53.02 53.50
Ave. P. /Ave. L. 1.19 1.15 1.13 1.07 1.12 1.12 1.14
Skewness 0.62 0.69 0.66 0.80 0.67 0.63 0.57
Kurtosis 5.33 6.72 7.48 8.37 6.86 8.35 8.11

Notes: TSM stands for the original time series momentum strategy. TTSM-S1 and TTSM-S2 stand for two different
tuning strategies on the original time series momentum according to the asymmetrically tail-distributed positive and
negative realized semivariance. The values in parentheses denote the p-values of testing the null hypothesis that there is
no difference in the Sharpe ratios between the original time series momentum strategy and the reconstructed strategies.
Following Ledoit & Wolf (2008), we choose bootstrap samples of B = 1, 000 and block size b = 5. Abbreviations:
Maximum D.D., maximum drawdown; Ave. P. /Ave. L., the ratio of the average profit divided by the average loss.
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Table 12: Performance of the TSM and TTSM strategies with a one–day execution lag over the
first subsample from January 2008 to December 2012

Lookback Window (days)

20 30 40 60 90 120 250

TSM

Annual Return (%) 37.89 22.85 32.57 17.66 15.12 10.50 3.51
Sharpe Ratio 1.57 0.97 1.36 0.79 0.70 0.49 0.17

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Maximum D.D. (%) 30.05 25.62 19.01 28.21 26.78 30.75 41.95
Sortino Ratio 2.36 1.43 2.02 1.15 1.04 0.71 0.24
Calmar Ratio 1.26 0.89 1.71 0.63 0.56 0.34 0.08
% of Win 54.80 53.16 53.98 52.83 52.09 52.50 52.61
Ave. P. /Ave. L. 1.12 1.07 1.11 1.05 1.06 1.00 0.94
Skewness 0.43 0.20 0.40 0.37 0.23 0.01 0.10
Kurtosis 6.61 6.13 6.65 7.38 6.49 5.09 5.95

TTSM-S1

Annual Return (%) 35.59 22.11 31.24 15.86 13.16 10.05 2.28
Sharpe Ratio 1.73 1.14 1.62 0.90 0.78 0.59 0.14

(0.06) (0.05) (0.06) (0.07) (0.07) (0.06) (0.06)
Maximum D.D. (%) 20.49 18.41 15.29 23.19 29.57 23.85 38.66
Sortino Ratio 2.67 1.72 2.47 1.39 1.19 0.88 0.20
Calmar Ratio 1.74 1.20 2.04 0.68 0.44 0.42 0.06
% of Win 54.39 53.16 54.55 53.49 54.06 53.08 52.63
Ave. P. /Ave. L. 1.18 1.11 1.14 1.04 0.99 1.00 0.94
Skewness 0.63 0.44 0.56 0.52 0.35 0.39 0.03
Kurtosis 7.62 7.37 7.30 7.19 6.19 6.94 5.51

TTSM-S2

Annual Return (%) 29.80 16.86 26.07 10.72 8.77 5.67 -0.27
Sharpe Ratio 1.74 1.06 1.66 0.76 0.64 0.41 -0.02

(0.05) (0.06) (0.05) (0.06) (0.06) (0.05) (0.04)
Maximum D.D. (%) 20.50 18.75 13.39 22.33 26.15 22.76 36.81
Sortino Ratio 2.63 1.56 2.51 1.15 0.95 0.58 -0.03
Calmar Ratio 1.45 0.90 1.95 0.48 0.34 0.25 -0.01
% of Win 54.63 53.24 54.96 52.99 54.80 54.14 51.73
Ave. P. /Ave. L. 1.20 1.10 1.15 1.05 0.95 0.94 0.95
Skewness 0.73 0.49 0.63 0.45 0.29 0.28 -0.05
Kurtosis 9.51 9.29 8.28 7.33 6.73 7.33 5.29

Notes: TSM stands for the original time series momentum strategy. TTSM-S1 and TTSM-S2 stand for two different
tuning strategies on the original time series momentum according to the asymmetrically tail-distributed positive and
negative realized semivariance. The values in parentheses denote the p-values of testing the null hypothesis that there is
no difference in the Sharpe ratios between the original time series momentum strategy and the reconstructed strategies.
Following Ledoit & Wolf (2008), we choose bootstrap samples of B = 1, 000 and block size b = 5. Abbreviations:
Maximum D.D., maximum drawdown; Ave. P. /Ave. L., the ratio of the average profit divided by the average loss.
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Table 13: Performance of the TSM and TTSM strategies with a one–day execution lag over the
second subsample from January 2013 to December 2018

Lookback Window (days)

20 30 40 60 90 120 250

TSM

Annual Return (%) 16.04 17.20 17.70 16.18 13.19 14.19 15.71
Sharpe Ratio 1.01 1.09 1.10 1.02 0.85 0.89 0.97

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
Maximum D.D. (%) 14.28 14.11 21.28 15.58 21.44 18.16 28.66
Sortino Ratio 1.57 1.74 1.75 1.62 1.35 1.31 1.41
Calmar Ratio 1.12 1.22 0.83 1.04 0.61 0.78 0.55
% of Win 52.33 51.85 51.92 52.74 49.86 53.02 52.74
Ave. P. /Ave. L. 1.11 1.14 1.14 1.08 1.18 1.05 1.08
Skewness 0.24 0.48 0.65 0.27 0.30 0.07 0.20
Kurtosis 7.71 8.46 11.41 5.32 4.85 5.50 8.53

TTSM-S1

Annual Return (%) 14.91 13.74 13.37 13.37 9.19 10.62 12.04
Sharpe Ratio 1.19 1.11 1.11 1.11 0.80 0.91 1.01

(0.03) (0.02) (0.03) (0.02) (0.03) (0.03) (0.05)
Maximum D.D. (%) 11.42 14.88 17.99 10.64 14.91 14.03 19.04
Sortino Ratio 1.93 1.84 1.87 1.80 1.30 1.41 1.54
Calmar Ratio 1.31 0.92 0.74 1.26 0.62 0.76 0.63
% of Win 52.26 51.78 51.17 52.67 51.03 52.47 52.95
Ave. P. /Ave. L. 1.15 1.15 1.18 1.11 1.13 1.09 1.08
Skewness 0.44 0.62 0.67 0.47 0.47 0.46 0.30
Kurtosis 5.57 6.79 7.09 6.29 5.80 7.35 6.58

TTSM-S2

Annual Return (%) 14.63 13.02 12.16 12.88 7.58 9.95 11.64
Sharpe Ratio 1.35 1.22 1.17 1.24 0.76 0.97 1.11

(0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.03)
Maximum D.D. (%) 10.85 11.57 16.93 8.70 13.40 13.51 21.18
Sortino Ratio 2.19 2.04 1.95 1.97 1.21 1.48 1.68
Calmar Ratio 1.35 1.13 0.72 1.48 0.57 0.74 0.55
% of Win 54.05 51.44 52.19 52.95 50.89 52.74 52.47
Ave. P. /Ave. L. 1.11 1.20 1.15 1.13 1.13 1.09 1.13
Skewness 0.47 0.61 0.55 0.44 0.46 0.51 0.29
Kurtosis 5.69 6.40 6.25 6.20 6.43 8.64 7.01

Notes: TSM stands for the original time series momentum strategy. TTSM-S1 and TTSM-S2 stand for two different
tuning strategies on the original time series momentum according to the asymmetrically tail-distributed positive and
negative realized semivariance. The values in parentheses denote the p-values of testing the null hypothesis that there is
no difference in the Sharpe ratios between the original time series momentum strategy and the reconstructed strategies.
Following Ledoit & Wolf (2008), we choose bootstrap samples of B = 1, 000 and block size b = 5. Abbreviations:
Maximum D.D., maximum drawdown; Ave. P. /Ave. L., the ratio of the average profit divided by the average loss.
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6. Conclusion

Time series momentum, also known as a trend-following strategy, has had a tremendous in-

fluence on individuals in financial academia and practitioners. However, its poor performance in

recent years is also being discussed by an increasing number of researchers. The time-series return

predictability suggested by the first moment of asset returns (i.e., the historical sample mean) is

challenging to replicate when using the data of new time periods. In this paper, we incorporated

information from the second moment to enhance the return predictability.

By measuring the “good” and “bad” side risk of time series momentum, we have developed

our study to examine the extent to which the positive and negative realized semivariance are able

to predict future time series momentum losses. The employed weekly aggregation of positive and

negative realized semivariance were derived from the 5-min high-frequency intraday returns of

individual commodity futures contracts over the previous five trading days. We discovered that the

asymmetric dynamics of the positive and negative realized semivariance estimators can generate

predictable patterns for the moments of market overreaction, the reversal episodes of momentum,

and in episodes of a sideways market in the time series momentum life cycle. Specifically, the

attempts to monitor tail risks measured by the positive and negative realized semivariance, and

tuning the decisions of momentum indicators, have been proved to be effective in relation to time

series momentum.

By constructing a tuned time series momentum (TTSM) strategy and examining its out-of-

sample performance on the Chinese commodity futures markets, we have empirically examined the

feasibility and robustness of the rule-based nonlinear decision function in the actual application.

It has been proved to be a superior approach with a statistically significant higher Sharpe ratio, a

higher Sortino ratio, and a higher Calmar ratio. This outperformance of TTSM still holds when

transaction cost is taken into account. Our results were consistent with non–volatility–scaling,

various lookback windows, and a one–day execution lag. We mainly focused on the Chinese

markets, rather than the international markets. This is due to our access to high-frequency data

being limited to China. Researchers can further verify the feasibility of our TTSM strategies for
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commodity futures traded in other markets. Future research may also explore the possibility of

incorporating the high-frequency data of external variables to provide further insights into the life

cycle of time series momentum.
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