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Modelling Australian electricity prices using indicator saturation 

 

Abstract 

In our analysis of electricity price series from Australia’s National Electricity Market (NEM), 

we employ the indicator saturation (IS) approach to simultaneously model the stylised facts of 

electricity prices, including extreme spikes, seasonality, level-shifts, and autocorrelation. The 

standard modelling methods described in the literature tend to use regime-switching models to 

cope with these characteristics, but these models cannot fully reflect the stylised facts of interest. 

Using a range of model-evaluation tools, our analysis finds that the IS method outperforms the 

regime-switching models in various settings. In addition to the statistical superiority of this 

approach, we detail the relevance of our findings to policymaking in the NEM and provide 

recommendations for the development of the electricity markets in Australia.  

 

Keywords: Australian National Electricity Market; Electricity Prices; Indicator Saturation; 

Price Spikes 
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1 Introduction 

For electricity market stakeholders, understanding patterns in electricity prices is essential. If 

power generation firms better understand the features of electricity prices, they can make 

efficient investment decisions and develop network infrastructure. Financial organisations such 

as banks and hedge funds also participate in the electricity futures markets as a means of risk 

diversification. Given the importance of electricity, it is essential that policymakers, electricity-

intensive companies, and electricity market participants are informed by a suitable modelling 

approach. Given that a primary characteristic of electricity as a commodity is its non-storable 

nature, electricity markets are usually considered to be substantially more volatile than other 

asset or commodity markets. In particular, they exhibit extreme price movements, typically 

referred to as price spikes, and periods of substantial price volatility, both of which represent 

major sources of risk for certain electricity market stakeholders (Potter, 2016). During such 

periods, the electricity markets in Australia display significant spillover effects of price 

volatility to the connected markets in the NEM (Australian Energy Market Operator, 2016). 

Researchers have analysed electricity prices for several decades, and they have identified 

a number of stylised facts, most notably regarding seasonality, spikes, trends, and structural 

breaks (Ballester et al., 2015; Borovkova and Schmeck, 2017; Deschatre et al., 2021; Godin 

and Ibrahim, 2021).1  Because of these features, modelling electricity prices is highly non-

trivial. One popular technique for modelling electricity prices is the use of Markov regime-

switching models, which allow different regimes to be used in the data generation process. 

Mount et al. (2006) adopted a two-regime switching model and showed that price spikes can 

be successfully identified if the reserve margin is measured accurately. Janczura and Weron 

 
1 Deschatre et al. (2021) reviewed the set of electricity price models and features of electricity price in the literature.  
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(2010) presented an empirical comparison of different regime-switching models and found that 

the best model was an independent spike three-regime time-varying model. Inspired by their 

study, Lindström and Regland (2012) applied a three-regime switching model to electricity 

prices in European markets. They used estimated regimes to analyse the probability of 

occurrence of extreme events and found they are associated with the amount of renewable 

energy sources in the power system. In a more recent study, Apergis et al. (2019) used a three-

regime hidden semi-Markov model which allowed any sojourn time distribution to be specified 

to effectively model the very short sojourn time of the spikes2, along with regimes related to 

the Carbon Tax scheme in Australian electricity markets. 

Although numerous studies have developed different versions of Markov regime-

switching models for electricity prices, this approach is still subject to some limitations. First, 

most Markov switching models assume that Markov chain determining regimes are 

independent of all other parts of the model, but this assumption seems unrealistic (Chang et al., 

2017).3 Second, traditional approaches based on the use of regime-switching models typically 

need two steps to model electricity prices: a first step for the deterministic part and a second 

step for the stochastic part (Huisman and Mahieu, 2003). However, there could potentially be 

an estimation error in the first step, which could disrupt the estimation in the modelling of the 

second step and thus impair the ability of the MS model to produce accurate estimates.4  

To avoid such limitations, this study employs the indicator saturation (IS) approach to 

model electricity prices. The IS approach allows us to model outliers (spikes), structural breaks 

(level-shifts), and trends simultaneously through saturation with step-, impulse-, and trend- 

 
2 The sojourn time distribution of a traditional Markov model can only follow an exponential distribution implicitly.  
3 In practice, future transitions usually depend on the realisation of underlying time series and past states. 
4 We will discuss this issue later when we compare our results with those of Markov switching models. 

about:blank
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indicators (Santos et al., 2008; Johansen and Nielsen, 2009; Castle et al., 2012; Castle et al., 

2015).5 The Australian NEM is one of the largest interconnected electricity systems in the 

world. Is also one of the most unique markets: it has experienced substantial power market 

reforms (Nepal and Foster, 2016), and its generators and retailers purchase, sell, and supply 

electricity across five regional states through non-physical floors at a particular spot price (Han 

et al., 2020). Because of these features, the Australian NEM has attracted considerable research 

interest.6 Focusing on the Australian electricity market, we first demonstrate how the three 

types of indicators can suitably capture the spikes, level-shifts, and trends in electricity prices. 

Then, we show that the indicator saturation approach generally performs better than Markov 

switching models in terms of information criteria. As we discussed above, the findings have 

important implications for policymakers and market participants because electricity prices are 

sensitive to climate change policies and their associated uncertainty, power generation 

approaches, and geographical variation. Thus, we link the results from the indicator saturation 

to policy changes in the NEM and provide recommendations for the development of electricity 

markets in Australia. 

This study contributes to the growing body of literature on pricing and forecasting in 

electricity markets (e.g. Becker et al., 2007; Janczura and Weron, 2010; Allcott, 2011; Maye 

and Trück, 2018; Apergis et al., 2019, 2020; Kanamura and Bunn, 2022; Schöniger and 

Morawetz, 2022; Jiang et al., 2023). In particular, Becker et al. (2007), Janczura and Weron 

(2010), and Apergis et al. (2019, 2020) have examined electricity pricing in Australia. In 

contrast to these studies, this study is the first, to the best of our knowledge, to apply an IS 

 
5  Another advantage of using the IS approach is that estimation is based on search algorithm autometrics, so it can 

automatically select the correct model when there are more variables than observations (Doornik, 2009; Pellini, 2021). 
6 https://www.power-technology.com/features/australia-energy-prices/ (assessed 14 January 2023) 

https://www.sciencedirect.com/science/article/pii/S0140988322003000#bb0145
https://www.sciencedirect.com/science/article/pii/S0140988322003000#bb0095
https://www.sciencedirect.com/science/article/pii/S0140988322003000#bb0095
https://www.power-technology.com/features/australia-energy-prices/
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approach to the modelling of wholesale electricity prices in Australia, and to justify the 

appropriateness of such an application. Moreover, this work is novel in that it documents the 

fact that the IS approach outperforms Markov-switching (MS) models. In particular, the IS 

approach is stronger in capturing spikes and issuing correct signals when such a spike occurs. 

Furthermore, we link the results from indicator saturation to policy changes and factors such 

as the future demand for electricity and the need to meet peak demand and restructure the 

market. Although the analysis focuses on the Australian market, price spikes are a generic 

feature of electricity markets worldwide (Escribano, et al., 2011), and our analysis is applicable 

to other countries as well. Another small contribution related to Australian electricity pricing 

is that we extend the analysis using updated Australian electricity data.  

The rest of this paper proceeds as follows. In Section 2, we review the Australian electricity 

market and relevant studies. Section 3 describes the details of the indicator saturation approach, 

while Section 4 reports data sources, summary statistics, and stylised facts of electricity prices. 

Section 5 reports the main results. Section 6 provides a robustness check. Section 7 discusses 

the results and their policy implications. Finally, a conclusion is presented in Section 8.  

 

2 Overview of Australian Electricity Market and Relevant Studies 

The Australian National Electricity Market (NEM) is one of the largest interconnected power 

systems in the world.7 It spans about 5,000 km from Port Douglas, Queensland to Port Lincoln, 

South Australia, and across the Bass Strait to Tasmania. This NEM grid covers five 

interconnected states, including Queensland, Victoria, New South Wales (including the 

 
7 Interested readers may refer to Rai and Nelson (2020) for a more comprehensive review of Australia's NEM.  
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Australian Capital Territory (ACT)), Tasmania, and South Australia.8  Due to the distance 

between networks, the Northern Territory and Western Australia are not connected to the NEM. 

The NEM is operated and managed by the Australian Energy Market Operator (AEMO). 

According to the Australian Energy Regulator (2017), the trading mechanism works as follows. 

The generators provide quantities of electricity at various prices for a specific period. To match 

supply and demand at every 5-minute interval, AEMO dispatches the demand quota to the 

lowest available bidders. The corresponding price is the 5-minute dispatch price, and the 

average 5-minute dispatch price over 30 minutes is regarded as the half-hourly spot price 

(settlement price). AEMO adjusts the maximum spot price based on CPI on an annual basis, 

where the maximum price is 267 per MWh (as of September 2020), and the minimum spot 

price is –1000 per MWh. 

A number of studies have investigated the Australian NEM. Worthington et al. (2005) 

explored the transmission of spot prices and their volatility in the Australian regional electricity 

market.9  By using a multivariate generalised autoregressive conditional heteroskedasticity 

model, they observed the presence of positive own mean spillovers in only a small number of 

markets, with no mean spillovers across any of the other markets. They further observed that 

Australian spot prices are stationary, in contrast to North American electricity markets. Higgs 

(2009) applied three different models to examine the inter-relationships of wholesale spot 

electricity prices across the four regional electricity markets (New South Wales, Queensland, 

South Australia, and Victoria). Although the findings from a constant conditional correlation 

show that two pairs of electricity markets (New South Wales–Queensland and New South 

 
8 Note that the ACT does not have its own market but belongs to the NSW region. 
9 Ioannidis et al. (2021) also used a GARCH-type model for electricity pricing, but applied it to the German 

market.  
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Wales–Victoria) are significantly connected, Higgs (2009) concluded that the degree of 

connection between states in the Australian NEM is limited. From the perspective of long-term 

convergence, Nepal and Foster (2016) argue that the Australian NEM has not achieved full 

integration, while Apergis et al. (2017b) provide evidence in support of the view that price 

convergence of three regional markets is occurring. Ignatieva and Trück (2016) and Apergis et 

al. (2020) found some evidence of a positive dependence structure between the prices across 

markets, where the former found that markets that are connected via interconnector 

transmission lines exhibit the highest degree of dependence, and the latter found the strongest 

degree of dependence in the post-carbon period. Both Apergis et al. (2017a) and Do et al. (2020) 

examined interconnectedness within the Australian NEM by focusing on the risk transmission 

process. They both observed the presence of volatility (risk) spillovers across regions. Similarly, 

Naeem et al. (2022) showed that the Australian NEM has more connectedness within regions 

than across regions. Do et al. (2020) further suggested that increasing NEM generation capacity 

can help to reduce the transmission of risks.  

In contrast to the above studies, a number of studies have modelled spike behaviour in 

electricity prices using regime-switching models.10 Becker et al. (2007) built a two-regime 

time-varying probability model for Queensland and showed that it can help to predict spikes in 

this market. Janczura and Weron (2010) compared different regime-switching models used for 

modelling this spike behaviour in terms of goodness-of-fit. They argue that the best structure 

for modelling electricity prices is an independent spike three-regime model with time-varying 

transition probabilities, shifted spike regime distributions, and heteroskedastic diffusion-type 

base regime dynamics. Using a three-regime hidden semi-Markov model, Apergis et al. (2019) 

 
10 The regime-switching models have also been used for other electricity markets (e.g. Kapoor et al., 2021). 
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investigated the hidden regime for five states (Queensland, New South Wales, Victoria, South 

Australia, and Tasmania), and found evidence for low-price, high-price, and spike regimes. 

Clements et al. (2015) proposed a multivariate self-exciting point process model to explore the 

connectedness of price spikes across regions. They observe that spikes are transmitted across 

the regions, with the size of a spike depending on the available transmission capacity. 

 

3 Methodology 

In this section, we firstly review the traditional approaches based on the regime-switching 

models and then briefly describe the indicator saturation method.  

3.1 Traditional approaches based on Markov switching model 

Traditional approaches have modelled electricity prices using a two-step procedure. This 

method is based on the separation of the electricity price into two components (Huisman and 

Mahieu, 2003), as follows: 

𝑦𝑡 = 𝑑𝑡 + 𝑠𝑡, 

where 𝑑𝑡 denotes the deterministic part and 𝑠𝑡 represents the stochastic part. 

 In the first step, the deterministic part is a deterministic function of time that captures 

predictable patterns, such as seasonality, level-shifts, and trend. There are a number of ways to 

estimate the deterministic part.11 One straightforward method used by Huisman and Mahieu 

(2003) and Apergis et al. (2020) is to specify those deterministic components using different 

dummy variables,  

𝑑𝑡 = 𝛽0 + 𝜷1𝑫𝑡
(𝑌𝑒𝑎𝑟)

+ 𝜷2𝑫𝑡
(𝑀𝑜𝑛𝑡ℎ)

+ 𝜷3𝑫𝑡
(𝐷𝑜𝑊)

+ 𝜷4𝑫𝑡
(𝑆ℎ𝑖𝑓𝑡)

, 

 
11 Seasonality can be modelled using the Holt–Winters approach (Goodwin, 2010), seasonal ARIMA model, and Fourier 

series. Level-shifts can be detected via structural breaks and change-point tests (e.g. Horváth et al., 2017). There are 

numerous methods for detrending, such as the Hodrick–Prescott filter and the Hamilton filter. 
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where 𝑫𝑡
(𝑌𝑒𝑎𝑟)

  is a group of dummy variables representing the fiscal year12  in the NEM, 

𝑫𝑡
(𝑀𝑜𝑛𝑡ℎ)

 is a set of monthly dummy variables, 𝑫𝑡
(𝐷𝑜𝑊)

 is a collection of day-of-week dummy 

variables, and 𝑫𝑡
(𝑆ℎ𝑖𝑓𝑡)

 is a pool of dummy variables capturing the level-shifts.  

 Once the deterministic part is estimated, the stochastic part is the residual from the 

electricity price, that is, 𝑠𝑡 = 𝑦𝑡 − �̂�𝑡. The second step models the autocorrelation and spikes 

in the stochastic part. The regime-switching model is one of the most widely used in literature 

for this task. Huisman and Mahieu (2003) employed a two-regime MS model for 

deseasonalised log-prices, with the first regime of an AR(1) process and the second regime of 

a normal distribution in which mean and variance are much higher than in the first regime. De 

Jong (2006) modified such a two-regime MS model using a Poisson-driven spike regime. 

Mount et al. (2006) further improved the two-regime MS model by linking the transition 

probability with current market conditions. Janczura and Weron (2010) presented an empirical 

comparison of several regime-switching models for modelling spikes based on goodness-of-fit 

and suggested that the three-regime model has the best fit.  

 As a benchmark in this model, we will employ the two-regime and three-regime MS 

models, the latter of which can be expressed as follows: 

 𝑠𝑡 = {

𝛼1 + 𝜙1,1𝑠𝑡−1 + 𝜙1,2𝑠𝑡−2 + ⋯ + 𝜙1,𝑘𝑠𝑡−𝑘 + 𝜀1,𝑡, 𝜀1,𝑡 ∼ 𝑁(0, 𝜎1
2),    𝑖𝑓 𝑅𝑡 = 1,

𝛼2 + 𝜙2,1𝑠𝑡−1 + 𝜙2,2𝑠𝑡−2 + ⋯ + 𝜙2,𝑘𝑠𝑡−𝑘 + 𝜀2,𝑡, 𝜀2,𝑡 ∼ 𝑁(0, 𝜎1
2),    𝑖𝑓 𝑅𝑡 = 2,

𝛼3 + 𝜙3,1𝑠𝑡−1 + 𝜙3,2𝑠𝑡−2 + ⋯ + 𝜙3,𝑘𝑠𝑡−𝑘 + 𝜀3,𝑡, 𝜀3,𝑡 ∼ 𝑁(0, 𝜎1
2),    𝑖𝑓 𝑅𝑡 = 3,

  

where 𝑅𝑡 denotes the regime at time 𝑡, and the transition probability matrix is 

𝚪 = (

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

) 

where 𝑝𝑖𝑗 = Pr(𝑅𝑡+1 = 𝑗|𝑅𝑡 = 𝑖) represents the transition probability from regime 𝑖 to 𝑗.  

 
12 The fiscal year in the NEM is from the previous July to June. This is because 1 July is the date that the market price cap 

adjustment comes into effect. 
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It is worth noting that the traditional approach based on the MS models has some limitations. 

Firstly, MS models assume that Markov chain determining regimes are independent of all other 

parts of the model, which is unlikely to be realistic (Change et al., 2007). Secondly, by 

decoupling the deterministic and stochastic parts, an estimation error in the first step can 

propagate into the second step, thus impairing the ability of the MS model to produce accurate 

estimates. As a result, the efficiency of such a two-step modelling technique suffers. 

 

3.2 Indicator saturation 

Because of the limitations inherent to MS models, we have used the indicator saturation 

approach, which allows us to model electricity prices that have spikes, level-shifts, and trends. 

The indicator saturation method is based on a general-to-specific (GETS) modelling approach 

that includes indicators of several specific types (Pretis et al., 2018). To start, GETS modelling 

for linear regression can be expressed as follows: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑋1𝑡 + ⋯ + 𝛽𝑘𝑋𝑘𝑡 + 𝑢𝑡 ,               𝑡 = 1,2, … , 𝑛           (1) 

where 𝑦𝑡  is the dependent variable, 𝑋1𝑡, … , 𝑋𝑘𝑡  represents a set of regressors of indicator 

saturation that will be detailed later, 𝛽1, … , 𝛽𝑘 are their slope coefficients, and 𝑢𝑡 is the error 

term.  

We consider three different types of indicator saturation: impulse (IIS), step (SIS), and 

trend (TIS). The respective general unrestricted models for a simple model of the mean of 𝑦𝑡 

using impulse-, step- and trend indicator saturation are given by 

IIS: 𝑦𝑡 = 𝑢 + ∑ 𝛿𝑗1{𝑡=𝑗}
𝑁
𝑗=1 + 𝑢𝑡 

SIS: 𝑦𝑡 = 𝑢 + ∑ 𝛿𝑗1{𝑡≥𝑗}
𝑁
𝑗=1 + 𝑢𝑡 

TIS: 𝑦𝑡 = 𝑢 + ∑ 𝛿𝑗1{𝑡>𝑗}
𝑁
𝑗=1 (𝑡 − 𝑗) + 𝑢𝑡 
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where n denotes the total number of observations in the sample.  

IIS is the first saturation type that has been discussed widely in the indicator saturation 

literature (Santos et al., 2008). 𝐼𝑡(𝜏) is the impulse variable, which takes a value of 1 if 𝑡 = 𝜏, 

and 0 otherwise. Hendry et al. (2008) analysed the properties of IIS when the observations are 

generated according to the model 𝑦𝑡 = 𝑢 + 𝜀𝑡 , t = 1, … , T . They employed a split-half 

approach to integrate IIS into the model for 𝑦𝑡. Formally, 

𝑦𝑡 = 𝑢 + ∑ 𝛿𝐼𝑘𝐼(𝑡)

⌊𝑇/2⌋

𝑘=1

(𝑘) + 𝜀𝑡,          𝑡 = 1, … , 𝑇. 

where ⌊𝑇/2⌋ indicators for the first half of the sample are added to the model in the first step. 

The second 𝑇 − ⌊𝑇/2⌋ indicators replace the first ones when the indicators have been selected 

at the significance level α using the t-statistic. The selection procedure is then repeated.  

SIS can be seen as the extension of IIS, where 𝐼𝑡(𝜏) is a step variable that takes a value 

of 1 if 𝑡 ≥ 𝜏, and a value of 0 if 𝑡 < 𝜏 (Castle et al., 2015). Castle et al. (2015) evaluated the 

stability of SIS in the context of level shifts. They described the theoretical basis of SIS and 

conducted Monte Carlo simulations within a static framework. They observed that sequential 

selection improves the power of SIS in detecting location shifts through a reduction in the 

variance of the coefficients of the remaining indicators. 

Lastly, TIS can be used to model trends that change by unknown magnitudes at unknown 

points in time (see Castle et al., 2019 and Walker et al., 2019 for applications). It is equivalent 

to applying multiplicative indicator saturation to a deterministic trend by interacting step 

indicators with the trend: 𝑆𝑗 × 𝑡, where t is a deterministic trend. Since it is deterministic (like 

the constant) and ∑ 𝑡2𝑇
𝑡=1 =

1

6
𝑇(𝑇 + 1)(2𝑇 + 1) , it grows at 𝑂(𝑇3) , rather than 𝑂(𝑇2) , 

which is the case for sums of squares of stationary variables. Hence, the gauge and potency 
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properties of TIS are different to those of multiplicative indicator saturation. 

For demonstration purposes, we have described IIS, SIS, and TIS separately above. When 

it comes to practical applications, it is worth devoting extra effort to the task of extending the 

specification to include different combinations of IIS, SIS, and TIS, such as IIS+SIS and 

IIS+SIS+TIS. To make this approach more general, we can also include the autoregressive lags 

of 𝑦𝑡 and exogenous regressors on the right-hand side of Eq. (1),  

𝑦𝑡 = 𝛽0 + ∑ 𝛽𝑠𝑋𝑠𝑡

𝑘

𝑠=1

+ ∑ 𝜙𝑝𝑦𝑡−𝑝 +  ∑ 𝛾𝑞𝑍𝑞𝑡

𝑄

𝑞=1

 

𝑃

𝑝=1

, 

where 𝑋𝑠𝑡  represents indicator saturation, 𝑦𝑡−𝑝  denotes autoregressive lags, and 𝑍𝑞𝑡 

indicates exogenous regressors.  

After choosing the relevant regressors, the procedure of GETS selection for the relevant 

indicator saturation consists of three important steps: First, a general unrestricted model that 

passes a set of chosen diagnostic tests is formulated. Second, backwards elimination is 

performed along multiple paths by removing, one-by-one, non-significant regressors 

determined by the chosen target significance level and conditioned not only t- and F-tests but 

also using the same set of diagnostic tests carried out at each step. Finally, the specification 

with the best fit among terminal models is selected according to a fit criterion. 

 For more technical details regarding GETS regression modelling and indicator saturation, 

we refer readers to Hendry et al. (2008), Doornik (2009), Castle et al. (2015, 2019), and Pretis 

et al. (2018).  

 

4 Data and stylised facts 

 

In this section, we firstly describe our empirical data and then review the stylised facts of 
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electricity prices based on our data. 

 

4.1 Data sources and summary statistics 

Our variable of interest is the weekly average wholesale electricity spot price13, which was 

obtained from the website of the Australian Energy Regulator14. Data were available for the 

period 1 July 2008 to 27 December 2020, resulting in a total of 656 weekly observations for 

each state. The sample consists of five states: Queensland (QLD), New South Wales (NSW), 

Victoria (VIC), South Australia (SA), and Tasmania (TAS). Table 1 summarises the descriptive 

statistics for electricity prices in each state. South Australia has the highest average wholesale 

electricity price at 70.62 $/MWh, while the remaining four states have an average of around 58 

$/MWh. South Australia’s electricity price is also the most volatile, with a standard deviation 

of 82.53. The lowest electricity price, nearly zero, was observed in Tasmania. The data were 

analysed using the Jarque–Bera test, and the results indicated that the electricity prices did not 

follow a normal distribution for any of the five states.  

Regarding the correlation matrix, Victoria and South Australia show a high correlation, at 

over 70%. New South Wales and Queensland also have a high correlation, at around 55%. By 

contrast, Tasmania generally has a lower correlation with the other four states. This may be a 

result of its geographical location: it is isolated from the mainland, so its electricity market is 

weakly correlated with those in the other four states. 

4.2 Stylized facts of electricity prices 

Figure 1 shows the trajectories of electricity prices for each state from 8 June 2008 to 27 

 
13 Following the literature (Narayan and Smyth, 2005; Apergis et al., 2017b; Apergis et al., 2019), we used the natural 

logarithm of electricity prices in our empirical analysis. 

14 http://www.aer.gov.au/wholesale-markets/wholesale-statistics/weekly-volume-weighted-average-spot-prices (assessed on 

September 30, 2021). 

about:blank
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December 2020. There are several noticeable features.  

First, electricity spot prices are volatile and have large spikes, the latter of which are the 

result of a rigid demand curve (Higgs and Worthington, 2008). For example, obvious spikes 

are visible in the data for the beginning of 2017 in Queensland, resulting from high 

temperatures and two network outages (Australian Energy Regulator (AER), 2017).15  

Second, a structural break can be seen in the data between July 2012 and July 2014. For 

example, the price for New South Wales remained at over 70 $/MWh for around two years 

from July 2012, before which it was higher. This period corresponds to the carbon tax scheme 

that was introduced by the Australian government in 2012 and repealed in 2014. Such a carbon 

pricing scheme could lead to higher prices (Nazifi, 2016; Apergis et al., 2019; Nazifi et al., 

2021) and risk premiums (Maryniak et al., 2019).
16
 

Third, spot prices show an upward trend across the five states after the carbon tax scheme 

was replaced by the Emission Reduction Fund scheme after July 2014. We observe, for instance, 

an upward trend in Queensland from July 2014 to the beginning of 2017. Moreover, a major 

outage occurred in the Basslink connecting Tasmania with Victoria, causing a huge spike in 

Tasmania over the period December 2015 to April 2016. Because of these features, the 

indicator saturation approach is suitable for modelling electricity prices as it allows us to 

capture structural breaks, spikes, and trends simultaneously. 

It is worth noting that many factors are involved in the evolution of electricity prices in the 

five Australian states.
17  Csereklyei et al. (2019) showed that solar capacity decreases the 

 
15 AER have reported that high temperatures and outages in northern NSW significantly increased demand for electricity in 

QLD. https://www.aer.gov.au/communication/aer-releases-reports-on-wholesale-electricity-high-prices-in-queensland-on-13-

and-14-january-2017 (assessed 30 September 2021). 
16 Han et al. (2020) also observed that carbon pricing schemes affect the volatility of electricity prices.  
17 Interested readers may refer to Simshauser and Gilmore (2020b) for discussions of factors driving recent electricity prices 

in Australia.  
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wholesale electricity price in Australia. Mwampashi et al (2021) observed that a 1 GWh 

increase in wind generation decreases daily electricity prices by up to 1.3 $/MWh and typically 

increases price volatility by up to 2%. Mwampashi et al. (2022) reported similar findings. Aside 

from the increasing uptake of renewable energy technologies, other factors such as residential 

demand (Narayan and Smyth, 2005; Fan and Hyndman, 2011), entry cost (Simshauser and 

Gilmore, 2020a), gas prices (Simshauser and Gilmore, 2020b), state interconnector flow (Bell 

et al, 2017), and the closure of coal-fired power plants (Wiseman et al., 2017) have been shown 

to affect Australian electricity prices.  

 

5 Empirical Results  

In order to explore the potential performance benefits of model, we propose the use of the 

following four specifications of indicator saturation (IS) models, from simple to complex:  

• IS-0: impulse- and step-indicators; 

• IS-1: impulse- and step-indicators, with autoregressive lags;  

• IS-2: impulse-, step-, and trend-indicators, with autoregressive lags; 

• IS-3: impulse-, step-, trend-indicators, and monthly and yearly dummies, with 

autoregressive lags.  

The benchmark models include a two-regime Markov switching model (MS-2R) and a 

three-regime Markov switching model (MS-3R). Figure 2 shows the autocorrelation functions 

(ACFs) and partial autocorrelation functions (PACFs) of electricity prices for each state. 

Clearly, the ACFs and PACFs of electricity prices are similar across states, but significant lags 

occur in different periods. For example, we observe a significant lag in the 12th term in South 

Australia, but a significant lag in the 9th term in Queensland. Following Taylor and Peel (2000) 
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and Kayalar et al. (2017), we determined the order, p, of the models based on the significant 

lags in the partial autocorrelation function18. To ensure a low false detection rate, we followed 

the rule of thumb suggested by Pretis et al. (2018), to set 𝛼 =  𝑚𝑖𝑛(0.05, [1/𝑘]), where 𝑘 =

𝑛 − 1 and 𝑛 denotes the number of observations.  

Table 2 compares the performance of the IS and Markov switching models. To evaluate 

the goodness-of-fit of fitted models, we used both the Akaike Information Criterion (AIC) and 

Schwarz's Bayesian Information Criterion (BIC). Overall, the results indicate that the IS 

models outperform the Markov Switching models. In Queensland and Tasmania, the results 

indicate that an IS-3 model (based on AIC) and an IS-2 model (based on BIC) are better fitted 

across all five models. South Australia prefers an IS-0 model based on AIC and an IS-3 model 

based on BIC. In Victoria, both AIC and BIC suggest that an IS-2 is the best fitted model as the 

values of AIC and BIC are the lowest across all models. One exception is that in the case of 

New South Wales, where the AIC suggest that Markov switching models achieve a better fit 

but the BIC still indicates that IS-2 is the best model.  

Figure 3 shows the fitted values of IS models based on the BIC values for each state, where 

the BIC values generally suggest that an IS-2 model is the most suitable IS model and that MS-

2R is the most suitable MS model. Thus, we compared the fitted results between the IS-2 and 

MS-2R models for each state. It is clear that the fitted model captures the electricity prices very 

well. In particular, it can capture the majority of the spikes in electricity prices across all five 

states. At the bottom of each panel, we can also see that there are structural breaks for each 

state.  

To further show how well the IS model captures the spikes compared to MS, we followed 

 
18 Specifically, the lag lengths we chose were 9 for QLD, 11 for NSW, 10 for VIC, 12 for SA, and 11 for TAS.    



Page | 18  

 

the method of Apergis et al. (2020) and defined a nonparametric measure of the spikes. A spike 

is defined here as a price higher than the local mean plus three times the local standard deviation, 

where the local mean and local standard deviation at time 𝑡 are calculated based on the range 

[min(0, 𝑡 − 25) , max (𝑡 + 25, 𝑇)]  (i.e., a centralised window minus or plus 25 calendar 

weeks (truncated at 0 and 𝑇)).  

Following this definition, we calculated the spike frequency and compared whether the IS 

and MS models, based on both the BIC and AIC, were able to detect such spikes. Table 3 

summarises the results. It can be observed empirically that spikes occur with a frequency of 

around 2%; the frequency of spikes is lowest in Tasmania (1.07%) and highest in South 

Australia (2.9%).  

We then compared the detection rate (type I error) and the correct signal rate (type II error) 

across the IS and MS models. The detection rate is the percentage of spikes detected by each 

model as a proportion of the total number of spikes identified using nonparametric measures 

for each state, while the correct signal rate is the percentage of price spikes detected by each 

model that correspond to actual true positives/correct signals. As Table 3 illustrates, based on 

the BIC values, the IS model is markedly better at issuing a correct signal than the MS model. 

For example, the correct signal rate of the IS model for New South Wales is 90.0%, but that of 

the MS model is only 6.4%. However, the detection rate of the IS models is slightly lower than 

those of the MS models, except for Victoria. This is because we use a very small value of 𝛼 

to strictly control the false detection rate, which is recommended as a rule of thumb by Pretis 

et al. (2018). IS performs particularly poorly for Tasmania, which may be related to the fact 

that Tasmania is geographically isolated from the other states, and its electricity market is 

connected through Basslink. To check the sensitivity of the models, we also compared the spike 
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detection performance based on the AIC values. We found that the results of the IS models vary 

slightly. However, the results of the MS model changed significantly: its detection rate 

decreased noticeably and its correct signal rate increased. We also found that the data for the 

number of spikes detected by each method for each state showed that the MS model over-

identifies spikes. Overall, we found that the IS models usually have a higher correct signal rate 

than the MS models, and the MS models tend to over-identify spikes; thus, the IS models have 

better detection rates.  

 

6 Robustness Check Using Daily Data 

The increasing occurrence of negative prices in the NEM has been well documented in 

recent years; it is associated with periods of low demand combined with high supply, 

predominantly as a result of intermittent renewable energy generation (AEMO 2019). To deal 

with negative prices, these observations are typically removed or truncated. However, recent 

empirical studies (Kyritsis et al., 2017; Mwampashi et al., 2021) underscore the importance of 

accommodating negative prices in modelling approaches to better reflect electricity price 

dynamics.  

In order to demonstrate that the indicator saturation approach can also accommodate 

negative prices, we repeated our analysis of the daily electricity spot price. The data were 

obtained from the AEMO website19. The sample period remains the same as that of our main 

analysis – that is, 1 July 2008 to 27 December 2020, for a total of 4563 daily observations for 

each state. Due to the presence of negative prices, we adjusted the model so that natural 

 
19 https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-

nem#aggregated-data (assessed on 14 January 2023). 

https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem#aggregated-data
https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem#aggregated-data
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logarithms of the daily data were not included. An additional adjustment was the inclusion of 

day-of-week dummies in the IS-3 specification in order to reflect a weekly pattern. For the IS 

settings, we still used the partial autocorrelation function to determine the autoregressive 

order20 and employed the rule of thumb to set the significance level at 𝛼 =  𝑚𝑖𝑛(0.05, [1/𝑘]). 

Additionally, we found that the expectation-maximisation algorithm used to estimate the 

parameters of the Markov switching models cannot converge for daily electricity prices 

(without using a logarithm) in some states. Thus, we decided to focus on comparing different 

IS specifications in this robustness check.  

Table 4 presents the AIC and BIC values for the daily electricity prices produced by the 

four IS specifications. The data show that IS-2 performs best for all five states. This can be 

explained by the fact that spikes are more prominent without the use of logarithms, and the 

multiple seasonality (encoded by the calendar dummies) becomes less crucial in the raw series 

of electricity price. Thus, without considering seasonality, IS-2 outperforms the IS-3 setting.          

It is worth investigating the occurrence of spikes at the daily level, particularly for different 

subperiods. This enables us to focus our attention on the evolution of the occurrence of spikes 

in our sample period. It should be noted that spikes are selected at different significance levels 

for daily data and weekly data. This is because of the use of the rule of thumb that advises 

setting the significance level at 𝛼  =  𝑚𝑖𝑛(0.05, [1/𝑘]) , which depends on the number of 

observations. Since there are many more daily observations than weekly observations, we were 

much stricter in our selection of spikes for daily data. This enabled us to properly control the 

false detection rate, as suggested by Pretis et al. (2018). 

 
20 For daily data, the lag lengths we chose were 15 for QLD, 10 for NSW, 14 for VIC, 16 for SA, and 14 for TAS. To avoid 

unnecessarily large lag lengths, we arbitrarily restricted the maximum lag length to 16. Based on our experiments, such 

restrictions can help to produce a better model with lower AIC and BIC values.      



Page | 21  

 

Table 5 shows the number of spikes based on the daily data for different financial years (1 

July to 30 June the following year) in our sample period. The data show that spikes occurred 

more frequently in the period prior to the carbon pricing scheme (July 2008–June 2012), 

particularly for South Australia and Tasmania during July 2009–June 2010. During the period 

of the carbon pricing scheme (July 2012–June 2014), the number of spikes remained at a 

relatively low level for all states except Queensland. After the introduction of the Emission 

Reduction Fund, the occurrence of spikes remained high for Queensland, most notably between 

July 2017 and June 2018, when 10 spikes occurred; the other four states show relatively low 

numbers of spikes for this period. Nevertheless, slight increases in the number of spikes have 

been observed in those four states in recent years (since July 2018), which could be partly 

attributed to the rapid integration of renewable energy generation in the NEM.     

7 Discussions and Policy Implications 

The indicator saturation method has provided a realistic picture of the NEM in Australia. 

It has detected location shifts and breaks, which should have a beneficial effect on the 

constancy of our modelling approach, as well as on forecast performance. 

These findings are highly relevant for global environmental change, as future demand for 

electricity could be higher than is currently expected, leading to an increase in the associated 

environmental pressures. The results may also suggest that an electricity price saturation point 

is approaching as a result of the fact that traditional fossil energy sources are reaching the end 

of their lifetime. Thus, these sources should be replaced with renewable energy sources as a 

matter of urgency.  

The methodology proposed here can be used to further improve the prediction performance 

of electricity price models. The recommended method has been shown to be an accurate and 



Page | 22  

 

efficient modelling approach for price forecasting. The use of the proposed method in the 

prediction of electricity prices is both practical and feasible, and it could therefore be of great 

benefit to utility companies when formulating their long-term strategies.  

Our results highlight the substantial impact that the treatment of extreme electricity events 

such as shifts and spikes may have on the estimation of electricity price patterns. Such results 

emphasise the importance of using a filtering procedure that detects and replaces extreme 

observations/events in electricity spot prices. Such modelling approaches can yield more 

consistent, unbiased estimates. In addition, the findings highlight for policymakers the extent 

to which electricity plants are an absolute necessity for meeting peak demand when the supply 

of electricity is not adequate, and in that sense regulatory instruments that ensure the viability 

of those plants (in the form of capacity markets) may, therefore, become increasingly relevant, 

especially in the case of price drops, which can trigger reductions in the stock of current 

capacities that are required to sustain system reliability. The shifts, spikes, and break events 

seen in the Australian electricity market underline the importance of the role of policymakers 

and regulators. In addition, accurate forecasting of extreme price events, such as price spikes 

and breaks, is an essential aspect of risk management in the electricity sector. Overall, given 

that the ability to predict electricity prices is a crucial component of security valuation in the 

electricity industry, it is imperative that this capacity is improved by explicitly incorporating 

the most salient features of electricity prices, including those mentioned above. 

Furthermore, the accurate prediction of electricity prices under different characteristics and 

conditions is particularly important for certain segments of the population. More specifically, 

within a particular region or community, certain groups may be more significantly affected by 

climate change than others. For instance, low‑income households are expected to bear a 
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disproportionate burden, because those belonging to this demographic have fewer resources 

with which to adapt to the various climate impacts. For example, low‑income households are 

less able to purchase and operate specific electricity-powered items, such as air conditioning 

units, during extreme heat events. In addition, some of the most significant climate impacts, 

such as heat and wildfire smoke, could disproportionately affect medically vulnerable 

populations, including children and the elderly, those with underlying medical conditions such 

as asthma and cardiovascular diseases, and those who spend a large amount of time outdoors, 

such as homeless populations and outdoor workers. Such extreme weather events could also 

disproportionately impact people who are institutionalised, such as hospital patients. These 

populations might not be able to go outside for days at a time because they are only allowed to 

spend time outside during specific hours of the day.  

Existing market institutions should be restructured or improved so that regulators are better 

able to combat potential gaming and/or manipulation activities in electricity markets. The 

presence of structural weaknesses can lead directly to problems when rational economic 

players behave in such a way as to take advantage of market imperfections and institutional 

shortcomings. The message to policymakers is clear: such behaviour should not be tolerated, 

as the cost of the movement to stronger competition may be large. Policymakers should address 

and solve any such underlying institutional problems, and regulators must clearly demonstrate 

that they are willing to enforce rules that will establish an orderly electricity market. These 

aims can be achieved as follows: by adopting explicit and vigorous policies that prevent the 

manipulation of the NEM electricity market by ensuring that the basic conditions adequately 

support competition, including ensuring that the number of suppliers and their ability to bring 

the electricity product to market is sufficient to deliver workably competitive markets; ensuring 
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that market institutions are well developed during the trading process so that conduct is 

transparent and disciplined by market forces; and monitoring electricity market performance 

such that participants are not engaged in actions that tend to tighten said markets with the aim 

of exploiting this dynamic through sales at inflated prices.  

 

8 Conclusion 

In this study, we have analysed stylised facts, including spikes, structural changes, and 

trends, in the modelling of electricity prices. The indicator saturation approach was used 

because it can directly model these stylised features and avoid the unrealistic assumptions of 

the Markov switching model, which assumes that Markov chain determining regimes are 

independent of all other parts of the model. Using various model evaluation tools, we have 

shown that this approach outperforms the regime-switching models with various settings. 

Using a nonparametric measure, we also showed that the IS approach had a better rate of 

signalling price spikes. We detected the dates of spikes, structural breaks, and trends for 

Australian states. Although our analysis focuses on the Australian NEM, those stylised facts 

are universal and are observed across all electricity markets, and our analysis is therefore 

applicable to other countries as well.  

Our results emphasise the importance of detecting and mitigating extreme events in 

electricity spot prices and highlight for policymakers the extent to which electricity plants are 

an absolute necessity for ensuring that peak demand is met when the electricity supply is not 

adequate. In that sense, regulatory mechanisms that ensure the viability of those plants (in the 

form of capacity markets) may become increasingly relevant, especially in the case of price 

drops, which can trigger reductions in the stock of current capacities that are required to sustain 
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system reliability. Future studies could consider the incorporation of external factors into the 

framework of indicator saturation. Moreover, researchers may use the indicator saturation 

method to forecast other economic variables, where this method may perform better as it can 

detect structural changes in a more timely manner (Marczak and Proietti, 2016). Overall, 

improved electricity price forecasting substantially enhances our knowledge of the clustering 

of different end-customer groups, and related strategies can therefore be used by energy 

providers to identify electricity usage patterns. These insights can be utilised to add to an 

improved customer view or to personalised marketing propositions such as new tariffs and 

incentives that might better engage end customers, helping them to save money and reducing 

churn rates at the same time. Hence, the timing is perfect for utilities and retail energy providers 

to update their load forecasting practices to reflect today’s rapidly changing energy landscape.  

One limitation of the use of indicator saturation is that the computational cost of this 

approach is much higher than that of other traditional methods if the sample size is large. It is 

worth noting that the shift-detecting ability of SIS is asymmetric because it is better able to 

detect shifts in the second half of the sample relative to the first half (Marcrak and Proietti, 

2016). 
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Figure 1. Weekly spot electricity prices for five Australian markets.  

Note: Grey area indicates the period of carbon tax. 

  



Page | 33  

 

 

A: Queensland (QLD) 

 

B: New South Wales (NSW) 

 

C: Victoria (VIC) 
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D: South Australia (SA) 

 

E: Tasmania (TAS) 

Figure 2. Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) 
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A: Queensland (QLD) 

 

B: New South Wales (NSW) 

 

C: Victoria (VIC) 

Figure 3. Model fitted results.  

Upper panel: log of electricity price (actual – blue, fitted – red);  

Middle panel: standardised residuals; Lower panel: coefficient path.   
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D: South Australia (SA) 

 

E: Tasmania (TAS) 

Figure 3. (Continued) 
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A: Queensland (QLD) 

 

B: New South Wales (NSW) 
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C: Victoria (VIC) 

 

 

D: South Australia (SA) 
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E: Tasmania (TAS) 

Figure 4. Markov-switching regime. 

Upper panel: demeaned and de-seasonal log of electricity price;  

Lower panel: smoothed probability. 
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Table 1. Summary Statistics 

 NSW QLD SA TAS VIC 

 Mean 58.39 57.32 70.62 57.62 58.57 

 Median 50.00 49.00 52.00 43.00 44.50 

 Maximum 627.00 508.00 1005.00 405.00 1019.00 

 Minimum 20.00 14.00 3.00 0.00 14.00 

 Std. Dev. 46.61 47.32 82.53 41.74 63.71 

 Skewness 6.10 5.10 5.85 2.88 8.74 

 Kurtosis 60.12 38.97 47.71 15.98 110.83 

 Jarque-Bera 93258.83 38201.49 58389.15 5508.73 326191.60 

 Probability 0.00 0.00 0.00 0.00 0.00 

Pairwise Correlation coefficients  

 NSW QLD SA TAS VIC 

NSW 100%     

QLD 56% 100%    

SA 51% 33% 100%   

TAS 25% 27% 27% 100%  

VIC 44% 23% 73% 34% 100% 

 

 

  



Page | 41  

 

Table 2. Comparisons among Indicator Saturation and Markov switching models 

A: Queensland (QLD) 

    Indicator Saturation   Markov Switching 

  IS-0 IS-1 IS-2 IS-3   MS-2R MS-3R 

AIC 315.25 15.66 -16.39 -51.01  91.83 52.83 

BIC 395.89 150.06 135.93 177.47  318.24 354.70 

B: New South Wales (NSW) 

    Indicator Saturation   Markov Switching 

  IS-0 IS-1 IS-2 IS-3   MS-2R MS-3R 

AIC 98.56 -65.25 -105.51 -158.44  -118.58 -200.76 

BIC 174.72 78.11 60.25 79.01  125.59 127.75 

C: Victoria (VIC) 

    Indicator Saturation   Markov Switching 

  IS-0 IS-1 IS-2 IS-3   MS-2R MS-3R 

AIC 324.67 -0.79 -55.52 -43.91  84.97  

BIC 391.87 138.09 92.32 189.05  320.26  

D: South Australia (SA) 

    Indicator Saturation   Markov Switching 

  IS-0 IS-1 IS-2 IS-3   MS-2R MS-3R 

AIC 440.72 406.80 387.83 374.16   458.92 431.43 

BIC 552.72 568.08 558.07 625.04   711.97 773.26 

E: Tasmania (TAS) 

    Indicator Saturation   Markov Switching 

  IS-0 IS-1 IS-2 IS-3   MS-2R MS-3R 

AIC 234.15 -183.20 -207.14 -259.09   -44.10 -57.73 

BIC 319.27 -39.84 -50.34 0.75   204.50 275.23 

Note: Yellow indicates the minimum value across groups of IS or Markov switching models.   
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Table 3. Results for spike detection 

        QLD NSW VIC SA TAS 

 Nonparametric 

Measure 

No. of Spikes  15 15 11 19 7 

 Frequency  2.3% 2.3% 1.7% 2.9% 1.1% 

BIC 

IS 

No. of Spikes   10 10 12 13 12 

Detection Rate  40.0% 60.0% 91.7% 52.6% 28.6% 

Correct Signal   60.0% 90.0% 91.7% 76.9% 16.7% 

MS 

No. of Spikes  109 109 90 138 90 

Detection Rate  100.0% 46.7% 91.7% 94.7% 100.0% 

Correct Signal   14.0% 6.4% 12.2% 13.0% 8.0% 

AIC 

IS 

No. of Spikes   12 13 11 17 16 

Detection Rate  46.7% 60.0% 75.0% 52.6% 57.1% 

Correct Signal   58.3% 69.0% 81.8% 58.8% 25.0% 

MS 

No. of Spikes  73 72 32 45 53 

Detection Rate  66.7% 46.7% 83.3% 73.7% 85.7% 

Correct Signal   14.0% 9.7% 31.3% 31.1% 11.0% 
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Table 4. Results of Indicator Saturation based on daily data 

 

A: Queensland (QLD) 

    Indicator Saturation 

  IS-0 IS-1 IS-2 IS-3 

AIC 40130.75 39559.25 38739.49 38928.45 

BIC 40535.57 39996.20 39298.53 39577.45 

B: New South Wales (NSW) 

    Indicator Saturation 

  IS-0 IS-1 IS-2 IS-3 

AIC 39292.66 37852.39 37376.22 37775.42 

BIC 39620.37 38250.79 37877.42 38308.75 

C: Victoria (VIC) 

    Indicator Saturation 

  IS-0 IS-1 IS-2 IS-3 

AIC 39887.78 39202.12 38842.80 38985.82 

BIC 40144.81 39523.41 39234.77 39474.18 

D: South Australia (SA) 

    Indicator Saturation 

  IS-0 IS-1 IS-2 IS-3 

AIC 43837.73 43984.90 43534.62 43582.64 

BIC 44210.42 44396.15 44022.98 44141.68 

E: Tasmania (TAS) 

    Indicator Saturation 

  IS-0 IS-1 IS-2 IS-3 

AIC 38680.81 37339.82 37263.34 37296.80 

BIC 39098.48 37725.36 37681.01 37830.14 
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Table 5. Number of spikes based on daily data 

 Financial Year QLD NSW VIC SA TAS 

Jul 2008 - Jun 2009 1 3 0 0 0 

Jul 2009 - Jun 2010 4 9 3 12 16 

Jul 2010 - Jun 2011 3 4 6 5 9 

Jul 2011 - Jun 2012 3 5 1 2 1 

Jul 2012 - Jun 2013 0 0 1 0 0 

Jul 2013 - Jun 2014 4 1 0 2 0 

Jul 2014 - Jun 2015 4 0 1 1 0 

Jul 2015 - Jun 2016 4 1 0 0 0 

Jul 2016 - Jun 2017 2 1 1 4 0 

Jul 2017 - Jun 2018 10 4 0 1 0 

Jul 2018 - Jun 2019 0 0 2 4 3 

Jul 2019 - Jun 2020 0 1 3 4 1 

Jul 2020 - Dec 2020* 0 5 3 1 0 

Total 35 34 21 36 30 

Note: The last financial year ends in December 2020 because of data availability at the time of writing.   


