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Abstract 

This thesis examines the interactions between labour markets, technological change, and natural 

disasters in Chile, which has been considered as one of most successful Latin American countries 

according to economic growth and structural economic reforms over the last decades. One of these 

major reforms was trade liberalization implying an important absorption of foreign technologies biased 

towards skilled labour which increased from 10.1 per cent in 1980 to 30.4 per cent in 2018. At the same 

time, the Chilean higher education experienced substantial growth between the 1980s and 2010s, 

showing that people enrolled in tertiary education sextupled. In 1984, 11% of the 18 – 24 enrolled in 

tertiary education while in in 2018, it was 67%. In this regard, Chile supplies an environment 

particularly well suited to study the technological change driving the skill premium evolution. in Chile, 

like most Latin American countries, the skill premium is suggested as the main force driving the 

observed rise and fall of income inequality in recent decades (Acosta et al., 2019; Guerra-Salas, 2018; 

Parro & Reyes, 2017). The decline in income inequality is an important step in improving the 

population’s assessment of their well-being. Furthermore, Chile supplies a unique location for studying 

the potential for technological upgrading in the aftermath of catastrophes since it is characterized by 

recurring severe earthquakes. Earthquakes supply the opportunity to analyse technological upgrading 

due to their unexpected occurrence and destructive ability. Therefore, examining the interactions 

between technology, labour markets and natural disasters has important implications for our 

understanding of the interrelations between these economic forces. The thesis is divided into three 

essays.  

The first essay aims to test the Race between Education and Technology, RBET, model empirically 

for Chile using recurrent bi-annual labour survey data from 1980 to 2018. The main aspects that 

motivate this research are the lack of evidence in the post-2000 period and "estimation difficulties" 

reported by past studies. These difficulties imply mainly the computation of positive coefficients 

standing for the expected negative relationship between the skill premium, i.e., the gap between skilled 

and unskilled wages, and the relative supply of skilled labour as posited by the RBET theory. Besides, 

a positive coefficient would imply the computation of a negative elasticity of substitution between 

skilled and unskilled labour. We also find "estimation difficulties" using cointegration techniques. 

Alternatively, we apply an Unobserved Component Model, UCM, estimated by Bayesian inference, 

UCM-Bayesian, whose results are more consistent with the RBET model. We find that both demand 

and supply factors explain the evolution of the skill premium. In the context of the race between 

technology and education, in the pre-2000 period, the relative demand attributable to skill-biased 

technological change, SBTC, with its rapid acceleration contributing to a high skill premium, is 

suggested as the dominant factor. However, in the post-2000 span, the demand factor was surpassed by 

strong increases in the relative supply, suggesting education as the dominant factor inducing a declining 

trend in the skill premium. Furthermore, our estimate for the elasticity of substitution is 6.5. The value 
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greater than one implies that skilled and unskilled workers are imperfect substitutes but more 

substitutable than commonly thought, given the past estimates for this parameter.  

The second essay evaluates the influence on the skill premium for the task-content of jobs and 

specific workers' abilities. We exploit the text data from job posting ads covering 2009-2018 (approx. 

189,000 ads) to capture demand for tasks and skills. Our task-related analysis tests the expected 

complementarity between skilled labour and non-routine cognitive (analytical and interactive) and 

routine cognitive tasks. In our skills-related analysis, we evaluate whether cognitive and social abilities 

influence the skill premium. Our results show weak evidence for non-routine cognitive tasks as drivers 

of the skill premium progress, while routine cognitive tasks do not explain this wages differential. Also, 

we do not find evidence that cognitive or social abilities, separately or in combination, explain the 

evolution of the skill premium. The apparently inferior importance of cognitive tasks and abilities might 

imply an inefficient educational investment or unwanted changes in the occupational ladder for higher 

educated workers.  

The potential impact natural disasters have in improving demand for labour in the Information and 

Communication Technologies, ICT, sector is explored in the third essay. We explore whether disasters 

can accelerate the current technical progress featured by ICT, assuming that updated and ICT 

compatible equipment replaces the destroyed equipment. In turn, this faster rate of technological 

adoption would lead to increases in demand for ICT labour. We use a severe earthquake (8.8 Mw) that 

struck Chile's Central Region on February 27, 2010, as a natural experiment and a subsample from 

online job posting data used in the second essay. We implement a structural topic model, STM, to 

estimate the difference in the prevalence of topics related to ICT labour (as proxies for upgrading new 

technologies) and the Construction sector labour by comparing two years before to two years after the 

earthquake. Our results show that the prevalence of the ICT labour topic does not substantially change, 

suggesting that there was no technological replacement following the earthquake. In contrast, the 

prevalence of the Construction labour topic was significantly different after the disaster, suggesting that 

reconstruction activities lead to employment differences in the Construction sector. 
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1. Introduction 

The relationship between technological progress and labour markets has been the subject of a long-

standing debate, as technology is a significant force driving employment and earnings (Autor et al., 

1998). In recent decades, Information and Communications Technologies (ICT from now on) and other 

computer-based emergent advancements, such as automation and robotics, have further fuelled this 

controversy as drivers for much of the technological change in production (Acemoglu & Autor, 2011; 

Almeida et al., 2020). This debate has motivated a vast literature examining the interactions between 

technology and labour outputs, such as the skill premium, i.e., the gap between skilled and unskilled 

wages1. The skill premium is particularly important as a measure of income inequality between workers 

with different skills, showing how the relative prices of skills evolve (Acemoglu & Autor, 2011). The 

evolution of the skill premium also provides opportunities to understand the characteristics of the 

process of economic development, especially how economic forces like technological change may 

influence the demand for, and supply of, highly qualified workers.  

The literature has developed several economic models to understand how technological 

advancements drive the demand for labour based on their skills. One is the Race between Education 

and Technology, RBET, model (Acemoglu, 2002; Acemoglu & Autor, 2011; Autor et al., 2008; Katz 

& Murphy, 1992), also known as the Skill-Biased Technological Change, SBTC, model since it assumes 

that technological change is biased towards skilled workers, i.e., there is an increasing demand for 

skilled workers coming from technology. On the supply side, the educational system supplies these 

skills or qualifications, affecting the educational attainment of the workforce. These simultaneous shifts 

in supply and demand implicitly refer to a race between education and technology as posited by the 

RBET model, where the effect of technological change on labour is based solely on the skills 

endowment of workers.  

The RBET model, like the ALM model proposed by Autor, Levy and Murnane  (2003), is among 

the economic models most frequently applied to the study of these interactions (Goos, 2018). The ALM 

model posits that technical progress depends on skills and the task content of jobs. One of its main 

predictions is that technological progress complements non-routine cognitive tasks (e.g., researching, 

decision making, persuasion) typically performed by skilled workers (e.g., managers, professionals) 

(see Table 3.1). Thus, the ALM model can account for the interactions among skills, tasks and 

technologies, becoming a revised version of the SBTC effect established by the RBET model  

(Acemoglu & Autor, 2011). However, beyond the expected complementarity between cognitive tasks 

and skilled labour, some have documented a reversal in demand for cognitive abilities (Beaudry et al., 

 
1 In this thesis we define skilled labour as suitable for college or post-secondary graduates and unskilled labour as suitable for 

graduates of high-school or secondary education or those whose education has not reached these levels. To consider different 

workers’ educational attainments (e.g., high-school dropouts) we define additional variables to adjust for these and other 

compositional labour structure. See section 2.5 for methodological details. 
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2016; Deming & Noray, 2020). At the same time, some have noted a rising complementarity between 

cognitive and social skills (e.g., communication, cooperation with others) with a positive impact on 

wages (Deming, 2017; Edin et al., 2017). Consequently, the joint demand for both cognitive and social 

skills might result in better labour outcomes such as the skill premium, for skilled labour.  

Recapitulating, a critical aspect of the RBET and the ALM models is that they assume that 

technological progress steadily evolves (Acemoglu, 2002; Acemoglu & Autor, 2011; Autor et al., 

2008). Alternatively, it has been suggested that the pace of technological change might be affected by 

episodes or substantial events like natural disasters (Crespo Cuaresma et al., 2008; Okuyama, 2003; 

Okuyama et al., 2004; Skidmore & Toya, 2002). Such events might lead to technological upgrading 

because updated capital replaces the old equipment destroyed by natural catastrophes. In turn, the 

technological replacement might lead to changes in demand for labour based on the complementarity 

or substitutability between the new equipment and labour. If, as supported by the literature, ICT 

technologies currently drive much of the technological change in production (see e.g., Acemoglu & 

Autor, 2011; Almeida et al., 2020), equipment compatible with ICT will replace the equipment damaged 

by recent natural disasters. In turn, this technological upgrading might positively affect the demand for 

ICT employment. Conceptually, extensions of growth models like the Solow-Swan approach (Solow, 

1956; Swan, 1956)  and a more literal assumption of the creative-destruction hypothesis (Aghion & 

Howitt, 1990; Schumpeter, 1976) allow us to examine these interactions. Thus, we can examine how 

labour markets respond to both regular economic forces i.e., the role of demand factors like the 

technological change in the skill premium evolution, and unexpected shocks like natural disasters 

considering the potential technological upgrading proxied by changes in demand for specialized labour 

i.e., ICT labour in the aftermath of catastrophes. This conceptual link between the expected 

technological upgrading leading to improvements in demand for ICT labour is detailed in section 4.2.2.  

1.1.  Labour, and educational aspects of Chile and relevance of the 

country to investigate the interactions between labour, technology, 

and disasters 

Chile has been considered as one of most successful Latin American countries (LAC) according to 

economic growth and far-reaching economic reforms over the last 50 years (Gallego, 2012; Murakami 

& Nomura, 2020). Most major economic reforms in Chile occurred between 1975 and 1995, with trade 

liberalization being the most relevant (Beyer et al., 1999). Researchers suggest that one of the 

implications of this openness was the absorption of foreign technologies biased towards skilled labour 

(Beyer et al., 1999; Gallego, 2012; Robbins, 1994a). In the 1980s and 1990s, Chile imported about 85% 

of non-transportation machinery and equipment from the US and OECD countries (Gallego, 2012). In 

this regard, it has been suggested that the relative demand for skilled labour increased significantly in 
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most sector of economy during the 1980s and 1990s (Gallego, 2012) and continued increasing over 

time. The employed workforce in the Chilean economy in 1980 was around 3 million workers and in 

2018, around 8 million workers while the share of skilled labour rises from 10.1 per cent in 1980 to 

30.4 per cent in 2018 (INE, 2017; University of Chile, 2020). Over this period, researchers have linked 

this higher share to the expansion of tertiary education and the exit of the older and less educated cohorts 

(Murakami & Nomura, 2020; Parro & Reyes, 2017). The observed data shows that Chilean higher 

education experienced substantial growth in recent decades. According to educational and census data 

for 1984-2018, people enrolled in tertiary education sextupled (INE, 2017; MINEDUC, 2020). The 18–

24 age group enrolled in tertiary education grew from 189,151 (11% of this age group) in 1984 to 

521,882 (31%) in 2002. In 2018, it exceeded 1.2 million (approximately 67% of the 18–24 age group). 

Apart from the endogenous response of agents to the increase in returns to education, these changes in 

educational attainments were also fuelled by educational reforms, starting in the 1980s, that expanded 

and diversified the Chilean tertiary educational system (Murakami & Nomura, 2020).  

Regarding Chile as a country where we can investigate the interactions between labour, technology, 

and disasters Chile supplies an environment particularly well suited to study the technological change 

driving the skill premium evolution and technological upgrading due to the occurrence of natural 

catastrophes. On the one side, in Chile, like most Latin American countries, the skill premium is 

suggested as the main force driving the observed rise and fall of income inequality in recent decades 

(Acosta et al., 2019; Guerra-Salas, 2018; Parro & Reyes, 2017). The decline in income inequality is an 

important step in improving the population’s assessment of their well-being. This is especially relevant 

to Chile: as the country has grown economically, even reaching high-income status2, its high and 

persistent income inequality has come to the fore. In this regard, the study of the skill premium evolution 

for Chile may provide lessons for other economies since the country is often considered a model for 

other middle-income emergent economies, particularly in Latin America  (Ramos et al., 2013; Sánchez-

Páramo & Schady, 2003). Countries transitioning to higher income levels have sometimes seen Chile 

as a successful case of escaping the middle-income trap where factors such as political and economic 

stability, trade and financial liberalizations, and investment in education played a role (Galeano & 

Gallego, 2018). Besides, the transition from middle to high-income status may be even more difficult 

as globalisation increases (Eeckhout & Jovanovic, 2007). Of 101 middle-income countries in 1960, 

only 16 became high-income by 2012; among them were only two Latin American countries: Chile and 

Uruguay3 (World Bank, 2013, 2020). As noted above, although Chile has reached high levels of income, 

it lags behind in terms of dimensions of well-being, including income inequality, compared to high-

income economies in other regions (OECD et al., 2019). Therefore, examining technological change as 

 
2 The World Bank classifies countries into four income groups—low, lower-middle, upper-middle, and high-income countries 

using thresholds based on Gross National Income (GNI) per capita in current USD Income. Chile in 2012 was assigned to the 

high-income category since its GNI per capita was higher than USD$12,615 in that year (World Bank, 2020). 
3 Other examples of countries in the 16’s group by region: Europe (Greece, Poland, Portugal) and Asia (Republic of Korea, 

Oman). 
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a contributor to the skill premium evolution has important implications for well-being and our 

understanding of the economic development process. 

Furthermore, Chile supplies a unique location for studying the potential for technological upgrading 

in the aftermath of catastrophes since it is characterized by recurring severe earthquakes. Ten of the 

most destructive earthquakes (8 Mw
4
 and above) hit Chile in the past century (Barrientos & CSN Team, 

2018). In the last decade, three earthquakes over this magnitude affected different Chilean regions in 

2010, 2014 and 2015. Earthquakes supply the opportunity to analyse technological upgrading due to 

their unexpected occurrence and destructive ability. We can measure differences in demand for specific 

kinds of labour, like ICT labour, as a proxy of technological upgrading, given the technological change 

in production. We can also study the expected increases in demand for labour devoted to reconstruction 

activities, e.g., Construction labour. 

Assessment of the implications of the RBET and ALM models reveals that understanding the role 

of cognitive and social skills, as well as the potential for technological upgrading in the aftermath of 

disasters, is essential for efficient policy. In the context of a race between supply and demand driving 

the skill premium, policymakers need to consider the possible effects as the dominant factor changes 

over time since interactions between both factors can lead to increases and decreases in the skill 

premium. Therefore, coordination between intersectoral policymakers (e.g., labour and education) is 

required to balance the supply of skills provided by the education system with the needs of labour 

markets. Similarly, in the case of the ALM model and the study of cognitive and social skills, some 

policy implications arise from the relevance of tasks and abilities that are expected to increase the 

demand for better-educated workers. The examination of technological replacements in the aftermath 

of a disaster, however, can contribute to the recovery process by encouraging technical adoption in 

planning and labour policies focusing on the employment of lesser favoured labour in reconstruction 

activities.  

The rest of this chapter is as follows. We first discuss the RBET and ALM models’ implications 

and the importance of their analysis for Chile, given the inconclusive nature and small quantity of 

previous research on this country. Similar motivation underlies our analysis of cognitive and social 

skills driving the skill premium and our inquiry on how an earthquake can be considered as a substantial 

event affecting the pace of technological change and, consequently, demand for specialized 

employment like ICT labour. From these discussions, we proceed to introduce the research questions 

that motivate this work. Subsequently, we state the objectives of this research, followed by the relevance 

and contribution of this thesis. We conclude with an overview of the thesis structure. 

 
4 Mw refers to the Moment Magnitude scale, which is usually used for measuring earthquakes’ “size”. The Mw values are 

proportional to an earthquake’s total energy release (NOAA, 2019).  
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1.2. Problem statement 

In the light of the overview above, this section provides specific backgrounds of the issues that 

will be discussed in this work, as well as its implications for the Chilean context. For the sake of clarity, 

we describe these issues in three subsections with their respective key questions.  

1.2.1. On the RBET model 

As introduced, the RBET model allows us to examine how supply and demand factors influence 

the skill premium at the same time. This concurrency represents a race between education as a supplier 

of skills, and technology, as a force demanding more skilled labour. Numerous empirical studies support 

the evidence for the RBET model, particularly in high-income countries (see, e.g., Acemoglu & Autor, 

2011; Autor et al., 2020, 1998; Goldin & Katz, 2008; Katz & Autor, 1999). Conceptually, the RBET 

model employs an aggregate production function with Constant Elasticity of Substitution, CES 

(Acemoglu, 2002; Goldin & Katz, 2008, 2009). The CES primary inputs are wages and quantities of 

skilled and unskilled workers. The value of elasticity of substitution between skilled and unskilled 

labour is a critical parameter in the model because it shows how changes in either technology or supplies 

affect demand and wages. The model predicts that the skill premium rises if increases in the relative 

supply of skilled workers do not compensate for their relative demand growth. Alternatively, if the 

supply rises faster than the pace of demand, the skill premium will decrease.  

Bringing the data to the RBET model allows us to estimate the model parameters empirically. 

However, the estimation is problematic because insufficiently general models or inappropriate 

estimation approaches have either led to estimates incompatible with the RBET model or imposed 

incorrect assumptions (Varella, 2008b). For example, unexpected signs and magnitudes for parameters 

used to derive the elasticity of substitution between skilled and unskilled labour have been obtained. 

According to the RBET model, a negative sign for the supply factor coefficient is expected to establish 

the negative relationship between this factor and the skill premium (see section 2.2.1). However, some 

estimation methods report positive signs generating an inconsistent estimate which can also lead to the 

computation of a negative elasticity of substitution between skilled and unskilled labour (see section 

2.2.2). In this regard, not only the unexpected sign but also the magnitude of the supply factor coefficient 

has attracted interest. Commonly, the elasticity of substitution between skilled and unskilled labour is 

computed as the reciprocal of the supply factor coefficient, where small estimates of this coefficient 

translate to implausibly large elasticities. Most of the prominent RBET literature developed until the 

2000s decade reports estimates in the interval [1, 3] (see, e.g., Acemoglu, 2002; Ciccone & Peri, 2005; 

Gallego, 2012; Goldin & Katz, 2009; Robbins, 1996), and this range has been taken as a consensus (see 

footnote 5). However, researchers have recently reported higher values, in some cases, after extending 

the analysis period using the same data (Acemoglu & Autor, 2011; Blankenau & Cassou, 2011; Varella, 
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2008a, 2011). Additionally, the elasticity estimation can also be difficult because of modelling and data 

structure, among other issues (Acemoglu & Autor, 2011; Acosta et al., 2019; Blankenau & Cassou, 

2011; Borjas et al., 2012). Therefore, bringing the data to the RBET model can be problematic (Acosta 

et al., 2019).  

In the case of Chile, the RBET evidence is inconclusive, and most of it focussed on a period before 

the 2000s. Although similar estimation methods have been applied, they have yielded both expected 

and contradictory estimates for different periods of interest. For example, Gallego (2012) found support 

for the RBET model using cointegration techniques on data between 1960-2000. In that period, both 

the skill premium and the relative supply of skilled labour increased. The study reported a negative 

coefficient for the relative supply of skilled workers, as expected, and the elasticity of substitution was 

between one and two. Conversely, Murakami (2014) used the same Chilean data source for 1974-2007 

using similar estimation methods. However, the Murakami (2014) results did not support the RBET 

predictions since the coefficient representing the supply factor was non-significant, and it has 

sometimes been positive, which is an unexpected result according to the theory. As discussed above, a 

positive sign leads to the computation of a negative elasticity. Some reported that the obtention of 

negative values might result from imprecision in data and methods (Blankenau & Cassou, 2011; 

Havranek et al., 2020) or “improbable estimation results”.  

Recapitulating, some documented changes in the path of the data might explain the Murakami 

(2014) results for the Chilean case. The 2000s and 2010s witnessed a rapid decline in the skill premium, 

while the relative supply of skilled labour showed an increasing trend (Fernández & Messina, 2018; 

Murakami, 2014). Similar changing patterns in the skill premium have been reported for other Latin 

American countries, and some authors have warned about the estimation challenges to the evaluation 

of these changing patterns (Acosta et al., 2019; Fernández & Messina, 2018). To try to fill this gap in 

the context of the RBET model for the Chilean case, we propose to consider the following two key 

questions: 

❖ Does the evidence in Chile over 1980-2018 support the RBET model, its predictions, and 

implications? 

❖ To what extent can we address the methodological difficulties that arise in estimating and 

testing the RBET model?  

1.2.2. On the ALM model and the complementarity between cognitive and social 

skills 

The ALM model has arisen as a candidate to explain some trends and changes in labour demand 

not explained by the RBET model. For example, the RBET model fails to elucidate the faster growth 

of high and low skilled occupations along with the drop in middle-skilled jobs observed in countries 

such as the US and some European countries, known as job polarisation (Autor et al., 2006; Goos & 
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Manning, 2007; Van Ark & O’Mahony, 2016). In contrast, the ALM model can account for the 

interactions among skills, tasks and technologies (Acemoglu & Autor, 2011). Acemoglu and  Autor 

(2011) define a task as “a unit of work activity that produces outputs” and skill as “a worker’s 

endowments of capabilities for performing various tasks”. Some empirical studies document the 

interactions predicted by the ALM model (Autor et al., 2003; Goos et al., 2014; Goos & Manning, 2007; 

Sebastian, 2018; Spitz‐Oener, 2006).  

In Chile, studies examining some implications from the ALM model are recent, and the evidence 

contradicts its main predictions. For example, Almeida et al. (2020) analysed the impact of complex 

software as a proxy for ICT-related technologies, finding a displacement of skilled workers since 

cognitive tasks started to be performed by the analysed software. These findings contradict the ALM 

model prediction of technology as a complement for tasks performed by high-skilled workers. The 

results of Almeida et al. (2020) are in line with recent studies showing a broader class of jobs at risk 

due to the potential displacement role of frontier technologies (Arntz et al., 2016; Frey & Osborne, 

2017). Another Chilean study reported movements of workers from low-skilled occupations towards 

high-skilled and middle-skilled occupations (Zapata-Román, 2021). Hence, most educated workers face 

competition from advanced innovations and labour with a lower endowment of skills despite high-skill 

analytical abilities. In this regard, it is still an open question whether cognitive tasks might be less 

important in jobs typically employing skilled labour leading to changes in the skill premium.  

Regarding the suggested reversal in demand for cognitive skills and the increasing importance of 

social or people skills (e.g., communication, cooperation with others) as complements for the former, 

to the writer’s knowledge, the influence of the complementarity between cognitive and social abilities 

on the skill premium has not been studied in the case of Chile. Consequently, we are investigating the 

importance of tasks and the endowment of abilities of skilled labour under the ALM model and recent 

documented trends, respectively, in that country. Specifically, in our setting, two questions arise: 

❖ To what extent does the evidence support the ALM model, its predictions, and implications, 

particularly those related to skilled labour, for Chile in 2009 -2018? 

❖ To what extent do cognitive and/or social skills drive the skill premium for Chile in 2009 -

2018? 

1.2.3. On natural disasters and demand for ICT labour   

ICT and related technologies have been considered one of the major driving forces for modern 

technical change (see, e.g., Acemoglu & Autor, 2011; Almeida et al., 2020; Hwang & Shin, 2017). For 

this reason, it can be reasonably supposed that equipment endowed with ICT will replace physical 

capital damaged by catastrophes occurring in recent decades. For Chile, indicators covering assets like 

hardware, telecommunications and software show that the share of ICT in total investment has been 

growing, reaching values around 10% in 2010, in line with high-income countries like Spain and Italy, 
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resulting in important ICT capital formation (ECLAC, 2013). Therefore, we might expect an increase 

in ICT technological adoption would imply that much of the technology replacement after a disaster in 

recent decades will be based on ICT-compatible capital goods.  

The rapid move towards ICT-based equipment might result in greater demand for workers involved 

in the ICT sector. We assume that these workers are in high demand throughout the adoption phase of 

ICT-compatible equipment (O’Mahony et al., 2008), but researchers have ignored this issue in the 

context of the impacts of natural disasters on labour. Overall, researchers have studied the impact on 

labour as a substitute for damaged capital, leading to improvements in labour demand and wages 

(Belasen & Polachek, 2009; Benson & Clay, 2004; Cavallo et al., 2013; Skidmore & Toya, 2002). With 

greater relevance to a technological replacement, Leiter et al. (2009) reported higher physical capital 

accumulation and employment growth in regions affected by disasters. However, if a catastrophe 

promotes a more significant capital stock, it does not necessarily imply positive impacts on labour 

participation. Tanaka (2015) found a negative impact on employment, despite over-investment in 

physical capital. The author speculates that the decrease of population in the affected area may be a 

possible reason. This assumption is in line with the view that labour markets promote technical 

improvements since technology upgrading requires workers’ skills to be profitable (Acemoglu & Autor, 

2012).  

The demand for ICT employment has gone largely unnoticed in the literature that examines the 

interactions between natural disasters and labour markets compared to other shocks to the workforce, 

like recessions and pandemics. For instance, recessions can affect ICT employment negatively (Holm 

& Østergaard, 2015). Conversely, the recent COVID-19 pandemic has affected the ICT workforce less 

than other occupations, given that their jobs mainly require teleworking and involve less exposure to 

social or face-to-face interactions (Pouliakas & Branka, 2020; Redmond & Mcguinness, 2020). Our 

work tries to address this gap in understanding the effect of natural disasters on specific types of labour, 

such as ICT employment, proposing the consideration of the following key question: 

❖ To what extent do recent disasters accelerate the pace of technological change using the demand 

for ICT labour as a proxy for technological replacement?  

1.3. Research objectives 

As noted above, the literature has gaps in empirical research related to the RBET and ALM models 

and on the impacts of natural catastrophes on labour. Specifically, little research has involved applying 

the RBET and ALM model to Chile as well as the analysis of the ability’s endowment of skilled labour 

in order to understand how technological change drives the skill premium. This section outlines the 

specific research aims, which will be pursued by three essays trying to fill the identified gaps.  

We first explore the race between the demand for skilled labour coming from technology and the 

supply of skills coming from the education system using the RBET model’s conceptualization. Both 
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supply and demand factors can explain the skill premium evolution, but from a time perspective, one 

or the other can be the dominant factor or the winner in the context of a race. Besides, the difficulties 

in bringing the model to the data give us our motivation to explore and propose alternative estimation 

strategies, and given the importance of the elasticity of substitution between skilled and unskilled 

labour, we also investigate the implications of estimates beyond the consensus. 

We then aim to investigate how the task-content of jobs and specific abilities drive the skill 

premium. We use same approach as in the RBET model study to configure the skill premium although 

with some technical adjustments due to data availability (see section 3.5.1.1 for details). Using the ALM 

model’s conceptualization, we examine three kinds of tasks that are relevant to skilled labour: i) non-

routine analytical (e.g., researching, analysing); ii) non-routine interactive (e.g., negotiating, 

coordinating); iii) routine cognitive (e.g., calculating, bookkeeping) (See Table 3.1 and Table 3.2 for 

details of these task classifications). Also, we investigate the extent to which the demand for cognitive 

and social abilities, separately and simultaneously, and software skills (as a proxy for recent 

technological advancements) influence the skill premium (see Table 3.6 for details of these skill 

categories). 

A third goal is to study how a severe earthquake might affect the pace of technological change, 

using changes in demand for ICT labour as a proxy for technological replacements. We assume that 

equipment compatible with ICT replaces the destroyed machinery since it has been suggested that ICT 

and related technologies drive the technical change in production. Additionally, we examine the 

Construction labour, considering some expected reconstruction activities taking place after disasters. 

We also aim to make policy recommendations based on our results. Mainly, we inform labour and 

educational policymakers as well those designing post-disaster recovery and labour strategies.  

1.4. Relevance and contributions of the thesis  

Most of the evidence for the RBET model for Chile is focussed on the pre-2000 period (see, e.g., 

Beyer et al., 1999; Gallego, 2012), while attempts to extend the period under analysis by using post-

2000 data fail due to some estimation difficulties (Murakami, 2014). The skill premium grew 

considerably in the pre-2000 period, but it has been declining since the 2000s (Gallego, 2012; 

Murakami, 2014; Murakami & Nomura, 2020; Parro & Reyes, 2017). This changing pattern gives 

insights on the dominance, in the pre-2000 period, of the demand or SBTC factor, and, in the post-2000 

period, of the labour supply. We empirically analyse this evidence for Chile, considering the difficulties 

of applying the model to the data. We apply an Unobserved Component Model, UCM, with Bayesian 

inference, UCM-Bayesian, to overcome the difficulties seen in other estimation methods, mainly 

cointegration techniques. To our best knowledge, this is the first study that applies UCM-Bayesian to 

test the RBET model’s implications. Thus, we contribute to the literature by extending the race between 

education and technology to cover the last four decades. Besides, we contribute to the evidence on how 
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labour market conditions such as unemployment rates and minimum wages affect the evolution of the 

skill premium. In the case of our UCM-Bayesian implementation, it might help other applied 

researchers using skill premium data featured by changing patterns (e.g., in some other Latin American 

countries).  

Furthermore, our examination of some of the economic relationships suggested by the ALM model 

and the complementarity between cognitive and social skills contribute to this fairly recent discussion 

for Chile (Almeida et al., 2020; Zapata-Román, 2021). Some marginal contributions beyond the focus 

of this research are exploiting online job postings as data and constructing dictionaries of tasks and 

skills to give more tools for labour analysis. 

In the literature on natural disasters and labour markets, there is no study that examines the role of 

natural disasters as promotors of technological upgrading by observing changes in ICT labour. We 

contribute to fill this gap. Our study also adds to a growing literature on the analysis of text in online 

job postings, specifically in the context of disasters’ impacts on labour markets. 

1.5. Thesis Structure 

The current chapter has supplied the relevant background and outlined the purposes of this thesis 

with reference to the ways in which each essay will fill the identified literature gaps. The structure of 

the thesis and the subjects of its three component essays are outlined in Figure 1.1..  

Figure 1.1. Thesis structure  

 

 

 

 

 

 

Each essay is self-contained, i.e., it is composed of an introduction and literature review, followed 

by a conceptual and empirical framework, data, estimation methods, empirical results, discussion, and 

concluding section. We have introduced the use of three separate and unrelated theoretical backgrounds, 

i.e., the RBET and ALM models, and a conceptual framework to understand how natural disasters can 

affect technological replacement, in Chapter 2, Chapter 3 and Chapter 4, respectively. However, in this 

thesis these conceptual frameworks are interrelated in the following two aspects. First, the RBET and 

ALM models assumes that technological change is biased towards skilled workers, but the first only 

analyse the impact on the skill premium of the relative demand for skilled labour, while ALM model 

also considers the task-content of jobs. Then, both models can help us to understand the interactions 

Chapter 3: 

The task-content of jobs and skills of workers as drivers of the 

skill premium: Evidence from online job ads for Chile 2009-2018 

Chapter 2: 

Extending the race between education and technology for Chile 

1980 – 2018 

Chapter 5: 

Conclusion 

Chapter 1: 

Introduction 

Chapter 4: 

Exploring with text the demand for ICT labour as a proxy for 

technological replacement in the aftermath of disasters 
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between labour and technology from alternative points of view but using the same labour output i.e. the 

skill premium. Second, both RBET and ALM models assume that technological progress steadily 

evolves. Conversely, in our modelling to understand the impact on technology replacement of natural 

disasters we assume that substantial events like natural disasters might affect the pace of technological 

change. Thus, we can conceptually examine how labour markets respond to regular forces like 

technological change and unexpected shocks like catastrophes considering the potential technological 

upgrading. 

Chapter 2 examines and tests the RBET model for Chile. We review past studies examining the 

implications of the model for Chile. Given the methodological difficulties in some of these studies 

testing the theoretical implications of the model, we also review the literature focusing on modelling 

and methods of estimation. Using biannual labour survey data for the period 1980 – 2018, our estimates 

for the skill premium in Chile show an inverted U-shaped pattern growing up to the early 2000s and 

reducing since that decade. The relative supply of skilled workers increased over the period under 

analysis. To estimate the RBET parameters, we apply cointegration techniques (e.g., the Vector Error 

Correction Model) as in past studies on Chile (e.g. Gallego, 2012; Murakami, 2014). Like Murakami 

(2014), our estimation procedures yield coefficients that are inconsistent with the model’s 

conceptualization. To overcome this problem, we apply a UCM-Bayesian model, which yields 

parameter estimates that are consistent with the underlying theory. Our results in the context of the race 

between technology and education show that, in the pre-2000 period, the increasing relative demand 

for skilled labour attributable to SBTC contributing to the increasing skill premium appears to be the 

dominant factor. In contrast, after 2000, the relative supply occupies a dominant position, inducing a 

declining trend in the skill premium. Our estimate for the elasticity of substitution between skilled and 

unskilled is 6.5, implying that these kinds of labour are more substitutable than common thought. From 

these findings we draw conclusions and show some of the implications of our results from both 

methodological and policy perspectives. Limitations of the study and suggestions for further research 

are considered.  

Testing for implications based on the ALM model (particularly how cognitive tasks and skills drives 

the skill premium) is examined in Chapter 3. We evaluate how analytical and interactive non-routine 

work activities drive skilled relative to unskilled wages. We provide the conceptual and empirical 

framework by reviewing current literature on the ALM model. Furthermore, we provide a review of 

specific abilities of workers, such as cognitive and social skills, individually and in combination. Using 

samples of online job ads, we model the interactions between the skill premium and variables 

representing tasks and skills using the Vector Autoregressive framework, VAR (Sims, 1980). Our 

results show that non-routine cognitive tasks, both analytical and interactive, weakly drive the skill 

premium. We do not, however, find evidence of the impact on the skill premium arising from 

simultaneous demand for cognitive and social skills. Conclusions and implications are drawn from these 

results. 
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The impacts of natural disasters on technological upgrading proxied by changes in ICT labour are 

explored in Chapter 4. Our conceptual and empirical framework is built by reviewing the literature on 

extensions of growth models and more literal assumptions of the creative-destruction hypothesis 

focusing on impacts on labour. We explore the demand for ICT labour as a proxy for technological 

replacements to analyse the impact of the 27th of February 2010 earthquake using a subsample of online 

job ads used in Chapter 3. It implements the Structural Topic Model, STM, developed by  Roberts et 

al. (2016, 2013) to discover the hidden topics in our collection of job ads. The estimation of the model 

yields 53 topics. The prevalence of the ICT labour topic does not change after the earthquake. 

Conversely, the Construction labour topic’s prevalence is significantly different after the disaster, 

suggesting that reconstruction activities lead to differences in this sector. Our results suggest that there 

was no substantial technological replacement in the aftermath of the 2010 Biobío earthquake.  

Chapter 5 summarises the research findings, draws general conclusions from those findings and 

discusses some policy implications of the results. The limitations of each analysis are also discussed, 

along with suggestions for further research. 



 

2. Essay I: Extending the race between education and technology 

for Chile 1980 – 2018 

Using recurrent bi-annual labour survey data from 1980 to 2018, we extend the race between education 

and technology, the RBET model, for Chile. This model allows us to evaluate how both demand and 

supply factors explain the evolution of the skill premium. Our motivation is the lack of evidence in the 

post-2000 period and "estimation difficulties" reported by past studies. These difficulties mainly imply 

the computation of parameters inconsistent with RBET theory. For example, the RBET model 

establishes an inverse relationship between the skill premium and the relative supply of skilled labour: 

this is, a negative coefficient on the relative supply of skilled labour is expected. However, some 

estimated positives coefficients. Besides, a positive coefficient leads to the computation of negative 

estimates for the elasticity of substitution between skilled and unskilled labour, which is also against 

the RBET conceptualization. We also find "estimation difficulties" using cointegration techniques. 

Alternatively, we apply an Unobserved Component Model estimated by Bayesian inference, UCM-

Bayesian, whose results are more consistent with the RBET model. We find that both demand and supply 

factors drive the evolution of the skill premium. In the context of the race between technology and 

education, in the pre-2000 period, the relative demand attributable to skill-biased technological 

change, SBTC, with its rapid acceleration contributing to a high skill premium, is suggested as the 

dominant factor. However, in the post-2000 span, the demand factor has been surpassed by strong 

increases in the relative supply, suggesting education as the dominant factor inducing a declining trend 

in the skill premium. Furthermore, our estimate for the elasticity of substitution is 6.5. The value greater 

than one implies that skilled and unskilled workers are imperfect substitutes but more substitutable than 

commonly thought, given the past estimates for this parameter. 

 

 

Keywords: RBET, SBTC, technological change, skill premium, elasticity, substitution, education 
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2.1. Introduction  

In Chile, like most Latin American countries, the skill premium, i.e. the skilled labour wages 

relative to unskilled labour or the wages gap between tertiary-educated workers and those with less 

education, has been suggested as the main force driving the observed rise and fall of income inequality 

in recent decades (Acosta et al., 2019; Guerra-Salas, 2018; Parro & Reyes, 2017). Since Latin America 

has been the most unequal region globally since the last century (Williamson, 2010), more attention 

needs to be paid to the evolution of its primary contributor. In this regard, there is a joint agreement 

about the inverted U-shaped pattern shown by the skill premium evolution during the last five decades 

in Chile. It grew considerably since the mid-1970s, peaked in 1987, then held steady over the 1990s, 

and it has been declining since the 2000s (Gallego, 2012; Murakami, 2014; Murakami & Nomura, 2020; 

Parro & Reyes, 2017). In this case, distinguishing between two periods, i.e., pre-2000 and post-2000, 

provides insights on the rise and fall of the skill premium. Most of the major economic reforms that 

feature the Chilean economy occurred in the pre-2000 period, with trade liberalization as the most 

relevant (Beyer et al., 1999). This openness allowed the absorption of foreign technologies, most of 

them biased toward skilled labour, leading to higher demand for skilled labour and increasing the skill 

premium (Gallego, 2012). At the same time, economic development from physically intensive sectors, 

i.e. agriculture and manufacturing, moving to less physically demanding and more knowledge intensive 

sectors such as services, also led to higher demand for better-educated workers before the 2000s (Buera 

& Kaboski, 2012).  

In the post-2000 period, the skill premium decline has been linked to the increasing availability of 

skilled workers due to the expansion of tertiary education (Murakami & Nomura, 2020; Parro & Reyes, 

2017). This expansion, which was fuelled by critical educational reforms in the 1980s and 1990s 

(Schneider, 2013; Valiente et al., 2020), has resulted in fewer returns to a lower educational level 

(Murakami & Nomura, 2020). Therefore, we can evaluate the skill premium evolution by following the 

interaction between forces encouraging the demand for skilled workers and affecting their supply. In 

particular, examining the role of technologies biased towards better-educated workers and education as 

a supplier of skills as significant forces driving the skill premium evolution has motivated a vast 

literature (see, e.g., Acemoglu & Autor, 2011; Autor et al., 2020, 2008; Katz & Murphy, 1992).  

On the demand side, it has been suggested that technological change is biased towards skilled 

workers, enhancing their productivity and wages (Acemoglu, 2002; Acemoglu & Autor, 2011; Autor 

et al., 2008; Katz & Murphy, 1992). Consequently, an increasing demand for skilled workers arises 

from technology. On the supply side, the educational system supplies these skills or qualifications, 

affecting workers' educational attainment. Therefore, in a context of increased relative demand for 

skilled workers arising from skill-biased technological change (SBTC henceforth), the skill premium 

also responds to changes in the relative supply of better-educated workers. These simultaneous shifts 

in demand and supply factors implicitly refer to a race between education and technology (RBET 
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henceforth) model (Acemoglu & Autor, 2011; Autor et al., 2020; Goldin & Katz, 2008; Katz & Murphy, 

1992). The idea behind the RBET model was initially noted by Tinbergen (1972, 1974). There is ample 

empirical evidence supporting its main predictions with pioneer applications such as Katz & Murphy 

(1992), Levy & Murnane (1996), Johnson (1997), and Acemoglu (2002), among others. The RBET 

model is also known as the SBTC model or framework and supply-demand framework:  the literature 

generally uses these different names to refer to the same model. In this research, we use the RBET 

acronym to refer to this conceptual idea.  

The fundamental notion behind the RBET model is that there is steady growth in the demand for 

skilled labour from SBTC, and there is varying growth in the relative supply of skilled workers. Since 

both forces co-occur, the impact on the skill premium of one of them depends on how the other variable 

responds. Thus, it rises if the supply of skilled workers does not compensate for technology's demand 

for skilled labour growth. Alternatively, if the supply rises faster than the demand, the skill premium 

will decrease.  

Conceptually, this framework relies on a production function with Constant Elasticity of 

Substitution, CES, where skilled and unskilled labour are imperfect substitutes. The elasticity of 

substitution between both kinds of labour plays a pivotal role since its value approaching to zero, one 

or positive infinity rules the RBET framework's predictions (see section 2.2.1.1). For example, an 

elasticity of a value equal to one would imply that changes in relative quantities of both kinds of labour 

are precisely proportional to their relative changes in wages. Alternatively, elasticities below one would 

imply complementarity between them while elasticities greater than one, skilled and unskilled are 

substitutes (details in section 2.2.1.1). In addition, the elasticity will show the strength of the influence 

of both the SBTC and the relative supply of skilled labour on the skill premium. For example, an 

elasticity higher than one might imply a more substantial SBTC effect on the skill premium, assuming 

that skilled workers become relatively more productive due to technology improvements. Therefore, 

several interpretations and assumptions rely on the empirical estimation of the elasticity of substitution. 

Some of these interpretations might lead to important policy issues. For example, a higher substitution 

level between skilled and unskilled labour might imply that skilled workers are moving to less skilled 

positions resulting in worker’s skills underutilisation and inefficient investment in education or training. 

The implementation required to test the RBET model empirically relies on specifications proposed 

in the most prominent studies in this literature (see, e.g., Acemoglu, 2002; Acemoglu & Autor, 2011; 

Katz & Murphy, 1992). Overall, we need variables representing the skill premium, the SBTC term and 

the relative supply of skilled labour. Typically, we can obtain the skill premium and the relative supply 

by using observed wages and skilled and unskilled labour quantities, respectively. In the case of the 

demand coming from technology or the SBTC term, a standard procedure is using linear trends to 

capture its dynamics (since we do not directly observe this component) as in most of the influential 

studies (see . e.g., Acemoglu, 2002; Acemoglu & Autor, 2011; Katz & Murphy, 1992).  
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More generally, estimation strategies depend on the nature of the data, the chosen estimation 

method and the specification of both the model and the variables. However,  researchers have warned 

that the RBET estimation is difficult, beset by numerous methodological and data problems (Acosta et 

al., 2019; Borjas et al., 2012; Fernández & Messina, 2018; Varella, 2008b).  In the case of Chile, some 

produced theoretically unfeasible results due to the appearance of a wrong sign for the coefficient 

representing the relative supply of skilled labour, i.e., a positive sign (Murakami, 2014; Robbins, 

1994b). This output is theoretically unfeasible because a positive sign is against the expected negative 

relationship between the skill premium and the relative supply of skilled workers (see section 2.2.1.3). 

Besides, a positive coefficient leads to negative estimates for the elasticity of substitution between 

skilled and unskilled labour (see Eq. (2.12) related statements). These “improbable estimation results” 

have received less attention in this literature. One reason for this lack of interest might be that most 

research focuses on high-income countries like the US. In these countries, the skill premium has 

continued to show a long-run increasing pattern (Autor et al., 2020). In contrast, as noted above, in 

Latin American countries like Chile, the skill premium shows an inverted U-shaped pattern in recent 

decades. In this context, researchers warned that the evaluation of skill premium drivers in a context of 

changing patterns is problematic, and it might impose incorrect interpretations or assumptions (Acosta 

et al., 2019; Havranek et al., 2020; Varella, 2008b). In the light of the issues discussed, it is proper to 

emphasise alternative estimation methods of implementing and empirically testing the RBET 

framework predictions.  

The empirical testing of the RBET framework for Chile is sparse and inconclusive. Some studies 

analysing data in the pre-2000 period support the RBET model by documenting an SBTC effect leading 

to the increasing skill premium and elasticities of substitution between skilled and unskilled labour 

between one and two (Beyer et al., 1999; Gallego, 2012; Robbins, 1994a). In this period, the relative 

supply of skilled labour plays a minor role. In contrast, studies that do not support this evidence cite the 

appearance of theoretically unfeasible results, i.e., “improbable estimation results”, or elasticities 

beyond the consensus5, i.e., the range [1, 3], as a reason to reject the RBET model for Chile (Murakami, 

2014; Robbins, 1994b; Sánchez-Páramo & Schady, 2003).  

On one side, Robbins (1994b) and Murakami (2014) reported that the relative supply changes in 

some of their models could not explain the skill premium for 1975-1992 and 1974-2007, respectively. 

In both cases, the rejection of the RBET predictions was due to the appearance of a wrong sign for the 

coefficient representing the relative supply of skilled labour, i.e., a positive sign, which is theoretically 

unfeasible (see section 2.2.1.3). Robbins (1994b) and Murakami (2014) suggested that the differences 

in quality education between traditional and private universities, whose creation and development were 

 
5 The notion of a so-called consensus related to the values of the elasticity of substitution between skilled and unskilled labour 

in the range [1, 3] was proposed by some researchers such as  Cantore et al. (2017) and Johnson (1997) based on the estimates 

observed in some of the most prominent papers of this literature (see e.g., Acemoglu, 2002; Goldin & Katz, 2009; Katz & 

Murphy, 1992).                                                               
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fuelled by major educational reforms in the 1980s and 1990s (Valiente et al., 2020), as a possible reason. 

However, studies applying cohort analyses reported that the quality between these higher education 

institutions did not influence the skill premium (Gallego, 2012; Gindling & Robbins, 2001). Besides, a 

positive coefficient on the supply factor can lead to the computation of negative elasticities of 

substitution between skilled and unskilled labour (see section 2.2.2). Some suggested that the obtention 

of negative elasticities might arise from imprecision in data and methods (Blankenau & Cassou, 2011; 

Havranek et al., 2020) or  “improbable estimation results”, as discussed above.  

On the other side, researchers have declared “implausible” some elasticity of substitution estimates 

beyond the consensus. For example, Sánchez-Páramo & Schady (2003) estimated elasticities around 10 

for 1970-1999, arguing that such values were imprecise and improbable without questioning the 

consensus since the RBET conceptualization does not consider an upper threshold for elasticities. 

However, elasticities around four are frequent in the RBET literature, while elasticities around five or 

six are less frequent (Havranek et al., 2020). In Latin American countries, empirical estimates suggested 

elasticities around three and four (Acosta et al., 2019; Manacorda et al., 2010) and around 11 for the 

important maquiladora industry in Mexico (Varella & Ibarra-Salazar, 2013). These examples suggest 

that there should be no upper threshold for reporting positive estimates. Also, publication biases have 

been suggested since most published estimates adhere to the consensus (Havranek et al., 2020). Thus, 

it seems that the evidence favouring the rejection of the RBET framework for Chile has relied on 

theoretically unfeasible results or the appearance of non-consensual elasticity values. More generally, 

studies using Chilean data that reported wrong results or larger elasticities of substitution do not refer 

to any imprecision in data and methods (see, e.g., Murakami, 2014; Sánchez-Páramo & Schady, 2003). 

Some wrong results were due to the application of cointegration techniques (e.g., Murakami, 2014), 

which have some limitations in their ability to test causal relationships, leading to a rejection of expected 

theoretical relationships (Guisan, 2001; Moosa, 2017).  

To recapitulate, most studies using data over the pre-2000 period report that the SBTC and the 

relative supply of skilled labour drive the skill premium. Given the increasing pattern in the skill 

premium, this evidence shows that increases in the relative supply of skilled workers did not compensate 

for the growth in technology’s demand for skilled labour. Therefore, within the RBET model, the SBTC 

appears to be the winner or the dominant factor. On the other hand, research examining data beyond 

2000 rejected the RBET predictions due to “improbable estimation results”. Therefore, we cannot 

declare a winner within the RBET model in the post-2000 period. However, the skill premium decrease 

in the post-2000 has been linked to the higher availability of skilled workers fuelled by the significant 

expansion of higher education institutions, but without strong empirical evidence (see, e.g., Murakami 

& Nomura, 2020; Parro & Reyes, 2017). In this regard, a still open question is what will happen if the 

demand for skilled labour due to SBTC does not grow fast enough to meet the increased relative supply 

of skilled labour. In this case, under the RBET model, we expect that the dominant factor in the post-
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2000 period will be education, even though the SBTC is operating, resulting in the skill premium 

decline.  

This study aims to test the RBET model empirically for Chile using data from 1980 to 2018. This 

conceptual idea has successfully explained the influence on the skill premium of changes in demand 

and supply factors. However, its empirical testing has been a much-debated topic in recent decades. In 

this regard, the main aspects that motivate this research are the lack of evidence, mainly in the post-

2000 period, and “estimation difficulties” reported by past studies. We apply (among other methods) 

cointegration techniques within a Vector Error Correction Model, VECM. Researchers have previously 

reported that both the skill premium and the relative supply for Chile are not trend-stationary variables, 

i.e., there are unit roots in the data (Beyer et al., 1999; Gallego, 2012; Murakami, 2014). A VECM 

allows us to analyse non-stationary variables, which might lead to spurious relationships using standard 

regression estimation. Our VECM yielded the wrong sign for the coefficient representing the relative 

supply of skilled labour; this was similar to the experience of  Murakami (2014) and Robbins (1994b). 

Given these “estimation difficulties”, we apply an Unobserved Component Model, UCM, estimated by 

Bayesian inference as an alternative strategy, UCM-Bayesian. Some advantages of our UCM-Bayesian 

strategy are its flexibility, allowing the model components to vary over time, and the direct estimation 

of elasticity (with VECM, it is obtained as a reciprocal, the usual procedure in this literature, as 

presented in Eq. (2.12) related statements). Bayesian estimation also allows us to include the expected 

value for the elasticity of substitution according to the consensus and past studies for Chile (Beyer et 

al., 1999; Gallego, 2012) and for other countries in the region (Manacorda et al., 2010)  as priors.  

Our UCM-Bayesian results support the empirical evidence for the RBET model. We found that 

both forces, demand, and supply factors, play a role in explaining the evolution of the skill premium in 

Chile between 1980 and 2018. In the context of the race between technology and education, in the pre-

2000 period, the relative demand attributable to SBTC with its rapid acceleration contributing to a high 

skill premium is suggested as the dominant factor. However, in the post-2000 span, the demand factor 

started to be surpassed by strong increases in the relative supply, suggesting education as the new 

winner, inducing a declining trend in the skill premium. Furthermore, our estimate for the elasticity of 

substitution is greater than one: this is 6.5, which would imply that both kinds of workers are imperfect 

substitutes but more substitutable than commonly thought, given the past estimates for this parameter. 

These results contribute to the understanding of the relationship between demand and supply as forces 

driving the skill premium by revisiting the evidence for Chile and the implications underlying the race 

between technology and education during the last four decades. It is also important to emphasise 

alternative estimation methods like UCM-Bayesian, which can handle the assumptions imposed by the 

RBET model since, as noted above, the technical implementation of the RBET can be problematic.  

The Essay is structured as follows. We begin by presenting the concepts and theory behind the 

RBET model and how is its typical empirical implementation. We then review the literature in three 

subsections, encompassing the evidence of the RBET model for Chile, the elasticity of substitution 
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issues and a review of the estimation techniques applied by researchers to the empirical implementation 

and testing of the RBET model. After this review, we develop our empirical models, followed by the 

description of the data and the methods. Next, we present and discuss our results. Conclusions will be 

presented in the final section.  

2.2. The RBET conceptualization and estimation 

This section presents the conceptualization behind the RBET model and how its main parameters 

are estimated and interpreted. Also, we discuss some limitations. 

2.2.1. The RBET model conceptualization 

Conceptually, and as introduced above, the RBET model relies on an aggregate production function 

CES (Solow, 1957), representing the relationship between different inputs generating an output. Solow 

(1957) introduced a “technical term” into this CES function to allow for technical change, i.e., any 

variation such as speedups or slowdowns, among others. However, this technical term is a form of 

factor-neutral technological change. Thus, by definition, technical change is neutral on changes in 

relative prices: in other words, technical improvements do not cause changes in the relative prices or 

wages for a particular kind of labour. Alternatively, the technical change cannot be viewed as factor-

neutral given the increases in the skill premium in the last decades in high-income countries (mainly in 

the US) in conjunction with increases in their relative supply (Violante, 2016). Therefore, to evaluate 

the interactions between the skill premium as the output or the dependent variable and skilled and 

unskilled labour quantities as inputs or explanatory variables, researchers extended the Solow insights 

by adding a factor-biased technical change or SBTC (Acemoglu, 2002; Goldin & Katz, 2008, 2009; 

Katz & Murphy, 1992). The form of the CES function with skilled and unskilled quantities modelled 

with factor-specific productivities is: 

 𝑄 = [(𝐴𝑆𝑆)𝜌 + (𝐴𝑈𝑈)𝜌]1/𝜌, (2.1) 

where 𝑄 is aggregated output, 𝑆 and 𝑈 are quantities of skilled and unskilled workers, respectively, 𝐴𝑆 

is the factor augmenting technology for the skilled and 𝐴𝑈 is the factor augmenting technology for the 

unskilled. The term  𝜌, with 𝜌 ≤ 1, is the substitution parameter. 

The economic interpretation of Eq. (2.1) can be applied to several situations. For example, it can 

refer to an economy with more than one good and consumers’ utility functions involved or to the 

existence of two different economic sectors producing imperfect substitute goods, among others 

(Acemoglu & Autor, 2011). For convenience, in this conceptual approach, skilled and unskilled workers 

are imperfect substitutes, producing only one good. Besides, technology is exogenous, and its central 

assumption is that the technological change is skill-biased because of the complementarity between 
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technology and most educated workers. As a result, this complementarity might lead to higher demand 

for skilled labour.  

The following sections show how this conceptualization configures the elasticity of substitution 

and the skill premium from Eq. (2.1). We also summarize the main predictions and implications of the 

model.  

2.2.1.1. The elasticity of substitution 

This section discusses how the RBET model configures the elasticity of substitution between 

skilled and unskilled labour. We note the elasticity as 𝜎𝑆𝑈 (the subscript 𝑆𝑈 refers to skilled and 

unskilled). Formally, from Eq. (2.1) 𝜎𝑆𝑈 is given by: 

 𝜎𝑆𝑈 ≡  1/(1 − ρ), ρ ∈ (−∞, 1), (2.2) 

where 𝜌 is as in Eq. (2.1). The value of elasticity of substitution 𝜎𝑆𝑈 establishes the level of substitution 

or complementarity between skilled and unskilled labour. Additionally, it shows how changes in either 

technology (given by 𝐴𝑆 and 𝐴𝑈)  or supplies (𝑆 and 𝑈) affect demand and wages.  

There are three special cases for 𝜎𝑆𝑈 given that ρ ∈ (−∞,1) (Acemoglu, 2002). First, when 𝜎𝑆𝑈 →

0 (or 𝜌 → −∞), skilled and unskilled workers will be perfect complements and they are used in fixed 

proportions (output function is Leontief). Secondly, when  𝜎𝑆𝑈 → ∞ (or 𝜌 → 1), both kinds of workers 

are perfect substitutes. One implication of this case is that the relative availabilities of each kind of 

labour are not related to changes in wages; therefore, skilled workers can be placed in unskilled job 

positions and vice versa. Third, when  𝜎𝑆𝑈 → 1 (or 𝜌 → 0), the output function tends to be Cobb 

Douglas, which implies that, as production grows, skilled wages grow in the same proportion as 

unskilled wages. Figure 2.1 summarizes the three cases.  

Figure 2.1. The three special cases for the elasticity of substitution 

2.2.1.2.  The skill premium setting and main implications of the 

model 

 The skill premium configuration assumes competitive labour markets with many firms and factors 

paid at the marginal product value. From Eq. (2.1), the wage for skilled labour is 
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 𝑤𝑆 =
𝜕𝑄

𝜕𝑆
= 𝐴𝑆

𝜌
[𝐴𝑈

𝜌
(𝑆 / 𝑈)−𝜌 + 𝐴𝑆

𝜌
]
(1−𝜌)/𝜌

, (2.3) 

and, for unskilled, 

 𝑤𝑈 =
𝜕𝑄

𝜕𝑈
= 𝐴𝑈

𝜌
[𝐴𝑈

𝜌
+ 𝐴𝑆

𝜌(𝑆/𝑈)𝜌]
(1−𝜌)/𝜌

, (2.4) 

where 𝑤𝑆 and 𝑤𝑈 are skilled wages and unskilled wages, respectively. Two relevant implications result 

from Equations (2.3) and (2.4). First, since 
𝜕𝑤𝑆

𝜕𝑆/𝑈
< 0 in Eq. (2.3), this result implies that the skilled 

labour demand curve is downward sloping. Therefore, ceteris paribus, as the skilled workforce 

increases, its wages should fall. Secondly, since 
𝜕𝑤𝑈

𝜕𝑆/𝑈
>  0 in Eq. (2.4), it implies that, ceteris paribus, 

as the number of skilled workers rises in the workforce, the wages of unskilled workers should rise. In 

this case, both groups of workers are q-complements, where higher quantities of the one improves the 

marginal product of the other. In other words, intensifications in the use of skilled labour lead to 

improvements in the marginal productivity of unskilled labour and vice versa. 

To set the skill premium, 𝜔, as the ratio between the skilled and unskilled wages, the Eq. (2.3) and 

(2.4) are combined, and the elasticity re-ordered, as follows: 

 
𝜔 =

𝑤𝑆

𝑤𝑈
= (

𝐴𝑆

𝐴𝑈
)
𝜌
(

𝑆

𝑈
)
−(1−𝜌)

= (
𝐴𝑆

𝐴𝑈
)
(𝜎𝑆𝑈−1)/𝜎𝑆𝑈

(
𝑆

𝑈
)
−1/𝜎𝑆𝑈

. 
(2.5) 

Rewriting Eq. (2.5) by taking logs of both sides yields 

 ln𝜔 = (
𝜎𝑆𝑈−1

𝜎𝑆𝑈
) ln (

𝐴𝑆

𝐴𝑈
) −

1

𝜎𝑆𝑈
ln (

𝑆

𝑈
). (2.6) 

The Eq. (2.6) links the skill premium defined as log wage differentials between skilled and 

unskilled wages, 𝑙𝑛 𝜔, to the SBTC term represented by 𝑙𝑛 (
𝐴𝑆

𝐴𝑈
) and to the relative supply of skills, 

𝑙𝑛 (
𝑆

𝑈
). These relationships refer to the conceptual foundations of the RBET model with the skill 

premium as the output and the SBTC and the educational attainment of the workforce as inputs.   

2.2.1.3. Summarizing the RBET model predictions 

The representation in Eq. (2.6) shows that the association between the skill premium, SBTC and 

the relative supply of skilled labour can be expressed as a simple log-linear relationship. Therefore, we 

can summarize the expected primary outcomes in terms of the interactions between these variables 

(Acemoglu & Autor, 2011).   

Formally, to evaluate how the skill premium responds to SBTC, we differentiate the Eq. (2.6) as 

follows: 

 𝜕 ln𝜔

𝜕 ln(𝐴𝑆/𝐴𝑈)
 =

𝜎𝑆𝑈− 1

𝜎𝑆𝑈
 . (2.7) 

Given the values of elasticity of substitution 𝜎𝑆𝑈 presented above (see section 2.2.1.1 and Figure 2.1), 

a value of 𝜎𝑆𝑈 > 1, i.e., skilled and unskilled labour are imperfect substitutes, in the Eq. (2.7) implies 

that relative improvements in the SBTC term increase the skill premium. Hence, we expect skilled 
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workers to become relatively more productive due to technological improvements. Conversely, if 𝜎𝑆𝑈 <

1, i.e., skilled and unskilled groups are gross complements, then we expect an increase in the SBTC 

term to shift the relative demand curve inward and reduce the skill premium.  

Regarding the effect of the provision of skills on the skill premium, the differentiation of the Eq. 

(2.6) to the relative supply factor 𝑙𝑛 (
𝑆

𝑈
) yields 

 𝜕 ln𝜔

𝜕 ln(
𝑆

𝑈
)
 = − 

1

𝜎𝑆𝑈
< 0. (2.8) 

Eq. (2.8) implies that, for a given skill bias of technology captured here by the SBTC term, an increase 

in the relative supply of skills 𝑙𝑛 (
𝑆

𝑈
) reduces the skill premium. Therefore, there is an inverse 

relationship between both variables. In other words, the higher availability of skilled workers might 

lead to relative lower wages for this kind of labour. Therefore, the elasticity of substitution rules these 

interactions and establishes the level of substitution or complementarity between skilled and unskilled 

labour.  

If the RBET model is viewed as a race, both forces compete to be a more significant influence on 

the skill premium; therefore, the impact of one of them depends on how the other variable changes. In 

practical terms, the skill premium rises if increases in the SBTC term are not counteracted by increases 

in the supply of skilled workers. Conversely, the skill premium will decrease if the supply of skills 

increases more rapidly than the SBTC term.  

2.2.2. The estimation of the RBET model parameters and some limitations 

The last section reviewed the conceptual foundations of the RBET model, the specification of its 

main variables and parameters and the expected primary outcomes. In this section, we show how the 

RBET model represented by Eq. (2.6) can be applied to the data. Firstly, we need to obtain variables 

standing for the skill premium, the SBTC term and the relative supply. While the skill premium and the 

relative supply can be quantified by using observed wages and quantities of skilled and unskilled labour, 

the SBTC term 𝑙𝑛 (
𝐴𝑆

𝐴𝑈
) is not directly observed. However, it has been assumed that the SBTC dynamics 

can be captured by a linear trend in the most prominent studies in this literature (see, e.g., Acemoglu, 

2002; Acemoglu & Autor, 2011; Katz & Murphy, 1992) as follows: 

 𝑙𝑛 (
𝐴𝑆

𝐴𝑈
) =  𝛽0 + 𝛽1𝑡, (2.9) 

where 𝑡 is calendar time, 𝛽0 is the intercept, and the 𝛽1 coefficient measures the rate of change of 

the SBTC term over time. Recalling the assumption about the technical change biased to better-educated 

workers, Eq. (2.9) represents a linear trend increase in the demand for skilled workers coming from 

technology. Thus, substituting the SBTC dynamics formalized in Eq. (2.9) into Eq. (2.6) and adding 

time subscripts to the components, except for 𝜎𝑆𝑈 which is assumed fixed, yields 
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 ln𝜔𝑡 = (
𝜎𝑆𝑈−1

𝜎𝑆𝑈
)𝛽0 + (

𝜎𝑆𝑈−1

𝜎𝑆𝑈
)𝛽1𝑡 −

1

𝜎𝑆𝑈
ln (

𝑆

𝑈
)
𝑡
. (2.10) 

By reordering and adding the parameters to be estimated, the specification is 

 ln𝜔𝑡 = 𝛽0 + 𝛽1𝑡 − 𝛽2 ln (
𝑆

𝑈
)
𝑡
+ 𝑒𝑡, (2.11) 

where 𝛽0 and 𝛽1 are as in Eq. (2.9). There is a SBTC effect if 𝛽1 > 0 (see Eq. (2.7) related statements).  

As discussed earlier, the coefficient on (
𝑆

𝑈
)
𝑡
,   −𝛽2, is expected to be negative (see Eq. (2.8) related 

statements). Then, for a given skill bias of technology captured by the SBTC term, an increase in the 

relative supply of skills reduces the skill premium. Overall, the relationships displayed in Eq. (2.11) 

imply that the pace of technological progress grows steadily, and the relative supply of skilled workers 

can vary over time. If both forces do not cancel each other out, the skill premium will change according 

to the expected outcomes above (see section 2.2.1.3). Also, −𝛽2 supplies an estimate of −(
1

𝜎𝑆𝑈
), 

therefore, it allows us to estimate the elasticity of substitution 𝜎𝑆𝑈, which is usually obtained as a 

reciprocal. From Eq. (2.10) and Eq. (2.11) we see that 

 −𝛽2 = −(
1

𝜎𝑆𝑈
), (2.12) 

then, the estimated −𝛽2 must be inverted and multiplied by -1 to compute the elasticity of substitution. 

In this sense, we require negative 𝛽2 estimates to generate theoretically plausible elasticity estimates 

(Blankenau & Cassou, 2011). If not, our estimation could not yield reasonable elasticity estimates, i.e., 

a negative elasticity, in the context of the RBET conceptualization (see Figure 2.1). 

The RBET model has been demonstrated to be workable, theoretically attractive and empirically 

successful in estimating these interactions (Acemoglu & Autor, 2011). However, as introduced above, 

some limitations have emerged such as the “improbable estimation results” due to the wrong sign results 

for the relative supply of skilled labour coefficient. In addition, data and method choices might lead to 

a bias in reported elasticities (Havranek et al., 2020). Overall, these difficulties in bringing the model 

to the data might impose incorrect interpretations or assumptions (Acosta et al., 2019; Havranek et al., 

2020; Varella, 2008b). Also, some have warned that using linear time trends and unit roots in the data 

might imply analysing using non-stationary variables. However, the testing of stationarity or presence 

of unit roots is rarely reported in this literature (Varella, 2008b). Besides, some suggest that the usual 

computation of the elasticity of substitution, 𝜎𝑆𝑈, as a reciprocal might be inaccurate since small 

differences in the relative supply coefficients can lead to large variations in elasticity estimations 

(Behar, 2009; Havranek et al., 2020). In this sense, the computation of direct estimates would be 

appropriate. We review these methodological issues in one of our Literature Review segments (see 

section 2.4.3). In the next section, we present our empirical models.  
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2.3. Empirical models 

This section formulates the empirical models for estimation based on the conceptual RBET model. 

We estimate a base and an extended model. Recapitulating from the RBET model specified in Eq. 

(2.11), we specify our empirical base model as 

 ln𝜔𝑡 = 𝛽0 + 𝛽1𝑡 − 𝛽2 ln (
𝑆

𝑈
)
𝑡
+ 𝛽3𝐶ℎ98𝑡 + 𝑒𝑡, (2.13) 

where 𝜔𝑡 is the skill premium at time 𝑡, 𝛽0 and 𝛽1 represent the trend component that acts as a proxy 

for the SBTC, and (
𝑆

𝑈
)
𝑡
 is the skilled labour supply relative to unskilled at time 𝑡. 𝐶ℎ98 is a dummy 

variable for methodological change in the data categorization of educational attainment (1 = March 

1998 and onwards, 0 = before March 1998). This change in data categorization consisted of splitting 

secondary education into regular secondary education and vocational secondary education from March 

1998 and onwards.  Our extended model includes variables related to institutional controls as follows: 

 ln𝜔𝑡 = 𝛽0 + 𝛽1𝑡  − 𝛽2 ln (
𝑆

𝑈
)
𝑡
+ 𝛽3𝐶ℎ98𝑡 + 𝛽4𝑈𝑛𝑒𝑚𝑡 − 𝛽5𝑀𝑖𝑛𝑊𝑡 + 𝑒𝑡, (2.14) 

where 𝑈𝑛𝑒𝑚𝑡 is the unemployment rate in time 𝑡 and 𝑀𝑖𝑛𝑊𝑡 is the minimum wage in time 𝑡. In the 

case of Chile, unemployment rates and minimum wages are considered labour market conditions that 

might also affect the evolution of the skill premium as reported in previous studies (Gallego, 2012; 

Gindling & Robbins, 2001; Murakami, 2014). A positive relationship between the skill premium and 

unemployment, i.e., a higher unemployment rate leading to an increase in wage differential, might 

suggest that a disproportionately high number of unskilled workers are represented among the 

unemployed.  Consequently, their wages would probably fall more rapidly than the wages of the skilled 

labourers, leading to a greater skill premium (Gindling & Robbins, 2001). On the other hand, if 

unemployment affects predominantly skilled labour, a negative relationship between unemployment 

and the skill premium might occur (Larrañaga, 2001). Thus, our results will provide additional insights 

on the influence of this variable on the skill premium. 

Regarding labour policies to establish minimum wages, it is assumed that these interventions affect 

the wages of unskilled labour. Therefore, without changes in skilled labour wages, the increases in 

minimum wages might lead to a decline in the skill premium. Previous studies show evidence of this 

inverse relationship like Murakami (2014), although from models reporting “estimation difficulties”. 

Others reported no statistically significant estimates (Gallego, 2012; Gindling & Robbins, 2001). 

Therefore, in our extended model, we expect a negative and significant coefficient standing for the 

expected inverse relationship between the skill premium and minimum wages. 

2.4. Literature review 

This literature review encompasses three strands. First, we describe the past attempts to test 

empirically the RBET model for Chile, establishing the presence of self-contradictory evidence. 
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Overall, the evidence for the Chilean case is inconclusive, and researchers have highlighted unexpected 

results or “improbable estimation results” related to estimating the coefficient on the supply factor and, 

consequently, the computation of the elasticity of substitution between skilled and unskilled labour. 

These reported difficulties motivate us to review the reporting of the elasticity of substitution and how 

researchers have empirically tested the RBET model. These two aspects constitute our second and third 

strands, respectively.  

2.4.1. The Skill Premium and the RBET evidence for Chile  

The skill premium in Chile has shown an inverted U-shaped pattern during the last six decades. 

After continuous growth since the 1960s (Gallego, 2012), the 2000s witnessed a fall in the skill premium 

(Murakami, 2014; Parro & Reyes, 2017). In this context, the distinction of two periods, i.e., pre-2000 

and post-2000, to identify the rise and fall of the skill premium, respectively, might not be trivial. Most 

major economic reforms in Chile occurred between 1975 and 1995, with trade liberalization being the 

most relevant (Beyer et al., 1999). Also, the process of economic development arising from physically 

intensive sectors (e.g., agriculture, manufacturing) moving to less physically and more knowledge 

intense sectors (e.g., services) led to higher demand for skilled labour, increasing the skill premium  

(Buera & Kaboski, 2012). 

The increasing pattern of the skill premium in Chile between 1960 and 2000 can be evaluated in 

terms of inter-decade growth. On average, it increased from 0.4 in the 1960s to 1.3 and 1.5 in the 1980s, 

and 1990s, respectively (Gallego, 2012), suggesting that the relative demand for skilled workers 

increased in most economic sectors. The trade liberalization that took place in the 1980s and the 1990s 

was one of Chile's most crucial major economic reforms in the pre-2000 period. Researchers suggest 

that one of the implications of this openness was the absorption of foreign technologies biased towards 

skilled labour (Beyer et al., 1999; Gallego, 2012; Robbins, 1994a). Before 2000, Chile imported about 

85% of non-transportation machinery and equipment from the US and OECD countries (Gallego, 2012). 

Therefore, the SBTC, fuelled by the trade liberalization that began in the 1980s, might explain the 

increased relative demand for skilled labour in the pre-2000 period.  

Regarding the skill premium decline observed in the post-2000 period, the increasing availability 

of skilled labour in the labour market has been suggested as the leading cause. Researchers have linked 

this higher relative supply to the expansion of tertiary education and the exit of the older and less 

educated cohorts (Murakami & Nomura, 2020; Parro & Reyes, 2017). The observed data shows that 

Chilean higher education experienced substantial growth in recent decades. According to educational 

and census data for 1984-2018, people enrolled in tertiary education sextupled (INE, 2017; MINEDUC, 

2020). The 18–24 age group enrolled in tertiary education grew from 189,151 (11% of this age group) 

in 1984 to 521,882 (31%) in 2002. In 2018, it exceeded 1.2 million (approximately 67% of the 18–24 

age group). Apart from the endogenous response of agents to the increase in returns to education, these 
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changes in educational attainments were also fuelled by educational reforms, starting in the 1980s, that 

expanded and diversified the Chilean tertiary educational system (Murakami & Nomura, 2020). 

However, the skill premium reversal can also be explained by demand-side factors, such as the increases 

in unskilled workers’ wages due to the boom in commodity prices (in particular, copper) observed in 

the 2000s (Pellandra, 2015). Therefore, in the pre-2000 period, the skill premium increased, fuelled 

mainly by economic reforms that drove the demand for skilled labour. As the skill premium rose, the 

relative supply of workers responded to this higher premium faster than the relative demand for skilled 

labour, pushing the skill premium down in the post-2000 period. Despite the observed educational 

expansion in the post-2000 period, however, “improbable estimation results” have prevented successful 

testing of its role under the RBET model.  

The empirical testing of the RBET model for Chile is sparse and inconclusive. Studies covering the 

1960-2000 period documented an SBTC leading to an increased skill premium with relative supply 

playing a minor role and elasticities in the range [1, 2] (Beyer et al., 1999; Gallego, 2012; Robbins, 

1994a). In contrast, studies that do not support this evidence suggested, on the one side, the production 

of results that were inconsistent with theoretical expectations and, on the other side, higher elasticities, 

i.e. out of the range of the consensus, as causes leading to rejection of some RBET predictions 

(Murakami, 2014; Robbins, 1994b; Sánchez-Páramo & Schady, 2003). For example, Robbins (1994b) 

and Murakami (2014) reported that, in some of their models, the relative supply changes could not 

explain the skill premium for 1975-1992 and 1974-2007, respectively. In both cases, the rejection was 

due to results that were counter to expectations given by the RBET conceptualization, i.e., a positive 

sign for the coefficient representing the relative supply, which is theoretically unfeasible (see Eq.  (2.11) 

and (2.12) related statements). Murakami (2014) and Robbins (1994b) suggested that the differences in 

the quality education provided by traditional and private universities as a possible reason. However, 

studies applying cohort analyses reported that the difference in quality between these higher education 

institutions did not influence the skill premium (Gallego, 2012; Gindling & Robbins, 2001). As in 

Murakami (2014) and Robbins (1994b), researchers have generally not attempted to interpret these 

theoretically unfeasible results, which might result from imprecision in data and methods. Measurement 

error, noise in wages and labour supply data are also usually noted in this literature (Havranek et al., 

2020). Besides, researchers have warned of several estimation and data difficulties when the skill 

premium evolution is changing (Acosta et al., 2019). As reviewed above, the skill premium shows an 

inverted U-shaped pattern, which might explain the unexpected results that Murakami (2014) reported.  

Regarding elasticities beyond the consensus, Sánchez-Páramo & Schady (2003) questioned their 

estimates of around 10 for Chile analysing the span 1970-1999, arguing that such values were imprecise 

and improbable given the so-called consensus. Sánchez-Páramo & Schady (2003) suggested the 

increasing (almost monotonic) pattern of the skill premium as a potential reason for these larger 

elasticities, without questioning the consensus. Researchers have suggested a bias in the publication of 

elasticity estimates, with most published estimates belonging to the consensus, i.e., values in the range 
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[1, 3], while larger elasticities (four and over) are rare in this literature (Havranek et al., 2020). 

Therefore, it seems that the evidence cited as grounds for rejecting the RBET model for Chile has been 

derived results countering the RBET conceptualisation and the production of non-consensual elasticities 

values. Furthermore, these studies do not refer to any imprecision in data and methods. For instance, 

Murakami (2014) applied cointegration techniques that rely on assumptions that may not hold. In this 

regard, researchers have warned that the cointegration approach can lead to results inconsistent with the 

underlying theory (Guisan, 2001; Moosa, 2017).  

This section has outlined the evidence regarding the skill premium and the RBET model for Chile. 

The changes in the skill premium seen in Chile during the last five decades show different forces behind 

its pre-2000 rise and post-2000 fall, without conclusive evidence for or against the RBET predictions. 

The steadily rising relative supply of skilled labour over the period might suggest a dominant role for 

this variable, given the skill premium decline after 2000. However, there is no evidence of the expected 

negative relationship between the skill premium and the relative supply of skilled labour under the 

RBET model. Studies using post-2000 data reported “improbable estimation results” due to wrong 

results that might lead to negative elasticities. Also, elasticities beyond the consensus have been 

pronounced implausible for Chile. These elasticity and estimation issues motivate us to review, in the 

following sections, some issues related to this parameter and the most frequently applied methods 

focusing on both estimation and modelling concerns in the RBET literature.  

2.4.2. The elasticity of substitution  

The elasticity of substitution between skilled and unskilled labour is one of the most frequently 

estimated parameters in labour economics (Havranek et al., 2020). As presented in sections 2.2.1.1 and 

2.2.1.3, it governs the subsequent predictions of the RBET model, showing how changes in either SBTC 

or the educational attainment of the workforce affect the skill premium. The elasticity of substitution 

determines if skilled and unskilled workers are complements or substitutes. Also, some researchers have 

computed changes in the relative demand as a residual using elasticity as a critical parameter (see, e.g., 

Gallego, 2012). Conceptually, we would expect zero or positive values for the elasticity of substitution 

(see section 2.2.1.1 and Figure 2.1). The reporting of negative elasticities in previous studies highlights 

that such findings violate standard economic theory (see, e.g., Blankenau & Cassou, 2011; Kearney 

1997). However, despite being positive and theoretically plausible, larger elasticities, i.e., beyond the 

consensus, have sometimes been described as implausible (see, e.g., Sánchez-Páramo & Schady, 2003; 

Varella, 2008). Overall, elasticities around four are common in the RBET literature, while elasticities 

around five or six are less frequent (Havranek et al., 2020). Some estimated elasticities are above three 

and four for several Latin American countries  (Acosta et al., 2019; Manacorda et al., 2010) and around 

11 for the crucial maquiladora industry in Mexico (Varella & Ibarra-Salazar, 2013). These values show 

that there should be no upper threshold for elasticities reporting. 
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The computation of larger elasticities might partly be explained by data granularity, the features of 

the analysed period, and the use of different definitions for skilled labour, among other factors. For 

instance, it has been suggested that higher than annual data granularity might expand the elasticity,  

which can be due to measurement error associated with higher frequency data (Havranek et al., 2020). 

A measurement error in the relative supply variable results in attenuation bias in the estimated 

regression parameter. Then, smaller coefficients translate to larger elasticities. Also, where particular 

periods are concerned, higher elasticities have been linked to a more rapid SBTC in the US, but the 

evidence is inconclusive since values between one and two also have featured periods of SBTC 

acceleration (Acemoglu, 1998; Katz & Murphy, 1992). Also, some larger elasticities can be found in 

studies using different measurements for skills or analysing substitution between age groups. For 

instance, Varella (2011) estimated a global measure of elasticity using different definitions for skilled 

labour. When skilled labour was defined as secondary graduates, the values varied from three to four, 

while values for the definition as primary graduates were between six and 12.  For a pool of Latin 

American countries, including Chile, suggested elasticities were around three when the relative supply 

was based on worked hours and above five when the relative supply was established on the workforce 

or population estimations (Manacorda et al., 2010). For Germany, the elasticity between secondary and 

primary graduates was four (Glitz & Wissmann, 2017). Regarding the use of workers’ groups based on 

their age, Glitz & Wissmann (2017) reported an elasticity of substitution between young and old 

workers of 8.2 in Germany, which is somewhat higher than the comparable estimates by Card & 

Lemieux (2001) of around five for the US and six for Canada.  

Overall, large elasticities might have some implications: firstly, the possibility of switching 

between skilled and unskilled workers is higher, and the impact on the skill premium for an observed 

relative supply of skilled labour will be less important than the demand factor (Katz & Murphy, 1992; 

Varella & Ibarra-Salazar, 2013). Also, Acemoglu (2002) suggests that if the elasticity is greater than 

two, the skill premium will be an increasing function of the relative supply of skilled labour: in other 

words,  the SBTC is endogenous. This endogeneity implies that technological change is biased by profit 

incentives where the market availability of skilled labour drives the creation and adoption of 

technologies. In other words, a rise in the relative supply encourages so much SBTC that the demand 

for skills increases more than enough to counterbalance the potential increase in the supply of skilled 

workers. Thus, both the declines and increases in the skill premium might be related to increases in the 

supply of skilled labour. 

In terms of estimation procedures, the computation of the elasticity of substitution as a reciprocal 

of the relative supply estimated coefficient may also contribute to larger elasticities. As introduced 

earlier, this procedure dominates most of the prominent RBET literature (see, e.g., Acemoglu, 2002; 

Goldin & Katz, 2009; Katz & Murphy, 1992). Besides, it has been argued that the magnitude of the 

estimates applying least-squares methods (e.g., Ordinary Least Squares, OLS) in a regression analysis  

is usually smaller than expected since they are downward biased towards zero because of error 
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measurement (Hausman, 2001). Thus, small coefficients translate to large elasticities of substitution. 

Consequently, the inverted coefficient estimated using least-squares methods or its variations may be 

inconsistent. We review the OLS applications in this literature and other methods in the next section 

2.4.3. 

The calculation of the elasticity of substitution as a reciprocal as the standard procedure within the 

RBET literature might potentially be one of the principal reasons why it is replete with elasticity 

estimates above one. Havranek et al. (2020) reported that inverted estimates tend to be 1.5 larger than 

direct estimates. In this context, researchers have suggested that alternative modelling strategies to 

estimate the elasticity directly are needed (Ciccone & Peri, 2005). For example, some have modelled 

the relative supply as the dependent variable (Li, 2010). Others applied different specifications (e.g., 

translog cost function) instead of the CES production function to estimate the elasticity directly 

(Askilden & Nilsen, 2005; Bergström & Panas, 1992). Therefore, it is possible that direct estimation 

methods might yield more accurate elasticity of substitution estimates, though they are employed less 

frequently in the RBET literature.  

The issues outlined above show that bringing the data to the RBET framework can be problematic. 

Therefore, we should proceed with care when choosing empirical strategies to implement and test the 

RBET model empirically. In the next section, we review some of the strategies most frequently 

employed to empirically implement and test the RBET model, focusing on methods, data and modelling 

issues that can lead to model misspecification and estimation imprecision. Where larger elasticities that 

fall outside the consensus are concerned, it should be recognised that these values do not represent a 

rejection of the RBET model since there is no upper threshold for positive elasticities. While 

implausibly large elasticities may prompt debate about the applicability of the RBET model, it is the 

estimation of unfeasible theoretically results that are, therefore, incompatible with the underlying model 

that perhaps warrants greater attention. 

2.4.3. Methods and modelling issues in the RBET literature  

This section reviews some of the estimation strategies most commonly applied to implement and 

empirically test the RBET model. Although the RBET literature is vast, studies that give extensive 

detail about their econometric strategies are scarce. We also pay particular attention to the use of linear 

time trends to proxy the SBTC component and how this approach can influence the elasticity of 

substitution estimates. 

One of the simplest ways to estimate the RBET model parameters is using OLS in a standard linear 

regression. Pioneering studies applied this approach using the US data, obtaining elasticities between 

one and three (Acemoglu, 2002; Goldin & Katz, 2008, 2009; Katz & Murphy, 1992). Similarly, Acosta 

et al. (2019) applied OLS to a pool of 16 Latin American countries, but an insignificant relative supply 

parameter was estimated (it would have implied an elasticity above four). However, while OLS might 
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yield expected outcomes using aggregated data for a particular country or group, it may perform 

inadequately with less aggregated data (e.g. at industry or economic sector level).  The estimate of 

industry-specific regressions performed by Blankenau & Cassou (2011) resulted in values that were 

substantially distant from each other, i.e. in the range [-436, 500], compared to the aggregate estimate 

of around two. The authors posit that, in the case of negative elasticities, these findings are evidence of 

a methodological failing when using data at the industry level compared to the aggregated level. 

Besides, Blankenau & Cassou (2011) suggested an additional difficulty in the regressions at the industry 

level related to the potential endogeneity between the skill premium and the relative supply as the main 

reason. This concern arises from the assumption that relative supply is an exogenous variable that may 

be positively correlated with the skill premium in the long run, which is an idea used in conjunction 

with OLS. However, these adjustments can be more immediate at the industry level (Ciccone & Peri, 

2005; Varella, 2011). Researchers have applied alternative estimation strategies, such as models 

including omitted fixed effects (e.g. country, region or time) or instrumental variables to overcome 

potential endogeneity issues. The work on the US conducted by Ciccone & Peri (2005), using OLS 

without taking into account fixed effects, resulted in an unexpected sign for the relative supply 

parameter and the computation of negative elasticities. Once they specified models with the state and 

time as fixed effects, the OLS yielded elasticities of around three. Similarly, Acosta et al. (2019) 

estimated specifications with country and year as fixed effects, finding elasticities between 3.1 and 3.5 

for selected Latin American countries. Other applications using fixed-effects specifications with OLS 

have been reported for the US (Mallick & Sousa, 2017), Portugal (Nogueira et al., 2017), etc.  

Regarding using instrumental variables, IVs, as a modelling approach to control the potential 

endogeneity described above, this approach has usually been combined with estimation strategies other 

than OLS. For example, Varella Mollick (2011) aims to estimate the world elasticity of substitution 

from aggregated data of 52 countries using three IVs related to the relative supply: the educational 

enrolment ratio, the GDP share of national expenditure on education and the proportion of government 

spending on education concerning global government expenditure. Using the Generalized Method of 

Moments, GMM, the world elasticity of substitution values varied between two and three. A similar 

approach was employed by Blankenau & Cassou (2011) at the industry level in the US, but modelling 

instruments related to the industry share and wage ratios.  

More sophisticated techniques combining IVs and fixed effects specifications are utilised in 

Ciccone & Peri (2005). Using instruments based on laws regarding child labour and child compulsory 

school attendance at the state-level in the US, the estimates were obtained using Two-Stage Least 

Squares, 2SLS, Limited-Information Maximum Likelihood, LIML, and Fuller-LIML, which yielded 

elasticities of substitution around 1.5. For low and middle-income countries, estimation by GMM has 

also provided robust evidence regarding technology measures driving the demand for skilled labour 

(Conte & Vivarelli, 2011). In addition to the estimation using GMM, Razzak & Timmins (2008) 

employed the Estimated Generalised Least Squares, EGLS, methodology with data from New Zealand. 
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As a main result, they reported a GMM-EGLS estimation with constant, trend term and four lags as 

instruments. The estimated coefficient had an implied elasticity of 2.9 for the period under analysis. 

Similar Maximum Likelihood, ML, approaches using the Seemingly Unrelated Regression, SUR, a 

multiple-equation system approach, were applied to the US with elasticities above two (McAdam & 

Willman, 2018). Also, Glitz & Wissmann (2017) employed a SUR approach for Germany, with 

elasticity estimates as low as 1.6 between skilled and unskilled workers and as high as eight between 

older and younger workers. 

Here, we reviewed the main methods used to overcome the potential endogeneity between the 

variables evaluated under the RBET model. However, this estimation can be more problematic because 

of other issues, such as how the trend term that proxies the SBTC component is specified (Acemoglu 

& Autor, 2011; Borjas et al., 2012) or how the data structure evolves (Acosta et al., 2019).  According 

to the conceptual framework,  the SBTC component is modelled as a linear time trend to capture its 

assumed steady evolution over time (see section 2.2.1.3). Some suggest the inclusion of richer 

specifications (e.g. spline trend, cubic and quadratic time trends) to capture some deviations in the skill 

premium (Acemoglu & Autor, 2011; Autor et al., 2008). It has also been suggested that the time trends 

modelling leads to estimating reasonable elasticities (Blankenau & Cassou, 2011; Ciccone & Peri, 

2005). In contrast,  the ability of time terms to proxy the SBTC term has been questioned in non-high-

income countries since other forces (e.g. external shocks and trade openness) might also affect the 

relative demand for skilled labour (Acosta et al., 2019). In this regard, adding these variables might 

make the time trend effect more negligible. Besides, the sensitivity of the elasticity estimates depends 

on trend specification (Borjas et al., 2012; Fernández & Messina, 2018). For instance, Borjas et al., 

(2012) studied the elasticity of substitution between native and immigrant workers. They found that 

adopting a quadratic trend yielded a negative elasticity, and using a cubic trend led to additional 

volatility. Therefore, the modelling of the time trend is an issue that requires attention, given its 

implications for the elasticity of substitution estimation. To overcome some of these issues, researchers 

have prefered the use of time dummies or time fixed-effects models like those reviewed above (Glitz & 

Wissmann, 2017). 

Other difficulties linked to the evolution of the data structure arise. For example, the potential 

presence of trends in both the skill premium and the relative supply present a challenge to modelling 

and estimation strategies because there is the possibility of unit roots in the data. Consequently,  

inferences can be derived from spurious regressions (Granger & Newbold, 1974). However, testing for 

stationarity or the presence of unit roots is rarely reported in the RBET literature (Razzak & Timmins, 

2008; Varella Mollick, 2008). As exceptions, Razzak & Timmins (2008) and Dupuy & Marey (2008) 

found unit roots in their data for New Zealand and the US, respectively. The data from Colombia, Brazil 

and Mexico also shows the presence of unit roots (Medina & Posso, 2010; Varella Mollick, 2008). For 

Chile, Gallego (2012) and Murakami (2014) reported the existence of unit roots in the skill premium 

and the relative supply of skilled labour, but Beyer et al. (1999) did not find support. Most of these 
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studies applied cointegration techniques (in section 2.6.1.3 we give a detailed description of 

cointegration). These techniques posit a relationship between non-stationary variables such that some 

linear combination of these variables is stationary.  

Recurrent approaches to estimating cointegrating relationships include the Granger-Engle 

estimation (Engle & Granger, 1987) and VECM (Johansen, 1995), among others. These estimation 

strategies rely mainly on OLS and or ML techniques. For instance, Dupuy & Marey (2008)  used 

cointegration techniques based on OLS, while Medina & Posso (2010) and Varella Mollick (2008) 

estimated their coefficients of interest using ML on VECMs. For the Chilean case, Gallego (2012) 

applied ML to a VECM, reporting that the skill premium and the relative supply are cointegrated, and 

the estimation yielded plausible results. Conversely, Murakami (2014) reported inconclusive evidence 

about cointegration using Engel-Granger cointegration tests. However, some models yielded the 

“wrong” sign for the relative supply of skilled labour resulting in the computation of a negative 

elasticity, our so-called “improbable estimation results”. According to Murakami (2014), this 

discrepancy was not caused by  “improbable estimation results” but potential bias in the data (discussed 

above in section 2.4.1).  

Overall, the use of cointegration techniques is frequent in the RBET literature. On the one hand, 

some have applied these techniques using data for Chile (Beyer et al., 1999; Gallego, 2012), Mexico 

(Varella, 2008b), Colombia (Medina & Posso, 2010), the US (Balleer & Rens, 2013; Dupuy & Marey, 

2008), Norway (Von Brasch, 2016), Germany (Hutter & Weber, 2017), and New Zealand (Razzak & 

Timmins, 2008), among others, with most of them yielding theoretically expected results. On the other 

hand, some researchers have warned of difficulties with cointegration methods. For example, Razzak 

& Timmins (2008) reported that unit roots tests are sensitive to lag order, making the estimation of the 

RBET model difficult. Also, Von Brasch (2016) shows that some caution must be applied to the 

consideration of VECM assumptions (e.g., weak exogeneity between variables, significant lags). 

Additionally, concerns have emerged regarding the estimation of the elasticity of substitution when 

using cointegration. Firstly, it has been suggested that the elasticity is sensitive to the configuration of 

the cointegration strategy in terms of the presence or absence of time trends and lag order (Varella, 

2008b). Secondly, using a VECM implies the computation of elasticity as a reciprocal, which can also 

contribute to less precise elasticities. Havranek et al. (2020) report that inverted estimates tend to be 1.5 

larger than direct estimates. Thirdly, cointegration might yield smaller elasticity estimates than time 

fixed effects or instrumental variables strategies (Havranek et al., 2020). Therefore, these estimation 

difficulties might lead to incorrect assumptions or the reporting of biased estimates (Von Brasch, 2016). 

More generally, researchers have warned about some limitations of cointegration techniques that might 

make them unsuitable for testing causal relationships in Economics and Econometrics (see. e.g., Guisan, 

2001; Moosa, 2017). 

Most of the estimation strategies reviewed above rely on classical frequentist methods. Rarer are 

methods using Bayesian estimation. For example, Balleer & Rens (2013) used a Bayesian Vector 
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Autorregresion framework to explore the implications of SBTC for business cycle fluctuations in the 

US, where the skill premium is one of the several variables analysed. Also, for the US, Guvenen & 

Kuruscu (2009) applied Bayesian methods to model and estimate individuals' expectations regarding 

the advent of SBTC. Since we applied a UCM-Bayesian strategy to this research, we give additional 

coverage of Bayesian estimation in section 2.6.2.2.  

2.5. Data and estimation of variables 

This section introduces the data used in this research and the estimation of the skill premium and 

the relative supply of skilled labour. We have accumulated these variables from a series of biannual 

cross-section labour surveys for 1980-2018. We follow closely the strategies from previous studies for 

Chile and RBET literature. 

We use data from the Employment and Unemployment Survey for Greater Santiago (in Spanish, 

Encuesta de Ocupación y Desempleo del Gran Santiago or EOD) carried out by the University of Chile 

since 1956 (University of Chile, 2020). We use biannual data (March and June), which has been 

available since 1980. Each biannual survey covers about 3,000 households and interviews all household 

members (about 10,000 individuals). The survey is considered a good representation of the Chilean 

labour market (Gallego, 2012; Robbins, 1994c). The EOD has applied practically the same 

questionnaire from its creation, which reinforces the comparability of its data. This feature has been 

helpful for the design and evaluation of labour policies. Also, the EOD has been widely used in studies 

examining wage differentials and their drivers in Chile (e.g., Beyer et al., 1999; Gallego, 2012; Gindling 

& Robbins, 2001; Murakami, 2014; Robbins, 1994b). As noted above, we use biannual survey data 

over 1980 and 2018, i.e., 76 time periods.  

Regarding the method of constructing estimates of the skill premium and the relative supply of 

skilled workers, we closely follow the strategies of Autor et al. (2008), Card & Lemieux (2001), and 

Ciccone & Peri (2005), among others. Other researchers also have applied these strategies to Chile (see, 

e.g., Gallego, 2012; Murakami, 2014;  Beyer et al., 1999). In particular, we have adopted the definitions 

and thresholds of Murakami (2014) for our computation of skilled and unskilled labour variables. To 

compute the skill premium, we define skilled labour as suitable for college or post-secondary graduates 

and unskilled labour as suitable for graduates of high-school or secondary education or those whose 

education has not reached these levels. Similarly, in the computation of the relative supply, we consider 

skilled labourers as equivalent to college graduates and unskilled labourers as equivalent to high-school 

graduates, as in previous studies (Card & Lemieux, 2001; Ciccone & Peri, 2005; Gallego, 2012; 

Murakami, 2014). 

To estimate the skill premium, we regress the monthly log earnings for each of the 76 time periods 

on the usual determinants of wages (e.g., education level, experience). Then, we compute the predicted 

log wages difference between the college graduates (our skilled group) and high-school graduates (our 
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unskilled group)  as our proxy for the skill premium.  We focus on monthly earnings according to the 

EOD, and our group of interest is restricted to salaried and full time (more than 30 hours a week) male 

workers aged 14-65 years6. To adjust for compositional changes, we use weighted averages from the 

construction of education by experience subgroups. The skill premium estimation consists of the 

following three steps: 

Step 1) Construction of education by experience subgroups to adjust for compositional labour 

changes (e.g., different skills levels) within each sub-group: we define five education categories as our 

measure of schooling in order to classify different workers’ school attainments (primary, high school 

dropouts, high school graduates, some college and college graduates), and four potential work 

experience7 groups (0-9, 10-19, 20-29 and 30 or more years). Combining the education and experience 

categories, we construct 20 education by experience sub-groups. We use the average share of total hours 

worked monthly for each sub-group as weights.  

Step 2) Estimation of the wage equation for skilled and unskilled workers regressing a Mincer 

type equation: we regress (log) earnings for each one of the time periods in our study, estimating the 

following standard wage equation (for conciseness ignoring the error term) 8:  

ln𝑊𝑖,𝑡  =  𝛾0  + 𝛾1𝑒𝑑𝑢𝑐_𝑐𝑎𝑡′𝑖,𝑡  +  𝛾2𝑒𝑥𝑝𝑖,𝑡  +  𝛾3𝑒𝑥𝑝𝑖,𝑡
2  + 𝑋′𝑖𝛿 (2.15) 

where, 𝑊𝑖,𝑡 are hourly wages for individual 𝑖 in time 𝑡. 𝑊 is computed by dividing monthly wages by 

monthly working hours, and 𝑊 is expressed in December 2018 Chilean pesos using the Unidad de 

Fomento as a deflator9;  𝑒𝑑𝑢𝑐_𝑐𝑎𝑡 are educational categories defined in Step 1) with primary education 

as the base category; 𝑒𝑥𝑝 is work experience; 𝑋 is a vector containing dummies for workers classified 

as the heads of households and employed in the public sector. Also, it includes industry which is a 

variable factor including eight industries such as agriculture, mining, and construction, among others, 

with manufacturing as the base category. We use the results from Eq. (3.3) to compute the predicted 

wages for skilled and unskilled workers as detailed in the next step. 

Step 3) Prediction of the average wage for skilled and unskilled groups and computation of the 

skill premium. We estimate the predicted log wages using regression results from Step 2) evaluated 

according to the corresponding experience level (5, 15, 25, or 35 years based on experience categories) 

and the base categories included in vector 𝑋. We compute the predicted log wages difference between 

the college graduates and high-school graduates as our proxy for the skill premium. We use the average 

share of monthly hours worked for each education x experience sub-group (formed in Step 1) as 

 
6 Following Beyer et al. (1999),  Card & Lemieux (2001),  Gallego (2012), Murakami (2014) and Rothwell (2012),  we exclude 

women because of potential sample selection biases generated by changes in their labour participation. 
7 Potential work experience is computed as follows: potential work experience = age - years of schooling – 6 (age for starting 

compulsory education): cat 1. 0-9, cat 2. 10-19, cat 3. 20-19 and cat 4.30+. 
8 This method allows control by other demographic characteristics of the labour supply which are not related to the education 

premium. 
9 The Unidad de Fomento (UF) is a Chilean unit of account.  The exchange rate between the UF and the Chilean peso is 

constantly adjusted for inflation. 

https://en.wikipedia.org/wiki/Unit_of_account
https://en.wikipedia.org/wiki/Chilean_peso
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weights. Thus, we quantify the difference between skilled and unskilled wages, which is our skill 

premium measure.  

Regarding calculating the relative supply of skilled labour, we refer to skilled and unskilled labour 

as college graduates and high-school graduate equivalents, respectively. Therefore, we define our 

relative supply measure as the ratio of monthly hours worked by the former to the latter. This estimation 

is based on Card & Lemieux (2001), Ciccone & Peri (2005) and Murakami (2014). Since the RBET 

model assumes only two production factors, skilled and unskilled labour, we classify all workers into 

categories of college graduates and high-school graduate equivalents. First, for each observation and, 

based on total monthly worked hours, we calculate the amounts of unskilled labour or High School 

equivalents, 𝐿𝑢, in each observation 𝑡 as follows: 

𝐿𝑢𝑡  ≡  𝐿𝑡
𝑃𝑆 (

𝑤𝑡
𝑃𝑆

𝑤𝑡
𝐻𝑆𝐺) + 𝐿𝑡

𝐻𝑆𝐷 (
𝑤𝑡

𝐻𝑆𝐷

𝑤𝑡
𝐻𝑆𝐺) + 𝐿𝑡

𝐻𝑆𝐺 + 𝐿𝑡
𝑆𝐶

(

 
 

(
𝑤𝑡

𝑈𝐺

𝑤𝑡
𝑆𝐶 − 1)

(
𝑤𝑡

𝑆𝐶

𝑤𝑡
𝐻𝑆𝐺 − 1) + (

𝑤𝑡
𝑈𝐺

𝑤𝑡
𝑆𝐶 − 1)

)

 
 

 (2.16) 

where 𝐿𝑡
𝑃𝑆, 𝐿𝑡

𝐻𝑆𝐷 , 𝐿𝑡
𝐻𝑆𝐺 and 𝐿𝑡

𝑆𝐶 are total monthly worked hours by workers who have completed school 

up to the primary level, dropped out of high school, graduated from high school, and attended some 

college10, respectively. 𝑤𝑡
𝑃𝑆

,  𝑤𝑡
𝐻𝑆𝐷

,  𝑤𝑡
𝐻𝑆𝐺

,  𝑤𝑡
𝑆𝐶

 and  𝑤𝑡
𝑈𝐺

 are average wages for each 𝑡 for workers who 

have completed school up to the primary level, dropped out of high school, graduated from high school, 

have attended some college, and are university graduates, respectively. Similarly, the amounts of skilled 

or college equivalents, 𝐿𝑠, in 𝑡 are: 

𝐿𝑠𝑡  ≡  𝐿𝑡
𝑈𝐺 + 𝐿𝑡

𝑆𝐶

(

 
 

(
𝑤𝑡

𝑆𝐶

𝑤𝑡
𝐻𝑆𝐺 − 1)

(
𝑤𝑡

𝑆𝐶

𝑤𝑡
𝐻𝑆𝐺 − 1) + (

𝑤𝑡
𝑈𝐺

𝑤𝑡
𝑆𝐶 − 1)

)

 
 

 (2.17) 

where 𝐿𝑡
𝑈𝐺 is the total monthly worked hours by college graduates’ workers, and rest of the variables 

are as in Eq. (2.16). 

Regarding our institutional control variables stated in our extended empirical model in Eq. (2.14), 

the unemployment rate and minimum wages are obtained from Banco Central de Chile (2020) and 

Biblioteca del Congreso (2020), respectively. As in wages above, minimum wages are expressed in 

December 2018 Chilean pesos using the Unidad de Fomento as a deflator (see footnote 9). 

2.6. Methods 

This section introduces our methods, VECM and UCM-Bayesian, to test empirically the models 

represented in Eq. (2.13) and (2.14) as described in section 2.3.  

 
10 Following Murakami (2014), workers with some college education are “split” between college equivalents and high-school 

equivalents based on relative wages. 
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2.6.1. VECM 

The VECM is a reparameterization of a Vector Autoregressive VAR, used in time series analysis 

to model stationary and non-stationary variables and their interrelationships. Stationarity implies that 

stochastic properties of a time series are time-invariant, i.e., mean, variance or covariance with other 

variables do not change over time11. Stationarity or stationarity around a deterministic trend (henceforth 

trend stationarity) is a desirable property in data under analysis since regression analysis using 

stationary variables does not lead to spurious regressions (Granger & Newbold, 1974).  

VECMs allow the modelling of non-stationary variables. This framework can both test for 

cointegration and estimate cointegrating relationships (i.e., where linear combinations of non-stationary 

variables are stationary or trend-stationary). Therefore, we need to test stationarity or trend stationarity 

in the data-generating process in order to specify the VECM specification correctly (Cryer & Chan, 

2008; Lutkepohl, 2005).  

We follow the next steps for our VECM estimation. Firstly, we test stationarity or trend stationarity 

in the data. Secondly, we select and estimate the best unrestricted VAR model for our dependent 

variable in terms of lag order. Thirdly, if the variables are non-stationary, we assess if both variables 

are cointegrated, and fourthly, we estimate our VECM using the selected parameters in previous steps.  

2.6.1.1. Stationarity testing 

The stationarity testing is based on the presence of unit roots or unit root processes that are non-

stationary. The stationarity can be determined through integration order estimation and stationarity 

property itself. For example, a series is said to be integrated of order 1, 𝐼(1), if it has one unit root, and 

an 𝐼(𝑑) series has 𝑑 unit-roots. The number of unit roots (at the zero frequency) equals the number of 

times a series needs to be differenced to make it stationary or trend-stationary (Lutkepohl, 2005). This 

testing is required since estimation and inference in VARs and VECMs become non-standard in the 

presence of unit roots in the data.  

In practice, however, practitioners often refer to a series as being 𝐼(0) or “stationary” if it is “mean 

reverting” (i.e., has a mean) and tests are generally not directed at determining if the variance or the 

covariance properties of the series are stable. Additionally, it is commonly said that a variable is 

“stationary around trend” if it reverts (i.e., if it has a long-run tendency to return) towards some stable 

function of time. Here we will also adopt this convention of referring to a series as being stationary if 

it is mean-reverting or stationary-around-trend if it reverts to some stable function of time. The 

 
11 In other words, stationarity implies that the stochastic process which generates the data is time unvarying. Specifically, the 

stochastic  process {𝑌𝑡} is strictly stationarity if the joint distribution of  𝑌𝑡1
, 𝑌𝑡2

, … . , 𝑌𝑡𝑛
 is the same as the joint distribution of 

𝑌𝑡1−𝑘 , 𝑌𝑡2−𝑘 , … . , 𝑌𝑡𝑛−𝑘 for all choices of time points 𝑡1, 𝑡2, … . , 𝑡𝑛 and all choices of time lag k. Then, when 𝑛 = 1 the univariate 

distribution of 𝑌𝑡 is the same as that of 𝑌𝑡−𝑘 for all t and k (the Y’s are marginally identically distributed) and the mean and 

variance are constant over time (Neusser, 2016).  
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stationarity property of a series is, therefore, confirmed by applying tests for unit-roots presence and 

stationarity property itself  (Neusser, 2016). 

In this research, we conduct testing on each variable individually, applying the Augmented Dickey-

Fuller (ADF) and the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) (Kwiatkowski et al., 1992). 

While the null hypothesis of ADF is the existence of a unit root, which implies a non-stationary series, 

in KPSS, the null is the presence of stationarity. Some noted that this hypothesis swap allows 

complementarity between both tests (Neusser, 2016). However, researchers have warned of 

contradictory results when KPSS is used as confirmatory analysis for ADF results since both tests are 

similar in terms of power or size properties (Maddala & Kim, 1998). The implementation of unit root 

tests involves regressions that contain lags or contain kernel density estimates to control for 

autocorrelation in the errors. The choice of the optimal lag order has been selected using information 

criteria as described below. 

2.6.1.2. Optimal lag order in VAR 

Optimal lag order is required to reduce residual correlation in obtaining the proper VAR 

specification. In the context of VECM, the VAR lag order can influence the estimation of cointegrating 

relationships (Gonzalo, 1994). The typical approach estimates VAR models with different lag orders 

beginning with higher-order lags and then decreasing the lag order. The selected lag order can be 

obtained by evaluating the minimum values of statistical information criteria, which reward goodness 

of fit but penalize additional parameters. In this research, we apply the Schwarz Bayesian criterion, 

BIC, and Hannan-Quinn criterion, HQC, which lead to consistent estimates of the optimal lag order 

(Neusser, 2016). An alternative approach is to select the minimum number of lags where a test for no-

serial correlation cannot be rejected. This approach has not been employed here. 

2.6.1.3. Cointegration and VECM specification and estimation  

This section defines cointegration and shows how VECM is specified as a representation of a 

cointegrated system. Some noted that cointegration and error correction might be seen as “twin 

concepts” and that VECM is able to model economic equilibrium relationships using a relatively rich 

time-series specification (Cottrell & Lucchetti, 2021). Next, we describe the steps to test the 

cointegration relationship following the Johansen (1995) approach and the estimation of the VECM 

parameters.  

2.6.1.3.1. Definition of cointegration 

Formally, the cointegration theorem of Engle & Granger (1987) posits that for a given set of 

variables 𝑋1, 𝑋2, … , 𝑋𝑘 integrated of order 𝑑, 𝐼(𝑑), exists a vector 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑚] such that the 
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linear combination 𝜀 = ∑ 𝛽𝑖𝑋i
𝑘
𝑖=1  is integrated of order 𝐼(𝑑 − 𝑏), where 𝑑 ≥ 𝑏 > 0, the variables 

𝑋1, 𝑋2, … , 𝑋𝑘 are said cointegrated of order 𝑑 and 𝑏 or 𝐶𝐼(𝑑, 𝑏). The vector 𝛽 is called the cointegration 

vector, and the linear combination between the variables (also referred to as an r-dimensional vector of 

trend-stationary variables) describes a ‘stable’ economic relationship which is more stationary, 𝐼(0), 

than the variables under analysis (Johansen, 1995). In this regard, we are testing a structural equation 

formulated by the RBET model between the levels of the variables of interest (see the empirical models 

specified in section 2.3). If the variables are non-stationary, we can reformulate them, for convenience, 

in terms of levels and differences. Thus, if a stationary relationship models a structural association, 

these may lead us to consider stationary relationships between levels, that is, cointegration relationships 

(Johansen, 1995). For the sake of clarity, if we represent the cointegration vector as coefficients in a 

regression model, i.e., 𝛽 = [1,−𝛽1 … , 𝛽𝑘−1𝑚], we can represent the cointegration residual as 𝜀 = 𝑌 −

𝛽1𝑋1 − … − 𝛽𝑘−1𝑋𝑘−1. This last representation corresponds to the standard regression model,  𝑌 =

𝛽1𝑋1 + …+ 𝛽𝑘−1𝑋𝑘−1 + 𝜀, assuming that 𝜀 is 𝐼(𝑑 − 𝑏). Therefore, if the series under study are non-

stationary, for example they are 𝐼(1), then their cointegration order or the linear combination will be 

𝐶𝐼(0) or trend-stationary. In general, the use of auto-regressive processes generates processes of class 

𝐶𝐼(1, 1) (Johansen, 1995).  

2.6.1.3.2. VECM as a representation of a system of cointegrated 

variables 

As introduced above, VECM is a particular VAR model when variables are cointegrated. Engle & 

Granger (1987) show that cointegrated variables can be represented by error correction models, ECM, 

as follows. 

Let us consider an autocorrelation relationship or VAR of order p, with a deterministic part (e.g., 

trend) given by 𝜇𝑡 which is usually polynomial in time, for an 𝑛-variate process 𝑦𝑡: 

  𝑦𝑡 = 𝜇𝑡 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . +𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡. (2.18) 

Since 𝑦𝑡−𝑖 ≡ 𝑦𝑡−1 − (∆𝑦𝑡−2 + ∆𝑦𝑡−3+. . . +𝑦𝑡−𝑖+1), the Eq. (2.18) can re-write as:  

∆𝑦𝑡 = 𝜇𝑡 + Π𝑦𝑡−1 + ∑ Γ𝑖∆𝑦𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜀𝑡 (2.19) 

Π = ∑ 𝜙𝑖 − 𝐼
𝑝

𝑖−1
 (2.20) 

Γ𝑖 = −∑ 𝜙𝑖
𝑝
𝑗=𝑖+1 , (2.21) 

where ∆ is the first-difference operator, and 𝑝 is the optimal lag order. Π and Γ𝑖 are coefficients matrices. 

The Eq. (2.19) is the VECM representation of Eq. (2.18), and its interpretation depends on the rank, 𝑟, 

of the matrix Π since 𝑟 will indicate the number of independent cointegration vectors (Engle & Granger, 

1987; Johansen, 1995). In this regard, there are three cases. Firstly, if 𝑟 = 0 , it means that the matrix 
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Π is compound by zeros, and the processes are all 𝐼(1) and not cointegrated, which implies that the 

representation is just the VAR model for the process in differences, i.e., the model can be estimated 

using the first-difference approach. Secondly, if 𝑟 = 𝑛, the matrix Π is invertible or of full rank. It 

means that the series are stationary; therefore, any combination of them will be stationary. Hence, the 

model can be estimated directly. Thirdly, if  0 < 𝑟 < 𝑛 there are 𝑟 independent and linear relationships 

in the Π matrix which implies cointegration between the model variables, and the Π matrix can be 

expressed as 𝛼𝛽′ where 𝛼 and 𝛽′ are arrays of 𝑛 × 𝑟, and the 𝑟 columns of 𝛽′ are linearly independent 

cointegration vectors. In other words, if 𝑦𝑡 has cointegration relationship, then Π𝑦𝑡−1~𝐼(0) and, in this 

case, the Eq. (2.19) can be written as 

∆𝑦𝑡 = 𝜇𝑡 + 𝛼𝛽′𝑦𝑡−1 + ∑ Γ𝑖∆𝑦𝑡−𝑖
𝑝−1
𝑖=1 + 𝜀𝑡. (2.22) 

As noted above, we can represent cointegrated variables as ECM. Then, from Eq. (2.22), we can 

express 𝛽′𝑦𝑡−1 = 𝑒𝑐𝑡𝑡−1, where 𝑒𝑐𝑡𝑡−1 is the lagged error correction term. Theoretically, a cointegrated 

process can be represented as an ECM solution (Engle & Granger, 1987; Johansen, 1995). In this regard, 

the 𝑒𝑐𝑡𝑡−1 term reflects the disequilibrium generated by the long-term equilibrium relationships 

between variables since the deviations in an observed variable depend on the changes from the 

equilibrium between variables in a given relationship (Lutkepohl, 2005). We rewrite Eq. (2.22)  with 

the 𝑒𝑐𝑡𝑡−1 term as follows: 

∆𝑦𝑡 = 𝜇𝑡 + 𝛼(𝑒𝑐𝑡𝑡−1) + ∑ Γ𝑖∆𝑦𝑡−𝑖
𝑝−1
𝑖=1 + 𝜀𝑡. (2.23) 

The Eq. (2.23) is the VECM, in which each 𝑛-variate equation is an ECM.  

Also, some additional constraints can be placed on the trend term 𝜇𝑡. For example, there is no 

trend, or the deterministic trend belongs exclusively to the long-run relationship or the cointegration 

relationship. Therefore, there is no deterministic trend in the first difference of the variables. In this 

regard, five cases can represent these assumptions about the deterministic trend (Johansen, 1995). In 

this research, we specified case 4, “unrestricted constant + restricted trend”, which considers that the 

cointegration equation includes a trend, but the first difference of the series does not. The assumption 

of the trend being restricted to the cointegrated system comes from our empirical model specification 

(see section 2.3), where we include a trend parameter as a proxy for the SBTC effect according to the 

RBET model estimation strategy.  

2.6.1.3.3. Cointegration test using the Johansen approach 

The Johansen method enables us to determine the cointegration of 𝑛 variables 𝐼(1) (there can be 

more than one cointegration relationship). The approach investigates the cointegration rank 𝑟 of 𝛽 or 

the number of cointegrating vectors through maximum likelihood algorithms. There are two log-

likelihood ratio tests determining 𝑟. First, the maximum eigenvalue or “λ-max” test examines the 

following hypotheses: 
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𝐻0: 𝑟 = 𝑟∗ 

𝐻1: 𝑟 = 𝑟∗ + 1. 

This test is applied sequentially for 𝑟∗ = 0,1,2,… , 𝑛 − 1 and the first no rejection of the null 

hypothesis is considered the estimation of 𝑟. Second, the “trace” test, which examines the following 

hypotheses: 

𝐻0: 𝑟 = 𝑟∗ 

𝐻1: 𝑟 = 𝑟 >  𝑟∗. 

The trace test is applied sequentially for 𝑟∗ = 0,1,2,… , 𝑛 − 1 and the first no rejection of the null 

hypothesis is considered the estimation of 𝑟. If there is no evidence to reject 𝐻0: 𝑟 = 1 under the 

described tests, then a cointegration relationship has been found. Consequently, we will estimate the 

VECM with 𝑟 = 1. 

2.6.1.3.4. VECM estimation of our empirical models 

Rewriting our base empirical model from Eq. (2.13) under the specification of the VECM system 

from Eq. (2.23), we specify the ECM equation on the skill premium, 𝜔, as follows:   

∆ ln𝜔𝑡 = 𝛽0 + 𝛼(𝑒𝑐𝑡𝑡−1)  + ∑ 𝜌𝑖∆ ln𝜔𝑡−𝑖

𝑝−1

𝑖=1

+ ∑ 𝛾𝑖∆ ln (
𝑆

𝑈
)
𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜀𝑡 

 

(2.24) 

where ∆ ln𝜔𝑡−𝑖 and ∆ ln (
𝑆

𝑈
)
𝑡−𝑖

 are the differences that capture short-run variations in the skill 

premium, ln𝜔, and the relative supply of skilled labour, ln (
𝑆

𝑈
), respectively. 𝜌, 𝛾, 𝛼 and 𝑒𝑐𝑡𝑡−1 are 

coefficients to be estimated and 𝜀𝑡 is white noise. In this specification, we normalize 𝛼 and 𝑒𝑐𝑡𝑡−1 on 

the target variable, the skill premium, where 𝑒𝑐𝑡𝑡−1 define the long-run relationship if the skill premium 

and the relative supply of skilled labour are cointegrated. Therefore, our base empirical model from Eq. 

(2.13), expressed in terms of the 𝑒𝑐𝑡𝑡−1 , considering that we have implemented case 4 of the Johansen 

modelling (a trend term within the cointegration equation as discussed above in section 2.6.1.3.2), yields 

the following cointegration equation to be estimated:  

 𝑒𝑐𝑡𝑡−1 = ln𝜔𝑡−1 − 𝛽1𝑡 + 𝛽2 ln (
𝑆

𝑈
)
𝑡−1

− 𝛽3𝐶ℎ98𝑡−1.   (2.25) 

Reordering Eq.   (2.25) on the normalized skill premium yields   

 ln𝜔𝑡−1 = 𝛽1𝑡 − 𝛽2 ln (
𝑆

𝑈
)
𝑡−1

+ 𝛽3𝐶ℎ98𝑡−1 + 𝑒𝑐𝑡𝑡−1. (2.26) 

Eq. (2.26) refers to our base empirical model in Eq. (2.13). We expect that 𝛽2 coefficient in Eq. 

(2.26) to be negative and significant as evidence for an inverse relationship between the skill premium 

and the relative supply of skilled labour, as posited by the RBET empirical modelling (see section 

2.2.1.3). Besides, a negative 𝛽2 coefficient allow us to compute a positive elasticity (see Eq. (2.12) 

related statements). The same procedures apply to our extended empirical model from Eq. (2.14).  
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The estimation of the VECM proceeds in two stages: firstly, the application of the Johansen 

approach (Johansen, 1995) to find the cointegration rank 𝑟 (if any) and, secondly, for a given 𝑟, the 

estimation of the VECM parameters. All procedures detailed in this section are estimated using the 

statistical software Gretl (Baiocchi & Distaso, 2003; Cottrell & Lucchetti, 2021).  

2.6.2. The UCM-Bayesian 

This section outlines the UCM formalization following the notation and descriptions given mainly 

by Pelagatti (2016) and Durbin & Koopman (2012). Then, we shall present the main Bayesian 

estimation features. Next, we shall show our empirical models under UCM-Bayesian specifications and 

detail the procedure and techniques involved in estimating them following Koop (2003) and Gelman et 

al. (2020), among others. 

2.6.2.1. UCM formalization 

The UCM, also known as structural time series models, STSM, or local level models, LLM, is the 

basic structure used to represent a time series. It is specified directly in terms of its components of 

interest (e.g., trend, seasonal and error components) plus additional relevant terms (e.g., a regressor). 

The main UCM feature is that the model components are modelled as stochastic processes. Thus, we 

can write a general representation of a UCM in its additive form as: 

𝑌𝑡 = 𝜇𝑡
𝑡𝑟𝑒𝑛𝑑

+ 𝛾𝑡
𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

+ 𝜓𝑡
𝑐𝑦𝑐𝑙𝑒

+ 𝛽𝑡
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟

+ 𝜀𝑡
𝑛𝑜𝑖𝑠𝑒

,        𝑡 = 1,… . 𝑛 (2.27) 

where  𝑌𝑡 is the observed data, 𝜇𝑡 a slowly changing component, typically called the “trend”, the 

seasonal component 𝛾𝑡 is a periodic term,  𝜓𝑡 is a cyclical component, 𝛽𝑡 is a regressor of interest, and 

𝜀𝑡, is the irregular model component.  

Overall, this approach allows us to infer relevant properties of the trend from the observed data 

(Durbin & Koopman, 2012). We specified the trend as Local Linear Trend, LLT, which can be 

interpreted as a linear trend with intercept and slope evolve synchronized over time as random walks12 

(Pelagatti, 2016). In this regard, the LLT specification is defined by two state equations modelling the 

level and the slope, as follow:  

𝜇𝑡 = 𝜇𝑡−1 + 𝜈𝑡−1  +  𝜂𝑡 (2.28) 

𝜈𝑡 = 𝜈𝑡−1  +  𝜁𝑡, (2.29) 

where 𝜇𝑡 represents the stochastic level of the trend at 𝑡, and 𝜈 𝑡 𝑖𝑠 the stochastic slope of the trend (or 

the increment of level between 𝑡 and 𝑡 + 1). The terms 𝜂𝑡  and 𝜁𝑡 are independent white noise 

 
12 A random walk time series model such as {𝑆𝑡, 𝑡 = 0,1,2,… . } is obtained by cumulatively summing (or “integrating”) i.i.d. 

random variables. Then, a random walk with zero mean is obtained by defining 𝑆0 = 0 and 𝑆𝑡 = 𝑌1 + 𝑌2 + ⋯+ 𝑌𝑡 for 𝑡 =
1,2,…. where  {𝑌𝑡} is iid noise. In other words, in the RW process the contemporaneous value of the variable is composed of 

its past value plus an error,  𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡. Thus, the change in Y is strictly random.  
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sequences13. The initial conditions for level and slope, 𝜇0 and 𝜈0, respectively, are usually unknown. 

The LLT specification above nests different special cases of interest by fixing the values of the level 

and slope variances, σ𝜂
2 and σ𝜁

2, respectively, or the initial slope 𝜈0 to zero. For example, setting σ𝜂
2 =

σ𝜁
2 = 0 would reduce 𝜇𝑡 to be constant, i.e., we obtain a deterministic linear trend or 𝜇𝑡 = 𝜇0 + 𝜈0𝑡. 

Other special cases include 𝜇𝑡 being a random walk  or 𝜇𝑡 = 𝜇𝑡−1  +  𝜂𝑡 (σ𝜁
2 = 𝜈0 = 0, i.e. the slope is 

constant and equals zero), a random walk with drift or  𝜇𝑡 = 𝜇𝑡−1  + 𝜈0 + 𝜂𝑡 (σ𝜁
2 = 0, i.e. the slope 

becomes constant, and we obtain a random walk with drift 𝜈0) or an integrated random walk which is a 

very smooth trend where σ𝜂
2 = 0. 

To illustrate the genesis of the LLT specification, let us consider the following linear function:  

𝜇𝑡 = 𝜇0 + 𝜈0𝑡 (2.30) 

where 𝑢0 and 𝜈0 are the intercept and the slope, respectively. The linear function in Eq. (2.30) can be 

represented in incremental form or as a difference equation such that 

𝜇𝑡 = 𝜇𝑡−1 + 𝜈0 (2.31) 

Eq. (2.30) and (2.31) define the same linear function since the iteration for 𝑡′ = 1,2,… , 𝑡 can be 

represented as    

𝜇1 = 𝜇0 + 𝜈0 

𝜇2 = 𝜇1 + 𝜈0 = 𝜇0 + 2𝜈0 

…………… .. 

𝜇𝑡 = 𝜇𝑡−1 + 𝜈0 = 𝜇0 + 𝑡𝜈0. 

 

(2.32) 

Once we add the white noise 𝜂𝑡 to Eq. (2.31), we obtain 

𝜇𝑡 = 𝜇𝑡−1 + 𝜈0 + 𝜂𝑡 (2.33) 

where 𝜇𝑡 (the level) progresses as a random walk with drift14, which can also be represented as 

𝜇𝑡 = 𝜇0 + 𝜈0𝑡 + ∑ 𝜂𝑠
𝑡
𝑠=1 . (2.34) 

In the representation given by Eq. (2.31), 𝜇𝑡 is a linear trend with a random walk intercept, but the slope 

is constant. However, the slope can also be added as a random walk to be time-varying. The result is 

the pair of equations defining the LLT, Eq. (2.28) and (2.29), which refer to a linear trend where both 

level or intercept and slope evolve as random walks over time. Estimating these trend components 

according to this approach is a proper way of measuring the relevance of the trend behaviour and its 

role in a time series model (Koop, 2003). 

 
13 The assumption of white noise residuals implies formally they are a sequence of uncorrelated random variables and they 

come from a Normal distribution with mean zero and variance 𝜎2 < ∞ (Brockwell & Davis, 2016) 
14 A random walk with drift has a nonzero constant term which is a deterministic linear trend in the mean. If the process starts 

at 𝑡 = 0, it generates a time series with upward trend (Lutkepohl, 2005).  
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2.6.2.2. Bayesian estimation  

The Bayesian estimation relies on probability models whose conditional probability distributions 

characterise variables and unknown parameters. Consequently, this approach allows us to evaluate the 

probability of our empirical modelling specified in section 2.3, in terms of parameters and their 

relationships, given observed data.  

The core of Bayesian estimation is Baye’s Rule or Baye’s Theorem, which is stated as: 

𝑝(𝐵|𝐴) =
𝑝(𝐴|𝐵)𝑝(𝐵)

𝑝(𝐴)
 

(2.35) 

where 𝑝(𝐵|𝐴) is the conditional probability of an event B given A and, 𝑝(𝐴|𝐵) is A given B. 𝑝(𝐴) 

and 𝑝(𝐵) are the marginal probabilities of A and B, respectively. The Bayesian approach replaces 

events A and B above with vectors or matrices of data and parameters in the econometric estimation. 

To illustrate, a given vector or matrix 𝑦, which contains time-series data, can be linked to the vector or 

matrix of parameters, 𝜃, which would be able to explain the data, to obtain: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 

(2.36) 

where the term 𝑝(𝜃|𝑦) allows us to estimate the unknown parameters given the known data, which can 

also be referred to as the posterior density. The term 𝑝(𝑦|𝜃) is the likelihood function, a probability 

density function for the 𝑦 given the 𝜃, and it often is described as the data generating process. The term 

𝑝(𝜃) is the prior density, which summarizes the prior knowledge about the parameters before observing 

the data. Since the term 𝑝(𝑦) refers to the probability of producing the data and it does not refer to 𝜃, 

the usual Baye’s formula representation can be written as a proportionality relationship, where 𝑝(𝑦) is 

a normalizing constant, which makes the posterior a true probability distribution that integrates to 1, as 

follows: 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃). (2.37) 

The relationship posits in Eq. (2.37) refers to as “posterior is proportional to likelihood times 

prior” (Koop, 2003). It implies Bayes' theorem is an "update" of 𝑝(𝜃) since the data is updating our 

prior beliefs about 𝜃; therefore, the posterior probability distribution will be a combination of data and 

non-data information. In this regard, the posterior distribution will be the basis for all inference of the 

unknown model parameters. To illustrate, assuming that we are interested in the posterior mean as a 

point estimate and suppose 𝜃 is a vector of 𝑘 elements, 𝜃 = (𝜃1, … , 𝜃𝑘)′, we obtain the posterior mean 

of any element of 𝜃 as:  

𝐸[(𝜃)|𝑦] = ∫𝜃 𝑝(𝜃|𝑦)𝑑𝜃. (2.38) 

The form with an involved integral in Eq. (2.38) applies to all parameters such as the posterior 

standard deviation and other measures, including transforms and functions of parameters. Thus, all these 

probabilistic statements or functions calculations from the posterior have the form: 
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𝐸[𝑔(𝜃)|𝑦] = ∫𝑔(𝜃) 𝑝(𝜃|𝑦)𝑑𝜃 
(2.39) 

where 𝑔(𝜃) is a function of interest (e.g., 𝑔(𝜃) = 𝜃 and  𝑔(𝜃) = 𝜃2, for the mean and variance, 

respectively) (Koop, 2003). The quantities in Eq. (2.39)  can often not be estimated analytically. In 

these cases, these measures are obtained by simulating the posterior.  

2.6.2.3. The empirical models under UCM-Bayesian specification 

This section shows how we specify our base empirical (and extended) model from Eq. (2.13) under 

UCM, i.e., a system compounds by an observation equation and two additional state equations 

modelling the level and the slope. Remarkably, the Bayesian estimation allows us to specify the 

parameter standing for the elasticity of substitution between skilled and unskilled labour, 𝜎𝑆𝑈, directly15 

in our UCM specification. Recalling our empirical models in section 2.3 and considering that the −𝛽2 

parameter in these models supplies an estimate of −(
1

𝜎𝑆𝑈
) (see Eq. (2.12) related statements), our UCM 

specification for our base empirical model represented by Eq. (2.13) is:  

 

ln𝜔𝑡 = 𝜇𝑡  −  
ln (

𝑆
𝑈

)
𝑡

𝜎𝑆𝑈
+ 𝛼𝐶ℎ98𝑡 + 𝛾𝑆𝑡 + 𝜀𝑡 

(2.40) 

 𝜇𝑡 = 𝜇𝑡−1 + 𝜈𝑡−1  +  𝜂𝑡 (2.41) 

 𝜈𝑡 = 𝜈𝑡−1  +  𝜁𝑡 (2.42) 

and the extended model represented by Eq. (2.14), 

 

ln𝜔𝑡 = 𝜇𝑡  −  
ln (

𝑆
𝑈)

𝑡

𝜎𝑆𝑈
+ 𝛼𝐶ℎ98𝑡 + 𝛾𝑆𝑡 + 𝜖𝑈𝑛𝑒𝑚𝑡 − 𝛿𝑀𝑖𝑛𝑊𝑡 + 𝜀𝑡 

(2.43) 

 𝜇𝑡 = 𝜇𝑡−1 + 𝜈𝑡−1  +  𝜂𝑡 (2.44) 

 𝜈𝑡 = 𝜈𝑡−1  +  𝜁𝑡 (2.45) 

where 𝜔𝑡 is the skill premium at time 𝑡, 𝜇𝑡 is the trend component or the level of the series at time 𝑡, 

and (
𝑆

𝑈
)
𝑡
 is the skilled labour supply relative to unskilled at time 𝑡. 𝜎𝑆𝑈 is the parameter to be estimated 

standing for the elasticity of substitution between skilled and unskilled labour. 𝐶ℎ98𝑡, 𝑈𝑛𝑒𝑚𝑡 and 

𝑀𝑖𝑛𝑊𝑡 are as in Eq. (2.13) and (2.14). Unlike the VECM, there is no lag controlling seasonality; 

therefore, we include a seasonal dummy, 𝑆, which controls for seasonality given the biannual data (1 = 

March; 0= June). 𝜈𝑡 is the slope and 𝜀𝑡, 𝜂𝑡  and 𝜁𝑡 are independent white noise sequences16. As 𝜎𝑆𝑈, the 

parameters 𝛼, 𝛾, 𝜖, and 𝛿 also be estimated. 

 
15 The estimation is “direct” since traditional estimation in most of the literature arrives at this estimate from the inverse of the 

coefficient of the relative supply of skilled labour in the skill premium equation (see section 2.2.2). See section 2.4.2 and 2.4.3 

for a review and implications.   
16 The assumption of white noise residuals implies formally they are a sequence of uncorrelated random variables and they 

come from a Normal distribution with mean zero and variance 𝜎2 < ∞ (Brockwell & Davis, 2016) 
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2.6.2.4. UCM-Bayesian estimation 

As noted above, Bayesian estimation evaluates probability models where conditional probability 

distributions characterize all variables and unknown parameters. Therefore, to express our empirical 

UCM base model specified by Eq. (2.40), (2.41) and (2.42) as a probability model, they must be 

expressed in terms of observations and unknown parameters regarding the proper probability 

distributions. Since the model is a linear regression where the residuals are assumed to follow a Normal 

distribution17, then the UCM base model can be written as the next group of equations (same for the 

extended model): 

𝑙𝑛 𝜔𝑡 ∼ 𝑁 (𝜇𝑡  −  
ln (

𝑆
𝑈

)
𝑡

𝜎𝑆𝑈
+ 𝛼𝐶ℎ98𝑡 + 𝛾𝑆𝑡 , 𝜎𝜀

2) 

(2.46) 

𝜇𝑡 ∼ 𝑁(𝜇𝑡−1 + 𝜐𝑡−1, 𝜎𝜂
2) (2.47) 

𝜐𝑡 ∼ 𝑁(𝜐𝑡−1, 𝜎𝜁
2) (2.48) 

where 𝜎𝑆𝑈, 𝛼 and 𝛾 are component parameters and 𝜎𝜀
2, 𝜎𝜂

2 and 𝜎𝜁
2 are the variance parameters for white 

noise innovations.  

Recalling that from the Bayesian point of view, our parameters are seen as random variables which 

have associated prior probability distributions, we will update these distributions as we observe data. In 

this regard, we condition all the parameters specified by Eq. (2.46), (2.47) and, (2.48) belonging to ℝ 

with some precision. For our elasticity of substitution parameter, 𝜎𝑠𝑢, the prior distribution represents 

our beliefs about the possible values that the parameter can take. We incorporate current beliefs about 

the elasticity of substitution using a Normal distribution with a parameter sampling space in the range 

[0.01, 10]. For Chile, past studies reported values in the consensus range [1, 3] (see, e.g., Gallego, 2012) 

and values around 10 (see, e.g., Sánchez-Páramo & Schady, 2003) as reviewed in section 2.4.2. Also, 

since we use Stan (Stan Development Team, 2019) as software to estimate our UCM-Bayesian models 

(additional details below), this tool defines the Normal on the standard deviation, 𝜎, instead the 

variance, 𝜎2. Therefore, the prior probability distribution for our elasticity of substitution parameter, 

𝜎𝑠𝑢, is defined on the standard deviation (see Eq. (2.49) below).    

In the case of the white noise parameters, 𝜎𝜀
2, 𝜎𝜂

2 and 𝜎𝜁
2, the prior distributions are Cauchy and 

conditioned with a lower threshold of 0.01 without an upper threshold. The use of a Cauchy with centre 

zero (mean) and scale (standard deviation) equalling ten implies also the use of relatively 

noninformative prior distribution (Gelman, 2006; Gelman et al., 2008; Stan Development Team, 2019). 

We use the same specification for 𝛼 and 𝛾. For the state equations of 𝜇𝑡, Eq. (2.47),  and 𝜐𝑡, Eq. (2.48), 

 
17 In typical linear regression model with 𝑦, 𝑋 and 𝑒 as dependant variable, vector of covariates and residuals, respectively, 

the assumption of Normal distributed residuals implies that 𝑦 = 𝑋𝛽 + 𝑒 and 𝑒~𝑁(0, 𝜎2) ⟹ 𝑦~𝑁(𝑋𝛽, 𝜎2). It is given since 

the addition of 𝑋𝛽 to the 𝑒 mean yields a distribution with mean 𝑋𝛽 and variance 𝜎2 (or standard deviation, 𝜎). Regarding 

“Normal” behaviour of residuals, it implies that most error values would be around zero and fewer of them around tails.  
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it is suggested the use of hierarchical priors (Koop, 2003). Moreover, we specify noninformative 

uniform priors for 𝜇0 and 𝜐0, i.e., the prior distributions are Uniform, 𝑈, to give same probability to all 

the possible values since we cannot properly specify our prior knowledge of these parameters. The 

priors’ distributions are (where [,] denotes the prior range of the distribution):  

𝜎𝑠𝑢~𝑁(0.1, 3) [0.01,10] 
𝜎𝜀

2~𝐶𝑎𝑢𝑐ℎ𝑦(0, 10)[0.01,∞] 
𝜎𝜂

2~𝐶𝑎𝑢𝑐ℎ𝑦(0, 10) [0.01,∞] 

𝜎𝜁
2~𝐶𝑎𝑢𝑐ℎ𝑦(0, 10) [0.01,∞] 

𝛼~𝐶𝑎𝑢𝑐ℎ𝑦(0, 10) 

𝛾~𝐶𝑎𝑢𝑐ℎ𝑦(0, 10) 

𝜇0~𝑈(0,1) 

𝜈0~𝑈(0,1) 

(2.49) 

The Bayesian formulation of our UCM probability model specified in Eq. (2.46), (2.47) and (2.48) 

plus the specified priors in Eq. (2.49), consists of the Likelihood function 𝑝(𝑦|𝜇, 𝜎𝑠𝑢, 𝛼, 𝛾, 𝜎𝜀
2),  the Prior 

distributions given to 𝜇, 𝜎𝑠𝑢, 𝛼, 𝛾, and 𝜎𝜀
2, and the Posterior distribution 𝑝(𝜇, 𝜎𝑠𝑢, 𝛼, 𝛾, 𝜎𝜀

2|𝑦).  As 

discussed above in Eq. (2.39) related statements, the posterior is estimated by simulation using 

sampling algorithms. These approaches imply that a particular parameter from the posterior is 

approximated numerically by simulating draws to evaluate the function of interest at the random sample 

(e.g., the mean, the variance).  

The sampling method used in our procedure relies on Monte Carlo Markov Chains, MCMC, 

techniques. The MCMC sampling follows the Monte Carlo Integration theorem. Following Koop's 

(2003) notation, this theorem posits the subsequent statements. Let 𝜃(𝑠) for 𝑠 = 1,… , 𝑆 be a random 

sample from 𝑝(𝜃|𝑦), and define 𝑔𝑠 =
1

𝑆
∑ 𝑔(𝜃(𝑠))𝑆

𝑠=1  then 𝑔𝑠 converges to 𝐸[𝑔(𝜃)|𝑦] as 𝑆 goes to ∞. 

Then, the sampling from the posterior will be the posterior simulation and 𝜃(𝑠) is a draw or replication. 

In practical terms, an extensive sampling from any probability distribution can be used to explain the 

main features of the distribution of interest.  

The MCMC simulation gives an opportunity for a statistical relationship between each draw and 

the next to build the Markov Chain. The method requires chains of great length, i.e., many iterations 

since initial arbitrary values must be discarded along with the performance of some additional 

adjustments (e.g., techniques to minimize autocorrelation)18. In addition, MCMC estimates several 

chains simultaneously to explore convergency diagnostics related to how each chain converges from 

initial arbitrary values towards the posterior target distribution.  

The MCMC estimation of parameters in this study uses the Hamiltonian Monte Carlo algorithm, 

HMC. The HMC method is a more efficient sampler than other MCMC algorithms, such as Metropolis-

Hastings or Gibbs19 (Gelman et al., 2020). As discussed above, we use Stan  as a computational tool 

 
18 These adjustments to MCMC, such as’ number of iterations’, ‘number of chains’ and ‘thin’, are researchers’ definitions.  
19 The Gibbs sampler and Metropolis algorithm are inefficient regarding their random walk behaviour, which requires 

parameter adjustments and other rules to improve their efficiency (Gelman et al., 2020).  
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based on the probabilistic programming language to define a log density function conditioned on data 

to estimate our UCM-Bayesian models (Gelman et al., 2020; Stan Development Team, 2019). 

Specifically, we use rStan (Stan Development Team, 2019), the Stan interface for R (RStudio Team, 

2020). With rStan we fit the UCM-Bayesian model in and generate MCMC posteriors draws for each 

specified parameter (e.g., the parameters stated in Eq. (2.46), Eq. (2.47) and Eq. (2.48)). In Appendix 

A.1.1, we show the Stan code that represents our base model specification. The rStan output 

computes summary statistics, estimates and diagnostic indicators such as �̂� statistic20 to measure if the 

MCMC samples have converged to the posterior and evaluate that the posterior draws are distributed 

in a stationary manner. 

2.7. Results 

This section aims to outline the results using the data (see section 2.5) and methods (see section 

2.6) described in the last sections. Firstly, we shall present our measures for the skill premium and the 

relative supply of skilled labour for 1980-2018. Secondly, we shall summarize the main findings of our 

VECM implementation. Thirdly, we outline the results of our UCM-Bayesian strategy.  

2.7.1. Estimation of the skill premium and the relative supply 

This section outlines the results from estimating the skill premium and the relative supply of 

skilled labour following the strategies detailed in section 2.5.  Figure 2.2 displays the evolution of our 

measures for both variables over 1980-2018. The skill premium shows an inverted U-shaped pattern, 

growing up to the late 1980s and then reducing after the 1990s, although with fluctuations. On average, 

the skill premium increased from 1.27 in the 1980s to 1.34 in the 1990s. In turn, in the 2000s, it 

decreased to 1.29 and, in the 2010-2018 span, to 1.06. This pattern over time, i.e., an increase followed 

by a decrease of the skill premium, is consistent with previous works (Gallego, 2012; Murakami, 2014; 

Parro & Reyes, 2017).  

The relative supply of skilled labour shows an increasing pattern over the sample period, as 

shown in Figure 2.2  (secondary axis), with fluctuations as conspicuous as those in the skill premium 

but ending at a very different point. On average, this ratio grew from 0.16 in the 1980s to 0.22 and 0.24 

in the 1990s and 2000s, respectively. In the span 2010-2018 it reached 0.30. These findings also are 

consistent with past studies (Gallego, 2012; Murakami, 2014; Murakami & Nomura, 2020; Parro & 

Reyes, 2017). 

 

 
20 The �̂� diagnostic is known as the potential scale reduction factor. It compares the variation between the MCMC posterior 

samples or chains to the variation within the chains. It is expected �̂� < 1.1 for all parameters as indicator of convergence, i.e., 

if all chains converged on the same sampling region with similar behaviour, then the variance between them should be 

approximately equal to the average variance within chains (Gelman et al., 2020; Muth et al., 2018). 
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Figure 2.2. Evolution of the skill premium and the relative supply (secondary axis), 1980-2018 

 

 

2.7.2. VECM Results 

This section presents the results for our estimation using VECM. First, we outline the results from 

stationarity, lag order and cointegration testing. Then, we show our VECM estimates. 

2.7.2.1. Stationarity testing 

We determine the presence of unit roots and stationarity applying the ADF and KPSS tests (see 

section 2.6.1.1 for details), respectively, on the skill premium and the relative supply individually. Table 

2.1 displays the ADF results, which show the presence of unit roots at levels for both variables. For 

example, the results for the skill premium at levels in without and with time trend indicate the presence 

of unit roots in this variable since we cannot reject the null hypothesis of unit roots at the 1% 

significance level.  
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Table 2.1. ADF test results 

Variable Case Lags t-critical 1% t-statistics 

Level 

Log Skill Premium with 

Constant 

2 -3.520 -1.011 

Log Relative Supply 1 -3.519 -1.248 

Log Skill Premium with Constant 

and Trend 

2 -4.085 -2.511 

Log Relative Supply 1 -4.083 -2.973 

First difference 

Log Skill Premium with 

Constant 

1 -3.519 -11.209* 

Log Relative Supply 0 -3.517 -17.187* 

Log Skill Premium with Constant 

and Trend 

1 -4.083 -11.427* 

Log Relative Supply 0 -4.079 -17.067* 

Note: Lag order selection using criterion BIC (max was 4). (*), (**) and (***) denotes a rejection of null of 

presence unit roots at 1%, 5% and 10% significance level, respectively.  

In Table 2.2, we present the results for the KPSS test, which shows that the null hypothesis of 

stationarity is rejected for both variables. To illustrate, the skill premium at levels in without and with 

time trend shows that this variable is non-stationary since we reject the null hypothesis of stationarity 

at the 1% significance level. Therefore, based on our ADF and KPSS, there are unit roots in the skill 

premium and the relative supply, which implies that both series are non-stationary, and their order of 

integration is 𝐼(1). 

 

Table 2.2. KPSS test results 

Variable Case Lags t-critical 1% t-statistics 

Level 

Log Skill Premium 
No trend 

2 
0.731 

1.229* 

Log Relative Supply 1 3.158* 

Log Skill Premium 
Trend 

2 
0.215 

0.468* 

Log Relative Supply 1 0.251* 

First difference 

Log Skill Premium 
No trend 

2 
0.731 

0.284 

Log Relative Supply 1 0.070 

Log Skill Premium 
Trend 

2 
0.215 

0.041 

Log Relative Supply 1 0.068 

Note: Lag order selection as in the ADF test (see Table 2.1). (*), (**) and (***) denotes a rejection of the null of 

stationarity at 1%, 5% and 10% significance level, respectively. 

2.7.2.2. Optimal lag order 

Table 2.3 shows the results for optimal lag order estimation regarding the proper model 

specification for the VAR21 specification (see details of this strategy in section 2.6.1.2). Our results 

show that the optimal number of lags to include is two, based on the minimized values of the respective 

information criteria. 

 

 

 

 
21 The generally accepted protocol is to include enough autoregressive lags in the VAR or VECM to neutralize the bias that 

would result from failure to control for the autoregression, since lags eliminate residual autocorrelation in the VAR model.  
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Table 2.3. Optimal lag order for the VAR using the BIC and HQC information criteria.  

VAR system lags AIC BIC HQC 

With constant and trend 

1 -3.324655  -3.075567  -3.225291  
2 -3.606501 * -3.232868 * -3.457454 * 
3 -3.584954  -3.086778  -3.386226  
4 -3.551588  -2.928868  -3.303177  

Note: Results estimated from VAR systems of order 1 to max. lag order 422. (Log Skill premium and Log Relative Supply as 

endogenous variables. The results including control variables are the same) The asterisks indicate the best (that is, minimized) 

values for the respective information criteria. 

2.7.2.3. Cointegration testing 

Table 2.4 shows the results for the Johansen Cointegration tests (see section 2.6.1.3). The null 

hypothesis of cointegration rank = 0 is rejected for both the trace and the max eigenvalue value, at 5% 

significance level. However, rank=1 is not rejected; therefore, there is evidence that the two series are 

cointegrated. 

Table 2.4. Johansen Cointegration statistical tests results.  

Rank  Eigenvalue Trace test p-value Lmax test p-value 

𝑟 = 0 (None) 0.23767 29.463 0.0151** 20.625 0.0299** 
𝑟 = 1 (At most 1) 0.10978 8.8381 0.1957 8.8381 0.1956 

Notes: Number of equations = 2; Lag order = 2; Estimation period: 2:1 - 39:2 (T = 76); Johansen approach’s Case 4: Restricted 
trend, unrestricted constant23. (*), (**) and (***) denote a rejection of null ( = 0 or 𝑟 = 1 ) at 1%, 5% and 10% significance 
level, respectively. 

2.7.2.4. VECM estimation results 

The cointegration rank testing results from Table 2.4 suggest that the skill premium and the relative 

supply are cointegrated. This section presents the findings related to the coefficients that rule the 

cointegration relationship between both variables applying the VECM approach (see section 2.6.1.3).  

Table 2.5 displays the VECM estimation results, both cointegration vector coefficients and the VECM 

equation coefficients, with the skill premium as the target variable. 

 

 

 

 

 

 
22 BIC and HQC are sensible to choose maximum lag order, Therefore, this testing was also performed using 6 and 8 lags with 

the same results in terms of optimal lag order for all cases/models (with constant, without trend and with constant and trend). 
23 Following Johansen (1995), the modelling has included the presence of trends at level data and in the cointegrating equations. 

This research specifies the case of  “unrestricted constant and restricted trend” or Case 4, which considers that the cointegration 

equation includes a trend, but the first difference of the series does not. Also, Cases 2 and 3 were analysed, for “restricted 

constant” and “unrestricted constant”, respectively, with similar results, as follows: 

Case 2 
Rank  Eigenvalue Trace test p-value Lmax test p-value 

𝑟 = 0 (None) 0.21020 20.362 0.0468 17.934 0.0211 
𝑟 = 1 (at most 1) 0.031443 2.4280 0.6946 2.4280 0.6934 

   Case 3 
Rank  Eigenvalue Trace test p-value Lmax test p-value 

𝑟 = 0 (None) 0.19311 16.494 0.0336 16.307 0.0214 
𝑟 = 1 (at most 1) 0.0024552 0.18683 0.6656 0.18683 0.6656 
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Table 2.5. VECM estimations results for the empirical base and extended models  

Base model, Eq. (2.13) ln𝜔𝑡 = 𝛽0 + 𝛽1𝑡 − 𝛽2 ln (
𝑆

𝑈
)

𝑡
+ 𝛽3𝐶ℎ98𝑡 + 𝑒𝑡 

Extended model, Eq. (2.14) ln𝜔𝑡 = 𝛽0 + 𝛽1𝑡 − 𝛽2 ln (
𝑆

𝑈
)

𝑡
+ 𝛽3𝐶ℎ98𝑡 + 𝛽4𝑈𝑛𝑒𝑚𝑡 − 𝛽5𝑀𝑖𝑛𝑊𝑡 + 𝑒𝑡 

Estimated coefficients Base model Extended model 

Cointegration vector   

ln𝜔𝑡−1 (Skill premium) 1.0000 1.0000 

 (0.0000) (0.0000) 

𝑡 (Trend) 0.0095574 0.011545 

 (0.071423) (0.0026041) 

ln(𝑆 𝑈⁄ )𝑡−1(Relative supply) -0.41398 -0.50134 

 (0.16574) (0.17140) 

𝐶ℎ98𝑡−1 (Change year 98) -0.081560 -0.13380 

 (0.0025162) (0.076770) 

𝑈𝑛𝑒𝑚𝑡−1 (Unemployment)  0.17358 

  (0.11089) 

𝑀𝑖𝑛𝑊𝑡−1 (Minimum wage)  0.030110 

  (0.28368) 

VECM equation with ∆ 𝑙𝑛 𝜔𝑡 as target variable    

Constant 0.62033* 0.67643* 

 (0.13080) (0.13778) 

∆ ln𝜔𝑡−1 0.24901** -0.28248* 

 (0.09898) (0.09501) 

∆ ln(𝑆 𝑈⁄ )𝑡−1 -0.21019* -0.21504* 

 (0.07114) (0.07096) 

𝑒𝑐𝑡𝑡−1 −0.530232* −0.501203* 

     (0.111274) (0.101650) 

𝑅2 0.43 0.45 
Note: The VECM system was estimated with cointegration rank = 1, lag order =2 and, Johansen’s Case 4: restricted trend, 

unrestricted constant. Data are of biannual frequency (March and June) from 1980 to 2018. Standard errors are reported below 

the coefficients in parentheses (). (*), (**) and (***) denotes a rejection of the null hypothesis of zero coefficients at 1%, 5% 

and 10% significance level, respectively  

From the VECM estimation procedure developed in section 2.6.1.3.4, the estimated coefficients for the 

cointegration vector (upper rows in Table 2.5) expressed as the 𝑒𝑐𝑡𝑡−1 for the base model (see Eq.   

(2.25)) yield 

 
−0.5302𝑒𝑐𝑡𝑡−1 = 1.0000ln𝜔𝑡−1 − 0.0095𝑡 − 0.4139 ln (

𝑆

𝑈
)
𝑡−1

− 0.0815𝐶ℎ98𝑡−1 
(2.50) 

reordering Eq. (2.50) on the skill premium (as shown in Eq. (2.26)), 

 ln𝜔𝑡−1 = 0.0095𝑡 + 0.4139 ln (
𝑆

𝑈
)
𝑡−1

+ 0.08156𝐶ℎ98𝑡−1 − 0.5302𝑒𝑐𝑡𝑡−1. (2.51) 

        The result in Eq. (2.51) implies a wrong sign for the relative supply, (
𝑆

𝑈
), coefficient, i.e., a positive 

sign and, consequently, an unfeasible theoretically result. Besides, following the computation of the 

elasticity of substitution as the reciprocal of this positive coefficient multiplied by -1 yields a negative 

elasticity: −(1 0.4139⁄ ) = −2.42 (see Eq. (2.12 related statements). The same unfeasible results are 

obtained for the extended model. Therefore, we cannot prove the expected negative relationship 
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between the skill premium and the relative supply of skilled labour as posited in the conceptualization 

of the RBET model (see section 2.2.1.3), specifically, the inverse relationship between both variables 

discussed in the statements related to Eq. (2.8). Past studies like Murakami (2014) and Robbins (1994b) 

also estimated positive coefficients for the relative supply of skilled labour in some models, concluding 

that this variable did not contribute to the skill premium. For our own part, we will proceed cautiously 

and, being aware of the theoretically unfeasible results of our application of VECM and the resulting 

findings, we should not make assumptions under the RBET model24. 

2.7.3. UCM-Bayesian results 

This section outlines the results from our UCM-Bayesian implementation detailed in section 2.6.2. 

Table 2.6 shows the statistics (mean, standard deviation and confidence intervals) that summarize the 

posterior distribution for all parameters given our observed data, chosen priors distributions, and 

assumed data generating process in our base and extended models. In particular, the 2.5% confidence 

interval, CI, and 97.5% CI show the bounds of the 95% central interval of the posterior probability 

distribution for a given parameter.  Also, we display the �̂� statistic results, which shows �̂� < 1.1 for all 

variables, implying that the MCMC samples have converged to the posterior (see footnote 20). More 

details on parameters convergence diagnostics (e.g., trace plot) and posterior full distribution plots are 

in Appendix A.1.2. 

 
24 We explore some different specifications of our VECM approach, such as additional lags, but the results remain unchanged.  
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Table 2.6. Posterior summary statistics of UCM-Bayesian estimation   

 Base model (see Eq. (2.46), (2.47) and (2.48). Priors in (2.49) Extended model  

 

𝑙𝑛 𝜔𝑡 ∼ 𝑁 (𝜇𝑡 – 
ln (

𝑆
𝑈)

𝑡

𝜎𝑆𝑈
+ 𝛼𝐶ℎ98𝑡 + 𝛾𝑆𝑡 , 𝜎𝜀

2) 

 

𝜇𝑡 ∼ 𝑁(𝜇𝑡−1 + 𝜐𝑡−1, 𝜎𝜂
2) 

 

𝜐𝑡 ∼ 𝑁(𝜐𝑡−1, 𝜎𝜁
2) 

 
 

𝑙𝑛 𝜔𝑡 ∼ 𝑁 (𝜇𝑡 – 
ln (

𝑆
𝑈)

𝑡

𝜎𝑆𝑈
+ 𝛼𝐶ℎ98𝑡 + 𝛾𝑆𝑡 + 𝛿𝑈𝑛𝑒𝑚𝑡 − 𝜖𝑀𝑖𝑛𝑊𝑡 , 𝜎𝜀

2) 

 

𝜇𝑡 ∼ 𝑁(𝜇𝑡−1 + 𝜐𝑡−1, 𝜎𝜂
2) 

 

𝜐𝑡 ∼ 𝑁(𝜐𝑡−1, 𝜎𝜁
2) 

 
 

Parameters mean St dev 2.5% CI 97.5% CI �̂� mean St dev 2.5% CI 97.5% CI �̂� 

Elasticity (𝜎𝑆𝑈) 6.51 1.42 3.97 7.50 1.00 6.54 1.42 3.98 7.52 1.00 

Ch98 (𝛼) -2.09 5.79 -13.3 1.52 1.00 -2.53 5.78 -14.1 1.15 1.00 

Seasonality(𝛾) 0.74 1.71 -2.63 1.89 1.00 0.65 1.69 -2.63 1.79 1.00 

Unemployment (𝛿)      0.01 0.05 -0.10 0.04 1.01 

Minimum wage (𝜖)      -0.07 0.11 -0.15 0.14 1.00 
𝜎𝜂

2 1.66 0.97 0.37 2.23 1.01 1.66 1.06 0.24 2.30 1.02 
𝜎𝜁

2 0.41 0.21 0.12 0.51 1.01 0.40 0.23 0.09 0.51 1.03 
𝜎𝜀

2 7.56 0.71 6.29 8.01 1.00 7.62 0.73 6.30 8.09 1.00 

𝜇0 -3.15 5.79 -15.1 0.87 1.00 -15.2 18.3 -51.4 -3.32 1.00 

𝜐0 2.49 1.35 0.20 3.31 1.00 2.55 1.35 0.19 3.29 1.00 

𝜇1 -3.17 5.48 -14.43 6.96 1.00 -15.28 18.25 -51.05 20.70 1.00 

… … … … … … … … … … … 

𝜇76 9.24 7.47 4.35 24.69 1.00 20.58 18.11 -16.38 54.65 1.01 

𝜐1 2.49 1.27 1.62 5.27 1.00 2.55 1.28 0.25 5.44 1.00 

… … … … … … … … … … … 

𝜐76 -0.46 1.18 -2.81 0.22 1.00 -0.27 1.22 -2.78 2.15 1.00 
Notes: 1) To conserve space, note that in the case of the trend term level and trend term slope equations, 𝜇 and 𝜐, we only display parameters for the initial conditions and the first (e.g.,  
𝜇1) and last estimates (e.g., 𝜇76).  
2) Data are of biannual frequency (March and June) from 1980 to 2018.  

3) The inference for the Stan model consisted of 12 chains, each with iter=25000; warm-up=20000; thin=5; post-warm-up draws per chain=1000, total post-warmup draws=12000). Glossary from Stan Manual (Stan 

Development Team, 2019): iter specifies the number of iterations for each chain (including warm-up), warm-up specifies the number of warm-up (also known as burn- in) iterations per chain to discard non-representative 

samples produced by early stages of  sampling process, thin specifies the period for saving samples i.e., how often we store our post-warm-up iterations (thin=5 implies to store every fifth).   
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Regarding our direct estimate for the elasticity of substitution, 𝜎𝑠𝑢, our point estimate or the mean 

of the posterior distribution is 6.51 with 95% posterior confidence intervals CI = [3.97, 7.50]. Similar 

results are obtained in our extended model. In Figure 2.3, we can visualize the posterior distribution of 

𝜎𝑆𝑈 for both models. The plots show that the probability mass for the elasticity of the substitution 

parameter is away of the bounds imposed in our parameter and priors modelling, suggesting that our 

results are not entirely driven by the constraints imposed on the parameters.  

 

Figure 2.3. Posterior distribution of the elasticity of substitution parameter, 𝜎𝑆𝑈, for the base (left-side) 

and extended models. The dashed line shows the point estimate of the posterior mean 

 

In terms of the RBET model conceptualization and predictions, this non-zero value of the elasticity 

shows that changes in the relative supply of skilled workers contributed to the evolution of the skill 

premium during 1980-2018 and, satisfies the inverse relationship between both variables as specified 

in our empirical models following the conceptual statements related to of Eq. (2.8). Furthermore, our 

estimated elasticity implies that both groups of workers are gross and imperfect substitutes: that is, the 

relative availabilities of each labour are not related to changes in wages (see section 2.2.1.1). Therefore, 

we reject the idea of perfect substitution between skilled and unskilled labour. 

Related to our estimates for the time trend parameter 𝜇 that stand for the SBTC in the RBET model, 

Table 2.6 displays the results for its initial conditions 𝜇0and 𝜐0 and first and last datapoints, but we 

evaluate the results visually, using the posterior mean for these parameters’ series over time. Figure 2.4 

displays the trend level (and the skill premium) and the trend slope in the left-hand and right-hand plots, 

respectively.  
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Figure 2.4. The skill premium and the trend level (left side) and the trend slope (right side) 

 

Our estimates for the trend level in Figure 2.4 show an upward movement until the first half of the 

2000s. Then, we see an enormous decline towards the beginning of the 2010s. Since this parameter 

captures the increases in the relative demand for skilled labour coming from technology, we can assume 

that the SBTC effect drove the skill premium intensively between 1980 and the first half of the 2000s. 

In most of the rest period, the trend displays a downward pattern suggesting a lesser importance of the 

SBTC. These patterns reflect the positive and negative slopes of the trend during the upward and 

downward periods, respectively, as seen in the right-hand plot in Figure 2.4. 

Regarding our extended model, unemployment and minimum wages show results as expected. 

Despite a near-zero magnitude, the former is positive, showing that changes in the unemployment rate 

can explain the evolution of the skill premium. This result suggests that most of the unemployed are 

unskilled workers. Regarding minimum wages, our results show a negative impact on the skill premium 

evolution, which is expected given that these labour policies decrease the gap between skilled and 

unskilled labour’ wages   

2.8. Discussion  

In this section, the results presented in the last section will be discussed. For clarity, the discussion 

has been divided into three parts. Firstly, we analyse and explain the main implications of our findings 

regarding the estimation of the skill premium and the relative supply of skilled labour. Secondly, we 

discuss the theoretically unfeasible results from VECM and how the UCM-Bayesian approach helped 

bring the data to the RBET Model. Thirdly, we discuss the UCM-Bayesian estimates and their 
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implications under the RBET predictions. Also, we discuss the limitations of the RBET model and some 

ideas for future research. 

2.8.1. The skill premium and the relative supply 

Our estimation showed an inverted U-shaped pattern for the evolution of the skill premium (see  

 

Figure 2.2). After reaching a peak of 1.34 on average in the 1990s, it decreased to 1.06 on average 

during 2010-2018. These results are consistent with previous studies (Beyer et al., 1999; Gallego, 2012; 

Murakami, 2014; Parro & Reyes, 2017). As a labour outcome that reflects the relative price of skills, 

these results imply both a rise and fall in demand for qualified workers during recent decades. On the 

one hand, Beyer et al. (1999), Gallego (2012) and Robbins (1994a) suggested that the increase in the 

relative demand for skilled labour in the 1980s and 1990s is related mainly to trade liberalization 

implemented in Chile in the pre-2000 period. One of the implications of this trade openness was the 

absorption of foreign technologies biased towards skilled labour, suggesting an SBTC effect leading to 

the increasing skill premium. 

On the other hand, since Chile had already implemented these structural reforms, the significant 

increase in educational attainment in recent decades has been considered one of the critical forces 

behind the skill premium fall (Azevedo et al., 2013; Murakami & Nomura, 2020). In this regard, for 

countries like Chile, which recently became a high-income economy, this lower premium for skills 

might affect current economic status since the demand for skilled labour is an essential feature of their 

economic development (Gallego, 2012). Furthermore, it should be noted that the post-2000 skill 

premium decline may be attributed not only to improvements in the educational attainment of the 

workforce but also to other demand-side factors, such as changes in the demand for less-skilled workers 

due to structural changes or a commodities boom. In the 2000s, in most Latin American countries, this 

decline was partly driven by an expansion in the relative demand for less-skilled workers, mainly due 

to the expansion of the low-skilled intensive sector, e.g. services (Guerra-Salas, 2018). In Chile, the 

commodity price boom observed in the 2000s (in particular, copper) increased unskilled workers’ wages 

(Pellandra, 2015). The role of these other factors in explaining the skill premium decline represents an 

opportunity for future research. 

Our findings related to the relative supply of skilled labour are consistent with past studies reporting 

the faster growth in the Chilean tertiary educational system (Murakami & Nomura, 2020; Parro & 

Reyes, 2017). On average, our estimations show that this ratio increased significantly from 0.16 in the 

1980s to 0.30 in the 2000-2018 period. Furthermore, the official statistics report that enrolment in 

tertiary education sextupled between 1984 and 2018 (INE, 2017; MINEDUC, 2020). This evolution 

reflects the gradual increase of skilled labour in the labour market and the exit of the older and less 

educated cohorts (Parro & Reyes, 2017). Additionally, beyond the endogenous response of agents to 
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the increase in returns to education in the 1980s and 1990s, the changes in educational attainments were 

also fuelled by educational reforms designed to expand and diversify the Chilean tertiary educational 

system (Gallego, 2012; Murakami & Nomura, 2020; Parro & Reyes, 2017). Thus, the relative supply 

of skilled labour is suggested as a critical driver pushing the skill premium down in recent decades. In 

this regard, we found evidence of this relationship within the RBET model along with the effect of 

SBTC, as discussed below (see section 2.8.3). 

2.8.2. On the applied methods  

This section discusses the applied methods, highlighting the theoretically unfeasible results from 

VECM and arguing that the UCM-Bayesian is perhaps better suited to estimate the relationships posited 

by the RBET model. Recapitulating from our VECM method specification (see section 2.6.1.3), this 

technique has been shown to be a powerful tool to estimate cointegrated relationships (Gonzalo, 1994). 

However, it is generally a high dimensional model, and the cointegration approach entails imposing 

many auxiliary assumptions in terms of how we specify trends and lags. For example, VECM assume 

only linear trends within the cointegration equation and statistically significant lags are required (Von 

Brasch, 2016). These limitations might make cointegration techniques unsuitable for testing causal 

relationships (see, e.g., Guisan, 2001; Moosa, 2017). In our study, our estimated coefficient standing 

for the relative supply of skilled labour is positive. It does not show the theoretically negative sign that 

would be expected from the RBET conceptualization. The results here are not unique. Past studies also 

estimated positive signs (Murakami, 2014; Robbins, 1994b). For example, Murakami obtained positive 

coefficients in some of the models using cointegration techniques (Murakami, 2014, p. 93).  More 

generally, researchers have warned about some limitations of cointegration approaches to testing causal 

relationships in Economics and Econometrics (see. E.g., Guisan, 2001; Moosa, 2017) 

Researchers have also warned of several estimation and data difficulties when the skill premium 

evolution changes (Acosta et al., 2019). For Chile, our results show an inverted U-shaped pattern for 

the skill premium through time (see section 2.8.1 and  

 

Figure 2.2). Most of the studies using data until 2000 obtained results as expected, i.e., the negative 

coefficient for the relative supply (see, e.g., Beyer et al., 1999; Gallego, 2012). By contrast, Murakami 

(2014) extended the period until 2007,  where we can observe an incipient decline in the skill premium. 

As discussed earlier, standard cointegration might be not well equipped to model these changing 

patterns, particularly in the sense that they generally employ only linear trends within the cointegrating 

equation. Hence, we encourage future research on more flexible cointegration approaches that address 

the problems encountered in estimating the RBET model. However, cointegration is not a necessary 

condition for the validity of the RBET model. In this regard, the strategy combining UCM, and Bayesian 
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estimation is a method that we believe should be further explored and seemed to be employed 

successfully for the data employed here. 

Compared to other approaches, our UCM-Bayesian estimation offers us a better way to tackle two 

main difficulties related to cointegration strategies. Firstly, the modelling and estimation of the elasticity 

directly instead of as a reciprocal represent an advantage since direct methods might yield more precise 

estimates (Havranek et al., 2020). Secondly, this method is able to deal simultaneously with stochastic 

time trends (as proxies for SBTC) and the presence of unit roots in the data. This feature has been 

encouraged by Razzak & Timmins (2008) as a promising area for estimation methods research. 

Importantly, UCM neither requires cointegrated data nor makes use of stationarity assumptions. Also, 

the inclusion of current beliefs or priors about the elasticity of substitution values allows us to be explicit 

about the role of the consensus or the expected values for this parameter. This enables us to update our 

beliefs according to the observed data and to a specification that represents our RBET empirical 

modelling. In this sense, also it has been suggested whether imposing restrictions on the elasticity 

parameters might drive the results. However, as shown in Figure 2.3, the probability mass for the 

elasticity of the substitution parameter is away of the bounds imposed in our parameter and priors 

modelling. Thus, our results are not entirely driven by the imposing restrictions.  

Regarding priors, although with more extensive data samples, the role of these parameters may 

become negligible, that is not the case with this kind of analysis evaluating long-run dynamics since 

annual or biannual data have become more available in recent decades. Remarkably, using the UCM-

Bayesian strategy allows us to handle the task of understanding the skill premium dynamics under the 

RBET model. This task has been described by Acosta et al. (2019) as “a difficult task, plagued by all 

sorts of methodological and data problems” when we are focusing on Latin American countries due to 

mainly the changing pattern of the skill premium in recent decades.  

2.8.3. On the evidence of the RBET model from UCM-Bayesian estimates 

Our results support the empirical evidence for the RBET model for Chile. We found that demand 

and supply factors explain the evolution of the skill premium in Chile during 1980 – 2018. On the one 

hand, the time trend that captures the SBTC shows an increasing relative demand coming from 

technology, which shows an increasing pattern mainly in the pre-2000 period. On the other hand, we 

found evidence for the expected inverse relationship between our measure of the relative supply of 

skilled workers and the skill premium. Our estimate of the elasticity of substitution between skilled and 

unskilled labour is 6.5, which implies that both kinds of workers are imperfect substitutes. This result 

is consistent with past studies for Chile (Beyer et al., 1999; Gallego, 2012) but disagree with other 

studies due to “improbable estimation results”  (Murakami, 2014; Robbins, 1994b).  

Our result for the elasticity of substitution between skilled and unskilled labour is close to estimates 

from countries in the same region and to the few studies for Chile. For example,  elasticities out of the 
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consensus were reported for pools of Latin American countries with estimates between three and four  

(Acosta et al., 2019; Manacorda et al., 2010) and values above 10 for the crucial maquiladora industry 

in Mexico (Varella & Ibarra-Salazar, 2013). For  Chile, Sánchez-Páramo & Schady (2003) estimated 

values around 10, although they reported them as “implausible”, and Gallego (2012) estimated values 

between one and two. The distance between our values and Gallego’s estimates might partly be 

explained by data granularity and the features of the period analysed, as reviewed in the literature (see 

section 2.4.2). For instance, it has been suggested that higher than annual data granularity (in our case, 

it is bi-annual) might expand the elasticity, which can be due to measurement error associated with a 

higher frequency of data (Havranek et al., 2020). Higher elasticities (e.g., four and above) were also 

linked to periods that witnessed a more rapid SBTC, but the evidence is inconclusive since values 

between one and two have featured in periods of slow SBTC growth (Acemoglu, 1998; Katz & Murphy, 

1992). The relative demand estimated by Gallego (2012) showed an increasing pattern within the 

analysed period (1965 – 2000) but an elasticity in the range [1, 2]. In this regard, more research is 

needed to evaluate how the elasticity value responds to the analysis of sub-periods (e.g., decades). 

The interpretation of larger elasticities is scarce in the RBET literature, but some implications 

emerge. Firstly, the possibility of switching between skilled and unskilled workers is higher. Therefore, 

our results suggest that skilled and unskilled labour are more substitutable than Gallego (2012) reported 

for Chile (elasticity of substitution between one and two). Following our conceptualization discussed 

in section 2.2.1.1, a higher substitution grade might imply that skilled labour might be located in less-

skilled and less-productive job positions with lower wages. An additional implication from these 

potential movements to unskilled positions might be the lower demand for unskilled workers resulting 

in higher unemployment within this group. Secondly, a larger elasticity might also suggest that the 

impact on the skill premium for an observed relative supply time series will be more negligible than 

relative demand or SBTC (Katz & Murphy, 1992; Varella & Ibarra-Salazar, 2013), as discussed in our 

RBET conceptualization (section 2.2.1.3 and Eq. (2.7) related statements). However, from the 2000s, 

the SBTC effect is not enough to compensate for the strong growth in the relative supply of skills, 

resulting in the observed decline in the skill premium. As discussed earlier, the relative supply not only 

increased due to the endogenous response of agents but also was fuelled by policies promoting 

educational expansion (see, e.g., Murakami & Nomura, 2020; Parro & Reyes, 2017; Schneider, 2013; 

Valiente et al., 2020). In this regard, larger elasticities might co-occur with non-negligible impacts from 

the supply factor. Also, larger elasticities might imply that the market size of skilled workers drives the 

design and implementation of skill-biased technologies (Acemoglu, 2002). In this regard, examining 

the RBET model under a specification that assumes endogeneity between the skill premium and the 

SBTC parameter may be an attractive topic for future research.  

In the context of the race between both forces, our results suggest that deciding on a given winner 

or dominant factor will depend on the analysed period. Before 2000, the dominant factor was the relative 

demand attributable to SBTC. Conversely, after 2000, this demand decreased, surpassed by the 
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workforce’s increases in educational attainment, mainly promoted by government policy. Thus, it seems 

that the relative supply of skilled labour has grown fast enough to meet the increased relative demand 

attributable to SBTC and thus to induce a declining trend in the skill premium as posits in our RBET 

conceptualization (see Eq. (2.7) and (2.8) related statements). Hence, in the post-2000 period, the new 

dominant factor is education. This story, with technology as an early dominant contributing to the skill 

premium increase, which then is moderated and reversed by the relative supply of skilled labour, 

coincides with Parro & Reyes (2017), who used a measure of hourly wage inequality to analyse the rise 

and fall in income inequality between 1990 and 2011. Thus, our study contributes to the evidence for 

the wage differential drivers under the RBET model.  

Regarding our results on unemployment and minimum wages as factors representing labour 

markets conditions that can explain the skill premium, these results are as expected. The positive 

influence of the unemployment rate suggests that most of the unemployed are unskilled workers. Past 

studies also reported a positive but statistically no significant relationship between the skill premium 

and unemployment (Gindling & Robbins, 2001; Murakami, 2014). Thus, the small influence captured 

by our estimation might not have been captured with past estimation methods. With regard to minimum 

wage, our results show a negative impact on the skill premium evolution. Since this kind of labour 

policy mainly affects unskilled labour, it is expected to decrease the gap between skilled and unskilled 

workers’ wages, a point that has been discussed earlier in the statements related to Eq. (2.14). In this 

sense, our result coincides with findings from  Murakami (2014), who reported evidence about this 

inverse relationship between minimum wages and the skill premium (although this evidence comes 

from models yielding unfeasible results as in our VECM implementation). Other studies have reported 

similar findings, but they were not statistically significant (see e.g., Gallego, 2012; Gindling & Robbins, 

2001). Thus, our results contribuye to the evidence on how conditions of labour markets such as those 

discussed here drive the skill premium.  

Our findings supply some policy implications. First, investments in higher education are essential 

to achieve a reasonable income distribution in countries like Chile, where there is marked social 

inequality in the population. Furthermore, these investments have been essential for the expected 

transfer of knowledge and skills to jobs, resulting in a boost to Chile’s economic development. 

(Schneider, 2013; Valiente et al., 2020). However, apparently, these investments do not consider the 

economy’s capacity to absorb the observed greater availability of better-educated workers. This greater 

availability resulted from significant enrolment in tertiary education. For example, in 1984, the 18–24 

age group enrolled in tertiary education grew from 11% of this age group (189,151 enrolments) to above 

67% of this age group (above 1.2 million enrolments) in 2018 (INE, 2017; MINEDUC, 2020). In this 

sense, Chile does not have institutional mechanisms for creating relationships between firms and 

education suppliers: where workers’ skills are concerned, and some have suggested that this lack of 

mechanisms has resulted in a disconnection between supply and demand, among other pervasive effects 

(Valiente et al., 2020). Furthermore, some suggested that the Chilean labour market compounds by a 
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huge proportion of jobs linked to low levels of skills and technology; therefore, it might not require 

intensive use of skills provided by better-educated workers resulting in high rates of overqualification 

and over skilling (Sevilla & Farías, 2020).  

Moreover, our findings show that skilled and unskilled workers are more substitutable than 

previously reported. This higher substitutability is also in line with the lower demand for skilled labour 

observed in recent decades, and it might imply that technologies are not suitable for Chilean skilled 

labour or that more technology-related training is required. As Gallego (2012) reported, most 

technologies biased toward skilled labour came from abroad. In this sense, technology might be being 

underexploited due to a lack of proper skills or workers in STEM25 fields. For example, only 3% of 

students in tertiary education graduate with degrees in ICT, and only 1% with degrees in natural 

sciences, mathematics, and statistics, placing Chile in the lowest positions of all OECD countries 

(OECD, 2018). Therefore, policies to correct the mismatch between the supply and demand related to 

skills, the development of regulations such as intellectual property rights (Acemoglu, 2003), 

technological re-training or promoting technologies better suited to Chilean skilled labour, and the 

improving of graduating rates of fields of study like ICT and STEM may be required. Some strategies 

have been implemented recently to improve the coordination between demand and supply, such as the 

development of the National Qualification Framework (Fuentes et al., 2020; MINEDUC & CORFO, 

2017; Sevilla & Farías, 2020) and the Job Prospection Policy Committee (Ministerio del Trabajo y 

Previsión Social, 2021). 

Regarding some theoretical limitations of the RBET model, the absence of an upper threshold in 

conceptualising the three values for the elasticity, i.e., zero, one or ∞ (see Figure 2.1) difficult to 

interpret elasticities greater than one. As a result, we can only discuss more or less substitution between 

both groups of workers without theoretical support for this view. Also, the model is sensitive to ancillary 

(and untestable) assumptions about differences within skilled groups, complicating its use as a method 

for determining, for example, whether graduates and university dropouts are substitutes (Borjas et al., 

2012). These limitations should be addressed in future studies focusing on theoretical aspects of the 

RBET model. 

Finally, some important caveats to the study that deserve mention include difficulties in testing the 

RBET model. Although this conceptual view supplies a coherent viewpoint from which to analyse the 

effect of demand and supply factors on the skill premium evolution, its technical implementation 

requires assumptions that can lead to abandoning it. For example, researchers have preferred using 

alternative specifications without the use of time trends as proxies for relative demand in the case of 

Latin American countries (see, e.g., Acosta et al., 2019). However, the elasticity estimates are sensitive 

to the means by which the relative demand is specified (Borjas et al., 2012; Fernández & Messina, 

2018). Regarding cointegration methods, our theoretically unfeasible results confirm some limitations 

 
25 STEM is abbreviation for fields of study such as Science, Technology Engineering and Mathematics. 
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of this approach to testing causal relationships as warned by some researchers (see. E.g., Guisan, 2001; 

Moosa, 2017). In this regard, the technical implementation of the RBET can be problematic. Therefore, 

it is convenient to give more emphasis to alternative estimation methods like UCM-Bayesian, which 

can handle the assumptions imposed by the RBET conceptualization.  

2.9. Conclusion  

The empirical testing of the RBET model has been a much-debated topic in recent decades. This 

conceptual idea has successfully explained the influence on the skill premium of changes in demand 

and supply factors. However, its implementation has challenged researchers, given the framework’s 

assumptions and the changing nature of the data, particularly in Latin American countries. Since some 

researchers have abandoned or rejected the RBET model due to its problematic implementation or 

“estimation difficulties” such as the computation of unfeasible theoretically results leading to the 

computation of negative elasticities, the UCM-Bayesian approach offers a way to tackle these issues. 

In the case of larger elasticities that are outside the consensus, it is important to note that these values 

do not imply that the RBET model is invalid, as positive elasticities have no upper limit. While huge 

elasticities may raise questions about the RBET model's applicability, it is the estimation of theoretically 

implausible coefficients standing for the supply factor and, consequently, negative elasticities that are, 

therefore, incompatible with the underlying model that should deserve more attention. 

This study of the Chilean labour market during 1980-2018 can help us understand the implicit race 

between technology and education over time. Most of the previous research analysed the period before 

the 2000s, which witnessed an important growth in the relative demand for skilled labour resulting in 

an upward pattern in the skill premium. In contrast, after 2000, this wage differential declined, and 

researchers testing the RBET model under this changing pattern reported theoretically unfeasible results 

using cointegration techniques. Our cointegration results also yielded unfeasible results, while our 

alternative UCM-Bayesian strategy has allowed us to estimate results consistent with the RBET model. 

In this regard, we gave empirical evidence for the relationships posited by the RBET model for Chile 

using bi-annual data from 1980 to 2018. We have shown that either the relative demand and/or the 

relative supply influence the skill premium evolution. Our direct estimate for the elasticity of 

substitution between skilled and unskilled labour is 6.5, showing that these forms of labour are imperfect 

substitutes. Previous research that has fallen within the consensus range has generally generated 

elasticities between one and two. Therefore, our larger estimate suggests that skilled and unskilled 

labour are more substitutable than commonly thought.  

Our results could indirectly support some policy implications. First, the apparent mismatch between 

supply and demand requires the urgent implementation of corrective policies, since Chile lacks 

institutional mechanisms to coordinate stakeholders such as firms and education suppliers. Second, 

policies promoting technologies adapted to the abilities of Chilean skilled labour may be required in a 
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context where most technical advancements come from abroad without consideration of the specific 

characteristics of Chile’s labour force.  

From the perspective of the race between technology and education over time, our findings suggest 

that in the 1980s and 1990s, the dominant factor was the relative demand attributable to SBTC, given 

its contribution to the skill premium. In this period, the growth of the relative supply of skilled labour 

was just starting, fuelled mainly by policies focussed on the tertiary education expansion: consequently, 

this factor was not capable of counterbalancing the SBTC effect. However, in the 2000s and 2010s, the 

vigorous educational expansion resulted in increases in the supply factor, which grew rapidly to meet 

the increasing demand attributable to SBTC. As a result, the provision of skills is winning the race, 

suggesting that this factor has been driving the skill premium decline in recent decades. This 

phenomenon might be a case where the lack of mechanisms for coordinating the supply of skills with 

the labour markets’ needs has been underestimated, given Chile’s inability to absorb the skilled labour 

in its workforce. 
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We evaluate the influence on the skill premium of the task-content of jobs and certain workers’ abilities 

by exploiting the text data from online job posting ads covering 2009-2018 (over 189,000 ads) published 

by one of the main Chilean online job portals (www.trabajando.com) to capture demand for tasks and 

skills. Our task-related analysis tests the expected complementarity between skilled labour and non-

routine cognitive (analytical and interactive) and routine cognitive tasks. In our skills-related analysis 

we evaluate the influence on the skill premium of cognitive and social abilities Our results show weak 

evidence of the influence on the skill premium of non-routine cognitive tasks. Furthermore, our findings 

do not show evidence of either cognitive or social abilities, or both together, explaining the skill 

premium evolution. Some implications arise from this apparent decrease in the importance of the tasks 

that skilled workers typically perform, and the abilities required of them, such as inefficient educational 

investment or unwanted changes in the occupational ladder. 
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3.1. Introduction 

The relationship between technological progress and labour markets has been the subject of a long-

standing debate, as technology is a significant force driving employment and earnings (Autor et al., 

1998). As a result, some see improvements in wages and labour productivity (Acemoglu, 2002; 

Acemoglu & Autor, 2011; Van Ark & O’Mahony, 2016), and others perceive technological 

unemployment, similar to past technology waves (Acemoglu & Restrepo, 2019; Elsafty & Elzeftawy, 

2021; Frey & Osborne, 2017). In recent decades, computer-based technologies (e.g. Information and 

Communications Technologies (ICT), automation, and robotics) have further fuelled this controversy 

since it has been suggested that much of the technological change in production is driven by these 

advancements (Acemoglu & Autor, 2011; Almeida et al., 2020). For example, it has been suggested 

that ICT has contributed to the decline of the labour’s share of GDP in recent decades (O’Mahony et 

al., 2021). Thus, this debate has motivated a vast literature examining the interactions between 

technology and labour markets where labour outputs such as the skill premium, i.e., the gap between 

skilled and unskilled labour wages,26 have attracted attention. The skill premium is particularly 

important as a measure showing how the relative prices of skills evolve (Acemoglu & Autor, 2011), 

and it has been suggested that the increase in demand for more educated workers due to technological 

advancements is one of the main determinants that exacerbate this gap (Acemoglu & Autor, 2011; 

Goldin & Katz, 2008). 

In Chile, as in most Latin American countries, the skill premium has been considered the main force 

driving the observed rise and fall of income inequality in recent decades (Acosta et al., 2019; Guerra-

Salas, 2018; Parro & Reyes, 2017). There is a consensus about the inverted U-shaped pattern shown by 

the skill premium evolution during the last five decades. It grew considerably since the mid-1970s, 

peaked in the 1980s, then held steady over the 1990s and the first half of the 2000s, and it has been 

declining since the second half of the 2000s  (Gallego, 2012; Murakami, 2014; Murakami & Nomura, 

2020; Parro & Reyes, 2017). In our previous essay (see Chapter 2), we not only give evidence of this 

pattern but also suggest that the decreasing pattern of the skill premium continues through the 2010s. 

The evolution of the skill premium provides opportunities to examine how economic forces (in 

particular, technological change) may influence the demand for highly qualified workers. This demand 

for skilled labour is an essential feature of economic development (Gallego, 2012). We have analysed 

and discussed the role of supply and demand factors such as education and technology, respectively, on 

the skill premium evolution in recent decades in Chile (see Chapter 2). However, the task-content of 

jobs and workers’ skills endowments, beyond their formal qualifications, have recently attracted 

attention, and these aspects of the situation are also relevant to research attempting to explain and 

 
26 According to the conventional distinction based on the educational attainment of workers, skilled and unskilled individuals 

are those workers with post-secondary education and secondary or less schooling, respectively. This distinction facilitates 

international comparison. Another differentiation is “blue-collar” versus “white-collar”, a functional distinction based on work 

tasks performed by both groups. 
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understand the dynamics between labour and technology (Acemoglu & Autor, 2011; Ehrenberg & 

Smith, 2018; Markowitsch & Plaimauer, 2009). Thus, in this essay, we evaluate the influence on the 

skill premium of tasks and specific workers’ abilities or skills,27 focusing on skilled labour. 

We examine how measures representing work activities being performed primarily by most-

educated or skilled workers such as cognitive tasks (e.g., reasoning, problem-solving, persuasion) drive 

the skill premium. Also, we evaluate how some aptitudes associated with skilled labour, such as 

cognitive and social abilities, explain the ratio of the skilled-unskilled wage.  Beblavý et al. (2016) 

noted that analysing both aspects of jobs and workers is complementary. Thus, we study the 

technological change impact on the skill premium by evaluating the task composition of labour 

occupations under Autor, Levy and Murnane (2003) model or the ALM model. As discussed above, it 

has been suggested that much of the technological change in production is driven by computer-based 

technologies, and the ALM model enables us to evaluate the differentiated impact of these technologies 

on different kinds of labour. The analysis of skills and their influence on the skill premium relies on 

human capital theory, i.e., the complementarity between skilled labour and cognitive skills, and recent 

research on the increasing importance of social abilities in explaining the demand for most-educated 

labour (see, e.g., D. Deming, 2017).  

The ALM model posits that technical progress is biased towards routine or codifiable work tasks. 

Formally, it expresses the production function in terms of tasks that different skills or machines can 

perform based on their comparative advantage. In this regard, the model allows an explicit distinction 

between tasks and skills. Acemoglu & Autor (2011) define a task as “a unit of work activity that 

produces the output”, and skill is a “worker’s endowments of capabilities for performing various tasks”. 

Thus, the ALM model accounts for the interactions among skills, labour, task-content of jobs and 

technologies. These interactions are examined following a two-fold classification: routine with its 

opposite non-routine and manual versus cognitive, which divides into analytical and interactive (see 

Table 3.1 for details). This distinction tries to separate tasks that can be potentially programmable based 

on their degree of routineness. The model assumes that routine tasks can be expressed as programmable 

rules or as codifiable; in that case, they could be executed by computer-related technologies.  

Examining the impact of technology under the ALM model allows us to understand how technology 

affects different kinds of labour. These labour groups perform occupations according to their skills 

level, and the ALM model enables us to evaluate the task composition of occupations. To illustrate, 

middle-skilled labour (see footnote 1) usually performs jobs rich in routine tasks, both manual and 

cognitive (e.g., clerical workers, assemblers). Alternatively, non-routine tasks cannot be easily 

codifiable, and under the manual/cognitive classification, we can identify the labour groups located in 

the poles of the skills distribution. On the one side, manual considers tasks whose demands include 

situational flexibility, visual and language appreciation, and in-person interactions. We typically 

 
27 In this research we use “skills” and “abilities” interchangeably. 
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observe less skilled or unskilled occupations involving non-routine manual tasks (e.g., food preparation 

and serving, cleaning, security services). On the other hand, analytical and interactive refer to cognitive 

tasks involving problem-solving aptitudes, intuition, and a capacity for persuasion, among other skills. 

These cognitive tasks mainly feature in skilled occupations (e.g., professionals, managers, associate 

professionals or technicians) requiring workers with specific knowledge or abilities provided by tertiary 

education (Autor, 2015). Details about how we can classify work activities according to the ALM model 

tasks groups are given in our conceptual framework (see section 3.2.1, Table 3.2). 

The ALM model predicts, under the assumptions discussed above, the differentiated impact of 

computer-based technologies on different kinds of labour. We can describe three main potential 

interactions of this impact. First, technologies can become substitutes for human workers doing jobs 

with an intensive demand for routine tasks, both cognitive and manual. Secondly, technologies can 

complement non-routine cognitive activities, both analytical and interactive. Thirdly, in the case of non-

routine manual tasks, technologies might have a limited role as substitutes or complements for labour. 

Thus, technologies’ impact will depend on the task composition of labour occupations. Implications 

include the possibility that computer-based technologies might be detrimental to labour outputs (e.g., 

demand and, consequently, wages) of jobs with an intensive demand for routine tasks. On the other 

hand, skilled labour jobs abundant in non-routine analytical and interactive tasks might benefit from 

higher demand and productivity, resulting in skill premium improvements.  

Some have empirically tested the differentiated technological impact predicted by the ALM model. 

Mainly, there is evidence of the complementarity between skilled workers and jobs with an intensive 

demand for non-routine cognitive tasks, both analytical and interactive (Autor et al., 2003; Goos & 

Manning, 2007; Goos et al., 2014; Sebastian, 2018; Spitz-Oener, 2006). Also, researchers focused on 

the pervasive effect of the differentiated impact of technology on different kinds of labour known as 

job polarisation (see, e.g., Autor, 2010; Nchor & Rozmahel, 2020; Spitz-Oener, 2006). As pointed out 

above, middle-skilled workers are usually distributed across jobs abundant in routine tasks. Under the 

assumption that these tasks can be programmable, the demand for this labour decreases with technology 

adoption. Conversely, non-routine tasks grow due to their complementarity with technology. Given that 

non-routine intensive jobs, cognitive and manual, are usually performed by skilled and unskilled 

workers, respectively, the polarisation is due to the growth at opposite ends of the skills distribution. 

For Chile, research analysing recent decades discards the job polarization hypothesis. Notably, an 

implication is that there is no increase in the relative demand for jobs consisting of non-routine cognitive 

tasks (Zapata-Román, 2021). In this regard, more evidence is required to understand these potential 

contradictions to the ALM model for the Chilean case.  

In Chile, studies employing the ALM model are recent, and the evidence contradicts its main 

predictions. For example, Almeida et al. (2020) analysed the impact of complex software as proxies for 

computer-based technologies in Chilean firms between 2007 and 2013, finding that these technologies 

encouraged routine and manual tasks. Simultaneously, the software provided a substitute for analytical 



3.1 Introduction  Essay II: Tasks, skills, and the skill premium 

68 

 

tasks, resulting in a displacement of skilled labour to less-skilled positions. The results of Almeida et 

al. (2020) are in line with recent studies showing a broader class of jobs at risk due to the potential 

displacement role of frontier technologies (Arntz et al., 2016; Frey & Osborne, 2017), such as robotics 

and artificial intelligence which can automate non-routine analytical or interactive tasks (Autor, 2015). 

Also, the results of Almeida et al. (2020) might represent the view that skill bias of technologies may 

be seen in the short run adoption since firms can replace highly educated labour with lesser educated 

individuals once new technologies are completely incorporated into the production process (O’Mahony 

et al., 2008). Also, it has been suggested that the routine content of jobs plays an important role in 

earnings (Zapata-Román, 2021). This finding, based on four waves of Chilean household data from 

1992 to 2017, shows that the technological change in production, which is assumed abundant in 

computer-based technologies, would encourage jobs abundant in routine tasks: this contradicts ALM 

model predictions.   

The lack of evidence to support the ALM model in the case of Chile contrasts with studies 

supporting this model in other high-income countries (Autor et al., 2003; Goos & Manning, 2007; Goos 

et al., 2014; Sebastian, 2018; Spitz-Oener, 2006). In this sense, an open question is whether these 

contradictions or lack of evidence persist under new analyses such as this essay. Also, another open 

question based on past Chilean findings, as discussed above, is whether the expected complementarity 

between non-routine cognitive tasks and skilled labour can also be extended to routine cognitive tasks. 

Responding to these questions led to some policy issues. For instance, the potential reallocation of 

skilled workers to routine-intense positions, or downward movements, might imply that skilled labour 

push middle-skilled to lower-skilled positions. In turn, these low-skilled workers might be pushed even 

further down the occupational ladder or forced to leave the labour market altogether. Some have termed 

this phenomenon a de-skilling process (Beaudry et al., 2016) when referring to employment structure 

changes. From a policy perspective, more attention needs to be paid to these changes in the context of 

the technological change in production since the unwanted changes in the occupational ladder, such as 

downward movements, can affect wages, resulting in the deterioration of educational and job prospects.  

This essay examines the influence on the skill premium of measures standing for non-routine 

analytical and non-routine interactive tasks. Since occupations are bundles of tasks, we rely on standard 

occupational classifications to construct our task-content measures. In this regard, we expect that most 

of our sample standing for skilled labour correspond to professional, technical, and managerial 

occupations, given that these positions demand and employ labour with higher education and cognitive 

capability. We call the examination of the influence on the skill premium of our task-content measures 

“the task-content analysis” (section 3.5.1.2 gives details about the task measures construction).  

Recapitulating, we also aim to evaluate the influence on the skill premium of specific workers’ 

abilities or skills, focusing on skilled labour to complement our analysis. The human capital theory 

states that skilled labour poses specific competencies beyond formal qualifications or knowledge 

(Heckman et al., 2006). In particular, cognitive skills (also called abstract or analytical skills) such as 
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learning, problem-solving, handling information, and intuition, complement the tasks performed by 

more-educated workers, resulting in increases in their relative demand  (Acemoglu & Autor, 2011; 

Autor et al., 2003; Beblavý et al., 2016; Borghans et al., 2014). However, recent studies have warned 

about a decline in demand for cognitive skills and tasks related to new technologies implementation 

(Beaudry et al., 2016; Deming & Noray, 2020; O’Mahony et al., 2021; vom Lehn, 2018). At the same 

time, some have noted a rising complementarity between cognitive and social skills (e.g., 

communication, cooperation with others) with a positive impact on wages (Deming, 2017; Edin et al., 

2017).  

Social skills become critical in handling the resulting organisational change due to intense 

computer-based technological progress (Deming & Kahn, 2018). For instance, social skills in 

conjunction with cognitive ones can lead to a more conspicuous ability to implement new human 

resources practices (Bartel et al., 2007), to manage complex organisations (Edin et al., 2017), to promote 

innovation (Allen et al., 2020), and to obtain leadership positions (Deming, 2017), among others. 

Therefore, the joint demand for both cognitive and social skills might result in better labour outcomes 

for skilled labour. In this study, we examine the extent to which cognitive abilities, social abilities, and 

the simultaneous demand for both together influence the skill premium. To the writer’s knowledge, the 

complementarity between cognitive and social skills in the case of Chile has not been studied. Also, we 

evaluate the influence of software skills as a proxy for specific computer-based abilities. We name the 

examination of the influence on the skill premium of these skills-related measures as “the skill-related 

analysis” (section 3.5.1.3 gives details about the measures’ construction).  

This essay examines the influence on the skill premium of the task-content of jobs and certain 

workers’ abilities. Our task-related analysis tests some of the predictions suggested by the ALM model, 

beginning with the expected complementarity between skilled labour and non-routine analytical and 

interactive tasks. Secondly, we study the relationship between the skill premium and routine cognitive 

tasks since recent research for Chile supports this interaction, as introduced and discussed above. 

Therefore, we expect a positive influence not only on the skill premium of non-routine analytical and 

interactive tasks but also on that of routine cognitive ones. Regarding our skills-related analysis, we 

anticipate a positive influence on the skill premium of cognitive and social skills. Consequently, for the 

simultaneous demand for cognitive and social skills, we also expect a positive impact. We also expect 

a positive influence on the skill premium where software skills are concerned, assuming that this ability 

is a desirable quality in skilled workers since these kinds of technology would drive much of the current 

technical change.  

However, despite these expectations, we will proceed cautiously because of recent trends in the 

skill premium evolution and past research on Chile. As introduced above, the skill premium shows a 

declining trend from the 2000s. In the first essay (see Chapter 2), we suggest that this decrease has 

persisted through the 2010s, and our task-related and skills-related analysis focus on most of this decade. 

Moreover, in Chapter 2, we have shown that the skill premium has declined due to the substantial 
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expansion of Chilean tertiary education resulting in greater availability of skilled labour. Remarkably, 

our findings on the elasticity of substitution support the idea that skilled and unskilled labour are more 

substitutable than commonly assumed. This view coincides with suggested upward and downward 

movements in the Chilean occupational ladder during the post-2000 period. On the one hand, Zapata-

Román (2021) suggested the displacement of workers from less-skilled occupations (e.g., craft and 

trade-related occupations) towards professional or technicians occupations. These upward movements 

might imply that workers in skilled positions are not performing non-routine cognitive tasks since it is 

assumed that less-skilled workers do not have the ability to perform that kind of task. However, they 

can perform routine-intensive tasks. On the other hand, Almeida et al. (2020) reported a reallocation of 

skilled workers toward middle-skilled positions. These downward movements suggest that the 

importance of non-routine cognitive tasks or skills is declining. Consequently, our results might not 

support our expectations.  

We use online job posting ads as the data source. Our sample covers all job ads posted between 

2009 and 2018 by the Chilean online job portal www.trabajando.com (over 189,000 ads). Previous 

studies examined wage determinants (e.g. skills) and job search behaviour, among other topics, by using 

this dataset (Banfi et al., 2019, 2020; Banfi & Villena-Roldán, 2019; Ramos et al., 2013). We chiefly 

rely on analysing the open text data (the job title, job description, and job requirements), wages and 

educational data.  

We apply a set of analytical techniques to process and classify our data based on its text features, 

offered wages and educational level required alongside the use of standard occupational classifications 

and skills dictionaries. Thus, we build a monthly time series standing for the skill premium, the skilled 

labour and our task-related and skills-related metrics. We examine the influence on the skill premium 

of our task and skills metrics using a Vector Autoregressive framework, VAR. We follow the 

conventional steps to test our proposed empirical models and interpret our results by examining the 

Granger-Causality and Impulse Response Functions, IRF, results.  

Our results show weak evidence of the influence on the skill premium of non-routine cognitive 

tasks for Chile during 2009-2018. Therefore, our results do not strongly support the ALM model 

prediction on the complementarity between non-routine cognitive tasks, both analytical and interactive, 

and skilled labour. Also, our findings do not show evidence of cognitive, social abilities or both 

explaining the skill premium evolution. As in other recent research on Chile, we suggest a potential de-

skilling process of the Chilean labour market during the 2010s. This process aligns with the skill 

premium decline in this recent decade. Also, we speculate on the implications of downward movements 

in the occupational ladder.  Consequently, our results supply some policy issues, given the suggested 

decline in the importance of tasks or abilities that skilled workers typically perform, such as efforts 

stimulating coordination between educational suppliers and labour markets’ needs. 

The essay is structured as follows. The following section presents our conceptual framework. We 

present the ALM model in depth and give insights regarding the theory supporting the importance of 

http://www.trabajando.com/
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cognitive and social skills as part of skilled labour endowments. After this review, we develop the 

empirical models for our task-related and skills-related examinations, followed by the description of the 

data and the methods. Next, we present and discuss our results. The final section provides our 

conclusion.  

3.2. Conceptual framework 

This section focuses on the ALM model as a motivating theory. Also, we discuss the theoretical 

foundations supporting the complementarity between cognitive and social skills. 

3.2.1. The ALM model 

Table 3.1 replicates the classification of tasks, predictions and examples proposed by the ALM 

model. The two-fold classification generates five categories: 1) routine cognitive, which involves 

activities regarding the processing of information defined by explicit rules which can easily be 

programmable; 2) non-routine analytic and 3) non-routine interactive, both under the cognitive 

category, capture labour tasks involving reasoning skills and interactive abilities (e.g., communication 

and managerial skills), respectively; 4) routine manual and 5) non-routine manual refer to repetitive 

and non-repetitive physical work activities.  

 

Table 3.1. Tasks classification, examples, and computer impact predictions (Autor et al., 2003)  
Routine tasks Non-routine tasks 

 Cognitive tasks (Analytic and Interactive) 

Examples 

• Record-keeping 

• Calculation 

• Repetitive customer 

service (e.g., bank teller) 

• Forming/testing hypotheses 

• Medical diagnosis 

• Legal writing 

• Persuading/selling 

• Managing others 

   

Computer 

impact 

o Substantial 

substitution 

o Strong complementarities 

 Manual tasks 

Examples 
• Picking or sorting 

• Repetitive assembly 

• Janitorial services 

• Truck driving 

   

Computer 

impact 

o Substantial 

substitution 

o Limited opportunities for 

substitution or 

complementarity 

 

The ALM model predicts a differentiated impact of computer-based technologies (see “computer 

impact” row in Table 3.1). On the one hand, computer-based technologies can perform jobs with an 

intensive demand for routine tasks, both cognitive and manual. On the other, new technologies 

complement non-routine cognitive activities, while non-routine manual tasks provide limited 
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substitution or complementarity opportunities. Therefore, the impact of technological advancements 

depends on the task composition of occupations, with computer-based technologies biased towards jobs 

where non-routine tasks are abundant. Conversely, these technologies can substitute for human workers 

in routine-intensive jobs (manual or cognitive). 

For the sake of clarity, Table 3.2 shows how we can allocate work activities to the five task 

categories discussed above, according to the literature (see, e.g., Atalay et al., 2018; Autor et al., 2003; 

Dengler et al., 2014; Mihaylov & Tijdens, 2019; Spitz-Oener, 2006). The first column presents the task 

category and a general definition. In the second column, we see the most representatives work activities 

featuring each kind of task. This dictionary matching tasks with work activities allow researchers to 

examine the task content of jobs. 

 

Table 3.2. Examples of the assignment of work activities to task categories  

Classification and definition  Job Tasks examples   
Non-routine cognitive analytic: 

non-repetitive work activities 

involving quantitative reasoning, 

critical thinking and problem 

solving 

Researching, analysing, evaluating and planning, making 

plans/constructions, designing, sketching, working out 

rules/prescriptions, using and interpreting rules, examining 

patients, using advanced software, drawing up agreements, 

among others 

Non-routine cognitive interactive: 

non-repetitive work activities 

involving creativity and complex 

communication    

Negotiating, lobbying, coordinating, organising, teaching or 

training, selling, buying, advising customers, advertising, 

entertaining or presenting, employing or managing personnel, 

pleading in courts of law, interviewing, among others 

Routine cognitive: repetitive work 

activities regarding the processing 

of information 

Calculating, book-keeping, correcting texts/data, and 

measuring length/weight/temperature, operating systems and 

networks, operating laboratory and office computer equipment, 

inspection and quality control, reading and processing 

information, among others 

Routine manual: repetitive and 

physical work activities. (ICT and 

machines can automate them) 

Operating, controlling or monitoring stationary machines and 

equipping machines (e.g., metal processing, chemical, rubber), 

making standardised products (e.g., clothes), assembling 

prefabricated parts or components, sorting and storing produce, 

among others  

Non-routine manual 

Repairing or renovating houses, apartments, machines, 

vehicles, restoring art and monuments, serving, or 

accommodating, operating non-stationary and mobile 

equipment (e.g., cranes), driving, guarding, protecting, sports 

(e.g., training), among others 

Source: Adapted from past studies (e.g., Atalay et al., 2018; Autor et al., 2003; Dengler et al., 2014; Mihaylov & Tijdens, 

2019; Spitz-Oener, 2006). 

 

We use the ALM model as described in this section to examine the interactions between the skill 

premium and the task content of jobs performed by skilled labour. In the following section, we review 

the motivating theories regarding our skill-related analysis. 
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3.2.2. On cognitive and social skills and their complementarity 

As introduced above, the human capital theory states that skilled labour offers specific skills and 

competencies such as abstract or analytical skills (e.g., learning, problem-solving, handling information, 

intuition). These abilities complement the tasks performed by these better-educated workers, resulting 

in increases in their relative demand  (Acemoglu & Autor, 2011; Autor et al., 2003; Beblavý et al., 

2016; Borghans et al., 2014). However, recent studies have warned of a decline in the demand for 

cognitive skills and tasks, related to the implementation of new technologies (Beaudry et al., 2016; 

Deming & Noray, 2020). At the same time, some have noted a rising complementarity between 

cognitive and social skills (e.g. communication, cooperation with others) with a positive impact on 

wages (Deming, 2017; Edin et al., 2017) 

The decline in the demand for cognitive skills and tasks has been linked to stages of technology 

implementation (e.g., adoption versus consolidation) and to the current technological advances moving 

to a broader set of tasks. With reference to the effect on this decline of technology adoption stages, 

Beaudry et al. (2016) observe that these adoption stages increase the demand for workers with bundles 

of cognitive skills. Conversely, fewer of these workers are required in technology consolidation stages 

(e.g., maintenance activities), or they can be replaced by lesser-skilled workers once new technologies 

have been implemented by firms (O’Mahony et al., 2008). For the US, evidence supports the view that 

technology produced a boom and bust in demand for workers able to perform cognitive tasks around 

the 2000s (Beaudry et al., 2016). Remarkably, Deming & Noray (2020) show that technological change 

is an essential contributor to the erosion of skills needed to operate advancements located in the 

technological frontier (e.g. software skills). In consequence, skilled workers in STEM careers have 

witnessed the rapid obsolescence of their high analytical cognitive skills.  

Recent research has examined the decreasing demand for cognitive skills in Chile. For example, 

Almeida et al. (2020) reported that a firm’s adoption of complex software led to the relocation of 

workers with high attainment of cognitive skills towards less cognitive-intensive positions within that 

firm. This displacement suggests a decreasing importance of cognitive skills as a contributor to the 

relative demand for skilled workers. In this regard, it has been suggested that social skills can 

complement cognitive abilities, for example, by promoting innovative work practices or organisational 

changes occurring after the implementation of technological advancements. Therefore, both types of 

skills might be demanded to handle the current technical change, which implies some level of 

complementarity between them.  

Deming (2017), Edin et al. (2017), Borghans et al. (2014), and Weinberger (2014), among others, 

show evidence of the rising complementarity between cognitive and social skills. According to the 

ALM model predictions, it is uncontroversial to admit that social interactions are difficult to automate 

or replace with technology (Autor, 2015; Deming, 2017). Alternatively, social skills can complement 

the innovative work practices or organisational changes occurring after implementing computer-based 
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technologies, contributing to improvements in demand for both cognitive and social skills. For instance, 

Ehrenberg & Smith (2018) show that cognitive-intense jobs without much social interaction (e.g. 

engineering-related occupations) have lower employment growth in comparison with occupations rich 

in both cognitive and social skills. Bartel et al. (2007) noted that the adoption of ICT coincides with 

increases in technical skills and the ability to manage the new human resources practices resulting from 

the adoption of new technologies.  

At the occupations level, Deming (2017) reported that non-cognitive skills had a positive effect 

because of their contribution to attaining leadership positions over time. Furthermore, social skills are 

required to manage complex organisations (Edin et al., 2017), and significant returns have been reported 

for socioemotional skills related to innovation (Allen et al., 2020). For Chile, Aedo et al. (2013) reported 

the rising importance of interpersonal skills in their cross-country study on skill intensities. Therefore, 

the demand for highly skilled workers includes abilities and endowments beyond the traditional 

cognitive aptitudes, with social skills gaining importance over time. 

3.3. Empirical models  

This section presents our empirical modelling to test the influence on the skill premium of our 

measures representing the task content of jobs (our task-content analysis) and workers’ skills (our skill-

related analysis)28. Since we do have not an explicit theoretical model, we estimate one equation for the 

task-content analysis and another for the skill-related examination, focusing on skilled labour as 

suggested by motivating theories developed in the conceptual framework (see the previous section, 3.2).  

In the task-content analysis, we examine the influence of non-routine cognitive, non-routine 

interactive and routine cognitive tasks. Our specification for the task-content analysis is: 

 𝜔𝑡 = 𝛽0 + 𝛽1𝑇𝑀𝑁𝑅𝐴,𝑡 + 𝛽2𝑇𝑀𝑁𝑅𝐼,𝑡 + 𝛽3𝑇𝑀𝑅𝐶,𝑡 + 𝜀𝑡, (3.1) 

where 𝜔𝑡 is the skill premium at time (month) 𝑡. In Eq. (3.1), 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and, 𝑇𝑀𝑅𝐶 are measures 

of task-content related to non-routine analytical, non-routine interactive and routine cognitive tasks, 

respectively. 𝜀𝑡 is a residual term. Section 3.5.1.1 and  3.5.1.2 describes the construction of the skill 

premium and task-content measures, respectively. 

To evaluate the impact of cognitive skills, social skills, the combination between cognitive and 

social skills, and software skills categories on the skill premium, we specified the following equation  

 𝜔𝑡 = 𝛾0 + 𝛾1𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡 + 𝛾2𝑆𝑀𝑆𝑜𝑐𝑖𝑎𝑙,𝑡 + 𝛾3𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐,𝑡 + 𝛾4𝑆𝑀𝑆𝑜𝑓𝑡,𝑡 + 𝜀𝑡, (3.2) 

 
28 In the empirical modelling and estimation of models with the skill premium as the output variable, some models include 

exogenous variables, such as institutional controls (e.g., the unemployment rate and minimum wages). For example, see the 

first essay of this thesis, section 2.3, and past studies (see, e.g., Gallego, 2012; Murakami, 2014). We do not include them in 

our specifications, due to differences in frequency and availability. For example, in the case of unemployment, this variable 

has a quarterly basis or quarter moving average and we cannot construct it from job posting data. Similarly, minimum wages 

have a low frequency (mostly yearly) compared with our monthly data.  
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where 𝜔𝑡 is as in Eq. (3.2) and the variables 𝑆𝑀𝐶𝑜𝑔𝑛𝑖, 𝑆𝑀𝑆𝑜𝑐𝑖𝑎𝑙, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and, 𝑆𝑀𝑆𝑜𝑓𝑡 are skill-

measures representing the skills-related content of jobs for cognitive, social, cognitive and social, and 

software skills (as a proxy for computer-based technologies), respectively, required in job ads. 𝜀𝑡 is a 

residual term. We explain the construction of these skills measures in section 3.5.1.3.  

Furthermore, Eq. (3.1) and (3.2) refer to static representations, but we analyse them under the VAR 

framework. In this regard, both equations will include lags of the variables following our estimation 

strategy as detailed in section 3.5.2.  

3.4. Data  

Our data cover all job ads posted between January 1, 2009, and December 31, 2018, for the Chilean 

online job portal www.trabajando.com.29 After some cleaning30, our sample consists of 189,986 unique 

job ads, some of them with missing fields. In this study, we analyse the job ads grouped by month i.e., 

we construct and examine 120 data points. Our motivation to use time series rely on the evaluation 

variables such as the skill premium over time which has shown a changing pattern over time (see Essay 

I, Chapter 2). The monthly disaggregation has been selected for proper variation in data comparing to 

quarterly or annual data.  We show this monthly distribution in Figure 3.1. The average of job ads by 

month is 1,583 (standard deviation of 433), and the minimum and maximum frequencies are 657 and 

2,670, respectively. 

 

Figure 3.1. Monthly distribution of job ads from trabajando.com 2009-2018 

 

 

 
29 Although our dataset include data for 2008, we discarded this year because of lack of information enabling us to discriminate 

between educational levels, which is a critical variable for estimating the quantities of skilled and unskilled labour, and, 

consequently, the skill premium. 
30 We exclude job ads using some criteria, following the example of  past studies (Banfi & Villena-Roldán, 2019): (i) monthly 

wages below CLP (Chilean Pesos) 150,000 (minimum wage at the start of the period) or above CLP 5,000,000 (unfeasible), 

(ii) work experience above 30 years (less probable). 

http://www.trabajando.com/
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For our purposes, the key advantages of this data are the detailed requirements stipulated by firms. 

For instance, some requirements such as formal qualifications (to identify job posting demanding skilled 

workers), offered wages (to build the skill premium), work activities to be performed (to build our task-

content measures), and the candidate’s required skills (to obtain our skill-related measures).  

Past studies have used data from www.trabajando.com, which is considered as the principal internet 

labour market intermediary in Chile over the 2000s (Ramos et al., 2013), to examine the impact on 

wages of job skills, job search behaviour, among other aspects of labour markets (Banfi et al., 2019, 

2020; Banfi & Villena-Roldán, 2019; Ramos et al., 2013). In this regard, the proper representativeness 

of data from www.trabajando.com, for the purposes of our research arise from the sizeable proportion 

of higher level technicians and professionals looking for work (some 13% according to Ramos et al., 

2013). Regarding the offered wages, we note that this information is required for all firms posting a job 

ad, although they can choose whether this information is published in the job ad or not. Despite this 

feature, Banfi & Villena-Roldán (2019) shows that these hidden wages are reliable measures of salaries 

that firms expect to pay.  

Table 3.3 shows some descriptive statistics and features of our job ads sample. These statistics are 

similar to Banfi & Villena-Roldán (2019), using the same data source but different periods (January 

2008- June 2014). 

 

Table 3.3. Summary of features for Trabajando.com 2009-2018 job ads 

Required years of experience (%)  

 0 16% 

 1 30% 

 2 to 3 39% 

 4 to 20 15% 

 average years of experience (SD) 2.09 (1.89) 

Required education level (%)  

 Primary/secondary/technical secondary 36% 

 Technical tertiary 29% 

 College (tertiary)/graduate 34% 

 Other 1% 

Sectors (%)  

 Manufacturing 17% 

 Electricity/gas/water 2% 

 Commerce 19% 

 Transportation 5% 

 Communication  9% 

 Financial/business/personal service 27% 

 Other 21% 

Offered wage (%)  

 CLP <= 300,000 22% 

 CLP 300,001-600,000 39% 

 CLP 600,001-1,000,000 23% 

 CLP>1,000,000 16% 

 Average CLP offered wage (SD) 690,839 (542,024) 

Observations 189,986 
Note: CLP stand for Chilean Pesos 

http://www.trabajando.com/
http://www.trabajando.com/
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3.5. Methods 

This section discusses the techniques used to build the skill premium and task-content and skill-

related measures and the VAR estimation method used to examine the empirical models specified in 

Eq. (3.1) and Eq. (3.2).  

3.5.1. Construction of variables 

In this section, we detail how we build the skill premium and our measures standing for the task-

content of jobs and worker’s skills endowments. 

3.5.1.1. The skill premium estimation 

The skill premium construction adopts the strategies generally used in studies that examine this 

variable (e.g., Autor et al., 2008; Card & Lemieux, 2001; Ciccone & Peri, 2005). For Chile, see, e.g., 

Gallego (2012), Murakami (2014), Beyer et al. (1999) and the first essay (section 2.5). We define skilled 

labour as college or tertiary graduates and unskilled labour as high-school or secondary education 

graduates, or those who have had even less education, according to the educational requirements in job 

ads. To estimate the skill premium, we regress the monthly offered wage on typical wage determinants 

available in the data following a Mincer regression strategy using all the job ads for a given month. 

Then, using the differences for predicted wages between skilled and unskilled workers, we construct 

our estimate for the skill premium month by month. We focus on job ads offering full-time positions. 

To adjust for compositional changes, we use weighted averages from education construction by 

experience subgroups. The skill premium estimation consists of the following three steps: 

Step 1) Construction of education by experience sub-groups to adjust for compositional labour changes 

(e.g., different skills levels) within each sub-group using the educational level and experience 

specified in the job ads. We define four educational categories as our measure of schooling for 

different workers’ school attainments:  college graduates, some college, high school graduates and 

less educated (primary and high school dropouts). There are three experience subgroups: 0-2, 3-5 

and 6-30 years. Combining the education and experience categories, we construct 12 education-by-

experience sub-groups. We use the total hours worked monthly for each sub-group as weights, 

assuming that full-time positions correspond to 193.5 working hours per month (45 hours per week 

* 4.3 weeks per month).  
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Step 2) Estimating the predicted wages for skilled and unskilled workers regressing a Mincer type 

equation. We regress the wages for each monthly sample of job ads estimating the next standard 

wage equation31:  

𝑙𝑜𝑔(𝑊𝑖,𝑡)  =  𝑐𝑜𝑛𝑠 + 𝑒𝑑𝑢𝑐_𝑐𝑎𝑡′𝑖,𝑡𝛼𝑗  + 𝛽1𝑒𝑥𝑝𝑖,𝑡  +  𝛽2𝑒𝑥𝑝𝑖,𝑡
2  + 𝑋′𝑖,𝑡𝛿 (3.3) 

where 𝑊𝑖,𝑡 is the monthly offered (log) wage for job ad 𝑖 in month 𝑡, expressed in December 2018 

Chilean pesos (CLP) using the Unidad de Fomento as a deflator32. 𝑒𝑑𝑢𝑐_𝑐𝑎𝑡 are 𝑗 educational 

categories defined in Step 1) with “less educated” as the base category. 𝑒𝑥𝑝 is the required work 

experience. 𝑋 is a vector containing additional determinants, such as the economic sector of the 

firm posting the job ad (eight industries such as agriculture, mining, construction, etc., with 

manufacturing as the base category) and the firm size (big, medium, small, with micro as the base 

category). We use these regression results to compute the predicted wages for skilled and unskilled 

workers as detailed in Step 3). 

Step 3) Estimation of the predicted average wage for skilled and unskilled groups and computation of 

the skill premium. We estimate the predicted log wages using regression results from Step 2) 

evaluated at the correspondent experience level (1, 4, or 10 years based on experience categories) 

and at base categories included in vector 𝑋. We compute the predicted log wages difference between 

the college graduates and high-school graduates as our proxy for the skill premium. We use the sum 

of monthly hours worked for each of the education x experience sub-groups built in Step 1) as 

weights. Thus, we quantify the difference between skilled and unskilled wages as our skill premium 

measure for a given month, 𝑡, which we denoted as 𝜔𝑡, following the notation from our empirial 

models represented by Eq. (3.1) and Eq. (3.2). 

3.5.1.2. Estimation of task-content measures   

Our strategy of building task-content indicators from job ads data relies on the quantification and 

classification of tasks proposed by the ALM model. Our measures show the prevalence of each category 

of tasks across the total of job postings demanding skilled labour by allocating job posting to standard 

occupations. These standard occupations give detailed work activity descriptions, which we can classify 

according to the ALM model’s task categories (see Table 3.1 and Table 3.2). However, job ads do not 

follow standard national or international labour classifications. Besides, the task descriptions are 

specific to the offered jobs, resulting in a lack of information about additional general tasks. To tackle 

this difficulty, we developed a strategy consisting of three steps. It starts with the manual classification 

of work activities that feature each occupational group into the categories proposed by the ALM model, 

 
31 This methodology allows to control of the labour supply by other demographic characteristics which are not related to the 

education premium. 
32 The Unidad de Fomento (UF) is a Chilean unit of account. The exchange rate between the UF and the Chilean peso is 

constantly adjusted for inflation. 

https://en.wikipedia.org/wiki/Unit_of_account
https://en.wikipedia.org/wiki/Chilean_peso
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using national and international classifications of occupations as statistical tools and dictionaries from 

the literature. The second step categorises each job ad according to its standard occupational groups, 

but the data does not contain references to standardised classes of occupations, so we infer that 

information using the text data from the job ads by applying a classifier algorithm. The third step 

corresponds to the mapping between the task analysis of occupations in step one and the classification 

of job ads from step two, and the construction of measures to represent the task content of occupations. 

We detail these steps as follows.  

3.5.1.2.1. Step One: Examining the task content of standard 

occupational groups  

To evaluate the task content of standard occupational groups, we rely on the task descriptions for 

occupations documented in the Chilean Classification of Occupations, CIUO08-CL (INE, 2018). In 

turn, CIUO08-CL relies on the current International Standard Classification of Occupations, ISCO-08 

(ILO, 2012). To ensure reliability, CIUO08-CL is prepared and published by the government agency in 

charge of national statistics for the labour sector, in Spanish, Instituto Nacional de Estadísticas, INE 

(INE, 2018). Like ISCO-08, the CIUO08-CL structure is hierarchical, with standard occupations 

organised into one of the 444 unit groups at the most exhaustive level of the classification hierarchy. 

From the top down, ten major groups are composed of 44 sub-major groups, containing 129 minor 

groups. The 129 minor groups contain 444 unit groups, defined by their members’ primary occupations. 

In terms of coding, 1-digit, 2-digit, 3-digit, and 4-digit codes represent the major, sub-major, minor and 

unit groups, respectively. To illustrate the CIUO08-CL structure, Table 3.4 presents an example of the 

hierarchy and tasks descriptions. 

 

Table 3.4. Examples of CIUO08-CL and ISCO-08 structure 

Groups Codes Occupational groups  Tasks descriptions 

Major 

Group 
2 Professionals 

Conducting research and analysis, developing 

concepts, applying knowledge related to sciences, 

providing various businesses, legal and social 

services 

Sub-

major 

Group 

25 

Information and 

Communications 

Technology Professionals  

Conducting research, planning, designing and 

providing advice for information technology 

systems, hardware, software, web applications. 

Minor 

Group 
251 

Software and Applications 

Developers and Analysts 

Evaluating, planning, and designing hardware or 

software configurations for specific applications, 

designing, writing, and maintaining software for 

specific requirements, consulting with users 

Unit 

groups 
2511 

System Analysts 

(Computer scientists, 

Information systems 

analysts) 

Consulting with users to formulate document 

requirements, identifying and analysing business 

processes, recommending optimal businesses and 

system functionalities 
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2512 

Software Developers 

(Programmer analysts, 

Software designers, 

Software engineers)  

Researching, designing, and developing software 

systems, directing software programming and 

development of documentation, consulting with 

customers concerning software systems 

2513 

Web and Multimedia 

Developers (Animation 

programmers, Internet 

developer, Website 

architect/developer) 

Analysing, designing, and developing Internet sites, 

designing, and developing digital animations, 

imaging, presentations, games, assisting in 

analysing Internet strategies, web-based methods 

Source: Own from ILO (2012) and INE (2018) 

Since the analysis of task content for 4-digit and 1-digit groups can result in excessively narrow or 

broad descriptions of occupational duties, respectively, we analyse the task content for the 2-digit or 

sub-major occupational groups. We exclude three occupational groups representing Armed Forces 

occupations since CIUO08-CL does not detail their tasks. Therefore, we examine the task content of 41 

2-digit occupations (Occupations codes and names in Spanish and English in Appendix A.2.1).  

To enrich our analysis, we evaluate the job tasks according to the aggregation of 3-digit level 

groups. CIUO08-CL at 3-digit hierarchy reports 845 work activities (803 unique). We assign these job 

tasks manually to the five ALM model categories: routine cognitive (𝑁𝑅), non-routine analytic (𝑁𝑅𝐴), 

non-routine interactive (𝑁𝑅𝐼), routine manual (𝑅𝑀) and non-routine manual (𝑁𝑅𝑀) (see section 3.2.1). 

We support this task’s classification process using translated work-tasks dictionaries (English to 

Spanish) from the literature (see Table 3.2). Once we have done the classification, we compile tasks 

shares and routine and cognitive prevalence index for the 41 2-digit occupational groups following 

Autor et al. (2003) and Autor & Dorn (2013)33. 

Our task shares computation aims to show the relative importance of each task category 𝑗 for the 

occupation 𝑘. We compute the share of work activities for a given task category over the total of work 

activities as follow: 

𝑇𝑆𝑗,𝑘 =
𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑡𝑎𝑠𝑘 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑗 𝑖𝑛 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑘

𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑘
 

 

(3.4) 

where 𝑇𝑆 is the Task Share with 𝑗 referring to each of the five ALM model categories, 𝑗 =

{𝑁𝑅𝐴,𝑁𝑅𝐼, 𝑅𝐶, 𝑅𝑀,𝑁𝑅𝑀}, as defined above. The term 𝑘 represents each of the 41 2-digit occupations. 

As a result, we obtain five 𝑇𝑆 measures: 𝑇𝑆𝑁𝑅𝐴, 𝑇𝑆𝑁𝑅𝐼, 𝑇𝑆𝑅𝐶,𝑇𝑆𝑅𝑀 and 𝑇𝑆𝑁𝑅𝑀, which sum one and 

characterize each 𝑘 occupation. These 𝑇𝑆 metrics measure the variation in intensity across the 

occupations. To illustrate, occupations with higher values for 𝑇𝑆𝑁𝑅𝐴 correspond to occupations with an 

intense demand for 𝑁𝑅𝐴 tasks.  

To show the prevalence of routine and cognitive tasks using the 𝑇𝑆 shares, we follow the approach 

of Autor & Dorn (2013) to compute the routine intensity index, 𝑅𝐼𝐼, as follows: 

𝑅𝐼𝐼𝑘 = 𝑇𝑆𝑅𝐶,𝑘 + 𝑇𝑆𝑅𝑀,𝑘  − 𝑇𝑆𝑁𝑅𝐴,𝑘 − 𝑇𝑆𝑁𝑅𝐼,𝑘 − 𝑇𝑆𝑁𝑅𝑀,𝑘 (3.5) 

 
33 Several researchers have applied these kinds of metrics in past studies (e.g. Antonczyk et al., 2009; de Vries et al., 2020; 

Goos et al., 2014; Mihaylov & Tijdens, 2019; Perez-Silva & Campos, 2021). 
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where 𝑅𝐼𝐼𝑘 is the routine intensity index for occupation 𝑘. 𝑇𝑆𝑁𝑅𝐴, 𝑇𝑆𝑁𝑅𝐼, 𝑇𝑆𝑅𝐶,𝑇𝑆𝑅𝑀 and 𝑇𝑆𝑁𝑅𝑀 are 

the 𝑇𝑆 measures described in Eq.  (3.4). 𝑅𝐼𝐼 takes positive and negative values for occupations with an 

intense demand for routine and non-routine tasks, respectively, in the range [-1, 1]. Similarly, we build 

the cognitive intensity index, 𝐶𝐼𝐼, as follow: 

where 𝐶𝐼𝐼𝑘 is the cognitive intensity index for occupation 𝑘. The 𝐶𝐼𝐼𝑘 metric is rising in the prevalence 

of cognitive tasks, both non-routine and routine, and declining in manual tasks, both routine and non-

routine. 𝐶𝐼𝐼 will take positive values for those occupations with a high prevalence of cognitive tasks 

with values near one for those with high intensity. Conversely, 𝐶𝐼𝐼 will take negative values for those 

occupations without intense demand for cognitive tasks or with a high demand for manual tasks. With 

the values of 𝐶𝐼𝐼 and 𝑅𝐼𝐼 we can map each occupation to the ALM model categories as shown in Table 

3.5, following, e.g., Autor & Dorn (2013) and de Vries et al. (2020). 

 

Table 3.5. Mapping 2-digits occupations to task-content intensities CII and RII 

 Routine Non-routine 

Cognitive 

(interactive/ 

analytical) 

Occupations with intense demand for 

cognitive and routine tasks 

(𝐶𝐼𝐼+; 𝑅𝐼𝐼 +) 

Occupations with intense demand for 

cognitive non-routine tasks 

(𝐶𝐼𝐼+; 𝑅𝐼𝐼 −) 

Manual 

Occupations with intense demand for 

manual and routine tasks 
(𝐶𝐼𝐼−; 𝑅𝐼𝐼 +) 

Occupations with intense demand for 

manual non-routine tasks 
(𝐶𝐼𝐼−; 𝑅𝐼𝐼 −) 

3.5.1.2.2. Step Two: Classification of job ads into the 41 2-digit 

occupations 

This step aims to classify our job ads sample according to the 41 2-digit occupations described by 

the Chilean standard classification system of occupations. The inputs for performing the classification 

are our open text variables (job title, job description and job-specific requirements) and the educational 

level. We apply a flow of techniques and algorithms to these inputs to obtain a 2-digit occupation label 

as a new variable for each job ad. This stage is a two-sub-stage flow compound. First, we pre-process 

the text data (e.g., cleaning, normalisation) and construct the document-term representation, DTM, 

based on our job ads corpus. The DTM is needed since algorithms do not deal directly with text data, 

but they perform on specific text features such as words or groups of words (Welbers et al., 2017). 

Secondly, we “train” and evaluate our classifier algorithm, Support Vector Machines, SVM (Cortes & 

Vapnik, 1995) using a training dataset. Then, we apply our SVM to our unlabelled dataset. The 

techniques described are implemented using R packages like Quanteda (Benoit et al., 2018) and the 

Python library Scikit-learn (Pedregosa et al., 2011). 

𝐶𝐼𝐼𝑘 = 𝑇𝑆𝑁𝑅𝐴,𝑘 + 𝑇𝑆𝑁𝑅𝐼,𝑘 + 𝑇𝑆𝑅𝐶,𝑘 − 𝑇𝑆𝑅𝑀,𝑘 − 𝑇𝑆𝑁𝑅𝑀,𝑘 (3.6) 
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3.5.1.2.2.1. Pre-processing and DTM representation 

This sub-stage starts with the concatenation of the three open-text variables. We perform a set of 

standard techniques on the new concatenated variable following literature analysing text data (see, e.g., 

Welbers et al. 2017). In general, these techniques refer to converting words to lower case, removal of 

Spanish stop words, punctuation and special symbols, tokenisation, and stemming (words being reduced 

to their word stem). The tokenisation allows the text content to be split into words (unigrams) and groups 

of two consecutive words (bigrams) denoted as tokens or features. In this study, we use unigrams and 

bigrams. Bigrams can be more representative for job titles composed of two words (e.g., job titles 

preceded by generic words like, in Spanish, “Ingeniero” (“Engineer” in English) such as “Ingeniero 

Informático” (“Informatics Engineer” in English).  

Based on these features, we build a DTM, which shows the collection of job ads or documents 

represented in the vector space model. In the DTM, job ads and tokens are rows and columns, 

respectively. The DTM represents the corpus as a bag of words and is usually sparse;  it is the primary 

input for SVM. We applied these pre-processing and DTM techniques to, firstly, our training sample 

and, secondly, our unlabelled observations to classify the job ads against the Chilean standard 

classification system of occupations CIUO08-CL.  

3.5.1.2.2.2. The SVM application 

The SVM, initially known as support-vector networks, is an algorithm developed by Cortes & 

Vapnik (1995). SVM is a real-world oriented application (Nalepa & Kawulok, 2019; Smola & 

Scholkopf, 2004) which researchers have successfully performed on classification analysis in multiple 

fields due to its capacity to learn from data to attain the best separation between classes or groups of 

data (Gil & Johnson, 2011). SVM used as a classifier algorithm has shown reasonable accuracy in text 

classification using job ads (see, e.g., Guerrero & Cabezas, 2019, for a Chilean application and an Italian 

exercise in  Boselli et al., 2018). In our analysis, we applied SVM to classify labour data into 

occupational categories similar to past studies (Guerrero & Cabezas, 2019; Javed et al., 2014, 2015; 

Lovaglio et al., 2018; Nahoomi, 2018).  

Overall, the SVM algorithm predicts occupational category labels according to a subset of training 

data already labelled with their 2-digit occupational group or the training dataset (we detailed the 

training sample construction in section 3.5.1.2.2.2.2 below). SVM uses a set of functions to convert the 

training data into a high dimensional space to find one or multiple optimal separating hyperplanes. An 

ideal hyperplane separates one class from another based on the support vectors, which refers to the 

critical training instances that define its margins; therefore, they give the most information about the 

classification (Han et al., 2011). This hyperplane should also stay as far away from the nearest training 
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instances as possible (Gerón, 2017). We evaluate the predictive capability of our SVM using measures 

developed for this purpose as detailed below (see section 3.5.1.2.2.2.3).  

3.5.1.2.2.2.1. SVM theoretical overview and implementation 

To illustrate how, theoretically, an SVM classifier achieves its goal, we will assume a two-class 

problem with a dataset 𝐷 linearly separable. 𝐷 refers to (𝑋1, 𝑦1), … . , (𝑋|𝐷|, 𝑦|𝐷|) where 𝑋𝑖 corresponds 

to the set of training instances labelled according to their class, 𝑦𝑖, which can take the values of +1 or -

1. Since our data is linearly separable, graphically, we can draw infinite straight lines between the two 

classes. The SVM searches a separating hyperplane, the maximum marginal hyperplane, to discriminate 

between the classes in a high dimensional space. Simultaneously, the margins refer to the shortest 

distance between the hyperplane and the closest training instance of either class  (Gerón, 2017; Gil & 

Johnson, 2011; Han et al., 2011). Following Han et al. (2011), we can write the separating hyperplane 

as: 

𝑊 ∙ 𝑋 + 𝑏 = 0 (3.7) 

where 𝑊 is a row vector of weights, 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) and 𝑛 is the number of attributes. In our 

assumption, we have two classes, denoted by a column vector 𝑋 = (𝑥1, 𝑥2) where 𝑥1 and 𝑥2 are the 

values of attributes. 𝑏 is a scalar usually associated with bias. We re-write Eq. (3.7) as: 

𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 = 0 (3.8) 

Therefore, any data point located above or below the separating hyperplane satisfies Eq. (3.9) and Eq. 

(3.10), respectively 

𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 > 0, 

𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 < 0. 

(3.9) 

(3.10) 

We can define the sides of the maximal margin using new hyperplanes, ℎ1 and ℎ2, based on the 

adjustment of weights as follow: 

ℎ1: 𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 ≥ 1 for 𝑦𝑖 = +1, 

ℎ2: 𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2 ≤ 1 for 𝑦𝑖 = −1. 

(3.11) 

(3.12) 

If any training data point falls on or above ℎ1 it will belong to class +1 while any training data point 

that falls on or below ℎ2 will belong to class − 1. The combination of inequalities from Eq. (3.11) and 

Eq. (3.12) yields: 

𝑦𝑖(𝑏 + 𝑤1𝑥1 + 𝑤2𝑥2) ≥ 1, ∀𝑖. (3.13) 

The support vectors will be any training data point that falls on the sides of the maximal margin; 

this is the hyperplanes ℎ1 and ℎ2. Since the support vectors satisfy the Eq. (3.13) and are located equally 

near the separating hyperplane, we can use this expression to find the maximal margin between ℎ1 and 

ℎ2 (Gil & Johnson, 2011). By definition, the distance from a point (𝑥0, 𝑦0) to a line 𝑎𝑥 + 𝑏𝑥 + 𝑐 = 0 

is  |𝑎𝑥 + 𝑏𝑥 + 𝑐 = 0| √𝑎2 + 𝑏2⁄ , therefore, the distance from any support vector on ℎ1 to the separating 
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hyperplane is |𝑊 ∙ 𝑋 + 𝑏| ‖𝑊‖⁄  which is equal to 
1

‖𝑊‖
. ‖𝑊‖ is the Euclidean distance from the origin 

to W, that is √𝑊 ∙ 𝑊 (recalling from Eq. (3.7), 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}, then √𝑊 ∙ 𝑊 =

√𝑤1
2, 𝑤2

2, … , 𝑤𝑛
2). Since this distance is the same from any support vector on ℎ2 to the separating 

hyperplane, the maximal theoretical margin possible is 
2

‖𝑊‖
. Therefore, to maximize the separating 

hyperplane, the value of ‖𝑊‖ need to be minimised with the condition given by Eq. (3.13) to avoid 

training data points falling between ℎ1 and ℎ2. We can re-write the problem as a quadratic programming 

problem 

min
𝑊,𝑏

‖𝑊‖2

2
,  

(3.14) 

concerning the constrain represented by Eq. (3.13). This formulation is usually known as the primal 

form  (Nalepa & Kawulok, 2019), which is the problem to be solved applying SVM. SVM performs a 

set of mathematical functions and procedures and transformations, the so-called “fancy math tricks” 

(Han et al., 2011), to find the separating hyperplane and the support vectors. These mathematical 

approaches include  Lagrangian formulations, Karush-Kuhn-Tucker conditions, and kernel functions 

(e.g. linear, polynomials) to handle linearly inseparable data, among others (Gil & Johnson, 2011; 

Nalepa & Kawulok, 2019).   

To implement our SVM strategy, we use the Scikit-learn software library via an interface in 

Python (Pedregosa et al., 2011). We apply the linear support vector classification, LinearSVC, to solve 

our multi-class optimization problem. LinearSVC applies the one-vs-the rest strategy to fit one classifier 

per class. Thus, to obtain knowledge about a particular class, we evaluate only its computed classifier. 

In parameter tuning, we control the balance between maximising the margin and reducing 

misclassification using the 𝐶 parameter, as explained below, and the potential imbalance between 

classes using weights. LinearSVC formulates Eq. (3.14) equivalently as:  

 min
𝑊,𝑏

1

2
𝑊𝑇𝑊 + 𝐶 ∑ max(0, 1 − 𝑦𝑖(𝑊

𝑇𝜙(𝑥𝑖) + 𝑏))𝑛
𝑖=1  , (3.15) 

where 𝜙 is the identity function, and 𝐶 is a real and positive constant. The LinearSVC algorithm uses 

the math tricks noted above with a linear kernel to optimize Eq. (3.15) with 𝐶 as a tuning parameter. 

According to Gerón (2017), 𝐶 controls the balance between keeping the maximal margin as wide as 

possible and limiting the misclassifying i.e., hen instances fall in the middle of the margin or even on 

the wrong side. We use 𝐶 = 1, which is the recommended value for LinearSVC (Pedregosa et al., 2011). 

The same parameter has been used by Guerrero & Cabezas (2019) in their study classifying occupations 

for Chile from national labour surveys. We also experiment with alternative values to analyse impacts 

on classifier performance. A lower value for 𝐶 gives more regularization if the data contains a high 

number of noisy observations, and higher values for 𝐶 (e.g., 10, 100) result in a lower generalization 

ability of the classifier.  This impact on generalization means that SVM may classify appropriately on 

the training stage but its performance on new samples would be poor (Auria & Rouslan, 2008).   
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We also control for the expected unbalance between classes due to the natural distribution of 

labour. For instance, clerical workers have a significantly higher representation than managers. We 

apply weights to optimize the classifier performance on less represented classes. In LinearSVC, we 

include class weights inversely proportional to the class frequencies using the formula 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 =

𝑛 (𝑘 ∗ 𝑛𝑗)⁄  where 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 is the weight to class 𝑗, 𝑛 is the number of observations in the dataset, 𝑘 is 

the number of classes and 𝑛𝑗 is the number of observations in class 𝑗. 

3.5.1.2.2.2.2. The training dataset construction 

The SVM, as noted above, requires a training dataset, i.e., a job ads sample already labelled with 

their 2-digit occupational group code. We start by selecting the most frequent job titles. We filter 3,359 

job titles whose frequencies vary between 2,000 and 20. At this point, our training sample is a subset 

of 67,656 job ads, i.e., 35% of our whole job ads dataset described in section 3.4. The rest of our whole 

dataset, i.e., the 122, 330 unlabelled job ads, will be labelled using SVM. The distribution of our training 

sample in terms of industry and educational category is similar to the whole dataset distribution (See 

Appendix A.2.2). We manually label each job ad from our training sample according to the Chilean 

classification CIUO08-CL, supporting this labelling by observing the educational category, economic 

area and job tasks descriptions reported by CIUO08-CL. We also support our labelling process by 

examining the training dataset employed by Guerrero & Cabezas (2019), which was prepared by 

domain experts from the Chilean National Institute of Statistics (in Spanish Instituto Nacional de 

Estadísticas).  

As observed above, since algorithms do not deal directly with text data but perform on specific 

text features, we apply the procedures detailed in section 3.5.1.2.2.1 to obtain our DTM representation 

of the training data. We use 80% of the training sample to train the SVM and the rest (20%), our testing 

dataset, to evaluate the SVM performance.  

3.5.1.2.2.2.3. SVM evaluation and prediction 

To evaluate the SVM classification performance, we use metrics (e.g., 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

based on four outputs by comparing the labelled categories with those predicted by SVM using our 

testing dataset. These outputs are true negatives, 𝑇𝑁, when the observation is negative and predicted 

negative; false negatives, 𝐹𝑁, when the observation is positive but predicted negative; true positives, 

𝑇𝑃, when the observation is positive and predicted positive; and false positives, 𝐹𝑃, when the 

observation is negative but predicted positive. Typically, the classifier accuracy is calculated as the ratio 

of all correct predicted observations to the total number of observations, as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
. (3.16) 



3.5 Methods  Essay II: Tasks, skills, and the skill premium 

86 

 

We also examine 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1 𝑠𝑐𝑜𝑟𝑒, which are standard metrics used to evaluate 

the classifier performance at the global and class level. The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and  𝑟𝑒𝑐𝑎𝑙𝑙 measures refer to 

ratios to measure the ability of SVM to avoid labelling as positive an observation that is negative and 

to find all the positive observations, respectively and 𝐹1 𝑠𝑐𝑜𝑟𝑒 corresponds to the weighted harmonic 

mean of both metrics (Pedregosa et al., 2011). Formulation of these metrics is: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (3.17) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (3.18) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
. (3.19) 

Intuitively, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 counts for the number of observations correctly classified among that class and 

𝑟𝑒𝑐𝑎𝑙𝑙 quantifies the number of cases for a given class found by the classifier over the total number of 

class cases. These metrics can also evaluate global performance by calculating averages 

(𝑎𝑣𝑔 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 or 𝑎𝑣𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) which can take classes’ imbalance into account. We also examine 

𝑚𝑎𝑐𝑟𝑜 𝑎𝑣𝑔 𝐹1 𝑠𝑐𝑜𝑟𝑒, the unweighted mean of 𝐹1 𝑠𝑐𝑜𝑟𝑒, which results in higher penalization if the 

classifier does not perform appropriately with less represented classes since all classes have the same 

weight. We also examine 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 𝐹1 𝑠𝑐𝑜𝑟𝑒, which uses as weights the number of true positives 

for each class. This weighted version adjusts 𝑚𝑎𝑐𝑟𝑜 𝑎𝑣𝑔 𝐹1 𝑠𝑐𝑜𝑟𝑒 to account for class imbalance. 

However, according to Pedregosa et al. (2011), it can result in an 𝐹1 𝑠𝑐𝑜𝑟𝑒 different from that described 

by Eq. (3.19).  The results from these metrics are presented in the form of a classification report which 

outlines the results from these metrics at the global and class level.   

We expect averages values for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of around 0.85 according to past studies 

(see, e.g., Guerrero & Cabezas, 2019) as a measure of the proper performance of SVM. Some 

adjustments related to tokens or features (e.g., number, frequency) or balancing between classes can 

impact these measures. Once we consider a proper SVM performance, we apply our SVM algorithm to 

the 122,330 unlabelled observations. Thus, we classify our  whole data set of job ads according to the 

Chilean standard classification system of occupations CIUO08-CL. 

3.5.1.2.3. Step Three: Construction of task-content time series 

variables from results in Step One (section 3.5.1.2.1) and Step Two 

(section 3.5.1.2.2 )  

This section describes the construction of time series representing our task-related measures on a 

monthly basis. Similar strategies followed past studies using Chilean data from household surveys 

(Perez-Silva & Campos, 2021). Since we are interested in the impact on the skill premium, we compute 

measures using only job postings requiring skilled labour, 𝐽𝑃𝑆, by examining the educational level 

required by firms (see section 3.4). We name our task-related measures as 𝑇𝑀, and we compute them 

for all 𝑗 ALM model categories (see section 3.5.1.2.1, Eq.  (3.4)) over all months, 𝑡, according to our 
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data sample, 𝑡={1,2,….120}(see section 3.4). Thus, our 𝑇𝑀𝑗,𝑡 measures stand for the share of job 

postings devoted to 𝑗 task category relative to all job postings in 𝑡 considering only 𝐽𝑃𝑆. For instance 

and following notation from Eq.  (3.4), the 𝑇𝑀𝑁𝑅𝐴,𝑡 stand for the proportion of job postings devoted to 

non-routine analytical task category, 𝑁𝑅𝐴, relative to summing all 𝐽𝑃𝑆 in a given 𝑡.  

Three sub-steps compound this stage. First, using the output from Step Two above, i.e., our labelled 

job ads dataset with the 2-digit occupations (see section 3.5.1.2.2), we obtain skilled job posting 

frequencies for each 𝑘 occupation in each 𝑡 month, i.e., 𝐽𝑃𝑆𝑘,𝑡 where  𝑘 = {1,2,3…41}.  Secondly, we 

distribute each 𝐽𝑃𝑆𝑘,𝑡 into the five 𝑗 task categories using the computed 𝑇𝑆𝑗,𝑘 metrics (see section 

3.5.1.2.1) as weights. Notably, 𝑇𝑆𝑗,𝑘 does not depend on time since we assume that the task content of 

occupations is constant over time (Reijnders & de Vries, 2018). Thirdly, we compute the numerator of 

our 𝑇𝑀𝑗,𝑡 by summing the weighted quantities, i.e., the product 𝐽𝑃𝑆𝑘,𝑡 ∗ 𝑇𝑆𝑗,𝑘,  for a given 𝑗 task 

category over all the 𝑘 occupations and the denominator by summing all 𝐽𝑃𝑆 over all the 𝑘 in 𝑡.We 

represent our 𝑇𝑀𝑗,𝑡 measure as follows:  

𝑇𝑀𝑗,𝑡 =
∑ (𝐽𝑃𝑆𝑘,𝑡 ∗ 𝑇𝑆𝑗,𝑘)𝑘

∑ 𝐽𝑃𝑆𝑡𝑘
 (3.20) 

where 𝑇𝑀 is the task measures as explained earlier. As a result, we obtain our five 𝑇𝑀 measures 

standing for each of the ALM model categories: 𝑇𝑀𝑁𝑅𝐴,𝑡, 𝑇𝑀𝑁𝑅𝐼,𝑡, 𝑇𝑀𝑅𝐶,𝑡,𝑇𝑀𝑅𝑀,𝑡 and 𝑇𝑀𝑁𝑅𝑀,𝑡. These 

metrics measure the prevalence of a given task category over 𝑡 periods based on the task content of 

occupations. The use of 𝑇𝑆 as weights allows us to consider the variation in intensity for a given task 

category across the occupations. Since this research focuses on how cognitive tasks drive the relative 

demand for skilled labour, we evaluate the influence on the skill premium of 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 , and 𝑇𝑀𝑅𝐶.  

3.5.1.3. Estimation of skills-related measures   

We code a job ad as having a specific skill category if we find keywords or phrases at least once. 

To perform this task, we build a dictionary linking our skills categories to text data. Our dictionary 

extends the skills categorization of Deming & Kahn (2018) by adding words and phrases from Spanish 

versions of the European Dictionary of Skills and Competencies (3s Unternehmensberatung, 2020) and 

the Occupational Information Network, O*NET (National Center for O*NET Development, 2020). We 

present a brief English version of our dictionary categories and related keywords and phrases in Table 

3.6 for illustration purposes. Appendix A.2.3 details the complete Spanish version of our dictionary. 

The inputs used to classify each job ad according to the skills category are the job title, job description 

and job-specific requirement variables. We concatenate these three open text variables and use the R 

package Quanteda developed by Benoit et al. (2018) to apply our three-step dictionary analysis. 

First, we create a corpus, our library of original job postings text stored with the job postings identifier. 

Second, we apply tokenization to the corpus to identify each word individually along with other pre-

processing text operations (e.g., removing symbols, numbers, Spanish stop words). We also evaluate 
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the addition of bigrams and trigrams, groups of two or three consecutive words, respectively, since 

some phrases on specific skills are longer than one word. Thirdly, we apply the dictionary to the tokens 

data to obtain the matching results, which correspond to the numbers of keywords or phrases found in 

the job postings text data according to our dictionary categories. 

 

 

  

Table 3.6. Dictionary of Skills Categories  

Job Skills Categories Keywords and Phrases 

Cognitive 

Problem-solving, research, analytical thinking, critical thinking, math, 

statistics, logical thinking, resourcefulness, self-assessment, technical 

understanding, intellectual curiosity, powers of discernment, among others. 

Social 

Communication, teamwork, collaboration, negotiation, presentation, 

communication in foreign languages, establishing contacts, fostering contacts, 

intercultural competences, among others 

Character 

Organised, detail-oriented, multitasking, time management, meeting deadlines, 

energetic, courage, personal initiative, judgement, discretion, ability to cope 

with pressure, punctuality, among others 

Writing 
Writing, clear writing style, elegant writing style, writing drafts, writing 

technical information and documents, among others 

Customer service 
Customer and customer orientation, sales talent, client and client orientation, 

patient 

Project management  Project management, project manager 

People management  
Supervisory, leadership, management (not project), mentoring, staff, human 

resources management, among others  

Financial Budgeting, accounting, finance, cost 

Computer (general) 
 Computer, spreadsheets, standard software (e.g., Microsoft Office, Microsoft 

Excel), internet user, among others 

Software (specific) 

List of 175 ICT technologies categorised as hot technologies regarding 

programming language and/or specialised software (e.g., Java, SQL, Python, 

Amazon Web Services)  
Source: Adapted from literature and specialized dictionaries (3s Unternehmensberatung, 2020; Deming & Kahn, 2018; 

National Center for O*NET Development, 2020) 

  

Also, in our procedure linking job ads to each skills category, a given job posting can contain more 

than one skill category and, we select the most prevalent, using the largest matching number. However, 

let us suppose we place a job posting in two or more categories due to equal or higher prevalence (e.g., 

the same number of keywords codified for the given categories). In that case, we cannot distinguish the 

dominant category, which excludes the job postings from the analysis. 

Once we have categorized job postings according to the skills categories, we build measures to 

represent the prevalence of Cognitive (𝐶𝑜𝑔𝑛𝑖), Social (𝑆𝑜𝑐), job postings requiring Cognitive and 

Social (𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐), and Software (𝑆𝑜𝑓𝑡) skills. As pointed out earlier, we are examining the impact on 

the skill premium, therefore, our measures are based on frequencies of job postings requiring skilled 

labour or 𝐽𝑃𝑆 over 𝑡 months. We represent our skills-related metrics, 𝑆𝑀𝑧,𝑡, for 𝑧 =

{𝐶𝑜𝑔𝑛𝑖, 𝑆𝑜𝑐, 𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐, 𝑆𝑜𝑓𝑡} as follows: 
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𝑆𝑀𝑧,𝑡 =
𝐽𝑃𝑆𝑧,𝑡

𝐽𝑃𝑆𝑡
 

(3.21) 

where 𝑆𝑀 refers to the share of skilled job postings frequency classified in a given 𝑧 skill category 

relative to the total frequency of skilled job postings in month 𝑡. Thus, our skills metrics are 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 

𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and, 𝑆𝑀𝑆𝑜𝑓𝑡 for each 𝑡. 

3.5.2. VAR modelling and econometric estimation 

To test our empirical models from Eq. (3.1) and Eq. (3.2), we model our time series data 

interactions using the VAR framework (Sims, 1980). This modelling relies on an autoregressive model 

applied to a series vector. This modelling allows us to treat each variable symmetrically (Enders, 2015). 

Thus, every variable is specified as endogenous and, in essence, dependent on all other lagged variables.  

Employing standard forms of inference within the VAR specification depends on the assumption of the 

stationarity of the variables, where, among other things, it is assumed that “unit roots” are not present. 

Testing for unit roots is required since estimation and inference in VARs become non-standard in the 

presence of unit roots in the data. Also, we perform lag order testing to estimate the optimal lag order 

for our VAR specification. Once we have performed these diagnostics and optimal lag selection, we 

estimate our VAR parameters. These parameters allow us to identify whether changes in a given 

variable causes changes in our target variable, the skill premium, by Granger causality testing and 

impulse-response function analysis, IRF (Granger, 1969).  

Also, since we analyse monthly data, like other labour outputs, our variables are natural candidates 

to be seasonal. In this sense, this data evolves in 12-month rounds; then, there is a potential serial 

correlation at the 12th lag. Therefore, we test and control for seasonality alongside our estimation 

strategy testing and including relevant seasonal dummies.  

We detail our VAR strategy stages below. We perform these analyses using Gretl as statistical 

software (Baiocchi & Distaso, 2003; Cottrell & Lucchetti, 2021).  

3.5.2.1. Stationarity and optimal lag order testing 

We apply the same stationarity and optimal lag order testing approaches as in essay 1 (see sections 

2.6.1.1 and 2.6.1.2 in Chapter 2). For stationarity, we conduct ADF and KPSS testing to modelling 

cases, including deterministic terms such as constant and linear trend. Also, we can add a quadratic 

trend, an available strategy in ADF but not in our KPSS due to software limitations34. We also examine 

seasonality by including seasonal dummies.  

Regarding optimal lag order selection, the typical approach is estimating VAR models with 

different lag orders beginning with higher-order lags. Since we use monthly data, our higher-order lag 

 
34 We also found this KPSS limitation in other common statistical software like EViews, Stata, and R packages like 

tseries. 
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is 12. The selected lag order relies on inspecting minimum values of statistical information criteria such 

as BIC and HQC that penalize overfitted models (see section 2.6.1.2 for details). In this research, we 

also examine how seasonal dummies might affect the BIC and HQC through improvements in the 

information criteria values designed to select the optimal VAR considering seasonality35.  

3.5.2.2. VAR specification and estimation 

To illustrate our VAR specification, let us suppose we are interested in capturing interactions 

between two economic variables, 𝑥1,𝑡 and 𝑥2,𝑡. According to Patterson (2000), in the VAR 

representation of this bivariate problem, 𝑥1,𝑡 is related to both its own lagged values and those of 𝑥2,𝑡, 

and equivalently 𝑥2,𝑡 is linked to its own lagged values and those of 𝑥1𝑡. Thus, two dimensions feature 

in a VAR model: the lag order in the autoregression, 𝑝, and the number of variables, 𝑘. In a two variables 

application, 𝑘 = 2, a first-order VAR, 𝑝 = 1, is 

(
𝑥1,𝑡

𝑥2,𝑡
) = (

𝜇1

𝜇2
) + (

𝜋1,1 𝜋1,2

𝜋2,1 𝜋2,2
) (

𝑥1,𝑡−1

𝑥2,𝑡−1
) + (

𝜀1,𝑡

𝜀2,𝑡
) (3.22) 

where 𝜇 are deterministic terms (e.g., a constant, a deterministic trend or both), 𝜀𝑡 are error terms, and 

𝑡 is time. A multivariate VAR generalization with order 𝑝 and 𝑛 variables is (Enders, 2015) 

𝑋𝑡 = 𝜇𝑡 + 𝐴1𝑋𝑡−1 + 𝐴2𝑋𝑡−2 + ⋯+ 𝐴𝑝𝑋𝑡−𝑝 + 𝜀𝑡 (3.23) 

where 𝑋𝑡 is an (𝑛 × 1) vector containing the 𝑛 variables involved in the VAR, 𝜇𝑡 is an (𝑛 × 1) constant 

vector or deterministic function of time, 𝐴𝑖 are the (𝑛 × 𝑛) matrices of coefficients and 𝜀𝑡 is a (𝑛 × 1) 

vector of i.i.d. multivariate normal error terms. To generalise the model in Eq. (3.23), we may add 

exogenous variables as explanatory variables, and the constant term 𝜇𝑡 might instead represent a 

polynomial in time. 

Our empirical specifications from Eq. (3.1) and Eq. (3.2) modelled under the VAR framework yield 

the following representations. We assume that our VARs are first-order though additional lags will be 

included in the lag selection phase and also possibly in the selection of the optimal model. For our task-

related analysis, our VAR model with a (4 × 1) vector of endogenous variables and, assuming a 𝑝 = 1, 

is: 

[

𝜔𝑡

𝑇𝑀𝑁𝑅𝐴,𝑡

𝑇𝑀𝑁𝑅𝐼,𝑡

𝑇𝑀𝑅𝐶,𝑡

] = [

𝜇1,𝑡

⋮

𝜇4,𝑡

] + [

𝛽1,1 ⋯ 𝛽1,4

⋮ ⋱ ⋮

𝛽4,1 ⋯ 𝛽4,4

] [

𝜔𝑡−1

𝑇𝑀𝑁𝑅𝐴,𝑡−1

𝑇𝑀𝑁𝑅𝐼,𝑡−1

𝑇𝑀𝑅𝐶,𝑡−1

] +

[
 
 
 
 
 
 
∑𝜌1,𝑖𝐷1,𝑖,𝑡

𝑠−1

𝑖=1
⋮

∑𝜌4,𝑖𝐷4,𝑖,𝑡

𝑠−1

𝑖=1 ]
 
 
 
 
 
 

+ [

𝜀1,𝑡

⋮

𝜀4,𝑡

] (3.24) 

where 𝜔 is the skill premium, and 𝑇𝑀𝑁𝑅𝐴,, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶 are the task-content related variables (see 

section 3.5.1.2.3 for construction details),  𝑡 is time and 𝜇 is the deterministic trend component. 𝛽𝑖,𝑗 

 
35 The addition of seasonal dummy variables prevents the optimal lag being equal to the seasonal period (e.g., 12 for monthly 

data) at the lag selection stage, since the high additive seasonality might otherwise induce a high autocorrelation at the 12th 

lag. 
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stands for the elements of the matrix of coefficients of lagged variables, and ∑ 𝜌𝑖𝐷𝑖,𝑡
𝑠
𝑖=1  stands for our 

𝑠 − 1 seasonal dummies 𝐷36 (11 for our 12-month data periodicity).  

Similarly, for the skill-related analysis, our VAR model with the (5 × 1) vector of endogenous 

variables is: 

[
 
 
 
 

𝜔𝑡

𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡

𝑆𝑀𝑆𝑜𝑐,𝑡

𝑆𝑀𝐶𝑜𝑔𝑆𝑜𝑐,𝑡

𝑆𝑀𝑆𝑜𝑓𝑡,𝑡 ]
 
 
 
 

= [

𝜇1,𝑡

⋮

𝜇5,𝑡

] + [

𝛽1,1 ⋯ 𝛽1,5

⋮ ⋱ ⋮

𝛽5,1 ⋯ 𝛽5,5

]

[
 
 
 
 

𝜔𝑡−1

𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡−1

𝑆𝑀𝑆𝑜𝑐,𝑡−1

𝑆𝑀𝐶𝑜𝑔𝑆𝑜𝑐,𝑡−1

𝑆𝑀𝑆𝑜𝑓𝑡,𝑡−1 ]
 
 
 
 

+

[
 
 
 
 
 
 ∑ 𝜌1,𝑘𝐷1,𝑘,𝑡

𝑠

𝑘=1
⋮

∑ 𝜌5,𝑘𝐷5,𝑘,𝑡

𝑠

𝑘=1 ]
 
 
 
 
 
 

+ [

𝜀1,𝑡

⋮

𝜀5,𝑡

] (3.25) 

where 𝑆𝑀𝐶𝑜𝑔𝑛𝑖, 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our skill-related measures (see section 3.5.1.3). The 

rest of the parameters are as described below Eq. (3.24). 

The econometric estimation of our VAR representations described by Eq. (3.24) and Eq. (3.25) 

can be estimated using OLS on each equation. This technique is possible because all regressions have 

identical right-hand side variables, and the error terms are assumed serially uncorrelated with constant 

variance (Enders, 2015). Since the parameters are unconstrained, the multivariate OLS delivers a 

consistent and asymptotically efficient estimator of all the parameters that coincides with Maximum 

Likelihood estimation under the assumption of multivariate normal i.i.d. errors (Cottrell & Lucchetti, 

2021).  

We focus below on parameter estimation from the equation with the skill premium, 𝜔, as the target 

variable. We specified the deterministic component 𝜇 as a linear time trend (constant, 𝜇0, and trend, 𝜇𝑡) 

since 𝜔 shows a trend, as noted by past studies (Gallego, 2012; Murakami, 2014), and potentially, this 

trend might imply non-stationarity. By adding this trend component, we can detrend the series to obtain 

a stationary process (Wooldridge, 2009). Also, we apply logarithms to all variables. Thus, our equation 

of interest for the task-content analysis is 

ln𝜔𝑡 = 𝜇0 + 𝜇𝑡 + [𝛽1,1 …𝛽1,4]

[
 
 
 

ln𝜔𝑡−1

ln 𝑇𝑀𝑁𝑅𝐴,𝑡−1

ln 𝑇𝑀𝑁𝑅𝐼,𝑡−1

ln 𝑇𝑀𝑅𝐶,𝑡−1 ]
 
 
 

+ ∑ 𝜌1,𝑘𝐷1,𝑘,𝑡

𝑠

𝑘=1

+ 𝜀1,𝑡 (3.26) 

Similarly, for the skill-related analysis, we have 

ln𝜔𝑡 = 𝜇0 + 𝜇𝑡 + [𝛽1,1 …𝛽1,5]

[
 
 
 
 
 

ln𝜔𝑡−1

ln 𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡−1

ln 𝑆𝑀𝑆𝑜𝑐,𝑡−1

ln 𝑆𝑀𝐶𝑜𝑔𝑆𝑜𝑐,𝑡−1

ln 𝑆𝑀𝑆𝑜𝑓𝑡,𝑡−1 ]
 
 
 
 
 

+ ∑ 𝜌1,𝑘𝐷1,𝑘,𝑡

𝑠

𝑘=1

+ 𝜀1,𝑡 (3.27) 

where 𝜇0, 𝜇𝑡, 𝛽𝑖,𝑗, and 𝜌,1𝑘 are our parameters of interest to be examined and interpreted.  

 
36 Since our data cover the January 2009 - December 2018 period, 𝐷1 shows we are in the first month, i.e., it takes on the value 

one in January and zero otherwise. 𝐷2 applies to February and so on.  
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3.5.2.3. Granger causality 

The VAR estimation parameters in our last stage allow us to perform Granger causality testing 

(Granger, 1969). Mainly, we evaluate the null hypothesis that no lags of 𝑗 variable is significant in the 

regression for variable 𝑖. If lagged values of 𝑗 improve the prediction of 𝑖, then it is said that 𝑗 ‘Granger 

causes’ 𝑖. Therefore, we can estimate the direction of causality and whether causality is bi-directional. 

From our bi-variate VAR illustration deployed in Eq. (3.22) under Granger testing, we test the following 

hypotheses: 

• lags of 𝑥1,𝑡 do not explain 𝑥2,𝑡, which implies the restriction  𝜋2,1 = 0 

• lags of 𝑥2,𝑡 do not explain 𝑥1,𝑡, which implies the restriction  𝜋1,2 = 0 

 We test these hypotheses by evaluating the 𝐹 test statistics performed for each variable. If 𝑥1 

causes 𝑥2, the 𝑥1 lagged values should be significant in 𝑥2 equation. In this case, we can say that 𝑥1 

‘Granger causes’ 𝑥2.  

We evaluate the Granger causality statistics for an equation where the skill premium is the 

dependent variable from the VAR specification of our empirical modelling. For example, for the model 

represented in Eq. (3.24), we state null hypotheses such as ‘lags of 𝑇𝑀𝑁𝑅𝐴 do not Granger-cause the 

skill premium, 𝜔’, and then they can be rejected or not based on 𝐹 statistics (𝐹statistic compared to 𝐹-

value and resulting 𝑝-value). Thus, in our example we assume the Granger-causality of 𝑇𝑀𝑁𝑅𝐴 towards 

the skill premium whether the coefficients estimated on the lagged 𝑇𝑀𝑁𝑅𝐴 in Eq. (3.26) are statistically 

different zero as a group.  

3.5.2.4. Impulse-response function, IRF, analysis 

To enrich our understanding of the interaction between the variables in our VAR specification, 

given that the Granger causality statistics may not tell us the complete story, we apply the IRF analysis 

(Lutkepohl, 2005; Neusser, 2016). The IRF allow us to examine the response of our dependant variable 

through time, the skill premium, to an impulse in another variable specified in our VAR representations 

described by Eq. (3.24) and Eq. (3.25).  

Formally, let us assume that the error term 𝜀𝑡, from our multivariate VAR generalization with 𝑝 

order and 𝑘 variables represented by Eq. (3.23) can be expressed as a linear function of a vector of 

shocks represented by 𝑢𝑡 (Cottrell & Lucchetti, 2021). If the elements of 𝑢𝑡 have unit variance and are 

mutually uncorrelated, then 𝑉(𝑢𝑡) = 𝐼. Assuming that the errors in the VAR can be expressed as 𝜀𝑡 =

𝐾𝑢𝑡, we can write ∑ = 𝑉𝑐𝑜𝑣(𝜀𝑡) = 𝐾𝐾′. From this configuration we have the following sequence of 

matrices 𝐶𝑘
37, in the following equation:   

 
37 This sequence of matrices is also called the moving average representation or VMA representation. It refers to the fact that 

every stationary VAR process has an infinite order vector moving average representation (Cottrell & Lucchetti, 2021). 
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𝐶𝑘 =
𝜕𝑦𝑡

𝜕𝑢𝑡−𝑖
= Θ𝑘𝐾. (3.28) 

From our VAR generalization represented by Eq. (3.23), we can derive the IRF of variable 𝑖 to 

shock 𝑗. This IRF will be the sequence of the elements in row 𝑖 and column 𝑗 of the sequence of matrices 

𝐶𝑘 given by Eq. (3.28). Using the notation given by Cottrell & Lucchetti (2021), the IRF represented 

by symbols is: 

𝜁𝑖,𝑗,𝑘 =
𝜕𝑦𝑖,𝑡

𝜕𝑢𝑗,𝑡−𝑘
. 

(3.29) 

The IRF can be plotted graphically as a function of 𝑘 to observe and interpret the occurrence of 

transmission from one specific variable to our dependant variable of interest through time. In practical 

terms, the scale of the IRF plots refers to the sizing of the “shock” at one standard deviation of the 

estimated innovations in the variable stated as the origin of the impulse. The responses are given in 

units of the target variable, which in our research refers to months. Since these results are estimations 

of each IRFs interaction, they are endowed with confidence intervals. Our Gretl implementation 

computes these intervals using bootstrap techniques, considering the construction of an artificial dataset 

with resampled residuals and evaluated by repetitive sampling (Cottrell & Lucchetti, 2021). In our IRF 

plots analysis, we set the following: the bootstrap confidence interval at 1 − 𝛼 = 0.95, 1,999 bootstrap 

iterations (by default value) and a forecast horizon of 24 months.  

Also, in the estimation process, we compute 𝐾, which is considered a known parameter in the 

formula given by Eq. (3.28). Following standard procedures in the  literature (see, e.g., Lutkepohl, 

2005), Gretl estimates 𝐾 as the Cholesky decomposition of ∑ = 𝑉𝑐𝑜𝑣(𝜀𝑡) = 𝐾𝐾′ since it is assumed 

that 𝐾 is lower triangular (Cottrell & Lucchetti, 2021). However, the Cholesky decomposition is not 

unique because it depends on the ordering of the variables within the vector 𝑦𝑡 i.e., our vector of 

endogenous variables. This ordering is critical since 𝐾 is also the matrix of IRF at lag 0, and the assumed 

triangularity implies that the first variable in the vector 𝑦𝑡 responds contemporaneously only to shock 

number one, the second variable only to shocks one and two, and so on. Therefore, the order of our 

variables is meaningful where the independent variables must be placed before our target variable, the 

skill premium, in the variables list. As a result, the shock in the independent variables affects our target 

variable instantaneously, but not vice versa. In terms of interpretation, since our variables are in logs, 

we can say that a 1% unexpected shock or increase in an independent variable one, two, three, etc., 

periods back is an increase/decrease (expressed in percentage) in the skill premium today. 

3.6. Results 

This section aims to show our results in three main subsections. First, we detail the results from our 

estimation of the dependant and explanatory variables. Second and third, we present the findings of our 
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VAR strategy, including the Granger-causality and IRF output preceded by stationary and optimal lag 

order testing results, for the task-content and skill-related analysis, respectively. 

3.6.1. Estimation of variables 

This section outlines the results from estimating the skill premium (see section 3.5.1.1 for 

construction details), the task-content of jobs and skill-related measures, following the strategies 

explained in section 3.5.1.2 and section 3.5.1.3, respectively. 

3.6.1.1. The skill premium 

Figure 3.2 displays the monthly evolution of our measure for the skill premium over 2009-2018. 

The skill premium shows an inverted U-shaped pattern, growing to a peak of 1.26 in November 2011 

and then reducing, although with fluctuations. Over two years on average, the skill premium variable 

increased from 1.05 in 2009-2010 to 1.16 in 2011-2012. In turn, in 2013-2014, 2015-2016 and 2017-

2018, it decreased to 1.09, 1.02 and 0.9, respectively. This pattern, composed by a reversal during most 

of the 2010s, has also been noted by past studies using different data sources, such as labour and 

households representative surveys (see, e.g., Murakami, 2014; Parro & Reyes, 2017). Also, in the first 

essay, we also add evidence on this skill premium evolution (see Chapter 2, section 2.7.1). 

Figure 3.2. The skill premium monthly evolution Jan 2009- Dec 2018 

 

 

 

 

 

 

 

 

 

 

3.6.1.2. The task-content measures  

This section presents the results of our three-step strategy designed to build our task-content 

measures as described in section 3.5.1.2. First, we start by showing the findings of our manual 

classification of work activities into the categories proposed by the ALM model for 41 2-digit standard 

occupational groups. Secondly, we present the results obtained by applying our SVM algorithm to 

classify and label each job ad against the 41 2-digit occupations. Third, we outline our findings on 
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constructing measures to represent the task content of job ads over time, focusing on the sample of job 

ads requiring skilled labour.  

3.6.1.2.1. Estimation of the task content for the 41 2-digit occupations 

Here we describe the output from the manual classification of work activities for the 41 2-digit 

occupational groups under analysis. On average, an occupation consists of around 20 work activities 

(min=5 and max= 45). We analyse and classify 848 work activities (803 unique) according to the five 

ALM model task categories. We build task-content percentage shares, 𝑇𝑆, the RII, and CII indicators 

(See Eq.  (3.4), (3.5), and (3.6), respectively) by occupational groups. 

Table 3.7. shows the global distribution of tasks percentage shares across occupational groups. 

Each row represents one of the 41 2-digit occupational groups and columns, 𝑇𝑆𝑁𝑅𝐴, 𝑇𝑆𝑁𝑅𝐼, 𝑇𝑆𝑅𝐶,𝑇𝑆𝑅𝑀 

and 𝑇𝑆𝑁𝑅𝑀 depict the tasks shares of the five task types per occupational group. The score in columns 

𝑇𝑆𝑁𝑅𝐴, 𝑇𝑆𝑁𝑅𝐼, 𝑇𝑆𝑅𝐶,𝑇𝑆𝑅𝑀 and 𝑇𝑆𝑁𝑅𝑀 in Table 3.7 ranges between zero and one. A zero score implies 

that a given occupational group does not contain any work activity in that task category. Alternatively, 

scores equal to one show that all work activities for a given occupational group belong to a unique task 

category. For instance, the first row of Table 3.7 displays the distribution of task categories for the 

“Chief executives, senior officials, and legislators” group. Only non-routine analytical and non-routine 

interactive tasks feature this occupation, given the 0.54 and 0.46 scores for the 𝑇𝑆𝑁𝑅𝐴 and 𝑇𝑆𝑁𝑅𝐼 shares, 

respectively. In contrast, occupations such as 2-digits codes 82, 83, 91, among others, show a score 

equal to zero for 𝑇𝑆𝑁𝑅𝐴 and 𝑇𝑆𝑁𝑅𝐼. 

For the sake of clarity, and since we are interested in skilled occupations performing non-routine 

analytical and interactive tasks, 𝑇𝑆𝑁𝑅𝐴 and 𝑇𝑆𝑁𝑅𝐼, respectively, Figure 3.3 depicts visually the global 

distribution shown by Table 3.7 sorted according to the higher 𝑇𝑆𝑁𝑅𝐴 score. The x-axis plots the 41 

occupations (each bar stands for one group), and the y-axis shows the task categories’ scores (each 

colour stands for one task category). The occupations with the two highest 𝑇𝑆𝑁𝑅𝐴 scores (bar’s blue 

segment), i.e.., values over 0.75 or at least with ¾ of their task-content composed only of non-routine 

analytical tasks, are “ICT professionals” and “Science and engineering professionals” (the first two 

occupations in the x-axis). In the case of 𝑇𝑆𝑁𝑅𝐼 (bar’s grey segment), some examples of occupations 

with high values are “Administrative and commercial managers” and “Production and specialized 

services managers” (see the second and third rows of Table 3.7). We see similar scores of 𝑇𝑆𝑁𝑅𝐼 for 

some occupations in the generic category of “associate professionals or technicians” (e.g., the 2-digit 

codes 35 and 36 in Table 3.7). These results are as expected since non-routine analytical and interactive 

work activities, such as researching, evaluating, designing, and managing, usually feature occupations 

performed by managers, professionals and some associate professionals or technicians. These workers 

are primarily highly-educated or skilled labour, given that post-secondary education provides and 

promotes specific knowledge and abilities, respectively. We give more insights on this relationship 
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between non-routine analytical and interactive work activities and occupations employing skilled labour 

in our categorization of job ads according to the occupational classification in the next section, 3.6.1.2.2.    

Turning to the RII and CII columns in Table 3.7, we see that ten occupations have an RII of -1 

(e.g., 2-digits codes 11, 12, 21), and only “Assemblers” has an RII equal to one, which implies that 

these groups contain non-routine and routine tasks only, respectively. Regarding CII, 13 occupations 

have a CII equal to one (e.g., 11, 12, 13), which implies that these occupations consist of cognitive tasks 

only, routine and/or non-routine.  
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Table 3.7. Task-content shares for the 41 2-digit occupational groups 

2-dig Occupation Code 2-dig Occupation Name 𝑇𝑆𝑁𝑅𝐴 𝑇𝑆𝑁𝑅𝐼 𝑇𝑆𝑅𝐶  𝑇𝑆𝑅𝑀 𝑇𝑆𝑁𝑅𝑀 RII CII 

11 Chief executives, senior officials, and legislators 0.54 0.46 0.00 0.00 0.00 -1.00 1.00 

12 Administrative and commercial managers 0.35 0.65 0.00 0.00 0.00 -1.00 1.00 

13 Production and specialised services managers 0.30 0.68 0.03 0.00 0.00 -0.95 1.00 

14 Hospitality, retail, and related services managers 0.39 0.52 0.09 0.00 0.00 -0.83 1.00 

21 Science and engineering professionals 0.77 0.23 0.00 0.00 0.00 -1.00 1.00 

22 Health professionals 0.54 0.37 0.05 0.00 0.05 -0.90 0.90 

23 Teaching professionals 0.39 0.51 0.10 0.00 0.00 -0.80 1.00 

24 Business and administration professionals 0.50 0.44 0.06 0.00 0.00 -0.89 1.00 

25 ICT professionals 0.90 0.00 0.10 0.00 0.00 -0.80 1.00 

26 Legal, social, and cultural professionals 0.56 0.40 0.04 0.00 0.00 -0.92 1.00 

31 Science and engineering associate professionals (technicians) 0.39 0.21 0.27 0.06 0.06 -0.33 0.76 

32 Health associate professionals (technicians) 0.32 0.24 0.08 0.05 0.32 -0.74 0.26 

33 Business and administration associate professionals (technicians) 0.14 0.31 0.52 0.00 0.03 0.03 0.93 

34 Legal, social, cultural, and related associate professionals (technicians) 0.20 0.65 0.05 0.00 0.10 -0.90 0.80 

35 ICT associate professionals (technicians) 0.35 0.29 0.29 0.00 0.06 -0.41 0.88 

36 Teaching associate professionals (technicians) 0.14 0.71 0.00 0.00 0.14 -1.00 0.71 

41 General and keyboard clerks 0.00 0.05 0.95 0.00 0.00 0.90 1.00 

42 Customer services clerks 0.00 0.15 0.85 0.00 0.00 0.69 1.00 

43 Numerical and material recording clerks 0.00 0.17 0.83 0.00 0.00 0.67 1.00 

44 Other clerical support workers 0.00 0.13 0.88 0.00 0.00 0.75 1.00 

51 Personal services workers 0.00 0.24 0.14 0.05 0.57 -0.62 -0.24 

52 Sales workers 0.00 0.32 0.39 0.03 0.26 -0.16 0.42 

53 Personal care workers 0.00 0.67 0.00 0.00 0.33 -1.00 0.33 

54 Protective services workers 0.00 0.14 0.00 0.00 0.86 -1.00 -0.71 

61 Market-oriented skilled agricultural workers and farmers 0.13 0.25 0.22 0.09 0.31 -0.38 0.19 

62 Market-oriented skilled forestry, fishery and hunting workers 0.05 0.20 0.05 0.05 0.65 -0.80 -0.40 

63 Subsistence farmers, fishers, hunters, and gatherers 0.03 0.06 0.00 0.12 0.79 -0.76 -0.82 

71 Building and related trades workers (excluding electricians) 0.00 0.11 0.00 0.00 0.89 -1.00 -0.78 

72 Metal, machinery, and related trades workers 0.00 0.00 0.00 0.17 0.83 -0.67 -1.00 

73 Handicraft and printing workers 0.13 0.00 0.13 0.19 0.56 -0.38 -0.50 

74 Electrical and electronic trades workers 0.07 0.07 0.14 0.00 0.71 -0.71 -0.43 

75 Food processing, woodworking, garment, and related trades workers 0.07 0.04 0.07 0.26 0.56 -0.33 -0.63 

81 Stationary plant and machine operators 0.00 0.11 0.13 0.67 0.09 0.60 -0.51 

82 Assemblers 0.00 0.00 0.20 0.80 0.00 1.00 -0.60 

83 Drivers and mobile plant operators 0.00 0.00 0.00 0.06 0.94 -0.89 -1.00 

91 Cleaners and helpers 0.00 0.00 0.00 0.00 1.00 -1.00 -1.00 

92 Agricultural, forestry and fishery labourers 0.00 0.00 0.00 0.11 0.89 -0.78 -1.00 

93 Labourers in mining, construction, manufacturing, and transport 0.00 0.00 0.00 0.33 0.67 -0.33 -1.00 

94 Food preparation assistants 0.00 0.00 0.00 0.00 1.00 -1.00 -1.00 

95 Street and related sales and services workers 0.00 0.46 0.00 0.00 0.54 -1.00 -0.08 

96 Refuse workers and other elementary workers 0.00 0.00 0.36 0.09 0.55 -0.09 -0.27 

Abbreviations: 𝑇𝑆𝑁𝑅𝐴= non-routine analytical tasks share, 𝑇𝑆𝑁𝑅𝐼= non-routine interactive tasks share, 𝑇𝑆𝑅𝐶= routine cognitive tasks share, 𝑇𝑆𝑅𝑀= routine manual tasks share and, 𝑇𝑆𝑁𝑅𝑀= non-

routine manual tasks share. RII is Routine Intensity Index and CII is Cognitive Intensity Index
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Figure 3.3. Distribution of task shares by occupation groups (occupation codes in parentheses). 

  
Notes: Groups sorted from higher non-routine analytical task share, 𝑇𝑆𝑁𝑅𝐴 (See Table 3.7). Abbreviations: 𝑇𝑆𝑁𝑅𝐴= non-routine analytical tasks share, 𝑇𝑆𝑁𝑅𝐼= non-routine interactive tasks share, 

𝑇𝑆𝑅𝐶= routine cognitive tasks share, 𝑇𝑆𝑅𝑀= routine manual tasks share and, 𝑇𝑆𝑁𝑅𝑀= non-routine manual tasks share 
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3.6.1.2.2. Classification of job ads into the 41 2-digit occupational 

groups 

This section outlines the results of our strategy of classifying our job ads sample against the 41 2-

digit occupations. This strategy corresponds to the Step Two of our estimation of task-content measures. 

As detailed in section 3.5.1.2.2, we apply our SVM algorithm to obtain as an output a 2-digit occupation 

label as a new variable for each job ad.  

The DTM representation of our training sample (see section 3.5.1.2.2.2.2) corresponds to a matrix 

of 67,656 documents and 210,689 features (unigrams and bigrams). Once we have “trained” our  SVM 

algorithm (LinearSVC) using 𝐶 = 1 and balanced class weights as detailed in section 3.5.1.2.2.2.1, we 

evaluate the SVM prediction following the metrics 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓1 − 𝑠𝑐𝑜𝑟𝑒, as described by 

section 3.5.1.2.2.2.3. Table 3.8. displays the classification report from the results of the SVM 

evaluation.   

Table 3.8. Classification report for the SVM (LinearSVC ) application 

2-dig Code precision recall f1-score 
N support (80% training 

sample) 

11 0.91 0.54 0.68 143 
12 0.81 0.76 0.78 571 
13 0.76 0.48 0.59 219 
14 0.83 0.37 0.51 94 
21 0.86 0.88 0.87 3,867 
22 0.93 0.97 0.95 1,418 
23 0.95 0.93 0.94 533 
24 0.94 0.94 0.94 8,894 
25 0.89 0.88 0.88 1,661 
26 0.91 0.95 0.93 1,030 
31 0.9 0.86 0.88 2,589 
32 0.96 0.96 0.96 805 
33 0.97 0.97 0.97 12,437 
34 0.86 0.8 0.83 571 
35 0.86 0.92 0.88 1,653 
36 0.91 0.7 0.79 211 
41 0.9 0.86 0.88 3,970 
42 0.84 0.87 0.85 1,420 
43 0.89 0.93 0.91 2,379 
44 0.93 0.86 0.89 578 
51 0.92 0.86 0.89 772 
52 0.91 0.96 0.93 3,748 
53 0.75 0.78 0.77 99 
54 0.97 0.99 0.98 902 
61 0.9 0.52 0.66 86 
71 0.88 0.68 0.77 117 
72 0.84 0.87 0.85 885 
73 0.93 0.93 0.93 75 
74 0.81 0.78 0.8 497 
75 0.68 0.69 0.68 106 
81 0.81 0.66 0.73 479 
83 0.93 0.98 0.95 634 
91 0.92 0.99 0.95 530 
93 0.93 0.52 0.67 50 
94 0.93 0.85 0.89 102 

global accuracy 
  

0.92 54,125 

macro average 0.88 0.81 0.84 54,125 

weighted average 0.92 0.92 0.91 54,125 
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The first column in Table 3.8 refers to 35 2-digit occupational codes38, and in the subsequent 

columns, we see the metrics 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 results at the occupation level. The last 

column shows the number of occurrences of the occupation in the training dataset. We can see that the 

predictive performance of SVM depends on the analysed occupational group with better results in 

occupations with higher representation in the sample. Overall, by observing the global evaluation of 

SVM in the bottom rows of Table 3.8, we see that 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is 0.92 and the 𝑚𝑎𝑐𝑟𝑜 and 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 averages for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 fall between 0.81 and 0.92. These results 

are as expected and, in line with past studies, i.e., 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 around 

85% (see e.g., Guerrero & Cabezas, 2019). In the following paragraph, we detail the output resulting 

from the application of our SVM algorithm on the unlabelled job posting data.  

The SVM application labelled 122,330 job ads with an occupational group. This sample plus our 

training dataset (67,656 job ads) represents our whole dataset (189,986 job ads), as detailed in section 

3.4. Our labelling procedure shows six missing occupational groups in our analysis since no job ad was 

distributed to any of them (see footnote 38). Consequently, our job ads sample is distributed across 35 

2-digit occupational groups. In Table 3.9, we show the distribution of job ads by occupational group 

and year, focusing on the 19 most represented groups in the dataset (these 19 groups stand for 93% of 

the dataset). Two occupational groups, “Business and administration associate professionals 

(technicians)” and “Business and administration professionals”, represent 34% of the sample. We can 

see at the bottom of the table those occupations that are 1% or a lower percentage of the sample (see 

row “Rest (16 Occupational Groups)”).  

Recapitulating, our measures of tasks-related measures aim to capture the distribution of task 

categories across skilled labour. In this regard, Table 3.10 shows the composition of our sample in terms 

of unskilled and skilled labour categories across occupational groups (see section 3.5.1.1 for details on 

how we define skilled and unskilled). Remarkably, we see in most represented occupations a clear 

differentiation between occupations requiring skilled or unskilled labour. Thus, in the case of 

occupations demanding skilled labour, they show percentages over 94% for a given occupation. As 

discussed in our last section 3.6.1.2.1, these results align with our expectation that most occupations 

filled by managers, professionals and associate professionals or technicians demand skilled labour (see, 

e.g., the 2-digit Code Occupations 33, 21, 31 in Table 3.10). In terms of our sample of interest to 

construct measures of task-content of jobs requiring skilled labour, the bottom row of Table 3.10 shows 

that our sample of job ads is 120,970.

 
38 Unlike to the task-content analysis in section 3.6.1.2.1 examining 41 2-digit occupational groups, our training sample is 

composed of only 35 occupational groups. We cannot allocate job ads to any of the following six groups (code in parentheses): 

(62) Market-oriented skilled forestry, fishery and hunting workers, (63) Subsistence farmers, fishers, hunters and gatherers, 

(63) Assemblers, (92) Agricultural, forestry and fishery labourers, (95) Street and related sales and services workers, (96) 

Refuse workers and other elementary workers. 
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Table 3.9. Distribution (%) of Job ads by selected 2-digit occupations 2009-2018 

2-dig 

Code 

  

2- dig Name Occupation 

  

Year Total  

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 N % 

33 Business and administration associate professionals (technicians)      1,882       2,377       4,271       4,596       4,551       3,873       3,798       3,837       3,440       3,619       36,244  19.08 

24 Business and administration professionals      2,098       2,838       4,315       3,759       3,157       2,737       2,761       2,410       2,413       2,792       29,280  15.41 

52 Sales workers         712       1,058       2,202       2,261       2,341       1,722       1,818       1,738       1,391       1,492       16,735  8.81 

21 Science and engineering professionals         854       1,422       2,370       1,966       1,522       1,283       1,599       1,467       1,201       1,442       15,126  7.96 

41 General and keyboard clerks         608          941       1,570       1,575       1,511       1,192       1,100       1,121       1,001          788       11,407  6.00 

42 Customer services clerks         595          593       1,517       1,398       1,234       1,868       1,602       1,217          764          510       11,298  5.95 

31 Science and engineering associate professionals (technicians)         354          603       1,051       1,158       1,061          896          907       1,004          977       1,067         9,078  4.78 

43 Numerical and material recording clerks         215          398       1,119       1,355       1,088          663          552          581          629          521         7,121  3.75 

22 Health professionals         357          547          848          885          913          577          526          450          587          702         6,392  3.36 

25 ICT professionals         604          727       1,143          790          543          447          462          550          368          540         6,174  3.25 

35 ICT associate professionals (technicians)         356          401          859          811          667          534          513          649          451          478         5,719  3.01 

72 Metal, machinery, and related trades workers           89          193          405          588          475          334          325          471          304          320         3,504  1.84 

26 Legal, social, and cultural professionals         186          278          372          332          305          318          347          370          354          333         3,195  1.68 

23 Teaching professionals         109          144          254          272          370          308          334          431          480          481         3,183  1.68 

54 Protective services workers           79          233          550          485          336          218          298          321          216          188         2,924  1.54 

51 Personal services workers         173          131          324          268          324          514          363          327          294          190         2,908  1.53 

83 Drivers and mobile plant operators           54          109          261          327          356          275          288          364          364          283         2,681  1.41 

32 Health associate professionals (technicians)           69          118          251          404          354          259          222          217          224          262         2,380  1.25 

81 Stationary plant and machine operators           81          147          247          372          237          216          179          188          232          199         2,098  1.10 

 Rest (16 Occupational Groups)         617          754       1,352       1,279       1,350       1,353       1,379       1,755       1,465       1,235       12,539  6.60 

 Total    10,092     14,012     25,281     24,881     22,695     19,587     19,373     19,468     17,155     17,442     189,986  100 

Notes: 2-dig codes of the 16 occupational groups in “Rest” category: 91,74,34,12,44,36,94,53,14,75,13,71,11,73,93, and 61. 
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Table 3.10. Job Ads distribution by occupations and skilled/unskilled definition 
2-dig 

Code 
2-dig Name Occupation 

Unskilled Skilled 
Total 

N % N % 

33 Business and administration technicians 25 0.07 36,219 99.93 36,244 

24 Business and administration professionals - 0.00 29,280 100 29,280 

52 Sales workers 16,733 99.99 2 0.01 16,735 

21 Science and engineering professionals 10 0.07 15,116 99.93 15,126 

41 General and keyboard clerks 11,407 100 - 0.00 11,407 

42 Customer services clerks 11,294 99.96 4 0.04 11,298 

31 Science and engineering technicians 176 1.94 8,902 98.06 9,078 

43 Numerical and material recording clerks 7,120 99.99 1 0.01 7,121 

22 Health professionals 46 0.72 6,346 99.28 6,392 

25 ICT professionals 21 0.34 6,153 99.66 6,174 

35 ICT associate professionals (technicians) 315 5.51 5,404 94.49 5,719 

72 Metal, machinery, and trades workers 3,503 99.97 1 0.03 3,504 

26 Legal, social, and cultural professionals 28 0.88 3,167 99.12 3,195 

23 Teaching professionals 19 0.60 3,164 99.40 3,183 

54 Protective services workers 2,870 98.15 54 1.85 2,924 

51 Personal services workers 2,859 98.31 49 1.69 2,908 

83 Drivers and mobile plant operators 2,650 98.84 31 1.16 2,681 

32 Health associate professionals (technicians) 71 2.98 2,309 97.02 2,380 

81 Stationary plant and machine operators 2,098 100 - 0.00 2,098 

 Rest (16 Occupational Groups) 7,771 61.97 4,768 38.03 12,539 

 Total 69,016 36.33 120,970 63.67 189,986 

Notes: 2-dig codes of the 16 occupational groups in “Rest” category: 91,74,34,12,44,36,94,53,14,75,13,71,11,73,93, and 61. 

3.6.1.2.3. Estimation of the task-content measures  

This section shows the results for estimating the task-content measures described by Eq. (3.20) (see 

section 3.5.1.2.3). Our sample is the 120,970 job ads requiring skilled labour (see section 3.6.1.2.2).  

Figure 3.4 displays the frequencies distribution for our 120 monthly data points (Jan 2009 – Dec 2018). 

The mean, standard deviation, min freq and max freq are 1,008.1, 247.4, 466 and 1,589, respectively.  

More general, the frequency of job ads under analysis in most data points (over 100) is in the range 

[700, 1400].  

 

Figure 3.4. Histogram of monthly frequencies for job ads requiring skilled labour 2009-2018 

 

 

 

 

 

 

 

 

Figure 3.5 plots the series representing our task-content measures focusing on cognitive tasks. We 

focus on the task measures for the following ALM model categories: non-routine analytical (𝑇𝑀𝑁𝑅𝐴: 

solid black line on top of the plot), non-routine interactive (𝑇𝑀𝑁𝑅𝐼; black dashed line at the middle of 

plot) and routine cognitive (𝑇𝑀𝑅𝐶; solid grey line at the bottom of the plot). 
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Figure 3.5. Task-content measures time series 2009-2018 

 

Note: 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶 stand for non-routine analytical, non-routine interactive and routine cognitive 

tasks, respectively. 

 

In Figure 3.5, the 𝑇𝑀𝑁𝑅𝐴 series indicates that the intensity ratio of non-routine analytical tasks 

required by job ads for skilled labour fluctuates between 0.38 and 0.48 over the period. This measure 

shows an initial steady pattern, and then it decreases to grow up again, although with fluctuations. We 

also see a fluctuating pattern for the 𝑇𝑀𝑅𝐶 measure between 0.17 and 0.2 6 but starting with an 

increasing trend and then a steady pattern. This measure shows that the intensity ratio of routine 

cognitive interactive task-content of jobs demanding skilled labour fluctuates.  𝑇𝑀𝑁𝑅𝐼 shows a narrower 

range, i.e. between 0.32 and 0.35, compared to the rest of the series. This pattern implies that the 

intensity of non-routine interactive tasks in job ads demanding skilled labour stays stable over the 

period. 

3.6.1.3. The skills-related measures 

This section outlines the output of the categorization of job ads according to the skills categories 

and the computation of the skills-related measures. See section 3.5.1.3 for construction details. 

3.6.1.3.1. Classification of job ads according to the skills categories 

Applying our skills categories dictionary to the job ads dataset resulted in 137,647 job ads 

categorized according to the ten proposed skills categories (see Table 3.6). Our classification relies on 

the frequency of keywords or phrases found in the job ads text across skills categories. We allocate each 
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job ad in the most prevalent category, i.e., the skills category with the highest frequency of found 

keywords. However, some job ads have the same frequency of keywords for different categories, 

implying that we cannot decide which category is most prevalent. Therefore, we discard these 

observations and our sample, characterised by one prevalent skill category, results in 124,973 job ads.  

We present the distribution of our 124,973 job ads sample across the ten skills categories over the years 

in Table 3.11. Globally, “Customer service” is the most represented category with over 53% of the 

sample, followed by “Financial” (15.54%) and “Social” (7.71%). The less represented categories are 

“Project management” and “Writing”, 0.55% and 0.45%, respectively, of our sample. Over time, 

although with fluctuations, the number of job ads requiring each category increases.  

Regarding our measure to identify job ads demanding cognitive and social skills simultaneously, 

our sample consists of 7,905 observations. We display its distribution over the years in Table 3.12. The 

number of job ads requiring cognitive and social skills started with 358 in 2009 and reached a peak in 

2011 with 1,031. Then it decreased to 727 in 2017, but it increased gain in 2018 to 832 observations.   

Also, since we are interested in the skill categories across skilled labour, in Table 3.13, we show the 

distribution of our sample in terms of unskilled and skilled labour. We see that eight of the ten proposed 

skills categories are mostly demanding skilled labour (at least 70%). The first two rows show that 

Cognitive and Social represent over 73% and 74%, respectively, of job ads demanding skilled workers. 

This result is in line with our expectations of positions rich in cognitive (e.g., reasoning, evaluating) 

and social (e.g., communication ability) skills employing skilled labour. Our sample of job ads requiring 

skilled labour used to construct the skill-related metrics is 83,202, as shown in the bottom row of the 

Skilled column in Table 3.13.  

Table 3.14 presents the job ads requiring simultaneously Cognitive and Social skills under the 

skilled-unskilled differentiation. We observe that over 80% of job ads requiring both Cognitive and 

Social skills demand skilled labour. In this regard, we construct our metric using the 6,401 job ads 

sample as shown by the Skilled column in Table 3.14. 
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Table 3.11. Job ads distribution (%) by skills category 2009-2018 

Job Skills Categories 
Year Total 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 N % 

Cognitive      238           434            726            576            603            507            464            504            564            517  5,133 4.11 

Social      497           727          1,151          1,192          1,108            908          1,013            961            999          1,076  9,632 7.71 

Character      100           153            236            398            382            377            319            500            231            298  2,994 2.40 

Writing        26            43              79              62              52              71              62              72              59              33  559 0.45 

Customer service    3,714        4,702          8,730          8,782          7,590          7,680          7,240          6,652          5,435          5,923  66,448 53.17 

Project management         28            50              81              77              67              75              63              75              91              75  682 0.55 

People management       353           583            979          1,023          1,216            900            792            678            564            627  7,715 6.17 

Financial    1,262        1,620          2,557          2,560          2,153          1,868          1,897          1,822          1,803          1,875  19,417 15.54 

Computer (general)      321           451            752            708            627            467            448            492            477            496  5,239 4.19 

Software (specific)      511           734          1,183            951            708            554            610            718            555            630  7,154 5.72 

Total    7,050        9,497        16,474        16,329        14,506        13,407        12,908        12,474        10,778        11,550  124,973 100 

 

 

Table 3.12. Distribution of jobs ads requiring Cognitive and Social skills simultaneously by year 

 year 

Total Job Ads with both 

Cognitive and Social 

skills 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

358 616 1031 993 853 871 876 748 727 832           7,905  
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Table 3.13. Distribution by skilled 

Skills Categories 
Unskilled Skilled 

Total 
N % N % 

Cognitive         1,377  26.83           3,756  73.17           5,133  

Social         2,468  25.62           7,164  74.38           9,632  

Character         1,517  50.67           1,477  49.33           2,994  

Writing            154  27.55             405  72.45             559  

Customer service       28,475  42.85         37,973  57.15         66,448  

Project management                7  1.03             675  98.97             682  

People management          2,471  32.03           5,244  67.97           7,715  

Financial         3,045  15.68         16,372  84.32         19,417  

Computer (general)         1,541  29.41           3,698  70.59           5,239  

Software (specific)            616  8.61           6,538  91.39           7,154  

Total       41,671  33.34       83,302  66.66       124,973 

 

Table 3.14. Distribution job ads Cognitive social by skilled 

Job Ads requiring 

Cognitive and Social skills 

Unskilled Skilled 
Total 

N % N % 

1,504 19.03 6,401 80.97 7,905 

 

3.6.1.3.2. Estimation of the skills-related measures 

This section outlines the results for estimating our skill-related measures described by Eq. (3.21) 

(see section 3.5.1.3). Our metrics 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and, 𝑆𝑀𝑆𝑜𝑓𝑡 capture the prevalence of 

job ads requiring cognitive, social, cognitive and social simultaneously, and software skills, 

respectively, relative to the total frequency of job ads demanding skilled labour. We compute these 

metrics monthly from January 2009 to December 2018, resulting in the series displayed in Figure 3.6. 

In the top left-hand plot, we see the 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 variable, which shows a fluctuating pattern over the period 

without a clear increasing or decreasing trend. In the case of the 𝑆𝑀𝑆𝑜𝑐 variable, top right-hand plot, 

there is an increasing pattern over time, although with high fluctuations. The evolution of our metric 

𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐, is shown in the bottom left-hand plot. We can observe an initial increasing tend until a 

significant decline in the first half of 2016, followed by a recovery path. The bottom right-hand plot 

shows the evolution of the 𝑆𝑀𝑆𝑜𝑓𝑡 which fluctuates over time, showing similar values at the start and 

end of the period.  
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Figure 3.6. Skills-related measures. Monthly time series from Jan-2009 to Dec-2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics standing for Cognitive, Social, Cognitive & Social, and 

Software skills, respectively. 

3.6.2. Task-content VAR analysis 

This section aims to show the results of our VAR econometric estimation as described in section 

3.5.2 using the estimated skill premium and task-related metrics, 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶, as 

presented in sections 3.6.1.1 and 3.6.1.2, respectively. First, we outline the results from stationarity, 

optimal lag order and VAR parameters estimation as detailed in sections 3.5.2.1 and 3.5.2.2. Secondly, 

we present the Granger-causality testing and IRF results (See sections 3.5.2.3 and 3.5.2.4, respectively). 

3.6.2.1. Stationarity and optimal lag order testing and VAR estimation 

We determine the presence of unit roots and stationarity by applying the ADF and KPSS tests, 

respectively, to all our endogenous variables (the skill premium, 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶) 

individually. First, we analyse the ADF results displayed in Table 3.15. Columns display the variable 

names, modelling case (constant, “C”, constant and linear trend, “C, T”, and adding a quadratic trend, 

“C, T, TT”). Next, seasonal dummies addition, lag order (selection using criterion BIC with max 

order=12 given our monthly data) and test-statistics and related level of significance. ADF results show 

that we cannot reject the null of unit roots when modelling includes only a constant and the linear trend 

(the “C, T” case rows in column “Modelling case”) for three of our variables (the skill premium, 𝑇𝑀𝑁𝑅𝐴, 

and 𝑇𝑀𝑅𝐶). In the case of 𝑇𝑀𝑁𝑅𝐼, we reject the null of unit roots for the “C, T” modelling case at 1% 

of significance. These results are consistent with the inclusion or not of seasonal dummies. The 

modelling case with a quadratic trend shows that we can reject the null of unit roots at the 1% of 

significance for all endogenous variables excepting 𝑇𝑀𝑁𝑅𝐴 variable (rejection is at 10% of 
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significance). These ADF results with a quadratic trend are obtained with and without seasonal 

dummies. Overall, our ADF output implies that our endogenous series are stationary by detrending the 

series using a linear and a quadratic time trend.  

Table 3.15. ADF results. 

Variable Modelling case 
Seasonal 

dummies 
Lag order test-statistic p-value 

ln 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

C, T 
No 

2 -2.4978 0.3292  

C, T, TT 2 -4.7600 0.0025 * 

C, T 
Yes 

2 -2.1447 0.5201  

C, T, TT 2 -4.4575 0.0074 * 

ln 𝑇𝑀𝑁𝑅𝐴 

C, T 
No 

2 -1.9262 0.6406  

C, T, TT 1 -5.1071 0.0006 * 

C, T 
Yes 

2 -1.5797 0.8012  

C, T, TT 2 -3.6847 0.0729 *** 

ln 𝑇𝑀𝑁𝑅𝐼 

C, T 
No 

0 -8.0841 <0.001 * 

C, T, TT 0 -8.0323 <0.001 * 

C, T 
Yes 

0 -7.5479 <0.001 * 

C, T, TT 0 -7.4966 <0.001 * 

ln 𝑇𝑀𝑅𝐶 

C, T 
No 

3 -1.6561 0.7706  

C, T, TT 0 -7.9026 <0.001 * 

C, T 
Yes 

2 -2.055 0.5704  

C, T, TT 0 -7.0221 <0.001 * 
Note: ADF 𝐻0 = the series has a unit root. Lag order selection using criterion BIC (max was 12). (*), (**) and (***) denotes 

a rejection of 𝐻0 at 1%, 5% and 10% significance level, respectively. 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶 stand for non-routine 

analytical, non-routine interactive and routine cognitive tasks, respectively. 

 

With regard to KPSS stationarity testing, we show these results in Table 3.16. We consider the 

modelling case of a constant plus a linear trend. Columns display the variable names, use of seasonal 

dummies, lag order (the same as in the ADF test, i.e., selection using criterion BIC with max order=12 

given our monthly data) and test-statistics and related level of significance. We reject the null of 

stationarity at 1% of the significance level for all the endogenous variables. These results are robust to 

the inclusion of seasonal dummies. We confirm our ADF results for the same modelling case, i.e., 

constant plus linear trend or “C, T”. We cannot compare the case “C, T, TT” since our KPSS 

implementation test the hypothesis of stationarity only around a linear trend (See section 3.5.2.1 for 

details). 

Table 3.16. KPSS test results (the modelling case specifies a constant plus a linear trend) 

Variable Seasonal dummies Lag order test-statistic p-value 

ln 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 
No 2 0.7248 <0.01 * 

Yes 2 0.7453 <0.01 * 

ln 𝑇𝑀𝑁𝑅𝐴 
No 2 0.5622 <0.01 * 

Yes 2 0.5746 <0.01 * 

ln 𝑇𝑀𝑁𝑅𝐼 
No 0 0.2778 <0.01 * 

Yes 0 0.2933 <0.01 * 

ln 𝑇𝑀𝑅𝐶 
No 3 0.4548 <0.01 * 

Yes 2 0.4611 <0.01 * 
Note: KPSS 𝐻0 =the series is stationary. Lag order is the same as in ADF (see Table 3.15). p-values as in Gretl output. (*), 

(**) and (***) denotes a rejection of 𝐻0 at 1%, 5% and 10% significance level, respectively. 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶 stand 

for non-routine analytical, non-routine interactive and routine cognitive tasks, respectively. 
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The stationarity results discussed above show that our variables are stationary around linear and 

quadratic trends. Therefore, we follow this modelling strategy in our VAR specification and estimation. 

Regarding the optimal lag order testing, Table 3.17 shows the results for our VAR representation 

for our task-content analysis derived for the computation of BIC and HQC information criteria values.  

Table 3.17 Optimal lag order for the VAR  

Lags 
BIC HQC 

Seasonal dummies Seasonal dummies 

No Yes No Yes 

1 -17.016 * -15.668 * -17.429 * -16.731 * 
2 -16.644  -15.269  -17.294  -16.568  

3 -16.296  -15.040  -17.182  -16.576  

4 -15.792  -14.579  -16.914  -16.350  

5 -15.397  -14.205  -16.755  -16.213  

6 -14.905  -13.771  -16.499  -16.016  

7 -14.631  -13.537  -16.461  -16.018  

8 -14.215  -13.219  -16.282  -15.935  

9 -13.704  -12.844  -16.007  -15.797  

10 -13.382  -12.554  -15.922  -15.743  

11 -13.098  -12.250  -15.874  -15.675  

12 -12.592   -11.905   -15.604   -15.567   
Note: Results estimated from VAR systems of order 1 to max. lag order 12. The 

asterisks indicate the best lag order, that is, the minimized values of the respective 

information criteria. VAR model with constant, linear and quadratic trends and 

our four endogenous variables (the skill premium and the task-related measures). 

 

Given our results from stationarity testing above, the tested VAR models from 1st to 12th lag order 

included constant, linear, and quadratic trends to estimate the best lag order VAR.  In Table 3.17 we 

display the results differentiating because of the addition of seasonal dummies. Our results indicate that 

the optimal number of lags to include is one, based on the minimized values of the respective 

information criteria. However, more importantly, the addition of all seasonal dummies worsened the 

BIC and HQC values, i.e., a bigger penalization due to the increased number of parameters. In this 

regard, in our VAR estimation, we assess the addition only of the 12th lag to control the potential 

seasonality since the nature of our labour data can be highly seasonal alongside the first lag order 

following our BIC and HQC results. 

Recapitulating from our stationarity and optimal lag order results above, our VAR representing the 

interactions between our four endogenous variables includes linear and quadratic trends and the first 

lag order variables. In our estimation process, we also test if the 12th variable lag (to control potential 

seasonality) favours the specification fitting. However, our testing cannot reject the null hypothesis that 

these regression parameters are zero for the 12th lag variables39. Therefore, we remove the 12th variable 

lags, which implies the estimation of a VAR with only the first lag or a VAR (1). 

The results of our VAR estimation for the equation with the skill premium, 𝜔, as the target variable 

are displayed in Table 3.18. In the first three rows, we can see that the constant, linear and quadratic 

 
39  We use the option given by Gretl to perform this test after the VAR estimation including the 12th lag. The Wald test 

statistics result was Chi-square = 14.7055 and p-value>0.1 (0.538628). 



3.6 Results  Essay II: Tasks, skills, and the skill premium 

110 

 

trend time influence the skill premium at 10%, 1% and 1% significance levels, respectively. We do not 

observe influence from the lagged skill premium. Regarding our lagged task-content measures, 𝑇𝑀𝑁𝑅𝐼 

shows a positive and significant coefficient at a 5% level, and both 𝑇𝑀𝑁𝑅𝐴 and 𝑇𝑀𝑅𝐶 are also positive 

but significant at 10%. The exposed results allow us to evaluate the dependency between variables. 

However, these results do not necessarily imply causality or infer how the skill premium responds to 

shocks in the task-content variables. Hence, we apply the Granger-causality to analyse if the explanatory 

variables Granger-causes the skill premium and IRF analysis to examine the response of the skill 

premium to an impulse in another variable. The results appear in the next section.  

 

Table 3.18. VAR estimation, lag order 1. OLS estimates, observations 2009:02-2018:12 (T=119). 

Results for equation with the logged skill premium as the target variable. See Eq. (3.26) 

Parameter Coefficient Std. Error t-ratio p-value 

Constant 3.9656 2.0348 1.9490 0.0538 *** 

Time 0.0046 0.0011 4.2140 5.11e-05 * 

Time2 −4.99e-05 0.0000 −5.698 9.96e-08 * 

Skill premium, 𝜔𝑡−1  0.1477 0.0964 1.5320 0.1282  

𝑇𝑀𝑁𝑅𝐴,𝑡−1 1.4507 0.7957 1.8230 0.0709 *** 

𝑇𝑀𝑁𝑅𝐼,𝑡−1 1.3069 0.6540 1.9980 0.0481 ** 

𝑇𝑀𝑅𝐶,𝑡−1 0.8218 0.4518 1.8190 0.0716 *** 

𝑅2 0.64     
Note: Recalling from Eq. (3.24) 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶 stand for non-routine analytical, non-routine interactive and routine 

cognitive task-content, respectively. (*), (**) and (***) denote a rejection of 𝐻0: the regression parameter is zero at 1%, 5% 

and 10% significance level, respectively. All the variables, except time and time2, are in natural logs.  

3.6.2.2. Granger-causality testing and IRF results 

Table 3.19 outlines the Granger-causality testing results. The first column shows the stated null 

hypotheses and the results of 𝐹-statistic evaluation and significance level for the one lag and two lag 

models. We have included the results with an additional lag to show that a redundant lag still gives 

similar results but with some p-value changes. The 𝑇𝑀𝑁𝑅𝐴 variable shows significance at 10% level in 

both lag orders, while the 𝑇𝑀𝑁𝑅𝐼 is significant at 5% in both models. In the case of 𝑇𝑀𝑅𝐶 our results 

show significance only in the lag one model (at 10% significance level). From these results, we assume 

the Granger-causality of our task-content measures towards the skill premium only for the 𝑇𝑀𝑁𝑅𝐴 and 

𝑇𝑀𝑁𝑅𝐼 variables at 10% and 5% of significance level, respectively. 

Table 3.19. Granger-causality testing results 

Null hypothesis 
Lag Order 1 (N=112) Lag order 2 (N=107) 

F Statistic p-value F Statistic p-value 

All lags of 𝑇𝑀𝑁𝑅𝐴 do not Granger-cause 𝜔 3.3243 0.0709*** 2.5586 0.0821*** 

All lags of 𝑇𝑀𝑁𝑅𝐼 do not Granger-cause 𝜔 3.9939 0.0481** 4.4575 0.0138** 

All lags of 𝑇𝑀𝑅𝐶 do not Granger-cause 𝜔 3.3079 0.0716*** 2.3304 0.1022 
Note: (*), (**) and (***) denote a rejection of 𝐻0 at 1%, 5% and 10% significance level, respectively. 𝜔 is the skill premium 

and,  𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶stand for non-routine analytical, non-routine interactive and routine cognitive task-content, 

respectively. 

Related to our IRF analysis, Figure 3.7 displays the IRF plots where the scale refers to the sizing 

of the “shock” at one standard deviation of the estimated innovations in the variable stated as the origin 
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of the impulse. In the list specification of our analysis, we have placed our explaining variables,  𝑇𝑀𝑁𝑅𝐴, 

 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶, before the skill premium (see section 3.5.2.4 for details on the importance of 

ordering). Since our variables are in logs, we can say that a 1% unexpected shock or increase in a task-

content variable one, two, three, etc., periods back is an increase/decrease (expressed in percentage) in 

the skill premium today. In this regard, the left-hand plot suggests that a 1% unexpected increase in 

𝑇𝑀𝑁𝑅𝐴 around 2-3 months back is a negligible decline in the skill premium today. In the case of  𝑇𝑀𝑁𝑅𝐼 

and 𝑇𝑀𝑅𝐶, middle and right-hand plots, respectively, we see negligible increases as the response of the 

skill premium.   

Figure 3.7. IRF plots for the response of the skill premium to a shock in 𝑇𝑀𝑁𝑅𝐴 (left-hand plot),  𝑇𝑀𝑁𝑅𝐼 

(middle plot) and 𝑇𝑀𝑅𝐶 (right-hand plot)  

Note: 𝑇𝑀𝑁𝑅𝐴, 𝑇𝑀𝑁𝑅𝐼 and 𝑇𝑀𝑅𝐶stand for non-routine analytical, non-routine interactive and routine cognitive task-content, 

respectively 

3.6.3. Skills-related VAR analysis 

This section outlines, firstly, the results from stationarity, optimal lag order, VAR estimation, 

Granger-causality testing and impulse-response analysis following steps described in section 3.5.2 

using the estimated skill premium and skills-related metrics, 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐, and 𝑆𝑀𝑆𝑜𝑓𝑡,  presented 

in sections 3.6.1.1 and 3.6.1.3, respectively.  

3.6.3.1. Stationarity and optimal lag order testing, and VAR estimation 

Table 3.20 displays our ADF results for stationarity testing. The columns refer to the variable 

names, i.e., the skill premium,  𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 , and 𝑆𝑀𝑆𝑜𝑓𝑡, modelling case (with constant, 

C, constant and linear trend, “C, T”, and adding a quadratic trend, “C, T, TT”), seasonal dummies 

addition, lag order (selection using criterion BIC with max order=12 given our monthly data), test-

statistics and the level of significance. Our results show that we cannot reject the null of the presence 

of unit roots using only a constant and the linear trend (the “C, T” case rows in the modelling case 

column) in the case of the skill premium. However, adding a quadratic trend (the “C, T, TT” case), we 

can reject the null of unit roots at a 1% significance level, implying stationarity. The rest of our 

𝑇𝑀𝑁𝑅𝐴 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑇𝑀𝑁𝑅𝐼 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑇𝑀𝑅𝐶 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 
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endogenous variables shows stationarity detrending them just with the linear trend. These results are 

consistent throughout the addition or not of seasonal dummies in the ADF testing.  

Table 3.20. ADF results 

Variable Modelling case Seasonals Lag order test-statistic p-value  

ln 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

C, T 
No 

2 -2.4978 0.3292  

C, T, TT 2 -4.7600 0.0025 * 

C, T 
Yes 

2 -2.1447 0.5201  

C, T, TT 2 -4.4575 0.0074 * 

ln 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 

C, T 
No 

0 -9.094 9.46e-012 * 

C, T, TT 0 -9.1273 5.897e-011 * 

C, T 
Yes 

0 -8.8136 3.144e-011 * 

C, T, TT 0 -8.8652 1.822e-010 * 

ln 𝑆𝑀𝑆𝑜𝑐 

C, T 
No 

0 -9.5481 1.435e-012 * 

C, T, TT 0 -9.7281 4.77e-012 * 

C, T 
Yes 

0 -8.8467 2.727e-011 * 

C, T, TT 0 -9.0224 9.244e-011 * 

ln 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 

C, T 
No 

0 -8.2854 3.163e-010 * 

C, T, TT 0 -9.2921 2.926e-011 * 

C, T 
Yes 

0 -7.7795 3.001e-009 * 

C, T, TT 0 -8.6838 4.013e-010 * 

ln 𝑆𝑀𝑆𝑜𝑓𝑡 

C, T 
No 

2 -3.1754 0.08935 *** 

C, T, TT 2 -3.5838 0.09304 *** 

C, T 
Yes 

2 -2.9297 0.1529  

C, T, TT 2 -3.3167 0.1667   
Note: ADF 𝐻0 = the series has a unit root. Lag order selection using criterion BIC (max was 12). (*), (**) and (***) denotes 

a rejection of 𝐻0 at 1%, 5% and 10% significance level, respectively. 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics 

standing for Cognitive, Social, Cognitive & Social, and Software skills, respectively. 

 

Regarding the KPSS testing results, in Table 3.21, we see similar results of our ADF testing, i.e., 

rejecting stationarity when the series includes a constant and a linear trend, except for 𝑆𝑀𝑆𝑜𝑐. The result 

for this variable shows that it is stationary in levels. As noted earlier, we cannot compare the case with 

quadratic trends between ADF and KPSS since our KPSS implementation tests only the linear trend 

case. 

Table 3.21. KPSS results (the modelling case specifies a constant plus a linear trend) 

Variable Seasonal dummies Lag order test-statistic p-value 

ln 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 
No 2 0.7248 <0.01 * 

Yes 2 0.7453 <0.01 * 

ln 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 
No 0 0.1518 0.048 ** 

Yes 0 0.1658 0.040 ** 

ln 𝑆𝑀𝑆𝑜𝑐 
No 0 0.0736 >0.10  

Yes 0 0.0783 >0.10   

ln 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 
No 0 0.4999 <0.01 * 

Yes 0 0.5256 <0.01 * 

ln 𝑆𝑀𝑆𝑜𝑓𝑡 
No 2 0.2552 <0.01 * 

Yes 2 0.2704 <0.01 * 
Note: KPSS 𝐻0 =the series is stationary. Lag order as in ADF testing above (see Table 3.20). 

p-values as in Gretl output. (*), (**) and (***) denote a rejection of 𝐻0 at 1%, 5% and 10% 

significance level, respectively. 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics 

standing for Cogntive, Social, Cognitive & Social, and Software skills, respectively. 
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Table 3.22 displays the output for our optimal lag order analysis. Our results indicate that the 

optimal number of lags to include is one, based on the minimized values of the respective information 

criteria. Remarkably, adding all seasonal dummies in the VAR representation shows a deterioration in 

the BIC and HQC values, i.e., a bigger penalization due to an increase in the number of parameters. 

Therefore, we assess the addition only of the 12th lag to control the potential seasonality in our VAR 

estimation. 

 

Table 3.22 Optimal lag order for the VAR using the BIC and HQC 

information criteria. 

Lags  

BIC HQC 

Seasonal dummies Seasonal dummies 

No Yes No Yes 

1 -3.512 * -1.743 * -4.103 * -3.146 * 
2 -2.692  -0.940  -3.652  -2.712  

3 -2.209  -0.648  -3.538  -2.789  

4 -1.470  0.113  -3.168  -2.397  

5 -0.642  0.888  -2.709  -1.992  

6 -0.035  1.525  -2.471  -1.723  

7 0.727  2.244  -2.078  -1.374  

8 1.374  2.851  -1.801  -1.136  

9 2.114  3.554  -1.430  -0.802  

10 2.513  3.860  -1.400  -0.864  

11 3.038  4.113  -1.244  -0.981  

12 3.568   4.385   -1.083   -1.078   
Note: Model with constant, linear and quadratic trends and five endogenous 

variables (the skill premium and the four skill-related measures). Results 

estimated from VAR systems of max. lag order 12. The asterisks indicate the best 

(that is, minimized) values of the respective information criteria. 

Given the results from our stationarity and lag order testing, we estimate our VAR considering the 

addition of a constant, trend and quadratic trend. We also add the 12th lag to control the potential 

seasonality in our data40. Table 3.23 presents the results of our skill-related VAR specification for the 

equation with the skill premium. We see only an influence of the 12th lagged 𝑆𝑀𝐶𝑜𝑔𝑛𝑖  and the 1st lagged 

𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 variables on the skill premium at 10% and 5% of significance level, respectively. Therefore, 

we do not observe influence from the rest of the endogenous variables. The following section shows 

the Granger-causality and IRF results from the VAR parameters estimation discussed here. 

 

 

 

 

 

 
40 We test the inclusion of this 12th lag in our estimation process. Our result based on the Wald test shows that the 

inclusion of the 12th variables lag favours the specification fitting since we reject the null hypothesis that the 12 th 

lag variables regression parameters are zero at 1% of significance level (p-value = 0.00031). 
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Table 3.23. VAR estimation, lag order 1 and 12. OLS estimates, observations 2010:01-2018:12 

(T=108). Results for equation with the logged skill premium as the target variable. See Eq. (3.27) 

Parameter Coefficient Std. Error t-ratio p-value  

Constant 0.2916 0.2745 1.0620 0.2908  

Time 0.0029 0.0016 1.8370 0.0693 *** 

Time2 −3.675e-05 0.0000 −2.933 0.0042 * 

𝜔𝑡−1  0.0696 0.1018 0.6838 0.4958  

𝜔𝑡−12 0.1841 0.1004 1.8330 0.0700 *** 

𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡−1 −0.0381 0.0284 −1.343 0.1824  

𝑆𝑀𝐶𝑜𝑔𝑛𝑖,𝑡−12 0.0458 0.0272 1.6820 0.0958 *** 

𝑆𝑀𝑆𝑜𝑐,𝑡−1 −0.0619 0.0440 −1.407 0.1626  

𝑆𝑀𝑆𝑜𝑐,𝑡−12 0.0424 0.0411 1.0310 0.3052  

𝑆𝑀𝐶𝑜𝑔𝑆𝑜𝑐,𝑡−1 0.0840 0.0414 2.0260 0.0456 ** 

𝑆𝑀𝐶𝑜𝑔𝑆𝑜𝑐,𝑡−12 −0.0180 0.0342 −0.5272 0.5993  

𝑆𝑀𝑆𝑜𝑓𝑡,𝑡−1 −0.0079 0.0359 −0.2207 0.8258  

𝑆𝑀𝑆𝑜𝑓𝑡,𝑡−12 0.0541 0.0354 1.5290 0.1297  

𝑅2 0.70     
Note: Recalling Eq. (3.27), ω is the skill premium, and 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics standing for 

Cognitive, Social, Cognitive & Social, and Software skills, respectively. All variables except the time terms are in Natural 

Logs. (*), (**) and (***) denote a rejection of 𝐻0: the regression parameter is zero at 1%, 5% and 10% significance level, 

respectively. All the variables, except time and time2, are in natural logs. 

 

3.6.3.2. Granger-causality testing and IRF estimation 

Table 3.24 outlines the Granger-causality testing results for our VAR skills-related. We detail the 

stated null hypotheses, the results of 𝐹-statistic evaluation and p-values for the one lag model and the 

redundant model with two lags. Our results show that we cannot reject any of the stated hypotheses. 

Therefore, we cannot assume some Granger-causality of our skills-related measures towards the skill 

premium.  

Table 3.24. Granger-causality testing results. 

Null hypothesis 
Lag Order 1,12 (N=95) Lag order 2,12 (N=95) 

F Statistic p-value F Statistic p-value 

All lags of 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 do not Granger-cause 𝜔 2.0503 0.1343 1.3931 0.2533 

All lags of 𝑆𝑀𝑆𝑜𝑐 do not Granger-cause 𝜔 1.5051 0.2272 0.67135 0.5134 

All lags of 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 do not Granger-cause 𝜔 2.1575 0.1212 0.10295 0.9023 

All lags of 𝑆𝑀𝑆𝑜𝑓𝑡 do not Granger-cause 𝜔 1.1701 0.3148 0.63244 0.5335 

Note: (*), (**) and (***) denote a rejection of 𝐻0 at 1%, 5% and 10% significance level, respectively. ω is the skill premium 

and 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics standing for Cogntive, Social, Cognitive & Social, and Software 

skills, respectively. 

 

Figure 3.8 displays the results of our IRF analysis. Each plot evaluates the skill premium responses 

to the “shock” at one standard deviation in our skills-related variables. In our specification, we have 

placed our skills-related variables before the skill premium (see section 3.5.2.4 on the importance of 

ordering). Because our variables are in logs, we can say that a 1% unexpected shock in a skill-related 

variable one, two, etc., periods (months) back is a contemporaneous increase/decrease (expressed in 

percentage) in the skill premium.  



3.7 Discussion  Essay II: Tasks, skills, and the skill premium 

115 

 

Figure 3.8. IRF plots for the skill-related analysis. Response of the skill premium to a shock in 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 

(top left), 𝑆𝑀𝑆𝑜𝑐 (top right),  𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 (bottom left) and 𝑆𝑀𝑆𝑜𝑓𝑡(bottom right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 𝑆𝑀𝑆𝑜𝑐, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡 are our metrics standing for Cogntive, Social, Cognitive & Social, and Software 

skills, respectively. 

The top left plot in Figure 3.8 suggests that a 1% unexpected increase in 𝑆𝑀𝐶𝑜𝑔𝑛𝑖 has a small 

negative effect that then disappears before having a small positive effect in the twelfth period again 

because of the 12th lag included in our VAR specification (see Table 3.23). Similar results appear for 

𝑆𝑀𝑆𝑜𝑐 and 𝑆𝑀𝑆𝑜𝑓𝑡, top right and bottom right plots, respectively. In the case of 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 , , bottom 

left side plot, the skill premium response to a 1% unexpected increase in this variable is a negligible 

increase at the beginning that then disappears, followed by a small negative effect in the twelfth period. 

3.7. Discussion  

This section discusses the results outlined in the last section throughout four sub-sections. First, we 

examine our findings from estimating measures representing the skill premium, the task-content of jobs 

and the skills required by jobs using job ads postings as data. Secondly and thirdly, we examine the 

VAR task-content and skill-related outputs, respectively. Fourthly, we give a general discussion, 

emphasizing policy issues and further research.   

𝑆𝑀𝐶𝑜𝑔𝑛𝑖 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑆𝑀𝑆𝑜𝑐 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑆𝑀𝑆𝑜𝑓𝑡 ≫ 𝑠𝑘𝑖𝑙𝑙 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 
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3.7.1. On the estimation of the skill premium and task-content and skills-related 

measures 

The skill premium for Chile shows a decline in most of the 2009-2018 period. We estimate a peak 

of 1.26 in November 2011, then reducing, although with fluctuations. This pattern is consistent with 

previous works analysing similar periods (Murakami, 2014; Parro & Reyes, 2017). We have discussed 

the implications and potential drivers of, mainly, the fall of the skill premium over most of the 2010s in 

the first essay (see Chapter 2, section 2.8.1 for details).  

Also, our estimated magnitude and pattern for the skill premium using online job ads is similar to 

estimations using recurrent sources like the Employment and Unemployment Survey for Greater 

Santiago data (in Spanish, Encuesta de Ocupación y Desempleo del Gran Santiago), EOD. The EOD 

has been carried out by the University of Chile since 1956 (University of Chile, 2020); this labour 

survey is generally used as source material when estimating the skill premium in Chile (see, e.g., Beyer 

et al., 1999; Gallego, 2012; Murakami, 2014; Robbins, 1994b, 1994a). We used the EOD in our first 

essay (see Chapter 2 section 2.5), and we estimated that average values for the skill premium for 2010-

2018 were around 1.06 (see section 2.7.1). For the same period, our estimation using job postings is 

1.03 (see a plot comparing these skill premium measures from both data sources over time in Appendix 

A.2.4). The similarity between our results and those using EOD shows the reliability of our estimations 

using job posting ads data. This kind of data has raised increasing interest in labour and development 

economics (see, e.g., D. Deming & Kahn, 2018; Hershbein & Kahn, 2018; Kureková et al., 2015; 

Marinescu, 2017). 

Our strategy for task-content measures relies on examining the task content of standard 

occupations, the classification of our job posting ads according to the occupational classification, and 

the construction of our task-content measures as time series (see Figure 3.5). Our series standing for the 

ALM model category named as 𝑇𝑀𝑁𝑅𝐴 or non-routine analytical tasks required by job ads for skilled 

labour fluctuates between 0.38 and 0.48 over 2009-2018. These findings imply that a significant portion 

of skilled jobs, between a third and a half, involve non-routine analytical tasks. Examples of these work 

tasks are researching, evaluating, and managing, which usually feature skilled occupations (see Figure 

3.3 for details and occupation examples). More generally, our results show a higher prevalence of non-

routine analytical tasks in skilled occupations classified generically as managers, professionals and 

associate professionals or technicians in line with our expectations and previous literature (Mihaylov & 

Tijdens, 2019; Perez-Silva & Campos, 2021; Reijnders & de Vries, 2018). Like our non-routine 

analytical measure, our measure standing for non-routine interactive tasks or 𝑇𝑀𝑁𝑅𝐼 also shows a high 

prevalence in these skilled occupations. Over time, 𝑇𝑀𝑁𝑅𝐼 fluctuated between 0.32 and 0.35 implying 

a more stable pattern compared to 𝑇𝑀𝑁𝑅𝐴.  

Our measure standing for the routine cognitive content of skilled jobs, or 𝑇𝑀𝑅𝐶, started with an 

increasing trend and then a steady pattern over the period. In line with expectations and previous studies 
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(Mihaylov & Tijdens, 2019), our results show that these kinds of tasks are less prevalent in skilled jobs, 

with ratios fluctuating between 0.17 and 0.26. Our motivation for including this measure arose from 

previous studies on Chile, suggesting the relocation of skilled workers to less skilled positions due to 

complex software adoption as proxies for computer-based technologies (Almeida et al., 2020). Since 

less skilled or middle-skilled positions are more abundant in routine cognitive tasks, as proposed by the 

ALM model, we might see some relationship between skilled labour and the skill premium. We come 

back to this point in the next section on our findings on the influence of our task-content measures on 

the skill premium. 

Regarding our estimation of skills-related measures, we found that most job advertisements 

distributed in the Cognitive and Social categories primarily demand skilled labour, as expected. This 

result aligns with the view on the endowment of these workers being characterized by cognitive (e.g., 

reasoning, evaluation) and social skills (e.g., communication skills). Our metrics capturing the 

prevalence of cognitive, social, cognitive & social, and software skills, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖, 𝑆𝑀𝑆𝑜𝑐 ,, 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐 

and 𝑆𝑀𝑆𝑜𝑓𝑡 respectively, show steep fluctuations with monthly values between 0.02 and 0.14 (see 

Figure 3.6). In terms of evolution,  𝑆𝑀𝐶𝑜𝑔𝑛𝑖 shows a pattern without a clear increasing or decreasing 

trend over the period while 𝑆𝑀𝑆𝑜𝑐 depicts an increasing pattern. Regarding 𝑆𝑀𝐶𝑜𝑔𝑛𝑖𝑆𝑜𝑐, we can see an 

increasing trend in most of the period, probably fuelled by the increase in 𝑆𝑀𝑆𝑜𝑐. This growth in social 

skills is in line with previous literature for countries like the US (see, e.g., Deming, 2017).  

3.7.2. On the influence on the skill premium of our task-related measures 

This section discusses the results from our task-related VAR estimations. On the one side, our 

findings from Granger-causality testing and IRF analysis support weakly the empirical evidence of the 

influence of our task-related measures on the skill premium.  

We found the Granger-causality of our task-content measures towards the skill premium for the 

𝑇𝑀𝑁𝑅𝐴 and 𝑇𝑀𝑁𝑅𝐼 variables only at 10% (p-value = 0.0709) and 5% (p-value = 0.0481) of significance 

level, respectively (see Table 3.19). Similarly, our IRF analysis shows negligible increases as the 

response of the skill premium to unexpected shocks in these task-related metrics. Although our results 

are weak, they support the ALM prediction about complementarity between computer-based 

technologies and non-routine cognitive tasks, both analytical and interactive, given the positive 

influence of 𝑇𝑀𝑁𝑅𝐴 and 𝑇𝑀𝑁𝑅𝐼on the skill premium. In this regard, we show that changes in non-

routine cognitive tasks may imply a greater demand for skilled labour and, consequently, a skill 

premium improvement.  Conversely, past studies on Chile do not support this ALM prediction since 

they found substitution effects of computer-based technologies instead of complementarity (Almeida et 

al., 2020). Warnings of this substitution effect have also emerged from evidence showing a broader 

class of jobs at risk due to the potential ability of frontier technologies (e.g., robotics and artificial 
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intelligence) to automate non-routine analytical or interactive tasks (Arntz et al., 2016; Autor, 2015; 

Frey & Osborne, 2017).  

In the case of 𝑇𝑀𝑅𝐶, our Granger-causality testing is not robust to the addition of one lag (see Table 

3.19); therefore, we do not assume that the routine cognitive content of jobs influences the skill premium 

at some significant level. This finding is not in line with our expectations based on recent research for 

Chile carried out by Zapata-Román (2021), who suggested that routine tasks had an important role in 

explaining earnings variation. Relevant differences between our approaches to data and methods might 

explain this discrepancy41. However, our results agree with previous and prominent literature for other 

countries (e.g., Autor et al., 2003; Goos & Manning, 2007; Goos et al., 2014; Sebastian, 2018; Spitz-

Oener, 2006). In this regard, more research is needed to understand the interactions between the skill 

premium and the task-related metrics analysed here, given the weakness or absence of our evidence and 

the potential already revealed by incipient research in this field for Chile. 

As limitations of our task-related analysis, we consider some characteristics of our data. For 

example, although we examine monthly data, the low number of observations (120 data points over 

2009-2018) might be not enough to capture an adequate data variation. Additionally, the categorization 

of our global and skilled labour samples according to their occupational groups is not well balanced. 

These unbalanced data imply an over-representation of groups related to Business and administration 

(2-dig Code Occupations 33 and 24 in Table 3.10) characterized by medium or low content of non-

routine cognitive analytical and interactive tasks (see 2-dig Code Occupation 33 and 24 in Table 3.7). 

Thus, there is less representation of observations standing for non-routine cognitive task content. This 

potential bias towards particular occupational groups needs to be considered in future research.  

3.7.3. On the influence on the skill premium of cognitive and social skills  

According to the human capital theory, skilled labour displays specific abilities beyond those 

acquired through formal qualifications (Heckman et al., 2006). In particular, prominent literature shows 

that cognitive skills complement the tasks performed by better-educated workers resulting in increases 

in their relative demand and wages (Acemoglu & Autor, 2011; Autor et al., 2003; Beblavý et al., 2016; 

Borghans et al., 2014). Alternatively, we do not find evidence on this complementarity from our 

Granger-causality testing, while our IRF analysis yielded negligible impacts. Like the lack of strong 

influence on the skill premium of non-routine cognitive tasks discussed above, our findings show that 

cognitive skills do not play a role in this wage differential. Our results disagree with past studies for 

Chile (Ramos et al., 2013) and other countries (Beblavý et al., 2016; Borghans et al., 2014) but agree 

with studies showing the lower importance of cognitive skills. Since a particular skill is implicitly 

associated with a particular task to be executed, our lack of support for the influence on the skill 

 
41 Zapata-Román (2021) used a Chilean household survey in four waves between 1992 and 2017, with decomposition methods 

to observe changes in occupational structure. 
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premium of cognitive skills coincides with our weak evidence of analytical tasks, as discussed in the 

last section. 

Similarly, our results do not show Granger-causality evidence between social skills and the skill 

premium. Our findings disagree with past studies for Chile (Aedo et al., 2013; Ramos et al., 2013) and 

other countries like the U.S. (Deming, 2017), where social skills have been found explaining the skilled 

labour wages.  Equally, our metric for cognitive & social skills does not explain the skill premium 

evolution. Therefore, we cannot posit that the demand for highly skilled workers relies on cognitive or 

social skills, singly or in combination, as expected.  

A limitation of our study, as in the case of the task-related analysis, is that the number of our 

observations might be not enough to capture proper variability in the data. Our skills categorization, 

based on ten groups, shows that most of the sample refer to categories of Customer Service, demanding 

sales talent or client orientation abilities, or Financial, calling for skills in accounting or budgeting. In 

contrast, fewer job ads refer to Cognitive and Social skills (see section 3.6.1.3.1). Consequently, our 

sample would be biased towards data mainly describing abilities and endowments seen typically in 

middle-skilled positions (e.g., clerical workers, sales workers).  

3.7.4. General discussion, policy issues and further research  

Our results from our task-related analysis show weak evidence for non-routine cognitive tasks 

driving the skill premium. Regarding our skills-related analysis, we do not find support for the expected 

relationships between cognitive abilities, their combination with social skills, and the skill premium. 

We can speculate on the reasons for our lack of strong evidence on the expected role of cognitive tasks 

and skills, mainly in the context of the skill premium decline observed in recent decades by past studies 

(see, e.g., Murakami, 2014; Murakami & Nomura, 2020; Parro & Reyes, 2017; Also, see section 2.7.1 

in the first essay) since our analysis focuses on this period. First, some suggest that the skill premium 

decrease has been driven by the drop in returns to skilled labour due to the substantial expansion of 

Chilean tertiary education (Murakami & Nomura, 2020; Parro & Reyes, 2017; Also, see section 2.7.3 

in the first essay). If the return to higher education, which gives knowledge and stimulates cognitive 

skills to perform analytical tasks, is falling, then it would be expected that this knowledge and ability 

has little influence on skilled labour wages. Secondly, researchers have recently reported downward 

movements in the occupational ladder in the post-2000 period, such as the reassignment of skilled 

workers to less skilled positions (Almeida et al., 2020; Zapata-Román, 2021). These downward 

movements could explain the declining importance of cognitive tasks and skills in explaining the wages 

of skilled workers. 

Some policy implications beyond our results, similar to those discussed in our first essay (see 

section 2.8.3), emerge. First, the lack of a strong relationship between the skill premium and cognitive 

tasks and skills might imply an unanticipated impact of technology adoption underestimated by the 
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expected coordination between policies examining labour markets (demanding skills) and education 

(supplying skills). In this case, instead of the expected complementarity between technology and skilled 

labour, we might be seeing a neutral or substitution effect, leading to changes in the demand not only 

for skilled but also unskilled labour. Recently, Almeida et al. (2020), examining Chilean data at the firm 

level, suggested that because of the adoption of advanced technologies like complex software, the 

demand for unskilled workers was growing faster than for skilled labour: the lower demand for 

cognitive tasks and skills might be a potential explanation. Hence, the lower demand for skilled workers 

due to technology adoption may not be responding to the significant growth in supply resulting from 

the strong expansion of the tertiary education system starting in the 1980s and 1990s, as discussed 

above. 

The inability to absorb the skilled labour in the workforce may have been underestimated by 

policymakers42 implementing the expansion of the supply of skills or the “supply-shock” to boost the 

economic development of Chile through the expected transfer of knowledge and skills to jobs 

(Schneider, 2013; Valiente et al., 2020). Although, as suggested by Didier (2018), the transfer of 

learning towards labour markets could work in the short term,  in the long run, it depends on policy 

coordination between demand and supply. However, as discussed in our first essay (see section 2.8.3), 

Chile does not have institutional mechanisms connecting firms with education suppliers (Valiente et 

al., 2020), and the institutional monitoring of mismatches between labour demand and supply is recent 

and promoted, mainly, by labour policymakers43. Also, and more specifically relevant to the supply of 

skills, Chile lacks an articulated educational and training system, viewed from a lifelong perspective, 

which is controlled by education policymakers (Didier, 2018). In this regard, systems monitoring the 

mismatch between labour demand and supply could promote the adoption of coordinated educational 

and labour policies if the government agenda were to support alliances among inter-sector 

policymakers. As suggested by Valiente et al. (2020), various actors in the education and labour sector 

are demanding higher levels of institutional coordination. Also, and more generally, the use of online 

job postings like the data used in this study can help policymakers to track labour markets’ mismatches 

since they provide real-time information on features of demand (job offers) and supply (job seekers).           

A second policy implication arising from our lack of strong evidence about the complementarity 

between skilled labour and cognitive tasks and skills could be the potential displacement of skilled 

labour to lesser skilled positions. In other words, unwanted changes in the occupational ladder. For 

instance, displacements of skilled labour to middle-skilled positions rich in cognitive but intensive in 

 
42 There is a consensus on that in Chile the push for expanding the supply of skills in recent decades came more from policy 

than from firms or business (see e.g., Schneider, 2013; Valiente et al., 2020). 
43 For example, the Labour Observatory (on Spanish, Observatorio Laboral) of the Ministry of Work and Pensions was created 

in 2015 and it has the mission of producing knowledge about gaps between supply and demand for occupations and job skills 

(SENCE, 2022). Also, the Job Prospection Committee was established in 2021: this is a policy council with objectives such 

as balancing the knowledge, skills and competencies of workers with the demand for human capital from the various productive 

sectors; promoting the labour trajectories of the workers; adapting to the constant variations of the labour market; and creating 

and sustaining skills that meet the needs of the labour market in the future (Ministerio del Trabajo y Previsión Social, 2021). 
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routine tasks (Almeida et al., 2020) would push middle-skilled workers to lower or unskilled skilled 

positions; in turn, these less-skilled workers can be pushed further down the occupational ladder, even 

affecting their chances of employment participation. These sequential downward movements represent 

unwanted changes in the occupational ladder for the educational and job prospects of workers. 

Therefore, policymakers need to predict these unwanted movements and mitigate its potential pervasive 

effects, especially among most affected employers. As pointed out above, policy efforts stimulating 

better coordination between higher education institutions and industry can support the development of 

specific skills or training systems to mitigate potential negative effects.  

Some caveats arise concerning further research. First, to what extent do changes in the task-content 

of jobs affect the skill premium evolution? This evaluation might face some data challenges since it 

requires higher granularity at the occupation level, which we do not observe in labour surveys, given 

the sample sizes. Besides, in the case of Chile and other LAC countries like Colombia (Servicio 

Nacional de Aprendizaje, 2020), the current classification is based on international occupational 

hierarchies dating from 2008 (ILO, 2012) and relating it to previous versions (e.g., 1988) can be 

difficult. In this regard, and as pointed out above, the online job posting data is an attractive source for 

tracking labour market features. But if further research is to be conducted on this topic, it will be 

necessary to overcome some problems concerning the collection and treatment of data, such as the 

lower number of observations compared to official labour surveys (Spiezia, 2018) and the classification 

of job postings following official classifications for industries and occupations.       

Secondly, more attention needs to be paid to middle or low-skilled groups—for instance, the bundle 

of tasks performed by these groups. Even more importantly, we need to know whether these tasks place 

a premium on the wages. This is also true for low or unskilled labour. In this regard, technologies could 

play a role as a complement instead of a substitute for this kind of labour, contradicting some ALM 

model predictions. Hence, technological advancements would receive the premium resulting in turn in 

an endogenous technical change (Acemoglu, 2002). This endogeneity might imply that technological 

change is biased by profit incentives where the market size of these labour groups drives the 

technologies’ creation and adoption.  In this regard, less-skilled labour might also encourage the 

technological innovation market. From a conceptual view, past studies for Chile using different data 

and methods show similar outputs, suggesting that, although the ALM model predictions were fulfilled 

in other high-income countries, this would not be the case with the Chilean labour market. Therefore, 

we encourage developing and applying “local” versions of the ALM model, suggesting alternative 

predictions or new conceptual or theoretical insights establishing the interrelationships between tasks, 

skills, and technology.  
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3.8. Conclusion 

The evolution of the skill premium supplies opportunities to examine how economic forces (in 

particular, technological change) may influence the demand for skilled labour. Research on the task-

content of jobs and workers’ skill endowments provides material for relevant contributions to 

explanations of the dynamics between labour and technology, particularly the expected 

complementarity between cognitive tasks and skills and more educated workers (Acemoglu & Autor, 

2011; Ehrenberg & Smith, 2018; Markowitsch & Plaimauer, 2009). We examine how measures 

standing for cognitive work activities employing mainly skilled workers, such as reasoning, problem-

solving, and persuasion, drive the skill premium. Also, we evaluate the role of high-level labour skills 

such as cognitive and social abilities. However, our analysis focuses on a period witnessing a declining 

trend in the skill premium when cognitive tasks and skills might be less important. In this regard, our 

results support only weakly the ALM model prediction of the complementarity between non-routine 

cognitive tasks and skilled labour. Moreover, we do not find evidence of cognitive and social abilities 

driving the skill premium.  

Like Almeida et al. (2020) and Zapata-Román (2021), we contribute to the recent strand of literature 

examining the ALM model predictions in the case of countries like Chile that have recently graduated 

from middle to high-income status. The lack of strong support for the complementarity between 

cognitive tasks and skilled labour is a key contribution of this study. In this regard, from a policy 

perspective, we encourage higher levels of institutional coordination between education and labour 

policymakers. If the premium for analytical capability is becoming less important, it might imply 

mismatches between skills demand and supply. Therefore, the adoption of coordinated educational and 

labour policies to correct these mismatches is needed. Also, our lack of strong support for the view on 

the complementarity between cognitive tasks, skilled labour and technology would imply a role for 

technological progress that would be potentially neutral or become a substitute for skilled labour. In 

this case, skilled workers would perform cognitive but routine tasks, which are typically performed by 

middle-skilled workers. In turn, this middle-skilled labour would be filling lower-skilled positions. 

Relocating better-educated workers to less-skilled positions might imply an inefficient educational 

investment and produce other unwanted impacts, like the deterioration of workers’ prospects. Again, 

we highlight the importance of coordinated education and labour policies to predict and mitigate 

unwanted effects of technology adoption. 

Regarding further research, more understanding of changes in the employment structure or 

occupational ladder is needed. It is especially important to discover the extent to which these changes 

in the occupational ladder have affected the skill premium evolution, given the decline observed in 

recent decades. We also encourage the development of “local” versions of our motivating theories and 

conceptual frameworks. Typically, the ALM model predictions are fulfilled in the case of high-income 
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countries like the U.S. and some countries in Europe but have limited application to countries like Chile 

and other nations in Latin America and the Caribbean region.  



 

4. Essay III: Exploring with text the demand for ICT labour as a 

proxy for technological replacement in the aftermath of 

disasters  

Over the past few decades, an extensive literature has been developed on the economic impact of natural 

disasters. However, evidence of specific impacts on labour markets has received less attention. Using 

a massive earthquake (above 8.0 Mw) that struck Chile's Central Region in 2010, the 27th February 

Biobío earthquake, as a natural experiment, we assess whether disasters can accelerate the adoption 

of equipment compatible with Information and Communications Technologies, ICT, which drive much 

of the technical change in production. We examine changes in demand for ICT labour as a proxy for 

technological upgrading. Our data are the open text from a collection of 4,136 online job postings 

published between 2008 and 2012 in the most severely affected regions. We implement a structural 

topic model to estimate the difference in the prevalence of ICT and Construction labour topics by 

comparing periods two years before and two years after the earthquake. Our results show that the 

prevalence of the ICT labour topic does not change. In contrast, the prevalence of the Construction 

labour topic was significantly different after the disaster, suggesting that reconstruction activities lead 

to employment differences. Our results suggest that there was no substantive technological replacement 

following the 27th February Biobío earthquake. 

 

Keywords: technological upgrading, creative-destruction, ICT labour, natural disasters 
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4.1. Introduction 

The study of social and economic impacts caused by natural disasters has become increasingly 

important due to the higher exposition of the global population to these shocks. However, research on 

the impacts on labour is less abundant (Kirchberger, 2017), with most research documenting impacts 

on aggregated labour outputs such as unemployment, participation rates, and wages (e.g. Brown et al., 

2006; Kirchberger, 2017; Xiao & Feser, 2014; Zissimopoulos & Karoly, 2010). Research focusing on 

aggregated labour might hide impacts on particular labour sub-groups or sectorial labour (How & Kerr, 

2019; Zissimopoulos & Karoly, 2010). For example, little attention has been paid to other labour 

subgroups, like labour employed by the Information and Communications Technologies, ICT, sector in 

the context of the technological change in production that is supposed to be mainly driven by ICT and 

other computer-based technologies (see, e.g., Acemoglu & Autor, 2011; Almeida et al., 2020; Hwang 

& Shin, 2017). In this regard, some suggest that disasters can be considered as episodes or substantial 

events affecting the pace of technological change (Crespo Cuaresma et al., 2008; Okuyama, 2003; 

Okuyama et al., 2004; Skidmore & Toya, 2002). Nevertheless, no definitive answer has yet been given 

to the question of whether disasters can accelerate the pace of the current technological progress 

associated with ICT, assuming that updated and ICT-compatible equipment replaces the machinery 

destroyed by recent catastrophes. In turn, this faster rate of technology adoption would lead to increases 

in demand for ICT-related labour or workers employed in the ICT sector. This study aims to explore 

these interactions using the analysis of the Solow-Swan model with technical change under a disaster 

situation to conceptualize the expected increase in the pace of technological change due to technological 

replacement. In turn, this technical upgrading may lead to improvements in demand for ICT-related 

labour (see section 4.2.2 for details). 

Examining how natural disasters might accelerate the ICT-intense technical change rate proxied 

by changes in demand for ICT is relevant to countries like Chile. First, Chile supplies an environment 

that is particularly suitable for studying the impacts of disasters like earthquakes. Ten of the most 

destructive earthquakes, i.e., 8 Mw and above (See footnote 4 for Mw definition), hit Chile in the past 

century (Barrientos & CSN Team, 2018). In the last decade, three earthquakes over this magnitude 

affected different Chilean regions in 2010, 2014 and 2015, characterizing Chile as a site of recurring 

earthquakes. Secondly, technical change has been an important driver of the economic development 

seen by Chile in the last 40-50 years. Although the importance of this technological change has declined 

over time for outputs like the skill premium, as shown in our first and second essays (see Chapters 2 

and 3), it has continued operating in Chile in recent decades. Remarkably, indicators covering assets 

like hardware, telecommunications and software shows that the share of ICT in total investment for 

Chile has been growing, resulting in important ICT capital formation (ECLAC, 2013). In this regard, 

examining the impacts of disasters and how they are related to technical change is an added step towards 

understanding changes in demand for employment, especially subgroups like ICT labour. 
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Conceptually, examining the interactions between natural disasters, labour markets, and 

technological change has relied on extensions of growth models like the Solow-Swan model (Solow, 

1956; Swan, 1956) and a more literal explanation of the Schumpeterian creative-destruction hypothesis 

(Aghion & Howitt, 1990; Schumpeter, 1976). An extended Solow-Swan model provides insights on 

resource allocation involving labour and capital for economic recovery in the aftermath of disasters 

(Okuyama, 2003). It can compare the effects resulting from the destruction and subsequent upgrading 

of capital goods on the steady-state of the economy and eventual recovery. The main assumption is that 

older and outdated capital goods are more prone to be damaged by a catastrophe because of 

vulnerabilities, including weaker structure, mechanical fatigue due to age, and outdated regulations, 

from which updated equipment is free (Okuyama, 2003). Related to the creative-destruction hypothesis, 

originally, this conceptual idea gives prominence to the effects of competition between new consumer 

goods, new markets, and new technologies. These dynamics incessantly transform the economic 

structure from within; that is, the creative-destruction process permanently destroys the old and creates 

the new. In the natural disasters literature, the concept refers literally to the process of technology 

replacement after a catastrophe (Crespo Cuaresma et al., 2008). This sudden turnover of capital might 

represent a positive jump in technological improvement.  

We develop our conceptual framework (see section 4.2) according to the extended Solow-Swan 

model considering the expected technology replacement after a catastrophe. We examine how natural 

disasters can positively affect the pace of technical change, resulting in positive impacts on growth and 

employment. The model encompassing disaster impact evaluation responds to researchers' attempts to 

develop conceptual and theoretical foundations such as the works of Okuyama (2003) and Okuyama et 

al. (2004). We do not test any post-disaster theoretical predictions since there is no comprehensive 

theory in this literature, and assumptions regarding expected impacts from the aftermath of disasters are 

many and varied (Coffman & Noy, 2011). However, the analysis of the impact of disasters using the 

Solow-Swan model with technical change helps us to conceptualize and predict the pace of 

technological change and, in turn, the effects on labour.  

As observed above, we assume that ICT and similar technologies drive much of the technological 

change in production. Consequently, we assume a technical change embodied in ICT capital goods 

covering assets like hardware equipment, telecommunications, software, among others (Bassanini & 

Scarpetta, 2002; ECLAC, 2013). In this sense, the expected jump in technological adoption would imply 

that much of the technology replacement after a disaster will be based on ICT capital goods. This rapid 

move towards equipment compatible with ICT might result in improvements in demand for ICT labour. 

We have defined ICT labour as those occupations involved in the provision of goods and services 
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related to the ICT sector44 , and we expect positive changes in its demand due to the recent occurrence 

of disasters.  

Studies show inconclusive evidence regarding natural disasters as forces affecting technological 

upgrading and, consequently, economic and labour outputs. Some show that replacing damaged capital 

goods with updated equipment in the aftermath of disasters can improve economic growth (Benson & 

Clay, 2004; Crespo Cuaresma et al., 2008; Loayza et al., 2012; Toya & Skidmore, 2007). Disasters can 

lead to increased industrial growth (Loayza et al., 2012) and increased physical capital accumulation 

(Leiter et al., 2009). However, others reported that natural disasters do not significantly affect 

subsequent economic growth (Cavallo et al., 2013). In addition, benefits from capital upgrading have 

been linked to countries with higher levels of development because of better institutions, policy, and 

financial systems, among other factors (Crespo Cuaresma et al., 2008; Toya & Skidmore, 2007). In this 

regard, technology upgrades in post-disaster scenarios usually face financial and time constraints 

(Benson & Clay, 2004; Di Pietro & Mora, 2015). More importantly, some analyses of various disasters 

from a pool of countries have suggested significant adverse impacts of disasters on technological 

innovation, measured by the number of patent applications (Chen et al., 2021). Therefore, we cannot 

establish that disasters are unequivocally a source of adjustment for technological change and, 

consequently, for changes in demand for labour.  

Employment adjustments can result from reconstruction efforts unrelated to technological 

improvements. For instance, when labour is a substitute for damaged or missing physical equipment, a 

disaster will lead to positive employment impacts (e.g., more demand), especially in the construction 

sector (Belasen & Polachek, 2009; Skidmore & Toya, 2002). Also, Leiter et al. (2009) reported 

employment growth, given the higher physical capital accumulation in regions affected by disasters. 

However, even if a catastrophe promotes a more significant capital stock, it does not necessarily imply 

positive impacts on labour participation. Tanaka (2015) found a negative impact on employment, 

despite over-investment in physical capital. Tanaka speculates that a decreased population in the 

affected area may be a possible reason. A lower population might result from direct impacts on labour 

(e.g., death, injuries) or indirect, like forced displacements. The extent to which workers can stay in the 

labour market after a disaster also influences potential technological replacements. 

With regard to our stated prediction that disasters may positively affect the demand for ICT 

employment because of subsequent higher levels of ICT technology adoption, it must be borne in mind 

that no existing study has examined the role of natural disasters in explaining changes in demand for 

ICT labour. Most studies have analysed changes in aggregated labour, hiding impacts on particular sub-

groups (How & Kerr, 2019; Zissimopoulos & Karoly, 2010). Overall, the natural disasters literature 

emphasises the importance of ICT technologies in coping with problems in the aftermath of 

 
44 Following the International Classification of Occupations  (ILO, 2012) some examples of these ICT occupations are Systems 

Analyst, Software Developers, Database Designers and Administrators, Computer programmers. Computer Network and 

Systems Professionals and Technicians.  
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catastrophes, where ICT plays a vital role in reducing disaster fatalities, managing recovery costs and 

dealing with other aspects of disaster management (Benali & Feki, 2018; Toya & Skidmore, 2015; 

Walker, 2012). Yet, more attention has been paid to ICT labour in the context of other shocks, like 

recessions and pandemics. It has been suggested that recessions affect ICT employment negatively 

(Holm & Østergaard, 2015). Conversely, the recent COVID-19 pandemic has affected the ICT 

workforce relatively less than other occupations, given the prevalence of teleworking in their sector and 

their lower exposure to social or face-to-face interactions (Pouliakas & Branka, 2020; Redmond & 

Mcguinness, 2020). Yet the overall lack of studies on the role of disasters in explaining differences in 

ICT employment impedes our understanding of disasters' impacts on sub-groups or specialized labour. 

More importantly, this particular research field of natural disasters' impacts on labour requires a 

cumulative number of cases to support an explanatory framework strong enough to enable us to 

understand how employment is affected (Jara & Faggian, 2018). 

But the insufficiency of studies is a general problem in the literature examining the interaction 

between labour and natural disasters. According to Jiménez et al. (2020), between 1900 and November 

2019, only 118 articles on the effects of disasters on labour were published in indexed journals. Most 

of them refer to Japan, the US and China. For Chile, only two studies appeared: Jiménez & Cubillos 

(2010) and Jiménez et al. (2020). Some additional research can be found in other sources, with Jara & 

Faggian (2018) and Sanhueza et al. (2012) as the only studies referencing impacts on labour. As noted 

above, the lack of published studies might also be attributed to a publication bias, whereby significant 

findings generate higher chances of publication (Klomp & Valckx, 2014). Additionally, since disasters’ 

interruption of economic activities is usually only temporary, most past research has focused on shorter-

term impacts since it is more difficult to identify long-term effects (Jiménez et al., 2020). We contribute 

to this limited literature focusing on ICT labour. 

We explore the impact of disasters on technological replacement proxied by changes in demand 

for ICT labour. This involves examining the text content of a collection of 4,136 online job postings 

published two years before and two years after the event in most Chilean regions affected by the 27 

February 2010 Biobío earthquake (Mw 8.8) (see section 4.3 for details). Our online job postings 

correspond to a sub-sample from the www.trabajando.com data used in the second essay (see Chapter 

3, section 3.4). Our pre-disaster period is represented by data available from January 2008; the decision 

to use post-disaster material two years after the earthquake is based on the assumption that the economic 

scenario in the second year after the disaster might provide a more stable basis for making technological 

replacements decisions.  

The 27th February 2010 Biobío is considered the second most severe in Chile's history and one of 

the ten strongest worldwide since these events have been recorded by instruments (Barrientos & CSN 

Team, 2018; Contreras & Winckler, 2013; M. Jiménez et al., 2020; Sanhueza et al., 2012). The 

earthquake, and subsequent tsunami, affected several regions in the central and south areas of the 

country that are inhabited by approximately 80% of the Chilean population. The estimated destruction 

http://www.trabajando.com/
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included 500,000 damaged houses, 12,000 injured people, over 400 deaths and an economic cost of 

US$30,000 million (NOAA, 2019). This earthquake has been used as a natural experiment in other 

studies examining the link between natural disasters and labour. The topics of studies on the earthquake 

have included its impact on perceived stress and job satisfaction (A. Jiménez & Cubillos, 2010) and on 

the probability of employment,  unemployment and lack of access to social security (M. Jiménez et al., 

2020; Karnani, 2015; Sanhueza et al., 2012; Sehnbruch et al., 2017). Most of this evidence suggests 

that the earthquake negatively affected the labour market in the short run. However, in the long term, it 

has been suggested that these negative impacts are attenuated by the recovery process, which is 

facilitated by the government's efforts and other institutional factors (M. Jiménez et al., 2020). We add 

to this literature by considering the potential role of the 27 February 2010 Biobío to explain changes in 

workforce sub-groups like ICT labour. 

We apply a set of techniques based on the text data of our collection of job postings to evaluate 

changes in ICT labour after our natural disaster. However, our sample lacks a variable to filter ICT- 

specific job postings. Besides, ICT occupations or job titles can vary widely. In this regard, we are not 

able to apply recurrent methodologies used in this kind of analysis (e.g., differences-in-differences) 

since there is a not a variable for selecting our sample of interest i.e., ICT-related jobs.  Hence, our 

modelling and estimation strategy relies on the Structural Topic Model, STM, developed by  Roberts et 

al. (2016, 2013). As a topic model, STM uncovers word co-occurrence patterns across a collection of 

documents, i.e., our sample of job posting ads, to estimate a set of word clusters or topics. Next, we 

identify the ICT-related topic that best represents ICT labour, and we examine changes in its prevalence 

by applying a treatment effect estimation. We identify whether the job postings were published before 

or after the disaster, where the post-disaster period corresponds to our treated period. In this regard, 

different to recurrent topic model approaches, STM incorporates document metadata i.e., the date of 

job posting publication to structure the document collection (see section 4.4 for details). In terms of 

results, we expect a higher prevalence of ICT labour after the disaster because of the rapid adoption of 

equipment compatible with ICT. Also, as pointed out in the literature, we expect that our natural 

experiment positively influences topics standing for Construction labour, given the recovery and 

reconstruction activities.  

Our results show that the prevalence of the topic representing ICT labour does not significantly 

change after the earthquake. Conversely, the Construction labour topic prevalence is significantly 

different after the disaster, i.e., the prevalence increased. These findings suggest that reconstruction 

activities lead to differences in Construction employment while we do not observe changes in ICT 

labour. Thus, our results do not support the view on substantial technological replacements occurring 

after the 27th February 2010 Biobío earthquake of a kind that impacted the labour market, particularly 

the demand for ICT labour.  

Some policy recommendations emerge from our results. For example, although most of the policy 

on the recovery process was focused on returning to the normal or pre-disaster circumstances, 
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policymakers can take advantage of recovery activities, considering more technology upgrading 

initiatives. Also, our findings on improvements in Construction employment raise some policy issues, 

given the temporary nature of reconstruction activities and the predominance of low or unskilled 

workers in this sector. Consequently, a policy is needed to promote transitions to permanent jobs or 

training for workers (most of them vulnerable) to mitigate the eventual lack of income once the 

reconstruction finishes.  

This essay structure is as follows. We begin by presenting our conceptual framework. Then, we 

describe the data and the STM as our methodological strategy. Next, we present and discuss our results. 

In the final section, we recapitulate our argument and resulting policy recommendations. 

4.2. Conceptual framework  

We offer some insights into the impact of technological replacements and, in turn, on ICT labour, 

based on extensions of the basic neoclassical model of Solow-Swan (Solow, 1956; Swan, 1956). This 

model helps us to conceptualize our assumption of a higher rate of technological change during the 

recovery process in the aftermath of a disaster due to the potential replacement of destroyed capital with 

updated equipment. Since this conceptualization assumes a component standing for labour-augmenting 

technology, which we suppose is intensive in ICT and related technologies, its higher rate might lead 

to the faster growth of labour, particularly ICT labour. 

The Solow-Swan model in its original version evaluates economic growth based on the shape of 

the neoclassical production function. In the first essay, we test the RBET model, which is also based on 

this production function (see section 2.2.1).  

We demonstrate the application of the Solow-Swan model in a disaster situation in per capita terms 

following Okuyama (2003), who applies the model with labour-augmenting technological progress 

described by Barro & Sala-i-Martin (2004; pp. 54-56). This proposed model has been extensively used 

in natural disasters impacts literature (see, e.g., Crespo Cuaresma et al., 2008; Hallegatte & Dumas, 

2009; Leiter et al., 2009; Lynham et al., 2017; Panwar & Sen, 2019).  

In the following, we firstly describe the basic Solow-Swan model fundamentals applied to a disaster 

situation without technological progress. Then we add a term representing a labour-augmenting 

technological change, emphasizing how its pace changes because technological replacement affects the 

model’s dynamics, particularly, the growth of labour. 

4.2.1. The basic Solow-Swan model in a disaster situation 

Let us assume that the aggregated production function neglecting technological change is: 

𝑌 = 𝐹(𝐾, 𝐿) (4.1) 

where 𝑌, 𝐾 and 𝐿 are the total output of the economy, the level of capital accumulated in the economy 

and the level of labour population, respectively. Assuming that the production function is homogeneous 
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of degree one, we can express the Eq. (4.1) in its intensive form, i.e., in per capita or per worker form, 

as follows: 

𝑦 = 𝑓(𝑘) (4.2) 

where 𝑘 ≡ 𝐾/𝐿 is the capital per worker and 𝑦 ≡ 𝑌/𝐿 is the output per worker. Eq. (4.2) implies that 

the output produced by each worker is determined by the amount of capital each person can access and, 

assuming 𝑘 is constant, changes in the number of workers do not affect the total output per capita. In 

other words, the production function shows no "scale effects" (Barro & Sala-i-Martin, 2004). 

The change in per capita capital stock over time, setting as constants the terms 𝑠, 𝛿 and 𝑛 which 

stand for the saving rate, the capital depreciation, and the population growth rate, respectively, becomes 

as follows:    

�̇� = 𝑠 ∙ 𝑓(𝑘) − (𝑛 + 𝛿) ∙ 𝑘 (4.3) 

where �̇� = 𝜕𝑘(𝑡) 𝜕𝑡⁄  following the convention that a dot over a variable denotes differentiation 

concerning time as used by Barro & Sala-i-Martin (2004).  The nonlinear Eq. (4.3) depends only on 𝑘, 

and is the fundamental differential equation of the Solow-Swan model. From this fundamental 

representation we can assume that the term  𝑛 + 𝛿 stands for the effective depreciation rate for the 

capital per worker, 𝑘 ≡ 𝐾/𝐿. If the saving rate 𝑠 equals to zero, then the capital-labour ratio 𝑘 would 

partially decrease both by the depreciation of capital at rate 𝛿 and the population growth at rate 𝑛 (Barro 

& Sala-i-Martin, 2004). We can also examine the steady-state (or long-run) and the transitional 

dynamics (short-run) of the Solow-Swan model from the stated relationships represented by Eq. (4.3).  

The steady-state in the Solow-Swan model refers to �̇� = 0 in Eq. (4.3). In this state, the quantities 

of the factors grow at constant rates implying a steady-state level of capital accumulation. This steady 

value of 𝑘 is termed 𝑘∗ and, algebraically, 𝑘∗ satisfies the following condition: 

𝑠 ∙ 𝑓(𝑘∗) = (𝑛 + 𝛿) ∙ 𝑘∗ (4.4) 

 The workings of Eq. (4.3), along with the condition standing for the steady-state 𝑘∗ as shown in 

Eq. (4.4), are graphically represented in Figure 4.1. The upper curve is the production function 𝑓(𝑘) 

and it is proportional to the curve  𝑠 ∙ 𝑓(𝑘) which is like 𝑓(𝑘) except for the multiplication by the 

positive term 𝑠. The effective depreciation rate for the capital per worker, 𝑘, is given by the straight line 

from the origin (𝑛 + 𝛿) ∙ 𝑘 with the positive slope 𝑛 + 𝛿. The change in 𝑘 over time is determined by 

the vertical distance between the curve 𝑠 ∙ 𝑓(𝑘) and the line  (𝑛 + 𝛿) ∙ 𝑘 while the steady-state level of 

capital accumulation, 𝑘∗, is found at the point where both shapes intersect. We named this intersection 

A for purposes of our following disaster situation application of the Solow-Swan model.  
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Figure 4.1. The Solow-Swan model (adopted from Okuyama, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

To show the impact of a disaster under the Solow-Swan model, Figure 4.2 reproduces the graphical 

representation given by Figure 4.1 but adds the effect of a decline in the capital accumulation 𝑘 because 

of the destructive power of the disaster. 

   

Figure 4.2. The Solow-Swan model and the 

disaster impact (reproduced from Okuyama, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, let us suppose that the economy is in the steady-state condition or at point A, as shown in 

Figure 4.2. When the disaster hits the economy, we assume that the capital accumulation is massively 

damaged, but there is no damage to the workforce level. We see the capital decline in the displacement 

of 𝑘∗ to the deteriorated level 𝑘𝑑 (the dashed line arrow in the x-axis), therefore 𝑘𝑑 < 𝑘∗. Consequently, 

in the y-axis we can see how the economy’s output level decreases from the steady-state level 𝑦∗ to the 

level in a disaster situation or decreased output 𝑦𝑑, where 𝑦𝑑 < 𝑦∗. The displacements of 𝑦∗ and 𝑘∗ 
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imply that the economy is out of its steady-state level given by A. Therefore, the economy needs to 

return to this steady level where the distance between B and C corresponds to the per capita capital 

accumulation that needs to be recovered. In this regard, the recovery process is the required increase 

from 𝑘𝑑 toward 𝑘∗ (the solid line arrow in the x-axis). One implication of this recovery stage is a greater 

allocation of resources to reconstruction activities compared to the pre-disaster situation. As a result, 

the saving rate may increase during the recovery process. We set this recovery saving rate as 𝑠𝑟, where 

𝑠𝑟 > 𝑠 as shown by the displacement of the curve 𝑠 ∙ 𝑓(𝑘) toward 𝑠𝑟 ∙ 𝑓(𝑘) (see the vertical solid line 

arrow in the right-hand side of Figure 4.2). The recovery saving may encourage the speed of the 

recovery process, given the greater distance between points D and C compared to that between B and 

C. However, as the recovery process progresses, 𝑠𝑟 should go back to 𝑠 (see the dashed line arrow in 

the right-hand side of Figure 4.2). We represented the economy recovery toward its pre-disaster level 

of capital accumulation or steady-state level 𝑘∗ by the arrow from the point D towards A. 

As noted above, we can also examine the transitional dynamics (short-run) of the Solow-Swan 

model from the stated relationships represented by Eq. (4.3).  These dynamics show how the economy 

output converges toward its steady-state level, as discussed earlier in the recovery process context. 

Therefore, this analysis gives us further understanding of the recovery process by using the growth rate 

of 𝑘. Division of both sides of Eq. (4.3) by 𝑘 results in the growth rate of 𝑘, 𝛾𝑘, as follows: 

𝛾𝑘 ≡ �̇� 𝑘⁄ = 𝑠 ∙ 𝑓(𝑘) 𝑘⁄ − (𝑛 + 𝛿). (4.5) 

Eq. (4.5) shows that �̇� 𝑘⁄  equals the difference between the saving curve, 𝑠 ∙ 𝑓(𝑘) 𝑘⁄ , and the 

depreciation curve (𝑛 + 𝛿). Following the notation of Okuyama (2003), we plot the saving and 

depreciation curves to indicate the transitional dynamics around the steady-state of the Solow-Swan 

model in Figure 4.3. The vertical distance between these two curves gives the growth rate of 𝑘, which 

becomes zero at the steady-state 𝑘∗due to the intersection of both curves, where 𝑠 ∙ 𝑓(𝑘) 𝑘⁄ = (𝑛 + 𝛿). 

 

Figure 4.3. Transitional dynamics of recovery under the 

Solow-Swan model (reproduced from Okuyama, 2003) 

 

 

 

 

 

 

 

 

 

 

 



4.2 Conceptual framework Essay III: Natural disasters and demand for ICT labour 

134 

 

 

Recalling our disaster situation, Figure 4.3 shows that the level of 𝑘 turns into 𝑘𝑑 due to the 

damaged capital. Since 𝑘𝑑 < 𝑘∗, the growth rate of 𝑘 is positive (the space between the points B and C 

in Figure 4.3), implying that 𝑘 approaches 𝑘∗
 as the recovery process operates. Given the intensity of 

reconstruction activities, i.e., the economy encouraging the allocation of resources to return to pre-

disaster levels,  the saving rate may become higher temporally45, 𝑠𝑟 , as represented by the curve recovery 

saving rate, 𝑠𝑟 ∙ 𝑓(𝑘)/𝑘 in Figure 4.3. As 𝑠 < 𝑠𝑟, the growth rate of 𝑘 also rises, i.e., the distance 

between the points D and C is higher than the distance between B and C. As the recovery process 

progresses over time, the growth rate declines and approaches 0 as 𝑘 approaches 𝑘∗. These recovery 

dynamics are represented by the arrow from D to A in Figure 4.3. Since more resources are relocated 

for recovery, the reconstruction activities encourage capital re-accumulation more rapidly (Okuyama, 

2003). Now we turn to the situation with technological change. 

4.2.2. The Solow-Swan model with technological change in a disaster situation 

We suppose now that our production function includes technological progress: more 

specifically, the level of labour-augmenting technical change, i.e., technology that increases output in 

the same way that the stock of labour increases46 (Barro & Sala-i-Martin, 2004). The inclusion of the 

level of technology over time, 𝐴(𝑡), as factor in the primary production function represented by Eq. 

(4.1) yields: 

𝑌 = 𝐹[𝐾, 𝐿 ∙ 𝐴(𝑡)] (4.6) 

where 𝐴(𝑡) appears as a multiple of 𝐿 due to the assumption of labour-augmenting technology. Also, 

𝐴(𝑡) grows at a constant rate, 𝑥. We turn to this rate later.  

The change in per capita capital stock over time represented by Eq. (4.3), including 𝐴(𝑡), becomes 

�̇� = 𝑠 ∙ 𝑓[𝑘, 𝐴(𝑡)] − (𝑛 + 𝛿) ∙ 𝑘 (4.7) 

where the output per capita now depends on the level of technology, 𝐴(𝑡).   

 The analysis of the transitional dynamics of the Solow-Swan model with labour-augmenting 

technical progress requires the rewriting of the model in terms of variables staying constant in the 

steady-state. In this regard, 𝑘 and 𝐴(𝑡) grow in the steady-state at the same rate, so we can work with 

the ratio 

�̂� ≡ 𝑘/𝐴(𝑡) = 𝐾/[𝐿 ∙ 𝐴(𝑡)] (4.8) 

 
45 We assume a temporal change in the saving rate due to the shock generated by the disaster. This framework also allows 

evaluation of permanent changes (e.g., changes in consumption, policy impacts) generating an alternative steady-state level of 

capital accumulation (see Barro & Sala-i-Martin, 2004, pp. 41) 
46 The assumption of a labour-augmenting technical change is based on the consideration of constant rates of technological 

progress. Given that in the Solow-Swan model the population grows at a constant rate, only a labour-augmenting technological 

change is consistent with the existence of a steady-state, i.e., constant rates of growth of factor quantities in the long term 

(Barro & Sala-i-Martin, 2004). 



4.2 Conceptual framework Essay III: Natural disasters and demand for ICT labour 

135 

 

where 𝐿 ∙ 𝐴(𝑡) ≡ �̂�. �̂� is often named the effective amount of labour. This terminology is convenient 

since the economy works as if its labour input were �̂�, i.e., the labour population, 𝐿, multiplied by its 

efficiency, 𝐴(𝑡). As a result, �̂� in Eq. (4.8) refers to the capital accumulation per unit of effective labour. 

Then, the output per unit of effective labour is given by 

�̂� ≡ 𝑓(�̂�). (4.9) 

We can obtain the production function in intensive form replacing 𝑦 and 𝑘 by �̂� and �̂�, respectively. 

Following the same procedures to write Eq. (4.3) and Eq. (4.5), but now, using the information that 

𝐴(𝑡) grows at the rate 𝑥, as discussed earlier, Eq. (4.3) becomes 

 �̇̂� = 𝑠 ∙ 𝑓(�̂�) − (𝑥 + 𝑛 + 𝛿) ∙ �̂� (4.10) 

where the term 𝑥 + 𝑛 + 𝛿 is now the effective depreciation rate for �̂� ≡ 𝐾/�̂�. In the case of Eq. (4.5), 

the growth rate of �̂� is 

𝛾�̂� ≡ �̇̂� �̂�⁄ = 𝑠 ∙ 𝑓(�̂�) �̂�⁄ − (𝑥 + 𝑛 + 𝛿). (4.11) 

As in the argument discussed in section 4.2.1, at the steady-state, the growth rate of �̂� becomes zero 

in Eq. (4.11). This steady value of �̂� is termed �̂�∗ and, algebraically, �̂�∗ = 0 satisfies the following 

condition: 

𝑠 ∙ 𝑓(�̂�∗) �̂�∗⁄ = (𝑥 + 𝑛 + 𝛿). (4.12) 

The transitional dynamics of k̂ are similar to those in the model without technological change. As 

in Figure 4.3, we plot these dynamics in Figure 4.4 following the notation of Okuyama (2003) with the 

x-axis involving �̂� to analyse the disaster situation, but now with technical change.  

 

Figure 4.4. Transitional dynamics of recovery under the 

Solow-Swan model with technological change 

(reproduced from Okuyama, 2003) 
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As in the last section, 4.2.1, in Figure 4.4, the steady-state level �̂�∗ went down to �̂�𝑑 , which stands 

for the capital damaged by the disaster. Here, the growth rate of the recovery process is the space 

between B and C in a scenario where the economy does not allocate resources in some particular way.  

The recovery speed might be encouraged by increases in the saving rate to favour a higher allocation of 

resources to reconstruction or capital re-accumulation. We term this recovery saving rate as 𝑠𝑟 and 

given that 𝑠 < 𝑠𝑟, the growth rate of �̂� also increases, i.e., the distance between the points D and C is 

greater than the distance between B and C. These dynamics are practically the same as in the model 

without technical change, as described above in section 4.2.1. However, the displacement of (𝑥 + 𝑛 +

𝛿) to (𝑥𝑟 + 𝑛 + 𝛿) shows our assumption of a higher rate of technological change during the recovery 

process, 𝑥𝑟, due to the potential replacement of destroyed capital by updated equipment where 𝑥𝑟 > 𝑥.  

For the sake of clarity, we reproduce the plot of Okuyama (2003, p. 17) in Figure 4.5 (the y-axis is 

the level of technology, 𝐴, and the x-axis is time, 𝑡) to show visually our assumption of 𝑥𝑟 > 𝑥 between 

the moment of disaster occurrence, 𝑡𝑑, and the full recovery, 𝑡𝑓𝑟. 

Figure 4.5. The rate of technological change with and 

without disaster (adopted from Okuyama, 2003) 

 

 

 

 

 

 

 

 

 

 

 

Recapitulating the dynamics in Figure 4.4 according to our assumption of 𝑥𝑟 > 𝑥, the distance 

between D and our new point E is the new growth rate of �̂�. The distance between D-E is shorter than 

between D-C, implying a slightly slower growth rate of �̂� during the recovery process compared to the 

model without technological change discussed in section 4.2.1. This slower growth of �̂� is due to the 

more rapid technological change which leads to the faster growth of effective labour under the 

assumption of labour-augmenting technology. 

The analysis of the Solow-Swan model with technical change under a disaster situation helps us to 

conceptualize the expected increase in the pace of technological change due to technological 

replacement. This technical upgrading may lead to improvements in demand for specialized labour. 

Assuming that much of the technical change in production is driven by ICT-related advancements, we 

can predict that a rapid ICT-related change during a recovery process might lead to improvements in 
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demand for ICT labour. In the following sections, we present the data and our empirical strategy based 

on topic modelling to test this prediction.    

4.3. Data 

Our data corresponds to a sub-sample from the online job ads dataset www.trabajando.com used in 

our second essay (see section 3.4 for details). We filter the Chilean regions considered to be most 

affected by the 27 February 2010 Biobío earthquake, i.e., the regions (in Spanish) VI de O'Higgins, VII 

del Maule, VIII del Biobío (ECLAC, 2010; Sanhueza et al., 2012)47. We use the job posts published 

from January 2008 to March 2012. Using the job postings publication date, we create a dummy 

indicating whether the job post was published after the disaster (treated period), 27𝐹, which is specified 

as follows: 

27𝐹 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 𝑖𝑠 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝑎𝑟𝑐ℎ 2010 −  𝑀𝑎𝑟𝑐ℎ2012
0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 𝑖𝑠 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 2008 − 𝐹𝑒𝑏𝑟𝑢𝑟𝑎𝑟𝑦 2010

 
 (4.13)  

 

Our pre-disaster period is represented by data available from 2008 and the occurrence of the disaster 

on 27 February 2010. The post-disaster definition relies on short-run impacts, considering not only the 

first year after the disaster’s occurrence but also the second year. Unlike past studies evaluating only 

one post-disaster year (see, e.g.,  Karnani, 2015), we consider that one year might be a very short period 

for considering decisions on technological replacements and potential ICT labour hiring. Besides, firms 

might be coping with several potential restrictions (e.g., financial and labour shortages) during the first 

post-disaster year. We consider that the economic scenario in the second year after the disaster might 

supply a more stable basis for making these decisions. Also, we have not considered more years in the 

post-disaster span to balance properly the number observations between pre- and post-disaster span. 

After filtering by affected regions and periods before and after the disaster, our sample consists of 

4,136 online job posts. Table 4.1 shows the distribution of our sample according to pre-and post-disaster 

periods.   

 

Table 4.1. Distribution of online job ads in the most affected regions by pre and post-disaster periods 

Period Number of job post ads 

Pre-Disaster (January 2008 – February 2010) 1,720 

Post-Disaster (March 2010 – March 2012) 2,416 

Total 4,136 

 

 
47 Other studies include some additional regions such as Región Metropolitana, V de Valparaíso and the IX de La Araucanía 

(M. Jiménez et al., 2020; Karnani, 2015) but these regions were less affected (ECLAC, 2010).  

http://www.trabajando.com/
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From our collection of job posts, we concatenate three open text variables (job title, job description 

and job-specific requirements). These concatenated text variables, along with the date of publication, 

correspond to our input for performing our estimation strategies, as detailed in the next section, 4.4. 

4.4. Structural topic modelling, STM  

The probabilistic or statistical topic models, TM, pioneered by Latent Dirichlet Allocation, LDA 

(Blei et al., 2003), are tools designed for analysing and understanding large text corpora based on words’ 

co-occurrence. TM are known as "unsupervised techniques" since they infer topics' content from a 

collection of texts or corpus rather than assume them as supervised techniques that require ex-ante 

definitions of topics (Roberts et al., 2014). Since we only observe the documents, TM aim to infer the 

latent or hidden topics by applying Bayesian and non-Bayesian estimation strategies (see details on 

Bayesian analysis in the first essay, section 2.6.2.2). By specifying a Bayesian model, we can evaluate 

how a document is generated by estimating how words are distributed in topics and topics in documents. 

Conceptually, we refer to topics as distributions or mixtures of words that belong to a topic with a 

certain probability or weight. These weights indicate how important a word is in a given topic. In this 

context, documents are distributions over topics where a single document can be composed of multiple 

topics and words can be shared across topics. Thus, we can represent a document as a vector of 

proportions that shows the share of words belonging to each topic (Roberts et al., 2014).  

TM allow us to evaluate the importance of topics in the documents. The sum of shares of topics 

across all topics in a document, the so-called document-topic proportions, is one. Equally, the sum of 

the word probabilities or topic-word distributions for a given topic is also one (Roberts et al., 2019). 

The input for TM is the collection of our raw job postings transformed into a document-term matrix 

representation, DTM. DTM represents the corpus of our words or terms as a bag of words or terms48. 

DTM is usually sparse and allows us to analyse the data using vectors and matrix algebra to filter and 

weigh the essential features of our documents collection (see additional details on these procedures 

applied in the second essay, section 3.5.1.2.2.1). Also, a critical input is the number of topics to be 

considered in the model. The researcher must choose this number based on some criterion (e.g., the 

held-out log likelihood proposed by Wallach et al., 2009) or it can be estimated following strategies 

developed for this purpose (e.g., the Anchor Words algorithm developed by  Lee & Mimno, 2014). 

Most of TM assume that document collections are unstructured since all documents arise from the 

same generative model without considering additional information (Roberts et al., 2014). Instead, in 

this study, we implement the STM developed by Roberts et al. (2016, 2013). STM incorporates 

document metadata into the standard TM approach to structure the document collection, i.e., STM 

accommodates corpus structure through document-level covariates affecting topical prevalence. This 

 
48 We use “words” and “terms” as interchangeable concepts which can refer to a unique word or unigram, two words or bi-

gram, and so on. 
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feature contrasts with other TM like LDA. Thus, the critical contribution of STM is to include the 

covariates into the prior distributions for document-topic proportions and topic-word distributions. 

These document-level covariates can affect the topical prevalence, i.e., the proportion of each document 

devoted to a given topic, and we can measure these changes  (Roberts et al., 2013). Also, we can evaluate 

the topical content, which refers to the rate of word use within a given topic, but we do not implement 

this evaluation here.  

In this study, we applied the STM topical prevalence model, which examines how much each topic 

contributes to a document as a function of explanatory variables or topical prevalence covariates. In 

our case, the covariate corresponds to our dummy 27𝐹 stated by Eq.  (4.13), showing that our collection 

of job postings comes from the pre- and post-disaster periods. Next, we examine the topical prevalence 

variation between these two periods by applying a treatment effect regression.  

In the next sections, we describe the specification and estimation of the STM topical prevalence 

model. 

4.4.1. STM Topic-prevalence model specification 

This section and the subsequent 4.4.2 follow the descriptions and technical guidelines detailed in 

Roberts et al. (2016, 2019, 2013, 2014) and Grajzl & Murrell (2019). As a model based on word counts, 

STM defines a data generating process for each document, and the observed data are used to find the 

most likely values for the parameters specified by the model.  

The specification starts by indexing the documents by 𝑑 ∈ {1…𝐷} and each word in the documents 

by 𝑛 ∈ {1…𝑁𝑑} in our DTM representation. The observed words, 𝑤𝑑,𝑛, are unique instances of terms 

from a vocabulary of size 𝑉 (our corpus of interest) that we indexed by 𝑣 ∈ {1…𝑉}. Regarding the 

addition of covariates for examining the topical prevalence, a designed matrix denoted by 𝑿 holds this 

information. Each row defines a vector of document covariates for a given document. 𝑿 has dimension 

𝐷 × 𝑃 (where 𝑝 indexes the covariates in the design matrix 𝑿, 𝑝 ∈ {1…𝑃} ). The rows of 𝑿 are 

represented by 𝒙𝑑. Finally, the specification of the number of topics 𝐾 is indexed by 𝑘 ∈ {1…𝐾}.   

Overall, the generative process considers each document, 𝑑, as beginning with a collection of 𝑁𝑑 

empty positions, which are filled with terms49.  The filling process starts with the number of topics 

chosen by the researcher (details below in section 4.4.2.2) to build a vector of parameters of dimension 

𝐾 of a distribution that produces one of the topics 𝑘 ∈ {1…𝐾} for each position in 𝑑. This vector is the 

so-called topic-prevalence vector since it contains the probabilities that each of the 𝑘 topics is assigned 

to a singular empty position. STM models the topic-prevalence vector as a function of the covariates to 

estimate the document properties’ influence on topic-prevalence. The process continues with selecting 

 
49 Since our data is represented as a DTM or bag of words representation we can assume that, for a given document, all 

positions are interchangeable. Thus, the choice of topic for any empty position is the same for all positions in that document 

(Grajzl & Murrell, 2019) 
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terms from the 𝑉 vocabulary to generate a 𝑘-specific vector of dimension 𝑉, which will contain the 

probabilities of each term to be chosen to fill an empty position. 

Formally, the generative process for each 𝑑, given the vocabulary of size 𝑉 and observed words 

{𝑤𝑑,𝑛}, the number of topics 𝐾, and the design matrix 𝑿, for our STM Topic-prevalence model 

specification can be represented as a four-step method. First, we draw the topic-prevalence vector from 

a logistic-normal generalised linear distribution (Roberts et al., 2019), with a mean vector parameterized 

as a function of the vector of covariates. This specification allows the expected topic proportions to 

vary as a function of the document-level covariates, as follows: 

𝜃𝑑|𝑋𝑑𝛾, Σ~LogisticNormal(𝑋𝑑𝛾, Σ), (4.14)  

where 𝜃𝑑 is the topic-prevalence vector for document 𝑑, 𝑋𝑑 is the 1-by-𝑝 vector, and 𝛾 is the 𝑝-by-

(𝐾 − 1) matrix of coefficients. Σ is a (𝐾 − 1) -by- (𝐾 − 1) covariance matrix that allows for 

correlations in the topic proportions across documents. The covariates’ addition into the model allows 

the observed metadata to influence the frequency of discussion in the corpus for a given topic. In our 

specification, the covariate corresponds to the 27𝐹 dummy stated by Eq.  (4.13). 

Secondly, given the topic-prevalence vector 𝜃𝑑 from Eq. (4.14), for each 𝑛 word within document 

𝑑, which is the process of filling the empty positions 𝑛 ∈ {1…𝑁𝑑},  a topic is sampled and assigned to 

that position from a multinomial distribution as follows: 

𝑧𝑑,𝑛~Multinomial(𝜃𝑑), (4.15) 

where 𝑧𝑑,𝑛 is the topic assignment of words based on the document-specific distribution over topics, 

where the 𝑘𝑡ℎ element of 𝑧𝑑,𝑛 is one and the rest are zero for the selected 𝑘. 

Thirdly, we form the document-specific distribution over terms representing each topic 𝑘 choosing 

specific vocabulary words 𝑣 as follows:  

𝛽𝑑,𝑘,𝑣|𝑧𝑑,𝑛 ∝ exp(𝑚𝑣 + 𝑘𝑘,𝑣), (4.16) 

where 𝛽𝑑,𝑘,𝑣 is the probability of drawing the 𝑣-th word in the vocabulary to fill a position in document 

𝑑 for topic 𝑘. 𝑚𝑣 is the marginal log frequency estimated from the total word counts of term 𝑣 in the 

vocabulary 𝑉, representing the baseline word distribution across all documents. 𝑘𝑘,𝑣 is the topic-specific 

deviation for each topic 𝑘 and term 𝑣 over the baseline log-transformed rate for term 𝑣. 𝑘𝑘,𝑣  represents 

the importance of the term, given the topic. The logistic transformation of 𝑚𝑣 and 𝑘𝑘,𝑣 converts their 

sum into probabilities for use in the subsequent and final step, which refers to drawing an observed 

word conditional on the chosen topic. 

Fourthly, the observed word 𝑤𝑑,𝑛 is drawn from its distribution over the vocabulary 𝑉 to fill a 

position 𝑛 in document 𝑑 as follows: 

𝑤𝑑,𝑛~Multinomial(𝛽𝑑,𝑘,1, … , 𝛽𝑑,𝑘,𝑉) (4.17) 

Also, default regularizing prior distributions are used for 𝛾 in Eq. (4.14) and 𝑘 in Eq. (4.16). The 

regularizing prior distributions refer to zero mean Gaussian distribution with shared variance parameter 
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i.e.𝛾𝑝,𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘
2) and 𝜎𝑘

2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(1,1) (Roberts et al., 2016), where 𝑝 and 𝑘 

indexes the covariates and topics, respectively, as shown above. 

4.4.2. STM Topic-prevalence model and effect estimation 

This section outlines the techniques used to process our text data, to estimate the number of topics, 

the parameters inference of our STM Topic-prevalence model and, based on these parameters, to 

estimate the effect of our natural experiment on topic-prevalence. For our purposes, we use R packages 

like Quanteda (Benoit et al., 2018) to manage and analyse text data. The STM specification and 

estimation, as well as the treatment effect analysis, is performed using the Stm R package (Roberts et 

al., 2016, 2019, 2020). 

4.4.2.1.  Pre-processing and DTM representation 

We perform standard pre-processing procedures on our collection of 4,136 job postings (see section 

4.3  for details). As pointed out above, since our analysis does not deal directly with text data but is 

performed on specific text features such as word frequencies, we construct a DTM representation 

(Welbers et al., 2017). We apply cleaning, tokenization and stemming as the pre-processing procedures 

to construct our DTM following techniques applied in the second essay (see section 3.5.1.2.2.1). We 

use unigrams (unique words) and bigrams (two consecutive words) as tokens or features. The use of 

bigrams allows us to capture text structure or context that we cannot see using single words. For 

example, in the case of some job titles with generic words like "Engineer", including bigrams might 

make tokens more comprehensible since we are observing terms like "Software Engineer", 

"Construction Engineer", etc. We also apply the removal of infrequent terms by dropping features that 

do not appear in at least ten documents. 

4.4.2.2. Estimating the number of topics, 𝑲, and the STM topic prevalence 

model parameters 

We estimate 𝐾 by applying the Anchor Words algorithm (Lee & Mimno, 2014). This technique 

infers 𝐾 by finding an approximated convex hull or the smallest convex polygon in a multi-dimensional 

word co-occurrence space given by our DTM representation.  The central assumption of the Anchor 

Words algorithm is separability, i.e., each topic has a specific term that appears only in the context of 

that particular topic. This separability assumption implies that the terms corresponding to vertices are 

anchor words for topics. Alternatively, the non-anchor words correspond to the point within the convex 

hull. We expect a 𝐾 between 5 and 50, which is the range suggested for a small collection of documents, 

i.e., a few hundred to a few thousand (Roberts et al., 2020, pp. 65), like our dataset (See section 4.3).  



4.4 Structural topic modelling, STM Essay III: Natural disasters and demand for ICT labour 

142 

 

Also, since there is no true 𝐾 parameter (Lee & Mimno, 2014; Roberts et al., 2016, 2019), we 

apply a 𝐾 data-driven search as confirmatory analysis. Therefore, we conduct an examination across 

different topic numbers to select the proper specification from the computation of diagnostics, such as 

the held-out log likelihood (Wallach et al., 2009) and residuals analysis (Taddy, 2012). The held-out 

log likelihood test evaluates the prediction of words within the document when those words have been 

removed from the document to estimate the probability of unseen held-out documents (given some 

training data). For the best specification, on average, we will observe a higher probability of held-out 

documents indicating a better predictive model. In practical terms, we plot the number of topics and 

their held-out likelihood to look for some breaks in this relationship as a diagnostic showing that 

additional topics are not improving this likelihood much. Related to the residual analysis, it evaluates 

the variance overdispersion of the multinomial described by Eq. (4.15) within the data generating 

process. An appropriate number of topics will restrict this dispersion. In a plot showing 𝐾 and their 

estimated dispersion or residuals level, we are interested in the number of topics with lower values.    

Regarding the STM Topic-prevalence model estimation, the strategy takes the DTM, 𝐾 and the 

covariate and returns fitted model parameters. To put it differently, given the observed data, 𝐾 and our 

27𝐹 dummy, it estimates the most likely values for the model parameters specified by maximizing the 

posterior likelihood (see section 4.4.1). As a result, we can examine the proportion of job postings 

devoted to a given topic, or topical prevalence, over the 27𝐹 dummy. However, as occurs in this kind 

of probabilistic model, the STM posterior distribution is intractable. Therefore, we apply the 

approximate inference method implemented by Roberts et al. (2019). This method, the so-called 

partially-collapsed variational expectation-maximization algorithm, posterior variational EM, gives us, 

upon convergence, the estimates of our STM Topic-prevalence model. We discuss our convergence 

evaluation below. 

Another complexity that follows from the intractable nature of the posterior is the starting value of 

the parameters: in our case, this is the initial mixture of words for a given topic. This complexity is 

known as initialization, and our estimation depends on how we approach it. We specified the 

initialization method using the default choice named "Spectral"50. The spectral algorithm is 

recommended for a large number of documents like ours (Roberts et al., 2020, pp. 65). The described 

estimation is executed with a maximum number of 200 posterior variational EM iterations subject to 

meeting convergence. Convergence is examined by observing the change in the approximate variational 

lower bound. The model is considered converged when the change in the approximate variational lower 

bound between the iterations becomes very small (default value is 1e-5). We use functionalities 

included in the R package Stm (Roberts et al., 2020) to perform the estimation of 𝐾 and STM topic-

prevalence model parameters.  

 
50 The spectral initialization is based on the technique of moments and it employs a spectrum decomposition (non-negative 

matrix factorization) of the word co-occurrence matrix (Roberts et al., 2016, 2020). 
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In practical terms, the STM Topic-prevalence estimation described above allows us to measure 

how much a given topic contributes to each of our online job postings. We interpret our result by 

inspecting the estimated mixture of terms associated with topics. We include the most important terms 

for each topic using metrics like the highest probability terms and the FREX terms (Roberts et al., 2019).  

FREX51 measures the exclusivity of that term to a given topic. This association between terms, 

documents and topics is the result of the estimated model. However, for the sake of clarity, we name 

each topic according to our interpretation of the set of terms that motivates each of them. Thus, we can 

find topics associated with ICT labour. Since we specified the topical prevalence as a function of the 

27𝐹 dummy (see Eq. (4.14) related statements), we can measure the ICT labour topic prevalence 

variation between the pre- and post-disaster periods. We detail this effect treatment estimation in the 

next section.  

4.4.2.3.  Treatment effect estimation and evaluation 

Once we have estimated our STM Topic-prevalence model, the fitted parameters allow us to 

estimate a regression using the online job postings as units or documents, 𝑑, to evaluate the influence 

of our dummy 27𝐹 defined by Eq.  (4.13) on topic-prevalence for a topic 𝑗 (Roberts et al., 2019). Since 

27𝐹 indicates whether the job posting was published in the period before the earthquake impact or after, 

i.e., in the post-disaster or “treated” period (see section 4.3), we can study how the prevalence of topics 

changes in the aftermath of the disasters. In other words, we evaluate the "treatment effect" of the 

disaster on the topical prevalence by examining changes in topics’ proportions over our sample of job 

postings published after the earthquake. The effect estimates are analogous to Generalized Linear 

Models, GLM, coefficients (Roberts et al., 2013). 

We compute the topic proportions from the 𝜃 matrix where each column is the topic-prevalence 

vector for document 𝑑, 𝜃𝑑 (see Eq. (4.14)), and rows are 𝑑. Thus, each element 𝜃𝑑,𝑗 is the probability 

of job posting 𝑑 being assigned to topic 𝑗. As an illustration, in a model with only two topics, we 

consider the probability of each job posting for each of these two topics. In this example, for job posting 

𝑑 we can denote its proportions over the two topics as 𝜃𝑑,1 and 𝜃𝑑,2 where 𝜃𝑑,1 + 𝜃𝑑,2 = 1. Thus, the 

regression to evaluate the treatment effect where the topic proportions for a given topic are the outcome 

variable can be represented as 

𝜃𝑑 = 𝛼 + 𝛽 ∗ 27𝐹𝑑 (4.18) 

where 𝛼 is the intercept and 𝛽 is the coefficient to be estimated. A significant  𝛽 can be interpreted as 

changes (positive or negative) in topical prevalence because of our dummy standing for the post-disaster 

period.  

 
51 FREX terms corresponds to labelled terms using a variation of the Frequency-Exclusivity algorithm (Bischof & Airoldi, 

2012) available in the Stm R Package. 
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The effect estimation procedure in the Stm R package relies on simulated draws of topic 

proportions from the EM variational posterior (see section 4.4.2.2) to compute the coefficients. We use 

the default value of 25 simulated draws to compute an average over all the results. In other words, the 

procedure randomly samples topic proportions from the estimated topic proportion distributions for 

each job posting repeatedly to estimate any given effect. Also, as suggested by the software's authors, 

we include estimation uncertainty of the topic proportions in uncertainty estimates, or "Global" 

uncertainty, using the method of composition (Roberts et al., 2019, pp. 19). Regression table results 

will display the various quantities of interest (e.g., coefficients, standard error, t-distribution 

approximation). The procedure uses 500 simulations (default value) to obtain the required confidence 

intervals in the standard error computation (draws from the covariance matrix of each simulation) and 

a t-distribution approximation (Roberts et al., 2020). We also show our results visually by displaying 

the contrast produced by the change in topical prevalence, shifting from the pre-disaster to the post-

disaster periods, using the mean difference estimates in topic proportions.   

Regarding the evaluation of our estimation, although the robustness of the treatment effect 

estimation implemented here in terms of spurious effect52 has been validated by using several tests (e.g., 

Monte Carlo experiments) (Roberts et al., 2014), we still apply a permutation test53 to evaluate the 

robustness of our findings. The procedure estimates our model 100 times, where each run applies a 

random permutation of our 27𝐹 dummy to the job postings or documents. Then, the largest effect on 

our topics of interest is calculated. We would find a substantial effect, regardless of how we assigned 

the treatment to documents, if the results connecting treatment to topics were an artefact of the model 

(Roberts et al., 2014). Alternatively, we would find a treatment effect only in the case where the 

assignment of our 27𝐹 dummy aligned with the true data. We present the results of our permutation 

tests by plotting the contrast between our permutated model and the true model for our topics of interest.  

4.5. Results 

This section outlines the results from our STM estimation, following the strategies detailed in 

section 4.4.2 in three subsections. First, we show the results from our pre-processing procedures and 

DTM construction. Second, we describe our estimation outputs for 𝐾 and model parameters by 

characterizing the discovered topics and identifying the ICT labour topic. Third, we show the effect 

estimation findings and evaluation focusing on ICT labour topic changes.  

 
52 A spurious effect estimation refers to the model estimating an effect when the effect is actually zero. 
53 We apply the test available in the Stm R package. In this test, rather than using the true assignment of our 27𝐹dummy, the 

27𝐹 variable is randomly assigned to a job posting with probability equal to its empirical probability in the sample (Roberts 

et al., 2019). 
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4.5.1. Pre-processing and DTM representation 

This subsection aims to show the pre-processing and DTM results by applying the techniques 

described in section 4.4.2.1. to our sample described in section 4.3. After applied cleaning, tokenization 

and stemming, our DTM matrix is compound by 4,136 documents, 63,038 features (99,9% sparse) and 

one covariate (27𝐹 dummy). However, we find an important number of features belonging only to a 

few documents. In this regard, we remove infrequent terms by dropping features that do not appear in 

at least ten documents. As a result, our DTM now has 4,129 documents and 2,748 terms whose 

frequency is in the range [11, 2,095].  

In Table 4.2, we show the 15 most frequent terms in our DTM representation. Overall, the terms 

refer to the most frequent words in job titles and job areas that characterize our collection of job 

postings, such as sales, customer service, commercial, and management. Also, in column "Document 

frequency", last column in Table 4.2, we can observe how frequent the features are allocated to 

documents. For example, in the second row, "client" in Spanish ("customer" in English) is the most 

represented feature since it is found in 1,210 of the job postings in our sample. We perform on DTM 

our STM Topic-prevalence model strategy, whose results are shown in the next section. 

Table 4.2. The 15 most frequent DTM terms 

Feature (stem word in Spanish) Feature (in English) Frequency Rank Document frequency 

vent sales 2,095 1 908 
client customer 2,083 2 1210 

tecnic technical 1,857 3 1102 

manej handling 1,644 4 1098 

comercial commercial 1,637 5 881 

profesional professional 1,557 6 1130 

equip team 1,400 7 1045 

ingenier engineering 1,397 8 774 

servici service 1,356 9 930 

nivel level 1,313 10 981 

gestion management 1,183 11 758 

control control 1,030 12 646 

respons responsibility 1,008 13 887 

administr management 1,004 14 617 

administracion management 999 15 610 
Note: Own English translation of features considering the most probable Spanish stem word 

4.5.2. Estimating 𝑲 and STM Topic-prevalence model parameters 

This section shows the findings from our estimation strategies detailed in section 4.4.2.2. The 

number of topics applying the Anchor Words algorithm yielded a 𝐾 equal to 53. Our alternative data-

driven search of 𝐾 produces similar results, as shown in Figure 4.6.  The left-hand plot corresponds to 

the held-out log-likelihood application. We see a "break" between 40 and 50 topics. After that point, 

we see more minor improvements in the log-likelihood by adding more topics. In the case of the residual 

analysis, the right-hand side plot of Figure 4.6 shows the lower dispersion levels between 50 and 60 
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topics. In this regard, we can validate our 𝐾 equals 53 since this quantity falls approximately within the 

estimated ranges from both data-driven measures. 

Figure 4.7 shows the distribution of the expected topic proportions for the 53 topics over our job 

posting distribution. The x-axis corresponds to the expected topic proportion, and topic labels highlight 

the three words of highest probability (stem words in Spanish).  

 Figure 4.6. Diagnostics values of held-out log-likelihood (left-hand plot) and residuals (right-hand plot) 

by number of topics 

 

Figure 4.7. Expected topic proportions (x-axis) and the three highest probability 

words (in Spanish) for the 53 topics 
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The highest 

topic 

proportion in Figure 4.7 corresponds to Topic #50 with the associated terms "vent", "ejecut", and 

"ejecut_vent". Translated into English, these terms are sales, executive, and sales executive, 

respectively, implying that most of our collection of jobs is devoted to sales-related jobs.. We examine 

the 53 topics and name them based on the ten most probable words and FREX terms (See footnote 51). 

In Appendix A.3, we show the full details of high probability and FREX terms and our proposal of 

names for topics (in Spanish and English). 

Returning to Figure 4.7, we look at topics standing for ICT labour. We find that Topic # 33 (top 

half of Figure 4.7) can be interpreted as an ICT labour topic, given that the most probable terms, i.e., 

stem words in Spanish, are "informat", "desarroll" and, "program". These words, as non-stem English 

words, would be informatics, development and programming, respectively. Additional FREX terms 

stand for English words like data, support, and database (see Topic #33 in Appendix A.3). Furthermore, 

Expected Topic Proportions 
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software or programming languages belong to this topic (e.g., SQL, PHP). We do not observe other 

topics with similar terms, suggesting that only our topic of interest contains the expected mixture of 

ICT-related words.  

We adopt the same approach to the interpretation of the rest of our topics: that is, analysing the 

higher probability and FREX top words. Overall, topics refer to occupational or economic areas (e.g., 

Sales, Accountancy, Logistics, Health, Education). Also, some of them correspond to specific job titles 

(e.g., Retail Store Manager, Management Assistants) and job posting sections (e.g., job posting rewards, 

job posting qualifications requirements). Furthermore, we cannot interpret some topics (we have 

denoted them as "Undefinable") since we do not see a clear concept emerging from the mixture of 

words. 

In the next section, we examine the treatment effect of the disaster on the topical prevalence of our 

ICT labour topic. Also, for comparative purposes, we examine the Construction labour topic (Topic #13 

in the top half of Figure 4.7) since it is expected that reconstruction activities after the earthquake would 

encourage the post-disaster prevalence of this topic. 

4.5.3. Effect estimation of the earthquake 

This section outlines the effect estimation results, as described in section 4.4.2.3. We focus on the 

prevalence of ICT labour and Construction labour topics. In Table 4.3, we present the results for the 

regression represented by Eq. (4.18).  

  

Table 4.3. Effect treatment regression results for ICT labour and Construction labour topics prevalence 

Topic Variable Estimate Std. Error t value Pr(>|t|) 

#33 – ICT labour 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.025684 0.002664 9.643 <2e-16 *** 
27𝐹 -0.00536 0.003446 -1.555 0.12  

#13 – Construction labour 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.018878 0.00275 6.866 7.59e-12 *** 
27𝐹 0.013366 0.003864 3.459 0.000548 *** 

Note: ***, ** and, * denote significance at 1%, 5% and 10% level respectively. 

 

The first two rows in Table 4.3 stand for the ICT labour topic coefficients. We can see that the 27𝐹 

covariate is not statistically significant, using the ICT topical prevalence as the output variable. In 

contrast, 27𝐹 is significant (p-value < 0,01) and positive for the Construction labour topical prevalence. 

These findings show that the prevalence of the ICT labour topic does not change, suggesting that there 

is no difference in demand for ICT labour. Conversely, the Construction topic prevalence is 

significantly different and positive after the disaster, suggesting that reconstruction activities took place 

in the earthquake's aftermath. 

Visually, Figure 4.8 shows that topical prevalence differed significantly and positively between 

the pre-disaster and post-disaster periods only for the Construction labour topic. 
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Figure 4.8. Difference in topic prevalence between pre-disaster and 

post-disaster periods for ICT and Construction labour topics. 

 
Note: Negative and positive values indicate that the topic is more prevalent in pre- 

and post-disaster periods, respectively. (Confidence intervals at 95%) 
 

Figure 4.9 shows the results of our permutation test (see section 4.4.2.3 for details). For the ICT 

labour topic (left-hand plot), the permutation output suggests that our results of no change in topic 

proportions are robust since the models with a random permutation of our 27𝐹 dummy and our model 

with the true assignment of our variable, shown by the red line on the top of the plot, have effect sizes 

around zero. In the case of the Construction labour topic (right-hand plot), most of the estimated models 

have effect sizes grouped around zero. However, the model including the true assignment of our 27𝐹  

dummy, shown by the red line on the top of the plot, is a result that is far to the right of zero. Thus, the 

relationship between the treatment and examined topics arises within the sample, and it is not driven by 

the estimation method itself. 
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Figure 4.9. Permutation test results for the ICT labour topic (left-hand plot) and Construction labour 

topic (right-hand plot) 

Note: Confidence intervals at 95% 

4.6. Discussion 

This study examined the impact of the 27th of February Biobío earthquake on demand for ICT 

labour as a proxy for technological replacement. We do not find evidence that this large earthquake (>8 

MW) influenced the demand for ICT labour, which was represented by a topic featuring ICT-related 

terms from our job postings collection. This ICT labour topic corresponds to one of the 53 discovered 

by the application of our STM-Topical Prevalence modelling and estimation strategy. Our number of 

topics is as expected, given the number of our job postings (Roberts et al., 2020, pp. 65) and the data-

driven measures.  

Our treatment effect regression results show that the ICT labour topic prevalence did not change in 

the earthquake's aftermath. This result suggests no substantive technological change in the most affected 

regions. We do not have enough data to measure region-specific impacts. This lack of evidence does 

not support our conceptual framework’s main prediction that the expected technological upgrading with 

ICT compatible equipment would lead to a faster growth in demand for ICT labour. Unlike other studies 

on shocks like pandemics and recessions, as far as we know, this is the first study that has attempted to 

link ICT labour with natural disasters. Most of the literature emphasises the importance of ICT as a 

means of coping with disaster prevention and disaster management.  

We can speculate as to the reasons why we have not observed evidence of technological upgrading 

after the earthquake. First, there is the sectorial structure of the Chilean economy. Assuming that older 

and outdated physical assets are more prone to be damaged by an earthquake because of weaker 

structure, mechanical fatigue, and other vulnerabilities (Okuyama, 2003), there is a relatively low 

representation of the sectors accounting typically for these tangible physical assets, like the 
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manufacturing industry. As Chile has grown, its economic development has been more concentrated in 

the services sector, which accounts for mainly intangible assets, while manufacturing and other sectors 

have declined (de la Torre et al., 2013; Parro & Reyes, 2017). In the Chilean GDP structure, the services 

sector accounts for more than half of GDP, whereas the manufacturing sector in GDP decreased from 

over 20% in the 1980s to 10% by 2010 (World Bank, 2022). Consequently, the potential negative impact 

of a disaster on an underrepresented sector like manufacturing might be untraceable. In addition, the 

predominance of the services sector also can explain the lack of evidence since it has been suggested 

that this sector, given the intangible nature of its assets and operations, does not suffer the impact of 

natural disasters as severe as, for example, manufacturing (Doytch, 2020).  

Secondly, comparative studies also suggest Chile may be well equipped to cope with disasters due 

to factors including building policies and codes and economic conditions. Severe economic damage 

was expected in the aftermath of the 27th of February Biobío earthquake because it affected the central 

regions of the country, where most of the economic activity and population are concentrated. However, 

the detrimental effects on the economy were much less than those observed in low-income countries 

like Haiti, when it was hit by a less severe earthquake (7 MW) in January 2010 (Cavallo & Noy, 2010; 

Congressional Research Service, 2010). Another possibility suggested by past studies is that economic 

innovations usually appear when the economy completely recovers from a disaster (Park et al., 2017). 

In this regard, a longer-term analysis could capture technological upgrading by observing changes in 

demand for ICT labour.  

As for our findings on Construction employment, they are in line with our expectations and past 

studies (e.g., Belasen & Polachek, 2009; Skidmore & Toya, 2002). The positive impact on this labour 

sector suggests that reconstruction activities took place in the earthquake's aftermath. This positive 

influence might occur as labour is substituted for damaged or missing physical capital in this sector. 

Some consequences of reconstruction activities leading to growth in Construction employment may be 

a potential decrease of workers in other sectors, such as Agriculture, attracted by better salaries 

(Kirchberger, 2017). In this regard, some authors suggest that rebuilding activities favour unskilled and 

less-educated workers due to increases in demand for the Construction sector, which is a highly 

intensive employer of unskilled labour (Di Pietro & Mora, 2015). Less favoured groups, like migrants, 

can also see improvements in their labour outputs during recovery stages (How & Kerr, 2019). The 

analysis of these positive influences of disasters on labour is beyond the scope of this study, but it 

represents an opportunity for further research.   

There are some caveats, mainly methodological, to the study that deserve mention. First, there is 

potential ambiguity in the discovered topics. We cannot interpret some of them. This difficulty might 

be greater for researchers with no prior knowledge of the data or who are analysing text in a foreign 

language. Secondly, given that STM is recent, both its utility and limitations are still developing. In the 

case of the treatment effect estimation implemented in this study, there have been some warnings about 

the modelling of topic proportions, such as that STM ignores the fact that proportions belong to the 
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interval [0, 1] and the regression approach combining Bayesian and frequentist methods54 (Schulze et 

al., 2021). Improvements in tackling these limitations should be implemented in future versions of STM.   

As suggestions for future research, we would suggest focusing on a more disaggregated analysis, 

theoretical development and extending the post-disaster period under examination. The importance of 

research differentiating labour groups or other distributions of workers lies in its ability to facilitate the 

identification of the worst affected or most favoured workers, either in the aftermath of a disaster or 

during the economic recovery. Typically, aggregated analysis hides impacts on sub-groups (How & 

Kerr, 2019; Zissimopoulos & Karoly, 2010).  Regarding theoretical developments, some authors have 

made economic generalizations about disaster dynamics, such as the conceptual framework proposed 

by Okuyama (2003) and reproduced in this study. However, much theoretical work remains to be done. 

Regarding the extension of the post-period examination, as pointed out above, technological 

replacements might be not only a short-run but also a middle or long-run decision. 

Our analysis speculates on two potential policy implications. First, policymakers can take 

advantage of recovery activities, considering to a greater extent the potential for technological 

upgrading. This is of special interest for countries or regions exposed to disasters like Chile, where the 

lack of technological upgrading in the planning of recovery activities might explain why we cannot 

observe technological replacements. Policymakers usually emphasize aspects like disasters risk 

reduction to improve resilience, where upgrading is mainly planned for infrastructure since disasters 

are seen as a threat to sustainable development (Bello et al., 2021). But a recovery process promoting 

technological replacements for firms could exploit and encourage potential technological adoption after 

disasters (Benson & Clay, 2004; Doytch, 2020). For example, policies could promote the upgrading of 

firms through fiscal incentives (e.g., tax reductions, financial support). In the case of countries receiving 

greater inflows of external capital in the aftermath of disasters, such as foreign direct investment, FDI, 

this investment could be attracted by a focus on technological upgrading (Doytch, 2020). Other highly 

seismic countries, like Japan, supply abundant liquidity to mitigate the financial constraints on 

businesses located in affected areas (Okazaki et al., 2019).  

In the case of Chile, as one of the region’s strongest economies, after the 27th of February Biobío 

earthquake, it had a good chance of receiving support from international financial institutions (e.g., the 

World Bank, International Monetary Fund), not only for reconstruction (Congressional Research 

Service, 2010) but also for technological upgrading. But, to the best of our knowledge, there was no 

strategy in place to consider the issue discussed here. Therefore, we would encourage policymakers to 

take advantage of reconstruction activities promoting potential technological upgrading by means of, 

e.g., fiscal incentives, mitigation of financial restrictions, and policies targeting the replacement of 

 
54 The potential issue regarding mixing Bayesian and frequentist methods arises from the way in which each technique 

approaches its parameters. For example, while for the Bayesian method the parameters are random variables, the parameters 

for the frequentist framework are fixed.  
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industrial technology, as discussed above. In turn, this “forced” upgrading might lead to improvements 

in sub-groups of workers like ICT labour.         

Secondly, more attention must be paid to disaggregated labour, for example, lesser favoured 

workers employed in recovery activities. These activities supply job opportunities for these workers 

that might not exist otherwise, which is desirable from a policy perspective. However, reconstruction 

activities typically employ low-skilled or unskilled workers, as usually occurs in the Construction sector 

(Rodríguez-Oreggia, 2013). In terms of wages, this unskilled labour appears at the lowest end of the 

Construction sector’s wages (Sisk & Bankston, 2014). In addition, these low-paying jobs are often 

dangerous. For example, in the aftermath of Hurricane Katrina, it has been suggested that an 

undocumented and foreign-born labour force carried out the most unsafe reconstruction activities, like 

demolition (Trujillo-Pagan, 2012). Bearing this in mind, policymakers should promote strategies 

focused on these most vulnerable workers, such as improvements in workers’ prospects by retraining 

to mitigate the eventual lack of income once the recovery process finishes. Also, more attention should 

be paid to work safety policies, since hard and hazardous jobs usually employ less favoured workers.   

4.7. Conclusion 

The impact on ICT employment derived from technological upgrading due to impacts of disasters 

has not received attention. Nevertheless, disasters can be an opportunity to accelerate technology 

adoption, which in turn can have a positive impact on demand for specialized labour like ICT labour. 

This impact, along with increasing demand for labour being used as a substitute for destroyed equipment 

or labour required for reconstruction activities, can mitigate the negative impact of disasters.  

We explored the influence of the 27th of February Biobío earthquake on demand for ICT labour as 

a proxy for a technological replacement event. Our findings using open text data on jobs, alongside our 

topic modelling and treatment effect estimations, show that demand for ICT labour did not significantly 

change in the aftermath of the earthquake. Given these results, we would assert that in the most affected 

regions, there was no significant technological upgrading or replacements of destroyed equipment by 

capital goods compatible with ICT. However, we observed an increase in Construction labour. 

Therefore, and as expected, reconstruction activities featured strongly in the recovery process.  

Our lack of support on the influence on ICT labour of shocks like the examined earthquake might 

reflect features characteristic of Chile, such as building policies, economic conditions, and the size of 

the manufacturing sector. Furthermore, technological replacements might occur in the medium term or 

long run or, possibly, when the recovery activities finish. In this regard, future research should examine 

periods beyond our post-disaster span of two years. Also, we encourage further research, analysing 

disaggregated labour and developing more theoretical foundations for a better conceptualization of 

interactions between disasters, labour, and technology.  
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Finally, we discussed some policy implications given our our lack of support for changes in demand 

for ICT labour and the increase in construction employment during the recovery process. On the one 

side, we encourage policies considering technology upgrading as part of recovery process planning, and 

on the other, we recommend that more should be done to improve the prospects and safety of lesser 

favoured workers employed in reconstruction activities. 



 

5. Conclusion 

Our examination of the interactions between labour markets, technological change and natural 

disasters in Chile will be concluded in four sections. To answer the research questions we presented, 

we first summarise and combine the key findings from the three essays, followed by a section noting 

the study's limitations and suggestions for further research. The third section discusses some potential 

implications for policymakers and the fourth section concludes with final remarks. 

5.1. Results summary 

In our first essay (see Chapter 2), we found empirical evidence for the RBET model for Chile, 

where demand and supply factors can explain the evolution of the skill premium during 1980 – 2018 

using recurrent survey labour data. Our measures of the skill premium and the relative demand for 

skilled labour coming from technology or the SBTC effect show an inverted U-shaped pattern, while 

the relative supply shows an upward pattern. We support the view on the complementarity between the 

skill premium and the relative demand for skilled labour coming from technology. Also, we found 

evidence for the expected inverse relationship between the relative supply of skilled workers and the 

skill premium, as posited by the RBET conceptualization. Our estimate of 6.5 for the elasticity of 

substitution between skilled and unskilled implies that both kinds of workers are imperfect substitutes 

but more substitutable than suggested.  

Past studies examining data between the 1960s and 2000s also supported the RBET evidence for 

Chile (Beyer et al., 1999; Gallego, 2012), but others found results inconsistent with the theoretical 

expectations of the RBET model due to “improbable estimation results” such as the computation of the 

wrong sign for the coefficient standing for the supply factor, i.e., a positive sign (Murakami, 2014; 

Robbins, 1994b). A positive coefficient contradicts the expected negative relationship between the 

relative supply and the skill premium posited by the RBET model. Besides, a positive coefficient leads 

to the computation of negative elasticities. Our VECM estimation also yielded the wrong signs. 

Alternatively, our UCM-Bayesian estimation supports the conceptualization and predictions of the 

RBET model for Chile in the period 1980-2018: the SBTC and the relative supply of skilled labour 

drive the evolution of the skill premium. In the context of a race between education and technology, our 

results support a story where the SBTC was the dominant factor in the pre-2000 period resulting in the 

increasing skill premium. However, after 2000, the SBTC effect was surpassed by the workforce's 

educational attainment, leading to the decline of the observed skill premium in recent decades. 

In contrast to our first essay (see Chapter 2), in our second study (see Chapter 3), we found weak 

evidence supporting the ALM model for Chile using online job posting data for 2009-2018, particularly 

the expected complementarity between cognitive tasks and the skill premium. Furthermore, we did not 

find evidence of skilled labour abilities like cognitive and social skills driving the skill premium. As in 
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the first essay, we also confirm the skill premium decline in recent decades using alternative data. In 

this regard, we speculate that a potential explanation for our weak evidence on the expected 

complementarity between cognitive tasks and skilled labour (and the lack of evidence regarding 

cognitive and social abilities) may lie in the period of our analysis. Most of our analysis focuses on the 

skill premium decline. In the first essay (see Chapter 2), our findings suggested the skill premium 

decreased in the post-2000 period due to the substantial expansion of Chilean tertiary education: this 

concurred with past studies (Murakami & Nomura, 2020; Parro & Reyes, 2017). The decreasing 

importance of cognitive tasks and skills in explaining the wages of skilled labour is also consistent with 

the reassignment of skilled workers to less skilled positions due to technological adoption, i.e., 

downward movements in the occupational ladder observed in the post-2000 period (Almeida et al., 

2020; Zapata-Román, 2021).  

Using the demand for ICT labour as a proxy for technological replacement, in the third essay (see 

Chapter 4), our results do not support our conceptual view on the 27th of February 2010 Biobío 

earthquake affecting the pace of technological change. Our STM estimation strategy using the text from 

a subsample of online job posting data used in the second essay (see Chapter 3) allowed us, firstly, to 

discover topics featuring some specialized labour like ICT and Construction labour. Then, we applied 

a treatment effect regression approach whose results show that the ICT labour topic prevalence did not 

change between the periods before and after the disaster. On the other hand, we found evidence of 

positive changes in the prevalence of the Construction labour topic after the earthquake, suggesting that 

reconstruction activities took place in the disaster’s aftermath. Thus, our results do not support our 

conceptual framework’s main prediction that the expected acceleration of ICT-related technological 

adoption in the aftermath of the earthquake would lead to increases in demand for ICT labour. Reasons 

that might explain our lack of evidence include the Chilean economy’s sectorial structure and high 

ability to cope with disasters.  The argument for the role of the sectorial structure relies on the 

assumption that the services sector would not suffer a more severe impact from a natural disaster given 

its intangible nature compared with, for example, manufacturing, which is a sector relying typically on 

tangible physical assets. These tangible physical assets are more prone to be damaged by an earthquake 

and potential tsunami that could occur later, but manufacturing only accounted for 10% of GDP in 2010 

(World Bank, 2022). In contrast, the services sector accounted for more than 50% of GDP.  Regarding 

the ability of Chile to cope with earthquakes, comparative studies have suggested that some features 

like strong building policies and economic conditions have been favourable (Cavallo & Noy, 2010; 

Congressional Research Service, 2010).   
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5.2. Limitations of the study and suggestions for further research 

The main limitations of our work, including some theoretical and technical implementation 

caveats, as well as some further research areas that might be developed because of the work presented 

in this thesis, are described below.  

i. Addressing theoretical limitations of the RBET model  

The elasticity of substitution between skilled and unskilled conceptualizations in the RBET model 

only allows interpretation for values tending to zero, one or ∞ (see Figure 2.1): the absence of an upper 

threshold allows us to discuss only more or less substitution between both groups of workers without 

theoretical support. The elasticity estimates are also sensitive to the use of time trends to proxy the 

relative demand for skilled labour (Borjas et al., 2012; Fernández & Messina, 2018). Our theoretically 

unfeasible results in the first essay (see Chapter 2), produced by applying cointegration techniques, 

show that the technical implementation of the RBET can be difficult. These limitations should be 

addressed in future studies focusing on bringing data to the RBET model. In this regard, giving more 

emphasis to alternative estimation methods like the UCM-Bayesian model would be appropriate since 

it can better handle the technical implementation of the RBET model. More generally, the models 

employed in this area have assumed stable parameters such as cointegration approaches, which 

generally employ only linear trends. Bearing this in mind, it is possible that models which allow for the 

evolution of a wider set of parameters may better describe the underlying phenomena. 

ii. Data and conceptual limitations for testing the ALM model  

The 120 data points of monthly data used in our second essay (see Chapter 3) might be not enough 

to capture adequate data variation in both the task-content and skills-related analysis. Besides, there is 

a sub-representation of groups related to skilled labour since most of our sample is devoted to middle 

or low-skilled occupations, e.g., clerical workers in business and administration occupations, whose 

task content is less rich in non-routine cognitive tasks. Similarly, in our skills-related analysis, most of 

the sample refers to Customer Service or Financial abilities, and fewer observations have references to 

abilities required from skilled labour, like Cognitive and Social skills. This sub-representation of 

observations standing for cognitive tasks and skills might be a potential bias towards lesser skilled 

groups, which needs to be considered in future studies on skilled labour.  

Conceptually, past studies using different data and estimation methods also suggest that the ALM 

model predictions would be not fulfilled so completely for Chile as in other high-income countries. 

Further research should develop “local” versions of the ALM model, suggesting alternative predictions 

on the interaction of technology and groups of labour based on their skills. 

iii. STM estimation caveats and suggestions for future research  

On the one hand, we were not able to interpret some of the topics discovered. Researchers have 

noted that topics are usually difficult to decode (Nanni et al., 2016; Schmidt, 2012). Besides, the topic's 
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interpretation relies on researchers’ intuitions (Chang et al., 2009) which might lead to biased 

interpretation55 (Shadrova, 2021). Further research is needed to take these difficulties into consideration.  

On the other hand, STM combines Bayesian and frequentist strategies in the treatment effect 

estimation. Although for some researchers, a hybrid technique can represent a combination of the best 

aspects of both strategies, for others, this combination might represent a weakness since the approaches 

rely on different assumptions. In this regard, we would suggest the implementation of a full Bayesian 

estimation of treatment effect in the STM technical implementation as proposed by Schulze et al. 

(2021).  

5.3. Policy implications 

From the viewpoint of policy design implications, we speculate on how some findings from this 

work can inform policymakers in two ways since our results could not directly support policy. However, 

they offer elements for further research and contribute to the current discussion on related policy issues. 

To illustrate, in the first and second essays (Chapter 2 and Chapter 3, respectively), we have discussed 

on the urgent need for coordination between the supply and demand for skilled labour and the 

anticipation of potential negative impacts due to the adoption of new technologies. In our third essay 

(see Chapter 4), we suggest strengthening the presence of technological replacements in the process of 

recovery planning, along with paying greater attention to lesser favoured workers employed in low-

paying jobs during reconstruction activities. 

i. On the need for coordination between labour and educational policies and the anticipation of 

potentially pervasive effects due to technological adoption 

The last four decades witnessed strong investments in Chilean higher education. The 18–24 age 

group enrolled in tertiary education grew from 189,151 (11% of this age group) in 1984 to above 1.2 

million (approximately 67% of this age group) in 2018 (INE, 2017; MINEDUC, 2020).  These 

investments have been essential to boost Chile’s economic development through the expected transfer 

of knowledge and skills to jobs (Schneider, 2013; Valiente et al., 2020). However, policymakers making 

these investments possible do not seem to have considered the economy's ability to absorb the greater 

availability of better-educated workers in recent decades. This greater supply surpassed the demand for 

skilled labour coming from technology, the SBTC effect, resulting in the skill premium decline. 

Besides, it has been suggested that the Chilean labour market might not require intensive use of 

advanced skills, which might result in high rates of over-qualification and over-skilling (Sevilla & 

Farías, 2020). In this sense, the nature of the qualifications obtained by better-educated workers also 

seems to require more careful consideration.  For example, in Chile, only 3% of post-secondary students 

 
55 For example, biased interpretation of topics might result from apophenia, i.e., the human proclivity to interpret random 

groups of elements as meaningful patterns, and confirmation bias, i.e., the human tendency to choose patterns that match pre-

existing beliefs (Shadrova, 2021). 
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graduate with degrees in ICT, and only 1% with degrees in STEM-related fields, placing Chile in the 

lowest position of all OECD countries (OECD, 2018). 

Crucially, Chile lacks institutional mechanisms to coordinate the needs of firms with the 

educational system  (Valiente et al., 2020). Some incipient strategies are pointing in the direction of 

greater coordination or examining the mismatching between demand and supply: these include the 

development of the National Qualification Framework, NQF (Fuentes et al., 2020; MINEDUC & 

CORFO, 2017; Sevilla & Farías, 2020) and the institutional monitoring of this mismatching by the 

Labour Observatory (Observatorio Laboral in Spanish) of the Ministry of Work and Pensions (SENCE, 

2022). Another innovation implemented in 2021 was the Job Prospection Policy Committee, which 

aims to balance labour skills with the needs of the labour market, among other objectives (Ministerio 

del Trabajo y Previsión Social, 2021). Past efforts like the National Vocational Qualifications 

Framework56 (Marco de Cualificaciones Técnico Profesional, MCTP, in Spanish) proposed in 2021 

and with a focus on Chilean secondary and tertiary vocational educational levels, among others, provide 

an experience that oversees the development of qualifications in key economic sectors (e.g., ICT, 

mining). The MCTP strategy represents an experience of improving educational and occupational 

mismatch at the vocational education level that can extend to the university or college level. Also, 

UNESCO (2015) reviewed NQFs from a variety of countries. Among these countries are some that 

recently graduated as high-income countries, such as Chile (e.g., Portugal, Republic of Korea; See 

section 1.1 and footnote 3), which might supply insights on how they address the expected coordination 

between educational institutions and the industry needs. For example, in the case of the Republic of 

Korea, the NFQ integrates university and vocational qualifications, and it serves as a conduit for 

reacting to labour market needs as well as restructuring secondary and tertiary both academic and 

vocational educational curriculum (UNESCO, 2015).   

Furthermore, our evidence on skilled and unskilled labour being more substitutable than commonly 

assumed, and the lack of a strong relationship between the skill premium and cognitive tasks and skills, 

would imply an unanticipated impact of technology adoption resulting in unwanted changes in the 

occupational ladder (e.g., downward movements). Some reported that most technologies biased toward 

skilled labour came from abroad (Gallego, 2012), which could imply that these technologies are not 

suitable for Chilean skilled workers. In this regard, innovation policies can support the development of 

technologies that specifically complement Chilean skilled labour. One good place to start is for 

policymakers to strengthen intellectual property regulations (Acemoglu, 2003) to promote local 

technologies. They could also fund practice-based testing of worker interactions with most of the 

technologies featuring the technological change in production (e.g., ICT, automation) to assess their 

alignment with Chile’s labour market needs and to anticipate potentially pervasive effects. Besides, 

educational policies promoting ICT and STEM qualifications are required. 

 
56 Available in https://marcodecualificacionestp.mineduc.cl/ (in Spanish. Accessed 01-Apr-2022) 

https://marcodecualificacionestp.mineduc.cl/


5.3 Policy implications Conclusion 

160 

 

The issues discussed here highlight the urgent need for efforts to improve the balance between the 

needs of the labour market: evidence for this arises from our results on the effect of demand and supply 

factors on the skill premium evolution. Warnings of this urgency have already been raised by past 

studies and international institutions (OECD, 2018; Sevilla & Farías, 2020; Valiente et al., 2020). We 

also suggest policies anticipating the potentially pervasive effect of technological adoption, such as 

unwanted changes in the occupational ladder, i.e., downward movements, due to displacements of 

skilled labour to less skilled positions, as suggested by Almeida et al. (2020) examining the adoption of 

complex software in Chilean firms. Our results on the weak complementarity between skilled labour 

and cognitive tasks and skills might also imply that better-educated workers move to middle-skilled 

positions rich in cognitive but intensive in routine tasks.  Bearing this in mind, we should consider that 

the problem to be addressed is not technology per se but failures to understand the interaction between 

labour markets and technological change or its misgovernance (Goos, 2018).  

ii. On a planned recovery process promoting potential technological improvements and policy 

focused on reconstruction workers 

The potential technological upgrading after disasters is of particular interest for countries or regions 

exposed to disasters like Chile. Nevertheless, Chile, despite being a country hit by recurrent 

earthquakes, lacks policies designed to take advantage of recovery activities by giving more 

consideration to technology upgrading. Some experiences show that policymakers might promote 

technological improvements. For example, these could include fiscal incentives (e.g., tax reductions, 

financial support), re-directing FDI towards technological upgrading (Doytch, 2020), and mitigation of 

financial constraints by supplying abundant liquidity for firms to recover their productive capacity by 

upgrading their equipment’s technology (Okazaki et al., 2019). In the case of the 27th of February Biobío 

earthquake, Chile, as one of the region’s strongest economies, was likely to receive financial support 

from international financial institutions (e.g., the World Bank, International Monetary Fund) not only 

for reconstruction (Congressional Research Service, 2010) but also for technological upgrading. To the 

best of our knowledge, no government report on planning considers specialized support for 

technological upgrading.  

We also suggest more attention should be paid to lesser favoured workers. Our results suggest that 

reconstruction activities took place after the earthquake due to the positive change in the Construction 

labour prevalence. Reconstruction activities typically employ low-paid or unskilled labourers, as 

occurred in the Construction sector (Rodríguez-Oreggia, 2013). These activities are usually not only 

linked to low-paid but also to hazardous jobs like demolition (Trujillo-Pagan, 2012). Trujillo-Pagan, 

(2012) also suggested that inflows of less favoured workers (e.g., undocumented and foreign-born 

labour) were promoted by policymakers (e.g., by suspending labour-related policies) to accelerate the 

recovery process after Hurricane Katrina. However, as suggested by Trujillo-Pagan, (2012), this 

workforce carried out the most hazardous reconstruction activities. In this sense, reconstruction 

activities can represent an opportunity to increase employment participation for lesser favoured 
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workers, but policy should not encourage inflows of vulnerable workers without consideration of work 

safety measures. Besides, once reconstruction or the recovery process has finished, there are other issues 

with policy implications, such as the potential lack of income of workers employ in reconstruction jobs. 

In this regard, retraining or strategies supporting the transition to new jobs might be required.  

5.4. Final remarks 

The work in this thesis contribute to our understanding of labour markets’ response to both regular 

economic forces like technological change and unexpected shocks like natural catastrophes. We have 

explored the interactions between the skill premium and demand and supply factors by testing the RBET 

and ALM models’ implications as well as the role of cognitive and social skills. We have learned that, 

in the context of a race between education and technology over 1980-2018 for Chile, the SBTC was the 

dominant factor in the pre-2000 period resulting in the increasing skill premium. However, after 2000, 

the SBTC effect was surpassed by the workforce's educational attainment, leading to the decline of the 

observed skill premium in recent decades. However, we found weak evidence supporting the ALM 

model for Chile for 2009-2018, particularly the expected positive influence on the skill premium of 

cognitive tasks and skills. Additionally, this work gives us insights on the question of whether natural 

disasters can be considered as substantial events affecting the pace of technological change pace proxied 

by demand for ICT labour. In this regard, we cannot support a conceptual view on recent natural 

disasters affecting the pace of technological change. 

As limitations we have discussed conceptual limitations arising from the theories used as 

frameworks in this thesis. Also, an added limitation is that they might be considered as unrelated or 

separate frameworks. However, these theories respond to different research questions aimed at 

conceptually examine how labour markets respond to regular forces like technological change and 

unexpected shocks like catastrophes considering the potential technological upgrading. Similarly, and 

as illustration, we have highlighted policy implications about the lack of coordination between 

educational and labour policies. Although these implications might be not directly supported by our 

results, they can feed the policy discussion on the mismatch between educational and labour policies 

which recently started in Chile. In this regard, our results supply empirical evidence on labour demand 

and supply forces behind the skill premium evolution.  
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Appendices 

A.1. Essay I 

A.1.1. Stan Code 

The Stan code representing our UCM-Bayesian specification (see section 2.6.2.4) is structured 

within “program blocks”: data, parameters, and model. The data block is for the declaration of 

variables that are read in as data. In the parameters block we indicate the parameters to be modelled. 

The variables declared here are the variables that will be sampled by Stan. The model block is where 

we specified the priors and likelihood, along with the declaration of any variables necessary. The code 

for the base model is as follows: 

modelBase <- " 

data {             

int N;            //number of observations 

vector[N] y;      //outcome vector for the outcome (the skill premium) 

vector[N] x;      //predictor vector for the relative supply 

vector[N] z;      //predictor vector for S (seasonality) 

vector[N] d;      //predictor vector for Ch98 (dummy change year 1998) 

} 

 

parameters {       

vector[N] u;      //level vector parameter 

vector[N] v;      //slope vector parameter 

real<lower=0.01> s_u;   //level white noise parameter with restriction 

real<lower=0.01> s_v;   //slope white noise parameter with restriction 

real<lower=0.01> s_y;   //outcome white noise parameter with restriction 

real<lower=.1,upper=10> beta; //elasticity parameter restricted to [0.1-10] 

real alpha;       //S predictor parameter 

real gamma;       //Ch98 predictor parameter 

real u0;          //level initial condition parameter 

real v0;          //slope initial condition parameter 

} 

 

model { 

alpha~cauchy(0,10);     //prior for S predictor parameter 

gamma~cauchy(0,10);     //prior for Ch98 predictor parameter 

s_u~cauchy(0,10);       //prior for level white noise parameter 

s_v~cauchy(0,10);       //prior for slope white noise parameter 

s_y~cauchy(0,10);       //prior for outcome white noise parameter 

beta~normal(0.1,3);     //prior for elasticity parameter 

u[1]~normal(u0,s_u);    //prior for the level initial condition    

v[1]~normal(v0,s_v);    //prior for the slope initial condition 

 

v[2:N] ~ normal(v[1:N-1], s_v);             //likelihood for the slope 

u[2:N] ~ normal(u[1:N-1] + v[1:N-1], s_u);  //likelihood for the level 

y ~ normal(u-x/beta+alpha*z+gamma*d, s_y);  //likelihood for the outcome 

}" 
 

A.1.2. UCM-Bayesian modelling diagnostics 

Here we display graphical diagnostics of the main parameters from our UCM-Bayesian estimation 

presented in Table 2.6 using the shinystan R package (Gabry et al., 2022; Muth et al., 2018). The plots 
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on the left correspond to the trace plots, a visual complement to the �̂� statistics detailed in Table 2.6, 

to check convergence. In the trace plot the lines show different chains. If the chains are 

indistinguishable, this is a signal of convergence. The plots on the right show the parameters’ full 

posterior to check how the mass probability is distributed, and the vertical dashed line indicates the 

posterior mean of the parameter. 

 

 

 

 

 

 

 

Figure A.1.2. Trace plots (left-side) and full posterior plots (right-side) from UCM-Bayesian 

estimation 
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A.2. Essay II 

A.2.1. Chilean Occupational Classification, CIUO08-CL for the 41 2-digit sub-groups 

The next table shows the Chilean Occupational Classification, CIUO08-CL for the 41 2- digit 

sub-groups (names in Spanish from Clasificador Chileno de Ocupaciones (INE, 2018) and in English 

from the International Standard Classification of Occupations (ILO, 2012)) 

Cod CIUO-08 CL Name in Spanish CIUO-08 CL Name in English 

11 Miembros del Poder Ejecutivo y Legislativo, personal 

directivo de la administración pública y de otras 

organizaciones sociales y/o políticas, directores 

ejecutivos y gerentes generales. 

Chief executives, senior 

officials and legislators 

12 Directores y gerentes administrativos y de servicios 

comerciales. 

Administrative and commercial 

managers 

13 Directores, gerentes y administradores de producción y 

operaciones. 

Production and specialised 

services managers 

14 Directores, gerentes y administradores de hoteles, 

restaurantes, comercios y de otros servicios. 

Hospitality, retail and related 

services managers 

21 Profesionales de las ciencias y de la ingeniería. Science and engineering 

professionals 

22 Profesionales de la salud Health professionals 

23 Profesionales de la educación. Teaching professionals 

24 Profesionales de negocios y administración. Business and administration 

professionals 

25 Profesionales de tecnología de la información y las 

comunicaciones. 

Information and 

communications technology 

(ICT) professionals 

Table A.2.1. Chilean Occupational Classification, CIUO08-CL for the 41 2-digit sub-groups 
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26 Profesionales en derecho, ciencias sociales y culturales. Legal, social and cultural 

professionals 

31 Técnicos de las ciencias y la ingeniería Science and engineering 

associate professionals 

(technicians) 

32 Técnicos de la salud Health associate professionals 

(technicians) 

33 Técnicos en operaciones financieras y administrativas. Business and administration 

associate professionals 

(technicians) 

34 Técnicos de servicios jurídicos, sociales, deportivos y 

culturales. 

Legal, social, cultural and 

related associate professionals 

(technicians) 

35 Técnicos de la tecnología de la información y las 

comunicaciones. 

Information and 

communications associate 

professionals (technicians) 

36 Técnicos en educación. Teaching associate 

professionals (technicians) 

41 Oficinistas. General and keyboard clerks 

42 Empleados en trato directo con el público. Customer services clerks 

43 Auxiliares y ayudantes de registros contables y 

encargados del registro de materiales. 

Numerical and material 

recording clerks 

44 Otro personal de apoyo administrativo. Other clerical support workers 

51 Trabajadores de los servicios a las personas. Personal services workers 

52 Vendedores. Sales workers 

53 Trabajadores de los cuidados personales. Personal care workers 

54 Personal de los servicios de protección y seguridad. Protective services workers 

61 Agricultores y trabajadores calificados de explotaciones 

agropecuarias cuya producción se destina al mercado. 

Market-oriented skilled 

agricultural workers and farmers 

62 Trabajadores forestales calificados, pescadores 

ycazadores cuya producción se destina al mercado 

Market-oriented skilled forestry, 

fishery and hunting workers 

63 Trabajadores agropecuarios, pescadores, cazadores y 

recolectores de subsistencia. 

Subsistence farmers, fishers, 

hunters and gatherers 

71 Operarios de la construcción (no incluye electricistas). Building and related trades 

workers (excluding electricians) 
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72 Operarios de la metalurgia y operarios de máquinas 

herramientas; mecánicos de vehículos, maquinarias, 

aviones y bicicletas. 

Metal, machinery and related 

trades workers 

73 Artesanos y operarios de las artes gráficas. Handicraft and printing workers 

74 Trabajadores especializados en electricidad y electrónica. Electrical and electronic trades 

workers 

75 Operarios de procesamiento de alimentos, de la 

confección, ebanistas y otros oficios. 

Food processing, woodworking, 

garment and related trades 

workers 

81 Operadores de instalaciones fijas y máquinas. Stationary plant and machine 

operators 

82 Ensambladores. Assemblers 

83 Conductores de vehículos y operadores de equipos 

pesados y móviles. 

Drivers and mobile plant 

operators 

91 Auxiliares de aseo y trabajadores de casa particular. Cleaners and helpers 

92 Obreros agropecuarios, pesqueros y forestales. Agricultural, forestry and 

fishery labourers 

93 Obreros de la minería, la construcción, la industria 

manufacturera y el transporte. 

Labourers in mining, 

construction, manufacturing and 

transport 

94 Cocineros de comida rápida y ayudantes de cocina. Food preparation assistants 

95 Trabajadores ambulantes de servicios y vendedores 

ambulantes (excluyendo comida de consumo inmediato). 

Street and related sales and 

services workers 

96 Recolectores de desechos y otras ocupaciones 

elementales. 

Refuse workers and other 

elementary workers 
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A.2.2. Distribution (in percentages) of educational and industry categories for the whole and 

training datasets 

Educational and industry categories Whole dataset Training dataset 

Educational category 
  

 
Primary 2% 1% 

 
Secondary 20% 15% 

 
Secondary Education Technician 15% 16% 

 
Higher Professional Technician 29% 34% 

 
Graduate 34% 33% 

 
Postgraduate 1% 0% 

 
Number of observations 189,986 67,656 

Industry 
   

 
Agriculture and fishing 1% 1% 

 
Commerce 19% 16% 

 
Communication 9% 8% 

 
Construction 4% 5% 

 
Electricity, water and gas 2% 2% 

 
Financial services 6% 4% 

 
Industry 17% 17% 

 
Mining 2% 2% 

 
Other activity 5% 13% 

 
Other services 8% 8% 

 
Personal services 19% 18% 

 
Public Administration 1% 0% 

 
Restaurants and Hotels 2% 2% 

 
Transportation 5% 5% 

 
Number of observations 189,986 67,656 

 

 

 

 

 

 

Table A.2.2. Distribution (in percentages) of educational and industry categories for the whole and 

training datasets 
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A.2.3. Dictionary of Skills (full Spanish version).  

The next table shows our dictionary of Skills (full Spanish version). The “*” represents different 

variations for that word (e.g., singular-plural variations, gender variations, etc). 

 

Skill Category Phrases and Words 

Cognitive (in Spanish 

“Cognitivo”) 

  - resolver_conflicto* - resolver_problema*  - 

resolucion_conflicto*  - resolucion_problema* - investigacion  - 

analitic*  - ensamiento_critico  - matematica  - estadistica  - 

alfabetiza*  - aplica*_leyes  - aplica*_regla*  - aplica*_directric*  - 

aplica*_tecnica*_ rof*  - aplica*_autoevaluacion  - 

aprend*_nuevo*_idioma*  - aprendizaje  - concentra*  - observa*  - 

colec*_informacion*  - ntorno*_trabajo*  - aritmetic*  - 

conocimiento*_tecnico*  - curios*_intelectual  - 

enfoque*_sistematico*  - facilidad_numer*  - calculo*_numerico*  

- memori*  - tecnica*_general*  - inventiva  - pensamiento_logico  

- razona*  - ideas  - aprender  - alcan*_compromiso*  - 

alcan*_consenso*  - evita*_conflictos  - 

maneja*_situacion*_conflict* 

Social (idem Spanish) 

- comunicacional  - comunicarse*  - trabajo_equipo*  - colabora*  - 

negocia*  - presentacion  - pedagogic*  - cliente  - 

comunica*_profesional*  - expres*_verbal*  - intercultural*  - 

compren*_oral*  - comunica*_ingles  - 

comunica*_idioma*extranjer*  - cuestiona*_efectiv*  - 

establec*_contacto*  - foment*_contacto*  - diplomatic*  - 

motivador*  - forma*_equipo*  - lidera*_equipo*  - retorica* 

Character (in Spanish 

"Personalidad" o 

"Carácter") 

  - organizado  - orienta*_detalle  - multitarea  - multifuncion  - 

manejo_tiempo  - administracion_tiempo  - cumpl*_plazo*  - 

energetic*  - cortes*  - credibilidad  - discernimiento  - discrecion  - 

empati*  - firmeza  - iniciativa*_personal*  - leal*  - pruden*  - 

puntual*  - toleran*_estres  - toleran*_frustracion*  - 

toleran*_cambio*  - toleran*_incertidumbre* 

Writing (in Spanish 

"Escritura", "Escribir") 

- escribir   - escritura  - expresion*_escrita*  - elabora*_borrador*  

- escri*_clar*  - escri*_creativa*  - escri*_elegante  - 

redac*_documento*_tecnico*  - redac*_informe*  - ortografi*  - 

gramatica* 

Table A.2.3. Dictionary of Skills (full Spanish version) 
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Customer Service (in 

Spanish "Atención al 

Cliente", "Servicio al 

Cliente")) 

  - cliente*  - venta*  - consumidor*  - usuario*  - paciencia  - 

persua*  - talento*_comercial*  - orienta*_cliente*  - 

orienta*_consumidor* - servicio*_cliente* - 

servicio*_consumidor* 

Project management (in 

Spanish "Gestión de 

Proyectos") 

  - gestion*_proyect*  - project_manag* 

People management (in 

Spanish "gestión de los 

Recursos Humanos") 

  - supervis*_personal  - supervis*_rrhh  - gestion*_personal  - 

gestion*_rrhh  - gestion*_recurso*_humano*  - liderazgo  - 

capacita* 

Financial (in spanish 

"Finanzas") 

- contabilidad  - contable  - presupuest*  - finan*  - costo* 

Computer (in Spanish 

"Computador", 

"Ordenador") 

  - computador  - microsoft_office  - ms_office  - hoja*_calculo  - 

excel  - word  - powerpoint  - navega*_internet  - 

software*_oficina  - procesador*_texto  - microsoft_word  - 

microsoft_outlook  - microsoft_powerpoint 

Software (some examples 

from O*NET Hot 

technologies List which 

contains 175 items) 

  - adobe_aftereffects  - adobe_creative_cloud  - adobe_illustrator  - 

adobe_indesign  - adobe_photoshop  - adp_workforce_now  - abap  

- ajax  - amazon_ec2  - amazon_redshift  - amazon_web_services  - 

ibm_cognos_impromptu  - ibm_notes  - ibm_spss_statistics  - 

ibm_websphere  - integrated_development_environment  - ide  - 

intuit_quickbooks  - javascript  - javascript_object_notation  - json  

- jquery  - junit  - linuxce   - microsoft_sql_server  - 

microsoft_visio  - microsoft_visual_basic  - 

microsoft_windows_server  - microstrategy  - minitab  - mongodb  

- mysql  - nagios - oracle_fusion_middleware  - oracle_hyperion  - 

oracle_java  - oracle_javaserver_pages_jsp  - oracle_jd_edwards  - 

oracle_jdbc  - oracle_peoplesoft  - oracle_pl/sql  - 

oracle_primavera_enterprise  - oracle  - oracle_solaris  - 

oracle_taleo  - oracle_weblogic_server  - palm_os 
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A.2.4. Comparing the skill premium estimation between jobs ads data from Trabajando.com 

and EOD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.3. Essay III 

A.3.1. Full details of 53 topics’ interpretation and highest probability and FREX terms 

Topic 

# 
Topic Name 

in Spanish 

Topic Name 

in English 
Metric 10 top words (stem words in Spanish) 

1 Sin definir Undefinable 

Highest 

Probability 

 profesional, afin, carrer, marketing, 

desempen, ing, viv, laboratori, zon, titul 

FREX 

 marketing, ing, carrer, laboratori, ant, 

alrededor, viv, afin, creativ, 

profesional_desempen 

2 Ingeniería Civil 
Civil 

Engineering 

Highest 

Probability 

 ingenier, civil, ingenier_civil, ingles, 

industrial, ingenieri, idiom, civil_industrial, 

idiom_ingles, avanz 

FREX 

 habl, ingenier_civil, idiom_ingles, idiom, 

civil_mecan, ingles, civil, ingenier, 

ingenieri_civil, industrial_ingenier 

3 
Contabilidad & 

Auditoría 

Accountancy & 

Audit 

Highest 

Probability 

 contador, auditor, contabl, 

contador_auditor, contabil, general, 

administracion, manej, administr, tributari 

FREX 

 contador, auditor, contador_auditor, 

contador_general, tributari, contabl, 

contabil, softland, auditor_ingenier, 

auditori 

4 
Control y 

Gestión 

Financiera 

Financial 

Control and 

Management 

Highest 

Probability 

 control, gestion, analisis, anal, 

control_gestion, cobranz, proces, inform, 

presupuest, financier 

Figure A.2.4. Comparing the skill premium estimation between jobs ads data from 

Trabajando.com and EOD, for 2009-2018 (Trabajando.com data grouped bi-annually) 

Table A.3.1. Full details of 53 topics’ interpretation and highest probability and FREX terms 
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FREX 

 control_gestion, cobranz, analisis, anal, 

fluj, finanz, presupuest, fluj_caj, 

inform_gestion, balanc 

5 Logística Logistics 

Highest 

Probability 

 local, administracion, encarg, personal, 

vehicul, supermerc, caden, reponedor, 

equip, funcion 

FREX 

 reponedor, local, vehicul, manan, 

dependent, caden, manan_tard, funcion, 

correct_funcion, tard 

6 
Ingeniería 

Comercial 

Business 

Management 

Highest 

Probability 

 comercial, ingenier_comercial, ingenier, 

sucursal, egres, profesional, desarroll, 

gerent, administracion, servici 

FREX 

 ingenier_comercial, comercial_ingenier, 

comercial_civil, comercial, 

estrategi_comercial, gerent, jef_comercial, 

ingenieri_comercial, implement, cercani 

7 Sin definir Undefinable 

Highest 

Probability 

 especial, present, cert_estudi, diferent, gas, 

disciplin, enfasis, pesquer, vist, agenci 

FREX 

 cert_estudi, especial, gas, present, 

disciplin, enfasis, diferent, vist, pesquer, 

ambos 

8 
Servicio al  

Cliente 

Customer 

service 

Highest 

Probability 

 client, servici, atencion, atencion_client, 

orientacion, servici_client, 

orientacion_servici, sucursal, 

orientacion_client, product 

FREX 

 servici_client, orientacion_servici, 

client_mall, servici_financier, 

orientacion_client, brind, plataform, 

ejecut_servici, atencion_client, atencion 

9 Sin definir Undefinable 

Highest 

Probability 

 cod, industrial, client, plant, cod_client, 

ocup, perfil, gestion, respons, integr 

FREX 

 cod_client, ocup_respons, cod_perfil, 

group, perfil_ingenier, cod, 

group_seleccion, seleccion_invit, 

client_industrial, indic_clar 

10 
Jefe Local / 

Tienda 

Retail Store 

Manager 

Highest 

Probability 

 tiend, retail, jef, vent, jef_local, jef_tiend, 

person, apertur, sub, ubic 

FREX 

 jef_tiend, jef_local, tiend, vent_tiend, sub, 

retail, reconoc_retail, apertur, vestuari, 

mercaderi 

11 
Servicio al  

Cliente 

Customer 

service 

Highest 

Probability 

 client, negoci, nuev, carter, respons, 

ejecut, product, comercial, manten, 

carter_client 

FREX 

 negoci, carter, zonal, ejecut_comercial, 

carter_client, nuev_client, nuev_negoci, 

nuev, oportun, segment 

12 
Guardias de 

Seguridad 
Security Guards 

Highest 

Probability 

 segur, cert, prest, guardi_segur, 

prest_servici, guardi, servici, ciud, hac, 

segur_prest 

FREX 

 cert, segur_prest, prest, prest_servici, 

comun_ciud, curs_present, deferent, 

servici_deferent, fin_especial, ciud_curs 
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13 
Fuerza laboral 

en Construcción 

Construction 

labour 

Highest 

Probability 

 proyect, construccion, obras, civil, 

constructor, ingenier, obra, tecnic, terren, 

jef 

FREX 

 obras, constructor_civil, constructor, 

construccion, obra, proyect, autoc, dibuj, 

obras_civil, viviend 

14 
Servicio al  

Cliente 

Customer 

service 

Highest 

Probability 

 public, pos, social, valor, atencion_public, 

institucion, deb, priv, servici, postul 

FREX 

 atencion_public, valor, emprend, corre, 

social, public, public_priv, cuid_deb, 

corre_electron, pos_tecnic 

15 
Guardias de 

Seguridad 
Security Guards 

Highest 

Probability 

 internacional, prestigi, segur, mejor, 

guardi, iso, ohsas, mejor_guardi, iso_ohsas, 

deferent_comun 

FREX 

 internacional, deferent_comun, ohsas, 

iso_ohsas, mejor_guardi, iso, prestigi, 

prestigi_segur, segur_prestigi, certif 

16 Educación Education 

Highest 

Probability 

 ciud, resident, angel, profesor, 

resident_ciud, basic, cont, aprendizaj, educ, 

ciud_angel 

FREX 

 resident_ciud, profesor, angel, ciud_angel, 

colegi, aprendizaj, ciud, matemat, resident, 

educ 

17 
Servicio al  

Cliente 

Customer 

service 

Highest 

Probability 

 tempor, tiend, interes, auxiliar, rend, trat, 

disposicion, buen_trat, medi_rend, edad 

FREX 

 tempor, person_interes, auxiliar, 

medi_rend, buen_trat, rend, interes, portal, 

trat, tiend_buen 

18 Ventas Sales 

Highest 

Probability 

 vendedor, vent, mall, complet, full, 

comision, sueld, optic, retail, proactiv 

FREX 

 optic, full, mall, sueld_comision, 

vendedor_optic, vendedor, tiemp_complet, 

perfumeri, benefici_sueld, complet_mall 

19 
Mantención 

Industrial 

Industrial 

maintenance 

Highest 

Probability 

 tecnic, mantencion, mecan, equip, 

electron, industrial, manten, electr, 

maquinari, tecnic_electr 

FREX 

 maquinari, mantencion, tecnic_electron, 

electromecan, tecnic_electr, mecan, 

soldadur, tecnic_mecan, maquin, 

prevent_correct 

20 
Computación 

Nivel Usuario 

Computer User 

Level 

Highest 

Probability 

 nivel, manej, usuari, nivel_usuari, offic, 

excel, tecnic, computacional, conoc, 

intermedi 

FREX 

 offic, nivel_usuari, nivel_intermedi, 

usuari, intermedi, nivel, offic_nivel, 

computacion_nivel, excel, computacion 

21 
Psicólogos-

Recursos 

Humanos 

Psychologist-

Human 

resources 

Highest 

Probability 

 psicolog, seleccion, evalu, consultor, lanc, 

fre, fre_lanc, reclut, freelanc, psicolog_fre 

FREX 

 freelanc, seleccion, psicolog, 

psicolog_freelanc, reclut, psicolaboral, 

evalu, consultor, reclut_seleccion, 

entrev_baj 
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22 Abogados Lawyers 

Highest 

Probability 

 estudi, tecnic, superior, estudi_tecnic, 

especial_cert, estudi_superior, abog, min, 

proces, tecnic_superior 

FREX 

 estudi, especial_cert, abog, 

estudi_superior, min, estudi_tecnic, 

superior, penal, profesional_estudi, 

tecnic_superior 

23 
Días de trabajo 

en aviso de 

empleo 

Job postings 

work 

arrangements  

Highest 

Probability 

 dinam, fin, seman, fin_seman, part, canal, 

supermerc, festiv, inclu, client 

FREX 

 fin_seman, seman, festiv, dinam, canal, 

person_dinam, seman_festiv, 

fin_excluyent, inclu_fin, dinam_proactiv 

24 Sin definir Undefinable 

Highest 

Probability 

 coordin, comun, hac, period, informacion, 

relacion, tod, organizacion, medi, hac_cert 

FREX 

 coordin, hac_cert, comun, tod, extension, 

especializacion, informacion, period, hac, 

aplicacion 

25 
Control de 

Calidad 
Quality Control 

Highest 

Probability 

 calid, gestion, profesional, control, sistem, 

quimic, iso, ambient, control_calid, norm 

FREX 

 sistem_gestion, control_calid, ambiental, 

ingenier_prevencion, prim, calid, 

medi_ambient, mader, prim_nivel, 

norm_iso 

26 
Beneficios en el 

aviso de empleo 

Job posting 

rewards 

Highest 

Probability 

 laboral, merc, integr, benefici, ambient, 

profesional, grat, estabil, desarroll, 

estabil_laboral 

FREX 

 estabil_laboral, atract, integr_sol, 

desarroll_profesional, grat, proyeccion, 

remuneracion, logr_objet, grat_ambient, 

estabil 

27 
Empleados 

restaurant de 

comida rápida 

Fast food 

restaurants staff 

Highest 

Probability 

 equip, atencion, cumpl, administr, 

administracion, cocin, control, 

dentr_principal, servici, retail 

FREX 

 food, fast, fast_food, principal_encuentr, 

dentr_principal, retail_fast, 

cumpl_estandar, equip_mejor, cocin, 

habil_gestion 

28 
Profesionales en 

Agricultura 

Agricultural 

professionals 

Highest 

Probability 

 jef, product, oper, plant, proces, 

produccion, agricol, agronom, supervis, 

respons 

FREX 

 agronom, exterior, ingenier_agronom, 

agricol, comerci_exterior, export, 

tecnic_agricol, produccion, comerci, 

jef_plant 

29 
Profesionales de 

la Electricidad 

Electricity 

professionals 

Highest 

Probability 

 electr, supervisor, ejecucion, 

ingenier_ejecucion, instal, manten, servici, 

ayud, distribucion, puest 

FREX 

 electr, maestr, ejecucion_electr, 

ingenier_electr, termic, instal, energi, 

ingenier_ejecucion, central_termic, puest 

30 
Habilidades 

requeridas en el 

aviso de empleo 

Job posting soft 

skills 

requirements 

Highest 

Probability 

 capac, equip, baj, presion, baj_presion, 

proactiv, orientacion, habil, alta, person 

FREX 
 capac_equip, capac_liderazg, capac, 

form_equip, orientacion_logr, presion, baj, 
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maner_indefin, baj_presion, 

proactiv_capac 

31 

Requisito de 

licencia de 

conducir en 

aviso de empleo 

Job postings 

driving licence 

requirements 

Highest 

Probability 

 licenci, conduc, licenci_conduc, clas, oper, 

conduc_clas, telefon, equip, lid, cent 

FREX 

 licenci, licenci_conduc, conduc_clas, cent, 

call, call_cent, conduc, clas, conductor, 

transcom 

32 
Recursos 

Humanos 

Human 

resources 

Highest 

Probability 

 recurs, human, recurs_human, laboral, 

administracion, personal, remuner, gestion, 

legislacion, rrhh 

FREX 

 recurs_human, human, recurs, rrhh, 

legislacion_laboral, legislacion, remuner, 

administr_recurs, asistent_social, 

ley_laboral 

33 

Fuerza laboral 

en sector de las 

Tecnologias de 

la Información y 

Comunicaciones

, TICs 

ICT labour  

Highest 

Probability 

 informat, desarroll, program, dat, sistem, 

ingenier, bas, soport, proyect, anal 

FREX 

 informat, sql, soport, bas, bas_dat, 

ingenier_informat, dat, ejecucion_informat, 

php, sql_serv 

34 Sin definir Undefinable 

Highest 

Probability 

 buen, comprob, necesit, personal, gan, 

sector, trabaj, diccion, buen_diccion, sueld 

FREX 

 buen_diccion, gan, salud_compat, 

comprob, compat, biling, necesit, diccion, 

recomend, caracterist 

35 
Bancos e 

Instituciones 

Financieras 

Banking & 

Financial 

institutions 

Highest 

Probability 

 banc, financ, institucion, relacion, event, 

public, financier, sucursal, bancari, tecnic 

FREX 

 event, relacion_public, banc, oficin_indic, 

financ, anfitrion, variabl, institucion, cuerp, 

prestigi_institucion 

36 Salud Health 

Highest 

Probability 

 clinic, auxili, oncolog, institut, 

clinic_oncolog, institut_clinic, postulacion, 

plaz, capacitacion, enfermeri 

FREX 

 oncolog, clinic_oncolog, institut_clinic, 

plaz_postulacion, estabil_capacitacion, 

tecnic_enfermeri, auxili, 

capacitacion_continu, continu_merc, falp 

37 
Prácticas 

profesionales 
Apprenticeship 

Highest 

Probability 

 practic, profesional, alumn, univers, 

academ, educacion, universitari, docent, 

alumn_practic, quimic 

FREX 

 practic, docent, academ, 

practic_profesional, univers, alumn, 

quimic_farmaceut, alumn_practic, 

educacion_superior, docenci 

38 Sin definir Undefinable 

Highest 

Probability 

 orient, disen, termin, person, minim, 

material, orient_person, client, respons, 

estudi 

FREX 

 termin, grafic, merc_grat, disen, tare, 

material_construccion, orient_person, 

operari, disen_grafic, orient_tare 

39 
Habilidades 

requeridas en el 

aviso de empleo 

Job posting 

skills 

requirements 

Highest 

Probability 

 retail, laboral, complet, medi, orden, 

complementari, benefici, actitud, mejor, 

medi_complet 
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FREX 

 complementari, complementari_salud, 

actitud, ambient_laboral, buen_servici, 

excelent_clim, pasion, concret_hac, 

concret, apasion 

40 Sin definir Undefinable 

Highest 

Probability 

 entrev, competent, lug, fre_lanc, fre, lanc, 

entrev_competent, psicolog_fre, psicolog, 

plaz 

FREX 

 competent_lug, fisic_entrev, 

evalu_personal, entrev, lug, 

entrev_competent, lug_fisic, competent, 

escan, fre_lanc 

41 Salud Health 

Highest 

Probability 

 medic, enfermer, clinic, salud, bio, equip, 

atencion, victim, enfermer_clinic, pacient 

FREX 

 victim, enfermer, equip_medic, bio, 

represent_vent, bio_bio, enfermer_clinic, 

medic, atencion_victim, delit 

42 
Beneficios en el 

aviso de empleo 

Job posting 

rewards 

Highest 

Probability 

 segur, clim, clim_laboral, credit, ejecut, 

vent, retail, sucursal, buen_clim, 

jef_sucursal 

FREX 

 clim_laboral, sector_retail, buen_clim, 

clim, jef_sucursal, vent_segur, credit, 

constant_crecimient, corredor, 

crecimient_buen 

43 
Calificaciones 

requeridas en el 

aviso de empleo 

Job posting 

qualifications 

requirements 

Highest 

Probability 

 segur, curs, guardi, guardi_segur, vigent, 

certific, curs_vigent, relator, vigil, 

segur_curs 

FREX 

 curs_vigent, segur_curs, carabiner, relator, 

segur_guardi, relator_curs, curs_guardi, 

vigil, curs, vigent 

44 
Habilidades 

requeridas en el 

aviso de empleo 

Job posting 

skills 

requirements 

Highest 

Probability 

 relacion, buen, interpersonal, 

relacion_interpersonal, manej, excelent, 

buen_relacion, capac, secretari, 

buen_manej 

FREX 

 buen_relacion, buen_manej, 

relacion_interpersonal, interpersonal, 

manej_relacion, excelent_manej, 

buen_nivel, relacion, conflict, 

capac_cumpl 

45 
Servicios de 

Alimentación 
Catering 

Highest 

Probability 

 servici, profesional, alimentacion, 

administracion, administr, manej, 

supervision, ingres, servici_alimentacion, 

casin 

FREX 

 servici_alimentacion, alimentacion, 

nutricion, casin, administr_servici, ase, 

administr_casin, ingres_pagin, 

casin_alimentacion, orient_profesional 

46 
Calificaciones 

requeridas en el 

aviso de empleo 

Job posting 

qualifications 

requirements 

Highest 

Probability 

 medi, complet, ensen, medi_complet, 

ensen_medi, cajer, person, curs, bancari, 

educacion 

FREX 

 medi_complet, ensen, ensen_medi, 

educacion_medi, complet, medi, cajer, 

cajer_bancari, curs_cajer, servipag 

47 
Highest 

Probability 

 sext, maner, inter, inter_desarroll, 

person_alta, desempen, 
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Habilidades 

requeridas en el 

aviso de empleo 

Job posting 

skills 

requirements 

personal_desempen, period, desarroll, 

person 

FREX 

 person_alta, sext, presion_respons, maner, 

inter_desarroll, nivel_profesional, 

personal_desempen, inter, focaliz, 

profesional_integr 

48 
Prevención de 

Riesgos 

Laborales 

Occupational 

risk prevention 

Highest 

Probability 

 riesg, prevencion, prevencion_riesg, 

expert, administracion, ejecucion, salud, 

segur, practic, expert_prevencion 

FREX 

 prevencion_riesg, prevencion, riesg, 

expert, expert_prevencion, 

ingenieri_ejecucion, 

ejecucion_administracion, accident, 

administracion_ingenieri, 

tecnic_prevencion 

49 
Servicio al  

Cliente 

Customer 

service 

Highest 

Probability 

 atencion, client, atencion_client, ejecut, 

ejecut_atencion, telecomun, oficin, 

presencial, comercial, client_presencial 

FREX 

 client_presencial, atencion_oficin, 

modul_atencion, presencial, 

ejecut_atencion, telecomun_ejecut, 

atencion_client, oficin_comercial, 

presencial_modul, turism 

50 Ventas Sales 

Highest 

Probability 

 vent, ejecut, ejecut_vent, met, zon, 

comercial, cumplimient, equip, terren, 

servici 

FREX 

 zon_sur, ejecut_vent, supervisor_vent, 

jef_vent, sur, vent, equip_vent, met_vent, 

telemarketing, fuerz_vent 

51 Ventas Sales 

Highest 

Probability 

 vendedor, terren, vent, product, client, 

consum, vent_terren, masiv, 

consum_masiv, carter 

FREX 

 vendedor_terren, consum_masiv, 

product_consum, vendedor_tecnic, 

consum, masiv, vent_terren, terren, 

minim_vent, punt 

52 
Asistentes de 

Administración 

Management 

assistants 

Highest 

Probability 

 administr, asistent, ingres, cajer, caj, 

secretari, manej, document, bancari, 

recepcion 

FREX 

 asistent_administr, correspondent, diner, 

archiv, recaud, recib, secretari, caj, 

documentacion, caj_manej 

53 Logística Logistics 

Highest 

Probability 

 orden, compr, administr, asistent, bodeg, 

control, principal, inventari, logist, material 

FREX 

 compr, bodeg, insum, adquisicion, orden, 

inventari, despach, proveedor, factur, 

abastec 
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