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Abstract. The particle size distribution (PSD) of suspended
particles in near-surface seawater is a key property linking
biogeochemical and ecosystem characteristics with optical
properties that affect ocean color remote sensing. Phyto-
plankton size affects their physiological characteristics and
ecosystem and biogeochemical roles, e.g., in the biological
carbon pump, which has an important role in the global car-
bon cycle and thus climate. It is thus important to develop
capabilities for measurement and predictive understanding of
the structure and function of oceanic ecosystems, including
the PSD, phytoplankton size classes (PSCs), and phytoplank-
ton functional types (PFTs). Here, we present an ocean color
satellite algorithm for the retrieval of the parameters of an
assumed power-law PSD. The forward optical model consid-
ers two distinct particle populations: phytoplankton and non-
algal particles (NAPs). Phytoplankton are modeled as coated

spheres following the Equivalent Algal Populations (EAP)
framework, and NAPs are modeled as homogeneous spheres.
The forward model uses Mie and Aden–Kerker scattering
computations, for homogeneous and coated spheres, respec-
tively, to model the total particulate spectral backscattering
coefficient as the sum of phytoplankton and NAP backscat-
tering. The PSD retrieval is achieved via spectral angle map-
ping (SAM), which uses backscattering end-members cre-
ated by the forward model. The PSD is used to retrieve
size-partitioned absolute and fractional phytoplankton car-
bon concentrations (i.e., carbon-based PSCs), as well as par-
ticulate organic carbon (POC), using allometric coefficients.
This model formulation also allows the estimation of chloro-
phyll a concentration via the retrieved PSD, as well as per-
cent of backscattering due to NAPs vs. phytoplankton. The
PSD algorithm is operationally applied to the merged Ocean
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Colour Climate Change Initiative (OC-CCI) v5.0 ocean color
data set. Results of an initial validation effort are also pre-
sented using PSD, POC, and picophytoplankton carbon in
situ measurements. Validation results indicate the need for
an empirical tuning for the absolute phytoplankton carbon
concentrations; however these results and comparison with
other phytoplankton carbon algorithms are ambiguous as to
the need for the tuning. The latter finding illustrates the con-
tinued need for high-quality, consistent, large global data sets
of PSD, phytoplankton carbon, and related variables to facil-
itate future algorithm improvements.

1 Introduction

Oxygenic photosynthesis by marine phytoplankton is a crit-
ical planetary-scale process supplying solar energy to the
biosphere by fixing inorganic carbon; it is responsible for
roughly half of global annual net primary productivity
(e.g., Field et al., 1998). Ocean ecosystems play a key role
in Earth’s carbon cycle and climate by affecting atmospheric
CO2 via the biological carbon pump, which sequesters some
of the fixed carbon to the deeper ocean for longer timescales
(e.g., Eppley and Peterson, 1979; Chisholm, 2000; Henson
et al., 2011; Boyd et al., 2019; Brewin et al., 2021). The bi-
ological pump is influenced by the structure and function of
oceanic ecosystems (e.g., Falkowski et al., 1998; Siegel et al.,
2014); therefore, mechanistic, predictive understanding of
ocean ecosystems is of high priority to Earth systems and cli-
mate research (e.g., Buesseler and Boyd, 2009; Siegel et al.,
2016). Satellite remote sensing of ocean color is a key tool
for the global characterization of ocean ecology (e.g., Siegel
et al., 2013). This has led to large efforts to elucidate biolog-
ical pump mechanisms using multiple platforms, including
satellites, e.g., the EXPORTS program (Siegel et al., 2016).

Phytoplankton cell size (diameters varying from ≈ 0.5 to
> 50 µm (e.g., Clavano et al., 2007) is a key trait that affects
multiple phytoplankton characteristics (Marañón, 2015), as
well as sinking rates (e.g., Falkowski et al., 1998; Burd
and Jackson, 2009; Stemmann and Boss, 2012; Siegel et al.,
2014). Phytoplankton size classes (PSCs) thus tend to closely
correspond to phytoplankton functional types (PFTs; e.g., Le
Quéré et al., 2005). Importantly, phytoplankton cells also af-
fect the inherent optical properties (IOPs) (e.g., absorption
and backscattering coefficients) of the water column in a
size-dependent manner (e.g., Mobley et al., 2002; Morel and
Bricaud, 1986; Stramski and Kiefer, 1991; Kostadinov et al.,
2009). This is because particle size (relative to the incident
light wavelength) is one of the governing variables affect-
ing the magnitude and spectral shape of light scattering and
absorption caused by a particle (e.g., Bohren and Huffman,
1998). Therefore the particle size distribution (PSD) of phy-
toplankton (and other suspended particles in seawater) is a
key property affecting both optical properties and cellular

physiological and biogeochemical properties; i.e., it is a fun-
damental property linking ocean color remote sensing and
ecosystem/biogeochemical characteristics. The size distribu-
tion of particles suspended in near-surface ocean waters is
often described as a power law, given in differential form
as follows (e.g., Bader, 1970; Sheldon et al., 1972; Jonasz,
1983; Boss et al., 2001; Twardowski et al., 2001; Kostadinov
et al., 2009; Roy et al., 2017):

dNT

dD
=N(D)=N0

(
D

D0

)−ξ
, (1)

where D is particle diameter; N (m−4) is the differential
number concentration of particles per unit volume seawater
and per bin width of particle diameter; N0 =N(2 µm) is the
particle number concentration at a reference diameter, here
D0 = 2 µm; and ξ is the power-law slope of the PSD. Equa-
tion (1) has to be integrated over a given diameter range to
get the total particle number concentration in that range, NT
(m−3).

Ocean color is quantified by the spectral shape and mag-
nitude of the remote-sensing reflectance, Rrs(λ) (sr−1; also
denoted simply Rrs for brevity below), where λ is the wave-
length of light in vacuo. The Kostadinov–Siegel–Maritorena
2009 (KSM09, Kostadinov et al., 2009) algorithm retrieves
the parameters of an assumed power-law PSD (ξ and N0
in Eq. 1) from ocean color remote-sensing observations us-
ing the spectral shape (Loisel et al., 2006) and magnitude
of the particulate backscattering coefficient, bbp(λ) (m−1).
bbp(λ) can be retrieved using existing inherent optical prop-
erty (IOP) inversion algorithms; KSM09 uses the Loisel and
Stramski (2000) IOP inversion. Subsequently, the retrieved
PSD parameters allow the quantification of absolute and frac-
tional PSCs: picophytoplankton, nanophytoplankton, and
microphytoplankton based on bio-volume (Kostadinov et al.,
2010) or phytoplankton carbon (Kostadinov et al., 2016a)
(henceforth TK16) via allometric relationships (Menden-
Deuer and Lessard, 2000). Phytoplankton carbon (phyto C)
is the key variable of interest for carbon cycle and climate
studies and modeling, and TK16 (data set available: Kostadi-
nov et al., 2016b) represents a relatively unique carbon-based
approach among PSC/PFT algorithms (Mouw et al., 2017) as
it is based on knowledge of the PSD and allometric relation-
ships to get at size-partitioned phyto C. Roy et al. (2013) and
Roy et al. (2017) retrieve phytoplankton-specific PSD and
size-partitioned phyto C based on the phytoplankton absorp-
tion coefficient.

The KSM09 PSD algorithm (and the TK16 phyto C/PSC
derived from it) is built on the assumption of a single popu-
lation of particles (approximated by homogeneous spheres),
representing backscattering due to the entire oceanic par-
ticle assemblage: phytoplankton cells and non-algal parti-
cles (NAPs). However, particle internal composition and
shape influence its optical properties (e.g Quirantes and
Bernard, 2004; Quirantes and Bernard, 2006). Recent re-
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sults suggest that the structural complexity of oceanic par-
ticles enhances backscattering significantly and can explain
the so-called “missing backscattering” in the ocean (Or-
ganelli et al., 2018), i.e., the lack of optical closure between
theoretically modeled and measured bbp. Coated spheres
(i.e., spheres consisting of concentric layers/shells of differ-
ent material properties) can be used to better represent phyto-
plankton cells and their internal heterogeneity and composi-
tion (e.g., Bernard et al., 2009; Robertson Lain and Bernard,
2018), and they have significantly enhanced backscatter-
ing compared to their homogeneous equivalents (Duforêt-
Gaurier et al., 2018; Organelli et al., 2018).

Here, we introduce a major improvement of the PSD al-
gorithm formulation. Two separate particle populations are
modeled: living phytoplankton cells and NAPs. Phytoplank-
ton cells are modeled as coated spheres, following the Equiv-
alent Algal Populations (EAP) framework (Bernard et al.,
2009; Robertson Lain et al., 2014; Robertson Lain and
Bernard, 2018). EAP explicitly models intracellular chloro-
phyll concentration, Chli, as governing the imaginary in-
dex of refraction and thus allows for bulk chlorophyll con-
centration (Chl) to be computed from a specific PSD. The
coated-sphere EAP-based model is useful to better represent
phytoplankton cells specifically; however, not all backscat-
tering particles are phytoplankton (Stramski et al., 2004),
and in fact, sub-micron NAPs even smaller than the small-
est autotroph (≈ 0.5 µm in diameter) are critical for deter-
mining the spectral shape of bbp, which is key for PSD re-
trieval with KSM09 and the algorithm presented here. Par-
ticles other than and smaller than phytoplankton are likely
to significantly contribute to backscattering (Stramski et al.,
2004; Zhang et al., 2020) in spite of evidence that phyto-
plankton/larger particles contribute more than Mie theory
predicts, based on homogeneous spheres (e.g., Dall’Olmo
et al., 2009). Thus, a two-component particle model is used
here, separately modeling NAPs as homogeneous spheres
of wider size range than phytoplankton, so that bulk bbp of
oceanic waters can be modeled (e.g., Stramski et al., 2001;
Moutier et al., 2016; Duforêt-Gaurier et al., 2018). NAPs are
modeled as having generally organic detrital composition,
but with some allowance for higher indices of refraction to
account for minerogenic particle contributions. The PSD for-
ward model can thus also produce a first-order estimate of
particulate organic carbon (POC) and the percent contribu-
tion of phytoplankton and NAPs to bbp.

Subsequent sections present details of the two-component,
EAP-based forward IOP model, the inversion methodology
developed for operational application of the PSD algorithm,
and the use of the satellite-derived PSD to retrieve derived
products (following the methods of TK16 with some modifi-
cations), namely absolute and fractional size-partitioned phy-
toplankton carbon (henceforth phyto C) (i.e., carbon-based
PSCs), as well as Chl and POC estimates. The novel algo-
rithm is applied operationally to monthly data from the multi-
sensor merged Ocean Colour Climate Change Initiative (OC-

CCI) v5.0 data set (Sathyendranath et al., 2019, 2021); exam-
ples are shown in the paper, and the entire data set is publicly
available and linked below (see “Data availability”). We then
present and discuss an initial effort of validation of the new
PSD algorithm and derived products using global compila-
tions of PSD, picophytoplankton carbon, and POC in situ
data. A comparison with other existing methods to retrieve
phyto C is presented. We also discuss algorithm uncertain-
ties, assumptions, and limitations as well as future work di-
rections.

2 Data and methods

2.1 Particle optical model input specification for
phytoplankton and NAPs

The contributions of two separate particle populations to bulk
backscattering are modeled using Mie theory (Mie, 1908)
for homogeneous spherical particles and the Aden–Kerker
(Aden and Kerker, 1951) method for coated spheres. Liv-
ing phytoplankton cells are represented by the first particle
population, and all other suspended particles of any origin
(i.e., NAPs) are represented by the second population. Liv-
ing phytoplankton cells are modeled as coated spheres using
the Equivalent Algal Populations (EAP) framework (Bernard
et al., 2009; Robertson Lain et al., 2014; Robertson Lain and
Bernard, 2018) for determining optical model inputs, in par-
ticular the complex indices of refraction of the particle core
and coat. NAPs are modeled as homogeneous spheres meant
to represent organic detritus, but also allowing for their real
index of refraction to vary over a wider range to take into
account the contribution of mineral particles.

A characteristic of the PSD algorithm presented here is
that it is mechanistic to the extent feasible, i.e., based on first
principles and causality, even at the expense of increasing
complexity. For example, as in EAP, the imaginary refractive
index (RI) of the cell is a function of intracellular chlorophyll
concentration, Chli. We vary some optical model inputs in
a Monte Carlo simulation in order to assess uncertainty and
base the PSD inversion on an ensemble of forward runs rather
than a single set of inputs. Details of uncertainty estimation
and propagation are given in Supplement Sect. S1. Details
of how each input parameter for phytoplankton cells and for
NAPs is specified, as well as the statistical distributions from
which the Monte Carlo simulation instances were picked, are
specified in Tables 1 and 2.

As in the EAP model, the chloroplast is represented by
the particle coat. Its relative volume, Vs, is picked from a
distribution as shown in Table 1. The chloroplast’s imagi-
nary refractive index (RI) (relative to seawater) at 675 nm,
n′(675), is then computed as follows (Morel and Bricaud,
1986; Bernard et al., 2009; Robertson Lain and Bernard,
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2018):

n′(675)=
Chl∗ ×Chli × 106

× 675 × 10−9

4π ×Vs × nsw(675)
, (2)

where Chl∗ = 0.027 m2 mg−1 is the theoretical maximum
specific absorption coefficient of chlorophyll at 675 nm when
dissolved in water (Bernard et al., 2009; Robertson Lain and
Bernard, 2018), Chli is the intracellular chlorophyll concen-
tration in kilograms of chlorophyll per cubic meter of cellu-
lar material, and nsw(675) is seawater’s absolute real RI at
675 nm. A hyperspectral basis vector from the EAP model
(based on measurements; for details see Bernard et al., 2009;
Robertson Lain and Bernard, 2018) is then scaled using the
value at 675 from Eq. (2), obtaining a hyperspectral relative
imaginary RI for the coat as chloroplast. In Eq. (2), Chli ap-
plies to the whole cell and is therefore scaled using Vs to
obtain n′(675) for the coat alone. The nominal chloroplast’s
relative real RI is then picked from a distribution as shown
in Table 1 and modified as a function of its imaginary RI ac-
cording to the Kramers–Kronig relations (implemented as a
Hilbert transform) (Bernard et al., 2009; Robertson Lain and
Bernard, 2018).

The cell cytoplasm is represented by the particle core. Its
relative real RI is picked from a distribution given in Table 1,
and it is modified by the Kramers–Kronig relations using a
constant hyperspectral detritus-like imaginary RI, i.e., having
a colored dissolved organic matter (CDOM)-like exponential
spectral shape, resulting in a spectrally varying hyperspectral
relative real RI. The phytoplankton particle population rela-
tive RIs and their Monte Carlo variability are summarized in
Supplement Fig. S1.

The NAP population is represented by a homogeneous
sphere, the relative RIs of which are picked so that its ab-
sorption spectrum is detritus-like (same as the core of phy-
toplankton), and its real RI is allowed to vary over a wider
range of values, meant to represent mostly organic detritus,
but with some minerogenic contributions, resulting in a mean
nominal relative real RI of ≈ 1.06. The input RIs and other
input parameters for NAPs are summarized in Table 2.

Specification of the input PSD parameters and the relation-
ship of NAPs to phytoplankton PSDs is key to the construc-
tion of the forward and inverse models. Necessarily, some
key simplifying assumptions are made here in order to con-
struct an algorithm with operational application to modern
multispectral ocean color sensors. The two key assumptions
are that (1) phytoplankton and NAPs have a power-law PSD
(Eq. 1) with the same slope ξ , and (2) the scaling parameter
N0 for NAPs is twice that of N0 for phytoplankton (the for-
ward model uses default values as in Tables 1 and 2). The lat-
ter assumption is chosen so that it results in a phyto C : POC
ratio of 1 : 3 (see Kostadinov et al., 2016a; Behrenfeld et al.,
2005; and Sect. 3.4 here) (as long as they are both estimated
using the same size ranges). Together, these assumptions al-
low for the retrieval of one common PSD parameter set per-
taining to the total particle population PSD (one ξ value and

one total N0 equal to the linear sum of the NAPs and phyto-
plankton N0 values).

2.2 Backscattering calculations

The backscattering efficiencies, Qbb(λ), for a single phyto-
plankton cell and a single non-algal particle were computed
using the inputs described above in Sect. 2.1 and Tables 1 and
2. The coated-sphere code of Zhang et al. (2002) was used for
both coated and homogeneous spheres. This code is included
with the algorithm development scientific code of the PSD al-
gorithm (see “Data availability”). Calculations were run for
N = 3000 instances of Monte Carlo simulations, each with
a unique randomly picked combination of inputs for phyto-
plankton and NAPs. This resulted in 3000 sets of hyperspec-
tral Qbb values. High sampling resolution in diameter space
was picked for the coated spheres (10 000 samples between
minimum and maximum diameter) in order to minimize the
influence of resonance spikes in Qbb. For NAPs, 1000 sam-
ples of D were used.

Indices of refraction for both phytoplankton and NAPs are
specified hyperspectrally (Supplement Fig. S1), and the com-
putations are performed from 400 to 700 nm wavelength in
vacuo with a step of 1 nm, allowing the resulting hyperspec-
tral Qbb(λ) values to be adapted for use with any combi-
nation of visible optical wavebands pertaining to recent and
currently operating ocean color multispectral sensors or for
planned (e.g., PACE Werdell et al., 2019) or existing hyper-
spectral sensors.

Before bbp calculation, hyperspectral backscattering ef-
ficiencies, Qbb, for each Monte Carlo run were first pre-
processed by applying quality control and band-averaging
using a moving-average 11 nm wide top-hat filter (using
as central wavelengths the nominal bands of the follow-
ing ocean color sensors: Sea-viewing Wide Field-of-view
Sensor, SeaWiFS; Moderate Resolution Imaging Spectrora-
diometer, MODIS, Aqua; Medium Resolution Imaging Spec-
trometer, MERIS, and Ocean and Land Colour Instrument,
OLCI; and the Visible and Infrared Imager/Radiometer Suite,
VIIRS, on the Suomi National Polar-orbiting Partnership, S-
NPP, plus 440 and 550 nm), resulting in 19 unique bands for
band-averaged backscattering efficiencies, denoted here as
Qbb(λ). The band-averaged spectral particulate backscatter-
ing coefficient, bbp(λ), was then calculated from the Qbb(λ)

values and the input PSD as follows (e.g., van de Hulst, 1981;
Kostadinov et al., 2009):

bbp(λ)=

Dmax∫
Dmin

π

4
D2Qbb(D,λ,m)N0

(
D

D0

)−ξ
dD, (3)

where m is the complex index of refraction (specified sepa-
rately for coat and core in the case of phytoplankton). Equa-
tion (3) is applied separately to the modeled phytoplankton
and NAP Qbb values and for each of the 3000 Monte Carlo
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Table 1. Inputs for the coated-sphere Aden–Kerker optical scattering computations for the phytoplankton particle population. Modeling
inputs common to both phytoplankton and NAPs (see Table 2) are given in the first three table rows. N (µ,σ ) stands for a normal distribution
with mean µ and standard deviation σ . For the indices of refraction, apart from Bernard et al. (2009) and Robertson Lain and Bernard (2018),
see Morel and Bricaud (1986), Babin et al. (2003), Woźniak and Stramski (2004), and Duforêt-Gaurier et al. (2018).

Input parameter Symbol, units, and notes

Pure seawater absolute real RI nsw = f (λ), after Zhang et al. (2009), using
temperature= 15 ◦C and salinity = 33

PSD slope ξ ∈ [2.5, 6] in steps of 0.05 (the same value applies to both
phytoplankton and NAPs; for the slope range,
see, e.g., Boss et al., 2001)

Wavelengths in vacuo λ ∈ [400, 700] nm, hyperspectral – in steps of 1 nm, band-
averaging used for the nominal wavelengths of satellite sensors

Phytoplankton population inputs

Intracellular chlorophyll concentration Chli ∈ [0.5, 10], picked from, N (2.5,2.5); µ≈ 3.14 kg Chl m−3

cellular material (Morel and Bricaud, 1986; Bernard et al.,
2009)

Coat (chloroplast) relative volume Vs ∈ [5, 35] %, picked from N (20,5), resulting in mean coat
relative thickness as fraction of cell radius tcoat = 7.2% (cf. Or-
ganelli et al., 2018); tcoat = 1− (1−Vs)

1/3

Coat (chloroplast) relative real RI ncoat ∈ [1.06, 1.22], picked from, N (1.14,0.08); µ≈ 1.14;
wavelength-dependent via Kramers–Kronig relations (Bernard
et al., 2009; Robertson Lain and Bernard, 2018)

Core (cytoplasm) relative real RI ncore ∈ [1.01, 1.03], picked from, N (1.02,0.01); µ≈ 1.02;
wavelength-dependent via Kramers–Kronig relations (Bernard
et al., 2009; Robertson Lain and Bernard, 2018)

Coat (chloroplast) relative imaginary RI n′coat(λ) computed from a hyperspectral basis vector (from
Bernard et al., 2009; Robertson Lain and Bernard, 2018) that
is scaled to the value at n′(675) using Eq. (2)

Core (cytoplasm) relative imaginary RI n′core(λ) with a prescribed constant magnitude and detritus-
like (exponential) spectral shape, with spectral slope S =

0.0123 nm−1, resulting in Sa ≈ 0.014 nm−1 for acore(λ)
(Bernard et al., 2009; Robertson Lain and Bernard, 2018)

Minimum outer particle diameter Dminφ = 0.5 µm (smallest autotroph; e.g., Morel et al., 1993)

Maximum outer particle diameter Dmaxφ ∈ [20, 200] µm, picked from, N (50,50); µ≈ 72.3 µm

Differential number concentration at D0 = 2 µm N0φ = 5× 1016 m−4, used in the forward modeling

runs. Band-averaged total bbp(λ) spectra are then calculated
as the linear sum of phytoplankton and NAP backscattering.

2.3 PSD retrieval via spectral angle mapping

2.3.1 End-member construction

Band-averaged total bbp(λ) spectra were used to construct
the backscattering end-members, E(λ), corresponding to
specific input values of the PSD slope ξ . First, individual to-
tal bbp spectra from each Monte Carlo run (N = 3000) were
normalized by the value at 555 nm. The median of all normal-
ized spectra at each waveband was used as the end-member

for each PSD slope, from ξ = 2.5 to ξ = 6 in steps of 0.05
(see Table 1). This approach allows the isolation of the bbp
spectral shape (dependent on ξ ) and spectral magnitude (de-
pendent on N0) (Eq. 3). Using the hyperspectral underlying
Qbb values, end-members can be constructed for any desired
set of wavelengths.

2.3.2 PSD parameter retrieval and operational
application to OC-CCI ocean color data

The PSD parameters ξ and N0 are retrieved using the
backscattering end-members, E(λ), via the spectral angle
mapping (SAM) technique (e.g., Dennison et al., 2004).

https://doi.org/10.5194/os-19-703-2023 Ocean Sci., 19, 703–727, 2023
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Table 2. Inputs for the homogeneous-sphere Mie scattering code for the NAP population. Modeling inputs common to both phytoplankton
and NAPs are given in the first three table rows of Table 1. N (µ,σ ) stands for a normal distribution with mean µ and standard deviation σ .

NAP population inputs

Relative real RI nNAP ∈ [1.01, 1.2], picked from, N (1.02,0.06); µ≈ 1.06;
wavelength-dependent via Kramers–Kronig relations (Bernard
et al., 2009; Robertson Lain and Bernard, 2018)

Relative imaginary RI n′NAP(λ) with a prescribed constant magnitude and detritus-like
(exponential) spectral shape (Bernard et al., 2009; Robertson
Lain and Bernard, 2018), with spectral slope S = 0.0123 nm−1,
resulting in Sa ≈ 0.014 nm−1 for aNAP(λ)

Minimum particle diameter Dmin NAP = 0.01 µm (see Supplement Fig. S4 and Stramski and
Kiefer, 1991; Kostadinov et al., 2009)

Maximum particle diameter Dmax NAP ∈ [200, 500] µm (e.g., Duforêt-Gaurier et al., 2018),
picked from, N (400,10); µ≈ 376.8 µm

Differential number concentration at D0 = 2 µm N0 NAP = 2×N0φ = 1.0×1017 m−4, resulting in total particle
populationN0 = 1.5×1017 m−4, used in the forward modeling
(N0 NAP = 2×N0φ constitutes an important model assumption,
and it is discussed in the text)

Briefly, the end-members and satellite-observed bbp spectra
are treated as n-dimensional vectors, where n is the number
of bands. The spectral angle between a given end-member
and the observed spectrum is then calculated using the vec-
tor dot product as

2= cos−1

(
bbp(λ) · E(λ)

‖bbp(λ)‖‖E(λ)‖

)
. (4)

Thus, spectral angle is an index of spectral shape similar-
ity between two spectra, with more similar spectral shapes
resulting in lower spectral angles. Equation (4) was used to
calculate the spectral angle 2 between each of the 71 end-
members,E(λ), and the input observed bbp(λ) spectrum. The
value of ξ corresponding to the smallest spectral angle is
then assigned as the retrieved PSD slope. Three wavebands
were used, namely 490, 510, and 550 nm. For operational
application to OC-CCI v5.0 (Sathyendranath et al., 2021)
remote-sensing reflectance (Rrs(λ)) data (which do not have
the 550 nm band), band-shifting was applied to the input
Rrs(560) to estimate the corresponding Rrs(550), which is
used in the Loisel and Stramski (2000) IOP inversion. The
band-shifting was constructed using the band ratios between
the respective original and target bands from a hyperspectral
run of the Morel and Maritorena (2001) (MM01) model. No
other bands were shifted.

The N0 parameter is subsequently retrieved as the ratio
of (1) the satellite-observed value of bbp(443) and (2) the
median value of the quantity bbp(443)/N0 corresponding to
the end-member class of the retrieved ξ and all statistically
similar classes (see Supplement Sect. S1) across all Monte
Carlo simulations.

2.4 Derived products: size-partitioned phytoplankton
carbon, PSCs, POC, and chlorophyll

Once the PSD parameters are known, they can be used to
compute derived products (Kostadinov et al., 2010, 2016a;
Roy et al., 2017). Phytoplankton carbon in any size class
spanning from cell diameter Dmin to cell diameter Dmax (m)
can be estimated as

phytoC=

Dmaxφ∫
Dminφ

10−9 a
(

1018 π

6
D3
)b
N0φ

(
D

D0

)−ξ
dD, (5)

where N0φ =
1
3 N0, and N0 (m−4) for the total PSD is the

satellite-retrieved parameter from total particulate backscat-
tering; the other PSD parameters are as in Eq. (1). Equa-
tion (5) was used to compute size-partitioned phyto C in three
size classes – picophytoplankton (0.2 to 2 µm in diameter),
nanophytoplankton (2 to 20 µm in diameter), and microphy-
toplankton (20 to 50 µm in diameter) – as well as total phyto
C as the sum of the three classes. Carbon-based PSCs are de-
fined as the fractional contribution of each of the three size
classes to total phyto C (Kostadinov et al., 2016a). Given the
first-order correspondence between PSCs and PFTs (e.g., Le
Quéré et al., 2005), these PSCs can also be interpreted as
PFTs. The allometric coefficients of Roy et al. (2017) are
used here, namely a = 0.54 and b = 0.85; when cell volume
V is expressed in cubic micrometers, cellular carbon is com-
puted in picograms of carbon per cell using these coefficients
(Eq. 5; see also Menden-Deuer and Lessard, 2000). Phyto C
in Eq. 5 is given in milligrams per cubic meter; the conver-
sion factors in Eq. (5) are used to convert from cubic me-
ters to cubic micrometers and from picograms to milligrams
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of carbon (Kostadinov et al., 2016a; Roy et al., 2017). The
factor of 1/3 is an assumption of the model (Tables 1 and
2). Thus, an estimate of POC (computed using the same size
limits as total phyto C) was calculated as 3× phyto C.

Chlorophyll concentration was estimated from the PSD re-
trievals and the input intracellular chlorophyll concentration,
Chli (Table 1; Roy et al., 2017), as follows:

Chl=

Dmaxφ∫
Dminφ

π

6
D3ChliN0φ

(
D

D0

)−ξ
dD . (6)

In Eq. (6), Chli, D, D0, and N0φ all have to be expressed
in consistent units so that Chl is obtained in milligrams per
cubic meter. Here we use the median Chli across all Monte
Carlo simulations to produce a single Chl estimate.

2.5 Validation and comparison

A data set of near-surface in situ PSD measurements was
compiled for validation of the PSD parameter products, ξ
and N0 (Eq. 1). The data set consists of Coulter counter
and Laser In-Situ Scattering and Transmissometry (LISST)
measurements and a small set of PSDs derived from multi-
ple instruments and modeling. Specifically, the compilation
consists of the following data sets: (1) a compilation of sev-
eral data sets of Coulter counter measurements, as used in
the KSM09 algorithm validation in Kostadinov et al. (2009);
(2) LISST-100X (Sequoia Scientific©) measurements from
the Plumes and Blooms project (e.g., Toole and Siegel,
2001; Kostadinov et al., 2007) in the Santa Barbara Chan-
nel, as used in Kostadinov et al. (2012); (3) Coulter counter
measurements from the Atlantic Meridional Transect cruise
no. 26 (AMT26) (Organelli and Dall’Olmo, 2018), as com-
piled and used in Organelli et al. (2018, 2020); (4) in-line
LISST 100-X measurements from the cruises North Atlantic
Aerosols and Marine Ecosystems Study 3 and 4 (NAAMES;
https://science.larc.nasa.gov/NAAMES/, last access: 25 Jan-
uary 2023; Boss and Haëntjens, 2017) and EXport Pro-
cesses in the Ocean from Remote Sensing (EXPORTS; https:
//oceanexports.org/, last access: 7 October 2022) North Pa-
cific (NP) and North Atlantic (NA) (Boss and Haëntjens,
2018) (data were downloaded from the NASA SeaBASS
database; Werdell et al., 2003); and (5) PSDs obtained us-
ing a volume scattering function (VSF) inversion technique
(Zhang et al., 2011, 2012) from VSFs measured during the
NASA EXPORTS campaign (Siegel et al., 2016) in the North
Pacific in 2018 (Siegel et al., 2021).

The compiled PSD data set was used to fit for the PSD
parameters of Eq. (1) using the 2 to 20 µm diameter range.
One data point was removed from the 2018 EXPORTS PSD
data due to a poor fit to a power-law PSD. These in situ
estimates were matched to satellite OC-CCI v5.0 (Sathyen-
dranath et al., 2019, 2021) Rrs using the same matching
methods described below for POC and picophytoplankton

carbon data. Matched reflectances were used as input to the
novel PSD algorithm presented here. The in situ and satel-
lite PSD parameters were then compared using a type II lin-
ear regression and several additional algorithm performance
metrics (e.g., Seegers et al., 2018), details of which are given
in the caption of Fig. 8.

A large compilation of in situ POC data was collected from
various public databases and private contributors and was
used here to perform match-ups with satellite OC-CCI v5.0
data. In addition to the POC data (1997–2012) used in Evers-
King et al. (2017) for algorithm validation (N = 3891), this
study also incorporated recent in situ POC data (2013–2020)
from the SeaWiFS Bio-optical Archive and Storage System
archive (Werdell et al., 2003) (https://seabass.gsfc.nasa.gov/,
last access: 1 May 2021). The daily, 4 km, sinusoidal projec-
tion OC-CCI v5.0 data (1997–2020) (Sathyendranath et al.,
2019, 2021) were used to extract the closest central satellite
pixels to the in situ data points. If the central satellite match-
up pixels were valid, the surrounding eight pixels (a 3× 3
pixel box) were also extracted to estimate the mean, median,
and standard deviation of all OC-CCI variables. The match-
up data points were then averaged with respect to depth (0 to
10 m), location, and date. Moreover, a number of uncertain
match-up data points were removed, as described below. A
total number of 6041 match-up data points were obtained and
used for analysis. Here, the median satellite Rrs(λ) matched-
up spectra were used to compute the satellite-retrieved POC
data using the PSD-based algorithm.

The in situ picophytoplankton carbon data set compiled
and used for algorithm inter-comparison as part of the ESA
POCO project (Martínez-Vicente et al., 2017) was used here
to generate match-ups with satellite OC-CCI v5.0 Rrs data
for further validation. Match-ups were generated in the same
way as described above for POC.

All in situ data described above were excluded from the
validation if any of the following conditions were met: (1) av-
erage bathymetric depth from a ≈9 km buffer around the in
situ sample location was less than or equal to 200 m, or any
grid cell elevations in that buffer were 0 m or higher, using a
downsampled, 4 km version of the NOAA ETOPO1 data set
(https://www.ngdc.noaa.gov/mgg/global/, last access: 23 Oc-
tober 2015); (2) the in situ sample depth was 15 m or greater;
or (3) there were three or fewer satellite pixels available to
use in the match-up, as detailed above.

All duplicate in situ match-ups (in the sense of multiple in
situ data points that are close in space and time and receiv-
ing the same satellite match-up) were combined into a sin-
gle match-up point as follows: for the PSD, the medians of
the PSD measurements from the NAAMES and EXPORTS
cruises in each LISST size bin for such duplicates were used
for the calculation of in situ PSD parameters (a large num-
ber of duplicates since the data are in-line); for the rest of the
PSD data, the fit PSD parameters themselves were averaged
(a small number of duplicates). For the POC (large number of
duplicates) and picophytoplankton carbon data (small num-
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ber of duplicates), the averages of the duplicate in situ data
were used.

In addition to validation against in situ measurements
of the PSD, POC, and picophytoplankton carbon, satellite
chlorophyll a (Chl) retrievals (using the standard algorithm
of OC-CCI v5.0 at the match-up points) were compared with
Chl estimated using the PSD retrieval (Eq. 6). Finally, global
algorithm retrievals of total phyto C for May 2015 (using
OC-CCI v5.0 data as input) were also compared with two
alternative methods of retrieving phyto C: (1) the Roy et al.
(2017) algorithm and (2) the Graff et al. (2012, 2015) algo-
rithm, as implemented by NASA’s Ocean Biology Process-
ing Group (OBPG). Modeling and processing of results pre-
sented here are done using the sinusoidal projection images;
maps presented here are given in equidistant cylindrical pro-
jection (i.e., unprojected latitude/longitude).

3 Results and discussion

3.1 Forward and inverse modeling

The first step in the algorithm development is the genera-
tion of 3000 Monte Carlo realizations of backscattering ef-
ficiencies as a function of particle diameter and wavelength,
Qbb(D,λ). The important differences between backscatter-
ing efficiencies of homogeneous and coated particles is dis-
cussed in Supplement Sect. S2. Here, we continue the dis-
cussion with the resulting integrated backscattering spec-
tra (Eq. 3). Hyperspectral bbp(λ) spectra modeled using a
single forward optical model run are shown in Fig. 1. The
computations use the median values of inputs varied in the
Monte Carlo simulations (Tables 1 and 2). These normal-
ized spectra illustrate the strong spectral shape dependence
on the PSD slope ξ . Phytoplankton bbp spectral shapes are
complex, with various peaks and troughs near the absorp-
tion peaks of chlorophyll, but are more linear in the 490 to
550 nm range, which is the one used for the multispectral op-
erational PSD algorithm. Regardless, the SAM methodology
of retrieval used here allows for any spectral shape and does
not impose a power-law fit to the shape of bbp, as is done
in KSM09 (Kostadinov et al., 2009) (see also Loisel et al.,
2006). NAP backscattering exhibits smooth shapes due to the
smooth shape of their absorption (Fig. 1b). Fundamentally, it
is evident from Fig. 1a and b that the higher the PSD slope ξ ,
the steeper the bbp spectral shape becomes, with higher val-
ues in the blue, since smaller particles dominate the signal.
This dependence is at the root of the principle of operation
of the PSD algorithm. For completeness, corresponding ab-
sorption spectra are illustrated in Supplement Fig. S3.

The 71 end-members (EMs) created for operational appli-
cation to existing major satellite ocean color missions and
corresponding to PSD slope values between 2.5 and 6.0 with
a step of 0.05 are displayed in Fig. 2a. They represent the
modeled bbp(λ) spectra against which satellite-measured bbp

spectra are compared using the SAM method (Eq. 4). The
spectral shape dependence on ξ demonstrates the theoretical
ability to retrieve this parameter from space.

An important question in bio-optical oceanography is de-
termining the sources of backscattering in the ocean and
their relative contributions. This is still an unresolved is-
sue (Stramski et al., 2004), though progress has been made
(e.g., Organelli et al., 2018; Koestner et al., 2020; Zhang
et al., 2020). This issue is of central importance to the PSD
model, as it assigns varying fractions of the bbp signal to phy-
toplankton vs. NAPs under certain assumptions (Tables 1 and
2). Since in the two-component PSD model presented here
phytoplankton and NAP bbp are modeled separately, the frac-
tion of bbp due to phytoplankton vs. NAPs can be calculated.
For a given PSD slope ξ and wavelength, the assumptions
of the model dictate fixed fractional contributions by NAPs
and phytoplankton to total bbp, which are given in Fig. 2b.
There is variability by wavelength, but the first-order vari-
ability is driven by the PSD slope, namely at low ξ values
(ξ < 4.0), phytoplankton contribution to bbp is on the order
of 30 % to 50 %, and it drops to near 0 % for higher slopes
as ξ approaches 6.0. The curves are not monotonic, and peak
phytoplankton contribution to bbp occurs at ξ ≈ 3.25.

The fractional contributions of Fig. 2b are derived from
the forward theoretical modeling, and they are influenced by
all model assumptions and are not validated independently.
In particular, the decisions on integration diameter limits for
NAPs and phytoplankton, as well as on the distributions of
the indices of refraction for phytoplankton and NAPs, will
have a strong influence on these values. Since NAPs are per-
mitted here to have higher RIs than RIs typical of organic
detritus only, if NAPs were strongly dominated by or com-
posed only of organic particles, then NAP contribution to bbp
would be overestimated here. Of course these RIs are likely
to be spatially and temporally variable, and the algorithm can
be further improved by investigating and implementing such
variability. Bellacicco et al. (2018) estimated global absolute
bbp due to NAPs and its fractional contribution to total bbp
using analysis of correlations with Chl. Qualitatively and to
first order, their global pattern of percent bbp due to NAPs
agrees with the model results reported here, i.e., low relative
NAP contributions at high latitudes and in eutrophic areas
and higher relative contributions in more oligotrophic areas
such as the fringes of the subtropical gyres (they exclude the
gyres from their analysis) (cf. their Fig. 2c and 2b here). Note
that the Bellacicco et al. (2018) estimate pertains only to
NAPs non-covarying with Chl, making comparison harder.
Further investigation is warranted to more rigorously com-
pare their product to the values implicit in the PSD algorithm
described here. Apart from analyzing the relative contribu-
tion of phytoplankton vs. NAPs to total bbp, it is of interest
to investigate the relative contributions of various size ranges
to the modeled backscattering coefficient. This is illustrated
in Supplement Fig. S4 and further discussed in Supplement
Sect. S3.
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Figure 1. Modeled hyperspectral backscattering coefficient of (a) phytoplankton, using EAP-based coated-sphere scattering computations,
and (b) NAPs, modeled as homogeneous spheres, as a function of the input power-law PSD slope (color-coded solid lines, as in legend). All
spectra are shown normalized to the respective values at 555 nm. See Sect. 2 for more details.

The uncertainty in PSD slope retrieval is illustrated in
Fig. 2c. These estimates are not symmetric about the ξ

value and are derived via Kruskal–Wallis analysis of vari-
ance to determine class similarity (Supplement Sect. S1). As
in KSM09, the general tendency is for the range of uncer-
tainty in ξ to increase for lower PSD slopes, but it is always
less than 0.5. The uncertainty in the bbp(443)/N0 ratio used
to retrieve the N0 parameter is shown in Fig. 2d in log10
space. Mean and median values are similar, and the uncer-
tainty about them does not vary much with PSD slope, also
similarly to KSM09. The uncertainty in Fig. 2d at each ξ
value includes all statistically similar classes of EMs.

3.2 Operational application of the PSD–phyto C
algorithm to OC-CCI v5.0 merged satellite data

3.2.1 PSD parameters

The operational PSD algorithm presented here was applied
to the monthly 4 km OC-CCI v5.0 Rrs(λ) data set (Sathyen-
dranath et al., 2019, 2021). Both PSD parameters (ξ and N0;
Eq. 1) and derived products were generated (Sect. 2.3 and
2.4). These data and their monthly and overall climatolo-
gies (and associated uncertainties) are made publicly avail-
able (see “Data availability”). Here, we use May 2015 data
to illustrate and discuss the new algorithm.

The PSD slope map (Fig. 3a) reveals a global spa-
tial pattern consistent with expectations and with KSM09;
namely the subtropical oligotrophic gyres are characterized
by high PSD slopes (relatively high numerical dominance
of small particles), whereas more eutrophic areas such as
coastal areas, equatorial upwelling zones, and high lati-
tudes exhibit lower slopes (increasing relative abundance of
larger particles). This is consistent with oligotrophic ocean

ecosystems being dominated by picophytoplankton, whereas
microphytoplankton contribute significantly to the phyto-
plankton assemblage in eutrophic areas and during blooms
(e.g., Kostadinov et al., 2009; Kostadinov et al., 2010; and
references therein). PSD slope values retrieved by the SAM-
based algorithm span the full modeled range of 2.5≤ ξ ≤
6.0. This is in contrast to KSM09, where values below 3.0
were not retrieved. The N0 PSD parameter (Eq. 1) is, as
expected, higher in coastal, high-latitude, and eutrophic ar-
eas (indicating higher particle loads) and lower in the olig-
otrophic subtropical gyres (Fig. 3b). N0 varies over a few
orders of magnitude. Note N0’s units of m−4 (Eq. 1) and that
care should be taken when comparing Eq. (1) andN0 to other
formulations of the PSD, e.g., the k parameter in Roy et al.
(2017), as these are related but not equivalent (see also Vi-
dondo et al., 1997).

Algorithm uncertainties are provided on a per-pixel basis.
The uncertainty range estimates for ξ (Fig. 3c) (not necessar-
ily symmetric about the ξ value) indicate that the gyres are
characterized by lower uncertainties than the more eutrophic
areas, as can be expected from Fig. 2c. These are partial un-
certainty estimates, including those quantifiable and internal
to the modeling, i.e., due to Mie parameter choices. Addi-
tional uncertainties inherent in the input OC-CCI Rrs values
and those due to the IOP inversion algorithm used are not in-
cluded in Fig. 3c and d and in subsequent propagated errors.
Uncertainties in theN0 parameter are more uniform spatially
but higher in the gyres (Fig. 3d). Note that those are given
in log10 space as a standard deviation, and a relatively small
absolute value of the uncertainty translates to relatively large
uncertainties in absolute particle concentrations.
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Figure 2. (a) Normalized spectral shapes of the bbp end-members (EMs) developed for spectral angle mapping (SAM), shown at the 19
unique wavelengths used for band-averaging (see Sect. 2.2), and for PSD slopes as in the color legend. (b) The fraction of bbp(λ) due to
phytoplankton as a function of the PSD slope ξ . The wavelengths shown are indicated in the legend (nm). The means across all 3000 Monte
Carlo simulations are shown. (c) Uncertainties in the PSD slope ξ retrieval using the SAM method, for each EM. Shown are the minimum and
maximum value of the PSD slope for all end-member classes that are statistically similar to the given EM, according to the Kruskal–Wallis
ANOVA (Supplement Sect. S1) (left y axis), and the resulting range of PSD slopes (right y axis) falling within these asymmetric uncertainty
bounds. (d) Statistics of the parameter log10(bbp(443)/N0) for each EM, calculated for all 3000 Monte Carlo simulations and across all
neighboring EM classes determined to be statistically similar to the given EM. µ in the legend stands for the mean, and σ is the standard
deviation. The standard deviation of this parameter is used to estimate uncertainties in the N0 retrieval.

3.2.2 Phytoplankton carbon and carbon-based PSCs,
POC, and chlorophyll from the PSD

Global patterns of total phytoplankton carbon (phyto C) re-
trieved via the PSD and allometric relationships (Fig. 4a) ex-
hibit the expected lower values in the oligotrophic gyres and
higher values elsewhere. Similarly to the results of Kostadi-
nov et al. (2016a), values range over approximately 3 orders
of magnitude, which is a higher range than retrievals based
on other methods, namely direct empirical algorithm POC re-
trieval (Stramski et al., 2008) or the Behrenfeld et al. (2005)
method of scaling backscattering, and it is also higher than
the range in CMIP5 model ensembles (cf. Fig. 1 in Kostadi-
nov et al., 2016a). This putative underestimation in the gyres
and overestimation in eutrophic areas suggests the need for

algorithm tuning, which is discussed in Sect. 3.3 along with
implications of validation results. Global validation of phyto
C retrievals with analytical phyto C measurements is planned
but is currently challenging as phytoplankton-specific carbon
data are relatively novel (Graff et al., 2012, 2015) and still
scarce. Here, an initial validation effort is undertaken using
several other variables; see Sect. 3.3.

A key feature of the PSD-based algorithm is that phyto C
can be partitioned into any number of size classes by choos-
ing appropriate integration limits of Eq. (5). Absolute con-
centrations of pico-, nano-, and microphytoplankton are il-
lustrated for May 2015 in Fig. 4b, c, and d, respectively.
Picophytoplankton C is mapped on the same color scale as
total phyto C (Fig. 4a), but pico- and nanophytoplankton C
maps have differing scales, illustrating that while picophyto-
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Figure 3. Example operational retrievals of the PSD parameters (Eq. 1) and their uncertainties, using monthly OC-CCI v5.0 Rrs data for
May 2015: (a) PSD slope ξ , (b) N0 parameter (m−4 in log10 space), (c) uncertainty range for ξ , and (d) standard deviation (SD) of log10 of
N0.

Figure 4. Example operational PSD-based retrievals of total and size-partitioned phytoplankton carbon, using monthly OC-CCI v5.0 Rrs
data for May 2015: total phytoplankton carbon (a), picophytoplankton carbon (b), nanophytoplankton carbon (c), and microphytoplankton
carbon (d). Units are milligrams per cubic meter, mapped in log10 space. The diameter limits for the three size classes are picophytoplankton
(0.2 to 2 µm), nanophytoplankton (2 to 20 µm), and microphytoplankton (20 to 50 µm).

plankton C varies over≈ 3 orders of magnitude spatially and
globally, nanophytoplankton C varies over ≈ 4–5 orders of
magnitude, and microphytoplankton varies over ≈ 7 orders
of magnitude (see also Kostadinov et al., 2010; Kostadinov
et al., 2016a). Note that empirical tuning will affect these
ranges of variability; see Sect. 3.3. Fractional contributions

of each of the three PSCs used here to total phyto C are il-
lustrated in Fig. 5. Picophytoplankton dominate much of the
open-ocean, lower-latitude, oligotrophic areas, contributing
nearly 100 % of the carbon biomass there (Fig. 5a); nanophy-
toplankton (Fig. 5b) contribute up to ≈ 50 % of the biomass
in the higher-latitude and more eutrophic areas; and micro-
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Figure 5. Example operational retrieval of the percent contribution
of each phytoplankton size class (PSC) to total phytoplankton car-
bon, determined via the PSD (Sect. 2.4). Retrievals use monthly
OC-CCI v5.0Rrs data for May 2015. The PSCs are picophytoplank-
ton (a), nanophytoplankton (b), and microphytoplankton (c).

phytoplankton (Fig. 5c) contribute significantly only in the
most eutrophic areas, e.g., during the North Atlantic bloom
at ≈ 45–50◦ N (May 2015 is shown). As previously noted
(Kostadinov et al., 2010, 2016a), this general pattern is con-
sistent with current understanding of ocean ecosystems.

The fractional carbon-based PSCs (Fig. 5) are ratios of
two integrals of Eq. (5); thus they are analytical functions
of the PSD slope ξ and the b allometric coefficient (as well
as the limits of integration used for each class and total
phyto C). These functions are plotted in Fig. 6, together with
the satellite-observed ξ histogram for May 2015, illustrating
the most common values for the PSCs found in the ocean.
Area-wise, the ocean is dominated by oligotrophic regions
with high picophytoplankton contributions to C biomass.

Figure 6. Percent contribution of each PSC to total phytoplankton
carbon (blue curves as in legend, left y axis) as a function of the
PSD slope ξ . A histogram of the PSD slope from the (sinusoidal
projection) OC-CCI v5.0-based image for May 2015 is shown in
the background as brown bars (right y axis). The three PSC curves
are analytically derived from the model, and no satellite data are
used in producing them.

As an illustration of uncertainty propagation to de-
rived products, the propagated uncertainty in total phyto
C (Fig. 7a) and fractional picophytoplankton C biomass
(Fig. 7b) is shown. Comparison of Fig. 4a with Fig. 7a indi-
cates that absolute total phyto C uncertainties are of the same
order of magnitude as the values themselves. This is a partial
uncertainty estimation due to the assumed distributions of the
Mie inputs (Tables 1 and 2) and due to the allometric coeffi-
cients. The Mie inputs are varied over wide ranges to accom-
modate various environments in the global ocean, with the
goal of having a single first-principles-based operational al-
gorithm applicable to first order globally. This increases the
uncertainty estimates. The uncertainty for the fractional PSC
products depends only on the uncertainties in ξ and b; thus
they exhibit much lower internal algorithm uncertainty com-
pared with absolute values. For picophytoplankton, they are
<≈ 2 % for the oligotrophic gyres and do not exceed≈ 7 %
globally. This suggests that the fractional PSCs are more re-
liable products than the absolute values, and they can also
be used with other products to partition them, e.g., total phy-
toplankton carbon estimated using the alternative methods
shown in Fig. 9 (namely Graff et al., 2015, and Roy et al.,
2017) or the Behrenfeld et al. (2005) or Sathyendranath et al.
(2020) methods; POC products (e.g., Stramski et al., 2008)
can be partitioned this way as well. Per-pixel uncertainties
are estimated for all products and composite imagery (clima-
tologies) as well and are provided with the OC-CCI-based
data set associated with this paper (“Data availability”).
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Figure 7. Propagated uncertainty in (a) total phytoplankton carbon given as 1 standard deviation (in milligrams per cubic meter), mapped
in log10 space, and (b) fractional contribution of picophytoplankton to total phytoplankton carbon, given as 1 standard deviation in percent.
(c) POC derived using the PSD retrievals (in milligrams per cubic meter), mapped in log10 space, and (d) chlorophyll concentration (Chl)
derived using the PSD retrievals (in milligrams per cubic meter), mapped in log10 space. Monthly OC-CCI v5.0-based data for May 2015
are shown in all panels.

The formulation of the PSD algorithm allows for both
POC and Chl (Eq. 6) to be estimated from the retrieved PSD.
Due to the assumptions used, POC is phyto C multiplied by
3 (Fig. 7c). This is strictly true only if the POC estimate
uses the same limits of integration as phyto C, which is an
approximation of the usual POC operational definition (see,
e.g., discussion of POC–PSD closure analysis in Kostadinov
et al., 2016a). POC is thus estimated to first order, treating the
retrieved NAPs as being composed of POC only and apply-
ing the same allometric relationship to NAPs as to phyto C, in
spite of the fact that the assumed RI distribution of the NAPs
is broader (Table 2). These are simplifying assumptions of
the two-component model; a more accurate POC representa-
tion can be achieved if organic and inorganic NAPs are mod-
eled as separate particle populations (e.g., Duforêt-Gaurier
et al., 2018). This is a planned development of the model
in the future; the goal here is to build an operational PSD–
phyto C algorithm (based on first principles, as mechanistic
as feasible) for use with multispectral satellite data of lim-
ited degrees of freedom. Hyperspectral sensors such as PACE
(Werdell et al., 2019) should allow for some more degrees of
freedom and thus for more independent particle components
and their PSDs to be modeled separately. However, note that
even hyperspectral data have limits on their degrees of free-
dom, which are expected to be much fewer than the number
of sensor bands (Lee et al., 2007; Cael et al., 2020). An im-
portant benefit of POC is that it is a widely observed vari-
able, available for global validation efforts (Sect. 3.3), as is

Chl. Similarly to POC, there are benefits of the PSD-derived
estimate of Chl (Fig. 7d); it can be used as additional veri-
fication/validation of model retrievals, and/or PSD-retrieved
Chl can be used as a parameter to optimize (in algorithm
tuning), as discussed shortly (Sect. 3.3). Next, we discuss
validation/verification and tuning efforts in which both PSD-
derived POC and PSD-derived Chl are used.

3.3 Algorithm validation, comparisons, and empirical
tuning for the N0 PSD parameter and absolute
concentrations

In an initial validation effort, the novel PSD–phyto C algo-
rithm is validated/verified using several variables. It is chal-
lenging to globally and thoroughly directly validate the ma-
jor products of the algorithm – the PSD and size-partitioned
phyto C – due to a paucity of globally spanning in situ ob-
servations, which are further reduced when performing satel-
lite match-ups. Here, we validate or verify algorithm perfor-
mance against compilations of the following variables: (1) in
situ PSD observations (Sect. 2.5), (2) in situ POC obser-
vations, (3) in situ picophytoplankton C observations, and
(4) concurrent satellite observations of Chl. Maps of the loca-
tions of in situ observations are shown in Supplement Fig. S5.
In addition, we compare phyto C retrievals to several existing
methods using the example May 2015 OC-CCI v5.0 image.
Further, based on these results, we suggest an empirical tun-
ing of the algorithm.
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Figure 8. (a) Comparison of PSD slope derived from in situ measurements with the matched-up satellite retrieval (Sect. 2.5). Points are
color-coded according to the corresponding matched-up satellite OC-CCI v5.0 Chl (colormap in milligrams per cubic meter in log10 space).
In this figure (as well as in Figs. 10 and 11 and Supplement Figs. S6, S9, and S10), type II (reduced major axis, RMA) regression is used,
and regression and validation statistics are given in the figure panels; “y-int” stands for the y intercept, RMS is root mean square (square root
of the mean of squared differences between the in situ and satellite values), bias is the mean of the satellite minus in situ values, and MAE
is the mean absolute error (the mean of the absolute values of the differences between the in situ and satellite values) (e.g., Seegers et al.,
2018). The values in parentheses are the standard deviations of the slope and y intercept, respectively. (b) Same as in panel (a) for the N0
parameter (Eq. 1) (axes in log10 space).

Validation results for the PSD slope ξ (Fig. 8a) indicate
a statistically significant but noisy relationship between re-
trieved and observed slopes, with a positive bias for satel-
lite retrievals and a regression slope substantially greater than
unity. Most validation points are scattered in a cloud of data
between 3.0 and 4.5 and do not exhibit much correlation, and
there is a somewhat separate cluster of data centered about a
slope of 5.25 in the satellite retrieval that have smaller cor-
responding in situ values of about 4.0. There is generally a
clear tendency for points from more oligotrophic areas (as
indicated by Chl color coding) to exhibit higher satellite val-
ues and more eutrophic areas to exhibit much lower satellite
values. This tendency is weaker for the in situ observations,
which tend to have a narrower range, mostly between 3.0 and
4.5. To first order, the satellite data are in the same range as
in situ data, and the retrievals capture the in situ data trend;
however, there is a pattern of having a bigger range of PSD
slopes in satellite data than in the in situ match-ups, with
the algorithm underestimating low values and overestimat-
ing high values.

Validation for the N0 parameter (Fig. 8b) is statistically
significant (somewhat higher R2 than the ξ regression) but
also quite noisy. Strong clustering of the in situ observations
around 1015.5–1016.0 m−4 is observed, and the majority of
these observations are somewhat overestimated in the satel-
lite retrievals, which cluster around 1016.25. Notably, a sepa-
rate cluster associated with low Chl (and low values of both

satellite and in situN0) shows that the satellite retrievals sub-
stantially underestimate these field data. Since N0 is the PSD
scaling parameter, which generally controls absolute number,
volume, and carbon concentration variability to first order,
this has implications for the global pattern of phytoplankton
carbon retrievals (Fig. 4); namely it is consistent with un-
derestimation in the oligotrophic gyres and overestimation in
the eutrophic areas. Overall, both satellite and in situ data
exhibit increasing values of N0 with increasing Chl concen-
trations, as expected; i.e., more oligotrophic waters are asso-
ciated with smaller overall particle number concentrations.
Further discussion of the PSD validation by location of in
situ data (Fig. S5a and b) is provided in Supplement Sect. S4
and illustrated in Supplement Fig. S6.

This pattern of under- and overestimation in theN0 valida-
tion drives the slope of the validation regression to be much
greater than unity and suggests an empirical tuning to abso-
lute phytoplankton carbon estimates via a linear (in log10
space) tuning of N0, as done in TK16 (Kostadinov et al.,
2016a), who based the tuning on the validation regression.
A similar approach is proposed here, but it is derived differ-
ently. Details of the tuning derivation procedure are given in
Supplement Sect. S5. The following global tuning equation
was obtained:

N0_tuned= 100.3859 log10(N0)+9.5531 , (7)

Ocean Sci., 19, 703–727, 2023 https://doi.org/10.5194/os-19-703-2023



T. S. Kostadinov et al.: ocean color PSD and phytoplankton carbon algorithm 717

where N0 is the original (untuned) PSD parameter. This tun-
ing changes N0 retrievals in a similar fashion to the TK16
tuning and is consistent with a tuning suggested by the N0 in
situ validation presented here (Fig. 8b); namely, low satellite
N0 values are increased, and high N0 values are decreased,
narrowing the overall range of variability of retrievedN0 and
thus the range of the retrieved derived variables. This ad-
dresses the low bias in oligotrophic gyres and the high bias in
eutrophic areas. The goal of the tuning is to get more realistic
absolute retrievals of POC and Chl (hypothesizing that this
should also lead to more realistic phyto C retrievals; how-
ever, see discussion about picophytoplankton validation in
Sect. 3.3.2).

The tuned N0 parameter for May 2015 is mapped in Sup-
plement Fig. S7a. The overall spatial pattern of higher values
in more eutrophic areas is preserved, but the global range
of values is reduced compared to the original formulation,
increasing N0 in the gyres and decreasing it in more produc-
tive areas. The resulting multiplicative factor to be applied in
linear space to phyto C, POC, and Chl values is mapped in
log10 space in Supplement Fig. S7b. Values in oligotrophic
areas are generally greater than unity in linear space (mostly
between 1 and 10), indicating that the tuning increases phyto
C, POC, and Chl in these areas, up to about an order of mag-
nitude (in limited areas mostly in the South Pacific Gyre)
and more moderately elsewhere in the tropical and subtrop-
ical oligotrophic oceans. The equatorial upwelling areas and
other transitional zones are not changed, and high-latitude
oceans exhibit correction factors mostly less than unity in
linear space (mostly between 0.1 and 1), which decreases
phyto C and Chl up to an order of magnitude (rare, mostly
less). This tuning is not applied to figures previously dis-
cussed here.

3.3.1 Comparison of the PSD-based phytoplankton
carbon retrieval with existing satellite algorithms

In this section, we compare PSD-based phyto C retrievals
presented here with two existing methods for its retrieval.
The May 2015 original total phyto C retrieval is com-
pared with the tuned total phyto C and the retrievals of the
absorption- and PSD-based algorithm of Roy et al. (2017)
and with the Graff et al. (2015) algorithm in Supplement
Fig. S8. The histograms of these four images are compared in
Fig. 9. The tuned retrievals are similar to those of Graff et al.
(2015), whereas the original retrievals are similar to those of
Roy et al. (2017), and the latter two have wider ranges glob-
ally compared to the former two. Of these algorithms, the
simplest is that of Graff et al. (2015), as it is a direct scaling
of bbp, and it is based on in situ chemical analytical mea-
surements of phyto C (Graff et al., 2012, 2015). These di-
chotomous inter-comparison results suggest that further al-
gorithm inter-comparison and validation with direct in situ
measurements of phyto C are needed to guide future algo-
rithm developments; however these data are relatively novel

Figure 9. Histograms of the images of Supplement Fig. S8, includ-
ing the original PSD-based phyto C retrieval (Fig. 4a). Histogram
counts are given on a log10 scale on the y axis, and the variable
(x axis) is log-transformed as well. All four histograms are derived
from the sinusoidal projection images for May 2015, using monthly
OC-CCI v5.0 data.

and scarce globally. Validation results using in situ POC and
picophytoplankton carbon (discussed next) exhibit a similar
dichotomy.

3.3.2 Validation using POC and picophytoplankton
carbon in situ data

PSD-based estimates of POC are validated against in situ
measurements for the original algorithm (Fig. 10a) and the
tuned algorithm (Fig. 10c). Both regressions have satisfac-
tory R2 values and also illustrate that in general higher POC
values are associated with higher Chl (colormap). Notably,
the original algorithm validation has a slope of ≈ 2 and ex-
hibits substantial underestimates at low POC and overesti-
mates at high POC. As intended, the tuning corrects this
range exaggeration and significantly improves the slope, in-
tercept, bias, RMS, and MAE. The regression with the N0
tuning applied should not be considered a truly independent
validation because the algorithm has been empirically tuned
to retrieve POC well; however, the tuning was done with
global POC imagery (using monthly images for 2004 and
2015) that uses the Stramski et al. (2008) empirical POC al-
gorithm, not with these in situ POC data directly.

In addition to the validation with in situ POC, we per-
formed a comparison of the matched satellite Chl and the
corresponding PSD-based Chl estimate (Eq. 6) for the origi-
nal (Fig. 10b) and the tuned algorithm (Fig. 10d). Both com-
parisons exhibit very high R2 values, and similarly to POC,
the original algorithm underestimated Chl at low values and
overestimated Chl at high values. The tuning successfully ad-
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dresses this, leading to excellent overall comparison of the
tuned algorithm, with a slope near 1.0 and a low intercept.
However, for the lowest Chl values (Chl< 0.1 mgm−3), per-
formance deteriorates. The tuned comparison is not a fully
independent validation, as the algorithm was tuned to com-
pare well with OC-CCIv5.0 satellite retrievals (using global
monthly images for 2004 and 2015). Overall, the comparison
with Chl is encouraging, indicating that the model is able to
reasonably reproduce (with tuning) OC-CCI v5.0 standard
satellite Chl values at the match-up points.

Validation against in situ picophytoplankton carbon is pre-
sented in Fig. 11a (with noN0 tuning applied) and in Fig. 11c
with the tuning applied. The corresponding Chl comparisons
between matched standard OC-CCIv5.0 Chl and Chl derived
via the PSD model are shown in Fig. 11b and d. As with
the POC match-ups (Fig. 10b and d), comparisons with Chl
are better for the tuned version of the algorithm, indicating
that the tuning is needed to reproduce more realistic Chl val-
ues globally. However, the tuning does not lead to any im-
provement in the validation results of picophytoplankton C
(cf. Fig. 11a and c). The validation regression without tun-
ing is statistically significant (p < 0.05), albeit noisy (low
R2
= 0.18); satellite retrievals and in situ data cover approx-

imately the same ranges, and increasing Chl and in situ pico-
phytoplankton C generally correspond to increasing satellite
values as well, with some tendency for under- and overesti-
mation as with the other variables. However, the tuned satel-
lite retrievals have a very narrow range that does not cover
the range of the in situ data, and validation statistics are gen-
erally worse than those of the original validation (the regres-
sion is not significant at the p = 0.05 level). These validation
results are generally consistent with the results of Martínez-
Vicente et al. (2017), where the tuned version of the TK16
(Kostadinov et al., 2016a) algorithm was used.

3.4 Further discussion, summary, and conclusions

The novel PSD–phyto C algorithm described here represents
a major overhaul of the KSM09 algorithm (Kostadinov et al.,
2009) (a comparison between KSM09 and the present al-
gorithm is briefly discussed in Supplement Sect. S6). Un-
like KSM09, two distinct particle populations are used:
phytoplankton and NAPs. Phytoplankton backscattering is
modeled using coated-sphere Mie calculations with inputs
based on the Equivalent Algal Populations (EAP) approach
(Bernard et al., 2009; Robertson Lain and Bernard, 2018).
This model formulation allows assessment of the percent
contribution of phytoplankton and NAPs to total bbp as well
as the estimation of Chl from the retrieved PSD. Underlying
bbp forward modeling is hyperspectral, facilitating adapta-
tion of the algorithm to upcoming hyperspectral sensors like
PACE (Werdell et al., 2019). PSD retrieval is achieved via
spectral angle mapping (SAM), and no spectral shape is im-
posed on bbp; operational end-members for current and past
multispectral sensors and the OC-CCI v5.0 merged ocean

color data set are created via band-averaging from the un-
derlying hyperspectral modeled bbp.

The algorithm has been used to create an accompanying
data set based on the OC-CCI v5.0 data set (Kostadinov et
al., 2022b; see “Data availability”). We emphasize that the
PSD parameters and derived retrievals presented here and in
the accompanying data set (Kostadinov et al., 2022b) are an
experimental research satellite product with relatively large
uncertainties. We do not claim that it is akin in validity and
accuracy to the more established (and much more empirical!)
algorithms for canonical products such as Chl and POC. As
emphasized elsewhere in this text, the goal is to build an op-
erational algorithm based on first principles as much as fea-
sible, even at the expense of accuracy, in order to push the
boundaries of what is retrievable from space and move the
science of bio-optical algorithm development forward. Po-
tential users of these PSD and derived data (Kostadinov et
al., 2022b) need to be aware of their limitations, uncertain-
ties, and validation status before using them, for example, in
building or validating/constraining biogeochemical models.
The choice of IOP algorithm to retrieve bbp(λ) is key for the
PSD–phyto C algorithm, as the spectral shape of bbp is what
the PSD slope retrieval is based upon (Eq. 4). The Loisel and
Stramski (2000) IOP algorithm is chosen here, as in KSM09,
because it allows spectral bbp retrievals that are not con-
strained by a specific spectral function or parameterization
of bbp as is done, for example, in the QAA (quasi-analytical
algorithm; Lee et al., 2002) and the GSM (Garver–Siegel–
Maritorena) algorithm (Maritorena et al., 2002, 2010). For
the wavelengths used in the PSD slope retrieval, modeled
and satellite-derived bbp spectral shapes compare well when
the Loisel and Stramski (2000) algorithm is used, and global
patterns of the retrieved PSD parameters appear reasonable.
Preliminary tests with Loisel et al. (2018) indicate that this
algorithm is not as suitable for PSD retrieval in this regard.
Use of Loisel et al. (2018), Jorge et al. (2021), and other IOP
algorithms will be further investigated in future development
of the PSD algorithm.

An important assumption of the model is thatN0 for NAPs
is twice that for phytoplankton so that the phyto-C-to-POC
ratio is a constant 1 : 3. This ratio is expected to vary in
the real ocean, and the value used here is a reasonable av-
erage choice (e.g., Behrenfeld et al., 2005; Jackson et al.,
2017; Thomalla et al., 2017; and references therein). Graff
et al. (2015) employed the cell sorting and chemical analy-
sis methods of Graff et al. (2012) to measure phyto C in the
equatorial Pacific and along the Atlantic Meridional Tran-
sect (AMT). Their results indicate that a phyto C : POC value
of 1 : 3 is reasonable, falling within their observed ranges;
however, they do observe many higher values, particularly in
the oligotrophic gyres. The ratio of Roy et al. (2017) phyto
C to Stramski et al. (2008) POC (applied to the May 2015
monthly image of the OC-CCI v5.0 data) indicates generally
lower values of this ratio (with some high-latitude and coastal
exceptions), and even lower values occur in the gyres, with
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Figure 10. Validation of PSD-based POC retrievals vs. in situ POC measurements (a, c) and comparison of satellite retrievals of Chl using
the standard OC-CCI v5.0 algorithm vs. Chl estimated from the PSD (b, d). Panels (a) and (b) have no tuning applied, whereas empirical
tuning is applied to the N0 parameter (Eq. 7) for panels (c) and (d). The tuning procedure applies a linear correction to N0 in log10 space to
ensure reasonable retrievals of POC and Chl, based on monthly satellite images from 2004 and 2015; for details, see Supplement Sect. S5.
The data points in panels (a) and (c) are colored by their matched standard OC-CCI v5.0 satellite Chl values (colormap, in milligrams per
cubic meter in log10 space).

values mostly below 0.1 in the low-latitude open ocean (data
not shown, but consistent with work in progress by Shovon-
lal Roy). In light of this observation, note the difference be-
tween the Graff et al. (2015) and Roy et al. (2017) phyto C
retrievals (Fig. 9 and Supplement Fig. S8). Further direct an-
alytical observations of phyto C and the reconciliation and
better understanding of the spatiotemporal variability in the
phyto-C-to-POC ratio should be a high priority in order to
improve understanding of carbon pools and their relation-
ships in the ocean (Brewin et al., 2021) and to retrieve phyto
C reliably from space.

The relatively poor PSD parameter validation results
should be interpreted with caution, as there are multiple rea-
sons for discrepancies between the in situ and satellite data
and for the observed poor regression statistics, and the in situ
data have their own limitations. Importantly, the in situ data
PSD parameters are fit over a much narrower diameter range
than the size range optically contributing the bulk of bbp (see,

e.g., Supplement Fig. S4), at least according to the modeled
spectra. It is recognized that in the real world the particle as-
semblage is very complex, and its sources of backscattering
are still not fully resolved (e.g., Stramski et al., 2004; Or-
ganelli et al., 2018). In particular, the composition and PSD
of small sub-micron particles appear to be of importance and
are not well known; here we assume the same PSD and NAP
composition across all size classes and globally. There is also
a mismatch in temporal and spatial scales of sampling be-
tween the satellite and in situ data. For example, the matched
in situ PSD data do not exhibit the same negative correla-
tion between ξ and N0 that the satellite data do (Supplement
Fig. S9). We note that this negative correlation in the satellite
data has a theoretical underpinning because of what we know
about global ocean ecosystems, namely that oligotrophic ar-
eas exhibit relative dominance of smaller phytoplankton (and
smaller overall concentrations of particles/biomass), as op-
posed to increased importance of larger phytoplankton and
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Figure 11. Validation of picophytoplankton carbon derived from the PSD model using daily OC-CCI v5.0 satellite data vs. in situ measure-
ments, as used in the POCO project (Martínez-Vicente et al., 2017) (a, c). Comparison of PSD-derived satellite Chl (y axes) with the matched
satellite retrieval of Chl using the standard OC-CCI v5.0 algorithm at the locations of the in situ picophytoplankton carbon match-up points (x
axes) (b, d). Panels (a) and (b) have no tuning applied, whereas empirical tuning is applied to theN0 parameter (Eq. 7) for panels (c) and (d).
The tuning procedure applies a linear correction to N0 in log10 space to ensure reasonable retrievals of POC and Chl, based on monthly
satellite images from 2004 and 2015; for details, see Supplement Sect. S5. The data points in panels (a) and (c) are colored by their matched
standard OC-CCI v5.0 satellite Chl values (colormap, in milligrams per cubic meter in log10 space).

increased biomass in more eutrophic areas. We thus expect
backscattering in the ocean to become “bluer”, i.e., to have
a steeper spectral slope, in oligotrophic areas. This is indeed
observed in satellite data (e.g., Loisel et al., 2006) and is the
basis for our algorithm. Therefore, in the ocean, we expect
N0 to decrease with increasing ξ globally and on average.
This is not necessarily going to be captured by in situ data of
limited spatiotemporal coverage and fit over a narrower size
range.

We further note that the number of match-up points in the
validation regression is different among PSD, POC, and pi-
cophytoplankton C, and their geographic distribution is dif-
ferent as well (Supplement Fig. S5). Namely, there are about
an order of magnitude more POC match-ups than picophy-
toplankton carbon ones. Thus the different validation results
presented here do not necessarily represent the same oceano-

graphic conditions; e.g., the picophytoplankton C in situ data
have less representation of eutrophic areas and span a smaller
range of Chl than the POC validation, with very few points
exceeding Chl= 1.0 mgm−3 (cf. Figs. 10b and 11b).

The picophytoplankton C data in Martínez-Vicente et al.
(2017) are derived from cell counts (abundance) con-
verted to carbon using specific conversion factors for dif-
ferent species/groups. Namely, 60 fg C per cell was used
for Prochlorococcus, 154 fg per cell for Synechococcus, and
1319 fg per cell for pico-eukaryotes. This differs from the
PSD-based phyto C retrieval algorithm in which the con-
version is a function of cell volume and is continuous. For
the allometric coefficients of Roy et al. (2017) used here,
the equivalent conversion factor is ≈ 53 fg per cell for cells
of the smallest diameter within the picophytoplankton range
(0.5 µm) and is ≈ 1825 fg per cell for the largest-diameter
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cells within the picophytoplankton range (2.0 µm), indicat-
ing first-order consistency, but not full equivalency, with the
methods of Martínez-Vicente et al. (2017).

The global relationships of the PSD parameters, derived
PSD-based phyto C, and POC versus Chl for the May 2015
monthly image are illustrated in Supplement Fig. S10. Glob-
ally, as expected, there is a strong correlation of Chl with
these variables, with increasing Chl associated with decreas-
ing PSD slope and increasing N0, phyto C, and POC. While
the relationship is strong, there is significant spread of the
PSD parameters and phyto C data for a given Chl value, sug-
gesting that there is added value in retrieving them separately
and that they should not all be treated as simply correlates
of Chl. We note that there is a need for further investiga-
tion to avoid uniqueness of retrieval issues and degrees of
freedom/independence issues, as well as more comprehen-
sive and complete error propagation, since a lot of ecosystem
properties are indeed correlated with Chl, and all these re-
trievals come from the same multispectral data.

The power law (Eq. 1) is a parameterization of real-
world PSDs, and while there are theoretical underpinnings
(e.g., West et al., 1997; Brown et al., 2004; Hatton et al.,
2021) and observations (e.g., Quinones et al., 2003; Buonas-
sissi and Dierssen, 2010; see also references in Boss et al.,
2001) supporting its applicability, particularly over large size
ranges, real-world PSDs may deviate from the power law, es-
pecially in coastal zones (e.g., Reynolds et al., 2010; Koest-
ner et al., 2020; Runyan et al., 2020; Reynolds and Stram-
ski, 2021). There is less information on living phytoplankton
only and their specific PSDs because it has been historically
difficult to separate living phytoplankton and measure, say,
their PSD or carbon (e.g., Graff et al., 2012, 2015). A recent
study by Haëntjens et al. (2022) investigates phytoplankton-
specific PSDs; their observations support the conclusion that
the phytoplankton-specific PSD shape is consistent with a
power law to first order. We note that phytoplankton share
their size domain with other organisms (bacteria on the low
end and zooplankton at the high end), and we note that a
drop-off in the phytoplankton PSD will be expected at the
limits of the size range of autotrophs (see, e.g., Hatton et al.,
2021); hence a phytoplankton-specific power law will have
upper and lower range limits of applicability, and it is not ex-
pected to apply equally well over the same size range every-
where and always in the global ocean. Hatton et al. (2021) of-
fer an assessment of the PSD of marine life over a huge range
of sizes (body mass), demonstrating that a specific power law
applies in the context of the Sheldon et al. (1972) hypothe-
sis that equal biomass tends to occur in each logarithmically
spaced size bin; their work offers support for use of the power
law for modeling phytoplankton (over their size range) glob-
ally.

The power law is not a converging PSD model; i.e., it is
sensitive to the chosen limits of integration (for a sensitiv-
ity analysis to the integration limits, see Kostadinov et al.,
2016a). Gamma functions may be a better choice to represent

marine PSDs (Risović, 1993, 2002). However, we choose to
use the power law because of its theoretical underpinnings
and because the goal is to build an operational algorithm
(based on first principles as much as possible) for existing
multispectral data with limited degrees of freedom. We ad-
ditionally assume that the PSD slope for both phytoplank-
ton and NAPs is the same, limiting the number of parame-
ters to be retrieved. Hyperspectral data and observations of
phytoplankton- and NAP-specific PSDs and IOPs will be
needed to relax these assumptions in the future. Organelli
et al. (2020) observed that the PSD slope steepened for small
particles, deviating from a power law. This could partially
explain the putative underestimates of the original algorithm
in oligotrophic gyres. Moreover, the absolute number of par-
ticles retrieved is sensitive to uncertainties in the real index
of refraction assumed. In this context, we note that the algo-
rithm is able to pick up the concentration of particles, to first
order, according to theN0 validation (Fig. 8b). We find this to
be impressive and consider it a success, given that the algo-
rithm makes no a priori prescriptions about particle concen-
trations; they are solved for from the magnitude and shape
of satellite-observed bbp. While the goal here is to create a
global algorithm which uses one set of end-members, we
recognize that future implementations can be improved by
assessing the impact of using regionally variable subsets of
index-of-refraction distributions. The PSD parameterization
and choices of Mie inputs, in particular complex indices of
refraction, represent important sources of uncertainty and can
also affect the need for tuning and the degree of suitability of
estimating POC with our generic NAP population. Further
algorithm analysis of performance and improvements need
to focus on the index-of-refraction choices for the particle
populations. For further discussion of algorithm uncertain-
ties, see Kostadinov et al. (2009), Kostadinov et al. (2010),
and Kostadinov et al. (2016a).

Graff et al. (2015) observe a relationship between phyto
C and bbp that is stronger than that for other proxies. This is
encouraging for the use of backscattering as a proxy for phy-
toplankton carbon biomass. However, the link between the
PSD and bbp spectral shape is a second-order effect that is
not easily observed in in situ observations (Kostadinov et al.,
2009; Slade and Boss, 2015; Boss et al., 2018; Organelli
et al., 2020), even though theoretical modeling demonstrates
a clear link (Kostadinov et al., 2009; this study). Kostadinov
et al. (2012) discuss some reasons why it may be difficult to
observe this relationship in current in situ data, e.g., the fact
that the PSD is fit over a narrow range of diameters com-
pared to the size range theoretically affecting bbp. Neverthe-
less, these considerations and the overall performance of the
KSM09 homogeneous algorithm as compared to the algo-
rithm presented here leads to the conclusion that there are
four primary directions that should be priorities for moving
forward. First, investigate the effect of choices of index-of-
refraction distributions, as discussed above. Second, rather
than relying only on bbp for PSD and phyto C retrieval, a
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blended approach should be developed that also uses absorp-
tion; i.e., combine the approach here with that of Roy et al.
(2017). Third, investigate the ability of hyperspectral data to
provide more degrees of freedom for retrieval of more vari-
ables simultaneously, allowing relaxation of some key as-
sumptions and perhaps a third particle population to repre-
sent POC and mineral particles separately; this is important
in light of the upcoming PACE mission (Werdell et al., 2019).
Hyperspectral absorption data in particular have the potential
to increase information content and allow group-specific re-
trievals (e.g., Kramer et al., 2022; but see also Cael et al.,
2020). Finally, collect more global, comprehensive in situ
data sets of all relevant variables, including and especially
phyto C (Graff et al., 2015), for further model development
and validation. With regard to the latter, agencies and investi-
gators should focus on building quality-controlled, one-stop-
shop data sets.

Appendix A: Details on the OC-CCI v5.0 data set

Processing and analysis were done using the sinusoidal pro-
jection of OC-CCI v5.0. For user convenience, once the final
products were generated, they were re-projected to equidis-
tant cylindrical projection (unprojected latitude/longitude)
before publication in the data repository linked above (“Data
availability”). The empirical tuning (Sect. 3.3) is not applied
to the variables in the published data set (“Data availability”).
Instead, the spatially explicit linear-space multiplicative tun-
ing factor (Supplement Fig. S7b) is given. The choice to pro-
vide an optional tuning to be applied at the user’s discretion is
dictated by the validation and comparison results discussed
in the paper. Monthly and overall climatologies with prop-
agated uncertainties are also provided, and for these clima-
tologies, both tuned and original variables are included.

Code and data availability. Code and data associated with algo-
rithm development as well as operational application to OC-CCI
v5.0 data are published on the Zenodo® repository (Kostadi-
nov et al., 2022a) and are available at the following DOI:
https://doi.org/10.5281/zenodo.6354654.

An OC-CCI v5.0-based satellite PSD–phyto C data set (monthly,
1997–2020, plus monthly and overall climatologies) has been pub-
lished on the PANGAEA® repository (Kostadinov et al., 2022b)
and is freely available in netCDF format and browse images at the
following DOI: https://doi.org/10.1594/PANGAEA.939863.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/os-19-703-2023-supplement.
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Siegel, D. A., Cetinić, I., Graff, J. R., Lee, C. M., Nelson, N., Perry,
M. J., Ramos, I. S., Steinberg, D. K., Buesseler, K., Hamme,
R., Fassbender, A. J., Nicholson, D., Omand, M. M., Robert,
M., Thompson, A., Amaral, V., Behrenfeld, M., Benitez-Nelson,
C., Bisson, K., Boss, E., Boyd, P. W., Brzezinski, M., Buck,
K., Burd, A., Burns, S., Caprara, S., Carlson, C., Cassar, N.,
Close, H., D’Asaro, E., Durkin, C., Erickson, Z., Estapa, M. L.,
Fields, E., Fox, J., Freeman, S., Gifford, S., Gong, W., Gray,
D., Guidi, L., Haëntjens, N., Halsey, K., Huot, Y., Hansell, D.,
Jenkins, B., Karp-Boss, L., Kramer, S., Lam, P., Lee, J. M.,
Maas, A., Marchal, O., Marchetti, A., McDonnell, A., McNair,
H., Menden-Deuer, S., Morison, F., Niebergall, A. K., Passow,
U., Popp, B., Potvin, G., Resplandy, L., Roca-Martí, M., Roesler,
C., Rynearson, T., Traylor, S., Santoro, A., Seraphin, K. D.,
Sosik, H. M., Stamieszkin, K., Stephens, B., Tang, W., van
Mooy, B., Xiong, Y., and Zhang, X.: An operational overview
of the EXport processes in the ocean from RemoTe sensing (EX-
PORTS) northeast pacific field deployment, Elementa, 9, 1–31,
https://doi.org/10.1525/elementa.2020.00107, 2021.

Slade, W. H. and Boss, E.: Spectral attenuation and backscatter-
ing as indicators of average particle size, Appl. Optics, 54, 7264,
https://doi.org/10.1364/ao.54.007264, 2015.

Stemmann, L. and Boss, E.: Plankton and Particle Size and
Packaging: From Determining Optical Properties to Driving
the Biological Pump, Annu. Rev. Mar. Sci., 4, 263–290,
https://doi.org/10.1146/annurev-marine-120710-100853, 2012.

Stramski, D. and Kiefer, D. A.: Light scattering by microor-
ganisms in the open ocean, Prog. Oceanogr., 28, 343–383,
https://doi.org/10.1016/0079-6611(91)90032-H, 1991.

Stramski, D., Bricaud, A., and Morel, A.: Modeling the inher-
ent optical properties of the ocean based on the detailed com-
position of the planktonic community, Appl. Optics, 40, 2929,
https://doi.org/10.1364/ao.40.002929, 2001.

Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.:
The role of seawater constituents in light backscat-
tering in the ocean, Prog. Oceanogr., 61, 27–56,
https://doi.org/10.1016/j.pocean.2004.07.001, 2004.

Ocean Sci., 19, 703–727, 2023 https://doi.org/10.5194/os-19-703-2023

https://doi.org/10.3390/app8122681
https://doi.org/10.1364/oe.22.016745
https://doi.org/10.1016/j.rse.2013.08.004
https://doi.org/10.1016/j.rse.2017.02.015
https://doi.org/10.1029/2020JC016218
https://doi.org/10.3390/s19194285
https://doi.org/10.1364/ao.386252
https://doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a
https://doi.org/10.1364/oe.26.007404
https://doi.org/10.4319/lo.1972.17.3.0327
https://doi.org/10.1016/j.rse.2013.03.025
https://doi.org/10.1002/2013GB004743
https://doi.org/10.3389/fmars.2016.00022
https://doi.org/10.1525/elementa.2020.00107
https://doi.org/10.1364/ao.54.007264
https://doi.org/10.1146/annurev-marine-120710-100853
https://doi.org/10.1016/0079-6611(91)90032-H
https://doi.org/10.1364/ao.40.002929
https://doi.org/10.1016/j.pocean.2004.07.001


T. S. Kostadinov et al.: ocean color PSD and phytoplankton carbon algorithm 727

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis,
M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski,
M. S., Franz, B. A., and Claustre, H.: Relationships between
the surface concentration of particulate organic carbon and op-
tical properties in the eastern South Pacific and eastern Atlantic
Oceans, Biogeosciences, 5, 171–201, https://doi.org/10.5194/bg-
5-171-2008, 2008.

Thomalla, S. J., Ogunkoya, A. G., Vichi, M., and Swart,
S.: Using optical sensors on gliders to estimate phyto-
plankton carbon concentrations and chlorophyll-to-carbon ra-
tios in the Southern Ocean, Front. Mar. Sci., 4, 1–19,
https://doi.org/10.3389/FMARS.2017.00034, 2017.

Toole, D. A. and Siegel, D. A.: Modes and mecha-
nisms of ocean color variability in the Santa Barbara
Channel, J. Geophys. Res.-Ocean., 106, 26985–27000,
https://doi.org/10.1029/2000JC000371, 2001.

Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S.,
Barnard, A. H., and Zaneveld, J. R. V.: A model for estimating
bulk refractive index from the optical backscattering ratio and
the implications for understanding particle composition in case I
and case II waters, J. Geophys. Res.-Ocean., 106, 14129–14142,
https://doi.org/10.1029/2000jc000404, 2001.

van de Hulst, H. C.: Light scattering by small particles, Dover
Publications, New York, ISBN 10 0486642283, ISBN 13
9780486642284, 1981.

Vidondo, B., Prairie, Y. T., Blanco, J. M., and Duarte,
C. M.: Some aspects of the analysis of size spectra
in aquatic ecology, Limnol. Oceanogr., 42, 184–192,
https://doi.org/10.4319/lo.1997.42.1.0184, 1997.

Werdell, P. J., Bailey, S. W., Fargion, G. S., Pietras, C., Knobel-
spiesse, K. D., Feldman, G. C., and McClain, C. R.: Unique data
repository facilitates ocean color satellite validation, EOS Trans.
AGU, 84 , 38, 377, 2003.

Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E., Cairns,
B., Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T.,
Hasekamp, O., Knobelspiesse, K. D., Mannino, A., Martins,
J. V., McClain, C. R., Meister, G., and Remer, L. A.: The
plankton, aerosol, cloud, ocean ecosystem mission status, sci-
ence, advances, Bull. Am. Meteorol. Soc., 100, 1775–1794,
https://doi.org/10.1175/BAMS-D-18-0056.1, 2019.

Wessel, P. and Smith, W. H.: A global, self-consistent, hierarchi-
cal, high-resolution shoreline database, J. Geophys. Res. B, 101,
8741–8743, https://doi.org/10.1029/96jb00104, 1996.

West, G. B., Brown, J. H., and Enquist, B. J.: A general model for
the origin of allometric scaling laws in biology, Science, 276,
122–126, https://doi.org/10.1126/science.276.5309.122, 1997.
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