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Machine Learning (ML), among other things, facilitates Text Classification, the task of assigning classes

to textual items. Classification performance in ML has been significantly improved due to recent devel-

opments, including the rise of Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM),

Gated Recurrent Units (GRU) and Transformer Models. Internal memory states with dynamic temporal

behaviour can be found in these kinds of cells. This temporal behaviour in the LSTM cell is stored in

two different states: “Current” and “Hidden”. In this work, we define a modification layer within the

LSTM cell which allows us to perform additional state adjustments for either state, or even simultane-

ously alter both. We perform 17 state alterations. Out of these 17 single-state alteration experiments,

twelve involve the Current state whereas five involve the Hidden one. These alterations are evaluated

using seven datasets related to sentiment analysis, document classification, hate speech detection and

human-to-robot interaction. Our results showed that the highest performing alteration for Current and

Hidden state can achieve an average F1 improvement of 0.5% and 0.3%, respectively. We also compare

our modified cell performance to two Transformer models, where our modified LSTM cell is outper-

formed in classification metrics in 4/6 datasets, but improves upon the simple Transformer model and

clearly has a better cost-efficiency than both Transformer models.

Keywords: LSTM; Text Classification; Transformer Models; BERT

1. Introduction

A variety of computer tasks such as text, image clas-

sification,4 video analysis, and speech recognition

can be automated thanks to the advancements of

Machine Learning (ML). The utilisation of data for

training of predictive algorithms is the foundation

of ML. Support Vector Machines (SVM), Decision

Trees (DT), Multi-Layer Perceptrons (MLP), and

Neural Networks (NN) are some of the best known

types of ML models. In the past ten years, these pre-

dictive algorithms have significantly improved, pri-

marily thanks to the rise of Deep Learning (DL),

Recurrent Neural Networks (RNNs), Long Short-

Term Memory (LSTM), and Gated Recurrent Units

(GRU) networks. All of these improved models are

based on Neural Network principles. Interconnected
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network of neurons/cells that simulate the operation

of the human brain, with the aim of uncovering hid-

den patterns in data.

These ML developments and the use of sophis-

ticated embedding methods have been quite benefi-

cial for Natural Language tasks. In such tasks, text

is first evaluated and processed using Natural Lan-

guage Processing (NLP) techniques, and then is fed

as an input to a model, which aims to predict the

class of the input. Sentiment analysis,12,24,58 Text

Classification,16,56 Hate Speech detection,2 and the

creation of Spam filters,3,36 are typical Natural Lan-

guage Classification tasks.

An RNN advances NN by considering temporal

relationships. The internal memory state of each Re-

current Neuron enables this dynamic temporal be-

haviour. John Hopfield firstly introduced RNNs in

1984,25 and since then, they have evolved into more

elaborate networks like LSTMs (1999)17 and GRUs

(2014).6 Compared to RNNs, LSTMs can obtain

a broader range of contextual data and avoid net-

work deterioration or exponential growth.19 Whereas

GRUs are quite similar to LSTMs, with the differ-

ence that GRUs lack an output process for each cell.

In multiclass and multilabel text classifica-

tion tasks, LSTMs exhibit state-of-the-art perfor-

mance.22,23 Multiclass tasks are those where an item

can be categorised into one of more than two classes,

whereas multilabel tasks are those where each item

can be categorised into multiple classes simultane-

ously. LSTM networks have been employed exten-

sively in numerous NLP tasks as well. Apart from

text classification,10,33,34 they have been used in sen-

tence selection,28 word prediction,51 and sentence

topic prediction.63

The cornerstone of an LSTM network are its

LSTM cells. In short, each cell remembers values

and has three different gates to control the data that

passes through the network. These gates are input,

output, and forget. Each one of them performs a

unique function, based on the data fed to the cell,

but ultimately they affect the memory of the cell: its

current and Hidden states. These states, and how we

can manipulate them efficiently, are the focus of this

study.

We investigate whether we can improve the

LSTM cell’s performance by incorporating additional

state calculations, with minimal increase in complex-

ity and training time. To address that, a modification

layer is added to the LSTM cell architecture. The

modified LSTM cell will be referred to as LSTM-CS

(from Custom State). We want to increase classifi-

cation performance by further influencing the cur-

rent and Hidden states. These modifications are em-

ployed on a state-of-the-art single network with two

bi-directional LSTM (bi-LSTM) layers and are eval-

uated in seven diverse text classification datasets.

The evaluation is based on three F1 scoring met-

rics and accuracy. The model is trained on accuracy,

whereas the F1 scores present the classification effi-

ciency of our model. Furthermore, our best perform-

ing proposed alteration is compared to two Trans-

former models, a simple one (SIMPLE) and a pre-

trained one (BERT).

2. Related Work

We will present some studies that have improved per-

formance over a range of tasks. We will follow with

a short mention of the most important NLP tasks

and how these have been improved by using LSTM

networks. The last three paragraphs of the section

are focused on various LSTM network and cell mod-

ifications that have been proposed and have shown

improved performance when compared to a baseline

LSTM network.

RNNs and LSTMs have significantly enhanced

the performance of automated tasks across a variety

of applications. Since the early 2000s, LSTMs have

been used to create music,14 classify phonemes20

or faces,32 detect/predict seizures,35,54 recognise

speech18 and a range of classification tasks.9,40,40,62

These applications are a subset of the numerous

applications across a wide range of domains where

LSTMs have outperformed conventional machine

learning approaches and neural networks.

In Natural Language Processing task LSTMs

have offered unparalleled performance, some of these

are Information Retrieval,43 Named Entity Recogni-

tion,61 machine translation,49 topic modelling,29 text

similarity,59 text summarisation,44 sentiment analy-

sis,55 text generation,44 and fake news or hate speech

detection.7,31 The majority of these tasks typically

involve a classifier predicting the relevant class or

classes for the content item in question. For instance,

positive and negative sentiment are the classes in po-

larity/simple sentiment analysis,48 whereas feelings

like joy, sadness, etc. are the classes in emotion sen-

timent analysis.27 Likewise, in fake news detection,
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we usually have a single binary class,52 fake or not.

The LSTM cell architecture has been under

research long before its widespread use, with re-

searchers looking for ways to extract more perfor-

mance. This has resulted in numerous alterations

that have been proposed in a variety of domains.

Batch Normalisation (BN) was integrated by Wand

et al.53 into the LSTM cell’s update function for all

state transitions. In comparison to theLSTM, the

BN-LSTM had faster convergence and better per-

formance. Hu et al.26 developed an LSTM cell that

could follow trends in time series data by combining

Gradient Descent selection and Particle Swarm Op-

timisation. The training and testing performance of

three environmental forecasting tasks was improved

thanks to these adjustments.

A grid-based LSTM network was proposed by

Kalchbrenner, Danihelka, and Graves.30 The net-

work layout causes the LSTM cells to interact in-

side a three-dimensional structure, but the LSTM

cell is not altered in its core. According to the au-

thors’ findings, such a grid enhances parity, addi-

tion, and memorisation. A Tree-LSTM is presented

in Chen et al.,5 where each cell’s input is depen-

dent on the input vector and two hidden vectors. The

model employing these modified LSTM cells is eval-

uated in language inference tasks and the study con-

cludes that sequential inference has unexplored pos-

sibilities. A Hierarchical Multimodal LSTM, essen-

tially a Tree-LSTM extension with syntactic aware-

ness, is introduced in Niu et al.41 The model is evalu-

ated in a dense visual-semantic embedding, while the

findings imply that the suggested network can pro-

duce phrases with qualitative context. The M-LSTM,

which Ye, Li, and Chen60 proposed, involves feeding

the LSTM cell with an extra input signal. The pro-

posed network relies on past data in the iterative up-

date function. The M-LSTM was evaluated in brain

scans and achieved state-of-the-art results. Another

LSTM cell modification was proposed by Qiu et al.46

by changing the cell’s gate mechanisms. The out-

comes of the evaluation of their Bidirectional-LSTM

model, in a bearing fault simulation task, indicate a

significant advancement over traditional Bi-LSTMs.

Shortcut connections that can detour the LSTM cell

and a spatiotemporal LSTM cell, were proposed by

Dai, Li, and Li.11 The model was tested and evalu-

ated in dense traffic prediction tasks, where it per-

formed better than both M-LSTMs and LSTMs.

A trainable hypernetwork generating weights for

the LSTM network, proposed by Ha, Dai, and Le21

excelled at image recognition, handwriting produc-

tion, and language modelling. A feedback LSTM that

considers the distinction between prediction and ob-

servation was proposed by Kamil Rocki.50 A pre-

diction error is computed and used when new pre-

dictions are made. Feedback LSTMs appear to be

more capable of generalisation than regular LSTMs

based on their performance in a character predic-

tion task. By computing an extra Hadamard prod-

uct, Wu et al.57 proposed a Multiplicative Integra-

tion LSTM which alters the way information flows

within the LSTM cell. Four tasks—Character Level

Modelling, Skip-through Models, Speech Recogni-

tion, Reading and Comprehending— were used for

testing and evaluation purposes. A non-saturating

activation function and a mixture of inputs are the

characteristics of LSTM with working memory, ab-

breviated LSTWM, proposed in Pulver and Lyu.45

The proposed cell and its network were evaluated

in three tasks, namely text recognition, digit recog-

nition, and digit combination. The results indicate

that the LSTWM performs better than the LSTM,

whereas in some cases it does so while requiring fewer

parameters. Finally, Mittal et al.38 proposed the re-

set of the LSTM cell’s internal memory by using such

a mechanism. By relying on a training dataset of

approximately 1000 instances, their modified LSTM

outperformed LSTM at a sign language recognition

task.

Our proposed LSTM modification is not do-

main specific, nor it requires any major architectural

change to an already existing model. By replacing

the LSTM layer of our model with our LSTM-CS we

could gain up to 0.7% performance improvement.

3. Methodology

The original LSTM cell structure along with our sug-

gested alterations are presented in this chapter.

3.1. The LSTM cell

As shown in Figure 1, the most widely used LSTM

cell has an input gate, an output gate, and a forget

gate. The input vector, the Hidden state from the

previous time step and the current cell state of the

previous time step, are all inputs to the cell. These

are then put through these gates and operators to
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create the Current cell state of this time step as well

as its Hidden state, which will be fed into the cell for

the following time step.

tanh
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Figure 1. The LSTM Cell

Regarding the internal structure of the LSTM

cell, it interacts with five distinct variables, as anal-

ysed below. This is how a standard LSTM cell op-

erates, these variables are initialised by the cell and

not manually. They are later affected by the input

data fed into each cell. At first, the input vector xt

is combined with the prior Hidden state ht−1 and

biases bf to generate the activation vector for the

forget gate, presented in Equation 1. W stands for

the input weights, while U stands for the recurrent

connection weights. Both of these initial weights are

commonly sampled from distributions with a zero

mean and preset variances.

ft = σg(Wfxt + Ufht−1 + bf ) (1)

Likewise, the activation vector of the input or

update gate is determined by considering the input

vector xt, the prior Hidden state ht−1, as well as the

biases bi. As presented in Equation 2, this input has

its own relationships and weights.

it = σg(Wixt + Uiht−1 + bi) (2)

Equations 3 and 4 determine the activation vec-

tors for the output gate and the cell input, respec-

tively.

ot = σg(Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

The four aforementioned activation vectors are

then used for determining the state of the Current

cell, presented in Equation 5, where ◦ stands for the

Hadamard product, also known as the element-wise

product of two matrices.

ct = ft ◦ ct−1 + it ◦ c̃t (5)

The calculation of the Hidden state vector, de-

fined in Equation 6, which incorporates the state of

the most recent cell along with the activation vector

of the output gate, is the last step of the process. σc/t

represents the hyperbolic tangent and σg the sigmoid

function.

ht = ot ◦ σh(ct) (6)

3.2. Our modified LSTM cell
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Figure 2. Our modified LSTM Cell

Table 1. Our experiments on the Cur-
rent and Hidden state alterations

Number Current Hidden

1 ct = ct ◦ ot ht = c ◦ ht
2 ct = ct ◦ ht ht = ht ◦ σg(c)
3 ct = ct ◦ ot ◦ ht ht = c ◦ σg(ht)
4 ct = ct + ct ◦ ht ht = ht ◦ σc(c)
5 ct = ct ◦ σg(ot) ht = c ◦ σc(ht)
6 ct = ct ◦ σg(ct)
7 ct = ct ◦ σg(ht)
8 ct = ht ◦ σg(ct)
9 ct = ct ◦ σc(ot)
10 ct = ct ◦ σc(ct)
11 ct = ct ◦ σc(ht)
12 ct = ht ◦ σc(ct)

Prior to the final Current and Hidden states be-

ing fed to the following LSTM cells, we introduce

a new layer, Figure 2. This layer allows us to ap-

ply any kind of adjustment to both the Current or
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Figure 3. Our Stacked LSTM model

Hidden states of the cell. Even though we are also

able to modify both cell states, for our experimen-

tation section we decided to alter one of the Hid-

den or the Current cell states. This single-state al-

teration makes sure that we are able to accurately

measure not only the performance changes but also

the training time effect of that particular alteration.

If we were to alter both Current and Hidden state, we

would not be able to discern the per state alteration

performance and training time effects. Additionally,

by only making one alteration, we reduce the increase

in training time. Due to the high dimensionality of

the mathematical objects involved, even a simple ad-

dition would further affect training time.

Our aim is to increase the performance of each

LSTM cell. Without any other architectural changes,

our altered LSTM executes only a single additional

state process inside each cell, with the goal of im-

proving prediction outputs. Our experimentation in-

cludes five distinct Hidden state alterations and

twelve Current state alterations, presented in Table

1. Although we also experimented with three differ-

ent alterations to the output gate vector, our major

focus is on the product of the final cell state ct with

the Hidden state ht or vice-versa. Inside each LSTM

cell, every alteration simply serves as the equation

number seven of the LSTM-CS cell.

3.3. Model

The suggested changes are evaluated using a top-

performing22,23 single network stacked Bi-LSTM

model, Figure 3. The model relies on Bag-of-Words

(BoW) embeddings that simply assign a numerical

value to each term. A spatial dropout is applied to

the data, which is then fed into a series of two Bi-

LSTMs. The second Bi-LSTM receives as input the

output of the first. Then, before the final fully con-

nected dense layer, two separate pooling flows are

established and later combined, one based on max-

imum and one on average pooling. Pooling reduces

the dimensionality of the feature vectors. By com-

bining both maximum and average pooling vectors

into a slightly bigger vector, we aim to retain any

pattern that might persist in any of the two. The

stacked nature of this model will amplify the perfor-

mance differences of our proposed LSTM cell. The

modified LSTM-CS cell replaces all cells in both Bi-

LSTM layers.

It should be noted that the inclusion of addi-

tional techniques, including trainable ensembles, pre-

trained embeddings or even attention layers, could

further enhance this approach. However, such archi-

tectural model enhancements are beyond the scope

of this work, as the raw performance comparison

of the LSTM cell and the custom state LSTM cell

is our main research question. Furthermore, any

pre-trained embedding implementation (Word2Vec,

GloVe) would increase the total training time of our

experiment by more than 8 times.

3.3.1. Hardware and Tensorflow

The training was performed on a 5950X CPU, with

32GB of 3200hz RAM. All the code was implemented

and executed in Python 3.8.8. The LSTM modifica-

tion layer was coded around the basic LSTM cell

on package Tensorflow-cpu from version 2.4+ up to

version 2.9. Interested researchers can implement our

approach by inserting any of our proposed alterations

in line 1377 of the file: recurrent v2.py, located

in the directory: Python V ersion//Lib//site −
packages//keras//layers//.

3.4. Datasets

Seven diverse text classification datasets are used for

evaluating our modification layer. These datasets dif-

fer in Document size and classes, Maximum Sentence

Length, Number of Unique Tokens and domain of ap-

plication. The datasets used are the following.

The MLMA dataset42 contains a sentiment la-

bel classifying a tweet against a set of one or more

types of hate speech. The HASOC37 dataset contains

text from social media that has been classified as “of-



April 27, 2023 8:51 output

6 Author’s Name

Table 2. Dataset characteristic, original and pre-processed

Original Pre-Processed

Dataset Documents Classes MaxLen Tokens Documents Classes MaxLen Tokens
MLMA 5647 71 35 14969 4138 48 23 12018

SEMEVAL 6838 11 33 24449 6495 11 22 14110
HASOC 5852 4 93 32168 1120 4 42 6078

AG 120000 4 122 123762 88431 4 22 4730
ROBO 525 5 29 466 254 5 10 149

CROWD 40000 11 34 83297 11377 11 11 1458
HATE 1011 3 611 6356 869 3 342 3235

fensive”, “hate-speech”, “profane”, or “none”. The

SEMEVAL dataset22,39 consists of a collection of

Tweets annotated with emotional labels. The HATE

dataseta is a class-balanced dataset with documents

categorised into one of the three available classes of

“hate speech”, “severe hate speech”, and “none”.

ROBO is a small-scale multi-class dataset with la-

bels around human to robot interaction. Its size

alone, less than 530 documents, positions ROBO as a

unique dataset in our study. Such small datasets are

known not to perform well with LSTMs, nonethe-

less we want to assess the proposed improvements

to an extreme dataset like this one. CROWD is a

crowdsourced dataset from Crowdflower with emo-

tional labels. Finally, the AG News Topic Classifica-

tion Dataset (AG)64 contains topical categories for

news related documents.

Table 2 presents the characteristics of the

datasets before and after pre-processing. For each

dataset, the term “Documents” denotes the num-

ber of sentences, “Classes” the number of classes per

item, and “MaxLen” the length of the maximum sen-

tence in the dataset, which directly affects the di-

mensionality of the training data. Finally, “Tokens”

is the number of unique terms in each dataset.

Pre-processing is exactly the same for all

datasets. We remove stop-words, non-alphanumeric

characters, and extremely uncommon terms. We

then convert all text to lowercase and replace the

contractions, the shortening and combining of two

words using apostrophes, using a custom GloVe

method. To improve training time the AG dataset

was further reduced by using a Term Frequency -

Inverse Document Frequency (TF-IDF) algorithm,

with minimal performance hit.23

Table 2 displays the characteristics of the fi-

nal datasets after pre-processing. In each dataset

the number of unique terms and the maximum sen-

tence length have been significantly reduced with-

out affecting the number of documents. Excluding

CROWD, where approximately two thirds of the

data were deleted because of the brief and informal

nature of the textual items, our pre-processing pro-

cess slightly decreased the number of documents per

dataset.

4. Evaluation

We conduct 10 separate runs, each with a differ-

ent random seed, per dataset and state modification.

In each run the data is split into train-validation-

test splits of 80-10-10, with a 10-fold cross valida-

tion based on the random seed. For each dataset, the

hyper-parameters are identical, as not to introduce

volatility into the experimental process.

For each dataset (and its 10 runs) we will

present the average percentage improvement. Given

the space constraints, we will only highlight the best

three Current and Hidden state alterations based on

the combined improvement of Accuracy, Macro-F1,

Micro-F1, and Weighted F1. Hidden state alterations

are presented in the “H-number” format, whereas

Current state alterations in the “C-number” format.

4.1. Results

Table 3. Improvement (%) for HASOC dataset

ahttps://github.com/GiannisHaralabopoulos/HateSpeech
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Metrics Accuracy Macro Micro Weighted

Baseline 83.984 35.546 65.811 64.799

C-1 -0.064 1.192 -0.347 -0.305
C-4 -0.101 0.202 -0.460 -0.527
C-7 -0.284 0.814 -0.496 0.057

H-2 -0.167 -0.152 -0.266 -0.086
H-3 -0.128 -0.316 -0.394 -0.367
H-5 -0.255 -0.792 -0.812 -0.701

Table 4. Improvement (%) for ROBO dataset

Metrics Accuracy Macro Micro Weighted

Baseline 80.198 1.562 2.476 1.965

C-2 -0.022 42.834 22.174 21.570
C-5 0.087 48.085 24.028 16.320
C-9 0.127 86.825 72.293 61.932

H-1 0.156 96.034 68.244 57.003
H-2 -0.003 36.926 19.060 11.098
H-5 0.047 71.101 57.587 40.362

In six of the seven datasets, our custom state

LSTM cell improves F1 performance and accuracy.

Results from HASOC and ROBO datasets, Tables 3

and 4, are particularly interesting since state alter-

ations in HASOC fail to increase accuracy and micro-

F1 score, whereas the same alterations in ROBO

significantly increase performance across all metrics.

We briefly mentioned the peculiarities of ROBO,

very few documents, a low number of classes and

tokens, and short sentences. HASOC on the other

hand is a dataset with enough documents, a low num-

ber of classes, lengthy sentences, a lot of tokens, and

most importantly imbalanced (74.3% of documents

are labelled with the same class). In short, HASOC is

single-class heavy and has a high encoded dimension-

ality. We believe that these factors strongly affect the

performance of our Custom State LSTM, but further

testing (ideally on datasets with similar properties)

needs to be performed to provide safer conclusions

with regards to this performance hit.

Table 5. Improvement (%) for MLMA dataset

Metrics Accuracy Macro Micro Weighted

Baseline 96.642 2.123 42.642 34.077

C-1 0.021 1.396 1.595 1.367
C-4 0.021 1.497 1.744 1.507
C-6 0.018 1.595 1.891 1.585

H-1 0.017 1.162 1.333 1.126
H-3 0.014 1.461 1.802 1.466
H-4 0.018 1.084 1.235 1.058

Table 6. Improvement (%) for AG dataset

Metrics Accuracy Macro Micro Weighted

Baseline 90.853 80.695 80.862 80.665

C-1 0.293 1.006 0.832 1.008
C-3 0.241 0.869 0.700 0.870
C-10 0.325 1.020 0.860 1.020

H-1 0.189 0.736 0.553 0.731
H-3 0.262 0.908 0.731 0.900
H-4 0.180 0.721 0.546 0.716

The modifications to the LSTM cell in MLMA

and AG demonstrated the most improved classifica-

tion results. As presented in Tables 5 and 6, Current

state alterations resulted in F1 improvement up to

1.9% in MLMA and 1% in AGNEWS, respectively.

Regarding accuracy metrics, they are improved by up

to 0.3% in AGNEWS but remain largely unchanged

in MLMA. While still improving classification re-

sults, alterations of Hidden state are slightly outper-

formed by Current state ones.

Table 7. Improvement (%) for CROWD dataset

Metrics Accuracy Macro Micro Weighted

Baseline 89.237 13.577 26.840 24.625

C-5 -0.045 0.770 0.249 0.398
C-7 -0.033 0.535 0.537 0.646
C-11 -0.041 0.668 0.608 0.591

H-2 -0.062 -0.123 0.341 0.376
H-3 -0.053 0.126 -0.109 -0.038
H-5 -0.034 0.414 0.217 0.354

Table 8. Improvement (%) for HATE dataset
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Metrics Accuracy Macro Micro Weighted

Baseline 77.397 65.710 66.101 66.714

C-2 0.470 0.871 0.825 0.858
C-6 0.233 0.580 0.517 0.557
C-8 0.193 0.585 0.487 0.506

H-1 -0.056 -0.099 -0.138 -0.149
H-4 0.029 0.166 0.131 0.195
H-5 0.248 0.641 0.544 0.589

Alterations in the CROWD dataset demonstrate

a similar performance, Table 7. Two out of five Hid-

den state alterations result in a consistent classifica-

tion improvement, whereas Current state alterations

increase F1 score by up to 0.65%. Although all F1

metrics have improved, the accuracy metric for Cur-

rent state alterations has slightly decreased in all

three of the top performing ones.

Table 9. Improvement (%) for SEMEVAL dataset

Metrics Accuracy Macro Micro Weighted

Baseline 83.833 44.106 57.981 56.083

C-3 0.003 0.128 0.444 0.230
C-6 0.099 0.199 0.448 0.246
C-7 0.012 0.248 0.321 0.146

H-2 -0.042 0.259 0.218 0.189
H-3 0.026 0.167 0.277 0.098
H-4 -0.016 0.395 0.138 0.077

Table 10. Average Improvement (%) for
Current State Alterations (Excluding ROBO
dataset)

Accuracy Macro Micro Weighted

1 0.018 0.643 0.436 0.41
2 -0.012 0.659 0.145 0.326
3 -0.047 0.112 0.143 0.199
4 -0.009 0.599 0.346 0.376
5 -0.021 0.3 0.184 0.227
6 -0.015 0.381 0.319 0.391
7 -0.123 0.356 0.135 0.23
8 0.037 0.182 0.369 0.34
9 -0.109 0.176 0.003 0.099
10 0.028 0.249 0.23 0.233
11 -0.054 0.068 0.206 0.176
12 -0.024 0.455 0.229 0.282

Table 11. Average Improvement (%) for
Hidden State Alterations (Excluding ROBO
dataset)

Accuracy Macro Micro Weighted

1 -0.05 -0.301 -0.027 -0.055
2 -0.047 0.24 0.305 0.317
3 -0.065 0.312 0.276 0.242
4 -0.13 -0.038 -0.145 0.026
5 0.008 0.2 0.085 0.165

As presented in Table 8, the Hidden state al-

terations for the HATE dataset function similarly to

those for CROWD, where only two of five experi-

ments result in improved classification results. Cur-

rent state alterations result in up to 0.87% improved

results, with an improvement in Accuracy as well.

Table 9 shows that both Current and Hidden state al-

terations with the SEMEVAL dataset demonstrated

a marginal improvement. The best-performing alter-

ations improve classification for Current by 0.45%

and 0.28% for Hidden states.

Overall, the majority of Current and Hidden al-

terations result in significant improvements in each

classification task, as presented in Tables 10 and 11.

The ROBO dataset results are not included, as they

are considered outliers due to their unique charac-

teristics in terms of document and token size.

F1 metrics are improved by an average of 0.5%

using the top-performing Current state alteration

ct = ct ◦ ot. Even the least effective ninth Current

state modification ct = ct ◦ σc(ot) increases F1 met-

rics by an average of 0.1%, according to Table 10.

Hidden state modifications performed inconsis-

tently. Only one of our proposed alterations im-

proved across all F1 metrics, while two alterations

did not produce any improvement at all. The top-

performing alteration h = h ◦ σg(c) raised F1 scores

on average by 0.29%, as presented in Table 11. The

worst-performing alteration ( h = c◦h, not only does

not increase the classification results, but instead re-

duces all metrics.

5. Limitations

As already mentioned, our proposed modification

layer enables alterations to both the Current and

Hidden states of an LSTM cell. The state functions

inside the LSTM cell are the basis for every alter-

ation we propose. However, this does not imply that
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Table 12. Accuracy Score for each modification and model (%)

Modification MLMA HASOC AGNEWS ROBO CROWD HATE

LSTM-CS No cell mod 96.642 83.984 90.853 80.198 89.237 77.397
Top Current State Mod 96.662 83.931 91.120 80.266 89.293 77.304
Top Hidden State Mod 96.654 83.844 91.029 80.195 89.182 77.227

SIMPLE No cell mod 96.210 84.152 92.403 77.551 87.557 76.369
Top Current State Mod 96.179 84.308 92.390 78.449 87.767 75.412
Top Hidden State Mod 96.258 83.795 92.437 78.289 87.480 76.063

BERT N/A 96.992 89.286 92.943 76.111 87.881 81.590

only pre-existing functions can be used in the mod-

ification layer. Apart from incorporating additional

functions like Relu or Softmax, we could also alter

both Current and Hidden states at the same time.

Moreover, inside the modification layer an ad-

ditional single equation is solved. The high dimen-

sional mathematical entities known as tensors, how-

ever, are subject to a number of calculations based

on that single equation. For the HATE dataset, for

instance, 1,222,560 parameters are the input to the

second LSTM. Practically speaking, any additional

calculations involving objects of a similar size will

increase training time. To illustrate the higher com-

putational resource utilisation on our modified cell,

we present in Table 13 the increased training time

per state alteration, for the MLMA dataset as an

example.

An initial observation is that increased training

time does not always result in better classification

results. The top-performing MLMA alterations for

Current state were C-1, C-4, and C-6, while for Hid-

den state H-1, H-3, and H-4. Both states had alter-

ations that increased the training time but did not

improve performance. Since the extra training time

does not scale linearly with the dataset size, we avoid

including an averaged metric for all datasets.

6. Comparison Against Transformer
Models

Table 13. Training time per fold, in seconds

Dataset LSTM-CS SIMPLE BERT

MLMA 9 37 383
HASOC 5 21 234
AGNEWS 83 345 15,265
ROBO <1 6 56

CROWD 54 224 5,410
HATE 19 79 181

Since 2018 and after the introduction of

BERT,13 transformer models have been considered

the top performing methods for a multitude of NLP

tasks, and among them text classification. In most

cases, the performance of such models has been bet-

ter than past Deep Learning Networks, with mi-

nor exceptions in small datasets.8,15 In this chap-

ter, we will compare our proposed LSTM modifica-

tion (LSTM-CS) performance against a simple trans-

former model (to be referred to as SIMPLE) and

BERT (BERT), the most commonly used pre-trained

transformer model.

Table 14. Number of trainable parameters for CROWD dataset

Model Trainable Parameters Avg Training time per Fold

LSTM-CS 940,596 34s
SIMPLE 1,194,987 118.7s
BERT 109,881,611 3588.2s

In the previous section, we noticed increased

training time when applying our LSTM cell modi-

fication. Similarly, an expected limitation of using a

transformer model is increased complexity. By intro-

ducing higher complexity to the model, more compu-

tational resources are required for training. This im-

pacts the training time per epoch and, subsequently,

the time to complete the task as a whole.
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Table 15. Macro F1 Score for each modification and model (%)

Modification MLMA HASOC AGNEWS ROBO CROWD HATE

LSTM-CS No cell mod 2.123 35.546 80.695 1.562 13.577 65.710
Top Current State Mod 2.153 35.970 81.506 1.534 13.618 65.581
Top Hidden State Mod 2.146 35.492 81.259 2.138 13.561 65.517

SIMPLE No cell mod 2.940 37.138 84.538 30.941 15.479 61.260
Top Current State Mod 2.970 37.107 84.471 28.273 14.856 61.474
Top Hidden State Mod 2.447 38.143 84.579 27.084 15.176 61.291

BERT N/A 2.759 54.430 85.910 36.028 20.872 71.726

In this chapter, we will evaluate the classifica-

tion performance of our proposed modified LSTM

cell and the two aforementioned transformer mod-

els. The first transformer model is not pre-trained

and can be efficiently combined with LSTM layers,

whereas the BERT model uses pre-trained embed-

dings and cannot be efficiently used with LSTM lay-

ers, mainly due to Input/Output differences in the

dimensions of the tensors.

The datasets we will use are the same as before,

with the exception of SEMEVAL which is a multi-

label dataset. This is due to the fact that Multi-label

classification requires a completely different BERT

architecture that not only introduces more complex-

ity, but is also fundamentally different from the two

models of the comparison, SIMPLE and LSTM-CS.

Once again, we perform 10 runs with different

random seeds, each with a 10-fold cross validation.

For all three methods we use an 80-10-10 split and ex-

actly the same hyper-parameters, such as epoch and

batch numbers. The evaluation numbers are based on

the average testing performance of all folds and iter-

ations. In total, more than 6,000 training and testing

epochs were required for the purposes of this com-

parison alone.

The accuracy of each method is depicted in Ta-

ble 12. BERT outperforms all methods by 0.93% on

average when evaluated with accuracy. Similarly, the

macro F1 scores have improved by 16.43%. Keep in

mind that BERT is pre-trained, which means that

the encoding is vastly more complex than the sim-

ple encoding of the BoW method we incorporate on

LSTM-CS and SIMPLE models. The effect of non

pre-trained embeddings is evident by the small im-

provement (0.668%) of SIMPLE compared to our

LSTM-CS. However, these improvements come at

the great cost of computational resources. In order

to better convey the exponentially increased com-

plexity of a BERT model compared to the LSTM, in

Table 14 we include the number of trainable parame-

ters and the average training time per fold for each of

the three compared models for the CROWD dataset.

In addition, the detailed time per fold training times

for each dataset are depicted in Table 13.

Our best performing modification for Current

state demonstrates better performance in 3 out of 12

datasets, while it even manages to improve perfor-

mance when used with a simple transformer model.

Although BERT -and transformer models in general-

provide overall better results, they do come with a

great computational cost. The BERT model required

more than a hundred times the training time needed

for our best Current state LSTMmodification to pro-

duce disproportionately improved results.

7. Conclusions

In this work, we propose a LSTM modification layer

that enables alterations to Current and Hidden states

of the LSTM cell. Our experiments involve altering

either state, however the layer gives us the option to

alter both states at once. Our experimentation fo-

cuses on introducing simple equations with the goal

of improving the LSTM cell’s performance. Out of

our 17 single-state alteration experiments, 12 involve

the Current state, whereas 5 deal with the Hidden

state.

Table 16. Percentage improvement over base-
line for best performing state alterations

Alteration Accuracy Macro Micro Weighted

ct = ct ◦ ot 0.018 0.643 0.436 0.41

h = h ◦ σg(c) -0.047 0.24 0.305 0.317

Using seven diverse datasets, we assess the per-
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formance of our modified LSTM and each of the 17

single-state alterations. The datasets relate to senti-

ment analysis, document classification, hate speech

detection, and human-to-robot interaction tasks,

whereas their properties, such as document and term

sizes, vary. Our findings reveal that both state al-

terations result in improvements of the classification

result.

Table 16 lists the best-performing alterations for

each state. Since the ROBO dataset shows a bigger

improvement than the other datasets, we believe this

performance is an outlier due to the dataset proper-

ties, and thus has not been included in the calcu-

lations with the other datasets. The best-performing

Current state alteration (No1 in Table 1): ct = ct◦ot,
improving Macro-F1 by up to 0.643%, whereas the

best-performing Hidden state alteration (No2 in Ta-

ble 1): h = h◦σg(c), improving Weighted-F1 by up to

0.317%. With the aim of improving classification re-

sults, the modification layer adds an additional train-

ing step inside the LSTM cell.

These training enhancements do, however, in-

crease training time. Although there is a less than

10% increase in the required training time, it can

nonetheless have an adverse effect on the scalability

of similar methods. In the end, even for improving

the classification accuracy by 0.5%, in case that the

classification process involves sensitive data, such as

law enforcement or health issues, then small increases

in resource needs can be justified. There is a level of

subjectiveness in this threshold. For example, BERT

demonstrated a 16% F1 improvement over the LSTM

cell, but with 10,000% increased training time. If the

dataset size and the initial training time are small

enough, we could definitely recommend the use of

a more complex pre-trained Language Transformer

model.

The single-state alteration facilitates a more ac-

curate measurement of performance per state alter-

ation. We only experimented with single-state alter-

ations despite being able to modify both cell states

at once. Our findings reveal that Current state al-

terations not only result in improved performance

but also typically involve shorter training periods.

Furthermore, we are currently working to identify

the dataset properties that inhibit LSTM-CS perfor-

mance. Once we identify these, we will be able to

test specific alterations or conclude on the efficiency

of LSTM-CS for this type of datasets.

In the future, we intend on the one hand to ex-

periment with co-occurring alterations for both Cur-

rent and Hidden states as well as to apply adjust-

ments to gated outputs, while on the other hand, to

identify the most effective alteration(s) to maximise

prediction results.1,47 To achieve this, we will col-

laborate with colleagues from Statistics and Mathe-

matics to optimise our suggested single-state alter-

ation. We would also like to apply our LSTM-CS to

more ML tasks where LSTM outperforms other Deep

Learning methods. We believe that the results of our

work will encourage other researchers to investigate

the possibility of further altering the LSTM gate or

state outputs with the goal of extracting more per-

formance from each LSTM cell.
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