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Abstract

Monitoring river water levels is essential for the study of floods and mitigating their risks. River gauges are a well-
established method for river water-level monitoring but many flood-prone areas are ungauged and must be studied
through gauges located several kilometers away. Taking advantage of river cameras to observe river water levels is an
accessible and flexible solution but it requires automation. However, current automated methods are only able to
extract uncalibrated river water-level indexes from the images, meaning that these indexes are relative to the field of
view of the camera, which limits their application. With this work, we propose a new approach to automatically
estimate calibrated river water-level indexes from images of rivers. This approach is based on the creation of a new
dataset of 32,715 images coming from 95 river cameras in theUK and Ireland, cross-referenced with gauge data (river
water-level information), which allowed us to train convolutional neural networks. These networks are able to
accurately produce two types of calibrated river water-level indexes from images: one for continuous river water-level
monitoring, and the other for flood event detection. This work is an important step toward the automated use of
cameras for flood monitoring.

Impact statement

Thiswork explores a flexible solution tomeasurewater levels using a network of river cameras. The challengewith river
cameras is to automate the extraction of the river water levels, or a related index, from the images. Existingmethods only
able produce water-level indexes that are not calibrated (relative to the camera field of view), which narrows their range
of applications. This work is the first to propose a method that automatically estimates calibrated water-level indexes
from images. For this purpose, a dataset of 95 cameras and 32,715 images cross-referencedwith gauge datawas created.
This dataset was used to train deep convolutional neural networks able to extract calibrated river water-level indexes
from images.

1. Introduction

Flood events are a recurring natural hazard causing injuries, homelessness, economic losses, and deaths
all over the world, every year (Guerreiro et al., 2018). The severity of floods is even increasing with
climate change and growing human activity, such as building assets over land close to river banks (Alfieri
et al., 2015). It is therefore necessary to employ effective and efficient techniques to monitor flood events
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to avoid economic, social, and human losses.We present a novel deep-learning methodology that takes as
input an image coming from a river camera and outputs a corresponding river-level index. The river
cameras used as inputs may be different from those used to train the deep-learning model. This research
has been performed in order to develop a new flexible tool allowing the observation of flood events.

The current techniques to forecast and manage river flood events are limited by the difficulty of
obtaining accurate measurements of rivers.

River gauges provide water levels and calibrated streamflow at point locations and high temporal
frequency (e.g., every 15 minutes in England (EA, 2021)). The problem with observing a flood by using
gauges is that gauges are expensive to construct and maintain and hence typically sparse. For example, in
the UK, gauge stations are typically constructed every 10–60 km (Neal et al., 2009). Furthermore, their
number is declining globally (Mishra andCoulibaly, 2009; Global Runoff Data Center, 2016). In addition,
gauges can be overwhelmed during flood events (Vetra-Carvalho et al., 2020).

A second approach to obtain river-level information consists in using satellite and aerial images
either through expert observation and image processing (e.g., Perks et al., 2016; Mason et al., 2021;
Mauro et al., 2021) or through deep learning (e.g., Nemni et al., 2020). When combined with a digital
elevationmodel (DEM), they can be used to derive water levels along the flood edge (see Grimaldi et al.,
2016 for a review). These images can be obtained with optical sensors or synthetic aperture radar
(SAR). However, optical techniques are hampered by their daylight-only application and their inability
to map flooding beneath clouds and vegetation (Yan et al., 2015). On the other hand, SAR images are
unaffected by clouds and can be obtained day or night. Thus, their relevance for flood mapping in rural
areas is well established (e.g., Mason et al., 2012; Alfieri et al., 2013; Giustarini et al., 2016). In urban
areas, shadow and layover issues make the flood mapping more challenging (e.g., Tanguy et al., 2017;
Mason et al., 2018; Mason et al., 2021; Mauro et al., 2021). In addition, SAR satellite overpasses are
infrequent (at most once or twice per day, depending on location), so it is uncommon to capture the
rising limb of the flood (Grimaldi et al., 2016), which prevents considering this technique for the live
monitoring of floods.

Recently, new solutions have been considered in order to accurately monitor floods, and among them,
the use of river cameras has received significant attention (Tauro et al., 2018). River cameras are CCTV
cameras (Closed-Circuit TeleVision, video surveillance cameras typically used for monitoring and
recording activities), installed with a fixed field of view to observe a river. They provide a continuous
stream of images and may be installed by individuals to monitor river water levels for recreational
purposes (fishing or boating for example) and are also used by public or private organizations for river
monitoring purposes. They are flexible as they can rely on battery supplies and upload images through
broadband/4G connections and can be easily installed (e.g., on trees, buildings, or lamp posts). However,
a limitation of this approach is the annotation of such images. Indeed, flood case studies have considered
floods through manually annotated camera images (e.g., Vetra-Carvalho et al., 2020) but their manual
annotation is complex, time-consuming, and requires on-site ground survey. In consequence, it is not
possible to straightforwardly repeat this process manually on a large scale, and thus strongly limits the use
of river cameras for flood monitoring. There are existing initiatives that rely on crowd-sourcing
approaches to share the burden of the annotation process (e.g. Baruch, 2018; Lowry et al., 2019; Etter
et al., 2020). These processes are made accessible through the help of graphical tools such as virtual
gauges, and guidelines to help the annotator perform their annotation task and attribute a flood severity
index to an image. However, it has been noted that the crowd-sourced annotations are often inaccurate and
their number depends on the degree of investment of the volunteers involved with the project (Etter et al.,
2020).

Several studies have already considered the development of deep learning and computer vision
algorithms for flood monitoring via the semantic segmentation of water in images. (Semantic segmen-
tation is a method that classifies pixels according to their content. In this case, we detect whether each
pixel contains water or not, e.g.,Moy deVitry et al., 2019; Vandaele et al., 2021.) However, on its own, the
semantic segmentation of water is of limited interest when it comes to finding the (evolution of the) water
level of the river in the image. Indeed, the first way to use the segmentation consists in taking a time series
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of images of the same camera to observe the relative evolution of the percentage of flooded pixels of
(a region of) the image. However, it only allows production of an uncalibrated water-level index,
dependent on the field of view of the camera (Moy de Vitry et al., 2019). The second solution is to carry
out ground surveys in order tomatch the segmented water with the height of surveyed locations within the
field of view to estimate the river water level. However, carrying out ground surveys is impractical since
spots of interest could be hard or even dangerous to access and field studies would drastically reduce the
automation potential of river camera images. A third solution that would consist in merging the camera
images with digital elevation models can only be performed manually at this stage, as current literature
suggests that deep learning methods are not accurate enough to perform such tasks (Mertan et al., 2021).
An object detection approach has also been considered to evaluate flood situations in urban areas (Rizk
et al., 2022). However, this methodology relies on the deployment of drones and the presence of specific
objects (flooded cars or houses), which limits the potential of the method to capture the rising limb of the
flood (before the deployment of the drones and/or before the cars and homes get flooded). Until now, deep
learning approaches for river water-level monitoring using images have thus been limited to the
production of either uncalibrated river water levels dependent on the field of view of the camera (Moy
de Vitry et al., 2019; Vandaele et al., 2021), or reliant on field surveys (Vetra-Carvalho et al., 2020). This
may be because to our knowledge there is no large dataset of river camera images annotated with river
water levels.

In this work, we propose a new approach for extracting calibrated river water-level indexes from river
camera images. This approach is able to produce two calibrated indexes: one for continuous river water-
level monitoring, and the other boolean for the detection of flood events. This approach is based on the
creation of a large dataset of river camera images extracted at 95 camera locations, cross-referenced with
river water levels coming from nearby gauges to train deep learning networks. In consequence, we bring
the following contributions:

• A dataset of images annotated with river water levels, built by cross-referencing river cameras with
nearby river water-level measurements produced by gauges.

• A deep learning methodology to train two deep convolutional neural networks (CNNs):
– Regression-WaterNet, which can provide a continuous and calibrated river water-level index.

This network is aimed at providing an index useful for the live monitoring of river water levels.
– Classification-WaterNet, which can discriminate river images observing flood situations from

images observing unflooded situations. This network is aimed at providing local flood warnings
that could enhance existing flood warning services.

• An analysis showing that our methodology can be used as a reliable solution to monitor flood events
at ungauged locations.

We note that there are uncertainties in the dataset. Firstly, these are due to inaccuracies of gauge
measurements (see McMillan et al., 2012 for a complete review). Secondly, uncertainties are introduced
by the association of the camera with gauges that are not co-located (see Section 2.1). Nevertheless, our
results demonstrate that river cameras and deep learning have amajor potential for the critical task of river
water-level monitoring in the context of flood events.

The rest of this manuscript is divided into three sections. Section 2 details the methodology used to
develop the approach, including the building of the dataset, the definition of the calibrated indexes, and
the development and training of the deep learning network that estimated calibrated river water-level
indexes. Section 3 presents an analysis of the results obtained by the networks, notably through the
comparison with water-level data from distant gauges. Finally, in Section 4, we conclude that our
methodology is able to accurately produce two types of calibrated river water-level indexes from images:
one for continuous river water-level monitoring, and one for flood event detection. This work is an
important step toward the automated use of cameras for flood monitoring.
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2. Methodology

As outlined in the introduction, the goal of this work is to create twomodels. Both take as input an image
from a river camera. The aim of the first model is to estimate a continuous index related to the severity of
the flood situation within the image. The aim of the secondmodel is to estimate if the location within the
image is flooded or not, thus a binary index. The idea is that both models will learn visual cues regarding
the presence (or severity) of a flood event within the image such as the color of the water and floating
objects. In order to create these models by using supervised deep learning approaches, a dataset where
river camera images labeledwith such indexes is necessary. This section describes themethodology that
was employed for creating such a dataset and the process to develop and train the flood monitoring deep
learning models calledWaterNets on this dataset. First, Section 2.1 explains the creation process for the
large dataset of images where each image is labeled with a river water level. Second, Section 2.2 details
the different approaches considered to transform these river water levels into calibrated indexes
representing the severity of a flood situation. Finally, Section 2.3 presents the WaterNet CNN
architectures that were used to learn the relationships between the images and their river water levels
from the dataset.

2.1. Creation of the dataset

This section discusses the preparation of the initial dataset that labels river camera imageswith river gauge
water-level measurements in meters. This was done by associating each river camera with a nearby gauge
located on the same river. These measurements are either relative to a local stage datum (Above Stage
Datum, mASD), or an ordnance datum (Above Ordnance Datum, mAOD, measured relative to the mean
sea level). The transformation of these two types of river water levels into calibrated indexes is presented
in Section 2.2.

2.1.1. Acquisition of the river water levels
The various environmental agencies of the United Kingdom and the Republic of Ireland publicly
provide data related to the river water levels measured in the gauge stations distributed across their
territories: Environment Agency (EA) in England (EA, 2021), Natural Resources Wales (NRW) in
Wales (NRW, 2021), Scottish Environment Protection Agency (SEPA) in Scotland (SEPA, 2021),
Department for Infrastructure (DfI) in Northern Ireland (DfI, 2021), and Office for Public Works
(OPW) in the Republic of Ireland (OPW, 2021). In England, the EA only provides water-level data on an
hourly basis for the last 12 months. Consequently, this work only considered the water levels (and
images) for the year 2020. For each gauge station, the EA also provides an API allowing the retrieval of
the GPS coordinates of the gauges, as well as the name of the river on which they are located. The other
agencies allow the retrieval of the GPS locations and rivers monitored through accessible graphical
interfaces. In this paper, a gauge, g, produces pairs wg, tg

� �
where wg is the water level and tg is its

timestamp. We suppose that there are Lg pairs, ordered by their timestamp. We refer to the ith pair as
wg ið Þ, tg ið Þ� �

, i∈ 1,2,…,Lg
� �

.

2.1.2. Acquisition of the images
Weused the network of camera imagesmaintained by FarsonDigitalWatercams1 for the acquisition of the
images. Farson Digital Watercams is a private company that installs cameras on waterways in the UK and
the Republic of Ireland. The images from the cameras can be downloaded through an API (subject to an
appropriate licensing agreement with the company). At the time of writing this paper, the company had
163 cameras operational. Among these cameras, 104 were installed in England, 9 in the Republic of
Ireland, 5 in Northern Ireland, 38 in Scotland, and 7 in Wales. These cameras broadcast one image per
hour, between 7 or 8 a.m. and 5 or 6 p.m. (local time). Apart from one camera that was removed from our

1 https://www.farsondigitalwatercams.com.
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considerations, the field of view of each camera includes a river, a lake, or the sea. At this stage, they were
all kept in the dataset. The images from each camera are available since the installation of the camera, but
there can be interruptions due to camera failure or maintenance. After inspection of the cameras, it was
observed that a camera may be re-positioned occasionally depending on the wishes of a client, thus
changing the field of view at that camera location. Five cameras were moved in 2020. The first cameras
were installed in 2009, while the newest were installed in 2020. For each of these cameras, their
GPS coordinates and the name of the river/lake/sea in its field of view can be retrieved through Farson
Digital’s API. In this paper, a camera, c, produces pairs xc,ucð Þwhere xc is the image and uc its timestamp.
We suppose that there are Mc pairs, ordered by their timestamp. We refer to the ith pair as
xc ið Þ,uc ið Þð Þ, i∈ 1,2,…,Mc½ �.

2.1.3. Labeling camera images with river water levels
Each camera was first associated with the closest available gauge on the same river. This was done by
computing the Euclidean distance between the gauges and the camera with the GPS coordinates
(converted into GNSS) and by matching the river names. These attributes (camera and gauge GPS
coordinates and river names) were retrieved using the EA and Farson Digital’s APIs. If the river namewas
not available for the camera, the association was performed manually using the GPS coordinates and
Google Maps. We defined a cut-off distance of 50 km, and cameras that were located more than this
distance away from the nearest gauge were removed. The cut-off distance was determined experimentally
by making a trade-off between the number of camera images that we could use in the dataset and the
proximity of the gauge to the camera. Note that due to a recent cyber-attack on the Scottish agency SEPA 2,
the gauge data monitored by SEPA was not available for this work, which forced us to remove most
cameras located in Scotland.

Secondly, the remaining camera images were each labeled with the water-level measurement of the
corresponding gauge by matching the timestamp of the image with a timestamp of a water-level
recording. The water level that was the closest in time to the image timestamp was chosen, if the
measurement was made within a 30-minute time range. If there was no such available water-level
measurement, the camera image was discarded. This labeling process between a camera c and a gauge g
is summarised in Figure 1.

Finally, we performed a visual inspection of the remaining cameras. The idea of this visual
inspection process was to remove the bad camera-gauge pairings that were the most obvious. Indeed,
several factors such as the river bathymetry, the presence of a lock or a tributary river between the gauge
and the camera could have a strong influence on the correlation between the river camera, and the river
level measured by its associated gauge station.While lags and other differences between the situation at
the gauge and at the camera are unavoidable with our methodology for creating the dataset, we wanted
to remove the cameras for which bad pairingwas visually obvious in order to avoid training our network
on extremely noisy data. The visual inspection process is depicted in Figure 2. For each camera paired
with a gauge, three images were selected: the first image had to have been labeled with one of the lowest
water levels from the gauge (< 5th percentile of all of the water-level heights used to label the camera
images). The second image had to have been labeled with a water level that is average for the gauge
(within the 45–55th percentile interval of all the gauge measurements). The third image had to have
been labeled with one of the highest water levels of the gauge (> 95th percentile). The three images
were then visually observed side by side to ensure that the river water level visualized in the first image
was the smallest, and that the river water level visualized in the third image was the highest. If the
camera did not pass this test it meant that the gauge association obviously failed so the camera was
discarded from the dataset. Also note that depending on its location, the same gauge can be associated
with several river cameras.

2 https://www.bbc.co.uk/news/uk-scotland-57578762 (last accessed 27 January 2022).
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The goal of the visual inspection was to limit the number of bad associations, and thus the noise, in our
training set by using an approach that required a reasonable amount of time. Some uncertainties in the
quantitative values of the remaining associations still remain. Indeed, as they are not co-located, water-
level values at the gaugemay not perfectlymatch the situation at the camera location (due to differences in
river bathymetry and local topography, arrival time of a flood wave, etc.). However, gauge data are the
only suitable data that are routinely available without making additional measurements in the field.
Besides, for the experiments presented in Section 3, these uncertainties are minimized on our test cameras
as the quality of the gauge association was inspected during a former study (Vetra-Carvalho et al., 2020).
We also compare the quality of our results with all the gauges within a 50 km radius of the test camera
(Sections 3.1.2 and 3.2.2). This gives us some understanding of the uncertainty introduced when cameras
are not co-located with the river gauge.

In this paper, the labeling process of the data xc,ucð Þ from a camera c generates triplets xc,uc,wcð Þ
where xc is a camera image, uc its timestamp, and wc its water-level label. We suppose that there are Nc

triplets, with Nc ≤Mc, sorted according to their timestamp. We refer to the ith triplet as
xc ið Þ,uc ið Þ,wc ið Þð Þ, i∈ 1,2,…,Nc½ �.

2.1.4. Size of the dataset
Of the initial 163 cameras, 95 remained after the selection process and were associated with 84 gauges.
The number of images per camera is between 583 and 3939 with a median number of 3781 images per
camera. The associated gauges are located within a radius of 7 m to 42.1 km, with 50% of these gauges
within a radius of 1 km to the camera. A total of 327,215 images of these cameras are labeled with river
water levels. Note that this large number of images comes from a limited number of 95 cameras, so there
are about 100 different fields of view in the dataset (five cameras in the dataset were moved, so there are

Figure 1. Example for the association process. A camera has produced images I1 to I3 with their
timestamps represented by dashed lines projected on the time axis. The acceptable 30 minute time-ranges
around the camera timestamps are represented in red. The reference gauge station has produced six
water-level measurements w1 to w6, with their timestamps represented by dashed lines projected on the
time axis. The associations are represented in blue. Image I1 is associated with gauge levelw1 as they are
produced at the same timestamp. Image I2 has no gaugemeasurement produced at its timestamp, but both
w3 and w4 are produced within the 30-minute time range. We choose to associate I2 with w4 as it is the
closest in time. Image I3 has no gauge measurement within the 30-minute time range, so the image will be
discarded.
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more than 95 fields of view). The locations of the selected cameras and their associated gauges are shown
in Figure 3.

2.2. Calibrated flood severity indexes

Section 2.1 discussed the creation of a dataset of images labeled with water levels. The water levels labels
are provided in metric units relative to either sea level (mAOD, Above Ordnance Datum) or a stage datum
(mASD, Above Stage Datum) chosen according to the local configuration of their gauge station. Without
additional topographic information on the site locations, these water levels are thus not calibrated and do
not allow observation of river water levels from different cameras in a common reference system.
However, a common reference system is necessary for training a model independent of site locations
and camera fields of view.

This section outlines the two approaches that were considered in this work in order to calibrate the river
water-level measurements obtained from the gauges to allow the observation of the river water level from
different cameras in a common reference system.

2.2.1. Standardized river water level
The first approach that was consideredwas to transform the river water levelswg ið Þ into standardized river
water levels zg ið Þ (z-scores) for each gauge g independently, subtracting the average water level (for that

a) Exebridge camera associated with EA gauge 45122
Date 09:00, 07/06/2020 16:00, 18/08/2020 17:00, 16/02/2020

Gauge level Low (0.07m) Average (0.16m) High (1.39m)

Image

Association Good association

b) Kintore camera associated with EA gauge L0001
Date 09:00, 10/04/2020 08:00, 09/09/2020 13:00, 10/02/2020

Gauge level Low (-1.75m) Average (0.49m) High (2.52m)

Image

Association Bad association

Figure 2. Representation of the camera visual inspection process, as explained in Section 2.1. The first
camera in Exebridge presented in (a), associated with the EA gauge 45,122 suggests a good association
as the image associated with the lowest river water level shows the lowest water level among the three
images, and the image associated with the highest river water level shows the highest water level among
the three images. The camera in Kintore presented in (b), associated with the EA gauge L0001 suggests a
bad association as the image associated with the average water level shows the lowest water level among
the three images.
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gauge) from the water level, and then dividing the residual by the standard deviation (for that gauge). This
is summarised by the equation

zg ið Þ¼ wg ið Þ�wgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Lg

PLg
j¼1 wg jð Þ�wg

� �2q , (1)

where wg ¼ 1
Lg

PLg
k¼1wg kð Þ.

With this approach, the gauge river water levels of the cameras are in the same reference system.
Indeed, the river water levels of each gauge share a common mean 0 and variance 1. Also note that the
reference (sea level or stage datum) has no impact on the definition of this index. This index zg ið Þ is thus a
continuous metric for the monitoring of river water levels. The higher the index is, the higher the water
level is.

These indexes are computed for each gauge, and then used to label the camera images following the
association and labeling process explained in Section 2.1. In this case, this process generates triplets
xc,uc,zcð Þ. We refer to the ith triplet as xc ið Þ,uc ið Þ,zc ið Þð Þ, i∈ 1,2,…,Nc½ �.

2.2.2. Flood classification index
The second approach that was considered was to transform the river water levels produced by a gauge g
with a binary True/False index bg ið Þ, where bg ið Þ represents the flood situation (True if flooded, False
otherwise), such that

bg ið Þ¼ True, ifwg ið Þ> hg
False, otherwise

�
, (2)

where hg is a threshold specific to the gauge g producing the river water-level measurements.

Figure 3. Locations of the selected cameras and their associated gauges.
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According to the EA documentation (EA, 2021), the gauge metadata includes a Typical High water-
level threshold set to the 95th percentile of all the water levels measured at that gauge since its installation.
This threshold was chosen as the flood threshold hg in this work as it was available for most of our gauges,
and as percentile thresholds are regularly used to evaluate peak discharge (Matthews et al., 2022). When
this threshold was not available as metadata (e.g., gauges in the Republic of Ireland), if a camera was
associated with this gauge, it was removed for this specific experiment.

Similarly to the standardized river water level, these indexes are computed for each gauge, and used
to label the camera images following the association and labeling process explained in Section 2.1. In this
case, this process generates triplets xc,uc,bcð Þ. We refer to the ith triplet as xc ið Þ,uc ið Þ,bc ið Þð Þ,
i∈ 1,2,…,Nc½ �.

2.3. WaterNet architectures and training

In this work, we rely on a ResNet-50 convolutional neural network. Convolutional Neural Networks are a
specific type of neural network.

A neural network is divided into layers of neurons. A neuron computes a linear combination of the
output of the neurons of the previous layer (except the first layer which uses the input data). The
coefficients used for this linear combination are called weights. In typically supervised learning frame-
works where labeled data is available, these weights are found during an optimization procedure that tries
to minimize the difference between the output of the network and the true labels of the data according to a
given loss function.

As we noted in Vandaele et al. (2021), “A convolutional neural network contains a specific type of
layers with specific types of neurons, designed to take into account the spatial relationships between
values of a two-dimensional structure, such as an image. The neurons of a convolutional layer can be seen
as filters (matrices) of size F�F�Ci, where Ci is the number of channels of the input (e.g., 3 for a RGB
image) at layer i. The input is divided into square sub-regions (tiles) of size F�F�Ci that can possibly
overlap. Each neuron/filter of the convolutional layer is applied on each of the tiles of the image by
computing the sum of the Hadamard product (element-wise matrix multiplication). If organized spatially,
the output of a convolutional layer can be seen as another image which itself can be processed by another
convolutional layer: if a convolutional layer is composed of N filters, then the output image of this
convolutional layer has N channels.”

CNN architectures vary in a number of layers and choice of activation function, but also in terms of
additional layers such as nonconvolutional layers at the end of the network. ResNet-50 is the architecture
of the convolutional neural network (He et al., 2016). This architecture has reached state-of-the-art
performance in image classification tasks (He et al., 2016). Besides, its implementation is easily available
in various deep-learning libraries, such as PyTorch (Paszke et al., 2019).

Similarly to our previous work (Vandaele et al., 2021), we modified the last layer of this architecture in
order to match our needs: indeed, the last layer of this architecture is a layer of 1,000 neurons to provide
1,000 values for the ImageNet classification task (Deng et al., 2009). Thus, as we consider the estimation
of two different river water-level indexes, we defined two corresponding network architectures for which
the only difference with ResNet-50 is the last layer:

• For the Standardized river water-level index (see Section 2.2.1), the last layer of ResNet-50 was
changed to a one-neuron layer. We will refer to this network as Regression-WaterNet.

• For the Flood classification index (see Section 2.2.2), the last layer of ResNet-50 was changed to a
two-neuron layer with the last layer being a SoftMax layer. We will refer to this network as
Classification-WaterNet.

In order to train the networks, we chose to rely on a transfer learning approach which has already proven
useful to improve the performance ofwater segmentation networks (Vandaele et al., 2021): before training
the WaterNet networks over the labeled camera images, all the weights used in the convolution layers,
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except the last layer, were first set to the values obtained by training the network over the standard large
dataset for image classification, ImageNet (Deng et al., 2009). They were then fine-tuned over the labeled
camera image dataset. With this transfer methodology, the initial setting of the convolutional layers
weights is already efficient at processing image inputs as it was trained over a large multipurpose dataset
of RGB images. Thus, it facilitates the training of the network for a new image-processing task.

For both Regression-WaterNet and Classification-WaterNet, a grid search was performed to find the
optimal learning parameters for training the networks (learning rate, percentage of network layers
frozen to the values of the network trained over ImageNet Deng et al., 2009, update factor, patience).
The values tested are shown in Table 1. The networks were fine-tuned on the training set over 30 epochs.
An L1 loss was used for Regression-WaterNet and a binary cross-entropy loss was used for
Classification-WaterNet (Zhang et al., 2021). At each epoch, the network was evaluated on a validation
set and the learning rate updated with an update factor if it was not improving for a number of epochs
(patience). The weights of theWaterNet network trained with the learning parameters obtaining the best
results on the validation set during the grid search were then used to evaluate the performance of the
networks on the test set.

3. Experiments

This section describes the results of the experiments that were performed to assess the performance of the
WaterNet networks. Two experiments were performed: the first, detailed in Section 3.1, was performed to
assess the performance of Regression-WaterNet to estimate the standardized river water-level index. The
second experiment, detailed in Section 3.2, assesses the performance of Classification-WaterNet for the
estimation of the flood classification index.

3.1. Standardized river water-level index results using Regression-WaterNet

3.1.1. Experimental design
3.1.1.1. Dataset split As presented in Section 2.1, the dataset at our disposal consisted of 95 cameras.
This dataset was divided into three parts:

• The test set consisted of the 15,107 images of four cameras that were chosen as these cameras have
been previously studied by a human observer and their correspondence to nearby gauge-based
water-level observations has been assessed (Vetra-Carvalho et al., 2020): Diglis Lock (abbreviated
to Diglis), Evesham, Strensham Lock (abbreviated to Strensham) and Tewkesbury Marina (abbre-
viated to Tewkesbury). As shown in Figure 4, these four cameras offer four different site config-
urations. Their associated gauges were respectively located at 58 m, 1.08 km, 37 m, and 53 m from
the cameras.

• The validation set consisted of 18,894 images from five other cameras that were chosen randomly.
We chose to rely on a relatively small sized validation set to keep a large number of different camera
fields of view in the training set.

• The training set consisted of 293,214 images from the 86 remaining cameras and their images.

Table 1. Learning parameters tested during the grid search.

Parameter Values tested

Learning rate 10�4, 10�5, 10�6

% layers frozen 0, 0.25, 0.5, 0.75, 0.9

Update factor 0.1, 0.5, 0.9

Patience 1, 5, 10, 30
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Note that the gauges associated with the cameras of the test set were not associated with cameras of the
training and validation set. For this experiment, the images xc are labeled with the standardized river
water-level indexes zc detailed in Section 2.2.1.

3.1.1.2. Evaluation protocol In order to evaluate the efficiency of Regression-WaterNet, we report an
error score that consists of the average of the absolute differences (also known as MAE, mean absolute
error) between the standardized water-level indexes zc ið Þ of the image and the estimation of this
standardized water-level index bzc ið Þ over each of the Nc labeled images from the camera c using
Regression-WaterNet such as

MAEc ¼ 1
Nc

XNc

i¼1

∣zc ið Þ�bzc ið Þ∣ (3)

We propose a novel automated method that outputs calibrated river water-level indexes from river
camera images. It is thus not possible to compare our approach to other automated algorithms. However, it
is possible to evaluate howwell our methodology is working compared to using distant gauges in order to
estimate the standardized river water level at a given ungauged location. This evaluation is performed
using the following protocol:

1. Each test camera is associated with:
• A reference gauge is the gauge used to label the images of the camerawithwater levels, following
the protocol described in Section 2.1. In the scope of our experiments, these gauges thus provide
the ground-truthwater levels at the test camera locations. Note that the quality of the association
between the four test cameras and their corresponding reference gauge was assessed in a former
study (Vetra-Carvalho et al., 2020).

Figure 4. Sample images from the four cameras of the test set.
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• The other gauges available within a 50 km radius from its location. In the scope of our
experiments, these are the distant gauges: they could be used to estimate the standardized river
water-level index at the camera location if a reference gauge was not available.

2. We evaluate the accuracy of using a distant gauge to estimate the standardized river water level at
the camera location by comparing the standardized water levels of the distant gauge with the
standardized water levels of the reference gauge.
• The standardized water levels of the distant and reference gauge are first matched according to
their timestamp following a similar procedure than the image labeling procedure described in
Section 2.1.

• The Mean Absolute Error (see Eq. 3) is computed between the associated standardized water-
level indexes.

3. The Mean Absolute Error obtained by each distant gauge can then be compared with the Mean
Absolute Error obtained by our camera-based methodology.

3.1.1.3. Processing the network outputs After its training following the protocol described in
Section 2.3, Regression-WaterNet is able to estimate river water-level indexes from camera images. As
the test cameras produce one image every hour (during daylight), the network generates a time series of
estimations that can potentially be post-processed. Two approaches were considered to post-process the
time series of estimations.

• RWN, where the time-series estimations of the Regression-WaterNet network bzc ið Þ for each image
xc ið Þ are not post-processed and are thus considered independently. This is representative of cases
where the goal would be to obtain independent measurements from single images.

• Filtered-RWN, where the time series estimations of the Regression-WaterNet network bzc ið Þ for
each image xc ið Þ are replaced by the median bzFc ið Þ of the estimations obtained from Regression-
WaterNet on all the images available within a 10-hour time window such that

bzFc ið Þ¼median bzc jð Þ, juc jð Þ�uc ið Þj≤ 10hoursf gð Þ, (4)

where, as explained in Section 2.1, uc ið Þ corresponds to the timestamp of image xc ið Þ. As the images are
captured between 8 am and 6 pm, we chose this 10-hour time-window threshold so that the median would
apply to all the images captured in the daylight hours of the same day. Filtered-RWN can thus be seen as a
post-processing step used to regularize the output of RWN.

3.1.2. Results and discussion
The comparison between the MAE obtained by the distant gauges and our methodology is given in
Figure 5. Overall, this figure shows that RWN and Filtered-RWN each allow the monitoring of the river
water level from the test cameras as accurately as a gauge within a 50 km radius of the river camera.
Indeed, at Strensham and Tewkesbury, the MAE of RWN is similar to the lowest MAE among the gauges
that were not associated with the cameras. At Diglis and Evesham, theMAE of RWN and lies in the range
between the lowest and highest MAE of the gauges not associated with the camera. The filtering process
of Filtered-RWN decreases the error at each location. While there is always a gauge within 50 km that is
able to obtain results at least as accurate as RWN, the closest gauge (after the reference gauge) does not
always provide the best performance (never, in this case).

In practice, given an ungauged location in need of river water-level monitoring, it is thus easier to rely
on our camera-based methodology than relying on the estimations made by a distant gauge. Indeed, using
a distant gauge providing accuratemeasurements for the ungauged locationwould require validation data,
which is impossible by definition. In consequence, applying RWN or Filtered-RWN on camera images is
the most suitable choice.
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Figure 6 shows the time series of the standardized index through the year estimated by RWN and
Filtered-RWN, compared with gauge data from the reference gauges of the test cameras. RWN brings a
significant variability in the observations, but overall the networks are able to successfully observe the
flood events (that occur in January, February,March, andDecember) aswell as the lower river level period
between April and August. As expected, the median filter used with Filtered-RWN reduces the variability
of the image-derived observations, but also tends to underestimate the height of river water levels,
especially during high flow and flood events. Filtered-RWN estimates an oscillation of the standardized
water level at low water levels at Diglis fromMarch to July that is not explained by the gauge data nor by
our visual inspection, and thus corresponds to estimation errors of the network.

After visual inspection, it was observed that the gauge measurements used to label camera images do
not always perfectly match the situation at the camera location, so RWN sometimes gives a better
representation of the situation than the standardized river water levels of the gauges. For example, the
gauge line in the Diglis plot in Figure 6 suggests that the February and December floods in Diglis have
reached the same level, while Filtered-RWNsuggests that theDecember eventwas smaller than theMarch
event. As suggested by Figure 7, the largest flood extent observed in December at Diglis (24 December)
does not reach the height of the largest flood extent observed in February (27 February). Another visible
example is the significant suddenwater-level drop at the Strensham gauge at the end of April, which is not
visible in our image data. This is likely due to a gauge anomaly.

It can thus be concluded that the application ofRWNandFiltered-RWNon river camera images allows us
to obtain results with similar accuracy to using water-level information from a gauge within a 50 km radius.

3.2. Flood classification index results using Classification-WaterNet

3.2.1. Experimental design
The experimental design used for this experiment is similar to the one used in the first experiment,
described in Section 3.1.1. The same cameras were used for the training, validation, and test splits. The

Figure 5. MAE scores obtained by applying RWN (dashed line) and Filtered-RWN (dotted line) on the
camera images of Diglis, Evesham, Strensham, and Tewkesbury. The bars represent the MAE scores
obtainedwith the standardized river water-level indexes produced by the gauges within a 50 km radius, as
described in Section 3.1.1.
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images xc were labeled with the binary flood indexes bc detailed in Section 2.2.2. As explained in
Section 2.2.2, the water-level threshold that is considered for the separation between flooded and
unflooded situations is defined as the 95th percentile of the water-level heights measured at the gauge
since it was installed. This threshold value is obtained as metadata (the “typical high range” variable)
alongside the water-level measurements from most EA gauges. Cameras for which we could not retrieve
this threshold value were removed for this experiment (13 cameras belonging to the training set).

Given the definition of the typical high-range threshold, there is a small number of images considered
as flooded, which makes the training set imbalanced. The training of Classification-WaterNet was
performed using a data augmentation technique that consisted in increasing the number of flooded
images by using the same flooded images several times (randomly flipped on their vertical axis) so that
50% of the images used in training were flooded situations.

Figure 6. Monitoring of the river water levels during 2020 at Diglis, Evesham, Strensham, and
Tewkesbury by applying RWNand Filtered-RWN to the camera images, compared to the river water-level
data produced by the gauge associated with the camera.

Figure 7. Camera images observing the flood event at Diglis, on 27 February 2020 (left), and on
24 December 2020 (right).
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Similarly to the protocol of the first experiment described in Section 3.1.1, we post-processed the time-
series estimations of Classification-WaterNet through two approaches:

• CWN, where the time-series estimations of the Classification-WaterNet network bbc ið Þ for each
image xc ið Þ are not post-processed and thus considered independently. This is representative of cases
where the goal would be to obtain independent measurements from single pictures.

• Filtered-CWN outputs the estimated flood classification index bbFc ið Þ. In order to create this
estimation, the output bbc ið Þ of CWN is post-processed for each hour by replacing the independent
estimation by the most represented class of estimations (flooded/not flooded) obtained within a
10 hour timewindow. Filtered-CWN can thus be seen as a post-processing step used to regularize the
output of CWN.

The following Balanced Accuracy criterion was used to evaluate the performance of the network:

Balanced Accuracy¼ 0:5� TP

TPþFP
þ0:5� TN

TNþFN
, (5)

where

TP¼ # ijbc ið Þ¼True,bbc ið Þ¼True
n o

,

FP¼ # ijbc ið Þ¼ False,bbc ið Þ¼True
n o

,

TN¼ # ijbc ið Þ¼ False,bbc ið Þ¼False
n o

,

FN¼ # ijbc ið Þ¼ False,bbc ið Þ¼True
n o

,

(6)

where TP corresponds to the number (#) of correctly classified flooded images, (true positives), FP to the
number of incorrectly classified unflooded images (false positives), TN to the number of correctly
classified unflooded images (true negatives), and FN to the number of incorrectly classified flooded
images (false negatives).

The Balanced Accuracy criterion gives a proportionate representation of the performance of
Classification-WaterNet regarding the classification of flooded and unflooded images on the test set.
Unlike the training set, the test set was not artificially augmented to contain a proportionate number of
flooded and unflooded images.

Similarly to the first experiment (see Section 3.1.1), the performance of the networkwas also compared
with an approach based on the flood classification indexes produced by nearby gauges (within a 50 km
radius), located on the same river. Given a reference gauge g1 and another gauge g2,

TP¼ # i, jð Þjbg1 ið Þ¼True,bbg2 jð Þ¼True, tg1 ¼ tg2

n o
,

FP¼ # i, jð Þjbg1 ið Þ¼ False,bbg2 jð Þ¼True, tg1 ¼ tg2

n o
,

TN¼ # i, jð Þjbg1 ið Þ¼ False,bbg2 jð Þ¼ False, tg1 ¼ tg2

n o
,

FN¼ # i, jð Þjbg1 ið Þ¼True,bbg2 jð Þ¼ False, tg1 ¼ tg2

n o
,

(7)

where in this case g1 is the reference gauge attached to the camera. The Balanced Accuracy between the
two gauges can then be computed with Eq. (5).

3.2.2. Results and discussion
Figure 8 compares the Balanced Accuracy scores obtained by CWN and Filtered-CWN with the scores
obtained by the nearby gauges producing the flood classification indexes. CWN obtains performance

Environmental Data Science e11-15

https://doi.org/10.1017/eds.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.6


similar to the gauges with the highest Balanced Accuracy score at Strensham, as does Filtered-CWN at
Evesham and Tewkesbury. At Diglis, CWN and Filtered-CWN scores are average: they are significantly
lower than the highest gauge-based Balanced Accuracy scores, but also significantly higher than the
lowest ones.

By looking more closely at the results with the contingency table presented in Table 2, we can make
two additional observations.

The first is that Filtered-CWN improves the Balanced Accuracy scores at each of the four locations
compared to CWN. Filtered-CWN has a positive impact on the correction of both false positives and false
negatives, except at Strensham where it slightly increased the number of false positives.

The second is that the networks have a slight tendency to classify unflooded images as flooded at
Evesham and Tewkesbury, and flooded images as not flooded at Diglis. However, from our visual
analysis of the misclassified examples (see Figure 9 for some examples), many of the images that the
network falsely estimated as flooded in Evesham and Tewkesbury are images where the water level is
high and close to a flood situation, or seems to be actually flooded. The images wrongly estimated as not
flooded at Diglis mostly represent situations where the river is still on the bank. From this analysis, it
thus seems that the network is prone to confusing borderline events where the river water level is high
but not necessarily high enough to produce a flood event. This can be explained by the fact that the high
flow threshold used in this work to separate flooded images from unflooded ones is arbitrary and does
not technically separate flooded images (when the river gets out-of-bank) from unflooded ones.
Besides, whether the threshold value is statistically representative of the local water-level distribution
depends on the number and quality of river water-level records available at the corresponding gauge
station. The use of this high flow threshold thus brings uncertainties at borderline flood events (small
flood situations or high water levels when the river is not overflowing). However, this visual analysis
also showed that our network was able to rightly distinguish obvious large flood events from situations
with typical in-bank river water levels.

Figure 8. Balanced Accuracy scores obtained by applying CWN (dashed line) and Filtered-CWN (dotted
line) on the camera images of Diglis, Evesham, Strensham, and Tewkesbury. The bars represent the
Balanced Accuracy scores obtained by the gauges within a 50 km radius producing a flood classification
index, as described in Section 3.2.1.
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4. Conclusions

River gauges provide frequent river water-level measurements (e.g., every 15 min in the UK (EA, 2021)),
but they are sparsely located and their number is declining globally (Mishra and Coulibaly, 2009; Global
Runoff Data Center, 2016). Satellite images can provide water-level measurements over a wide area when
the river is out-of-bank, but are infrequent in time as they rely on satellite overpasses. We investigate the
potential of a new source of river water-level data offering a new trade-off between spatial and temporal
coverage: river cameras. River cameras are CCTVcameras installed to observe a river. They are cheap and
relatively easy to install when compared to gauges, and they produce a live stream of images that could be
used for river-level monitoring. However, the CCTVimages need to be transformed into quantitative river
water-level data by an automated algorithm for this approach to become realistic. This is why this work

Table 2. Contingency table for the classification of flooded images using CWN.

TP FP TN FN Balanced accuracy

Diglis 245 (þ6) 15 (�8) 3239 (þ8) 161 (�6) 0.8 (þ0.01)

Evesham 118 (þ8) 269 (�61) 3329 (þ61) 16 (�8) 0.9 (þ0.06)

Strensham 353 (þ25) 43 (þ9) 3383 (�9) 41 (�25) 0.94 (þ0.03)

Tewkesbury 463 (þ31) 524 (�240) 2873 (þ240) 33 (�31) 0.89 (þ0.07)

Note. See Section 3.2.1 for the description of TP, FP, TN, and FN. The changes brought with Filtered-CWN are shown between the parentheses.

Figure 9. Examples of images misclassified by Classification-WaterNet.
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focused on the development of deep learning-based methods able to estimate calibrated river water levels
based on camera images.

With the first part of this work, we have created a dataset of river camera images where each camera
was associated with its closest river gauge measuring river water levels. This dataset consists of 32,715
images coming from 95 different cameras across theUK and Ireland labeledwith a riverwater-level value.

In the second part of this work, we used this dataset to train two deep convolutional neural networks.
The first one, Regression-WaterNet, estimates standardized river water-level indexes from the images.
The second one, Classification-WaterNet, detects flood situations from the images. We were able to show
that both networks were a reliable and convenient solution compared to using distant river gauges in order
to perform the same river water-level monitoring tasks. Indeed, this solution provides river water-level
index estimations as accurate as nearby gauges can provide.We also noticed that the performance of these
methods might be better than the numerical evaluation of scores might indicate. Indeed, for both
networks, we noticed after a visual inspection that some estimations considered by our numerical
evaluation protocol were in fact more representative than the gauge measurements attached to the image.

The promising results of this study demonstrated the potential of deep learning methods on river
cameras in order to monitor river water levels, and more specifically floods. This represents a flexible,
cost-effective, and accurate alternative to more conventional means to monitor water levels and floods in
real-time and has the potential to help in the prevention of further economic, social, and personal losses.
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