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Abstract 

The energy performance gap is a significant obstacle to the realization of ambitions to 

mitigate the environmental impact of buildings. Although extensive research has been 

conducted on the causes, minimization, or the quantifying of the energy performance gap in 

buildings, comparatively minimal work has been done on raising decision-makers awareness 

of a potential gap. 

This paper positions project risks at the core of the gap and proposes an innovative 

performance gap prediction model focusing on heating and electricity demand in buildings by 

utilizing the machine learning classification. In this research, the performance gap and project 

risks of 77 buildings was collected via a web-based survey. The predictive performance of 

the four machine learning algorithms, namely i) Naive Bayes, ii) k-Nearest Neighbors, iii) 

Support Vector Machine, and iv) Random Forest, were compared to determine the best 

model. 

The results obtained revealed that Naive Bayes was better able to predict the direction of the 

heating performance gap (72.50%), the negative heating performance gap (71.81%), the 

positive electricity performance gap (77.08%), and the negative electricity performance gap 

(83.85%). Furthermore, k-Nearest Neighbors and Support Vector Machine were more 

accurate to predict the direction of the electricity performance gap (79.00%), and the positive 

heating performance gap (76.04%). 

 

Highlights 

• A performance gap prediction model was proposed based on buildings’ risk data. 

• The models use machine learning to focus on the electricity and heating gaps. 
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• The performance of four machine learning algorithms was compared. 

• The suggested method can predict the direction of the gap (positive and negative). 

• The suggested method can predict the gap in three levels (low, medium, high). 
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Nomenclature  
Variables and parameters 
FP false positives 
N negative instances 
P positive instances 
TN true negatives 
TP true positives 
Abbreviations  
AUC the area under the ROC curve 
AutoML automated machine learning 
BEG binary electricity gap 
BHG binary heating gap 
BREEAM Building Research Establishment Environmental Assessment Method 
Chi chi-squared attribute evaluator 
ECC exhaustive correction code 
EPG energy performance gap  
KNN k-nearest neighbor 
ML machine learning 
NB naive bayes 
NEG negative electricity gap 
NHG negative heating gap 
OVA one-vs-all 
OVO one-vs-one  
PEG positive electricity gap 
PHG positive heating gap 
RCC random correction code  
RF random forest 
ROC receiver operating characteristic  
SMOTE synthetic minority oversampling technique 
SVM support vector machines 
USGBC US Green Building Council 
Wrapper wrapper attribute evaluator 



1. Introduction 

The construction sector is the largest consumer of energy in the world. Buildings account for 

over 40% of global energy consumption and are a similarly significant origin of carbon 

emissions [1]. While various standards and rating systems exist that aim to promote resource 

efficiency and the construction of more environmentally friendly buildings, the literature 

suggests that the performance of buildings generally fails to achieve the required standards or 

meet design predictions [2-4]. This phenomenon, which is called the energy performance gap 

(EPG), denotes the difference between the predicted performance (or anticipated, calculated, 

designed, etc.) in the design phase, and that measured (or real, actual, achieved, etc.) in the 

operational phase [5]. The existence of EPG in buildings represents the gulf between reality 

and government policies designed to reduce energy consumption and greenhouse gas 

emissions [6], is a cause of considerable increases in energy costs and environmental impact 

[7], and demonstrates failures in the design of the system, as well as improper usage of 

capital investment [8]. The energy performance gap also endangers the chance that 

policymakers will succeed with future strategies [9].  

A growing awareness of the significance of EPG has led to a considerable number of studies. 

In one such work, Janser et al. [10] noticed that studies on this issue are generally concerned 

with one or more topics: defining, explaining, quantifying, and controlling energy 

performance gaps. In support of the categorization, a review of relevant published literature 

indicated that it is critical to look at different stages of a building’s life cycle to explain the 

reasons for the gap. The absence of building adaptability [11], design complexity [12], poor 

workmanship [13], and miscommunication about building performance targets between 

project stakeholders [14] are just some of the reasons cited. De Wilde [15] explains that the 

specific causes for a gap differ from one building to another, and that it is usually the case 

that a gap is caused by a combination of several problems. In addition to this, other scholars 

have stressed that energy performance gaps resulted from risk factors that occur during 

different stages of the building life cycle [16, 4, 17]. Doylend [4], for example, assigned the 

risk factors to four general classes: design and engineering, management and process, 

external constraints, and operation and maintenance, whereas Topouzi et al. [17] concluded 

that three types of risks appear in different retrofit techniques and work plan stages: 

assessment, sequence, and communication. Alam et al. [16] classified the risk factors of the 

construction and commissioning stages into six groups: material and equipment, knowledge 



and working skills, construction management process, procurement process, design input, and 

client-related problems. 

Researchers have also demonstrated that the magnitude of the EPG could be very different. 

Even though the performance gap is often connected with increased energy consumption it 

can, in fact, also mean reduced consumption [18]. However, in the majority of cases, the 

measured energy use is higher than predictions [19]. A study by Galvin [20] of the domestic 

heating of three retrofitted apartment buildings demonstrates how profound this variation can 

be. Galvin found that the energy performance gap ranged from 2% for the first building, 

56.8% for the second, and 272.9% for the third. That said, there is no doubt that EPG is of 

great concern. The Innovative UK and the Zero Carbon Hub study claims that the 

performance gap is typically 2.6 times worse than the design predictions [21], while Calì et 

al. [22] concluded that values for the gap can reach as high as 287%. 

In an attempt to reduce the EPG in buildings, researchers have conducted post-occupancy 

[23], and pre-occupancy evaluations [24], as well as using monitoring data to calibrate 

simulation models [25]. Hong et al. [26] have suggested using the operational ratings from 

the assessment method that investigates the actual energy performances of similar buildings 

with data mining or a machine learning (ML) approach. This latter approach is particularly 

supported by Hong et al. [27], who suggest that technological trends enable the collection and 

storage of increased amounts of data more cheaply, while the usage of powerful and low-cost 

computational resources, and the use of advanced ML algorithms, increase the advancement 

and application of ML in a diverse and extensive range of fields. ML, as a branch of artificial 

intelligence, uses example data or past experiences to optimize performance criterion [28], 

and aims to predict future events and scenarios unfamiliar to the computer [29]. ML 

algorithms currently represent the most contemporary and best effective way of prediction 

[30]. An extensive summary of applications of ML demonstrates how it is used in many 

applications, such as generating and evaluating design models, predicting construction costs, 

detecting construction objects within the image content, and detecting construction defects 

[31]. ML methods often appear in energy performance prediction studies [32-35]. 

This research builds upon work such as that of Nižetić & Papadopoulos [36], who proposed a 

novel but conceptual strategy to predict EPG. In this work, the authors introduced energy 

efficiency building dissipation rate as an essential factor for determining the magnitude of the 

performance gap. This study positions risk as a core concept of the energy performance gap 

and proposes an innovative performance gap prediction model for buildings by utilizing the 



ML classification technique. No previous study has been located which uses ML methods to 

predict the energy performance gap in buildings, as so this research is seen as a valuable 

contribution to the existing body of knowledge by providing a new perspective for the 

prediction of future scenarios of energy performance gaps in buildings through the utilization 

of ML applications which benefit from past experience. This study considers buildings where 

the achieved energy savings are both higher and lower than the designed energy savings. ML 

has the ability to identify the patterns in the data that humans are often unable to notice, and 

thus better allow project stakeholders to appreciate the risk of an energy performance gap in 

terms of its nature and degree. This will, in turn, enable decision-makers to revise the 

decisions made about their projects and suggest new strategies for better controlling the gap.   

2. Research background 

2.1. Previous studies 

Machine learning is much talked about nowadays, and one of this technology’s almost 

limitless applications is as an essential energy prediction technique [37]. This is due to its 

superb ability to capture non-linear and complex relationships [38]. The intense activity in the 

sector can be seen in the number of papers published in the years 2011 and 2019 on the 

application of the use of ML in buildings: a four-fold increase [31]. In this section, some of 

these papers will be reviewed. 

According to Mocanu et al. [39], there are multiple influencing factors involved in the 

prediction of energy use in a building. These include: the performance and settings of heating 

and cooling systems, weather conditions, and the number of people present. Mocanu et al. 

utilized the Conditional Restricted Boltzmann Machine method to forecast building 

electricity consumption by using a dataset that contained seven weeks of hourly resolution 

electricity consumption obtained from an office building. Paudel et al. [33] introduced two 

prediction modeling approaches for heating consumption based on support vector machines. 

Amasyali & El-Gohary [40] focused on forecasting the cooling energy consumption of a 

building by comparing ANN and other ML models. Mohammadiziazi & Bilec [41] developed 

four ML models to address the challenges of inconsistencies linked to integrating climate 

change models into energy modeling. Revati et al. [42] studied a smart commercial building 

to predict the electricity consumption profile via Gaussian Process Regression. Mounter et al. 

[37] explained that errors increased significantly beyond short-period energy forecasts, and 

that most reported energy forecasts relying on machine learning and statistical methods are 



within one week. Therefore, the authors presented a detailed study of data processing and 

machine learning methods to enhance the accuracy of long-term energy forecasts of their 

building. Anand et al. [43] used time-series data of occupant density and energy consumption 

to develop building and space-wise energy prediction models with different ML algorithms. 

Ngo et al. [44] suggested an ensemble approach that uses artificial neural networks, support 

vector regression, and M5Rules models to forecast energy consumption in non-residential 

buildings.  

Other areas of investigation have included prediction of the electricity [39, 42], heating [33], 

and cooling energy consumption [40]; addressing inconsistencies in integrating climate 

change models into energy modeling [41]; or improving the accuracy of the building's long-

term energy forecasts [37] using many different algorithms. 

2.2. Classification in machine learning 

Classification is one of the most common applications for data mining [45]. The method 

works under supervision by being arranged according to the actual outcome for each training 

session. For example, classification learning is sometimes called "supervised learning" [46]. 

Classification aims to enable a system to predict the unknown output class of a formerly 

unseen instance, while also demonstrating a good generalization ability [47]. It involves the 

construction of a classifier, which is a function that attributes a class label to instances 

characterized by a set of attributes [48]. Classification's primary steps are synthesizing a 

model, using a learning algorithm, and applying the model to the labeling of new data [29]. If 

there are only two values that are used as labels to predict future unseen examples, then it is a 

binary classification problem [49], while having more than two classes to assign instances is 

a multi-class classification [50].  

3. Method and material 

The study was conducted as represented in Fig. 1. First, a comprehensive literature review 

was performed to determine the causes of the energy performance gap. Second, semi-

structured interviews were performed with some of the experts working on different energy-

efficient buildings to introduce a conceptual energy performance gap risk framework. Third, 

a web-based survey was designed to collect data about the risk and energy performance gap 

information on buildings. Next, using the gathered data in the EPG dataset, data was 

preprocessed using data cleaning, integration, and transformation. The dataset was then split 



into a training (80%) and a testing set (20%). Using the training set, feature selection was 

applied to reduce the dimension of data and remove unnecessary inputs. An oversampling 

technique named Synthetic Minority Oversampling Technique (SMOTE) was then employed 

to create a balanced training set in the instance of there being a class imbalance problem. The 

models were also trained by hyperparameter tuning to optimize the model's performance. 

Subsequently, the performance of the algorithms was tested on unseen data (test data) based 

on different performance metrics such as accuracy, kappa, precision, recall, F-measure, the 

area under the receiver operating characteristic (ROC) curve (AUC), and statistical tests. 

Each of the steps is explained in more detail as follows:  



 

Fig. 1. A flowchart explaining the research process 

 



The findings of the literature review were considered in the semi-structured interviews with 

experts on the project risks in the design, construction, and operational phases of specific 

buildings. The interviewees, who had an average of 12 years of experience in energy-efficient 

buildings, comprised of three project managers, three mechanical engineers, a site manager, 

an electrical technician, a quality manager, a building commissioning agent, and a CEO 

(Table 1). Six case studies with different certificates, locations, and project types were 

selected to observe the diverse risk paths of different buildings, countries, and company 

conditions.  

Table 1 

Profile of the interviewees 

Case Profession  Job position Country 

Experience (year) 

Construction 
sector 

Energy 
efficient 

buildings 

I 

Architect Project manager 

Turkey 

21 8 
Civil engineer Site manager 39 8 
Mechanical engineer Mechanical engineer 23 8 
Mechanical engineer* Commissioning agent 36 12 

II 
Mechanical engineer Mechanical engineer 5 2.5 
Electrical technician Electrical technician 37 10 
Printing educator Quality manager 8 8 

III-IV Architect & city planner Project manager 11 9 
III-IV Mechanical engineer Mechanical engineer 9 8 

V Architect Project manager Germany 28 21 
VI Architect & civil engineer CEO 34 34 

*Fourth interviewee participated in the interviews as the commissioning agent of Cases I and II. 
 

A two-stage approach, under which the questions were sent to the interviewees beforehand, 

was used in the semi-structured interviews which were conducted between December 2020 

and March 2021. The first stage aimed to listen to the interviewees' explanations of the 

problems that might cause the energy performance gap in the buildings. In addition, the 

interviewees were asked to describe the effects of, and their responses to, the problems. In the 

second stage, the problems were presented to the interviewees through cognitive maps. This 

enabled the relationships between the problems to be revised or verified. Later, the factors 

described on the maps for each building were listed and designed as a questionnaire. A 

pretest was performed with two researchers working on building energy performance, and 

one consultant working on energy-efficient buildings. The respondents were asked to give 

feedback on the questionnaire design, including length, confusing questions, terminology, 



etc. Utilizing the pretesting process, some factors describing similar conditions were defined 

as a broader concept. The factors repeated several times in the questionnaire were 

recategorized. Accordingly, a conceptual framework was suggested, as in Fig. 2. This 

framework helped to design a web-based survey to collect buildings' risk and energy 

performance gap data to develop ML models.  

 
Fig. 2. Conceptual EPG risk framework 

In this framework, the risks related to the EPG were classified into four main groups, namely 

"Problems/limitations", "Unexpected events /changes", "Project management", and 

"Assumptions". According to this framework, "Problems/ limitations" may cause 

"Unexpected events /changes" or vice versa, while project management processes may 

influence the manageability of "Problems/limitations," and "Unexpected events/ changes". 

These factors may subsequently lead to a change in "Assumptions", and this group refers to 

the assumptions made during the design phase. Consequently, a combination of the factors 

identified in this framework may result in an energy performance gap in a building.  

3.1. Web-based survey 

A Web-based survey consisting of forty-two questions was designed using eSurveyPro® to 

collect buildings' risk and energy performance gap data. The survey contained open, closed, 

and mixed question types. The first page of the survey required information on project 

characteristics, whereas the remainder focused on the risk factors that can emerge at different 

times throughout the project. The survey questions related to risk factors were evaluated on a 

5-point Likert scale, from very low to very high, and included a ‘not applicable’ (N/A) 

option. Online survey tools, e-mail, face-to-face meetings, and phone interviews were used to 

deliver the survey to some of the experts who are working on energy-efficient buildings. The 

target group included professionals responsible for project management, energy consultancy, 

and commissioning in energy-efficient building projects, while 1,000 surveys were sent out 



based on cluster sampling. LinkedIn, USGBC, BREEAM, and Passive House Database 

websites were used to collect the contact information of the target group.  

The survey consists of six sections, with the first containing questions, such as project type, 

location, and year of construction, concerning general information about a specific building 

that the respondents worked on. Additionally, respondents were required to provide the 

energy demand given in simulation software and actual consumption for that building 

regarding electricity and heating demand. The second section collected information about the 

problems/limitations encountered during the life cycle stages of the relevant building. While 

respondents were required to evaluate factors about project management in the third section, 

the fourth aimed to understand how the design assumptions regarding the building had 

changed. The fifth section listed unexpected events and changes in the process, while the 

sixth contained questions about the respondents, such as education level, profession, etc. 

Furthermore, a space is left for the respondents to make any further comments at the end of 

the survey.  

3.2. Survey responses 

A total of 72 responses out of 1,000 were received, yielding a response rate of 7.2%. While 

such a low response to the survey might at first seem disappointing, it could be said that the 

surveys that were received may be an accurate representation of the population's attitudes. In 

other words, a low response rate should not be a reason to imagine that the results are 

uninformative [51]. Some possible reasons for the low response rate could be as follows: 

some experts explained that the reasons for nonparticipation in the survey were because of a 

nondisclosure agreement signed with clients, not having the opportunity to obtain in-use 

metered data for buildings, not having access to the data, only having a couple of projects 

with information on operational energy consumption as well as energy modeling, and time 

limitations in obtaining the client's permission to use them.  

3.3. Data preprocessing 

If they are applied before mining, data processing methods can substantially improve the 

quality of the patterns mined and the time needed for the actual mining. The major steps in 

data preprocessing are data cleaning, integration, reduction, and transformation [52]. In this 

study, data cleaning aimed to handle missing values and noisy data by detecting outliers. 

When the surveys are examined, it is seen that nine respondents did not answer one or both 



questions about the magnitude of the energy performance gap in buildings. Although these 

records were removed, the missing values were replaced in the others with the field mode in 

order to not lose any data. In addition, one respondent who participated in the survey twice 

gave the same answers to all questions. These records were removed as duplicate records 

caused an overweighting of the data values in those records [53]. Moreover, five buildings in 

the database showed between 200-410% higher energy consumption than the design 

predictions. When similar values were organized into groups, these cases fell outside the set 

of the groups. They were therefore considered outliers and removed. 

Integrating data from the greatest possible variety of sources is crucial to effective machine 

learning [54]. For this reason, this study integrated empirical research articles into data 

obtained using a web-based survey. Studies by Pegg et al. [55], Korjenic & Bednar [56], and 

Herrando et al. [57] were analyzed by manual topic-based text classification utilizing a rule-

based approach. After defining a list of words representing each group, tags were assigned 

considering their content and frequency. This has produced a database consisting of 77 

projects, as can be seen in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 

Project profile in the dataset 

  Category Number of projects 

Construction period 
18th - 19th century 10 
20th century 29 
21st century 38 

Construction type 

Reinforced concrete 43 
Mixed construction 20 
Masonry construction 10 
Timber frame 4 

Heated floor area 

up to 500 m² 11 
501 - 2,500 m² 33 
2,501 - 6,000 m² 11 
6,001 - 10,000 m² 12 
more than 10,001 m² 10 

Project type 

Educational building 48 
Office building 15 
Multi-family dwelling 4 
Single-family house 8 
Hospital 1 
Cafe-Restaurant 1 

Country 

Germany 39 
Spain 18 
Turkey 8 
UK 6 
USA 2 
Austria, Belgium, Iran, Ukraine 4 

Total number of projects in the dataset 77 
 

The data mainly contains categorical data. While Likert scale survey questions are ordinal, 

"project type" (e.g., office building, educational building, etc.), "construction type" (e.g., 

reinforced concrete, steel frame, etc.), and "new building or refurbishment" are nominal. 

Numerical data is also included, such as "the year of construction", "heated floor area," and 

"energy performance gap", which are examples of interval and ratio data, respectively. In this 

study, data discretization was applied for data transformation. Numeric attributes were 

replaced by interval and conceptual labels. In these, the prediction problems were first 

studied as a binary classification problem, and energy performance gaps in buildings were 

denoted as being positive or negative. In this denotation: a positive performance gap 

represents the case where the real performance is more than the predicted performance. 

In contrast, a negative performance gap represents the case where the actual performance is 

less than the design expectations. In order to develop multi-class classification models to 



predict the magnitude of the gap in percentages, the raw values were replaced by interval 

labels (e.g., 0-15%, 15.1-40%, 40.1-90%) corresponding to low, medium, and high for both 

positive and negative performance gap classes. An increase in the number of class labels 

often decreases the accuracy of the classifier in multi-class classification [58], so the number 

of classes was limited to three. García et al. [59] explain that binning techniques are helpful 

not only in reducing the dimensionality and complexity of the dataset, but also in improving 

the predictive power of a variable. At this stage, equal-width binning created a significant 

class imbalance problem. It is for this reason that the intervals of the categories were decided 

by aiming for equal frequency binning as possible given six different classification problems. 

Furthermore, the year of construction was partitioned into three bins: 18th - 19th century, 20th 

century, and 21st-century buildings. In contrast, the heated floor area was partitioned into five 

bins: very small, small, medium, large, and very large.  

This study used an open-source software named Weka 3.8.5 for data visualization, data 

preprocessing, attribute selection, and classification. While the Explorer interface was used 

for data preprocessing, classification, attribute selection, and data visualization, the 

experimenter interface was used to perform experiments, compare a variety of classification 

algorithms, and conduct Paired T-Tester statistical tests. 

3.4. Feature selection 

Datasets may include hundreds of attributes, which may be unimportant to the mining task or 

unnecessary [52]. Feature selection has been a valuable method to reduce the complexity of 

machine learning and data mining applications [60], evaluate the informative features, and 

reduce the dimension of data [61]. There are three groups of feature selection methods: filter, 

wrapper, and embedded methods [62]. While an independent assessment is made according 

to the general characteristics of the data in filter methods [46], an ML algorithm is used in 

wrapper methods to choose the best subset of features [63].  

Due to their ability to create better predictive models [64], WrapperSubsetEval was applied 

for binary classification problems since it is the starting point for the whole classification 

procedure. There are several models in multi-class classification problems, so the preference 

was a filter method since they are more practical and much faster [65]. In this section, the 

chi-squared attribute evaluator was used as a filter method. Witten et al. [46] explain that the 

chi-squared statistic of each attribute is computed concerning the class in this method, and 

Table 3 illustrates the configuration of the attribute selection methods using Weka. Four 



algorithms were chosen, one after the other, and three direction alternatives were tried during 

wrapper subset evaluation configuration. Values between 1 to 10 were tested and feature 

subsets delivering higher performance were stored. In terms of the use of 

ChiSquaredAttributeEvaluator, after the “Ranker” search method was selected, 3 to 10 

features were retained to find the best performers.  

Table 3 

Configuration of the attribute selection 

Evaluation method Wrapper Subset Evaluator 
Classifier i) Naive Bayes, ii) KNN, iii) SVM iv) Random Forest 

Folds 10 
Threshold -1 

Search method Best first 
Direction backward, forward, bi-dimensional 

Search termination 1 to 10 
Evaluation method ChiSquaredAttributeEvaluator 

Search method Ranker 
numToSelect 3 to 10 

 

3.5. Synthetic minority oversampling technique  

If the classes are not almost equally represented, a dataset becomes imbalanced [66]. 

Minority class instances are more often miscategorized in imbalanced datasets [47]. It is for 

this reason, in the case of a class imbalance problem, that an oversampling technique called 

SMOTE is used to create a balanced training set. This technique involves new data being 

added to the minority class of an imbalanced training set. 

3.6. Selection of the algorithms 

The configuration of ML tools is usually performed manually to achieve better predictive 

performance. A recently much discussed technique is a new sub-field of ML, called 

automated machine learning (AutoML) [67]. AutoML aims to select, compose, and 

parametrize ML algorithms automatically [68] to conserve effort and time on repetitive work 

in ML pipelines [69], and to close the gap for inexperienced ML users by undertaking the 

role of the field expert [70]. AutoML makes ML available to everyone, and it appears to be 

promising [71]. However, a study comparing the capability of AutoML tools concluded that 

although some tools performed better than others, these were subject to poor performance in 



either binary or multi-class classification [69]. In addition, despite the increased efforts to 

confront the challenges of AutoML, numerous challenges are still available [70]. Therefore 

this study applied a manual approach during the algorithm selection and other ML tasks. 

After testing the performance of 20 classification algorithms on the training sets, four 

algorithms were selected, namely Naive Bayes, k-Nearest Neighbor, Support Vector 

Machines, and Random Forest, due to their better performance on the dataset. The scatter 

plots showed that the data was not linearly separable. The improved performance of these 

algorithms could be due to their ability to perform well with non-linearly separable data. 

Naive Bayes (NB) is one of the most effective classifiers in its predictive performance, 

despite its assumptions about independence [48], and uses probability theory to determine the 

most likely possible classifications [45]. It is also easy to construct and use [29]. Moreover, 

NB is efficient and robust for both small and normal size of datasets [72]. Besides, Stribos 

[73] showed that NB was more robust against data noise in the training data when compared 

to Random Forest. 

The k-Nearest Neighbor (KNN) algorithm has yet to attract considerable interest in the 

building energy prediction field [30]. It is a simple instance-based learner that applies the 

class of the nearest k training instances for the class of the test instances [74] and is able to 

manage binary and multi-class data classification problems [8]. 

Support Vector Machines (SVM) combine instance-based and linear modeling [46]. SVM is 

skilled at solving non-linear problems even if the training data amount is small [40], and has 

demonstrated outstanding performance in binary classification tasks [75]. Nevertheless, 

methods such as One-Vs-All (OVA) and One-Vs-One (OVO), etc., are necessary to be used 

externally for multi-class classification problems [8]. 

Random Forests (RF) are among the popular decision tree methods in predicting building 

energy consumption [40]. This is an ensemble learning technique that creates a forest of 

random trees with controlled variance [74]. It is fast [65] and provides good accuracy, even 

though a substantial amount of data is missing [29].  

3.7. Configuration of the algorithms 

Optimization of model parameters, referred to as tuning, plays a key role in the accuracy of 

ML model predictions [34]. Configuration of the algorithms is necessary to tune the                    

hyperparameters as they influence the learning and prediction procedure and affect the 



performance of ML models. Table 4 provides the configuration settings of the studied 

algorithms for binary and multi-class classification problems. 

Breaking the problem into binary components is one of the ways to manage multi-class 

issues. There are several methods to transform a multi-class problem into binary ones, 

including OVO, OVA, Random Correction Code (RCC), and the Exhaustive Correction Code 

(ECC). Each decomposition method was set using Multi-Class Classifier to discover the 

optimal performance method in Weka. Furthermore, CV Parameter Selection was performed 

to identify an optimum C parameter by cross-validation for SVM. In addition, the grid search 

method was used with Random Forest to test each set of possible combinations of the 

parameters and select the one with the highest accuracy as the final value. 
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3.8. Model evaluation 

Performance measures and statistical significance testing are some of the main factors that 

are essential to evaluate learning algorithms [49]. The performance of machine learning 

algorithms was assessed in this study through the following six metrics: accuracy, precision, 

recall, F-measure, kappa statistic, and AUC. The following equations are used to calculate the 

performance metrics [45]: 

Accuracy =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑃𝑃+𝑁𝑁

     (1) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 

     (2) 

Recall = 𝑇𝑇𝑇𝑇/𝑃𝑃      (3) 

F-measure = 2𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙

    (4) 

where TP, TN, FP, P, and N are the number of true positives, true negatives, false positives, 

and positive and negative instances. 

In addition, the kappa statistic shows the prediction agreement with the true class, with 1.0 

signifying complete agreement [76]. AUC can be explained as the probability that a randomly 

chosen positive example will be ranked higher by the model than a randomly chosen negative 

example [77]. The model is better if the area under the curve is larger [46]. Furthermore, the 

differences between any pairwise algorithm performance comparisons were analyzed to learn 

if there is a statistical significance, with a confidence of 95%, using Paired T-Tester statistical 

test. A statistical significance test can be used to evaluate whether the accuracy between two 

classifiers is different due to chance [52].  

Moreover, the K-fold cross-validation resampling method is applied to estimate the 

performance of the models. It enables the achievement of statistically valid results when the 

original sample size is not large [78]. Dataset X is split randomly with K equal- cross-

validation sized pieces, Xi, i = 1,..., K in K-fold cross-validation. One of the K parts is kept 

out to generate each pair as the validation set, and the unused K-1 parts are combined to 

constitute the training set [28]. As the standard procedure, repeating the cross-validation 

process ten times and averaging the results [46] can overcome limitations such as the small 

size of training and validation sets, availability of noise and outliers in the dataset, or sources 

of randomness in the learning method [28]. The 10-fold cross-validation with ten repetitions 



was applied in binary classification problems. As the datasets were smaller in multi-class 

classification problems, 4-fold cross-validation with four repetitions was used in these 

groups.  

4. Results 

4.1. Selected features using wrapper and filter methods 

There are 33 attributes used in ML classification problems in this study. Considering the 

electricity performance gap in buildings, the following features were selected at least twice 

by Weka in binary and multi-class classification problems:  

• The shortcomings of modeling, software, or calculation methodology 

• Problems with the quality of workmanship 

• Problems with simulation inputs 

• Problems with the quality of materials 

• Inconsistencies in design projects and construction 

• Problems with occupant behavior 

• Problems with commissioning 

• The motivation of the project parties 

• Effective communication between the project parties 

• Simplicity of detailing 

• Unexpected events and changes in policy, legislation, or regulations 

Considering the heating performance gap in buildings, the following features were selected at 

least twice by Weka in binary and multi-class classification problems:  

• Problems with the quality of workmanship 

• Problems with design 

• Shortcomings of modeling, software, or calculation methodology 

• Problems with simulation inputs 

• Heated floor area 



• Construction type 

Although the features selected by the wrapper or chi-squared attribute evaluator are different 

in number and type for each classification model, the above features appeared more often in 

energy performance gap prediction problems. Table 5 represents the selected 

features/attributes by different feature selection methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 

Selected attributes with Wrapper Subset evaluator and ChiSquared attribute evaluator 

  
BEG PEG NEG BHG PHG NHG 

Wrapper Filter Filter Wrapper Filter Filter 
Group No Attributes NB KNN SVM RF Chi Chi NB KNN SVM RF Chi Chi 

G
en

er
al

 in
fo

 1 Project type           √  

2 Year of construction             

3 New or refurbished        √     

4 Heated floor area   √       √ √  

5 Construction type  √       √ √   

Pr
ob

le
m

s/
lim

ita
tio

ns
 

6 Modeling  √ √ √ √ √     √ √ 
7 Inputs √     √     √ √ 
8 Design     √  √  √ √   

9 Project budget             

10 Quality of workmanship  √ √   √ √ √ √ √   

11 Quality of materials     √ √       

12 Inconsistencies in project   √  √        

13 Bankruptcy             

14 Occupants' behavior   √   √       

15 Commissioning  √ √         √ 
16 Building management     √        

17 Regular maintenance             

18 Quality of measured data             

Pr
oj

ec
t m

an
ag

em
en

t 

19 Experience of the stakeholders     √        

20 Motivation of the stakeholders     √ √   √    

21 Effective communication     √ √     √  

22 Training of the stakeholders             

23 Design flexibility       √      

24 Occupant surveys  √        √   

25 Applying passive measures  √           

26 Simplicity of detailing √  √         √ 

U
ne

xp
ec

te
d 

ev
en

ts
/c

ha
ng

es
 

27 Client/ user expectations             

28 Project stakeholders             

29 County conditions   √         √ 
30 Policy/legislation/regulations   √ √         

31 Public sector building process             

32 Climate    √         

33 Force majeure events              

 

BEG: Binary electricity gap 
PEG: Positive electricity gap 
NEG: Negative electricity gap 
Chi: Chi-Squared attribute evaluator 

BHG: Binary heating gap 
PHG: Positive heating gap 
NHG: Negative heating gap 
Wrapper: Wrapper attribute evaluator 

 



4.2. Electricity performance gap prediction 

Datasets were initially studied as binary classification problems to predict the electricity 

performance gap and to recognize cases that might demonstrate a negative or positive 

performance gap. 10-fold cross-validation was repeated ten times, and the average value of 

the following performance metrics was obtained (accuracy, kappa statistic, precision, recall, 

F measure, and AUC).  The results indicate that KNN and SVM are the two best performers 

regarding accuracy, kappa statistic, precision, and F-measure, with KNN and SVM achieving 

accuracies of 79% and 75% on unseen (test) data, respectively (Table 6).  

A statistical significance test was carried out using Paired T-Tester statistical test on all 

classification problems. The results in bold font illustrate the classifiers which are 

significantly better, and the results in italics show the classifiers which are considerably 

worse than the base classifier.  Regular font indicates doubt over whether there is a 

statistically significant difference or not. At this stage, ZeroR, which always classifies to the 

largest class, was selected as the baseline classifier in all classification problems. Since KNN 

exhibited the best accuracy among all of the classification algorithms, it was used as the 

suggested model. 

Table 6 

Performance of the algorithms of the electricity performance gap prediction 

Binary electricity gap 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 66.00 79.00 75.00 73.50 
Kappa 0.53 0.65 0.61 0.59 
Precision 0.81 0.82 0.83 0.81 
Recall 0.68 0.86 0.79 0.81 
F-measure 0.90 0.89 0.91 0.87 
AUC 0.80 0.62 0.72 0.67 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 

After binary classification, smaller datasets were studied to forecast the level of performance 

gap in buildings based on three classes, low (0-15%), medium (15.1-40%), and high (40.1-

90%). By repeating the 4-fold CV four times, the top two performers regarding accuracy and 

kappa statistic in predicting a positive performance gap for electricity demand are Naive 

Bayes (OVO) and Random Forest (ECC) for which accuracy of 77.08% and 73.96% on 

unseen data was recorded respectively (Table 7). Naive Bayes is the suggested classifier for 



the solving of multi-class classification for positive electricity gap prediction due to its 

superior prediction accuracy.  

Table 7 

Performance of the algorithms of the positive electricity performance gap prediction 

Multi-class electricity gap: Positive 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 77.08 60.42 65.63 73.96 
Kappa 0.65 0.42 0.49 0.62 
Precision 1.00 0.43 0.67 0.67 
Recall 0.67 0.67 0.67 0.75 
F-measure 1.00 0.83 1.00 1.00 
AUC 0.83 0.75 0.90 0.92 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 

Examining multi-class classification of the negative performance gap prediction for 

electricity demand, Naive Bayes (RCC) and KNN (OVA) are seen to be the top two 

performers concerning accuracy, kappa statistic, recall, and AUC. At this stage, precision and 

F- Measure was indeterminable when the model was evaluated on unseen data, and so the 

results are based on repeating 4-fold CV 4 times on the whole data set, including unseen test 

data. Naive Bayes (RCC) and KNN (OVA) achieved an accuracy of 83.85% and 82.29%, 

respectively (Table 8). The suggested classifier for solving multi-class classification for 

negative electricity gap prediction is Naive Bayes due to its superior prediction accuracy. 

Table 8 

Performance of the algorithms of the negative electricity performance gap prediction 

Multi-class electricity gap: Negative 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 83.85 82.29 78.13 79.17 
Kappa 0.76 0.73 0.67 0.69 
Precision 1.00 0.90 0.92 0.92 
Recall 0.90 0.94 0.84 0.84 
F-measure 0.90 0.94 0.92 0.92 
AUC 0.98 0.98 0.97 0.97 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 



4.3. Heating performance gap prediction 

A similar process was conducted to predict the heating performance gap. In this process, 

datasets were initially studied as binary classification problems to recognize cases that might 

demonstrate a negative or positive performance gap. Naive Bayes and SVM were seen to be 

the top two performers for binary classification of the heating gap with a 10-fold CV, 

providing an accuracy of 72.5% and 68.5% on unseen data, respectively (Table 9). Naive 

Bayes was seen to outperform other classifiers in five performance metrics, and so is the 

suggested classifier to solve binary classification for heating gap prediction due to its superior 

prediction accuracy. 

Table 9 

Performance of the algorithms of the heating performance gap prediction 

Binary heating gap 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 72.50 68.00 68.50 67.50 
Kappa 0.62 0.54 0.55 0.56 
Precision 0.74 0.70 0.70 0.72 
Recall 0.90 0.87 0.87 0.84 
F-measure 0.90 0.86 0.86 0.89 
AUC 0.64 0.67 0.66 0.69 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 
Following binary classification, smaller datasets were considered to predict the level of 

performance gap in buildings based on three classes, low (0-15%), medium (15.1-40%), and 

high (40.1-90%). SVM (ECC) and Random Forest (OVA) are the top two performers 

concerning accuracy and kappa statistics for the positive heating performance gap prediction 

with a 4-fold CV (Table 10). SVM (ECC) and Random Forest (OVA) provided an accuracy 

of 76.04 % and 69.79% on unseen data, respectively. SVM outperforms Random Forest in 

accuracy, kappa statistics, precision, and recall, and so is the suggested classifier in this 

classification problem. 

 

 

 

 



Table 10 

Performance of the algorithms of the positive heating performance gap prediction 

Multi-class heating gap: Positive 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 59.38 55.21 76.04 69.79 
Kappa 0.45 0.42 0.68 0.57 
Precision 0.44 0.44 0.50 0.43 
Recall 0.83 0.83 0.92 0.83 
F-measure 0.92 0.92 0.92 1.00 
AUC 1.00 1.00 0.96 1.00 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 
Finally, multi-class classification models were studied for the negative performance gap of 

heating demand. Naive Bayes (OVA) and Random Forest (OVO) provided an accuracy of 

71.81% and 65.14%, respectively, and so were seen to be the top two performers regarding 

accuracy and precision. (Table 11). However, as with the multi-classification problem of 

negative performance gap prediction for electricity demand, precision, and F-measure were 

indeterminable when evaluating the model on test data. The results are therefore based on 

repeating 4-fold CV 4 times on the whole data set, including test data. Due to its superior 

prediction accuracy, Naive Bayes is the suggested classifier to solve multi-class classification 

for negative heating gap prediction. 

Table 11 

Performance of the algorithms of the negative heating performance gap prediction 

Multi-class heating gap: Negative 
Algorithms Naive Bayes KNN SVM Random Forest 
Accuracy (%) 71.81 60.69 64.58 65.14 
Kappa 0.58 0.41 0.47 0.47 
Precision 0.77 0.59 0.63 0.64 
Recall 0.45 0.56 0.59 0.60 
F-measure 0.61 0.58 0.57 0.56 
AUC 0.81 0.76 0.76 0.76 
Bold font illustrates the classifiers significantly better than the base classifier. 
Italic font shows the classifiers which are significantly worse than the base classifier. 
Regular font indicates doubt over whether there is a statistically significant difference or not. 

 

 



5. Conclusion 

This research has explored the energy performance gap in buildings through the perspective 

of project risks. The main contribution of the present research is to indicate the potential 

application of ML classification in the energy performance gap prediction of buildings. This 

study can therefore be said to provide a new perspective by using project risk data to predict 

the direction and magnitude of EPG with ML. If project stakeholders know the direction 

(positive or negative) and the magnitude of a performance gap (low, medium, high) 

beforehand, their strategies and decisions might change to control the gap. 

A web-based survey collected risk and energy performance gap information on buildings 

worldwide in this study. The gathered data from the survey was then studied as ML 

classification problems to predict EPG in buildings regarding heating and electricity demand. 

Binary classification was the starting point for the whole prediction procedure. This step 

aimed to predict whether the buildings might consume less (negative performance gap) or 

more (positive performance gap) than design expectations. Multi-class classification 

problems subsequently aimed to predict the magnitude of the performance gap as percentages 

in buildings (low - 0-15%, medium - 15.1-40%, and high - 40.1-90%).  

Unnecessary attributes were eliminated using wrapper and filter methods. Wrapper Subset 

Evaluator was initially used for binary classification problems due to their ability to create 

better predictive models. Chi-Squared Attribute Evaluator was then used as a filter method in 

multi-class classification problems as they are faster and more practical than the former. The 

performance of four machine learning algorithms (Naive Bayes, SVM, KNN, and Random 

Forest) was compared using Weka to find the best prediction model based upon six 

performance metrics and the Paired T-Tester statistical test. 

The results revealed that while different algorithms provided the highest prediction accuracy 

for each EPG prediction problem, Naive Bayes was the best, and Random Forest was the 

second-best, overall performing algorithm. The success of the Naive Bayes algorithm can be 

explained by its robustness and efficiency for both small and normal size of datasets. In 

addition, the better performance of Naive Bayes and Random Forest algorithms on EPG 

prediction can be explained by their ability to deal with noisy data.   

Moreover, the feature selection step results revealed that different subsets of features were 

selected in each classification problem. Nevertheless, regarding performance gap prediction 



considering electricity demand in buildings, "problems with modeling, software or 

calculation methodology" and "problems with the quality of workmanship" were often 

selected. Additionally, regarding performance gap prediction considering heating demand in 

buildings, "problems with design" and "problems with the quality of workmanship" were 

usually selected. 

Prediction of the energy performance gap is critical for deciding on possible investment in 

buildings, eliminating unreasonable design of the system, reducing energy cost and 

environmental impact increases, and, most importantly, for the success of policymakers' 

plans on future strategies. Testing the occurrence of a performance gap in buildings using the 

suggested method can be a starting point for tackling the adverse outcomes of the gap for 

many different project stakeholders and the environment. 

6. Limitations 

ML is suggested for use as a powerful computational method when sufficient data is 

available. The main limitation of this study was the limited amount of data gathered through 

surveys and empirical articles used in solving of classification problems. In the study, the 

energy performance gap prediction problems were therefore divided into steps. First, the 

problems were studied as binary classification problems and then as multi-class classification 

problems. This study demonstrates, despite the limited sample size, a generic way to predict 

EPG in buildings. It is suggested that the recommended method be applied on a larger pool of 

data since it is critical to have access to a representative sample and quality data for the target 

population. 
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