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Abstract
How to best track species as they rapidly alter their distributions in response to cli-
mate change has become a key scientific priority. Information on species distributions 
is derived from biological records, which tend to be primarily sourced from traditional 
recording schemes, but increasingly also by citizen science initiatives and social media 
platforms, with biological recording having become more accessible to the general 
public. To date, however, our understanding of the respective potential of social media 
and citizen science to complement the information gathered by traditional recording 
schemes remains limited, particularly when it comes to tracking species on the move 
with climate change. To address this gap, we investigated how species occurrence 
observations vary between different sources and to what extent traditional, citizen 
science, and social media records are complementary, using the Banded Demoiselle 
(Calopteryx splendens)	in	Britain	as	a	case	study.	Banded	Demoiselle	occurrences	were	
extracted	 from	citizen	 science	 initiatives	 (iRecord	and	 iNaturalist)	 and	social	media	
platforms	(Facebook,	Flickr,	and	Twitter),	and	compared	with	traditional	records	pri-
marily sourced from the British Dragonfly Society. Our results showed that species 
presence maps differ between record types, with 61% of the citizen science, 58% of 
the	traditional,	and	49%	of	the	social	media	observations	being	unique	to	that	data	
type. Banded Demoiselle habitat suitability maps differed most according to tradi-
tional and social media projections, with traditional and citizen science being the most 
consistent.	We	conclude	that	(i)	social	media	records	provide	insights	into	the	Banded	
Demoiselle distribution and habitat preference that are different from, and comple-
mentary to, the insights gathered from traditional recording schemes and citizen sci-
ence	 initiatives;	 (ii)	 predicted	 habitat	 suitability	maps	 that	 ignore	 information	 from	
social	media	records	can	substantially	underestimate	(by	over	3500 km2 in the case of 
the	Banded	Demoiselle)	potential	suitable	habitat	availability.
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1  |  INTRODUC TION

One	of	 the	 swiftest	 consequences	of	 climate	 change	 is	 the	global	
redistribution	 of	 species	 on	 Earth	 (Pecl	 et	 al.,	 2017; Scheffers 
et al., 2016).	 Changes	 in	 the	 distribution	 of	 these	 species	 on	 the	
move	are	anticipated	to	have	wide-	reaching	consequences	for	eco-
systems	and	humans	(Twiname	et	al.,	2020; Wallingford et al., 2020).	
Consequently,	 how	 to	 best	 track	 these	 species	 as	 they	 rapidly	
alter	 their	 distributions	 has	 become	 a	 key	 scientific	 priority	 (Pecl	
et al., 2017).	Information	on	species	distributions	is	derived	from	bi-
ological records, which are defined as logs of species at a particular 
place	at	a	certain	time	(Isaac	&	Pocock,	2015).	Biological	recording	
takes various forms and involves different contributors, methods, 
and	information	content.	For	a	small	number	of	taxa—	namely	those	
that	are	the	most	charismatic—	structured	monitoring	schemes	exist	
to	 provide	 systematic	 and	 focussed	 recording	 (Isaac	 et	 al.,	 2014).	
These include, for example for birds, the Breeding Birds Survey 
(Field	 &	 Gregory,	 1999)	 and	 the	 Seabird	 Monitoring	 Programme	
(Walsh	 et	 al.,	 1995)	 in	 the	UK,	 and	 the	North	American	Breeding	
Bird	Survey	(Sauer	et	al.,	1997).	Such	monitoring	schemes	are	cost-	
intensive,	 requiring	 dedicated	 participants,	 typically	 involve	 stan-
dardized	protocols	(Isaac	et	al.,	2014; Pocock et al., 2015)	and	tend	
to	be	biased	toward	more	developed	countries	(Moussy	et	al.,	2021).	
Most biological recording fits within opportunistic, unstructured 
recording schemes. These are generally coordinated by individual 
specialist recording schemes or societies that collate records with a 
particular	taxonomic	focus	(Pocock	et	al.,	2015).

With technological advancements making it easier to submit 
records, biological recording has become more accessible to the 
general	public	(Pocock	et	al.,	2015).	Several	citizen	science	applica-
tions, such as iNaturalist, enable individuals to submit records that 
can be identified through the applications' community of scientists 
and	naturalists	(Nugent,	2018).	Social	media	moreover	offer	a	novel	
source	of	information	for	answering	ecological	questions	about	bio-
diversity, species distributions, and the impacts of climate change. 
Social media websites and applications allow users to post content 
of any kind, offering vast amounts of untapped, freely available in-
formation	when	this	content	is	relevant	to	the	ecological	questions	
being	investigated	(see	e.g.,	Allain,	2019; Barve, 2014; Daume, 2016; 
ElQadi et al., 2017; Pace et al., 2019).	Yet,	to	date,	our	understand-
ing of the potential of social media to complement existing sources 
of biological data for monitoring species distributions and habitat 
suitability availability remains limited, particularly when it comes to 
tracking	species	on	the	move	with	climate	change	(but	see	Pettorelli	
et al., 2019).	 In	particular,	 information	 is	 lacking	as	to	how	species	

occurrence observations differ between different sources and to 
what extent different types of biological records are complementary.

To address this gap, this study makes use of available species 
occurrence	data	 for	 the	Banded	Demoiselle	 (Calopteryx splendens)	
in Britain to assess the level of complementarity and divergence be-
tween distribution and habitat suitability maps derived from tradi-
tional recording schemes, citizen science initiatives, and social media 
information.

The Banded Demoiselle is a highly recognizable damselfly that 
is currently shifting its distribution in the UK due to climate change 
(Brooks	et	al.,	2007; Cham et al., 2014; Mill et al., 2010; Pettorelli 
et al., 2019).	 It	 is	 a	member	 of	Odonata	 (dragonflies	 and	 damsel-
flies),	 and	 as	 such	 has	 a	 hemimetabolous	 life	 cycle	 consisting	 of	
egg,	nymph,	and	adult	stages	(Stoks	&	Córdoba-	Aguilar,	2012).	The	
nymphs	are	aquatic	with	eggs	laid	in	aquatic	plant	tissue	or	in	water,	
before metamorphosing into the terrestrial, flying adult stage, there-
fore	requiring	both	healthy	aquatic	and	resource-	rich	terrestrial	hab-
itats	(Nagy	et	al.,	2019).	It	is	one	of	a	few	British	riverine	Odonates,	
requiring	 an	 adequate	 unidirectional	 flow	 for	 larval	 respiration,	
therefore restricted primarily to slow- flowing streams and rivers in 
lowland areas of southern Britain, although shifting further north-
ward	in	recent	years	(Ward	&	Mill,	2005).

Britain makes for an excellent case study due to the vast 
availability of species distribution data for the UK, being argu-
ably	 the	most	 intensively	 recorded	 country	 on	 earth	 (Powney	&	
Isaac, 2015),	with	 the	 second	 greatest	 number	 of	 species	 occur-
rence records worldwide, behind the United States but with ap-
proximately	eight	times	the	record	density	(https://www.gbif.org/
the- gbif- network,	accessed	April	2021).	Odonata	are	a	charismatic	
taxon, with a high engagement in recording both from volunteers 
within the UK's specialized recording scheme run by the British 
Dragonfly Society, as well as appealing to citizen– scientists more 
generally.	The	Banded	Demoiselle,	 in	particular,	has	a	unique	ap-
pearance and ease of species identification, being only one of two 
species	of	Demoiselle	in	the	country	with	colored	wings	(Svensson	
et al., 2004),	making	it	an	ideal	candidate	for	investigation	into	the	
use of social media and citizen science occurrence records. Based 
on	previous	work	 (Callaghan	 et	 al.,	2018; Dickinson et al., 2010; 
ElQadi et al., 2017; Noviello et al., 2021),	we	expect	 (H1)	habitat	
suitability maps derived from social media records and citizen sci-
ence initiatives to significantly differ from habitat suitability maps 
derived	from	traditional	records	and	(H2)	occurrences	derived	from	
social media platforms and citizen science initiatives to be more 
common in urban settings compared with traditional biological 
recording.

T A X O N O M Y  C L A S S I F I C A T I O N
Biogeography
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2  |  METHODOLOGY

2.1  |  Species occurrence data

Species occurrence records for the Banded Demoiselle were 
downloaded from both the Global Biodiversity Information 
Facility	 (GBIF.org,	2021)	 and	 the	National	 Biodiversity	 Network	
(NBN)	Atlas	 (British	Dragonfly	Society	Recording	Scheme,	2021; 
National Biodiversity Network Trust, 2021).	 Records	 were	 se-
lected from 2010 onwards for comparison with social media 
datasets. Biological records from the British Dragonfly Society 
(BDS)	Recording	Scheme	 (excluding	 records	 from	 iRecord),	Local	
Environmental	Record	Centres	(LERC)	as	well	as	various	national	
and international trusts and organizations were labeled as “tradi-
tional.” Records from both the iRecord and iNaturalist platforms 
were labeled as “citizen science.”

Records	were	collected	from	social	media	platforms	(Facebook,	
Twitter,	and	Flickr)	using	the	search	terms	“Banded	Demoiselle”	and	
“Calopteryx splendens.”	For	Twitter	and	Facebook,	this	 involved	a	
manual	search	(completed	between	13/01/2022	and	04/04/2022,	
for	approximately	1.5 h	a	day),	with	biological	records	consisting	of	
an identifiable photograph or video. These records included either 
a tagged location or a mention of location within the content of 
the	 post,	 as	well	 as	 a	 date	 for	 the	 observation	 if	 provided	 (oth-
erwise	 the	date	 the	content	was	shared).	Latitude	and	 longitude	
information is generally preferable, allowing for precise placement 
of species occurrences. However, this information was not avail-
able	for	Twitter	or	Facebook	records.	Around	23%	of	the	records	
found included a tagged location label; however, this was typically 
a	city	or	town	level.	As	such,	records	from	Twitter	and	Facebook	
were manually checked and georeferenced by determining all the 
1-	km	British	National	Grid	squares	that	covered	the	spatial	extent	
of	 the	 location	description	provided	by	 the	user.	Although	more	
imprecise than tagged geolocations, this ensured that the location 
information	included	was	where	the	observation	occurred	(as	op-
posed	to	where	the	photograph	was	uploaded).	Searches	yielded	
95	 results	 from	Twitter	 and	 331	 from	Facebook,	which	 covered	
295	 and	 867	 1-	km	 grid	 squares,	 respectively.	 These	 1-	km	 grid	
squares	were	included	as	Banded	Demoiselle	occurrences	in	sub-
sequent	species	distribution	models	(SDMs).	For	each	social	media	
occurrence,	 spatial	precision	 (estimated	 to	 the	nearest	 km2)	was	
recorded	in	the	final	dataset.	For	Flickr,	records	were	collated	with	
the	Flickr	application	programming	interface	(API)	using	the	Flickr.
photos.search	 (http://www.flickr.com/servi ces/api/flickr.photos.
search.html).	Initial	searches	yielded	1316	results	with	location	in-
formation as well as date recorded and posted that were extracted 
in	R	using	the	package	FlickrAPI	 (Ando	&	Pousson,	2022).	These	
results were then manually verified, with 1223 observations re-
maining once records observed outside the relevant time frame 
or study location as well as irrelevant or misidentified observa-
tions	were	removed.	For	each	data	type,	occurrence	records	were	
cleaned using the R package CoordinateCleaner to flag and remove 
erroneous	or	duplicate	results	 (Zizka	et	al.,	2021).	Potential	data	

entry errors and failed georeferencing were flagged by checking 
for	equal	latitude	and	longitude	values	as	well	as	zeros	in	the	coor-
dinates; coordinates matching country centroids and biodiversity 
institutions were also removed to ensure occurrences with impre-
cise	georeferencing	or	captured	individuals	were	excluded	(Zizka	
et al., 2019).

The	 low	precision	of	Facebook	and	Twitter	social	media	data	
is a potential source of error during modeling as it may overesti-
mate the current range and therefore the range of suitable habi-
tats. The location descriptions provided varied in precision; some 
observations detailed exact locations that could be prescribed 
to	 individual	1-	km	grid	 squares,	whereas	others	described	wider	
locations	 covering	 several	 km	 grids.	 As	 such,	we	 performed	 ad-
ditional sensitivity analyses using several alternative subsets of 
the social media data; in these, the dataset was filtered to only 
include	points	with	a	spatial	precision	of	at	least	1,	2,	5	and	10 km2, 
respectively. Results of these models were compared with those 
that used all social media data points, using Spearman's correlation 
to check for sensitivity of results to differing thresholds of spatial 
precision, as well as spatial assessment of uncertainty between 
different cropped datasets.

2.2  |  Environmental data

The set of environmental variables considered to shape the distribu-
tion of Banded Demoiselle in the UK included climatic conditions, 
topography, landcover type, vegetation productivity, and level of 
urbanization. Monthly minimum and maximum temperature as well 
as	monthly	precipitation	for	the	period	1990	to	2020	were	accessed	
from	the	Met	Office	at	a	1-	km	resolution	(Met	Office	et	al.,	2022)	
and used to generate a series of monthly average bioclimate vari-
ables	 using	 the	 biovars	 function	 in	 the	R	 package	 dismo	 (Hijmans	
et al., 2021),	under	the	assumption	that	species'	ranges	respond	to	
the	 long-	term	 averages	 of	 climate	 conditions	 (Taheri	 et	 al.,	2020).	
These climate variables represent annual trends, seasonality, and 
limiting environmental factors and as such are designed to be 
biologically	 meaningful,	 being	 widely	 used	 for	 SDMs	 (Manzoor	
et al., 2018),	 and	 informative	 for	 Odonatan	 distributions	 (Abbott	
et al., 2022; Collins et al., 2017).

Slope	was	extracted	from	the	Ordnance	Survey	(OS)	Terrain	50	
Digital	 Terrain	 Model	 (DTM)	 accessed	 from	 EDINA	 Digimap	 (OS	
Terrain 50, 2013);	slope	is	important	for	Odonata	species	due	to	its	in-
fluence on water velocity, O2 content, weathering, channel substrate 
size,	and	organic	matter	composition	(Collins	&	McIntyre,	2015)	and	
of particular importance to the Banded Demoiselle that favors slow- 
flowing rivers.

To	capture	the	aquatic	element	of	the	Banded	Demoiselle's	niche,	
the percentage cover at 1- km resolution of the freshwater aggre-
gate class was extracted from the Centre for Ecology and Hydrology 
(CEH)	2015	Land	Cover	Map	accessed	from	EDINA	Digimap	(Land	
Cover Map 2015, 2017).	 A	Water	 and	Wetness	 Probability	 Index	
(WWPI)	 product	 coordinated	 by	 European	 Environment	 Agency	
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(EEA)	 Copernicus	 program	was	 also	 acquired	 which	 indicates	 the	
occurrence of water and wet areas as a continuous probability at 
20-	m	 resolution	 based	 on	 observations	 between	 2009	 and	 2015	
(Langanke	et	al.,	2018).

Normalized	 Difference	 Vegetation	 Index	 (NDVI;	
Pettorelli, 2013)	 Long	 Term	 Statistics	 (LTS)	 version	 2.2.	 were	
also	 included	 from	 the	 Copernicus	 Global	 Land	 Service	 (CGLS)	
at	 a	 1-	km	 resolution	 (Toté	 et	 al.,	2021).	 These	 statistics	 include	
the minimum, median, maximum, average, and standard deviation 
calculated	 from	10-	daily	NDVI	 values	 throughout	 1999	 to	 2017	
derived	 from	 Spot-	4,	 Spot-	5,	 and	 Proba-	V	 satellite	 imagery.	 The	
NDVI gives an indication of “greenness” and therefore is likely 
to be influential in odonatan distribution. In addition, the CGLS 
100- m resolution tree cover density for the reference year 2012 
was	included	(European	Environment	Agency,	2018).	These	should	
account for the influence of vegetation on the Banded Demoiselle 
distribution, where vegetation influences territory selection and 
where	 eggs	 are	 laid	 into	 aquatic	 emergent	 vegetation	 (Ward	 &	
Mill, 2005).	To	account	for	varying	 levels	of	urbanization,	annual	
composites	of	visible	night	 light	version	2	were	acquired	 for	 the	
years	 2014	 to	 2018	 from	 the	 Earth	Observation	Group	 (Elvidge	
et al., 2021)	and	averaged	across	these	years.

Predictor variables were reprojected to the British National Grid 
and aggregated to a 1- km resolution where needed using the func-
tions	 projectRaster	 and	 aggregate	 in	 R	 package	 raster	 (Hijmans	&	
van Etten, 2012).	All	predictors	were	scaled	to	a	mean	of	zero	and	a	
standard deviation of one. Predictor distributions were checked for 
any significant skew and a log transformation applied where a strong 
skew was identified.

The Pearson's correlation coefficient was calculated between 
each pair of predictor variables and where the coefficient was 
greater than 0.7, only one variable was retained. Including covary-
ing predictors above this threshold results in increased uncertainty 
and	disagreement	 among	projections	 (Brun	 et	 al.,	 2019; Dormann 
et al., 2012).	In	cases	where	it	was	unclear	which	covarying	predictor	
should be kept, two separate models were run with each set of cova-
rying predictors, and the variable that contributed to more accurate 
model	fit	(assessed	by	true	skill	statistic	[TSS]	and	the	area	under	the	
receiver	operating	characteristic	curve	 [AUC])	was	kept.	As	a	 final	
check to ensure no correlated predictor variables were included, the 
Variable	 Inflation	 Factor	 (VIF),	 a	measure	 of	multicollinearity,	was	
calculated for each occurrence dataset before model computation, 
to	 ensure	 that	VIF	was	 less	 than	 six,	which	 is	 deemed	 acceptable	
(Guisan	et	al.,	2017).

A	preliminary	set	of	SDMs	was	 implemented	through	biomod2	
with a dataset of all species occurrence records and all environmen-
tal variables to examine variable importance and guide predictor 
selection. Importance was determined by computing the Pearson's 
correlation between predictions made with a given variable and with 
the variable replaced with a randomized input, with variable impor-
tance averaged from five permutations. These preliminary screening 
steps resulted in a final set of predictors consisting of mean annual 
temperature, isothermality, mean temperature of the wettest and 

driest	quarters,	total	annual	precipitation,	slope,	percentage	fresh-
water cover, WWPI, mean NDVI, and percentage tree cover.

2.3  |  Sampling effort

Species distribution models rely on the assumption that sampling ef-
fort and probability of detection are approximately even over a given 
area. However, this is often not the case, especially for opportun-
istically sampled data such as in citizen science projects and social 
media,	and	as	such	sampling	bias	can	severely	distort	 results	 (Bird	
et al., 2014; Johnston et al., 2021).	A	typical	way	to	counteract	this	is	
with	a	target-	group	background	approach	(Phillips	et	al.,	2009),	which	
uses sampling from other related taxonomic groups to give a broad 
overview of sampling effort over an area. In this study, this approach 
was	 not	 possible	 as	 acquiring	 an	 equivalent	 sampling	 background	
for social media data is extremely difficult, if not impossible, due to 
the time and computational workload involved. Instead, we used a 
“bias	 covariate	 correction”	method	 (Chauvier	 et	 al.,	2021; Warton 
et al., 2013),	where	several	proxies	for	sampling	effort	are	used	to	
correct for areas of bias. We therefore included several sampling ef-
fort predictors in our models, namely distance to major population 
center, distance to nearest road, and population density. Shapefiles 
for major population centere were downloaded from the Office for 
National	Statistics	(2021)	and	the	Scottish	Government	SpatialData.
gov.scot	 (2022),	 and	 the	 distance	 from	 each	 1-	km	 grid	 cell	 in	 our	
study area to the nearest city was calculated. Spatial line data for 
roads were based on OpenStreetMap Data Extracts, as processed by 
Geofabrik	GmbH	(2023),	using	the	latest	road	data	available	for	the	
UK	as	of	February	13,	2023;	for	each	grid	cell	in	the	study	area,	we	
calculated how far they lay from the nearest road. Residential popu-
lation density was downloaded from the Environmental Information 
Data	 Centre	 (2023)	 at	 1-	km	 resolution.	 Predictor	 covariation	was	
assessed, and a preliminary set of models was run to check for vari-
able	importance	(following	same	methods	as	for	environmental	vari-
ables).	Where	sampling	effort	variables	were	important	(1 − r > 0.05,	
where	r	is	the	Pearson's	correlation	coefficient),	they	were	retained	
in the final model. When final projections were made, these vari-
ables were set to the median value for a given layer across the study 
area, to compensate for the potential effect of sampling effort fol-
lowing	the	protocol	of	Warton	et	al.	(2013).

2.4  |  Species distribution modeling

Ensemble SDMs for the Banded Demoiselle were implemented 
using	the	R	biomod2	package	(Thuiller	et	al.,	2021)	for	each	spe-
cies occurrence dataset. There was no a priori reason to select 
one family of models over another, so all were trialed and com-
pared in terms of habitat suitability outputs, performance metrics 
provided	 by	 biomod2	 (accuracy,	 bias,	 TSS,	 and	 AUC),	 and	 vari-
ance in estimated response curves. Since all performed similarly 
and	showed	broadly	similar	outputs	(Figure S3),	ensemble	model	

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10063 by T

est, W
iley O

nline L
ibrary on [17/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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results were built with output from all high- performing models, re-
gardless	of	family.	As	such,	a	set	of	six	modeling	techniques	were	
selected including three machine- learning methods, generalized 
boosting model, random forest, and maximum entropy; two re-
gression methods, generalized linear model, and multiple adaptive 

regression splines; and finally, a recursive partitioning method, 
classification	tree	analysis.	For	all	modeling	algorithms,	the	default	
biomod2 settings were used.

For	each	dataset	 (traditional,	citizen	science,	and	social	media),	
10,000 pseudo- absence points were randomly selected from the 

TA B L E  1 Total	number	of	occurrence	records	collected	for	each	type,	including	the	number	of	1	and	10-	km	British	National	Grid	squares.	
For	each	type,	the	number	and	proportion	of	grid	squares	where	observations	were	unique	to	that	type	is	given.

Type Details Total records 1 km grids Unique 1 km grids 10 km grids Unique 10 km grids

Traditional BDS; LERCs; National Trusts/
Organizations

6749 4211 2424	(57.6%) 908 184	(20.3%)

Citizen science iRecord; iNaturalist 9646 5075 3100	(61.1%) 982 136	(13.8%)

Social media Facebook;	Flickr;	Twitter 2026 1480 726	(49.1%) 421 15	(3.6%)

Abbreviations:	BDS,	British	Dragonfly	Society;	LERC,	Local	Environmental	Records	Centre.

F I G U R E  1 Distribution	of	traditional,	citizen	science,	and	social	media	species	occurrence	records	(left)	and	consistencies	and	differences	
when	gridded	to	the	10 km	British	National	Grid	(right).	Population	centers	with	more	than	500,000	people	have	been	highlighted.

TA B L E  2 Evaluation	statistics	for	the	ensemble	models	averaged	from	validation	runs	for	each	species	occurrence	data	type,	including	the	
true	skill	statistic	(TSS),	the	area	under	the	receiver	operating	characteristic	curve	(AUC),	Cohen's	κ coefficient, sensitivity, and specificity. 
Values in brackets are the standard deviation across the five validation runs.

Occurrence dataset TSS AUC κ Accuracy Bias

Traditional 0.60	(0.05) 0.88	(0.03) 0.60	(0.05) 0.80	(0.02) 0.99	(<0.01)

Citizen science 0.66	(0.05) 0.91	(0.02) 0.65	(0.04) 0.84	(0.02) 0.99	(<0.01)

Social media 0.66	(0.04) 0.90	(0.02) 0.62	(0.05) 0.86	(0.02) 0.99	(0.02)

All 0.65	(0.05) 0.90	(0.02) 0.61	(0.05) 0.87	(0.02) 1.00	(<0.01)
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background	data,	a	quantity	approximately	matching	the	most	nu-
merous occurrence dataset, to be broadly appropriate across SDM 
techniques	(Barbet-	Massin	et	al.,	2012).	To	ensure	pseudo-	absence	
composition was not impacting results, preliminary SDMs were com-
puted	with	5,	10	and	15	sets	of	pseudo-	absence	points.	Agreement	
was	high	overall	across	all	statistical	metrics	used	(Table 2)	and	did	
not differ significantly between runs with different numbers of 
pseudo-	absence	sets.	As	each	dataset	was	large	and	computation-
ally taxing, all final models were run with five pseudo- absence data-
sets. To reduce the potential of selecting pseudo- absences within 
the same niche as presences, pseudo- absences were placed at least 
1.5 km	away	from	any	observed	occurrences	that	have	a	coordinate	
uncertainty	of	up	to	1 km.

Several validation models were created, where 20% of the spe-
cies occurrences, including both presence and pseudo- absence 
points, were set aside for evaluation. Model performance was as-
sessed with TSS, which provides a threshold- independent measure 
of	 accuracy	 (Allouche	 et	 al.,	 2006).	 TSS	 has	 several	 documented	
drawbacks	 (Leroy	 et	 al.,	 2018),	 notably	 its	 dependence	 on	 prev-
alence; however, we chose to use a balanced approach where the 
number of pseudo- absences was set to match the number of pres-
ences, as this reduces the chance of bias when using TSS results, 
allows easier comparison between different models as prevalence is 
held constant, and is the recommended approach when attempting 
to	maximize	discrimination	in	SDMs	(Steen	et	al.,	2020).	Several	al-
ternative metrics were also calculated to provide an overall summary 
of	performance	and	potential	bias.	These	included	AUC;	frequency	
bias, the ratio between observed and predicted presences; accuracy, 
the fraction of occurrences correct; and finally Cohen's Kappa co-
efficient, a measure of model accuracy which corrects for accuracy 
expected	 to	 occur	 by	 chance	 (Allouche	 et	 al.,	2006).	 This	 process	
was repeated five times, splitting the occurrences into five random 
training and testing sets of 80% and 20%, respectively, balancing 
the ratio of presence and pseudo- absence points, to ensure that 
their composition was not having any impact on model accuracy. 
Ensemble models were built combining all individual models with 
a TSS value greater than 0.6, considered to be useful to excellent 
(Komac	et	al.,	2016),	and	weighing	model	contribution	according	to	
their TSS.

The evaluation results are based on the internally validated mod-
els, whereas the final projections presented throughout the man-
uscript are based upon all available occurrence data, without any 
presences or pseudo- absences set aside for internal validation. This 
is to ensure the final parameter estimates are built with the max-
imum information and therefore lower uncertainty in parameter 
estimates	 and	 projections.	 As	 our	 validation	models	 were	 robust,	
we verified that the final full models were sufficiently similar to the 
validation models so as to ensure the final full models were similarly 
robust. We verified this using a Spearman's correlation between the 
projected habitat suitability of five validation models and the final 
models for each data source.

Each ensemble model of habitat suitability was converted into bi-
nary presence– absence maps; thresholds were selected to maximize 

the	combined	sensitivity	and	specificity	scores	(Liu	et	al.,	2016).	Pair-	
wise comparisons were carried out to compare predictions between 
models based on different occurrence datasets, computed for both 
habitat suitability predictions and binary presence– absence maps. 
Similarity between predictions was calculated using Spearman's cor-
relation tests.

Banded Demoiselle habitat was further analyzed by extracting 
the proportion of predicted presences within each of the 10 aggre-
gate	classes	of	the	CEH	2015	land	cover	map	accessed	from	EDINA	
Digimap	 (Land	 Cover	 Map	 2015,	 2017).	 This	 included	 a	 built-	up	
areas and gardens class, to compare suitable habitat within urban 
areas across occurrence data types.

3  |  RESULTS

A	total	of	17,831	observations	of	the	Banded	Demoiselle	were	col-
lected	(Table 1).	When	gridded	to	the	1 km2 British National Grid, at 
the same resolution as the predictor variables, a large proportion of 
the total number of grid cells where presence was reported for each 
occurrence	 type,	were	unique	 to	 that	data	 type;	~61%, ~58% and 
~49%	for	citizen	science,	traditional	and	social	media,	respectively.	
When	 aggregated	 to	 10 km2, the difference becomes less stark 
(Table 1; Figure 1).

The TSS and Kappa scores across all SDMs were greater than 
0.6,	while	all	AUC	values	exceeded	0.85,	indicating	good	model	per-
formance	(Table 2).	Model	performance	was	broadly	similar	across	
all	 data	 sources	 (Table 2).	 Accuracy	 and	 bias	 values	 were	 similar	
across data types, and high across all models. Validation models 
were representative of the final models as Spearman's correlation 
coefficients between validation and final models were greater than 
0.98	in	all	cases.

Annual	 mean	 temperature	 and	 percentage	 freshwater	 cover	
were	highly	ranked	variables	for	all	three	data	sources	(Table S1)	and	
were	found	to	be	important	in	all	three	models	(1 − r > 0.1,	where	r	is	
the	 Pearson's	 correlation	 coefficient).	 In	 addition,	 summed	 annual	
precipitation was found to be highly important in citizen science and 
traditional SDMs, but not for social media. Distance to the nearest 
roads was an important predictor for social media SDMs but was 
less important when using traditional or citizen science data sets. 
For	full	details	on	variable	importance	for	all	three	data	sources,	see	
Supporting	Information	(Table S1).	The	breadth	of	suitable	environ-
mental conditions and response curves were broadly similar across 
data	types	(Figure S1).

Distance to roads was the only covariate of sampling effort that 
was found to have any effect on the models, and outputs shown 
here are made following correction for sampling effort. Comparisons 
with uncorrected models are included in Supporting Information 
(Figure S2),	and	significant	differences	in	suitability	for	social	media	
SDMs can be seen around major population centers including 
London, Manchester, and Birmingham.

Social media had higher spatial uncertainty than data from other 
sources, so several sensitivity tests were carried out. SDMs were 
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    |  7 of 13O'NEILL et al.

constructed with points with a spatial precision of at least 1, 2, 5, 
10 km2, respectively, and compared to models constructed with the 
full data set. The most dissimilar models were those built with all 
data	 and	 those	 built	with	 2	 and	 1 km2	 precision	 data	 (Spearman's	
coefficient:	0.96	and	0.97	respectively;	Table S2).	All	models	were	
broadly	 similar	 (Figure S3),	 though	uncertainty	was	higher	 around	
major population centers and coastal areas. The results presented 
here are for models built with all data.

Under our ensemble model based on traditional occurrence 
records,	 around	 50,800 km2	 (21.71%)	 of	 Great	 Britain's	 landmass	
is predicted suitable for the Banded Demoiselle; this is compared 
to ~54,600 km2	 (23.33%)	 based	 on	 citizen	 science	 records	 and	
~41,500 km2	 (17.73%)	based	on	social	media	records	 (Figure 2).	As	
expected, using all collected data led to the greatest total projected 
area	of	 suitable	habitats	 for	 the	Banded	Demoiselle	 (~57,600 km2, 
24.60%).	 Suitable	 habitats	 for	 the	 Banded	 Demoiselle	 were	 pre-
dicted	 to	 primarily	 include	 arable	 lands	 (37.9%	 to	 48.5%	 of	 total	
suitable	 area),	 improved	 grasslands	 (32.6%	 to	 33.5%)	 and	 built-	up	
areas	(11.8%	to	21.0%),	with	only	a	small	proportion	of	suitable	areas	
found	within	broadleaf	woodlands	 (3.1%	 to	3.8%).	The	 study	area	
was similarly dominated by the arable and improved grasslands land 
cover	types,	covering	together	57.6%	of	the	total	area	(Table 3).

Spearman's correlation coefficients between habitat suitability 
maps based on different record types were greater than 0.85 for 
all pairs of occurrence datasets. Projections based on traditional 
and	 citizen	 science	 records	were	 the	most	 correlated	 (0.95)	while	

projections based on traditional and social media records were 
the	least	correlated	(0.87,	Table 4).	The	area	consistently	expected	
to be suitable for the Banded Demoiselle was estimated to cover 
44,761 km2 when comparing models based on traditional and citizen 
science	records;	but	this	area	was	expected	to	only	cover	33,061 km2 
when comparing models based on traditional and social media re-
cords.	 In	 the	 latter	 situation,	 17,745 km2 of suitable habitats was 
uniquely	 identified	 by	 traditional	 records	 while	 8434 km2 of suit-
able	habitats	was	uniquely	 identified	by	social	media	 records.	The	
area	uniquely	 identified	as	suitable	by	traditional	records	primarily	
covers	 the	 southern	 lowlands,	 while	 the	 area	 uniquely	 identified	
as suitable by social media records covers the southwest, south 
Wales, coastal areas around the south of the UK, the northeast and 
Scotland	(Figure 3).	A	greater	proportion	of	projected	suitable	habi-
tat was found within built- up and urban areas when considering so-
cial	media	records	(21%)	than	citizen	science	(13.7%)	and	traditional	
data	(11.8%).

4  |  DISCUSSION

This	 study	 offers	 a	 unique	 assessment	 of	 the	 level	 of	 comple-
mentarity and divergence between habitat suitability distribu-
tions derived from traditional recording schemes, citizen science 
initiatives,	and	social	media	information.	Our	results	show	that	(i)	
social media records provide insights into the Banded Demoiselle 

F I G U R E  2 Projected	habitat	suitability	index	according	to	weighted	mean	ensemble	models	computed	based	on	traditional	(left),	citizen	
science	(middle)	and	social	media	(right)	observations.
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8 of 13  |     O'NEILL et al.

distribution and habitat preference that are different from, and 
complementary to, the insights gathered from traditional record-
ing	 schemes	 and	 citizen	 science	 initiatives;	 (ii)	 predicted	 habitat	
suitability maps that ignore information from social media records 
substantially	underestimate	(by	over	3500 km2)	potential	suitable	
habitat availability.

The use of social media to extract species occurrence obser-
vations and inform ecological research and wildlife management 
is a relatively new concept, with a few cases where such meth-
ods	 have	 been	 investigated	 both	 for	 native	 (Barve,	 2014; ElQadi 
et al., 2017; Pace et al., 2019)	and	non-	native	species	(Allain,	2019; 
Daume, 2016).	Social	media	data	can	greatly	extend	the	number	of	
occurrence	records	available	to	ecologists	(Allain,	2019)	and,	in	the	
case of countries with limited resources, provide an alternative to 
costly specialized recording schemes and citizen science campaigns 
(Di	Minin	et	al.,	2015).	Our	study	demonstrates	that	there	is	much	
value in capitalizing on this new type of information: Even though 
substantially	less	numerous	than	the	other	data	types	overall,	49%	
of the Banded Demoiselle presences derived from social media plat-
forms	were	unique	to	social	media,	enabling	us	to	capture	a	broader	
perspective on the species' habitat preferences. Our conclusions 
resonate	with	previous	research	by	ElQadi	et	al.	(2017)	who	found	

that	Flickr	observations	of	honeybees	 in	Australia	 (i)	extended	the	
known distribution based on traditional records towards urban cen-
ters,	and	(ii)	represented	tourist	areas	in	remote	locations	that	were	
not	depicted	by	 traditional	 records	 (ElQadi	et	al.,	2017).	Together,	
these results suggest that spatial patterns in social media recorder 
activity tend to be different from the patterns found among record-
ers involved with traditional and citizen science data collection.

Our findings demonstrate that social media projections of 
Banded Demoiselle habitat cover a larger proportion of built- up 
areas and gardens than traditional recording. This may potentially be 
an artifact of sampling bias, but it may also indicate that these urban 
areas provide important habitats for Banded Demoiselles, something 
that could be underestimated without the consideration of social 
media observations. The proportions of the other land cover types 
were largely consistent between data types, with predicted Banded 
Demoiselle habitat dominated by arable and improved grasslands. 
This contradicts previous findings that agriculture, managed land, 
and excessive grazing do not provide suitable Banded Demoiselle 
habitat	due	to	diminished	bankside	vegetation	(Lowdon,	2015; Ward 
& Mill, 2005).	The	coarse	spatial	resolution	considered	in	this	study,	
together with the fact that our study area is heavily dominated by 
these	 landcover	 types	 (covering	57.6%	of	our	study	area),	may	ex-
plain such results.

Sourcing information on species presence from social media 
platforms is not straightforward, and the amount of information 
garnered	can	be	quite	 limited.	For	example,	 the	manual	Facebook	
and	Twitter	 searches	 yielded	331	and	95	 results,	 respectively,	 for	
Banded Demoiselle. These numbers are comparable with simi-
lar studies that have extracted species occurrence records from 
Facebook,	such	as	the	ones	by	(i)	Campbell	and	Engelbrecht	(2018)	
that	gathered	1239	observations	for	34	species	of	baboon	spiders	
across	 Southern	Africa	 (around	36	 records	 per	 species),	 (ii)	 Rocha	
et	al.	 (2017)	 that	sourced	369	records	of	 the	Eurasian	 red	squirrel	

Class Study area Traditional
Citizen 
science Social media

Improved grassland 31.2% (73,084) 33.5% (17,003) 32.6% (17,770) 33.4% (13,854)

Arable 26.4% (61,865) 48.5% (24,636) 47% (25,642) 37.9% (15,747)

Mountain, heath, 
bog

15.4%	(35,926) 0.4%	(195) 0.4%	(244) 0.4%	(181)

Semi- natural 
grassland

9.5%	(22,113) 0.7%	(339) 0.6%	(351) 0.8%	(334)

Built- up areas and 
gardens

6.6% (15,394) 11.8% (6004) 13.7% (7455) 21% (8716)

Coniferous 
woodland

6.1%	(14,303) 1.0%	(502) 1.1%	(574) 1.0%	(400)

Broadleaf woodland 2.5% (5919) 3.1% (1552) 3.4% (1850) 3.8% (1571)

Coastal 1.2%	(2831) 0.5%	(230) 0.5%	(290) 0.7%	(284)

Freshwater 0.6%	(1512) 0.6%	(321) 0.7%	(372) 0.9%	(372)

Saltwater 0.4%	(1042) 0.0%	(24) 0.1%	(36) 0.1%	(36)

Note: Percentages are given of total study area and total predicted suitable habitat, with values in 
brackets	being	the	total	area	in	kilometers	squared.	Bold	text	is	used	to	indicate	land	classes	where	
Banded	Demoiselle	suitable	habitat	dominates	(where	total	suitable	area > 1000 km2).

TA B L E  3 Coverage	of	land	cover	
classes for the Great Britain study area 
and the predicted suitable habitat for the 
Banded Demoiselle according to ensemble 
species distribution models based on 
different types of species occurrence 
records.

TA B L E  4 Spearman's	correlation	between	models	derived	from	
different	species	occurrence	records.	Above	diagonal	values	are	
the correlation between binary presence– absence maps and below 
diagonal the correlation between habitat suitability projections.

Habitat 
suitability maps

Binary (presence/absence) maps

Traditional Citizen science Social media

Traditional 1 0.805 0.651

Citizen science 0.952 1 0.714

Social media 0.870 0.928 1
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    |  9 of 13O'NEILL et al.

in	Portugal,	and	(iii)	Havlin	et	al.	 (2017)	 that	collected	30	observa-
tions of red- necked wallabies on the Isle of Man, UK. These inves-
tigations	all	used	specific	Facebook	pages	 set	up	by	 the	scientists	
and dedicated to encouraging submission of records for their target 
species. In our case, biological records were gathered from existing 
platforms, which may partially explain the low numbers of records 
we	were	able	to	source.	Although	requiring	greater	effort	and	longer	
term management, dedicated pages may yield a greater number of 
results as well as being a more active way of engaging communities 
with biological recording.

Acquiring	biological	records	from	Flickr	was	aided	by	the	use	of	
an	API	 that	 allows	 for	 an	 automated	 search	of	 visual	 content	 and	
extraction of information on associated location and date. Using this 
API	for	the	Banded	Demoiselle	yielded	1316	initial	results	instantly,	
providing both a faster method to access information in compari-
son to other social media platforms investigated as well as yielding a 
greater	total	number	of	observations.	Although	the	initial	search	was	
rapid	in	comparison	with	manual	searches	on	Twitter	and	Facebook,	
the	subsequent	manual	verification	of	the	data	was,	however,	time-	
consuming.	 The	 R	 package	 CoordinateCleaner	 (Zizka	 et	 al.,	2021)	
provided a means to rapidly flag and remove likely erroneous re-
cords, such as those assigned to country centres and biodiversity 
facilities, as well as identify outliers and duplicate observations. 
The	difficulty	with	Flickr	API	searches	 is	 that	 this	can	yield	obser-
vations where species are incorrectly identified, alongside content 

where the species name is mentioned in another context without 
any intention to indicate presence of the species. This verification 
step was proven to be important in our case, leading to the removal 
of	92	sightings	(~7%	initial	results)	despite	the	deliberate	selection	
of	 an	easily	 identifiable	 species.	For	other	 species,	 results	may	be	
even	 less	 reliable,	 such	as	 for	 two	bumblebee	 species	 in	Australia	
where	only	65%	and	68%	of	the	occurrences	extracted	from	Flickr	
by	ElQadi	et	al.	 (2017)	were	correctly	identified.	Research	to	iden-
tify	 alternatives	 to	 manual	 verification	 process	 is	 needed	 (ElQadi	
et al., 2017).

Citizen science has become an invaluable and cost- effective 
source	 of	 species	 occurrence	 records	 (Noviello	 et	 al.,	 2021).	
Nevertheless, a number of concerns remain about the accuracy 
and	quality	of	citizen	science	data	due	to	variability	in	volunteers'	
level	 of	 experience	 and	 expertise	 (Aceves-	Bueno	 et	 al.,	 2017),	
with previous studies finding a lower performance of SDMs based 
on	citizen	science	data	compared	with	systematic	surveys	(Tiago	
et al., 2017)	and	suggesting	filtering	citizen	science	data	accord-
ing	 to	 data	 quality	 and	 information	 content	 for	 more	 accurate	
SDMs	 (Van	 Eupen	 et	 al.,	2021).	 In	 our	 case,	 however,	 all	 SDMs	
performed	adequately,	and	habitat	suitability	maps	derived	from	
traditional and citizen science sources were the most congruent. 
These comparable results from citizen science and traditional ob-
servations are likely partially a result of improved data validation 
within	citizen	science	initiatives	(Dickinson	et	al.,	2010),	with,	for	

F I G U R E  3 Pairwise	comparison	between	projected	suitable	habitat	for	the	Banded	Demoiselle	according	to	different	data	types.	
Predictions were converted to binary presence– absence maps using the threshold that maximized the true skill statistic for each ensemble 
model. Values in brackets indicate the total consistencies and differences between predicted suitable habitats in terms of the number of 
1- km pixels and therefore total area in km2.
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10 of 13  |     O'NEILL et al.

example, iNaturalist crowdsourcing verification from users within 
the platform and iRecord verification largely being performed by 
volunteers associated with national recording schemes, such as 
within	 the	 BDS—	likely	 the	 same	 county	 recorders	 that	 oversee	
and verify the BDS's own records. Moreover, both the BDS and 
citizen science records are largely collected with an unstructured 
and opportunistic framework.

A	 number	 of	 limitations	 to	 our	 study	 should,	 however,	 be	
acknowledged.	 First,	 this	 work	 was	 performed	 at	 a	 relatively	
coarse resolution; fine- scale and more sophisticated hydrological 
and hydraulic predictor variables could prove advantageous for 
Odonatan	modeling	 (Collins	 &	McIntyre,	 2015).	 Second,	 model-
ing approaches focused on rivers and water bodies, as opposed to 
approaches based on gridded variables as well as the combination 
of stream- only and terrestrial- only model processes, have been 
previously encouraged when aiming at identifying suitable hab-
itats	 for	 freshwater	 species	 such	 as	 Banded	Demoiselle	 (Collins	
& McIntyre, 2015).	However,	 such	an	approach	was	not	 feasible	
here, particularly as the vast majority of occurrences collated 
were	 for	 the	 terrestrial	 adults	 as	 opposed	 to	 aquatic	 nymphs.	
Third, biotic variables have been increasingly employed to improve 
predictive	 ability	 of	 SDMs	 (Yates	 et	 al.,	2018),	with	 competition	
and intraguild predation particularly significant constraints on 
Odoanata	distributions	 (Pélissié	 et	 al.,	2022);	 however,	 inclusion	
of these interactions as predictors for Banded Demoiselle habitat 
was	beyond	the	scope	of	this	study	due	to	the	quantity	of	interac-
tions	possible.	As	such,	these	biotic	factors	are	likely	to	modify	the	
projected potential suitable habitat throughout Britain in practice. 
Fourth,	most	 of	 the	 Twitter	 occurrences	 lacked	 geo-	location	 in-
formation	 and	 so,	 along	with	Facebook,	 relied	on	 location	 infor-
mation within the content that lacked precision compared with 
traditional occurrences. In this study, there was little evidence 
that using lower precision data significantly affected results, ver-
ified through several sensitivity analyses, but this is unlikely to be 
universally	 true	and	 should	be	 treated	 carefully.	 Fifth,	 for	 social	
media, when the location of the observation was not explicitly 
detailed an assumption was made that the tagged location pro-
vided information as to where the picture was taken; this cannot 
be confirmed and therefore adds a level of uncertainty regarding 
the reliability of social media data. Sixth, it is possible that individ-
uals could report Banded Demoiselle occurrences with multiple 
sources, leading to duplicates that may affect the correlation and 
similarities between data types. Seventh, we found evidence that 
sampling bias can be more prevalent in citizen science and social 
media data, than in more traditional sampling surveys. There are 
numerous published methods of compensating for these issues 
(Chauvier	et	al.,	2021; Ranc et al., 2016; Stolar & Nielsen, 2014),	
some of which were used here, but established methods may be 
difficult	 to	 carry	out	 for	 limited	 social	media	data.	 Finally,	while	
providing a compelling case for employing social media data for 
the	Banded	Demoiselle,	the	generality	of	our	conclusions	requires	
further investigation to determine whether our findings apply for 

other species, particularly those that are perhaps more difficult to 
identify by nonexperts.

5  |  CONCLUSION

Public participation has become commonplace within scientific 
research aimed at biodiversity monitoring and conservation, 
enabling access to a monumental breadth of data on species oc-
currence unobtainable otherwise. Our study offers a compelling 
illustration of the value of alternative sources of traditional bio-
logical records and highlights, in particular, the value of ecological 
information derived from social media data as an inexpensive and 
complementary source of species occurrence data. This source of 
freely available information can be exploited to capture a more 
complete understanding of species habitat preferences, appreci-
ate the influence of urban settings, and gain insights that cannot 
be attained from traditional recording alone. We believe further 
development	of	APIs	to	gather	social	media	information,	technolo-
gies for automated verification, and greater adoption of available 
geo- tagging facilities, would further broaden the scientific appli-
cation of social media.
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